WO2018072447A1 - 基于微分干涉的光学薄膜缺陷检测方法 - Google Patents

基于微分干涉的光学薄膜缺陷检测方法 Download PDF

Info

Publication number
WO2018072447A1
WO2018072447A1 PCT/CN2017/086323 CN2017086323W WO2018072447A1 WO 2018072447 A1 WO2018072447 A1 WO 2018072447A1 CN 2017086323 W CN2017086323 W CN 2017086323W WO 2018072447 A1 WO2018072447 A1 WO 2018072447A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
differential interference
light wave
collimating lens
optical
Prior art date
Application number
PCT/CN2017/086323
Other languages
English (en)
French (fr)
Inventor
雷枫
边心田
Original Assignee
淮阴师范学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淮阴师范学院 filed Critical 淮阴师范学院
Priority to US16/326,568 priority Critical patent/US11313805B2/en
Publication of WO2018072447A1 publication Critical patent/WO2018072447A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • G01N2021/8967Discriminating defects on opposite sides or at different depths of sheet or rod

Definitions

  • the invention relates to the field of optical film measurement, and in particular to an optical film defect detection method based on differential interference.
  • Chinese invention patent CN104792794A discloses a method for detecting surface defects of optical films based on machine vision.
  • the image of the surface of the optical film is smoothed by acquiring an image of the surface of the optical film, and the background image is extracted from the image of the surface of the smoothed optical film. And binarization processing, and finally, the defects are identified according to the image features of different defects.
  • This method has the following drawbacks:
  • the technical problem to be solved by the present invention is that the existing optical film surface defect detecting method is limited to detecting defects on the surface of the single-sided optical film, and can not effectively detect defects such as bubbles and impurities inside the optical film, and the detection result is easily reflected by the surface of the optical film.
  • the technical solution adopted by the present invention provides a method for detecting an optical film defect based on differential interference, comprising the following steps:
  • the planar light wave sequentially passes through the light bar, the optical film, the first collimating lens and the lenticular lens, and forms two parallel outgoing lights by differential interference;
  • Two parallel outgoing light passes through the second collimating lens and is imaged as a differential interference image on the photodetector;
  • the differential interference image is analyzed to obtain surface and internal defects of the optical film.
  • the solution can also detect thickness variations caused by surface and internal defects of the optical film.
  • the differential interference image is analyzed, and the surface and internal defects of the optical film are obtained as follows:
  • the light amplitudes before and after passing through the optical film are respectively set to U A and U B , and the initial phase of the optical film is set to Is a constant, the phase of the surface and internal defects of the optical film is set to The phase change caused by the surface and internal defects of the optical film is set to then
  • the light intensity I(x, y) of the differential interference image is obtained by the derivative U' 2 (x, y) of the complex amplitude U 2 (x, y) in the formula (3):
  • the thickness variation caused by the surface and internal defects of the optical film is d(x, y), the refractive index is n, and the incident angle of the planar light wave is zero, and the planar light wave is transmitted through the optical film.
  • Optical path difference nd(x, y) and phase change The relationship is expressed as:
  • the phase change of the optical film In contrast to the thickness variation d(x, y) of the optical film, that is, the thickness variation caused by the surface and internal defects of the optical film is expressed as a phase change of the optical film, and therefore, by the differential interference image
  • the shape distribution of the surface and internal defects of the optical film can be obtained.
  • the present invention utilizes the phase change of the planar light wave transmitted through the optical film to detect defects such as scratches on the surface of the optical film, bubbles inside the optical film, and irregularities.
  • the method can simultaneously detect defects such as bubbles and irregularities on the upper surface and the lower surface of the optical film, and the detection result is not affected by the background light of the external environment and the reflective characteristics of the surface of the optical film.
  • planar light wave is differentially interfered by the flat beam splitter.
  • the photodetector is a linear array photodetector.
  • This scheme uses a linear array photodetector to improve the detection sensitivity of the photodetector.
  • a sum of focal lengths of the first collimating lens and the lenticular lens is equal to a sum of focal lengths of the second collimating lens and the photodetector.
  • the first collimating lens overlaps with the optical axis of the lenticular lens to form a first optical axis
  • the second collimating lens overlaps with the optical axis of the photodetector to form a second optical axis.
  • An optical axis is perpendicular to the second optical axis and is located at the center of the plate beam splitter.
