TWI357973B - Apparatus and method for simulataneous confocal fu - Google Patents

Apparatus and method for simulataneous confocal fu Download PDF

Info

Publication number
TWI357973B
TWI357973B TW97101688A TW97101688A TWI357973B TW I357973 B TWI357973 B TW I357973B TW 97101688 A TW97101688 A TW 97101688A TW 97101688 A TW97101688 A TW 97101688A TW I357973 B TWI357973 B TW I357973B
Authority
TW
Taiwan
Prior art keywords
light
light source
confocal
measuring device
sub
Prior art date
Application number
TW97101688A
Other languages
Chinese (zh)
Other versions
TW200933123A (en
Inventor
Liang Chia Chen
Yi Wei Chang
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW97101688A priority Critical patent/TWI357973B/en
Publication of TW200933123A publication Critical patent/TW200933123A/en
Application granted granted Critical
Publication of TWI357973B publication Critical patent/TWI357973B/en

Links

Landscapes

  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

13.57973 49θτ 11. -Θ~ι- 年月日修正替換頁 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種光學量測方法與裝置,尤其是指一 種利用同時擷取複數組分別具有不同聚焦位置之影像,以 解析待測物形貌特徵之一種共焦顯微形貌量測方法與裝 置。 -· 【先前技術】 在1C產業、半導體產業、LCD產業或者是光電量測產 業等領域中,常需要進行諸如:晶圓的表面粗糙度和平面 度的量測、覆晶製程中金球凸塊的尺寸和共面度的量測、 晶圓共面度之量測、PCB缺陷檢測、端子瑕疯檢測與IC製 程檢測、微結構和微光學元件表面形貌的量測等,以判斷 製程產品的品質作為控制製程的依據。 在習用技術中,用來量測上述產品之特徵的方式為共 Φ 焦量測技術。例如在美國公開申請案US. Pub. No. 2006/0232790所揭露的一種共焦量測方法與裝置,其係利 用偵測光投射至待測物上,再藉由光學元件蒐集由該待測 物散射以及反射之測物光。然後將測物光聚焦至光偵測器 上。最後再根據光偵測器所收到之光訊號建立聚焦位置之 資訊,並根據聚焦位置之資訊決定待測物之距離。另一習 用技術如美國公開申請案US. Pat. No. 2004/0051879所公 開的一種共焦感測器,其係利用一對光感測器感測由待測 物散射之光強度,然後進行解析,以得到待測物之位置資 5 135797313.57973 49θτ 11. -Θ~ι- 年月日日修正 replacement page IX, invention description: [Technical field of the invention] The present invention relates to an optical measurement method and apparatus, and more particularly to a method for simultaneously capturing multiple complex arrays A method and apparatus for measuring confocal micromorphology of an image having different focus positions to analyze the topography of the object to be tested. -· [Prior Art] In the 1C industry, the semiconductor industry, the LCD industry, or the photoelectric measurement industry, it is often necessary to perform measurements such as surface roughness and flatness of wafers, and gold domes in the flip chip process. Measurement of block size and coplanarity, measurement of wafer coplanarity, detection of PCB defects, detection of terminal madness and IC process detection, measurement of microstructure and surface morphology of micro-optical components, etc. The quality of the product serves as the basis for controlling the process. In conventional techniques, the means for measuring the characteristics of the above products is a common Φ focal measurement technique. A confocal measurement method and apparatus disclosed in U.S. Patent Application Publication No. 2006/0232790, which utilizes detection light to be projected onto an object to be tested, and is then collected by the optical component. Object scattering and reflected object light. The subject light is then focused onto the photodetector. Finally, the information of the focus position is established according to the optical signal received by the photodetector, and the distance of the object to be tested is determined according to the information of the focus position. Another conventional technique, such as the confocal sensor disclosed in US Pat. No. 2004/0051879, which utilizes a pair of photo sensors to sense the intensity of light scattered by the object to be tested, and then proceeds. Analyze to get the position of the object to be tested 5 1357973

