JP2017130408A - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP2017130408A
JP2017130408A JP2016010660A JP2016010660A JP2017130408A JP 2017130408 A JP2017130408 A JP 2017130408A JP 2016010660 A JP2016010660 A JP 2016010660A JP 2016010660 A JP2016010660 A JP 2016010660A JP 2017130408 A JP2017130408 A JP 2017130408A
Authority
JP
Japan
Prior art keywords
layer
light emitting
conductive
electrode layer
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016010660A
Other languages
English (en)
Inventor
幹男 馬場
Mikio Baba
幹男 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2016010660A priority Critical patent/JP2017130408A/ja
Publication of JP2017130408A publication Critical patent/JP2017130408A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】本発明は、コストダウン可能な発光装置を提供することを目的とする。【解決手段】発光装置1は、透明基材11の一方の面に、ストライプ状または格子状に配置された複数の導電性細線13aを有する導電層13、第1電極層14、発光機能層21及び第2電極層22がこの順に積層されている。そして、導電性細線13aの側面は、透明基材11側の幅よりも第2電極層22側の幅が狭くなる方向に傾斜しており、透明基材11に対する導電性細線13aの接触角が25°よりも大きく45°以下である。【選択図】図1

Description

本発明は、発光装置に関する。
近年、液晶表示素子(LCD)に続く次世代表示デバイスとして、有機エレクトロルミネッセンス素子(以下、「有機EL素子」と略記する)等の自発光素子を2次元配列した発光素子型の表示パネルを備えた発光装置の研究開発が行われている。
有機EL素子は、陽極と、陰極と、これらの一対の電極間に形成され、発光機能層や正孔注入層等を有する有機EL層(発光機能層)とを備える。有機EL素子では、発光機能層が、正孔と電子とを再結合してエネルギーを発生し、発生したエネルギーで発光する。
このような有機EL素子の光を取り出す側の透明電極としては、一般的には、錫ドープ酸化インジウム(Indium Thin Oxide;ITO)や亜鉛ドープ酸化インジウム(Indium Zinc Oxide;IZO)等の透明導電性層を用いて形成されるが、これらの透明導電性層は、光の透過性が高いという特長を有し、高輝度を確保できるといった利点を有している。しかしながら、これらの透明導電性層は、電気抵抗値が大きく導電率が低いため、例えば、有機エレクトロルミネッセンス素子に用いた場合には、所定の光量を得ようとすると、消費電力が大きくなってしまうといった問題がある。
そのため、近年、ITOを用いない透明電極の技術が開示されており、例えば、一様な網目状、ストライプ型或いはグリッド型等の金属または合金の細線構造部を配置した導電層を作製し、その上に、例えば、導電性高分子材料を適当な溶媒に溶解または分散したインクを、塗布法や印刷法を用いて第1電極層を形成することによって、透明電極を形成する方法が提案されている(例えば、特許文献1、2参照)。しかしながら、導電層に金属細線構造を用いると、エッジの角度によっては電流が通常より多く流れるエッジリーク現象が発生するため、導電層の上に絶縁層を設けてから、その上に導電性高分子材料を積層する必要があり、工程が増え、コストアップに繋がるという問題があった。
特開2005−302508号公報 特開2006−93123号公報
本発明は上述した実情に鑑みてなされたものであって、コストダウンが可能な発光装置を提供することを目的とする。
上記目的を達成するために、本発明の一態様は、透明基材の一方の面に、ストライプ状または格子状に配置された複数の導電性細線を有する導電層、第1電極層、発光機能層及び第2電極層がこの順に積層され、透明基材に対する導電性細線の接触角が25°よりも大きく45°以下であることを特徴とする。ここで、透明基材に対する導電性細線の接触角としては、例えば、導電性細線の幅方向断面において、透明基材の導電性細線側の面と、導電性細線の側面の下端(透明基材側端部)とがなす角を用いることができる。
本発明の一態様によれば、導電性細線の断面形状を台形やかまぼこ型等のテーパー形状とし、導電性細線のエッジ角を比較的緩やかにしたため、エッジリーク対策のための工程を削減できる。これにより、コストダウン可能な発光装置を提供することができる。
第1の実施形態に係る導電層を備えた発光装置を示す概略断面図である。 導電性細線を拡大して示す断面図である。 第2の実施形態に係る導電層を備えた発光装置を示す概略断面図である。 導電性細線を拡大して示す断面図である。 従来の導電層を備えた発光装置を示す概略断面図である。
以下、本発明の実施形態について図面を参照しながら説明する。
本実施形態では、有機EL素子から発光装置1が構成される場合を例示している。但し、以下に説明する実施形態によって本発明が限定されることはない。
[第1実施形態]
(発光装置)