  • FIG. 1 is a flow chart of a method for detecting defects of an optical film based on differential interference according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an implementation principle of a method for detecting defects of an optical film based on differential interference according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of impurities of a detected optical film according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a bubble of a detected optical film according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a gray point of a detected optical film according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing a nail scratch of a detected optical film according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a scratch of a detected optical film according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method for detecting an optical film defect based on differential interference, by adjusting an incident light source as a planar light wave, the planar light wave passing through an optical film to be detected, carrying surface and internal distribution information of the optical film, forming Complex light waves form differential interference images by differential interference, highlighting the distribution of surface and internal defects of optical films, and have the advantages of clear imaging, strong stereoscopic effect, high resolution, low cost, easy implementation and convenient detection.
  • the solution can simultaneously detect defects such as bubbles and concavities on the upper surface and the lower surface of the optical film, and obtain sudden changes of the image by using differential interference, so that the defect portion of the image becomes clearer and clearer, and the detection result is not surrounded by the surrounding
  • the background light of the environment and the reflective characteristics of the surface of the optical film have very high reliability, and are convenient, fast and reliable compared with the existing optical film surface defect detecting method.
  • Embodiments of the present invention provide a method for detecting an optical film defect based on differential interference, as shown in FIG. 1 , including the following steps:
  • the plane light wave passes through the diaphragm, the optical film, the first collimating lens and the lenticular lens in sequence, and forms two parallel outgoing lights by differential interference.
  • optical interference such as a plate beam splitter (beam splitter) is used to differentially interfere with planar light waves.
  • Two parallel outgoing light passes through the second collimating lens and is imaged as a differential interference image on the photodetector.
  • the photodetector in this scheme uses a linear array photodetector to improve the detection sensitivity of the photodetector.
  • the sum of the focal lengths of the first collimating lens and the lenticular lens is equal to the sum of the focal lengths of the second collimating lens and the photodetector, and the focal lengths of the first collimating lens, the lenticular lens, the second collimating lens, and the photodetector are 35-100mm.
  • the first collimating lens overlaps with the optical axis of the lenticular lens to form a first optical axis
  • the second collimating lens overlaps with the optical axis of the photodetector to form a second optical axis
  • the first optical axis is perpendicular to the second optical axis.
  • the foot is at the center of the flat beam splitter.
  • Step S4 is as follows:
  • the amplitudes of the light before and after passing through the optical film are set to U A and U B , respectively, and the initial phase of the optical film is set to Since the incident light wave can be approximated as an ideal planar light wave, the initial phase can be set.
  • the phase of defects such as the surface of the optical film and internal bubbles are set to
  • the phase change caused by defects such as the surface and the interior of the optical film is set to then
  • the light intensity I(x, y) of the differential interference image is obtained by the derivative U' 2 (x, y) of the complex amplitude U 2 (x, y) in the formula (3):
  • the thickness variation caused by defects such as the surface and the interior of the optical film is d(x, y), the refractive index is n, and the incident angle of the planar light wave is zero, and the optical path difference nd (x) generated when the planar light wave is transmitted through the optical film , y) and phase change
  • d(x, y) the refractive index
  • n the refractive index
  • n the incident angle of the planar light wave
  • the phase change of the optical film The thickness variation d(x, y) proportional to the thickness of the optical film, that is, the thickness variation caused by defects such as the surface of the optical film and internal bubbles, appears as a phase change of the optical film. Therefore, by analyzing the differential interference image, optical can be obtained.
  • FIG. 2 is a schematic diagram showing an implementation principle of a method for detecting defects of an optical film based on differential interference according to an embodiment of the present invention.
  • the incident direction of the light source 1 includes a light bar 2, an optical film to be detected 9, and a first a collimating lens 3, a lenticular lens 4, a slab beam splitter 5, a second collimating lens 6 and a photodetector 7.
  • the specific adjustment process is: firstly adjusting the light beam emitted by the light source 1 as a plane light wave, vertically transmitting the to-be-detected After passing through the first collimating lens 3 and the lenticular lens 4, the optical film 9 enters the slab beam splitter 5 vertically, and adjusts two parallel outgoing lights to enter the photodetector 7 through the second collimating lens 6, and then is connected to the computer 8. .
  • the light source 1 can select various power continuous wave light sources, such as a halogen light source.
  • FIG. 3 As shown in FIG. 3, FIG. 4, FIG. 5, FIG. 6 and FIG. 7, respectively, the impurity diagram, the bubble diagram, the gray dot diagram, the nail scratch diagram and the padding diagram of the optical film detected by the scheme are respectively shown.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Textile Engineering (AREA)
  • Mathematical Physics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于微分干涉的光学薄膜缺陷检测方法,包括:分别调整入射的光源(1)为平面光波、待检测的光学薄膜(9)的表面与平面光波垂直(S1);平面光波依次经过光栏(2)、光学薄膜(9)、第一准直透镜(3)和柱状透镜(4)后,通过微分干涉形成两束平行的出射光(S2);两束平行的出射光经过第二准直透镜(6),在光电探测器(7)上成像为微分干涉图像(S3);对微分干涉图像进行分析,获取光学薄膜(9)的表面和内部缺陷(S4)。利用微分干涉获取光学薄膜表面以及内部的具有较强立体感的清晰图像,易于进行缺陷的分辨,不仅可以同时检测上表面、下表面以及内部缺陷,且检测结果不受外界环境的背景光以及光学薄膜表面反光特性的影响。

