WO2018071941A1 - Lagerelement - Google Patents

Lagerelement Download PDF

Info

Publication number
WO2018071941A1
WO2018071941A1 PCT/AT2017/060273 AT2017060273W WO2018071941A1 WO 2018071941 A1 WO2018071941 A1 WO 2018071941A1 AT 2017060273 W AT2017060273 W AT 2017060273W WO 2018071941 A1 WO2018071941 A1 WO 2018071941A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
angle
sliding
tangent
bearing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/AT2017/060273
Other languages
German (de)
English (en)
French (fr)
Inventor
Johannes Sebastian HÖLZL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miba Gleitlager Austria GmbH
Original Assignee
Miba Gleitlager Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miba Gleitlager Austria GmbH filed Critical Miba Gleitlager Austria GmbH
Priority to JP2019521151A priority Critical patent/JP6970195B2/ja
Priority to US16/334,390 priority patent/US10598214B2/en
Priority to CN201780059498.0A priority patent/CN109790866B/zh
Priority to ES17811827T priority patent/ES2846974T3/es
Priority to KR1020197014327A priority patent/KR102416389B1/ko
Priority to DK17811827.9T priority patent/DK3529508T3/da
Priority to EP17811827.9A priority patent/EP3529508B1/de
Publication of WO2018071941A1 publication Critical patent/WO2018071941A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/041Sliding-contact bearings self-adjusting with edge relief
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/26Systems consisting of a plurality of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/53Hydrodynamic or hydrostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/50Crowning, e.g. crowning height or crowning radius
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/02Sliding-contact bearings