図1に示すように、発光装置1は、透明基材11の一方の面に、ストライプ状または格子状に配置された複数の導電性細線13aを有する導電層13、第1電極層14、発光機能層21及び第2電極層22がこの順で積層されて形成されている。ストライプ状とは、複数の導電性細線13aが一方向に並列に配置されてなる形状である。また、格子状とは、複数の導電性細線13aが互いに交差する二方向に並列に配置されてなる形状である。
また、発光装置1は、第1電極層14、発光機能層21及び第2電極層22を覆う接着層23と、第2電極層22上の接着層23と貼り合わせられて第1電極層14、発光機能層21及び第2電極層22を封止する封止基材24とを有している。ここで、透明基材11、導電層13及び第1電極層14は、発光装置1の陽極側の透明電極として機能する。また、第2電極層22は、発光装置1の陰極側の電極として機能する。
以下、図1に示した発光装置1の各部材について、詳細に説明する。
(透明電極)
上述したように、透明電極は、透明基材11と、金属及び合金の少なくとも一方からなる導電層13と、塗布法や印刷法を用いて形成されてなる第1電極層14とを有する。
なお、第1実施形態の透明電極は、LCD、エレクトロルミネッセンス素子、プラズマディスプレイ、エレクトロクロミックディスプレイ、太陽電池、タッチパネル等の透明電極、電子ペーパー、電磁波遮蔽材等にも使用できるが、導電性、透明性に優れ、平滑性も高いため、有機EL素子に使用することが好ましい。有機EL素子に使用する場合、輝度向上の観点から、導電性面の表面抵抗率は、好ましくはシート抵抗で0.01Ω/□以上100Ω/□以下であり、さらに好ましくは0.1Ω/□以上10Ω/□以下である。
(透明基材11)
透明基材11としては、例えば、プラスチックフィルム、プラスチック板、ガラス等を使用できる。プラスチックフィルム及びプラチック板の原料としては、例えば、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート等のポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVA等のポリオレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)等を使用できる。
透明基材11としては、表面平滑性に優れているものが好ましい。表面の平滑性は、算術平均粗さRaが5nm以下で且つ最大高さRyが50nm以下であることが好ましく、算術平均粗さRaが1nm以下で且つ最大高さRyが20nm以下であることがさらに好ましい。透明基材11の表面は、熱硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂、放射線硬化性樹脂等の下塗り層を付与して平滑化してもよいし、研磨等の機械加工によって平滑化してもよい。また、透明基材11の表面は、第1電極層14の塗布性や接着性を向上させるため、コロナ、プラズマ、UV/オゾンによる表面処理をしてもよい。ここで、表面の平滑性は、原子間力顕微鏡(AFM)等による測定から算出することができる。
また、透明基材11の表面には、大気中の酸素、水分を遮断する目的でガスバリア層を設けるのが好ましい。ガスバリア層の形成材料としては、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化アルミニウム、酸化アルミニウム等の金属酸化物、金属窒化物を使用できる。これらの材料は、水蒸気バリア機能のほかに酸素バリア機能も有する。特に、バリア性、耐溶剤性、透明性が良好な窒化シリコン、酸化窒化シリコンが好ましい。また、ガスバリア層は、必要に応じて多層構成にすることも可能である。その場合、無機層のみで構成してもよいし、無機層と有機層とで構成してもよい。ガスバリア層の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法等を使用できる。また、ガスバリア層の厚さに関しては、特に限定されないが、1層あたり5nm以上500nm以下であることが好ましく、1層あたり10nm以上200nm以下であることがさらに好ましい。ガスバリア層は、透明基材11の一方の面に設けてもよいし、両面に設けるようにしてもよい。
(導電層13)
導電層13は、ストライプ状または格子状に配置された複数の導電性細線13aを有する。導電性細線13a(導電層13)は、電気抵抗が低いことが好ましい。そのため、導電性細線13aの材料としては、例えば、10S/cm以上の電気伝導度を有する導電材料を用いる。例えば、アルミニウム、銀、クロミニウム、金、銅、タンタル、モリブデン等の金属またはその合金を使用できる。特に、電気導電度の高さ、材料のハンドリングの容易さの観点から、アルミニウム、クロミニウム、銅、銀及びその合金が好ましい。
また、導電性細線13aの高さ、つまり、導電層13の厚さは、あまり厚いとフレキシブル性が損なわれ、クラック等の不具合が発生することを考慮すると、0.1μm以上0.5μm以下であることが好ましい。導電性細線13aの線幅と高さとの関係については、所望の導電性に応じて決めればよいが、その場合、単一の導電性細線13aのみで構成してもよいし、異なる導電性細線13aで構成してもよい。
また、導電性細線13aの側面は、図2に示すように、透明基材11側の幅よりも第2電極層22側の幅が狭くなる方向に傾斜している平面となっている。これにより、導電性細線13aの断面形状は、台形(テーパー形状)となっている。透明基材11に対する導電性細線13aの接触角θ、つまり、台形の下底と斜辺とがなす角θは、0°以上90°未満であることが好ましく、25°よりも大きく45°以下であることがさらに好ましい。これにより、導電性細線13aのエッジ角(図2参照)が緩やかとなっている。ここで、接触角θとしては、例えば、導電性細線13aを幅方向に沿って破断してなる導電性細線の13aの幅方向断面を見た場合に、透明基材11の導電性細線13a側の面と、導電性細線13aの側面の下端(透明基材11側端部)とがなす角を用いることができる。