Description

基于微分干涉的光学薄膜缺陷检测方法 技术领域
本发明涉及光学薄膜测量领域,具体涉及基于微分干涉的光学薄膜缺陷检测方法。
背景技术
随着光学薄膜制造技术的飞速发展,其应用领域越来越广泛,已经成为工业、农业和医药业等领域不可或缺的原材料。同时,研究小型化、节能化以及高度集成化的高端产品是今后半导体制造技术发展的必然趋势,为了满足这种需求,对各类功能薄膜的品质要求越来越高。
中国发明专利CN104792794A公开了一种基于机器视觉的光学薄膜表面缺陷检测方法,通过采集光学薄膜表面的图像,对光学薄膜表面的图像进行平滑处理,对平滑处理后的光学薄膜表面的图像提取背景图像及二值化处理,最后根据不同缺陷的图像特征,识别出缺陷。这种方法存在以下缺陷:
(1)仅限于检测单侧光学薄膜表面的缺陷,不能有效检测光学薄膜内部的气泡和杂质;
(2)检测结果容易受到光学薄膜表面反光性状的影响,造成误检和漏检,不能完全满足新型光学薄膜生产线的检测要求。
发明内容
本发明所要解决的技术问题是现有的光学薄膜表面缺陷检测方法仅限于检测单侧光学薄膜表面的缺陷,不能有效检测光学薄膜内部的气泡和杂质等缺陷,且检测结果容易受到光学薄膜表面反光性状的影响,造成误检 和漏检的问题。
为了解决上述技术问题,本发明所采用的技术方案是提供一种基于微分干涉的光学薄膜缺陷检测方法,包括以下步骤:
分别调整入射的光源为平面光波、待检测的光学薄膜的表面与平面光波垂直;
平面光波依次经过光栏、光学薄膜、第一准直透镜和柱状透镜后,通过微分干涉形成两束平行的出射光;
两束平行的出射光经过第二准直透镜,在光电探测器上成像为微分干涉图像;
对微分干涉图像进行分析,获取光学薄膜的表面和内部缺陷。
本发明具有以下优点:
(1)利用微分干涉获取光学薄膜表面以及内部变化的清晰图像,且获得的图像具有很强的立体感,易于进行气泡和凹凸等缺陷的分辨;
(2)本方案具有容易实现和成本低廉等优点,适于在工厂生产线推广普及;
(3)本方案还可以检测光学薄膜的表面和内部缺陷引起的厚度变化。
在上述技术方案中,对微分干涉图像进行分析,获取光学薄膜的表面和内部缺陷具体如下:
透过所述光学薄膜前后的光振幅分别设为UA和UB,所述光学薄膜的初始相位设为
Figure PCTCN2017086323-appb-000001
为常数,所述光学薄膜的表面和内部缺陷的相位设为
Figure PCTCN2017086323-appb-000002
所述光学薄膜的表面和内部缺陷引起的相位变化设为
Figure PCTCN2017086323-appb-000003
透过所述光学薄膜前的所述平面光波的复振幅U1表示为:
Figure PCTCN2017086323-appb-000004
透过所述光学薄膜后的所述平面光波的复振幅U2表示为:
Figure PCTCN2017086323-appb-000005
通过微分干涉,得到复振幅U2(x,y)的导函数U′2(x,y),导函数U′2(x,y)表示为:
Figure PCTCN2017086323-appb-000006
由公式(3)中复振幅U2(x,y)的导函数U′2(x,y)求得所述微分干涉图像的光强I(x,y)为:
Figure PCTCN2017086323-appb-000007
由公式(4)可以看出,相位变化
Figure PCTCN2017086323-appb-000008
可以引起所述微分干涉图像的光强I(x,y)变化,因此,可根据所述微分干涉图像推断出所述光学薄膜的表面和内部缺陷引起的相位变化
Figure PCTCN2017086323-appb-000009