P 日修正替換頁 訊。 前述之共焦量測技術其原理是以光學式垂直掃描之量 測方式,來獲得不同深度之光學切片影像,藉由針孔 (Pinhole)進行失焦訊號之過濾,將聚焦區外之反射光與散 射光濾除,保留聚焦面資訊,並由電腦將不同深度所得之 光學切片影像重建起來,即可求得待測物三度空間影像資 訊。由上述方法可以知道,目前共焦量測系統均利用垂直 掃描之方式來獲得三維輪廓資料,在量測上將造成量測效 · 率不佳以及易受到線上量測環境振動問題之干擾,造成量 鲁 測結果之不準確。 綜合上述,因此亟需一種共焦顯微形貌量測方法與裝 置來解決習用技術所產生之問題。 【發明内容】 本發明提供一種共焦顯微形貌量測方法,其係將由待 測反射之測物光分成複數組光群組,並改變光群組内每一 道子測物光之聚焦位置,然後同時擷取對應每一光群組之 ® 影像,並將該影像資訊進行解析以得到待測物之形貌特徵。 本發明提供一種共焦顯微形貌量測裝置,其係利用一 分光模組將由待測物反射之測物光分成複數組光群組,並 藉由不同厚度之折射元件改變光群組内每一道子測物光之 聚焦位置,然後同時擷取對應每一光群組之影像,並進行 解析以得到待測物之形貌特徵,以精確且快延完成全域式 三維輪庸量測。 1357973 丰月 曰條正替換頁 本發明提供-種共賴微形貌量測I置,其係利用_ ,,制入。光投影圖形與光源強度,並藉由腦所具備之 高亮,與高,析等特性,以彌補量測f訊與空間解析不足 之門?4 4吏得該共焦顯微形貌量測裝置可以適應於各種不 同待測物表面之應用。 .在了實施例中,本發明提供一種共焦顯微形貌量測方 法,其係包括有下列步驟:⑷將—調制光源投射至一待測 物上;(b)將由該待測物反射之測物光分光.,以形成複數組 光群組’每—光㈣具有複數道刊物光;⑹分別改變 每-光群組之子測物光之聚焦位置;以及⑷根據步驟⑹ 所得到之子測物光重建出該待測物之—形貌特徵。 ^另:實施例中,本發明更提供—種共焦顯微形貌量 一光源調制部’其係可投射-調制光源於 一分光部’其係可將由該待測物反射之測物 士以形成複數個光群組’每一個光群組具有複數道子 = =聚焦位置調整部,其係可分別調制該複數個光 群、.且之複數道子測物光使每一子測物光具有不同之聚隹位 ί個:Γ摘取部’其係分別操取每一個光群組以形成複 =:母一個影像更具有複數個分別對應該子測物光 以及二後r及—處理與控制單元’其係與該光源調制部 複數4取部電性連接,該纽與控制單元可接收該 是數個衫像以解析出該待測物之形貌特徵。 一 /實細例中,該光源調制部使用一光陣列反射單 一"系為微反射鏡裝置(digital micro-mirror device, 7 1357973 ΓΨί 曰修正替換頁 DMD)。 【實施方式】 為使貴審查委員能對本發明之特徵、目的及功能有 更進一步的認知與瞭解,下文特將本發明之裝置的相關細 部結構以及設計的理念原由進行說明,以使得審查委員可 以了解本發明之特點,詳細說明陳述如下: 請參閱圖一 A所示,該圖係為本發明之共焦顯微形貌 量測方法實施例流程示意圖。該共焦顯微形貌量測方法包 括有下列步驟:首先進行步驟20,將一調制光源投射至一 待測物上。該待測物可為具有階高之待測物,也就是待測 物上具有不同高度之表面901〜903。在本實施例中,該調 制光源可以具有一明暗圖紋,該調制光源之明案圖紋係可 根據需要而定。例如:圖二A與圖二B所示,其中圖二A 之調制光源圖紋為棋盤式的明暗圖紋,而圖二B則為弦波 式的圖紋。該調制光源的圖案可根據需要而任意變換投影 圖紋,例如:改變編碼條紋寬度、週期、對比以改善量測 解析度與提高效率,因此並不以圖二A或圖二B為限。投 射至待測物之調制光源會經由待測物之反射而形成一測物 光。然後透過步驟21,將由該待測物反射之測物光分光, 以形成複數組光群組,每一光群組具有複數道子測物光。 在本步驟中,分光的方式,係可藉由分光鏡的排列組合, 將一道反射測物光分成複數道子測物光。 接下來,進行步驟22分別改變每一光群組之子測物光 13.57973 1〇〇· ιί. ο 1 -- 年·月日佟正巷拖百 之聚焦位置。在本步驟之改變聚焦位置之方式係為偏折光 路的方式。在—實施例中,偏折光路的方式可分別使每一 組中之每一道子測物光通過不同厚度之偏折板,以改 =母道子測物光之聚焦位置。最後在進行步驟23,根據 該複數道偏折測物光所得到之影像重建出該待測物之一形 貌特徵。接下來說明步驟22之細部流程,請參閱圖三所 不,該圖係為本發明之重建形貌特徵實施例流程示意圖。P-day correction replacement page. The principle of the confocal measurement technique described above is based on the optical vertical scanning measurement method to obtain optical slice images of different depths, and the reflection of the defocus signal by the pinhole (Pinhole), the reflected light outside the focus area Filtering with the scattered light, retaining the focus surface information, and reconstructing the optical slice image obtained by different depths by the computer, the three-dimensional spatial image information of the object to be tested can be obtained. It can be known from the above method that the current confocal measurement system uses the vertical scanning method to obtain the three-dimensional contour data, which will cause the measurement efficiency and rate to be poor in the measurement and the interference of the on-line measurement environment vibration problem, resulting in The amount of Lu test results is not accurate. In summary, there is a need for a confocal micromorphology measurement method and apparatus to solve the problems associated with conventional techniques. SUMMARY OF THE INVENTION The present invention provides a method for measuring confocal micromorphology, which divides the object light to be reflected into a complex array of light groups, and changes the focus position of each of the sub-test objects in the light group, and then At the same time, the image of each light group is captured, and the image information is parsed to obtain the topographical features of the object to be tested. The invention provides a confocal micro-morphology measuring device, which uses a beam splitting module to divide the object light reflected by the object to be tested into a complex array of light groups, and changes each channel in the light group by using refractive elements of different thicknesses. The sub-measurement light focuses the position, and then captures the image corresponding to each light group, and analyzes it to obtain the topographical features of the object to be tested, and completes the global three-dimensional wheeling measurement accurately and quickly. 1357973 丰月 曰条正换页 The present invention provides a method for measuring the topography, which is made using _ , . The light projection pattern and the intensity of the light source, and by the characteristics of the brain, such as highlighting, high, and analysis, to compensate for the lack of measurement of the f-signal and spatial analysis? 4 4 吏 The confocal micro-morphology measuring device can Adapt to the application of various different objects to be tested. In an embodiment, the present invention provides a confocal micromorphology measurement method comprising the steps of: (4) projecting a modulated light source onto an object to be tested; and (b) measuring the object to be detected by the object to be tested. Light beam splitting to form a complex array of light groups 'each-light (four) has a plurality of publications light; (6) respectively change the focus position of the sub-measurement light of each light group; and (4) sub-measure light obtained according to step (6) The topography of the object to be tested is reconstructed. In another embodiment, the present invention further provides a confocal micromorphology quantity-a light source modulating portion that is capable of projecting-modulating a light source in a light splitting portion, which can form a measuring object reflected by the object to be tested. a plurality of light groups 'each light group has a plurality of tracks == focus position adjustment portion, which can respectively modulate the plurality of light groups, and the plurality of track object light causes each of the sub-meters to have different light隹 ί Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' : : : : 'The system is electrically connected to the plurality of light source modulating portions, and the button and the control unit can receive the plurality of shirt images to analyze the topographical features of the object to be tested. In a real example, the light source modulation unit uses a light array reflection single "digital micro-mirror device (7 1357973 ΓΨί 曰 correction replacement page DMD). [Embodiment] In order to enable the reviewing committee to have a further understanding and understanding of the features, objects and functions of the present invention, the detailed structure of the device of the present invention and the concept of the design are explained below so that the reviewing committee can The detailed description of the features of the present invention is as follows: Please refer to FIG. 1A, which is a schematic flow chart of an embodiment of the method for measuring confocal micromorphology of the present invention. The confocal micromorphology measurement method includes the following steps: First, step 20 is performed to project a modulated light source onto a sample to be tested. The object to be tested may be a test object having a step height, that is, surfaces 901 to 903 having different heights on the object to be tested. In this embodiment, the modulated light source may have a light and dark pattern, and the pattern of the modulated light source may be determined as needed. For example, as shown in Fig. 2A and Fig. 2B, the modulation light source pattern of Fig. 2A is a checkerboard pattern, while Fig. 2B is a sine wave pattern. The pattern of the modulated light source can be arbitrarily transformed as needed, for example, changing the width, period, and contrast of the encoded stripe to improve the resolution and efficiency, and thus is not limited to FIG. 2A or FIG. The modulated light source that is incident on the object to be tested forms a test object light through reflection of the object to be tested. Then, through step 21, the object light reflected by the object to be tested is split to form a complex array of light groups, each light group having a plurality of track object light. In this step, the way of splitting light can be divided into a plurality of tracked object light by means of the arrangement of the beamsplitters. Next, step 22 is performed to change the sub-measurement light of each light group. 13.57973 1〇〇· ιί. ο 1 -- Years, months, and days. The manner in which the focus position is changed in this step is a way of deflecting the light path. In the embodiment, the manner of deflecting the optical path may be such that each of the sub-test objects in each group passes through a deflecting plate of a different thickness to change the focus position of the maternal sub-measurement light. Finally, in step 23, a shape characteristic of the object to be tested is reconstructed according to the image obtained by deflecting the object light. Next, the detailed process of step 22 will be described. Please refer to FIG. 3, which is a schematic flowchart of the embodiment of the reconstructed topography of the present invention.

重建形貌特徵首先以步驟230,擷取對應每一道偏折測物 光所對應之影像。由於每一個光群組具有複數道子偏折測 物,,而每一個子偏折測物光可以形成一個子影像,因此 在每一個光群組的影像中,具有複數個子影像,而且每一 個子影像的聚焦位置並不相同。也就是說,在同一個光群 組影像中具有複數聚焦位置不同之子影像。接著進行步驟 231求侍母一對應影像之一聚焦指標值。在本步驟中,由 於每一個子影像具有不同之聚焦位置,因此所擷取之影像 清晰度各有不同,所以每一個子影像可以藉由一 = 求取對應之聚焦指標值》 /、法則 而求取聚焦指標值之演算法有很多,例如:v〇Ua处的 自相關(autocorrelation)函數F5或F4 ;寅算法, 施例係採用Vollath的F4演算法,如式所厂、,而 法。除了使用相關係數法 A L〇eiiicientReconstructing the topography feature first takes step 230 to capture an image corresponding to each of the deflected objects. Since each light group has a plurality of track deflecting objects, and each of the sub-deflecting object lights can form a sub-image, in each of the light group images, there are a plurality of sub-images, and each of the sub-images The focus position of the image is not the same. That is to say, there are sub-images with different focus positions in the same group image. Then, step 231 is performed to obtain a focus index value of one of the corresponding images of the server. In this step, since each sub-image has a different focus position, the captured image sharpness is different, so each sub-image can be obtained by a == corresponding focus index value / / rule There are many algorithms for obtaining the focus index value, for example: autocorrelation function F5 or F4 at v〇Ua; 寅 algorithm, the example system uses Vollath's F4 algorithm, such as the formula, and the method. In addition to using the correlation coefficient method A L〇eiiicient

Correlation) ’也可以利用影像差里 八法UniageCorrelation) ’ can also take advantage of the image difference

Differentiation) ’例如:門檻絕對嫌痒a _ (Thresholded Absolute Gradient)或者是平方梯戶 (squared gradient)等、灰度值峰谷深度法(D印处 ^ 9 1357973 Γ^τι: 月日修正替換頁Differentiation) ‘For example: Thresholded Absolute Gradient or squared gradient, etc. Gray value peak-to-valley depth method (D-printing ^ 9 1357973 Γ^τι: Month day correction replacement page