ちなみに、図5に示すように、エッジ角が切り立っている導電性細線13aを用いる方法では、導電性細線13aのエッジ角が切立っていることにより、電流が通常より多く流れるエッジリーク現象が発生する可能性がある。そのため、導電性細線13a(導電層13)上に絶縁層12を設ける工程が必要になるので、工程が増え、コストアップになる。
これに対し、第1実施形態では、透明基材11に対する導電性細線13aの接触角θを25°よりも大きく45°以下とし、導電性細線13aの断面形状を台形(テーパー形状)とし、導電性細線13aのエッジ角を緩やかにした。それゆえ、エッジリーク対策のための工程を削減でき、コストダウンを行うことができる。また、導電性細線13aのエッジへの電流集中を抑制することができ、発光装置1の表示特性を向上することができる。
(第1電極層14)
第1電極層14は、塗布法によって形成される塗布電極層として形成することができる。第1電極層14(塗布電極層)を塗布法により形成する際に用いられる溶液には、第1電極層14となる材料と溶媒とを含む。また、第1電極層14としては、導電性を示す高分子化合物を含むことが好ましい。導電性を示す高分子化合物としては、例えば、ドーパントを含有していてもよい。高分子化合物の導電性は、通常、導電率で10−5〜10S/cmであり、好ましくは10−3〜10S/cmである。また、第1電極層14は、実質的に導電性を示す高分子化合物から成ることが好ましい。第1電極層14の材料としては、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等が挙げられる。
ドーパントとしては、公知のドーパントを用いることができる。例えば、ポリスチレンスルホン酸、ドデシルベンゼンスルホン酸等の有機スルホン酸、PF、AsF、SbF等のルイス酸が挙げられる。また、導電性を示す高分子化合物としては、例えば、ドーパントが高分子化合物に直接結合した自己ドープ型の高分子化合物等が挙げられる。
第1電極層14は、ポリチオフェン及びポリチオフェンの誘導体の少なくとも一方を含んで構成されることが好ましく、実質的にポリチオフェン及びポリチオフェンの誘導体の少なくとも一方から成ることが好ましい。なお、ポリチオフェン及びポリチオフェンの誘導体の少なくとも一方は、ドーパントを含有していてもよい。ポリチオフェン、ポリチオフェンの誘導体、またはポリチオフェンとポリチオフェンの誘導体との混合物は、水及びアルコール等の水系溶媒に溶解、若しくは分散しやすいので、塗布法に用いられる塗布液の溶質として好適に用いられる。またこれらは導電性が高く、電極材料として好適に用いられる。さらにこれらはHOMOエネルギーが5.0eV程度であり、通常の有機EL素子に用いられる発光機能層21のHOMOエネルギーとの差が1eV程度と低く、発光機能層21に正孔を効率的に注入することができるので、特に、陽極の材料として好適に用いることができる。また、透明性が高く、有機EL素子の発光取り出し側の電極として好適に用いられる。
第1電極層14は、ポリアニリン及びポリアニリンの誘導体の少なくとも一方を含んで構成されることが好ましく、実質的にポリアニリン及びポリアニリンの誘導体の少なくとも一方から成ることが好ましい。なお、ポリアニリン及びポリアニリンの誘導体の少なくとも一方はドーパントを含有していてもよい。ポリアニリン及びポリアニリンの誘導体の少なくとも一方は、導電性及び安定性に優れるために、電極材料として好適に用いられる。また、透明性が高く、有機EL素子の発光取り出し側の電極として好適に用いられる。
第1電極層14の厚さは、あまり厚すぎると光透過率に影響を及ぼすため光透過率80%以上になることを考慮すると、0.5μm以上2.0μm以下であることが好ましい。
有機EL素子として構成される第1実施形態の発光装置1は、以上説明した第1実施形態の透明電極を陽極として使用する。そして、透明電極に対し、発光機能層21、陰極として機能する第2電極層22を設ける。そして、第2電極層22の周囲を接着層23で覆い、封止基材24によって封止している。接着層23、封止基材24による構造(以下、「封止構造」と記す)については有機EL素子に一般的に使われている公知の材料、構成等の任意のものを用いることができる。
発光装置1(有機EL素子)の層構成としては、以下のものが考えられる。なお、以下の記載において、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。また、以下の表記において、「陽極」は導電層13に相当し、「陰極」は第2電極に相当する。
陽極/発光機能層/陰極、
陽極/正孔輸送層/発光機能層/電子輸送層/陰極、
陽極/正孔注入層/正孔輸送層/発光機能層/電子輸送層/陰極、
陽極/正孔注入層/発光機能層/電子輸送層/電子注入層/陰極、
陽極/正孔注入層/発光機能層/電子注入層/陰極、
発光装置1は、2層以上の発光機能層21を有していてもよく、2層以上の発光機能層21を有する発光装置1としては、例えば、以下に示す層構成が挙げられる。
陽極/電荷注入層/正孔輸送層/発光機能層/電子輸送層/電荷注入層/電荷発生層/電荷注入層/正孔輸送層/発光機能層/電子輸送層/電荷注入層/陰極
また、3層以上の発光機能層21を有する発光装置1としては、具体的には、「電荷発生層/電荷注入層/正孔輸送層/発光機能層/電子輸送層/電荷注入層」を一つの繰り返し単位とし、この繰り返し単位を2つ以上含む以下の層構成を用いることができる。
陽極/電荷注入層/正孔輸送層/発光機能層/電子輸送層/電荷注入層/「繰り返し単位」/「繰り返し単位」/・・・/陰極
上記層構成において、陽極、陰極、発光機能層以外の各層は、必要に応じて削除することができる。ここで、電荷発生層とは、電界を印加することにより、正孔と電子を発生する層である。電荷発生層としては、例えば、酸化バナジウム、ITO、酸化モリブデン等からなる薄膜を用いることができる。