设所述光学薄膜的表面和内部缺陷引起的厚度变化为d(x,y),折射率为n,所述平面光波的入射角为零,则所述平面光波透过所述光学薄膜后产生的光程差nd(x,y)与相位变化
Figure PCTCN2017086323-appb-000010
的关系表示为:
Figure PCTCN2017086323-appb-000011
由公式(5)可知,所述光学薄膜的相位变化
Figure PCTCN2017086323-appb-000012
正比于所述光学薄膜的厚度变化d(x,y),即所述光学薄膜的表面和内部缺陷引起的厚度变化都表现为所述光学薄膜的相位变化,因此,通过对所述微分干涉图像进行分析,可以获取所述光学薄膜的表面和内部缺陷的形状分布。
和传统的基于机器视觉的光学薄膜表面缺陷智能检测方法不同,本发明利用透过光学薄膜的平面光波的相位变化,检测光学薄膜表面划痕、光学薄膜内部气泡以及凹凸等缺陷。该方法不仅可以同时检测光学薄膜的上表面、下表面以及内部的气泡和凹凸等缺陷,且检测结果不受外界环境的背景光以及光学薄膜表面反光特性的影响。
在上述技术方案中,利用平板分光镜对所述平面光波进行微分干涉。
在上述技术方案中,所述光电探测器为线性阵列光电探测器。
本方案采用线性阵列光电探测器,以提高光电探测器的探测灵敏度。
在上述技术方案中,所述第一准直透镜与所述柱状透镜的焦距之和等于所述第二准直透镜与所述光电探测器的焦距之和。
在上述技术方案中,所述第一准直透镜与柱状透镜的光轴重叠形成第一光轴,所述第二准直透镜与光电探测器的光轴重叠形成第二光轴,所述第一光轴与所述第二光轴垂直,且垂足位于所述平板分光镜的中心。
附图说明
图1为本发明实施例提供的一种基于微分干涉的光学薄膜缺陷检测方法流程图;
图2为本发明实施例提供的一种基于微分干涉的光学薄膜缺陷检测方法的实现原理示意图;
图3为本发明实施例提供的检测到的光学薄膜的杂质示意图;
图4为本发明实施例提供的检测到的光学薄膜的气泡示意图;
图5为本发明实施例提供的检测到的光学薄膜的灰点示意图;
图6为本发明实施例提供的检测到的光学薄膜的指甲划痕示意图;
图7为本发明实施例提供的检测到的光学薄膜的垫伤示意图。
具体实施方式
本发明实施例提供了一种基于微分干涉的光学薄膜缺陷检测方法,通过调整入射的光源为平面光波,该平面光波透过待检测的光学薄膜,携带光学薄膜的表面和内部的分布信息,形成复杂的光波,通过微分干涉形成微分干涉图像,凸显光学薄膜的表面和内部缺陷的分布形状,具有成像清晰、立体感强、分辨率高、成本低廉、容易实现和检测方便等优点。
本方案可同时检测光学薄膜的上表面、下表面以及内部的气泡和凹凸等缺陷,利用微分干涉可获得图像的突变,使图像的缺陷部分变得更清晰明辨,而且,检测结果不受周围环境的背景光以及光学薄膜表面反光特性的影响,具有非常高的可靠性,和现有光学薄膜表面缺陷检测方法相比,具有方便、快速和可靠性强等优点。
下面结合说明书附图和具体实施方式对本发明做出详细的说明。
本发明实施例提供了一种基于微分干涉的光学薄膜缺陷检测方法,如图1所示,包括以下步骤:
S1、调整入射的光源为平面光波,并调整待检测的光学薄膜的表面与平面光波垂直。
S2、平面光波依次经过光栏、光学薄膜、第一准直透镜和柱状透镜后,通过微分干涉形成两束平行的出射光。
本方案利用平板分光镜(分束镜)等光学方法对平面光波进行微分干涉。
S3、两束平行的出射光经过第二准直透镜,在光电探测器上成像为微分干涉图像。
本方案中的光电探测器采用线性阵列光电探测器,以提高光电探测器的探测灵敏度。
S4、通过计算机对微分干涉图像进行分析,获取光学薄膜的表面和内部缺陷。