Peaks and Valleys),例如:影像閥值總和演算法(image threshold content )或者是影像功率演算法(image power)、影像對比法(Image Contrast),例如··影像變異 决鼻法(Variance)或者是正規化便亦演鼻法(Norma 1 i zed variance) '灰度統計圖法(Histogram),例如:灰度範圍 (Range)演算法或者是灰度熵值(Entropy)演算法等、頻域 法(Frequency-domain Analysis),例如··拉普拉斯演算法 (Laplacian),或者其他有效之空間頻率分布鑑別法則得知 聚焦指標值。 · · iy£ 其中,FV〇„4代表聚焦深度,I(X,y)為 位置的亮度值,^與關代表影像尺寸^Γ寬 求出了聚焦指標值之後,接著逸 一對應影像之聚焦指操值擬合出:二驟232,根據每 以每-光群組影像具有三個子影像匕1標曲線°接下來 過程。如圖四所示,其中⑷〜⑷每二列來說明擬合曲線之 置之結構光條紋影像示意圖。其中,>圖係分別不同聚焦位 代表著每〜道之經由步驟21所母個子影像(a)〜⑷ 影像,圖四(&)為塊規階高在未達’子測物光所產生的 像’圖四(b)為塊規p㈣在接近達=焦位置所取得之影 像’圖四㈤為塊規階高在稍為 二焦位置所取得之影 而圖四⑷為塊規階高在遠離聚^、、、位置所取得之影像 這四張影像中分別可以求得一置所取得之影像。由 A,、、、心標,根據該聚焦指標 1357973 、 ιυυ. π. οι 年月日條正替換頁 值可進行高斯曲線擬合以形成如圖五之聚焦反應曲線。最 後再進行步驟233求出該聚焦反應曲線之峰值。例如:圖 四Α至圖四D之每一張影像之數學模型表示如下式 (2M5):Peaks and Valleys), for example: image threshold content or image power, Image Contrast, for example, image variation (Variance) or Normalization also implements Norma 1 i zed variance 'Histogram', such as: gray range algorithm or gray scale entropy algorithm, frequency domain method (Frequency-domain Analysis), for example, Laplacian, or other effective spatial frequency distribution identification method to know the focus index value. · · iy£ where FV〇„4 represents the depth of focus, I(X,y) is the brightness value of the position, ^ and off represent the image size ^Γwidth after the focus index value is obtained, then the focus of the corresponding image Refers to the value of the operation: two steps 232, according to each of the per-light group images have three sub-images 匕 1 standard curve ° the next process. As shown in Figure 4, where (4) ~ (4) every two columns to illustrate the fit Schematic diagram of the structure light stripe image of the curve. Among them, the different focus positions of the graph system represent the sub-images (a) to (4) of the image through step 21 of each channel, and the figure 4 (&) is the block level. The image produced by the height of the sub-measurement light is not shown in Fig. 4. (b) is the image obtained by the block gauge p (4) at the position close to the = focus position. Figure 4 (5) shows the block height of the block at a slightly bifocal position. Figure 4 (4) is the block image height in the image obtained from the location of the distance, the image obtained by the position can be obtained by a set of images obtained by A, ,, and heart, according to the focus Indicator 1357973, ιυυ. π. οι The year of the month is replacing the page value for Gaussian curve fitting to shape FIG five focus most of the response curve 233 after the step of obtaining the peak of the response curve of the focus example: Figure IV Α to FIG four D mathematical model of each of an image represented by the following formula (2M5):

Ae3^2 -(2) =Ae^Zi+l~c^2 -(3) I k+2 =AeB{Zk+2~C)1 -(4) 7々+3 =AeB{ZM~C)2 -(5) 其中I代表亮度,Z代表聚焦深度,C代表高斯方程 式曲線之峰值得位置,而A代表峰值的大小,B則為影 響高斯方程式曲線寬度的參數。由於高斯方程式使用於 非線性之數學模型,接著對式(2)至(5)之方程式取自然 對數,使其轉換成線性的數學模型,如下式(6)〜(9)所示:Ae3^2 -(2) =Ae^Zi+l~c^2 -(3) I k+2 =AeB{Zk+2~C)1 -(4) 7々+3 =AeB{ZM~C) 2 -(5) where I represents brightness, Z represents depth of focus, C represents the position of the peak of the Gaussian equation curve, and A represents the magnitude of the peak, and B is the parameter that affects the width of the Gaussian equation curve. Since the Gaussian equation is used in a nonlinear mathematical model, the equations of equations (2) through (5) are followed by natural logarithms, which are converted into linear mathematical models, as shown in the following equations (6) to (9):

In/, =\nA + B(zk-C)2 …(6) \nIk+l=\nA + B(zk+l-C)2 …⑺ ln h+2 = In /4 + B(zk+2 - C)2 …⑻ h+3 = In ^ + B{zk+l - C)2 -(9) 利用四個方程式解三個未知數, 利用最小平方法之方 式評估,尋找出最佳解,求出反應曲線之峰值C,其平方 總誤差E如下式(10)所示: k+2 2 E= £[ln/,.-In 5(z(-C)2 …(10) /=^-1 100. llT-e^-— 年月日修正替換百In/, =\nA + B(zk-C)2 (6) \nIk+l=\nA + B(zk+lC)2 (7) ln h+2 = In /4 + B(zk+2 - C)2 (8) h+3 = In ^ + B{zk+l - C)2 -(9) Solve three unknowns using four equations, evaluate them by means of the least squares method, find the best solution, and find The peak value C of the reaction curve whose total square error E is as shown in the following equation (10): k + 2 2 E = £ [ln /, . - In 5 (z (-C) 2 ... (10) / = ^ -1 100. llT-e^-- Year, month and day correction replacement hundred

dE dE _ dE -令石,沅,元=〇,可獲得三個方程式,聯立解 即可解出參數A、B及C的最佳值,求得之c值即為反應 曲線之峰值。 由圖四可發現,擷取之影像經過失焦—聚焦—失焦這 二個過程,經由聚焦函數評估對圖四之影像序列進行評估 後’可求出聚焦指標曲線如圖五所示,曲線之峰值即為待 剛樣品之實際高度值。其中圖五中標記(a)、(b)、(c)與 (d)則分別代表圖四(a)〜(d)之聚焦指標值與藉由四點擬 合之方式擬合出之聚焦深度反應曲線圖。由正確的聚焦反 應曲線方可求得正確的待測物深度,利用統計學中標準差 之觀念作為評估聚焦深度反應曲線之依據β 接下來說明應用前述方法之實施裝置,請參閱圖六所 不’該圖係為本發明之共焦顯微形貌量測裝置實施例示意 圖。在本實施例中,該共焦顯微形貌量測裝置3包括有一 光源調制部30、一分光部31、一聚焦位置調整部32、一 影像擷取部33以及一處理與控制單元34。該光源調制部 30,其係與該處理與控制單元34電性連接,該光源調制 部30可投射一調制光源91於一待測物9〇上。在本實施 例中,該光源調制部30更具有一光源體300、一光陣列 反射單元301以及一透鏡組302。該光源體300可投射出 一擴散光源至該光陣列反射單元3〇1上。該光陣列反射單 元301,其係可將該光源體3〇〇所投射之光源反射以形成 一反射光源。在本實施例中,該光陣列反射單元301係可 選擇為微型反射鏡元件(digital miciO-mirror device, 12 1357973dE dE _ dE - let stone, 沅, yuan = 〇, can obtain three equations, the simultaneous solution can solve the optimal values of parameters A, B and C, and the value of c is the peak value of the reaction curve. It can be found from Fig. 4 that the captured image undergoes two processes of defocusing-focusing-defocusing, and after evaluating the image sequence of Fig. 4 through the focus function evaluation, the focus index curve can be obtained as shown in Fig. 5. The peak value is the actual height value of the sample to be just. The marks (a), (b), (c) and (d) in Figure 5 represent the focus index values of Figures 4(a) to (d) and the focus fitted by the four-point fit. Deep response curve. From the correct focus response curve, the correct depth of the object to be tested can be obtained, and the concept of standard deviation in statistics is used as the basis for evaluating the depth response curve. Next, the implementation device using the above method will be described. Please refer to Figure 6. 'This figure is a schematic diagram of an embodiment of the confocal micromorphology measuring device of the present invention. In the present embodiment, the confocal micromorphology measuring device 3 includes a light source modulating portion 30, a light splitting portion 31, a focus position adjusting portion 32, an image capturing portion 33, and a processing and control unit 34. The light source modulating unit 30 is electrically connected to the processing and control unit 34. The light source modulating unit 30 can project a modulated light source 91 on a sample to be tested. In the embodiment, the light source modulating portion 30 further includes a light source body 300, a light array reflecting unit 301, and a lens group 302. The light source body 300 can project a diffused light source onto the light array reflecting unit 3〇1. The light array reflecting unit 301 reflects the light source projected by the light source body 3 to form a reflecting light source. In this embodiment, the light array reflecting unit 301 can be selected as a micro mirror element (digital miciO-mirror device, 12 1357973

DMD)或者是矽基液晶元件(liquid crystal on siiiCC)n, LC0S)等之數位調變元件。藉由前述之元件可以對該光源 體300所投射之光源進行調變以形成如圖二A或者是圖二 B之棋盤式或弦波式的圖案。DMD) is a digital modulation element such as a liquid crystal on siiiCC n, LC0S. The light source projected by the light source body 300 can be modulated by the aforementioned elements to form a checkerboard or sinusoidal pattern as shown in Fig. 2A or Fig. 2B.