以下、正孔注入層、正孔輸送層、発光機能層21、電子輸送層、電子注入層、陰極(第2電極層22)の各層、及び封止構造について説明する。
(透明電極と発光機能層21との間に設けられる層)
必要に応じて透明電極(陽極)と発光機能層21との間に設けられる層としては、正孔注入層、正孔輸送層、電子ブロック層等がある。正孔注入層は、透明電極からの正孔注入効率を改善する機能を有する層である。正孔輸送層とは、正孔注入層または透明電極により近い層からの正孔注入を改善する機能を有する層である。また、正孔注入層または正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層を電子ブロック層と称することがある。電子の輸送を堰き止める機能を有することは、例えば、電子電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。
(正孔注入層)
正孔注入層は、陽極と正孔輸送層との間、または陽極と発光機能層21との間に設けることができる。正孔注入層の材料としては、公知の材料を適宜用いることができ、特に制限はない。例えば、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、ヒドラゾン誘導体、カルバゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、アミノ基を有するオキサジアゾール誘導体、酸化バナジウム、酸化タンタル、酸化モリブデン等の酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体を使用できる。
正孔注入層の成膜方法としては、例えば、正孔注入層となる材料(正孔注入材料)を含む溶液から成膜する方法がある。成膜に用いられる溶媒としては、正孔注入材料を溶解させるものであれば、特に制限はない。例えば、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒、及び水を使用できる。
成膜方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、スリットコート法、インクジェットプリント法、ノズルプリント法が挙げられる。
また、正孔注入層の厚さとしては、5〜300nm程度であることが好ましい。正孔注入層の厚さが5nm未満では、製造が困難になる傾向がある。他方、厚さが300nmを越えると、駆動電圧、及び正孔注入層に印加される電圧が大きくなる傾向がある。
(正孔輸送層)
正孔輸送層の材料としては、特に制限はないが、例えば、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)4,4’−ジアミノビフェニル(TPD)、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(NPB)等の芳香族アミン誘導体、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p−フェニレンビニレン)若しくはその誘導体、またはポリ(2,5−チエニレンビニレン)若しくはその誘導体等が例示される。
上記した材料のうち、正孔輸送層に用いる正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p−フェニレンビニレン)若しくはその誘導体、またはポリ(2,5−チエニレンビニレン)若しくはその誘導体等の高分子正孔輸送材料が好ましい。低分子の正孔輸送材料の場合は、高分子バインダーに分散させて用いることが好ましい。
正孔輸送層の成膜方法としては、特に制限はないが、低分子の正孔輸送材料では、高分子バインダーと正孔輸送材料とを含む混合液からの成膜を挙げることができ、高分子の正孔輸送材料では、正孔輸送材料を含む溶液から成膜を行う方法がある。溶液からの成膜に用いられる溶媒としては、正孔輸送材料を溶解させるものであれば、特に制限はなく、例えば、正孔注入層の項で例示した溶媒を使用できる。溶液からの成膜方法としては、上述した正孔注入層の成膜法と同様の塗布法を使用できる。
正孔輸送層の厚さは、特に制限されないが、目的とする設計に応じて適宜変更することができ、1〜1000nm程度であることが好ましい。正孔輸送層の厚さが1nm未満となると、製造が困難になる、または正孔輸送の効果が十分に得られない等の傾向があり、他方、1000nmを超えると、駆動電圧及び正孔輸送層に印加される電圧が大きくなる傾向がある。したがって、正孔輸送層の厚さは、好ましくは、1〜1000nmであるが、より好ましくは、2〜500nmであり、さらに好ましくは、5〜200nmである。
(発光機能層21)
発光機能層21は、主として蛍光または燐光を発光する有機物(低分子化合物及び高分子化合物)を有する。なお、発光機能層21は、ドーパント材料を含んでいてもよい。発光機能層21を形成する材料としては、例えば以下の材料を使用できる。
「色素系材料」
発光機能層21の色素系材料としては、例えば、シクロペンダミン誘導体、キナクドリン誘導体、クマリン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー等が挙げられる。
「金属錯体系材料」
発光機能層21の金属錯体系材料としては、例えば、イリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体等、中心金属に、Al、Zn、Be等またはTb、Eu、Dy等の希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を有する金属錯体等が挙げられる。
「高分子系材料」