第一准直透镜与柱状透镜的焦距之和等于第二准直透镜与光电探测器的焦距之和,且第一准直透镜、柱状透镜、第二准直透镜和光电探测器的焦距范围为35-100mm。同时,第一准直透镜与柱状透镜的光轴重叠形成第一光轴,第二准直透镜与光电探测器的光轴重叠形成第二光轴,第一光轴与第二光轴垂直,且垂足位于平板分光镜的中心。
步骤S4具体如下:
透过光学薄膜前后的光振幅分别设为UA和UB,光学薄膜的初始相位设为
Figure PCTCN2017086323-appb-000013
由于入射光波可近似为理想平面光波,因此可设初始相位
Figure PCTCN2017086323-appb-000014
为常数,光学薄膜的表面和内部气泡等缺陷的相位设为
Figure PCTCN2017086323-appb-000015
光学薄膜的表面和内部等缺陷引起的相位变化设为
Figure PCTCN2017086323-appb-000016
透过光学薄膜前的平面光波的复振幅U1表示为:
Figure PCTCN2017086323-appb-000017
透过光学薄膜后的平面光波的复振幅U2表示为:
Figure PCTCN2017086323-appb-000018
通过微分干涉,得到复振幅U2(x,y)的导函数U′2(x,y),导函数U′2(x,y)表示为:
Figure PCTCN2017086323-appb-000019
由公式(3)中复振幅U2(x,y)的导函数U′2(x,y)求得微分干涉图像的光强I(x,y)为:
Figure PCTCN2017086323-appb-000020
由公式(4)可以看出,相位变化
Figure PCTCN2017086323-appb-000021
可以引起微分干涉图像的光强I(x,y)变化,因此,可根据微分干涉图像推断出光学薄膜的表面和内部等缺陷引起的相位变化
Figure PCTCN2017086323-appb-000022
设光学薄膜的表面和内部等缺陷引起的厚度变化为d(x,y),折射率为n,平面光波的入射角为零,则平面光波透过光学薄膜后产生的光程差nd(x,y)与相位变化
Figure PCTCN2017086323-appb-000023
的关系表示为:
Figure PCTCN2017086323-appb-000024
由公式(5)可知,光学薄膜的相位变化
Figure PCTCN2017086323-appb-000025
正比于光学薄膜的 厚度变化d(x,y),即光学薄膜的表面和内部气泡等缺陷引起的厚度变化都表现为光学薄膜的相位变化,因此,通过对微分干涉图像进行分析,可以获取光学薄膜的表面和内部气泡等缺陷的分布形状。
如图2所示,为本发明实施例提供的一种基于微分干涉的光学薄膜缺陷检测方法的实现原理示意图,从光源1的入射方向,依次包括光栏2、待检测的光学薄膜9、第一准直透镜3、柱状透镜4、平板分光镜5、第二准直透镜6和光电探测器7,具体的调整过程为:先调整光源1发射的光束为平面光波,垂直透过待检测的光学薄膜9,然后经过第一准直透镜3和柱状透镜4后,垂直进入平板分光镜5,调节两束平行的出射光通过第二准直透镜6进入光电探测器7,然后与计算机8连接。
光源1可以选择各种功率连续波光源,如卤素灯光源等。
如图3、图4、图5、图6和图7所示,分别为采用本方案检测到的光学薄膜的杂质示意图、气泡示意图、灰点示意图、指甲划痕示意图和垫伤示意图。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下作出的结构变化,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。