此外’如圖七A所示,該圖係為本發明之光源調制部 另一實施例示意圖。在本實施例中係將圖六之光陣列反射 單元301以光栅結構303取代’使該光源體所投射之光源 穿透該光柵結構303以形成一結構光源,再經過透鏡組 302調制該結構光源以形成該調制光源。藉由圖七之實施 例’同樣也可以產生如圖二A或圖二B之棋盤式或弦波式 的圖案。除了前述之兩種不論是反射式或者是穿透式之方 式來形成調制光源,對於表面結構特徵(如:紋路或粗縫 度)比較明顯的待測物,也可以不使用該光柵結構3〇3以 及光陣列反射單元301,而是如圖七B所示,直接將光源 體300所發出光源穿透該透鏡組302以形成該調制光源而 經由顯微物鏡投射至待測物上。 該透鏡組302,其係可調制該反射光源以形成一調制 光源。在本實施例中,該透鏡組302係由複數個凸透鏡 3020與3023以及偏極元件3021與3022所構成。其中透 鏡3020為一平凸透鏡而透鏡3023則為一雙凸透鏡。該偏 極元件3021與3022則為線性偏極元件。當光經由平凸透 鏡3 0 2 0使投影之擴散角度縮小,然後經過線偏極片3 〇 21 與線偏極3022調整光強使得產生之影像有良好之對比與 強度,最後藉由該雙凸透鏡3023則使光之準直形成調制 光源91。此外在該待測物90與該透鏡組302之間更具有 13 1357973Further, as shown in Fig. 7A, the figure is a schematic view of another embodiment of the light source modulation section of the present invention. In this embodiment, the light array reflecting unit 301 of FIG. 6 is replaced by a grating structure 303. The light source projected by the light source body is passed through the grating structure 303 to form a structured light source, and then the structured light source is modulated by the lens group 302. To form the modulated light source. A checkerboard or sinusoidal pattern as shown in Fig. 2A or Fig. 2B can also be produced by the embodiment of Fig. 7. In addition to the foregoing two methods, whether reflective or transmissive, to form a modulated light source, the grating structure may not be used for a relatively obvious object to be tested (such as a grain or a thick seam). 3 and the light array reflecting unit 301, but as shown in FIG. 7B, the light source emitted from the light source body 300 is directly penetrated through the lens group 302 to form the modulated light source and projected onto the object to be tested through the microscope objective. The lens group 302 is modulatable to form a modulated light source. In the present embodiment, the lens group 302 is composed of a plurality of convex lenses 3020 and 3023 and biasing elements 3021 and 3022. The lens 3020 is a plano-convex lens and the lens 3023 is a lenticular lens. The polarized elements 3021 and 3022 are linear polarized elements. When the light reduces the diffusion angle of the projection through the plano-convex lens 3 0 2 0, then the light intensity is adjusted by the line polarizer 3 〇 21 and the line bias pole 3022 so that the generated image has good contrast and strength, and finally the lenticular lens is used. 3023 then collimates the light to form a modulated light source 91. In addition, between the object to be tested 90 and the lens group 302, there is 13 13357973