Definitions

  • the invention relates to a bearing element for the storage of a component.
  • the bearing element for the storage of the rotor hub of a wind turbine is known.
  • the bearing element comprises an outer ring, an inner ring and a plurality of plain bearing pads, which are arranged between the outer ring and the inner ring.
  • the bearing element is designed for a radial or an axial force load and can absorb a superimposed tilting moment only conditionally.
  • the object of the present invention was to overcome the disadvantages of the prior art and to provide a bearing element by means of which a component loaded with a radial force, an axial force and a tilting moment can be mounted.
  • a bearing element in particular rotor hub bearing, is designed for supporting a component to be loaded with a radial force, an axial force and a tilting moment.
  • the bearing element comprises at least one inner ring element and at least one outer ring element, which are arranged in the unloaded state coaxial with respect to a central longitudinal axis to each other, wherein between the inner ring member and the outer ring member a sliding bearing is formed by at least two axially spaced sliding bearings is formed.
  • the slide bearings are coupled to a receiving side with one of the ring elements and opposite the receiving side is a sliding surface is formed, which cooperates with a running surface of the opposite ring member.
  • the sliding surface of the sliding bearing in cross-section at least a first portion and a second portion, wherein a tangent to the first portion is arranged at a first angle relative to the central longitudinal axis at a first angle and one applied to the second portion Tangent with respect to the central longitudinal axis is arranged at a second angle, wherein the first angle is different in size than the second angle.
  • An advantage of the inventive design of the bearing element is that the first portion may be formed such that an axial force acting on the bearing element or a radial force can be well received and the second portion of the sliding bearing can be designed such that an acting on the bearing element tilting moment can be well received.
  • the bearing element according to the invention does not result in punctiform loading when the inner ring element is tilted relative to the outer ring element, but at least one linear support of the sliding surface on the running surface can be achieved even with a tilting of the inner ring element relative to the outer ring element become.
  • the surface pressure compared to conventional bearing elements can be minimized, whereby the wear on the bearing elements can be minimized.
  • Longitudinal axis is arranged at a third angle, wherein in the unloaded state, the third angle of the tread is the same size as the first angle of the first portion of the sliding surface.
  • the sliding bearing is coupled to the outer ring element and the sliding surface is formed on the inner side of the sliding bearing and the running surface is formed on the outer side of the inner ring element.
  • Such a design of the bearing element is advantageous if the outer ring element is designed as a rotating component and the inner ring element is designed as a fixed component, as this leads to a reduced wear on the bearing element.
  • the sliding bearing is coupled to the inner ring element and the sliding surface is formed on the outer side of the sliding bearing and the running surface is formed on the inside of the outer ring element.
  • Such a design of the bearing element is advantageous if the inner ring element is designed as a rotating component and the outer ring element is designed as a fixed component, since this leads to a reduced wear on the bearing element.
  • at least one of the plain bearings is formed by slide bearing pads distributed in the circumferential direction. The advantage here is that such Gleitlagerpads are easy to change or remove in case of maintenance, without causing the entire bearing element must be disassembled.
  • the first angle of the tangent applied to the first section is smaller than the second angle of the second section applied relative to the central longitudinal axis Tangent with respect to the central longitudinal axis and that in a sliding bearing with a sliding surface arranged on the outside of the first angle of the tangent to the first portion relative to the central longitudinal axis is greater than the second angle of the tangent to the second portion in relation to the central longitudinal axis.
  • the tangent of the second section is formed or has such an angle that in the unloaded state of the bearing element, the tangent of the tread around the center of the bearing element turned coincident to the tangent of the second section is.
  • first section and the second section seen in cross section is formed by straight lines which are interconnected by a transition radius.
  • the advantage in this case is that the partial sections formed in the cross section formed by straight lines can interact with corresponding cross-sectional areas which are likewise formed as straight lines in cross-section and in the process form a line-shaped contact.
  • the transition radius is preferably chosen as small as possible. Preferably, the transition radius can be approximately zero and therefore the straight lines intersect directly and form a peak.
  • an opening angle between the tangent applied to the first section and the tangent applied to the second section is between 175 ° and 179.99 °, in particular between 178 ° and 179.99 °, preferably between 179 ° and 179. 99 °, is.
  • the advantage here is that correspondingly low bearing clearance can be achieved by realizing such an opening angle.
  • a wind turbine is formed with a rotor hub and a nacelle, wherein the rotor hub is mounted by means of the bearing element described on the nacelle.
  • FIG. 1 shows an exemplary embodiment of a wind power plant
  • FIG. 2 is a cross-sectional view of a first embodiment of a Lagerelemen- tes in the unloaded state.