Claims (6)

  1. 一种基于微分干涉的光学薄膜缺陷检测方法,其特征在于,包括以下步骤:
    分别调整入射的光源为平面光波、待检测的光学薄膜的表面与平面光波垂直;
    平面光波依次经过光栏、光学薄膜、第一准直透镜和柱状透镜后,通过微分干涉形成两束平行的出射光;
    两束平行的出射光经过第二准直透镜,在光电探测器上成像为微分干涉图像;
    对微分干涉图像进行分析,获取光学薄膜的表面和内部缺陷。
  2. 如权利要求1所述的方法,其特征在于,对微分干涉图像进行分析,获取光学薄膜的表面和内部缺陷具体如下:
    透过所述光学薄膜前后的光振幅分别设为UA和UB,所述光学薄膜的初始相位设为
    Figure PCTCN2017086323-appb-100001
    为常数,所述光学薄膜的表面和内部缺陷的相位设为
    Figure PCTCN2017086323-appb-100002
    所述光学薄膜的表面和内部缺陷引起的相位变化设为
    Figure PCTCN2017086323-appb-100003
    透过所述光学薄膜前的所述平面光波的复振幅U1表示为:
    Figure PCTCN2017086323-appb-100004
    透过所述光学薄膜后的所述平面光波的复振幅U2表示为:
    Figure PCTCN2017086323-appb-100005
    通过微分干涉,得到复振幅U2(x,y)的导函数U2′(x,y),导函数U2′(x,y)表示为:
    Figure PCTCN2017086323-appb-100006
    由公式(3)中复振幅U2(x,y)的导函数U2′(x,y)求得所述微分干涉图 像的光强I(x,y)为:
    Figure PCTCN2017086323-appb-100007
    由公式(4)可以看出,相位变化
    Figure PCTCN2017086323-appb-100008
    可以引起所述微分干涉图像的光强I(x,y)变化,因此,可根据所述微分干涉图像推断出所述光学薄膜的表面和内部缺陷引起的相位变化
    Figure PCTCN2017086323-appb-100009
    设所述光学薄膜的表面和内部缺陷引起的厚度变化为d(x,y),折射率为n,所述平面光波的入射角为零,则所述平面光波透过所述光学薄膜后产生的光程差nd(x,y)与相位变化
    Figure PCTCN2017086323-appb-100010
    的关系表示为:
    Figure PCTCN2017086323-appb-100011
    由公式(5)可知,所述光学薄膜的相位变化
    Figure PCTCN2017086323-appb-100012
    正比于所述光学薄膜的厚度变化d(x,y),即所述光学薄膜的表面和内部缺陷引起的厚度变化都表现为所述光学薄膜的相位变化,因此,通过对所述微分干涉图像进行分析,可以获取所述光学薄膜的表面和内部缺陷的分布形状。
  3. 如权利要求1所述的方法,其特征在于,利用平板分光镜对所述平面光波进行微分干涉。
  4. 如权利要求1所述的方法,其特征在于,所述光电探测器为线性阵列光电探测器。
  5. 如权利要求1所述的方法,其特征在于,所述第一准直透镜与所述柱状透镜的焦距之和等于所述第二准直透镜与所述光电探测器的焦距之和。
  6. 如权利要求3所述的方法,其特征在于,所述第一准直透镜与柱状透镜的光轴重叠形成第一光轴,所述第二准直透镜与光电探测器的光轴重叠形成第二光轴,所述第一光轴与所述第二光轴垂直,且垂足位于所述平板分光镜的中心。
PCT/CN2017/086323 2016-10-18 2017-05-27 基于微分干涉的光学薄膜缺陷检测方法 WO2018072447A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/326,568 US11313805B2 (en) 2016-10-18 2017-05-27 Differential interference-based optical film defect detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610905495.1A CN106501266B (zh) 2016-10-18 2016-10-18 基于微分干涉的光学薄膜缺陷检测方法
CN201610905495.1 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018072447A1 true WO2018072447A1 (zh) 2018-04-26