100. li. 0 X- 年月日修正替換I 一分光單元35,其係可導引該調制光源進入一顯微物鏡 36而投射至該待測物90上。在本實施例中,該分光單元 35係為一分光鏡。該待測物90則設置於可進行多維度運 動之一承載平台37上,該承載平台37係與該處理與控制 單元34電性連接。該承載平台37可接收該處理與控制單 元34之控制訊號而進行多維度之位置調整運動。 由該待測物90反射光的部分稱之為測物光,經過顯 微物鏡36後又回到分光單元35,此時測物光92帶有待 測物90之聚焦資訊,測物光92經過縮束元件38改變其 光束之大小,之後入射至分光部31進行分光之步驟。前 述之縮束元件38係可為一透鏡。該分光部31,其係可將 由該待測物反射之測物光分光以形成複數個光群組93與 94,每一個光群組具有複數道子測物光。如圖八Α所示, 該圖係為本發明之分光部分光示意圖。在本實施例中,該 分光部31更具有一分光模組310以及一分光元件311。 該分光模組310,其係可將該待測物之反射光分光形成複 數道子測物光。該分光元件311,其係可將該複數道子測 物光分成相互正交之光群組93與94。該分光模組310與 該分光元件311間更具有一偏極元件312,其係為一線性 偏極片。而該分光模組310則具有一第一分光單元313以 及一第二分光單元314。該第一分光單元313,具有一偏 極分光鏡3130與直角反射鏡3131,其係可將該測物光分 成兩道偏極性皆轉變成45度之子測物光95與96 ^該第 二分光單元314,其係同樣具有偏極分光鏡3140與直角 反射鏡3141可將由該第一分光單元313所分出之兩道子 14 13.57973 100. 11. 〇 ι-- 年月日絛正替換頁 測物95與96光再分成四道子測物光970〜973。最後再藉 由線性偏極片312使得四束光之偏極性轉變成45度之子 測物光。該第一分光單元313之偏極分光鏡3130與直角 反射鏡3131垂直對齊放置,而該第二分光單元314之偏 極分光鏡3140與直角反射鏡3141水平對齊放置。 該分光元件可將前述之四道具有偏極性之子測物 光,分光成兩個相互正交之光群組93與94,每一個光群 組具有四道子測物光。被分光後之兩個光群組93與94進 •籲 入該聚焦位置調整部32。該聚焦位置調整部32更具有兩 個折射元件320與321,其係分別與該光群組93與94相 對應。該聚焦位置調整部32中之折射元件320與321, 其係可分別調制該複數個光群組之複數道子測物光之聚 焦位置。如圖八B所示,以折射元件32〇為例,其係具有 複數個具有不同厚度之折射區域32〇〇〜32〇3以分別對應 所屬光群組93與94中之每一個子測物光。在本實施例 中,每一個折射元件320與321具有複數個與該光群組中 ♦,子測物光相對應之折射區域32〇〇〜32〇3,且每一個折射 區域3200〜3203之厚度並不相同》例如以光群組⑽為例, 因為該光群組93具有四道子測物光,所以該折射元件32〇 =設計成具有四個折射區域3勝32〇3,每一個折射區域 /、母一道子測物光相對應。藉由調整折射元件32〇與32工 之厚度使得每-道子測物光之聚焦位置產生改變。該折射 =件係為透明材料’其中該透明材料係可 ::r’但不以此為限。此外,折射元件之折射= 、所對應之厚度係可根據需要而調整。 1357973 r朵.p’日條正替^ 再回到圖六所示,該影像擷取部33,其係分別擷取 每一個光群組93與94以形成複數個影像每一個影像更具 有複數個分別對應該複數道偏折測物光之子影像。在本實 施例中,該影像掏取部33係具有兩個分別與該光群組93 與94相對應之影像擷取單元330與331以擷取光群組之 影像。該影像擷取單元330與331可選擇為電搞合元件 (charge couple device,CCD)或者是互補式金屬氧化半 導體(Complementary Metal-Oxide-Semiconductor, CMOS)。由於每一個光群組具有四道偏折測物光,且每一 道偏折測物光之聚焦位置並不相同’因此該二影像榻取單 ® 元所擷取的影像具有四個子影像,每一個子影像對應每— 道之偏折測物光。藉由線性偏極片315與線性偏極片312 之調控使2x2之影像之光強度相同,四束光之垂直間距可 由偏極分光鏡3130直角反射鏡3131之移動錯位進行調 整與控制。而四束光之水平間距可由偏極分光鏡314〇直 角反射鏡314.1之移動錯位進行調整,藉由不同厚度之折 射疋件320與321之調控,使得測物光之聚焦位置產生改 變’讓影像感測單元330與331同時取得不同平面之影像。_ 該處理與控制單元34 ’其係與承载待測物之承載平 台37、該光源調制部3〇以及該影像擷取部33電性連接。 該處理與控制單元34可接收該複數個影像以解析出該待 測物之形貌特徵。至於解析該待測物形貌特徵可利用圖三 所示之流程可以解析出待測物之表面特徵,藉由兩個影像 擷取單元進行量測,使影像擷取單元330與331各自量測 待測樣品之不同高度影像,藉此重建出待測樣品之三維輪 1357973 丨气11. Ο l - • 丰月七修正替換頁 靡形貌,其結杲如圖九所示。 請參閱圖十與圖十一所示,其中圖十係為本發明之共 焦顯微形貌量測裝置另一實施例示意圖;而圖十一係為 圖十之貫施例中之分光部分光示意圖。在本實施例中基 本上的兀件與圖六所示之實施例相同,差異的是主要是 在於分光部之設計。當測物光92經過遮罩39(Field Aperture)改變其光束之大小之後,會入射至分光部31 進行分光之程序。藉由線性偏極片318使光之偏極性轉 .· 變成45度之線偏極光,經過第一分光單元316。該第一 分光單元具有一對偏極分光鏡3160與3161以及一直角 反射鏡3162。通過該第一分光單元316之後,測物光由 -一束分成兩束’藉由線性偏極片315使兩束光之偏極性 • 皆轉變成45度之線偏極光。 請同時參閱圖十與圖十一所示,通過該線性偏極片 315之偏極光接著經過第二分光單元317,其係同樣具有 一對偏極分光鏡3170與3171以及一直角反射鏡3172 # 後。該偏極分光鏡3170、偏極分光鏡3171與直角反射 鏡3172使兩束光分成四束光,再經由線性偏極片312 使得四束光之偏極性轉變成45度之線偏極光。並藉由分 光元件311將光束分到影像感測單元與331。由於 測物光經過分光部31後,因第一分光單元316與第二又 光單元317中之偏極分光鏡3160、3161、3170與3171 與直角反射鏡3162與3172之位置落差,使得各光束 經過之光程有所差異,因而光源之聚焦位置皆不相同, 所以影像感測單7L 330與331可同時取得不同聚焦位置 17 1357973 ——--- 年月日條正替換1 之影像。為了使兩個影像感測單元330與331能各自量 測到不同兩個聚焦變化深度,於影像感測單元330與331 之光路中放入不同厚度之折射元件320與321,藉由調整 折射元件320與321之厚度使得測物光之聚焦位置產生 改變(如圖八B所示),讓影像感測單元330與331同時 取得不同兩個聚焦變化深度之影像,量測出不同位置之 形貌資訊,藉此即時重建出待測物之三維形貌。 在圖十與圖十一中之偏極分光鏡3160與3161以及 直角反射鏡3162水平對齊放置;而偏極分光鏡3170與 3171以及直角反射鏡3172垂直對齊放置,使得測物光輸 出之影像為2x2之分佈。藉由線性偏極片318、315與312 之調控測物光之偏極性,使2x2之影像之光強度相同,四 束光之水平間距可由直角反射鏡3162之移動錯位進行調 整與控制。而四束光之垂直間距可由直角反射鏡3172之 移動錯位進行調整,藉由不同厚度之320與321之調控, t得測物光之聚焦位置產生改變,讓影像感測單元330與 衫像感測單元331同時取得兩個不同聚焦變化深度之影 像。 制本准Γ上所述者’僅為本發明之實施例,當不能以之限 變化2 =龜圍°即大凡依本發明申請專利範圍所做之均等 明夕牲仏飾,仍將不失本發明之要義所在’亦不脫離本發 σ乾圍’故都應視為本發明的進一步實施狀況。 與裝^ 了上述,本發明提供之一種共焦顯微形貌量測方法 工業可=精確且快速完成全域式三維輪廓量測以符合 '、之需要’進而提高該產業之競爭力以及帶動週遭 13.57973 .獅.ίί· o i 年月日修正替換頁 產業之發展,誠已符合發明專利法所規定申請發明所需具 備之要件,故爰依法呈提發明專利之申請,謹請貴審查 委員允撥時間惠予審視,並賜准專利為禱。 1357973 :侃ii❹仏 年月日條正替換百 【圖式簡單說明】 圖一 A所示,該圖係為本發明之共焦顯微形貌量測方法實 施例流程示意圖。 圖一 B係為待測物不意圖。 圖二A與圖二B係為本發明之調制光源圖紋示意圖。 圖三係為本發明之重建形貌特徵實施例流程示意圖。 圖四之(aMd)係分別為不同聚焦位置之結構光條紋影像 示意圖。 圖五係為根據圖四所擬和出之聚焦反應曲線示意圖。 ® 圖六係為本發明之共焦顯微形貌量測裝置實施例示意圖。 圖七A係為本發明之光源調制部另一實施例示意圖。 圖七B係為本發明之光源調制部又一實施例示意圖。 圖八A係為本發明之分光部分光示意圖。 圖八B係為本發明之折射元件示意圖。 圖九係為三維輪廓形貌解析結果示意圖。 圖十係為本發明之共焦顯微形貌量測裝置另一實施例示意 鲁 圖。 圖十一係為圖十之實施例中之分光部分光示意圖。 【主要元件符號說明】 2 -共焦顯微形貌量測方法 20〜23_步驟 3-共焦顯微形貌量測裝置 20 1357973 鼠I1.月01100. li. 0 X-year and day correction replaces the I-splitting unit 35, which directs the modulated light source into a microscope objective 36 and projects onto the object to be tested 90. In this embodiment, the beam splitting unit 35 is a beam splitter. The object to be tested 90 is disposed on one of the multi-dimensional movement platforms 37, and the platform 37 is electrically connected to the processing and control unit 34. The carrying platform 37 can receive the control signals of the processing and control unit 34 for multi-dimensional position adjustment motion. The portion of the object to be reflected by the object to be tested 90 is referred to as the object light, and passes through the microscope objective 36 and then returns to the beam splitting unit 35. At this time, the object light 92 carries the focus information of the object to be tested 90, and the object light 92 is measured. The beam splitting element 38 changes the size of the light beam, and then enters the spectroscopic portion 31 to perform the step of splitting light. The attenuating element 38 described above can be a lens. The light splitting portion 31 is configured to split the light of the object reflected by the object to be detected to form a plurality of light groups 93 and 94, each of which has a plurality of track light. As shown in FIG. 8B, the figure is a schematic diagram of the light splitting portion of the present invention. In the embodiment, the light splitting portion 31 further has a light splitting module 310 and a light splitting element 311. The beam splitting module 310 is configured to split the reflected light of the object to be tested to form a plurality of tracked object light. The beam splitting element 311 is configured to split the plurality of track sub-meters into mutually orthogonal light groups 93 and 94. A further polarizing element 312 is formed between the beam splitting module 310 and the beam splitting element 311, which is a linear polarizer. The beam splitting module 310 has a first beam splitting unit 313 and a second beam splitting unit 314. The first beam splitting unit 313 has a polarizing beam splitter 3130 and a right angle mirror 3131, which can split the object light into two sub-objects light 95 and 96 which are polarized to 45 degrees. The unit 314 also has a polarizing beam splitter 3140 and a right angle mirror 3141. The two paths 14 separated by the first beam splitting unit 313 can be replaced by 13.57973 100. 11. 〇ι-- The 95 and 96 light are subdivided into four sub-objects to measure light 970~973. Finally, the linear polarizer 312 is used to convert the polarity of the four beams into a sub-object of 45 degrees. The polarizing beam splitter 3130 of the first beam splitting unit 313 is vertically aligned with the right angle mirror 3131, and the polarizing beam splitter 3140 of the second beam splitting unit 314 is horizontally aligned with the right angle mirror 3141. The beam splitting element can split the aforementioned four sub-measured object light into two mutually orthogonal light groups 93 and 94, each of which has four sub-test light. The two light groups 93 and 94 that have been split are called into the focus position adjusting portion 32. The focus position adjusting portion 32 further has two refractive elements 320 and 321 which respectively correspond to the light groups 93 and 94. The refracting elements 320 and 321 in the focus position adjusting portion 32 respectively modulate the focus positions of the plurality of sub-test objects of the plurality of light groups. As shown in FIG. 8B, the refractive element 32 is exemplified by a plurality of refractive regions 32〇〇32〇3 having different thicknesses for respectively corresponding to each of the associated light groups 93 and 94. Light. In this embodiment, each of the refractive elements 320 and 321 has a plurality of refractive regions 32 〇〇 32 32 〇 3 corresponding to the sub-test light in the optical group, and each of the refracting regions 3200 〜 3203 The thickness is not the same. For example, the light group (10) is taken as an example. Since the light group 93 has four sub-objects, the refractive element 32〇 is designed to have four refractive regions of 3 wins and 32 〇 3, each of which is refracted. The area/mother is measured by a sub-measurement light. By adjusting the thickness of the refractive elements 32 〇 and 32, the focus position of the light of each track is changed. The refraction = the part is a transparent material 'where the transparent material can be ::r' but not limited thereto. In addition, the refractive index of the refractive element = and the corresponding thickness can be adjusted as needed. 1357973 r朵.p'日条正正^ Returning to Figure 6, the image capturing unit 33 captures each of the light groups 93 and 94 to form a plurality of images. Each image has a plurality of images. Each of them corresponds to a sub-image of the multi-channel deflected object light. In the embodiment, the image capturing unit 33 has two image capturing units 330 and 331 corresponding to the light groups 93 and 94 to capture images of the light group. The image capturing units 330 and 331 can be selected as a charge couple device (CCD) or a Complementary Metal-Oxide-Semiconductor (CMOS). Since each light group has four deflected object light, and the focus position of each deflected object light is not the same, the image captured by the two image capture unit has four sub-images, each of which has four sub-images. A sub-image corresponds to the deflection of each object. By adjusting the linear polarizer 315 and the linear polarizer 312, the light intensity of the 2x2 image is the same, and the vertical pitch of the four beams can be adjusted and controlled by the shift misalignment of the polarizer 3131 right angle mirror 3131. The horizontal spacing of the four beams of light can be adjusted by the displacement misalignment of the polarizing beam splitter 314 〇 right angle mirror 314.1, and the focus position of the measuring light is changed by the adjustment of the refractive elements 320 and 321 of different thicknesses. The sensing units 330 and 331 simultaneously acquire images of different planes. The processing and control unit 34' is electrically connected to the carrying platform 37 carrying the object to be tested, the light source modulating portion 3A, and the image capturing portion 33. The processing and control unit 34 can receive the plurality of images to resolve the topographical features of the object to be tested. As for the analysis of the topography of the object to be tested, the surface features of the object to be tested can be analyzed by using the process shown in FIG. 3, and the image capturing units 330 and 331 are respectively measured by the two image capturing units. The different height images of the sample to be tested, thereby reconstructing the three-dimensional wheel of the sample to be tested, 1357973, helium 11. Ο l - • Fengyue 7 correction replaces the topography of the page, and its knot is shown in Figure 9. Please refer to FIG. 10 and FIG. 11 , wherein FIG. 10 is a schematic diagram of another embodiment of the confocal micromorphology measuring device of the present invention; and FIG. 11 is a schematic diagram of the light splitting portion of the embodiment of FIG. . The basic element in this embodiment is the same as the embodiment shown in Fig. 6, and the difference is mainly in the design of the beam splitting section. When the object light 92 changes its beam size through the mask 39 (Field Aperture), it is incident on the spectroscopic portion 31 to perform the process of splitting light. The polarization of the light is rotated by the linear polarizer 318. The linearly polarized light of 45 degrees passes through the first beam splitting unit 316. The first beam splitting unit has a pair of polarizing beamsplitters 3160 and 3161 and a right-angle mirror 3162. After passing through the first beam splitting unit 316, the object light is split into two bundles by one beam, and the polarities of the two beams are converted into linear polarized light of 45 degrees by the linear polarizing plate 315. Referring to FIG. 10 and FIG. 11 simultaneously, the polarized light passing through the linear polarizer 315 is then passed through the second beam splitting unit 317, which also has a pair of polarizing beamsplitters 3170 and 3171 and a right-angle mirror 3172. Rear. The polarizing beam splitter 3170, the polarizing beam splitter 3171 and the right angle mirror 3172 divide the two beams into four beams, and then convert the polarities of the four beams into 45-degree linear polarized light via the linear polarizing plate 312. The beam is split by the beam splitting element 311 to the image sensing unit and 331. Since the measurement light passes through the spectroscopic portion 31, the positions of the polarizing beamsplitters 3160, 3161, 3170, and 3171 in the first and second optical units 317 and the right-angle mirrors 3162 and 3172 are different. After the optical path is different, the focus position of the light source is different, so the image sensing sheets 7L 330 and 331 can simultaneously obtain different focus positions 17 1357973 ——--- The image of the year and month is replacing 1 . In order to enable the two image sensing units 330 and 331 to measure different depths of focus change, the refractive elements 320 and 321 of different thicknesses are placed in the optical paths of the image sensing units 330 and 331 by adjusting the refractive elements. The thickness of 320 and 321 causes the focus position of the measuring object to change (as shown in FIG. 8B), and the image sensing units 330 and 331 simultaneously obtain images of different depths of focus change, and measure the shape of different positions. Information, in order to instantly reconstruct the three-dimensional shape of the object to be tested. The polarizing beamsplitters 3160 and 3161 and the right-angle mirror 3162 in FIG. 10 and FIG. 11 are horizontally aligned; and the polarizing beamsplitters 3170 and 3171 and the right-angle mirror 3172 are vertically aligned, so that the image of the light output of the object is 2x2 distribution. By adjusting the polarity of the measuring object light by the linear polarizing plates 318, 315 and 312, the light intensity of the 2x2 image is the same, and the horizontal spacing of the four beams can be adjusted and controlled by the movement misalignment of the right angle mirror 3162. The vertical spacing of the four beams of light can be adjusted by the displacement of the right-angle mirror 3172. By adjusting the thicknesses 320 and 321, the focus position of the object light is changed, so that the image sensing unit 330 and the shirt image are sensed. The measuring unit 331 simultaneously acquires images of two different depths of focus change. The above description is only an embodiment of the present invention, and when it is not possible to change by 2 = turtle circumference, that is, the equivalent of the patent application scope of the present invention will remain unchanged. The gist of the present invention is also considered to be a further implementation of the present invention without departing from the scope of the present invention. In view of the above, the confocal microtopography measurement method provided by the present invention can accurately and quickly complete the global three-dimensional contour measurement to meet the 'requirement' and thereby improve the competitiveness of the industry and drive the surrounding 13.57973.狮. ίί· oi Revised the development of the replacement page industry, Cheng has already met the requirements for applying for inventions as stipulated in the invention patent law. Therefore, the application for invention patents is submitted according to law. Please ask the review committee to allow time for the benefit. Examine and grant the patent as a prayer. 1357973 : 侃 ❹仏 ❹仏 ❹仏 正 正 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 Figure 1 B is the intention of the object to be tested. 2A and 2B are schematic diagrams of the modulation light source of the present invention. FIG. 3 is a schematic flow chart of an embodiment of a reconstructed topography feature of the present invention. Figure 4 (aMd) is a schematic diagram of structured light stripe images at different focus positions. Figure 5 is a schematic diagram of the focused reaction curve according to Figure 4. ® Figure 6 is a schematic diagram of an embodiment of the confocal micromorphology measuring device of the present invention. Fig. 7A is a schematic view showing another embodiment of the light source modulation unit of the present invention. Fig. 7B is a schematic view showing still another embodiment of the light source modulation unit of the present invention. Figure 8A is a schematic view of the light splitting portion of the present invention. Figure 8B is a schematic view of a refractive element of the present invention. Figure IX is a schematic diagram of the results of three-dimensional contour topography analysis. Figure 10 is a schematic diagram of another embodiment of the confocal micromorphology measuring device of the present invention. Figure 11 is a schematic view showing the light splitting portion of the embodiment of Figure 10. [Main component symbol description] 2 - Confocal micromorphology measurement method 20~23_Step 3-Confocal micromorphology measuring device 20 1357973 Rat I1. Month 01