  • 3 shows a cross-sectional view of the first exemplary embodiment of the bearing element in the state loaded with a tilting moment
  • 4 shows a schematic detail of the first embodiment of the bearing element in the unloaded state.
  • FIG. 5 shows a schematic detail of the first exemplary embodiment of the bearing element in the state loaded with an axial force and / or a radial force
  • FIG. 6 is a schematic detail of the first embodiment of the bearing element in the loaded with a breakdown torque state. 7 is a schematic detail of a second embodiment of the bearing element in the unloaded state.
  • Fig. 8 shows a schematic detail of the second exemplary embodiment of the bearing element in the state loaded with an axial force and / or a radial force
  • Fig. 9 is a schematic detail view of the second embodiment of the bearing element in the loaded with a breakdown torque state.
  • Fig. 1 shows a schematic representation of a wind turbine 1 for generating electrical energy from wind energy.
  • the wind turbine 1 comprises a nacelle 2, which is rotatably received on a tower 3.
  • the electrical components such as generator of the wind turbine 1 are arranged.
  • a rotor 4 is formed which has a rotor hub 5 with rotor blades 6 arranged thereon.
  • the rotor hub 5 is received by means of a bearing element 7 rotatably mounted on the nacelle 2.
  • the bearing element 7 is designed according to the embodiments described in this document, since both when using only one bearing element 7 for supporting the rotor hub 5 on the nacelle 2 both a radial force 8 and an axial force 9 and a tilting moment 10 must be received by the bearing element 7.
  • the axial force 9 results from the force of the wind.
  • the radial force 8 corresponds to the weight of the rotor 4 and acts on the center of gravity of the rotor 4. Since the center of gravity of the rotor 4 is outside of the bearing element 7, the tilting moment 10 is caused in the bearing element 7 by the radial force 8.
  • the tilting moment 10 can also be caused by an uneven loading of the rotor blades 6.
  • bearing element 7 in a wind turbine 1, it is also conceivable that such a trained bearing element 7 is used for example on a turntable of an excavator or other application where both a radial force 8 and / or an axial force 9, as well as a tilting moment 10 act on the bearing element 7.
  • the bearing elements 7 according to the invention may, for example, have a diameter between 0.5 m and 5 m. Of course, it is also conceivable that the bearing elements 7 are smaller or larger.
  • FIG. 3 shows the first exemplary embodiment of the bearing element 7 from FIG. 2 in a state loaded with a tilting moment 10, again using the same reference numerals or component designations as in the preceding FIG. 2 for the same parts.
  • the bearing element 7 is described on the basis of a synopsis of FIGS. 2 and 3.
  • the bearing element 7 comprises at least one inner ring element 11, which has an inner side 12 and an outer side 13. Furthermore, an outer ring element 14 is provided, which has an inner side 15 and an outer side 16. In addition, between the inner ring member 11 and the outer ring member 14, a sliding bearing 17 is formed, which comprises at least two spaced apart at an axial distance 18 slide bearing 19. The two plain bearings 19 each have an inner side 20 and an outer side 21.
  • the bearing element 7 is shown in an unloaded state.
  • an unloaded state in this case that state is defined in which no forces therefore no gravitational forces acting on the bearing element 7.
  • This state is fictional and is therefore only shown to illustrate the components or the function of the bearing element 7.
  • the inner ring element 11 and the outer ring element 14 and the plain bearings 19 are arranged concentrically with respect to a common central longitudinal axis 22.
  • the sliding bearings 19 are coupled to the outer ring member 14.
  • the side of the sliding bearing 19 which is coupled to the outer ring member 14 is referred to in the present embodiment as a receiving side 23 of the sliding bearing.
  • the sliding bearing 19 is received, for example by means of an adhesive bond in the outer ring member 14.
  • the plain bearing 19 it is also possible for the plain bearing 19 to be accommodated in the outer ring element 14 in a form-fitting manner, for example.
  • the sliding bearing 19 can be divided into several distributed around the circumference ring segments.
  • the sliding bearing 19 is formed as a single circumferential ring. Such a circumferential ring may be inserted, for example, in the outer ring member 14, wherein a co-rotation of the sliding bearing 19 is prevented relative to the outer ring member 14 by a friction connection.
  • a sliding surface 24 is formed, which cooperates with a running surface 25 of the inner ring element 11.
  • the outer side 13 of the inner ring member 11 is formed as a running surface 25.
  • the slide bearing 19 is rotated relative to the inner ring member 11 and a sliding movement between the sliding surface 24 of the sliding bearing 19 and the running surface 25 of the inner ring member 11 is made possible.
  • the function of the bearing element 7 can be realized.
  • the exact function or the exact relationships of the bearing element 7 are shown in FIGS. 4 to 6 in detail or serve these representations as a supplement to the understanding of the first embodiment of the bearing element. 7 Between the inner ring member 11 and the sliding bearing 19, as shown in FIG. 2, a bearing clearance 26 is formed.
  • the bearing clearance 26 is shown exaggerated for illustrative purposes.
  • the geometry of the plain bearing is greatly exaggerated in order to illustrate the function and the technical effects can be illustrated.
  • two inner ring elements 11 are formed, which are arranged at a distance 27 from each other.
  • the outer sides 13 of the inner ring elements 11 are each conical and facing each other.
  • the running surface 25 is a surface which is rotationally symmetrical with respect to the central longitudinal axis 22 and which may have the special shape of a truncated cone. Seen in cross section of the bearing element 7, as shown in Fig. 2, the tread 25 forms a straight line. If a tangent 28 is applied to the running surface 25, then this tangent 28 is formed at an angle 29 with respect to the central longitudinal axis 22.
  • the sliding bearing 19 has on the sliding surface 24 a first section 30 and a second section 31.
  • a tangent 32 applied to the first section 30 is arranged at an angle 33 to the central longitudinal axis 22.
  • a tangent 34 applied to the second section 31 is arranged at an angle 35 to the central longitudinal axis 22.
  • the angle 35 of the second section 32 and the angle 33 of the first section 30 are different in size. It is also envisaged that the angle 29 of the tread 25 and the angle 33 of the first section 30 are the same size and thus in the unloaded state of the bearing element 7, the tangent 28 of the tread 25 and the tangent 32 of the first section 30 are parallel to each other. In the three-dimensional view, therefore, the running surface 25 and the first section 30 have a lateral surface of a truncated cone with the same opening angle.
  • the bearing element 7, as shown in Fig. 5, is loaded with an axial force 9 and / or a radial force 8
  • the first portion 30 of the sliding surface 24 of the sliding bearing 19 and the tread 25 of the inner ring member 11 come at a first contact line 36th to each other to concern.
  • the sliding surface 24 of the sliding bearing 19 and the running surface 25 of the inner ring element 11 therefore contact each other at the first contact line 36, since a radial displacement of the two components occurs due to the radial force 8 or through the axial force 9.
  • the parallel shift moves in the hundredth to tenth of a millimeter range and is greatly exaggerated.
  • the two slide bearings 19 are located diagonally opposite one another on the inner ring elements 11.
  • a rotation of the outer ring element 14 relative to the inner ring element 11 with respect to a pivot point 38 which lies at the intersection between the central longitudinal axis 22 and a longitudinal central axis 39 occurs.
  • the tangent 28 of the tread 25 and the tangent 34 of the second portion 31 of the sliding surface 24 of the sliding bearing 19 are congruent to each other. That's how it comes with a load of the bearing element 7 by a tilting moment 10 to a linear contact between the sliding surface 24 and the tread 25, whereby the surface pressure and thus the wear on the sliding surface 24 can be reduced.
  • the congruence of the tangent 24 of the second section 31 and the tangent 28 of the tread 25 after tilting can be achieved that in the construction of the sliding bearing 19 in the unloaded state shown in FIG.
  • the tangent 28 is taken to the tread 25 and with respect Fulcrum 38 is rotated by a certain angle, so that it forms the tangent 34 of the second section 31 and intersects with the tangent 32 of the first section 30 approximately centrally of the sliding bearing 19.
  • an opening angle 41 formed is formed, which corresponds to an angle of 180 ° minus the maximum deflection angle 40.
  • a transition radius 42 is formed, which is due to manufacturing.
  • the transition radius 42 will be as low as possible, so that the first Berrindline 36 and the second Berrindline 37 are as long as possible and thus the lowest possible surface pressure between the sliding surface 24 of the sliding bearing 19 and the running surface 25 of the inner ring member 11 occurs.
  • the first section 30 and the second section 31 are connected directly or preferably without transition radius 42 to each other.
  • FIGS. 7 to 9 in a second exemplary embodiment, a further and optionally independent embodiment of the bearing element 7 is shown, again like reference numerals or component designations are used for the same parts as in the preceding Figures 2 to 6. In order to avoid unnecessary repetition, reference is made to the detailed description in the preceding Figures 2 to 6 or reference.
  • the sliding bearing 19 is coupled to the inner ring member 11 and a sliding movement between the sliding bearing 19 and the outer ring member 14 takes place.
  • the sliding bearing 19 may be coupled to the inner ring member 11 and thus the receiving side 23 of the sliding bearing 19 may be formed on the inner side 20 thereof.
  • the sliding surface 24 of the sliding bearing 19 is formed on the outer side 21 and cooperate with the inner side 15 of the outer ring member 14, which in this exemplary embodiment game as a tread 25 is formed.
  • first section 30 and the second section 31 of the sliding surface 24 of the sliding bearing 19 and the cooperating tread 25 of the outer ring member 14 behave analogously to the first embodiment already described in FIGS. 2 to 6.
  • the second embodiment will not be described in detail separately, but will be apparent to those skilled in the art based on the description of the first embodiment described in FIGS. 2 to 6 or the function of FIGS. 7 to 9.
  • Such a second embodiment of the bearing element 7 with an inner slide bearing 19, as shown in FIGS. 7 to 9 is preferably used when the outer ring member 14 is formed stationary and the inner ring member 11 together with the sliding bearing member 19 relative to outer ring member 14 is rotatable.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)
  • Wind Motors (AREA)
  • Rolling Contact Bearings (AREA)
PCT/AT2017/060273 2016-10-21 2017-10-19 Lagerelement Ceased WO2018071941A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019521151A JP6970195B2 (ja) 2016-10-21 2017-10-19 軸受部材
US16/334,390 US10598214B2 (en) 2016-10-21 2017-10-19 Bearing element
CN201780059498.0A CN109790866B (zh) 2016-10-21 2017-10-19 支承元件
ES17811827T ES2846974T3 (es) 2016-10-21 2017-10-19 Elemento de cojinete
KR1020197014327A KR102416389B1 (ko) 2016-10-21 2017-10-19 베어링 부재
DK17811827.9T DK3529508T3 (da) 2016-10-21 2017-10-19 Lejeelement
EP17811827.9A EP3529508B1 (de) 2016-10-21 2017-10-19 Lagerelement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50969/2016A AT519288B1 (de) 2016-10-21 2016-10-21 Lagerelement
ATA50969/2016 2016-10-21

Publications (1)

Publication Number Publication Date
WO2018071941A1 true WO2018071941A1 (de) 2018-04-26

Family

ID=60654568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2017/060273 Ceased WO2018071941A1 (de) 2016-10-21 2017-10-19 Lagerelement

Country Status (9)

Country Link
US (1) US10598214B2 (enExample)
EP (1) EP3529508B1 (enExample)
JP (1) JP6970195B2 (enExample)
KR (1) KR102416389B1 (enExample)
CN (1) CN109790866B (enExample)
AT (1) AT519288B1 (enExample)
DK (1) DK3529508T3 (enExample)
ES (1) ES2846974T3 (enExample)
WO (1) WO2018071941A1 (enExample)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT522476A4 (de) * 2019-05-21 2020-11-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
CN112567143A (zh) * 2018-08-27 2021-03-26 伦克股份有限公司 风力涡轮机的转子的轴承组件
CN113015857A (zh) * 2018-12-13 2021-06-22 米巴滑动轴承奥地利有限公司 用于更换风力设备的转子支座的滑动支承元件的方法以及用于风力设备的吊舱
CN113508239A (zh) * 2018-12-03 2021-10-15 Bmts科技有限及两合公司 具有流体动力滑动轴承的排气涡轮增压器或流体动力滑动轴承
WO2021226645A1 (de) * 2020-05-12 2021-11-18 Miba Gleitlager Austria Gmbh Rotorhauptlagerung einer gondel für eine windkraftanlage
WO2021259414A1 (de) 2020-06-24 2021-12-30 Schaeffler Technologies AG & Co. KG Schräggleitlager
AU2019332038B2 (en) * 2018-08-27 2022-07-07 Renk Gmbh Bearing assembly of a rotor of a wind turbine, and wind turbine
AT524591A4 (de) * 2021-05-14 2022-07-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
EP4047228A1 (de) * 2021-02-23 2022-08-24 Flender GmbH Lageranordnung, generatorgetriebe, windkraftanlage und computerprogrammprodukt
US11746757B2 (en) 2018-12-13 2023-09-05 Miba Gleitlager Austria Gmbh Nacelle for a wind turbine
US11761429B2 (en) 2018-12-13 2023-09-19 Miba Gleitlager Austria Gmbh Slide bearing, in particular for a gearbox of a wind turbine
US11808247B2 (en) 2018-12-13 2023-11-07 Miba Gleitlager Austria Gmbh Planetary gear set for a wind turbine
AT526781B1 (de) * 2023-07-05 2024-07-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
US12110874B2 (en) 2018-12-13 2024-10-08 Miba Gleitlager Austria Gmbh Nacelle for a wind turbine
US12196184B2 (en) 2018-12-13 2025-01-14 Miba Gleitlager Austria Gmbh Nacelle for a wind turbine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT522164B1 (de) 2019-03-07 2020-09-15 Miba Gleitlager Austria Gmbh Gleitlagerung
AT522155B1 (de) * 2019-03-07 2020-09-15 Miba Gleitlager Austria Gmbh Gleitlagerung
WO2022109635A1 (de) * 2020-11-30 2022-06-02 Miba Gleitlager Austria Gmbh Verfahren zum zusammenbau einer rotorlagerung einer windkraftanlage
CN113339406B (zh) * 2021-05-26 2023-03-10 河南科技大学 一种双向推力圆锥滑动轴承

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2235448A1 (de) * 1972-07-20 1974-02-07 Flender A F & Co Einrichtung zur lastverteilung der zahnkraefte von planetenraedern eines umlaufraedergetriebes
FR2415747A1 (fr) * 1978-01-25 1979-08-24 Greene Jerome Palier hydrodynamique encaissant les charges radiales et axiales et les couples transversaux
DE29512636U1 (de) * 1995-08-05 1995-10-05 IAMT Ingenieurgesellschaft für allgemeine Maschinentechnik mbH, 08525 Plauen Laufrolle für Raupenketten
DE10351524A1 (de) * 2002-11-05 2004-08-12 Roland Weitkamp Rotorlagerung für eine Windenergieanlage
EP1857713A1 (en) * 2006-05-15 2007-11-21 Hansen Transmissions International Nv Thrust cam for a gear wheel transmission
DE102010053671A1 (de) * 2010-12-07 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Mehrreihiges Wälzlager und Rotorlagerung einer Windkraftanlage
JP2013245767A (ja) * 2012-05-25 2013-12-09 Taiho Kogyo Co Ltd すべり軸受
WO2015058749A1 (de) * 2013-10-21 2015-04-30 Schaeffler Technologies AG & Co. KG Planetenradlageranordnung

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709573A (en) * 1970-09-10 1973-01-09 Kacarb Products Corp Bearing construction
US4243274A (en) * 1978-08-28 1981-01-06 Jerome Greene Hydrodynamic bearing with radial, thrust and moment load capacity
US4245870A (en) * 1979-04-06 1981-01-20 Emerson Electric Co. Electric motor bearing assembly
DE3816404A1 (de) * 1988-05-13 1989-11-30 Mtu Friedrichshafen Gmbh Dreistoffgleitlager
US5732441A (en) * 1994-04-06 1998-03-31 Janian; Robert Low friction wheel
US6296391B1 (en) * 1997-06-09 2001-10-02 Sankyo Seiki Mfg. Co., Ltd. Hydrodynamic bearing apparatus
JP2002122134A (ja) * 2000-10-13 2002-04-26 Nsk Ltd 流体軸受装置
JP3955737B2 (ja) * 2001-03-07 2007-08-08 大同メタル工業株式会社 すべり軸受
JP4096683B2 (ja) * 2002-10-07 2008-06-04 株式会社デンソー ロータ支持構造
JP2004308682A (ja) * 2003-04-02 2004-11-04 Mitsubishi Materials Corp 焼結含油軸受
US8360648B2 (en) * 2003-04-02 2013-01-29 Diamet Corporation Oil-impregnated sintered bearing and method of producing the same
KR20060059743A (ko) * 2004-11-29 2006-06-02 삼성전기주식회사 유체동압 베어링을 갖는 스핀들 모터
KR20110045094A (ko) * 2008-10-03 2011-05-03 다이호 고교 가부시키가이샤 슬라이딩 베어링과 그 제조 방법
JP5376448B2 (ja) * 2009-02-13 2013-12-25 セイコーインスツル株式会社 軸受装置及び情報記録再生装置
AT509625B1 (de) 2010-04-14 2012-02-15 Miba Gleitlager Gmbh Lagerelement
KR101779895B1 (ko) * 2010-08-24 2017-09-19 보르그워너 인코퍼레이티드 배기가스 터보차저
DE102012002203A1 (de) * 2012-02-07 2013-08-08 Imo Holding Gmbh Wälzlageranordnung zur Lagerung von Teilen einer Windkraftanlage, sowie Windkraftanlage mit einem derart ausgestalteten Blattlager
DK2657519T3 (en) * 2012-04-26 2015-09-07 Siemens Ag Windmill
JP5880707B2 (ja) * 2012-06-19 2016-03-09 富士電機株式会社 複合すべり軸受およびこの軸受けを用いた風力発電装置
DE102014200725A1 (de) * 2014-01-16 2015-07-30 Schaeffler Technologies AG & Co. KG Drehverbindung mit einem selbsthemmenden Lager
EP2921728A1 (en) * 2014-03-20 2015-09-23 Areva Wind GmbH Hybrid shaft bearing with a hydrodynamic bearing and a rolling bearing, wind generator comprising a hybrid shaft bearing, use of the hybrid shaft bearing and method of operating the hybrid shaft bearing
DE102014205637A1 (de) * 2014-03-26 2015-10-01 Aktiebolaget Skf Gleitlagersystem
ES2765403T3 (es) * 2015-05-07 2020-06-09 Flender Gmbh Mecanismo de transmisión planetario
EP3219984B1 (en) * 2016-03-14 2019-01-02 Siemens Aktiengesellschaft Sliding bearing arrangement for a wind turbine
EP3290751B2 (de) * 2016-09-02 2023-12-13 Flender GmbH Planetengetriebe
ES2829148T3 (es) * 2018-01-18 2021-05-28 Siemens Gamesa Renewable Energy As Una disposición de cojinetes y una turbina eólica