Family

ID=58293739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086323 WO2018072447A1 (zh) 2016-10-18 2017-05-27 基于微分干涉的光学薄膜缺陷检测方法

Country Status (3)

Country Link
US (1) US11313805B2 (zh)
CN (1) CN106501266B (zh)
WO (1) WO2018072447A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501266B (zh) * 2016-10-18 2018-05-29 淮阴师范学院 基于微分干涉的光学薄膜缺陷检测方法
CN107478175A (zh) * 2017-08-18 2017-12-15 东南大学 一种原子层沉积薄膜原位监测控制系统
CN109991179B (zh) * 2019-01-25 2020-10-16 中国科学院上海光学精密机械研究所 用于光学薄膜光谱测量的使用环境模拟装置及测量方法
CN114384081B (zh) * 2021-12-22 2023-07-28 西安工程大学 纺织布匹缺陷检测装置及其检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010007A (ja) * 1998-06-18 2000-01-14 Olympus Optical Co Ltd 微分干渉光学系、及び微分干渉光学系を有する光学装置
US6236459B1 (en) * 1998-11-05 2001-05-22 University Of Miami Thin film measuring device and method
US6369375B1 (en) * 1998-09-22 2002-04-09 Olympus Optical Co. Ltd. Detection apparatus having an object gradient detection
CN102012376A (zh) * 2009-09-04 2011-04-13 索尼公司 缺陷检查装置和缺陷检查方法
CN102128839A (zh) * 2009-09-25 2011-07-20 肖特股份有限公司 评估透明材料中的缺陷的方法和执行该方法的仪器
CN102288622A (zh) * 2011-04-29 2011-12-21 浙江师范大学 光学元件内部缺陷的检测方法及装置
CN102679907A (zh) * 2012-06-01 2012-09-19 哈尔滨工业大学深圳研究生院 基于led光源高精度的微分干涉测量系统及方法
CN105158269A (zh) * 2015-09-29 2015-12-16 中国科学院上海光学精密机械研究所 大口径平面光学元件疵病三维快速暗场检测装置和方法
CN106501266A (zh) * 2016-10-18 2017-03-15 淮阴师范学院 基于微分干涉的光学薄膜缺陷检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818592A (en) * 1997-02-07 1998-10-06 Phase Metrics, Inc. Non-contact optical glide tester
JP4073646B2 (ja) * 2001-06-28 2008-04-09 富士フイルム株式会社 シート体検査装置および方法
JP3878107B2 (ja) * 2002-11-06 2007-02-07 株式会社日立ハイテクノロジーズ 欠陥検査方法及びその装置
CN101587012B (zh) * 2009-06-30 2011-06-08 成都光明光电股份有限公司 光学玻璃光学均匀性测试装置及其测试方法
JP5216752B2 (ja) * 2009-11-18 2013-06-19 株式会社日立ハイテクノロジーズ 欠陥検出方法及び欠陥検出装置並びにこれを備えた欠陥観察装置
CN104677299A (zh) * 2013-11-29 2015-06-03 上海微电子装备有限公司 一种薄膜检测装置和方法
TWI486550B (zh) * 2014-01-20 2015-06-01 Nat Univ Tsing Hua 厚度線上即時檢測之光學干涉裝置及其方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010007A (ja) * 1998-06-18 2000-01-14 Olympus Optical Co Ltd 微分干渉光学系、及び微分干渉光学系を有する光学装置
US6369375B1 (en) * 1998-09-22 2002-04-09 Olympus Optical Co. Ltd. Detection apparatus having an object gradient detection
US6236459B1 (en) * 1998-11-05 2001-05-22 University Of Miami Thin film measuring device and method
CN102012376A (zh) * 2009-09-04 2011-04-13 索尼公司 缺陷检查装置和缺陷检查方法
CN102128839A (zh) * 2009-09-25 2011-07-20 肖特股份有限公司 评估透明材料中的缺陷的方法和执行该方法的仪器
CN102288622A (zh) * 2011-04-29 2011-12-21 浙江师范大学 光学元件内部缺陷的检测方法及装置
CN102679907A (zh) * 2012-06-01 2012-09-19 哈尔滨工业大学深圳研究生院 基于led光源高精度的微分干涉测量系统及方法
CN105158269A (zh) * 2015-09-29 2015-12-16 中国科学院上海光学精密机械研究所 大口径平面光学元件疵病三维快速暗场检测装置和方法
CN106501266A (zh) * 2016-10-18 2017-03-15 淮阴师范学院 基于微分干涉的光学薄膜缺陷检测方法

Also Published As

Publication number Publication date
US20210285891A1 (en) 2021-09-16
CN106501266B (zh) 2018-05-29
CN106501266A (zh) 2017-03-15
US11313805B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2018072447A1 (zh) 基于微分干涉的光学薄膜缺陷检测方法
JP6523558B2 (ja) 透明基板を備えた薄膜の測定装置およびその測定方法
TWI713638B (zh) 缺陷檢測方法及相關裝置
US20130044209A1 (en) Apparatus and method for detecting the surface defect of the glass substrate
WO2006108137A2 (en) Glass inspection systems and methods for using same
TWI644098B (zh) 透明基板之瑕疵檢測方法與裝置
US20110194101A1 (en) Supersensitization of defect inspection method
TWI629665B (zh) 缺陷檢查方法及缺陷檢測系統
KR101082699B1 (ko) 광학필름용 검사장치
CN109425619B (zh) 光学测量系统及方法
US20150177160A1 (en) Non-Imaging Coherent Line Scanner Systems and Methods for Optical Inspection
TW201140043A (en) End face inspection method for light-pervious rectangular sheets and end face inspection apparatus
KR100876257B1 (ko) 광학적 측정 방법 및 그 장치
WO2018072446A1 (zh) 非对称式光学干涉测量方法及装置
WO2021143525A1 (zh) 一种横向差动暗场共焦显微测量装置及其方法
TW201723428A (zh) 傾斜角度與距離量測方法
TWI357973B (en) Apparatus and method for simulataneous confocal fu
KR20140012250A (ko) 라인 빔을 이용한 유리기판 결함 측정 장치 및 측정 방법
JP7070537B2 (ja) 表面検査装置及び表面検査方法
CN113405478A (zh) 一种透明材料厚度测量方法
WO2020061882A1 (zh) 检测透明/半透明材料缺陷的方法、装置及系统
JP2016102776A (ja) 検査装置、及び検査方法
JP2008032669A (ja) 光走査式平面外観検査装置
CN205718877U (zh) 一种高精度apc光纤连接器自适应测量装置
KR101458890B1 (ko) 3차원 형상 측정장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863084

Country of ref document: EP

Kind code of ref document: A1