曰條正替換I 30- 光源調制部 300-光源體 30卜光陣列反射單元 3 0 2 -透鏡組 3020、 3023-凸透鏡 3021、 3022-偏極元件 303-光柵結構 31- 分光部 ® 310-分光模組 311- 分光元件 312- 偏極元件 313- 第一分光單元 3130- 偏極分光鏡 3131- 直角反射鏡 314- 第二分光單元 • 3140-偏極分光鏡 3141-直角反射鏡 315- 線性偏極片 316- 第一分光單元 3160- 偏極分光鏡 3161- 偏極分光鏡 3162- 直角反射鏡 317-第二分光單元 21 1357973 ' m. ιι. 04-- ‘。 年月日條正替換1 3170- 偏極分光鏡 3171- 偏極分光鏡 3172- 直角反射鏡 318-偏極分光鏡 32- 聚焦位置調整部 320、321-折射元件 3200〜3203-折射區域 33- 影像擷取部 330、331-影像擷取單元 34- 處理與控制單元 35- 分光單元 36- 顯微物鏡 37_承載平台 38-縮束元件 39_遮罩 90- 待測物 901〜903-表面 91- 調制光源 92- 測物光 93、94-光群組 95、96-子測物光 22The beam is replacing I 30 - the light source modulation section 300 - the light source body 30, the light array reflection unit 3 0 2 - the lens group 3020, 3023 - the convex lens 3021, the 3022-polar element 303 - the grating structure 31 - the beam splitting section 310 - the beam splitting Module 311 - Beam splitting element 312 - Polarizing element 313 - First beam splitting unit 3130 - Polarizing beam splitter 3131 - Right angle mirror 314 - Second beam splitting unit 3140 - Polarizing beam splitter 3141 - Right angle mirror 315 - Linear offset Pole piece 316 - First beam splitting unit 3160 - Polarizing beam splitter 3161 - Polarizing beam splitter 3162 - Right angle mirror 317 - Second beam splitting unit 21 1357973 ' m. ιι. 04-- '. Year, month, and day are replacing 1 3170 - polarized beam splitter 3171 - polarized beam splitter 3172 - right angle mirror 318 - polarized beam splitter 32 - focus position adjusting portion 320, 321 - refractive element 3200 ~ 3203 - refractive region 33 - Image capturing unit 330, 331 - image capturing unit 34 - processing and control unit 35 - beam splitting unit 36 - microscope objective 37 - carrying platform 38 - contracting element 39 - mask 90 - object to be tested 901 ~ 903 - surface 91- Modulation source 92- Measure light 93, 94-light group 95, 96-sub-object light 22