発光機能層21の高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素体や金属錯体系発光材料を高分子化したもの等が挙げられる。
上記高分子系材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、及びそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体等が挙げられる。また、緑色に発光する材料としては、キナクドリン誘導体、クマリン誘導体、及びそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体等が挙げられる。また、赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物、及びそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体等が挙げられる。
「ドーパント材料」
発光機能層21中に発光効率の向上や発光波長を変化させる目的で、ドーパントを添加することができる。このよう等パントとしては、例えば、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクドリン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾン等が挙げられる。なお、発光機能層21の厚さは、通常約2〜200nmである。
発光機能層21の成膜方法としては、有機発光材料を含む溶液から成膜を行う方法がある。溶液からの成膜に用いられる溶媒としては、有機発光材料を溶解させるものであれば、特に制限はなく、例えば、正孔注入層の項で例示した溶媒を使用できる。溶液からの成膜方法としては、上述した正孔注入層の成膜法と同様の塗布法を使用できる。
(第2電極層22と発光機能層21との間に設けられる層)
必要に応じて第2電極層22(陰極)と発光機能層21との間に設けられる層としては、電子注入層、電子輸送層、正孔ブロック層等がある。第2電極層22と発光機能層21との間に電子注入層と電子輸送層との両方の層が設けられる場合、第2電極層22に接する層を電子注入層と称し、この電子注入層を除く層を電子輸送層と称する。
電子注入層は、第2電極層22からの電子注入効率を改善する機能を有する層である。電子輸送層は、第2電極層22、電子注入層または第2電極層22により近い層からの電子注入を改善する機能を有する層である。正孔ブロック層は、正孔の輸送を堰き止める機能を有する層である。なお電子注入層、及び電子輸送層の少なくとも一方が正孔の輸送を堰き止める機能を有する場合には、これらの層が正孔ブロック層を兼ねることがある。
(電子輸送層)
電子輸送層の電子輸送材料としては、公知の材料を使用できる。例えば、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン若しくはその誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、または8−ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体等が挙げられる。
これらのうち、電子輸送材料としては、オキサジアゾール誘導体、ベンゾキノン若しくはその誘導体、アントラキノン若しくはその誘導体、8−ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体が好ましく、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
電子輸送層の成膜方法としては、特に制限はないが、低分子の電子輸送材料を用いる場合、高分子バインダーと電子輸送材料とを含む混合液から成膜を行う方法を使用できる。また、高分子の電子輸送材料を用いる場合、電子輸送材料を含む溶液から成膜を行う方法を使用できる。溶液からの成膜に用いられる溶媒としては、電子輸送材料を溶解させるものであれば、特に制限はなく、例えば、正孔注入層の項で例示した溶媒を使用できる。溶液からの成膜方法としては、上述した正孔注入層の成膜法と同様の塗布法を使用できる。
電子輸送層の厚さは、用いる電子輸送材料によって最適値が異なり、目的とする設計に応じて適宜変更することができる。電子輸送層には、少なくともピンホールが発しないような厚さが必要である。膜厚として、例えば、1〜1000nm程度であることが好ましく、より好ましくは2〜500nmであり、さらに好ましくは5〜200nmである。
(電子注入層)
電子注入層の材料としては、発光機能層21の種類に応じて最適な材料が適宜選択される。電子注入層の材料としては、例えば、アルカリ金属、アルカリ土類金属、アルカリ金属及びアルカリ土類金属のうちの1種類以上含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、ハロゲン化物、炭酸化物またはこれらの物質の混合物等が挙げられる。
アルカリ金属、アルカリ金属の酸化物、ハロゲン化物、及び炭酸化物の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルブジウム、酸化セシウム、フッ化セシウム、炭酸リチウム等が挙げられる。また、アルカリ土類金属、アルカリ土類金属の酸化物、ハロゲン化物、及び炭酸化物の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウム等が挙げられる。電子注入層は、2層以上を積層した積層体で構成されていてもよく、例えばフッ化リチウム/カルシウム等が挙げられる。電子注入層は、各種蒸着法、スパッタリング法、各種塗布法等により形成される。電子注入層の膜厚としては、1〜1000nm程度が好ましい。
(第2電極層22)
第2電極層22の材料としては、仕事関数が小さく、発光機能層21への電子注入が容易な材料、電気導電度が高い材料、可視光反射率の高い材料の少なくともいずれかが好ましい。かかる第2電極層22の材料としては、具体的には、金属、金属酸化物、合金、グラファイトまたはグラファイト層間化合物、酸化亜鉛等の無機半導体等が挙げられる。
このような金属としては、アルカリ金属やアルカリ土類金属、遷移金属やIII−b属金属等を使用できる。これらの金属の具体的例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等が挙げられる。
また、合金としては、上記金属の少なくとも一種を含む合金を挙げることができ、具体的には、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。
第2電極層22は、必要に応じて透明電極として構成される。この場合、材料としては、酸化インジウム、酸化亜鉛、酸化錫、ITO、IZO等の導電性酸化物、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体等の導電性有機物を使用できる。
なお、第2電極層22を2層以上の積層構造としてもよい。また、電子注入層を第2電極層22として用いることもできる。第2電極層22の膜厚は、電気導電度や耐久性を考慮して、適宜選択することができるが、例えば、10〜10000nmであり、好ましくは20〜1000nmであり、さらに好ましくは、50〜500nmである。
(封止構造)
封止構造は、第1電極層14、発光機能層21、第2電極層22の側面及び上面に接着層23を形成し、接着層23の上面に封止基材24を貼り合わせて構成されている。
接着層23を構成する接着剤としては、熱硬化型の接着剤を使用することもできるが、有機ELの材料への影響を鑑みると、光硬化型の接着剤が好ましい。光硬化型の接着剤としては、例えば、エステルアクリレート、ウレタンアクリレート、エポキシアクリレート、メラミンアクリレート、アクリル樹脂アクリレート等の各種アクリレート、ウレタンポリエステル等の樹脂を用いたラジカル系接着剤や、エポキシ、ビニルエーテル等の樹脂を用いたカチオン系接着剤、チオール・エン付加型樹脂系接着剤等が挙げられる。中でも、酸素による阻害がなく、光照射後も重合反応が進行するカチオン系接着剤が好ましい。
カチオン系硬化型タイプとしては、紫外線硬化型エポキシ樹脂接着剤が好ましく、また100mW/cm2以上の紫外線を照射した際に10〜90秒以内に硬化する紫外線硬化型接着剤が特に好ましい。10〜90秒以内で硬化することにより、紫外線照射による他の構成要素への影響を排除しつつ、接着剤が充分に硬化して適切な接着強度を得られる。
また、生産工程の効率の観点からも、10〜90秒以内で硬化することが好ましい。また、接着剤の種類に関わらず、低透湿性且つ高接着性のものが好ましい。接着層23を封止基材24上に形成する方法の一例として、ディスペンス法、押出ラミネート法、溶融・ホットメルト法、カレンダー法、ノズル塗布法、スクリーン印刷法、真空ラミネート法、熱ロールラミネート法等が挙げられる。接着層23の厚さとしては、特に制限はないが、薄膜であるとこが好ましく1〜100μmであり、特に好ましくは5〜50μmである。
封止基材24としては、透明性が必要なトップエミッション型の有機EL素子の場合には、ガラス、ポリエチレンテレフタラート(PET)、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)等のプラスチックフィルムを用いることができ、特に透明性が必要ないボトムエミッション型の有機EL素子の場合には上記の材料に加えてステンレスやアルミ等の金属材料や不透明なガラス、プラスチック材料、或いはPETとアルミ箔に接着材を介して貼り合せた基材、例えばアルペット等も用いることができる。
有機EL素子として構成される第1実施形態の発光装置1は、上記した構成を有している。このような有機EL素子は、自発光型ディスプレイ、液晶用及び広告媒体バックライト、照明等に用いることができる。
(第1電極層14の製造方法)
次に、以上説明した第1実施形態の発光装置1の製造方法について説明する。
まず、透明基材11の一方の面に導電層13を製膜する。導電層13の製膜方法としては、特に制限はなく、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、金属薄膜を熱圧縮するラミネート法等を使用できる。その際、予め所望のパターニングが施された開口部を有するメタルマスクを使用し、開口部に対応する透明基材11の部分にのみ導電性細線13aの構成材料を塗布することで、ストライプ状または格子状に配置された複数の導電性細線13aからなる細線パターンを形成して、導電層13を形成する。
その際、導電性細線13aの側面を透明基材11側の幅よりも第2電極層22側の幅が狭くなる方向に傾斜させ、導電性細線13aの断面形状を台形とする。また、図2に示すように、透明基材11に対する導電性細線13aの接触角θを25°よりも大きく45°以下に形成する。さらに、導電層13の厚さは、0.1μm以上0.5μm以下とする。
また、導電層13の形成方法としては、例えば、導電層13となる材料を含む溶液から成膜する方法も使用できる。成膜に用いられる溶媒としては、導電層13となる材料を溶解させるものであれば、特に制限はない。また、成膜方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、スリットコート法、インクジェットプリント法、ノズルプリント法等を使用できる。特に、上述した細線パターンを直接形成できる成膜方法が好ましく、適宜選択可能であるが、スクリーン印刷法、フレキソ印刷法、オフセット印刷法等の印刷法、インクジェットプリント法、ノズルプリント法等の吐出による塗布法が好適である。具体的には、凸版印刷法によって、インクローラーから凸版の先端へ転写させたインクを透明基材11へ転写させる。或いは、凸版の先端部の形状を逆台形にし、その台形部底辺の角度を所望の角度(25°より大きく45°以下)にしてテーパー形状を付きやすくしてもよい。その後、乾燥固化して導電層13を形成する。
次いで、第1電極層14の形成領域に塗布導電材料を塗布して、第1電極層14を成膜する。このとき、接着層23が形成される領域を除くように、第1電極層14を形成する。成膜方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、スリットコート法、インクジェットプリント法、ノズルプリント法等の塗布法等を使用できる。特に、第1電極層14の形成領域を全面に渡って成膜するため、一様に塗布成膜する方法が好ましく、適宜選択可能であるが、スピンコート法、バーコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スリットコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、ロールコート法等の塗布法が好適である。また、第1電極層14の厚さは、0.5μm以上2.0μm以下とする。
次いで、塗布導電材料が塗布された透明基材11を、乾燥処理室内で例えば100℃以上の温度条件で加熱処理する。これにより、塗布導電材料に含まれる溶媒を気化させて、透明基材11及び導電層13上に塗布導電材料を固着させ、第1電極層14を形成する。
次いで、第1電極層14上に発光機能層21及び第2電極層22を形成する。発光機能層21は、発光機能層21を形成するための溶液を塗布、成膜する方法によっても形成することができる。また、第2電極層22は、蒸着、塗布による成膜、スパッタリング、CVD(chemical vapor deposition)等のいずれの方法によっても実現することができる。次いで、透明電極(透明基材11、導電層13及び第1電極層14)、発光機能層21及び第2電極層22を覆うように接着層23を塗布する。そして、接着層23上に封止基材24を貼り合わせて封止する。これにより、発光装置1を形成する。
(第1の実施形態の効果)
第1の実施形態の発光装置1の効果について説明する。
(1)第1の実施形態の発光装置1は、透明基材11の一方の面に、ストライプ状または格子状に配置された複数の導電性細線13aを有する導電層13、第1電極層14、発光機能層21及び第2電極層22がこの順に積層されている。そして、導電性細線13aの側面は、透明基材11側の幅よりも第2電極層22側の幅が狭くなる方向に傾斜しており、透明基材11に対する導電性細線13aの接触角θ(テーパー角)が25°よりも大きく45°以下である。
このような構成によれば、導電性細線13aの断面形状をテーパー形状(台形)とし、導電性細線13aのエッジ角を比較的緩やかにしたため、エッジリーク対策のための工程を削減できる。これにより、コストダウン可能な発光装置1を提供することができる。
(2)第1の実施形態の発光装置1では、導電層13の厚さは、0.1μm以上0.5μm以下とした。
このような構成によれば、ガラス基板はもちろんのこと、フレキシブル基板のフレキシブル性に形成してもクラック等が入ることがない導電層を提供することができる。
(3)第1の実施形態の発光装置1では、第1電極層14の厚さは、0.5μm以上2.0μm以下とした。
このような構成によれば、光透過率を損なうことなく、且つ微小異物を被覆し第1電極層と第2電極層の上下リーク電流を緩和する効果を提供することができる。
[第2の実施形態]
次に、第2の実施形態について図面を参照しながら説明する。なお、第1実施形態と同様な構成等については同一の符号を使用して、その詳細は省略する。
第2の実施形態では、導電性細線13aの断面形状が第1の実施形態と異なっている。
具体的には、第1の実施形態では、導電性細線13aの断面形状を台形に構成していたが、第2の実施形態では、図3、図4に示すように、導電性細線13aの断面形状をかまぼこ型に構成している。そして、かまぼこ型の立ち上がりを緩やかにし、透明基材11に対する導電性細線13aの接触角θを25°よりも大きく45°以下に形成している。ここで、接触角θは、かまぼこ型の底辺を2r、高さをhとしたときに、液体の接触角の算出法であるθ/2法を用いて、数式θ=2arctanh/rに従って算出することができる。
なお、その他の構成は第1実施形態と同様である。
(第2の実施形態の効果)
第2の実施形態の発光装置1の効果について説明する。
第2の実施形態では、導電性細線13aの断面形状をかまぼこ型のテーパー形状としたため、第1の実施形態の効果、つまり、絶縁層12を形成せずに、導電性細線13aのエッジへの電流集中の低減及び発光特性の向上に加え、透明導電膜の被覆性を向上できる。
1 …発光装置
11 …透明基材
12 …絶縁層
13 …導電層
13a…導電性細線
14 …第1電極層
21 …発光機能層
22 …第2電極層
23 …接着層
24 …封止基材

Claims (3)

  1. 透明基材の一方の面に、ストライプ状または格子状に配置された複数の導電性細線を有する導電層、第1電極層、発光機能層及び第2電極層がこの順に積層され、
    前記透明基材に対する前記導電性細線の接触角が25°よりも大きく45°以下であることを特徴とする発光装置。
  2. 前記導電層の厚さは、0.1μm以上0.5μm以下であることを特徴とした請求項1に記載の発光装置。
  3. 前記第1電極層の厚さは、0.5μm以上2.0μm以下であることを特徴とした請求項1または2に記載の発光装置。
JP2016010660A 2016-01-22 2016-01-22 発光装置 Pending JP2017130408A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016010660A JP2017130408A (ja) 2016-01-22 2016-01-22 発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010660A JP2017130408A (ja) 2016-01-22 2016-01-22 発光装置

Publications (1)

Publication Number Publication Date
JP2017130408A true JP2017130408A (ja) 2017-07-27

Family

ID=59396246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010660A Pending JP2017130408A (ja) 2016-01-22 2016-01-22 発光装置

Country Status (1)

Country Link
JP (1) JP2017130408A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518107A (ja) * 2017-04-26 2020-06-18 オーティーアイ ルミオニクス インコーポレーテッドOti Lumionics Inc. 表面上のコーティングをパターン化する方法およびパターン化されたコーティングを含むデバイス
US11467461B2 (en) * 2019-06-05 2022-10-11 Heliotrope Europe S.L. Electrochromic device including transparent conductors having reduced sheet resistance in a direction of current flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020518107A (ja) * 2017-04-26 2020-06-18 オーティーアイ ルミオニクス インコーポレーテッドOti Lumionics Inc. 表面上のコーティングをパターン化する方法およびパターン化されたコーティングを含むデバイス
US11467461B2 (en) * 2019-06-05 2022-10-11 Heliotrope Europe S.L. Electrochromic device including transparent conductors having reduced sheet resistance in a direction of current flow

Similar Documents

Publication Publication Date Title
JP5296343B2 (ja) バリア層つき基板、表示素子および表示素子の製造方法
US20110227100A1 (en) Light-emitting device and method for manufacturing thereof
US8277273B2 (en) Method of producing organic electroluminescence element, organic electroluminescence element, and lighting device
JP5672705B2 (ja) 発光装置およびその製造方法
JP2010067543A (ja) 印刷用のインキ
US20110121282A1 (en) Manufacturing method of organic electroluminescence element, light-emitting device, and display device
US20160315280A1 (en) Light-emitting device and method for fabricating light-emitting device
JP2017130408A (ja) 発光装置
WO2012070574A1 (ja) 発光装置及び発光装置の製造方法
JP2013211102A (ja) 有機エレクトロルミネセンスディスプレイパネルおよびその製造方法
US9923164B2 (en) Method for manufacturing transparent electrode, transparent electrode, and organic electroluminescence device provided with the same
JP2010146894A (ja) 有機エレクトロルミネッセンス素子
JP6582896B2 (ja) 発光パネルモジュール、発光装置、及びその製造方法
JP6387602B2 (ja) 透明電極、透明電極の製造方法、透明電極を備えた有機エレクトロルミネッセンス素子
JP5184938B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2016139934A1 (ja) 透明電極、及び有機エレクトロルミネッセンス素子
JP2016162537A (ja) 発光装置、及び発光装置の製造方法
JP2018045816A (ja) 透明電極及び有機エレクトロルミネッセンス素子
JP2017204403A (ja) 透明電極及び有機エレクトロルミネッセンス素子
JP2017174598A (ja) 有機el素子
JP2015064958A (ja) 透明電極、及びそれを備えた有機エレクトロルミネッセンス素子
JP2016081803A (ja) 発光装置
JP2015207454A (ja) 発光装置、及び発光装置の製造方法
JP2017098185A (ja) 透明電極、透明電極を備えた有機エレクトロルミネッセンス素子、透明電極の製造方法及び有機エレクトロルミネッセンス素子の製造方法