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2235448A1 (de) * 1972-07-20 1974-02-07 Flender A F & Co Einrichtung zur lastverteilung der zahnkraefte von planetenraedern eines umlaufraedergetriebes
FR2415747A1 (fr) * 1978-01-25 1979-08-24 Greene Jerome Palier hydrodynamique encaissant les charges radiales et axiales et les couples transversaux
DE29512636U1 (de) * 1995-08-05 1995-10-05 IAMT Ingenieurgesellschaft für allgemeine Maschinentechnik mbH, 08525 Plauen Laufrolle für Raupenketten
DE10351524A1 (de) * 2002-11-05 2004-08-12 Roland Weitkamp Rotorlagerung für eine Windenergieanlage
EP1857713A1 (en) * 2006-05-15 2007-11-21 Hansen Transmissions International Nv Thrust cam for a gear wheel transmission
DE102010053671A1 (de) * 2010-12-07 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Mehrreihiges Wälzlager und Rotorlagerung einer Windkraftanlage
JP2013245767A (ja) * 2012-05-25 2013-12-09 Taiho Kogyo Co Ltd すべり軸受
WO2015058749A1 (de) * 2013-10-21 2015-04-30 Schaeffler Technologies AG & Co. KG Planetenradlageranordnung

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019332038B2 (en) * 2018-08-27 2022-07-07 Renk Gmbh Bearing assembly of a rotor of a wind turbine, and wind turbine
EP3844410B1 (de) * 2018-08-27 2023-10-04 RENK GmbH Lageranordnung eines rotors einer windkraftanlage
CN112567143B (zh) * 2018-08-27 2023-10-03 伦克有限公司 风力涡轮机的转子的轴承组件
CN112567143A (zh) * 2018-08-27 2021-03-26 伦克股份有限公司 风力涡轮机的转子的轴承组件
CN113508239B (zh) * 2018-12-03 2023-09-19 Bmts科技有限及两合公司 具有流体动力滑动轴承的排气涡轮增压器或流体动力滑动轴承
CN113508239A (zh) * 2018-12-03 2021-10-15 Bmts科技有限及两合公司 具有流体动力滑动轴承的排气涡轮增压器或流体动力滑动轴承
CN113015857B (zh) * 2018-12-13 2022-11-25 米巴滑动轴承奥地利有限公司 用于更换风力设备的转子支座的滑动支承元件的方法以及用于风力设备的吊舱
US11761429B2 (en) 2018-12-13 2023-09-19 Miba Gleitlager Austria Gmbh Slide bearing, in particular for a gearbox of a wind turbine
US11940006B2 (en) 2018-12-13 2024-03-26 Miba Gleitlager Austria Gmbh Method for changing a sliding bearing element of a rotor bearing of a wind turbine, and nacelle for a wind turbine
US11808247B2 (en) 2018-12-13 2023-11-07 Miba Gleitlager Austria Gmbh Planetary gear set for a wind turbine
US12196184B2 (en) 2018-12-13 2025-01-14 Miba Gleitlager Austria Gmbh Nacelle for a wind turbine
US12110874B2 (en) 2018-12-13 2024-10-08 Miba Gleitlager Austria Gmbh Nacelle for a wind turbine
CN113015857A (zh) * 2018-12-13 2021-06-22 米巴滑动轴承奥地利有限公司 用于更换风力设备的转子支座的滑动支承元件的方法以及用于风力设备的吊舱
US11746757B2 (en) 2018-12-13 2023-09-05 Miba Gleitlager Austria Gmbh Nacelle for a wind turbine
AT522476B1 (de) * 2019-05-21 2020-11-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
WO2020232495A1 (de) * 2019-05-21 2020-11-26 Miba Gleitlager Austria Gmbh Gondel für eine windkraftanlage
AT522476A4 (de) * 2019-05-21 2020-11-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
US11644013B2 (en) 2019-05-21 2023-05-09 Miba Gleitlager Austria Gmbh Nacelle for a wind turbine
EP4477902A1 (de) * 2020-05-12 2024-12-18 Miba Gleitlager Austria GmbH Rotorhauptlagerung einer gondel für eine windkraftanlage
CN115516220A (zh) * 2020-05-12 2022-12-23 米巴滑动轴承奥地利有限公司 风力设备的机舱的转子主支承部
WO2021226645A1 (de) * 2020-05-12 2021-11-18 Miba Gleitlager Austria Gmbh Rotorhauptlagerung einer gondel für eine windkraftanlage
US11873858B2 (en) 2020-05-12 2024-01-16 Miba Gleitlager Austria Gmbh Rotor main bearing of a nacelle for a wind turbine
WO2021259414A1 (de) 2020-06-24 2021-12-30 Schaeffler Technologies AG & Co. KG Schräggleitlager
DE102020116588A1 (de) 2020-06-24 2021-12-30 Schaeffler Technologies AG & Co. KG Schräggleitlager
EP4047228A1 (de) * 2021-02-23 2022-08-24 Flender GmbH Lageranordnung, generatorgetriebe, windkraftanlage und computerprogrammprodukt
WO2022236356A1 (de) * 2021-05-14 2022-11-17 Miba Gleitlager Austria Gmbh Gondel für eine windkraftanlage
US12123403B2 (en) 2021-05-14 2024-10-22 Miba Gleitlager Austria Gmbh Nacelle for a wind turbine
AT524591B1 (de) * 2021-05-14 2022-07-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
AT524591A4 (de) * 2021-05-14 2022-07-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
AT526781A4 (de) * 2023-07-05 2024-07-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
AT526781B1 (de) * 2023-07-05 2024-07-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage

Also Published As

Publication number Publication date
JP2019534428A (ja) 2019-11-28
JP6970195B2 (ja) 2021-11-24
KR102416389B1 (ko) 2022-07-04
ES2846974T3 (es) 2021-07-30
CN109790866A (zh) 2019-05-21
AT519288A1 (de) 2018-05-15
KR20190067883A (ko) 2019-06-17
US20190234457A1 (en) 2019-08-01
US10598214B2 (en) 2020-03-24
AT519288B1 (de) 2018-07-15
CN109790866B (zh) 2020-12-22
DK3529508T3 (da) 2020-10-19
EP3529508A1 (de) 2019-08-28
EP3529508B1 (de) 2020-08-12

Similar Documents

Publication Publication Date Title
WO2018071941A1 (de) Lagerelement
EP2805047B1 (de) Windkraftanlage
EP3947993B1 (de) Gondel mit gleitlagerung
EP2368038B1 (de) Planetengetriebe
EP2715162B1 (de) GROßWÄLZLAGER
EP3109493B1 (de) Wälzlageranordnung und blattlager für eine windkraftanlage
EP3550140B1 (de) Maschinenträger für eine windenergieanlage
EP3728835B1 (de) Windkraftanlage mit rotornabenverlängerung
EP3601819B1 (de) Wälzlageranordnung und windkraftanlage
EP3589839B1 (de) Verstelleinheit für eine azimutverstellung und/oder für eine pitchverstellung einer windenergieanlage und verfahren
WO2020118334A1 (de) Gondel für eine windkraftanlage
EP3555464B1 (de) Rotorarretiervorrichtung für eine windenergieanlage und verfahren
AT522477A4 (de) Gleitlager mit einer Freistellung
WO2022073050A1 (de) Gleitlagerung, sowie eine mit der gleitlagerung ausgestattete gondel für eine windkraftanlage und eine windkraftanlage
EP3870869B1 (de) Wälzlageranordnung und windkraftanlage
EP3379077B1 (de) Drehverbindung einer windenergieanlage und verzahnung für eine drehverbindung
EP3724456B1 (de) Rotor mit fliehkraft-optimierten kontaktflächen
EP2687721A2 (de) Planetenträger für ein Planetengetriebe
WO2019122019A1 (de) Windkraftanlage, rotorsystem, verfahren zur verwendung einer windkraftanlage
AT526781B1 (de) Gondel für eine Windkraftanlage
WO2025007178A1 (de) Gondel für eine windkraftanlage
EP3421789B1 (de) Wälzlager für windenergieanlagentriebstrang
EP4555212A1 (de) Gleitlagerung, sowie eine mit der gleitlagerung ausgestattete gondel für eine windkraftanlage, sowie eine windkraftanlage
DE102005063678C5 (de) Verfahren zum Betrieb einer Windkraftanlage mit einer Lagereinheit für ein langgestrecktes Rotorblatt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17811827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521151

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197014327

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017811827

Country of ref document: EP

Effective date: 20190521