Claims (2)

i(XWW替換頁 、申請專利範圍: 一種共焦顯微形貌量測方法,其係包括有下列步驟: (a) 將一調制光源投射至一待測物上; (b) 將由該待測物反射之測物光分光,以形成複數組 光群組,每一光群組具有複數道子測物光; (c) 分別改變每一光群組之子測物光之聚焦位置;以 及 (d) 根據步驟(c)所得到之子測物光重建出該待測物 之一形貌特徵,其中該步驟(d)更包括有下列步 驟: (dl)擷取對應每一道具有不同聚焦位置之子 測物光所對應之影像; (d2)求得每一對應影像之一聚焦指標值; (d3)根據每一對應影像之聚焦指標值擬合出 一聚焦指標曲線;以及 (d4)尋找出該聚焦指標曲線之峰值。 如申請專利範圍第1項所述之共焦顯微形貌量測方法, 其中該調制光源具有一明暗圖紋。 如申請專利範圍第1項所述之共焦顯微形貌量測方法, 其中該步驟(c ) t之改變聚焦位置之方式係為分別使每 一光群組中之每一道子測物光通過不同厚度之偏折板 以改變每一道子測物光之聚焦位置。 一種共焦顯微形貌量測裝置,包括: 一光源調制部,其係可投射一調制光源於一待測物 23 m曰條正替換頁 一分光部,其係可將由該待測物反射之測物光分光以 形成複數個光群組,每一個光群組具有複數道子 測物光; 一聚焦位置調整部,其係可分別調制該複數個光群組 之複數道子測物光使每一子測物光具有不同之聚 焦位置; 一影像擷取部,其係分別擷取每一個光群組以形成複 數個影像每一個影像更具有複數個分別對應該子_ 測物光之子影像;以及 一處理與控制單元,其係與該光源調制部以及該影像 擷取部電性連接,該處理與控制單元可接收該複 數個影像以解析出該待測物之形貌特徵。 5. 如申請專利範圍第4項所述之共焦顯微形貌量測裝置, 其中該光源調制部更具有: 一光源體; 一光陣列反射單元,其係可將該光源體所投射之光源 · 反射以形成一反射光源; 一透鏡組,其係可調制該反射光源以形成該調制光 源;以及 一顯微物鏡,其係可將該調制光源導引至該待測物 上。 6. 如申請專利範圍第5項所述之共焦顯微形貌量測裝置, 其係更具有一分光單元,其係可導引該調制光源進入一 24 1357973 ΐ〇〇· 11. 〇χ 年月日修正替換頁 物鏡而投射至該待測物上。 7. 如申請專利範圍第5項所述之共焦顯微形貌量測裝置, 其中該光陣列反射單元係為一微型反射鏡元件 (digital micro-mirror device, DMD)或者是石夕基液晶 元件(1 iquid crystal on silicon, LCOS) 〇 8. 如申請專利範圍第5項所述之共焦顯微形貌量測裝置, 其中該透鏡組係由複數個凸透鏡以及複數個偏極元件 所組成。 • 9.如申請專利範圍第4項所述之共焦顯微形貌量測裝置, 其中該光源調制部更具有: 一光源體; 一光柵結構,其係可使該光源體所投射之光源穿透而 形成一結構光源; 一透鏡組,其係可調制該結構光源以形成該調制光 源;以及 一顯微物鏡,其係可將該調制光源導引至該待測物 • 上。 10.如申請專利範圍第4項所述之共焦顯微形貌量測裝 置,其中該光源調制部更具有: 一光源體; 一透鏡組,其係可調制該光源體所發出之光源以形成 該調制光源;以及 一顯微物鏡,其係可將該調制光源導引至該待測物 上。 25 1357973 讎· lUlii 年月日條正替換頁 11. 如申請專利範圍第4項所述之共焦顯微形貌量測裝 置,其中該影像擷取部更具有複數個影像擷取元件,其 係分別與該複數個光群組相對應。 12. 如申請專利範圍第4項所述之共焦顯微形貌量測裝 置,其中該分光部更具有: 一分光模組,其係可將該待測物之反射光分光形成複 數道子測物光;以及 一分光元件,其係可將該複數道子測物光分成相互正 交之光群組。 春 13. 如申請專利範圍第12項所述之共焦顯微形貌量測裝 置,其中該分光模組與該分光元件間更具有一偏極元 件。 14. 如申請專利範圍第12項所述之共焦顯微形貌量測裝 置,其中該分光模組更具有: 一第一分光單元,其係可將該測物光分成兩道子測物 光;以及 ‘ 一第二分光單元,其係可將該兩道子測物光分成四道 ® 子測物光。 15. 如申請專利範圍第14項所述之共焦顯微形貌量測裝 置,其中該第一分光單元以及該第二分光單元間更具有 一偏極元件。 16. 如申請專利範圍第14項所述之共焦顯微形貌量測裝 置,其中該第一分光單元以及該第二分光單元分別各具 有一偏極分光鏡與一直角反射鏡。 26 1357973 1QQ.-U. 〇1- 年月 日條正替換頁 17. 如申請專利範圍第14項所述之共焦顯微形貌量測裝 置,其中該第一分光單元以及該第二分光單元分別各具 有一對偏極分光鏡與一直角反射鏡。 18. 如申請專利範圍第17項所述之共焦顯微形貌量測裝 置,其中該第一分光單元之該對偏極分光鏡以及直角反 射鏡係成水平對齊放置,而該第二分光單元之偏極分 光鏡以及直角反射鏡係成垂直對齊放置。 19. 如申請專利範圍第17項所述之共焦顯微形貌量測裝 • 置,其中該第一分光單元靠近該待測物之一側上更具有 一偏極元件以及一遮罩。 20. 如申請專利範圍第4項所述之共焦顯微形貌量測裝 置,其中該聚焦位置調整部更具有複數個折射元件,其 係分別與該複數個光群組相對應,每一個折射元件具有 複數個具有不同厚度之折射區域以分別對應所屬光群 組中之每一個子測物光。 21. 如申請專利範圍第20項所述之共焦顯微形貌量測裝 • 置,其中該折射元件係為透明材料。 22. 如申請專利範圍第21項所述之共焦顯微形貌量測裝 置,其中該透明材料係可選擇為玻璃以及高分子材料其 中之一。. 23. 如申請專利範圍第4項所述之共焦顯微形貌量測裝 置,其中該待測物更設置於可進行多維度運動之一承載 平台上,該承載平台係與該處理與控制單元電性連接。 24. 如申請專利範圍第4項所述之共焦顯微形貌量測裝 27 1357973i (XWW replacement page, patent application scope: A confocal micromorphology measurement method, which comprises the following steps: (a) projecting a modulated light source onto a test object; (b) reflecting by the test object Measuring light splitting to form a complex array of light groups, each light group having a plurality of test object lights; (c) respectively changing the focus position of the sub-test light of each light group; and (d) according to the steps (c) obtaining the sub-object light to reconstruct a topographical feature of the object to be tested, wherein the step (d) further comprises the following steps: (dl) extracting each sub-measure light having a different focus position Corresponding image; (d2) obtaining a focus index value of each corresponding image; (d3) fitting a focus index curve according to a focus index value of each corresponding image; and (d4) finding the focus index curve The method of measuring a confocal micromorphology according to the first aspect of the invention, wherein the modulated light source has a light and dark pattern. Step (c) t change The method of focusing the position is to respectively pass each of the sub-test objects in each light group through a deflecting plate of different thickness to change the focus position of each sub-measurement light. A confocal micro-morphology measuring device, including A light source modulating portion that projects a modulated light source to a test object 23 m to replace a page-light splitting portion, which is capable of splitting the light of the object reflected by the object to be detected to form a plurality of light groups Each of the light groups has a plurality of tracked object light; a focus position adjusting portion that respectively modulates the plurality of track object light of the plurality of light groups such that each of the sub-objects has different focus positions; The image capturing unit respectively captures each light group to form a plurality of images, each of which has a plurality of sub-images respectively corresponding to the sub-measurement light; and a processing and control unit coupled to the light source The modulation unit and the image capturing unit are electrically connected, and the processing and control unit can receive the plurality of images to parse the topographical features of the object to be tested. 5. As described in claim 4 a light micro-morphology measuring device, wherein the light source modulating portion further comprises: a light source body; a light array reflecting unit that reflects the light source projected by the light source body to form a reflecting light source; a lens group The reflected light source can be modulated to form the modulated light source; and a microscope objective can direct the modulated light source to the object to be tested. 6. Confocal micromorphology as described in claim 5 The measuring device further has a light splitting unit, which can guide the modulated light source to enter a 24 1357973 ΐ〇〇 11. 11. 修正 月 修正 替换 替换 替换 替换 修正 修正 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. The confocal micro-morphology measuring device according to claim 5, wherein the light array reflecting unit is a digital micro-mirror device (DMD) or a Shiyuki liquid crystal element (1 iquid crystal The confocal micro-morphology measuring device according to claim 5, wherein the lens group is composed of a plurality of convex lenses and a plurality of polarizing elements. 9. The confocal micro-morphology measuring device according to claim 4, wherein the light source modulating portion further comprises: a light source body; a grating structure that allows the light source projected by the light source body to penetrate And forming a structured light source; a lens group modulating the structured light source to form the modulated light source; and a microscope objective for guiding the modulated light source to the object to be tested. 10. The confocal micro-morphology measuring device of claim 4, wherein the light source modulating portion further comprises: a light source body; a lens group modulating a light source emitted by the light source body to form the light source A modulated light source; and a microscope objective that directs the modulated light source to the object to be tested. 25 1357973 雠· lUlii 月月日条正正页11. The confocal micromorphology measuring device according to claim 4, wherein the image capturing portion further has a plurality of image capturing components, respectively Corresponding to the plurality of light groups. 12. The confocal micro-morphology measuring device according to claim 4, wherein the spectroscopic portion further comprises: a spectroscopic module, wherein the reflected light of the object to be tested is split to form a plurality of sub-meters And a light splitting component that splits the plurality of tracked object light into mutually orthogonal groups of light. Spring 13. The confocal micro-morphology measuring device according to claim 12, wherein the beam splitting module and the beam splitting element further have a polarizing element. 14. The confocal micro-morphology measuring device of claim 12, wherein the spectroscopic module further comprises: a first beam splitting unit that splits the object light into two sub-meters; A second beam splitting unit that splits the two sub-meters into four detectors. 15. The confocal micro-morphology measuring device of claim 14, wherein the first beam splitting unit and the second beam splitting unit further have a polarizing element. 16. The confocal micromorphology measuring device of claim 14, wherein the first beam splitting unit and the second beam splitting unit each have a polarizing beam splitter and a right angle mirror. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Each has a pair of polarizing beamsplitters and a right-angle mirror. 18. The confocal microtopography measuring apparatus according to claim 17, wherein the pair of polarizing beams and the right angle mirror of the first beam splitting unit are horizontally aligned, and the second beam splitting unit is The polarizing beamsplitters and the right angle mirrors are placed in vertical alignment. 19. The confocal micro-morphology measuring device of claim 17, wherein the first beam splitting unit further has a polarizing element and a mask adjacent to one side of the object to be tested. 20. The confocal micromorphology measuring device according to claim 4, wherein the focus position adjusting portion further has a plurality of refractive elements respectively corresponding to the plurality of light groups, each of the refractive elements There are a plurality of refractive regions having different thicknesses to respectively correspond to each of the sub-components in the associated light group. 21. The confocal micromorphology measuring device of claim 20, wherein the refractive element is a transparent material. 22. The confocal micromorphology measuring device of claim 21, wherein the transparent material is one of a glass and a polymer material. 23. The confocal microtopography measuring device according to claim 4, wherein the object to be tested is further disposed on a carrying platform capable of multi-dimensional movement, the carrying platform and the processing and control unit Electrical connection. 24. Confocal microscopic topography measurement device as described in claim 4 of the patent scope 27 1357973 100. It Oil- 年月日條正替換頁 置,其中該調制光源具有一明暗圖紋。100. It Oil- The year and month are replacing the page, where the modulated light source has a light and dark pattern. 2828
TW97101688A 2008-01-16 2008-01-16 Apparatus and method for simulataneous confocal fu TWI357973B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97101688A TWI357973B (en) 2008-01-16 2008-01-16 Apparatus and method for simulataneous confocal fu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97101688A TWI357973B (en) 2008-01-16 2008-01-16 Apparatus and method for simulataneous confocal fu

Publications (2)

Publication Number Publication Date
TW200933123A TW200933123A (en) 2009-08-01
TWI357973B true TWI357973B (en) 2012-02-11

Family

ID=44865788

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97101688A TWI357973B (en) 2008-01-16 2008-01-16 Apparatus and method for simulataneous confocal fu

Country Status (1)

Country Link
TW (1) TWI357973B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583919B (en) * 2015-12-03 2017-05-21 財團法人金屬工業研究發展中心 Non-contact 3d scanning system and method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790178B2 (en) * 2011-03-14 2015-10-07 オムロン株式会社 Confocal measuring device
JP5955574B2 (en) * 2012-02-03 2016-07-20 株式会社東光高岳 3D shape measuring device
US20220364848A1 (en) * 2021-05-13 2022-11-17 Industrial Technology Research Institute Depth measurement apparatus and depth measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583919B (en) * 2015-12-03 2017-05-21 財團法人金屬工業研究發展中心 Non-contact 3d scanning system and method thereof

Also Published As

Publication number Publication date
TW200933123A (en) 2009-08-01

Similar Documents

Publication Publication Date Title
TWI426296B (en) Method and system for three-dimensional polarization-based confocal microscopy
TWI490444B (en) Slit-scan microscopic system and method using the same
CN109975820B (en) Linnik type interference microscope-based synchronous polarization phase shift focus detection system
TWI636231B (en) Optical system and method of surface and internal surface profilometry using the same
US10976152B2 (en) Method for defect inspection of transparent substrate by integrating interference and wavefront recording to reconstruct defect complex images information
CN109916909A (en) The detection method and its device of optical element surface pattern and subsurface defect information
KR20100134609A (en) Apparatus and method for measuring surface topography of an object
TW201321714A (en) Chromatic confocal microscope system and signal process method of the same
US12000752B2 (en) Deflectometry measurement system
KR20160102244A (en) Non-imaging coherent line scanner systems and methods for optical inspection
CN105103027B (en) The measurement of focus and other features in optical system
CN111156926A (en) Four-dimensional hyperspectral detection system
CN106052585A (en) Surface shape detection device and detection method
TWI357973B (en) Apparatus and method for simulataneous confocal fu
JP2001108417A (en) Optical shape measuring instrument
CN105758381A (en) Method for detecting inclination of camera die set based on frequency spectrum analysis
CN109580182B (en) Method and device for measuring refractive index of curved optical element based on Brewster&#39;s law
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
JP2016148569A (en) Image measuring method and image measuring device
TWI431240B (en) Three-dimensional measurement system
CN107036527A (en) Optical system and method for synchronously measuring absolute addressing distance and deflection angle
US20160021305A1 (en) Method and apparatus for measuring optical systems and surfaces with optical ray metrology
US20110242649A1 (en) Wavefront measurement method, wavefront measurement apparatus, and microscope
CN210070874U (en) Super spectral line scanning 3D measuring device
JP2005090962A (en) Measuring method and measuring device of optical element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees