WO2018070679A1 - 유기트랜지스터 및 가스센서 - Google Patents

유기트랜지스터 및 가스센서 Download PDF

Info

Publication number
WO2018070679A1
WO2018070679A1 PCT/KR2017/010170 KR2017010170W WO2018070679A1 WO 2018070679 A1 WO2018070679 A1 WO 2018070679A1 KR 2017010170 W KR2017010170 W KR 2017010170W WO 2018070679 A1 WO2018070679 A1 WO 2018070679A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
compound
formula
Prior art date
Application number
PCT/KR2017/010170
Other languages
English (en)
French (fr)
Inventor
임보규
노용영
조근
이지영
박정현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170117521A external-priority patent/KR102054047B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2018070679A1 publication Critical patent/WO2018070679A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00

Definitions

  • the present specification relates to an organic transistor and a gas sensor.
  • a thin film field-effect transistor is composed of a source electrode, a drain electrode, a gate electrode, an insulating layer, and a semiconductor layer. Recently, organic materials such as monomolecules, polymers, and oligomers have been applied to the semiconductor layer. Interest in organic transistors is increasing.
  • the structure of the organic transistor may have a top gate (bottom gate) or bottom gate (bottom gate) structure according to the position of the gate electrode, in the lower gate structure depending on whether the source / drain electrode is located above or below the semiconductor layer It may be divided into a top contact or a bottom contact structure.
  • the upper gate structure may be advantageous in terms of performance because the area in which the semiconductor layer contacts the source electrode and the drain electrode is relatively large, and may be advantageous in terms of air stability because the upper electrode is coated on the semiconductor layer.
  • the lower gate structure may be disadvantageous in terms of stability compared to the upper gate structure.
  • the performance of the organic transistor can be evaluated by the mobility of charge, the on-off current ratio (on / off ratio), etc., and the development of high performance organic semiconductor is required to improve the performance of the organic transistor.
  • the gas sensor is installed in various places and plays an important role in monitoring the atmosphere, the harmful substances and the pollutants in our living environment. It demands sensitivity to show how well it can react, durability to show how long it can operate, and economics to show how easy it is for consumers to use the sensor. In addition, to be combined with the existing semiconductor process technology, it must have characteristics that are easy to integrate and enumerate.
  • the operation principle of the gas sensor is a semiconductor type using a change in resistance value according to a change in gas amount and a vibrator type using a frequency change when gas is adsorbed to a vibrator having a predetermined frequency.
  • Most gas sensors use a semiconductor type that has a simple circuit and stable thermal characteristics at room temperature.
  • the semiconductor gas sensor includes an inorganic semiconductor gas sensor in which an inorganic material silicon semiconductor forms semiconductor crystals through covalent bonds between atoms, and an organic semiconductor gas sensor in which molecular bonds of conductive polymers, ie, van der Waals interactions, are combined.
  • the gas sensor based on tin oxide requires a high temperature to operate the sensor, and a product including a micro heater is commercially available. Due to this problem, there is a difficulty in thinning the film.
  • gas concentrations below 50 ppm are not measurable, limiting a wide range of applications.
  • Gas sensors based on organic semiconductors can be manufactured in solution form through various printing processes by dissolving a semiconductor material in an organic solvent, thereby significantly reducing the cost of manufacturing a conventional gas sensor. Therefore, in recent years, active research has been conducted on printed gas sensors that report organic semiconductors as sensing materials through printing processes such as inkjet printing. However, research on various organic semiconductor materials for sensing has been relatively less performed.
  • the present specification provides an organic transistor and a gas sensor.
  • An exemplary embodiment of the present specification provides an organic transistor including an organic semiconductor layer including a compound represented by the following Formula 1.
  • X1 to X6 are the same as or different from each other, and are each independently CRR ', NR, O, SiRR', PR, S, GeRR ', Se or Te,
  • R1 and R2 are the same as or different from each other, and each independently hydrogen; Halogen group; Or a substituted or unsubstituted alkyl group,
  • a and b are each an integer of 1 to 4,
  • n is an integer from 1 to 10,000
  • [A1] comprises one or a combination of two or more of the following structures,
  • X10 to X23 are the same as or different from each other, and are each independently CRR ', NR, O, SiRR', PR, S, GeRR ', Se, or Te,
  • c and d are each 1 or 2
  • x and y are each an integer of 1 to 5
  • R3 to R12, R101 to R110, R and R ' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amide group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl
  • An exemplary embodiment of the present specification provides a gas sensor to which the organic transistor is applied.
  • the organic transistor according to the exemplary embodiment of the present specification has excellent performance by applying a compound having excellent crystallinity and charge mobility to the organic semiconductor layer.
  • the gas sensor according to the exemplary embodiment of the present specification can detect a gas even under a low concentration gas atmosphere.
  • 1 to 4 are diagrams illustrating an organic transistor according to an exemplary embodiment of the present invention.
  • FIG. 10 is a diagram showing a result of CV measurement for Compound 1.
  • FIG. 11 is a diagram showing a UV spectrum of Compound 2.
  • 13 is a diagram showing a UV spectrum of Compound 3.
  • 15 is a diagram showing a DSC measurement result of compound 4.
  • 16 is a diagram showing a UV spectrum of Compound 4.
  • 17 is a diagram showing a result of CV measurement for compound 4.
  • Example 19 is a view showing a performance measurement results of the organic transistor prepared in Example 1.
  • Example 20 is a view showing a result of measuring the performance of the organic transistor prepared in Example 2.
  • FIG. 21 is a diagram illustrating a performance measurement result of an organic transistor prepared in Example 4.
  • FIG. 21 is a diagram illustrating a performance measurement result of an organic transistor prepared in Example 4.
  • FIG. 22 is a diagram showing a result of performance measurement of an organic transistor prepared in Example 5.
  • FIG. 22 is a diagram showing a result of performance measurement of an organic transistor prepared in Example 5.
  • FIG. 23 is a diagram showing a result of performance measurement of an organic transistor prepared in Example 7.
  • FIG. 24 is a diagram illustrating a performance measurement result of the organic transistor manufactured in Example 9.
  • FIG. 24 is a diagram illustrating a performance measurement result of the organic transistor manufactured in Example 9.
  • FIG. 25 is a diagram illustrating a performance measurement result of an organic transistor prepared in Example 10.
  • FIG. 26 is a diagram showing a result of performance measurement of an inverter manufactured in Example 12;
  • FIG. 27 is a diagram showing a result of measuring performance of a gas sensor manufactured in Example 13.
  • FIG. 27 is a diagram showing a result of measuring performance of a gas sensor manufactured in Example 13.
  • Example 28 is a view showing a result of measuring the performance of the gas sensor manufactured in Example 14.
  • the present specification provides an organic transistor including an organic semiconductor layer including the compound represented by Chemical Formula 1.
  • the term "substituted or unsubstituted” is deuterium; Halogen group; Nitrile group; Nitro group; Imide group; Amide group; Carbonyl group; Ester group; Hydroxyl group; An alkyl group; Cycloalkyl group; An alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy groups; Aryl sulfoxy group; Alkenyl groups; Silyl groups; Siloxane groups; Boron group; Amine group; Aryl phosphine group; Phosphine oxide groups; Aryl group; And it means that it is substituted with one or two or more substituents selected from the group consisting of a heterocyclic group or substituted with a substituent to which two or more substituents in the above-described substituents are connected, or does not have any substituents.
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are linked.
  • the halogen group may be fluorine, chlorine, bromine or iodine.
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C30. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the nitrogen of the amide group is substituted with hydrogen, a linear, branched or cyclic substituted or unsubstituted alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, or adjacent substituents are bonded to each other To form a substituted or unsubstituted hydrocarbon ring.
  • a linear, branched or cyclic substituted or unsubstituted alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, or adjacent substituents are bonded to each other
  • a substituted or unsubstituted hydrocarbon ring may be a compound of the following structural formula, but is not limited thereto.
  • carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C30. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • an ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 30 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 30.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-o
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 30 carbon atoms, specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto. It is not.
  • the alkoxy group may be linear, branched or cyclic. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C30. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, Isopentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy and the like It may be, but is not limited thereto.
  • the amine group is -NH 2 ; Alkylamine group; N-arylalkylamine group; Arylamine group; N-aryl heteroaryl amine group; It may be selected from the group consisting of an N-alkylheteroarylamine group and a heteroarylamine group, carbon number is not particularly limited, but is preferably 1 to 30.
  • Specific examples of the amine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, and 9-methyl-anthracenylamine group. , Diphenylamine group, N-phenylnaphthylamine group, ditolylamine group, N-phenyltolylamine group, triphenylamine group and the like, but is not limited thereto.
  • the N-alkylarylamine group means an amine group in which an alkyl group and an aryl group are substituted for N of the amine group.
  • the N-arylheteroarylamine group means an amine group in which an aryl group and a heteroaryl group are substituted for N in the amine group.
  • the N-alkylheteroarylamine group means an amine group in which an alkyl group and a heteroaryl group are substituted for N in the amine group.
  • the alkyl group in the alkylamine group, the N-arylalkylamine group, the alkylthioxy group, the alkyl sulfoxy group, and the N-alkylheteroarylamine group is the same as the example of the alkyl group described above.
  • the alkyl thioxy group includes a methyl thioxy group, an ethyl thioxy group, a tert-butyl thioxy group, a hexyl thioxy group, an octyl thioxy group
  • the alkyl sulfoxy group includes mesyl, ethyl sulfoxy, propyl sulfoxy and butyl sulfoxy groups. Etc., but is not limited thereto.
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 30.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the silyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group may be -BR 100 R 200 , wherein R 100 and R 200 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen; Nitrile group; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 30 carbon atoms; A substituted or unsubstituted linear or branched alkyl group having 1 to 30 carbon atoms; Substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; And it may be selected from the group consisting of a substituted or unsubstituted monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms.
  • phosphine oxide groups include, but are not limited to, diphenylphosphine oxide group, dinaphthylphosphine oxide, and the like.
  • the aryl group may be monocyclic or polycyclic.
  • the aryl group is a monocyclic aryl group
  • carbon number is not particularly limited, but is preferably 6 to 30 carbon atoms.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc., but is not limited thereto.
  • Carbon number is not particularly limited when the aryl group is a polycyclic aryl group. It is preferable that it is C10-30.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, peryleneyl group, chrysenyl group, fluorenyl group and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and adjacent substituents may be bonded to each other to form a ring.
  • the aryl group in the aryloxy group, arylthioxy group, aryl sulfoxy group, N-arylalkylamine group, N-arylheteroarylamine group, and arylphosphine group is the same as the examples of the aryl group described above.
  • the aryloxy group may be a phenoxy group, p-tolyloxy group, m-tolyloxy group, 3,5-dimethyl-phenoxy group, 2,4,6-trimethylphenoxy group, p-tert-butylphenoxy group, 3- Biphenyloxy group, 4-biphenyloxy group, 1-naphthyloxy group, 2-naphthyloxy group, 4-methyl-1-naphthyloxy group, 5-methyl-2-naphthyloxy group, 1-anthryloxy group , 2-anthryloxy group, 9-anthryloxy group, 1-phenanthryloxy group, 3-phenanthryloxy group, 9-phenanthryloxy group, and the like.
  • arylthioxy group examples include a phenylthioxy group and 2- The methylphenyl thioxy group, 4-tert- butylphenyl thioxy group, etc. are mentioned,
  • An aryl sulfoxy group includes a benzene sulfoxy group, p-toluene sulfoxy group, etc., but is not limited to this.
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group, may be a polycyclic aryl group.
  • the arylamine group including two or more aryl groups may simultaneously include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group.
  • the aryl group in the arylamine group may be selected from the examples of the aryl group described above.
  • the heterocyclic group includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Se, and S, and the like. Although carbon number is not particularly limited, it is preferably 2 to 30 carbon atoms, the heterocyclic group may be monocyclic or polycyclic.
  • heterocyclic group examples include thiophene group, furanyl group, pyrrole group, imidazolyl group, thiazolyl group, oxazolyl group, oxadiazolyl group, pyridyl group, bipyridyl group, pyrimidyl group, triazinyl group, tria Zolyl group, acridil group, pyridazinyl group, pyrazinyl group, quinolinyl group, quinazolinyl group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group , Isoquinolinyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzimidazolyl group, benzothiazolyl group, benzocarbazolyl group, benzothiophene
  • examples of the heteroarylamine group include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group.
  • the heteroarylamine group including two or more heteroaryl groups may simultaneously include a monocyclic heteroaryl group, a polycyclic heteroaryl group, or a monocyclic heteroaryl group and a polycyclic heteroaryl group.
  • the heteroaryl group in the heteroarylamine group may be selected from the examples of the heterocyclic group described above.
  • heteroaryl group in the N-arylheteroarylamine group and the N-alkylheteroarylamine group are the same as the examples of the heterocyclic group described above.
  • [A1] of Formula 1 has oxidation characteristics in the compound.
  • the oxidation characteristics and the reduction characteristics are relative, but [A1] may have oxidation characteristics, but may also have reduction characteristics.
  • [A1] in the compound according to one embodiment of the present specification acts as an electron donor relatively.
  • the compound may move quickly in the molecule, the excitons can maximize the polarization of the excitons, it may have a low bandgap characteristics.
  • Formula 1 may be represented by the following Formula 1-1 or Formula 1-2.
  • R1 to R8, [A1], X1 to X6, a, b and n are the same as those of Chemical Formula 1,
  • e, f, g and h are each an integer of 1 to 5
  • i, j, k and l are each an integer of 1 to 3,
  • R21 to R28 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amide group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstit
  • Chemical Formula 1 may be represented by any one of the following Chemical Formulas 1-3 to 1-8.
  • R1 to R8, R103 to R110, X1 to X6, X12 to X23, a, b, c, d, x, y and n are the same as those of Formula 1,
  • e, f, g and h are each an integer of 1 to 5
  • i, j, k and l are each an integer of 1 to 3,
  • R21 to R28 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amide group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstit
  • R5 to R12 are the same as or different from each other, and each independently hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted silyl group; Substituted or unsubstituted siloxane group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • R5 to R12 are the same as or different from each other, and each independently hydrogen; Halogen group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • R1 and R2 are the same as or different from each other, and each independently a halogen group; Or a substituted or unsubstituted alkyl group.
  • R1 and R2 are the same as or different from each other, and are each independently a substituted or unsubstituted alkyl group.
  • R1 and R2 are the same as or different from each other, and each independently an alkyl group substituted with a halogen group.
  • R1 and R2 are each an alkyl group substituted with fluorine.
  • R1 and R2 are each CF 3 .
  • R3 and R4 are the same as or different from each other, and each independently hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • R3 and R4 are the same as or different from each other, and each independently hydrogen; Halogen group; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted heteroring group.
  • R3 and R4 are the same as or different from each other, and each independently hydrogen; Halogen group; Or a substituted or unsubstituted alkyl group.
  • R3 and R4 are each hydrogen.
  • R5 to R8 are the same as or different from each other, and each independently hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted silyl group; Substituted or unsubstituted siloxane group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • R5 to R8 are the same as or different from each other, and each independently hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • R5 to R8 are the same as or different from each other, and each independently hydrogen; Halogen group; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted heteroring group.
  • R5 to R8 are the same as or different from each other, and each independently hydrogen; Or a halogen group.
  • R5 to R8 are the same as or different from each other, and each independently hydrogen; Or fluorine.
  • R9 to R12 are the same as or different from each other, and each independently hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted silyl group; Substituted or unsubstituted siloxane group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • R9 to R12 are the same as or different from each other, and each independently hydrogen; Halogen group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • R9 to R12 are the same as or different from each other, and each independently hydrogen; Halogen group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • R9 to R12 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • R9 to R12 are the same as or different from each other, and each independently hydrogen; Substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • R9 to R12 are the same as or different from each other, and each independently hydrogen; Substituted or unsubstituted phenyl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted thiophene group having 2 to 30 carbon atoms.
  • R9 to R12 are the same as or different from each other, and each independently hydrogen; A phenyl group substituted with an alkyl group; Or a thiophene group substituted with an alkyl group.
  • X1 to X6 are the same as or different from each other, and are each independently CRR ', NR, O, SiRR', PR, S, GeRR ', Se, or Te.
  • X1 to X6 are the same as or different from each other, and are each independently CRR ', O, or S.
  • X1 to X6 are each S.
  • X10 to X23 are the same as or different from each other, and are each independently CRR ', NR, O, SiRR', PR, S, GeRR ', Se, or Te.
  • X10 to X23 are the same as or different from each other, and are each independently NR, S, or Se.
  • X10 to X13 are each S.
  • X14 and X15 are each NR.
  • R is hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amide group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted
  • X14 and X15 are each NR.
  • R is hydrogen; Halogen group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • X14 and X15 are each NR.
  • R is a substituted or unsubstituted alkyl group.
  • X14 and X15 are each NR.
  • R is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms.
  • X14 and X15 are each NR.
  • R is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • X14 and X15 are each NR.
  • R is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms.
  • X14 and X15 are each NR.
  • R is an alkyl group having 1 to 10 carbon atoms.
  • X16 to X19 are S or Se, respectively.
  • X16 and X17 are each S.
  • X18 and X19 are each S.
  • X18 and X19 are each Se.
  • X20 to X23 are each S.
  • Chemical Formula 1 may be represented by any one of the following Compounds 1 to 5.
  • n is an integer of 1 to 10,000.
  • An exemplary embodiment of the present specification provides an organic transistor including a gate electrode, a source electrode, a drain electrode, and an insulating layer in contact with the organic semiconductor layer.
  • An organic transistor according to an exemplary embodiment of the present specification exhibits an ambipolar characteristic by applying the compound to an organic semiconductor layer. Therefore, the organic transistor according to one embodiment of the present specification shows both n-type and p-type characteristics, and an inverter can be implemented.
  • the organic transistor according to the exemplary embodiment of the present specification may implement the inverter by including the compound in the organic semiconductor layer. Therefore, since only one material needs to be coated to implement the inverter, the process is simpler than a general inverter manufacturing method.
  • the P-type characteristic is confirmed by measuring a current flowing between the source electrode and the drain electrode after applying a negative voltage to the gate electrode.
  • a negative voltage when a negative voltage is applied to the gate electrode, holes move in the organic semiconductor layer.
  • the N-type characteristic is confirmed by measuring a current flowing between the source electrode and the drain electrode after applying a positive voltage to the gate electrode.
  • a positive voltage when a positive voltage is applied to the gate electrode, electrons move in the organic semiconductor layer.
  • the manufacturing method of the organic semiconductor layer is not particularly limited as long as it is a method used in the art, and vacuum deposition, sputtering, E-beam, thermal deposition, spin coating, screen printing, inkjet printing, doctor blade or It can be prepared using the gravure printing method.
  • the organic transistor may be a top contact structure among the bottom gate structures.
  • a gate electrode and an insulating layer may be sequentially formed on a substrate, and then an organic semiconductor layer may be formed on the insulating layer, and finally, a source electrode and a drain electrode may be formed on the organic semiconductor layer.
  • 1 shows an organic transistor structure according to this.
  • the organic transistor may be a bottom contact structure among the bottom gate structures.
  • a gate electrode and an insulating layer may be sequentially formed on a substrate, and then a source electrode and a drain electrode may be formed on the insulating layer, and finally an organic semiconductor layer may be formed on the source electrode and the drain electrode.
  • 2 and 3 show the organic transistor structure according to it.
  • the organic transistor may have a top gate structure.
  • the source electrode and the drain electrode may be first formed on the substrate, and then the organic semiconductor layer and the insulating layer gate electrode may be sequentially formed.
  • Figure 4 shows the organic transistor structure according to this.
  • the substrate may be a material used in the art.
  • glass polyethylenenaphthalate (PEN), polyethylene terephthalate (PET), polycarbonate (PC), polyvinyl alcohol (Polyvinylalcohol: PVP), polyacrylate, polyimide Plastic substrates or glass substrates such as Polynorbornene and Polyethersulfone (PES) may be used.
  • PEN polyethylenenaphthalate
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PVP polyvinyl alcohol
  • PPS Polyvinylalcohol
  • polyacrylate polyimide Plastic substrates or glass substrates such as Polynorbornene and Polyethersulfone (PES)
  • PES Polyethersulfone
  • HMDS (1,1,1,3,3,3-hexamethyldisilazane), octyltrichlorosilane (OTS), or octadecyltrichlorosilane (OTDS) may be coated as a surface treatment between the source electrode and the drain electrode and the organic semiconductor layer.
  • the gate electrode, the source electrode, and the drain electrode are not particularly limited as long as they are materials used in the art.
  • it is a conductive material.
  • it may be a material selected from the group consisting of gold (Au), silver (Ag), aluminum (Al), nickel (Ni), chromium (Cr), and indium tin oxide (ITO).
  • the source electrode and the drain electrode may be manufactured using an E-beam or photolithography method, respectively, but is not limited thereto.
  • the insulating layer is not particularly limited as long as it is a material used in the art.
  • silicon dioxide (SiO 2 ) having a high insulation rate and easily forming on the gate electrode may be used.
  • the manufacturing method of the insulating layer is not particularly limited as long as it is a method used in the art, and may be manufactured using, for example, an E-beam or photolithography method, but is not limited thereto.
  • the organic transistor may be formed in a single layer or multiple layers.
  • the present specification provides a gas sensor to which the above-described organic transistor is applied.
  • the gas sensor may be configured to expose the organic transistor to a specific gas so that the organic semiconductor layer of the organic transistor may change its electrical characteristics through contact with a gaseous material.
  • the gas sensor is provided with an organic semiconductor layer including a gate electrode, a source electrode, a drain electrode, an insulating layer, and a compound including the unit of Formula 1.
  • the gas sensor may further include a carbon-based material in the organic semiconductor layer.
  • the carbon-based material is carbon black, carbon nanotubes (CNT), graphite (graphite), graphene (graphene), activated carbon, porous carbon (Mesoporous Carbon), carbon fiber (Carbon fiber) and carbon nanowires (Carbon nano wire) means one or more selected from the group consisting of.
  • the gas sensor detects ammonia (NH 3 ), ethylene (C 2 H 4 ), formaldehyde (HCHO), hydrofluoric acid (HF), nitrogen oxides, sulfur oxides and / or ethanol. .
  • the gas sensor may expose the gas sensor to the saturated vapor pressure of each gas, and measure the sensitivity by connecting the sensor to the probe station, but is not limited thereto, and used in the art It is possible to evaluate the characteristics of the gas sensor with devices that can measure the current value connected to the electrode of the transistor.
  • detection means that the density of the conduction electrons on the surface of the organic semiconductor layer is changed by the interaction of the gas with the surface of the organic semiconductor layer of the gas sensor.
  • the gas sensor can detect the gas even in a low concentration gas atmosphere. Specifically, the gas sensor can detect the gas even in a gas atmosphere of 10 ppm or less. More specifically, the gas sensor, even when ammonia (NH 3 ), ethylene (C 2 H 4 ), formaldehyde (HCHO), hydrofluoric acid (HF), nitrogen oxides, sulfur oxides and / or ethanol are present in each 10 ppm or less, Detection of each substance is possible.
  • the gas sensor may have a sensitivity to ammonia (NH 3 ) of about 0.1 ppm or more relative to air. Specifically, the gas sensor may have a sensitivity to ammonia (NH 3 ) of 0.1 ppm or more and 90% or less compared to air. More specifically, in the exemplary embodiment of the present specification, the gas sensor may have a sensitivity to ammonia (NH 3 ) of 0.1 ppm or more and 90% or less compared to air under 10 ppm of ammonia.
  • NH 3 sensitivity to ammonia
  • sensitivity of 0.1 ppm or more with respect to air may mean that detection is possible when 0.1 ppm or more is present in the air.
  • sensitivity to sulfur oxides of 0.1 ppm or more relative to air may mean that only 0.1 ppm of sulfur oxides are present in the air.
  • 1% is 10,000 ppm.
  • the gas sensor may have a sensitivity to sulfur oxides of 0.1 ppm or more relative to air. Specifically, the gas sensor may have a sensitivity to sulfur oxides of 0.1 ppm or more and 90% or less relative to air.
  • the gas sensor may have a sensitivity to ethylene (C 2 H 4 ) of 0.1 ppm or more relative to air.
  • the gas sensor may have a sensitivity of ethylene (C 2 H 4 ) of 0.1 ppm or more and 90% or less compared to air.
  • the gas sensor may have a sensitivity to ethanol greater than 0 and 20% or less than air.
  • the gas sensor may have a sensitivity to formaldehyde (HCHO) of 0.1 ppm or more relative to air. Specifically, the gas sensor may have a sensitivity to formaldehyde (HCHO) of not less than 0.1 ppm and not more than 90% of air.
  • HCHO formaldehyde
  • the gas sensor may have a sensitivity to hydrofluoric acid (HF) of 0.1 ppm or more relative to air.
  • the gas sensor may have a sensitivity to hydrofluoric acid (HF) of 0.1 ppm or more and 90% or less relative to air.
  • the gas sensor may have a sensitivity to nitrogen oxides of 0.1 ppm or more relative to air. Specifically, the gas sensor may have a sensitivity to nitrogen oxides of 0.1 ppm or more and 90% or less relative to air.
  • FIG. 10 is a diagram showing a result of CV measurement for Compound 1.
  • FIG. 11 is a diagram showing a UV spectrum of Compound 2.
  • (a) is UV data in a solution state of Compound 2
  • (b) is UV data of Compound 2 in a film state.
  • 13 is a diagram showing a UV spectrum of Compound 3.
  • 15 is a diagram showing a DSC measurement result of compound 4.
  • 16 is a diagram showing a UV spectrum of Compound 4.
  • FIG 16 (a) is the UV data in the solution state of compound 4, (b) is a compound 4 in a film state, (c) is a compound 4 formed by heat treatment at 150 °C to form a film, (d) Is UV data measured for compound 4 formed into a film by heat treatment at 180 ° C.
  • 17 is a diagram showing a result of CV measurement for compound 4.
  • Distilled water (acetone) and isopropyl alcohol (IPA) on the glass substrate washed for 10 minutes each by using photolithography 13nm Au / 3nm Ni as a source electrode and a drain electrode through a thermal deposition process Formed.
  • the channel length between the formed source electrode and the drain electrode was 10 ⁇ m and the width was 1 mm.
  • the substrate on which the electrode was formed was washed with distilled water (DI water), acetone (acetone), and isopropyl alcohol (IPA) for 10 minutes, and then dried well.
  • DI water distilled water
  • acetone acetone
  • IPA isopropyl alcohol
  • PMMA polymethyl methacrylate
  • Example 19 is a view showing a performance measurement results of the organic transistor prepared in Example 1.
  • An organic transistor was manufactured in the same manner as in Example 1, except that the film containing Compound 1 was heat-treated at 150 ° C. in the manufacturing method of Example 1.
  • Example 20 is a view showing a result of measuring the performance of the organic transistor prepared in Example 2.
  • An organic transistor was manufactured in the same manner as in Example 2, except that polyvinylidene fluoride-trifluoroethylene (P (VDF-TrEE)) was used as the insulating layer in the manufacturing method of Example 2.
  • PVDF-TrEE polyvinylidene fluoride-trifluoroethylene
  • An organic transistor was manufactured in the same manner as in Example 1, except that Compound 2 was used instead of Compound 1 in the manufacturing method of Example 1.
  • FIG. 21 is a diagram illustrating a performance measurement result of an organic transistor prepared in Example 4.
  • FIG. 21 is a diagram illustrating a performance measurement result of an organic transistor prepared in Example 4.
  • An organic transistor was manufactured in the same manner as in Example 2, except that Compound 2 was used instead of Compound 1 in the manufacturing method of Example 2.
  • FIG. 22 is a diagram showing a result of performance measurement of an organic transistor prepared in Example 5.
  • FIG. 22 is a diagram showing a result of performance measurement of an organic transistor prepared in Example 5.
  • An organic transistor was manufactured in the same manner as in Example 3, except that Compound 2 was used instead of Compound 1 in the manufacturing method of Example 3.
  • An organic transistor was manufactured in the same manner as in Example 1, except that Compound 3 was used instead of Compound 1 in the manufacturing method of Example 1.
  • FIG. 23 is a diagram showing a result of performance measurement of an organic transistor prepared in Example 7.
  • An organic transistor was manufactured in the same manner as in Example 2, except that Compound 3 was used instead of Compound 1 in the manufacturing method of Example 2.
  • An organic transistor was manufactured in the same manner as in Example 3, except that Compound 3 was used instead of Compound 1 in the manufacturing method of Example 3.
  • FIG. 24 is a diagram illustrating a performance measurement result of the organic transistor manufactured in Example 9.
  • FIG. 24 is a diagram illustrating a performance measurement result of the organic transistor manufactured in Example 9.
  • An organic transistor was manufactured in the same manner as in Example 2, except that Compound 4 was used instead of Compound 1 in the manufacturing method of Example 2.
  • FIG. 25 is a diagram illustrating a performance measurement result of an organic transistor prepared in Example 10.
  • An organic transistor was manufactured in the same manner as in Example 2, except that Compound 5 was used instead of Compound 1 in the manufacturing method of Example 2.
  • Distilled water (acetone) and isopropyl alcohol (IPA) on the glass substrate washed for 10 minutes each by using photolithography 13nm Au / 3nm Ni as a source electrode and a drain electrode through a thermal deposition process Formed.
  • the channel length between the formed source electrode and the drain electrode was 10 ⁇ m, and the width was 1 mm.
  • the substrate on which the electrode was formed was washed with distilled water (DI water), acetone (acetone), and isopropyl alcohol (IPA) for 10 minutes, and then dried well.
  • Compound 3 dissolved in a chlorobenzene solvent on the dried substrate was spin-coated and dried at room temperature.
  • PMMA polymethyl methacrylate
  • Table 1 shows the characteristics of the hole mobility of the organic transistor according to an embodiment of the present disclosure.
  • Example 1 Compound Heat treatment temperature (°C) Insulation material Average hole mobility (cm 2 / Vs) Threshold voltage (V) on / off
  • Example 1 Compound 1 25 PMMA 0.03 -34.31 3.58 x 10 3
  • Example 2 Compound 1 150 PMMA 0.0283 -37.54 1.65 x 10 4
  • Example 3 Compound 1 150 P (VDF-TrEE) 0.113 -13.34 5.58 x 10 3
  • Example 4 Compound 2 25 PMMA 0.0227 -46.33 1.64 x 10 3
  • Example 5 Compound 2 150 PMMA 0.0290 -33.45 2.43 x 10 3
  • Example 6 Compound 2 150 P (VDF-TrEE) 0.109 -10.28 2.23 x 10 3
  • Example 7 Compound 3 25 PMMA 0.0068 -11.22 1.15 x 10
  • Example 8 Compound 3 150 PMMA 0.0072 -16.18 5.26
  • Example 9 Compound 3 150 P (VDF-TrEE) 0.094 -19
  • Table 2 shows the electron mobility characteristics of the organic transistor according to an exemplary embodiment of the present specification.
  • Example 1 Compound Heat treatment temperature (°C) Insulation material Average electron mobility (cm 2 / Vs) Threshold voltage (V) on / off
  • Compound 1 25 PMMA 0.0006 54.15 2.49 x 10
  • Example 2 Compound 1 150 PMMA 0.0004 62.08 1.85 x 10
  • Example 3 Compound 1 150 P (VDF-TrEE) - - - Example 4
  • Compound 2 25 PMMA 0.0005 48.22 1.28 x 10
  • Example 5 Compound 2 150 PMMA 0.001 61.10 3.57x10
  • Example 6 Compound 2 150 P (VDF-TrEE) - - -
  • Example 7 Compound 3 25 PMMA 0.013 30.00 9.95
  • Example 8 Compound 3 150 PMMA 0.015 19.71 8.24
  • Example 9 Compound 3 150 P (VDF-TrEE) - - - Example 10
  • Example 11 Compound 5 150 PMMA -
  • Distilled water (acetone) and isopropyl alcohol (IPA) on the glass substrate washed for 10 minutes each by using photolithography 13nm Au / 3nm Ni as a source electrode and a drain electrode through a thermal deposition process Formed.
  • the channel length between the formed source electrode and the drain electrode was 10 ⁇ m, and the width was 1 mm.
  • the substrate on which the electrode was formed was washed with distilled water (DI water), acetone (acetone), and isopropyl alcohol (IPA) for 10 minutes, and then dried well.
  • Compound 2 dissolved in a chlorobenzene solvent on the dried substrate was spin-coated and dried at room temperature.
  • PMMA polymethyl methacrylate
  • methyl ethyl ketone a concentration of 30 mg / mL as an insulating layer, spin-coated on compound 1, and dried at 80 ° C. for 2 hours.
  • aluminum was thermally deposited to a thickness of 50 nm using a gate electrode to manufacture an organic transistor-based gas sensor.
  • the gas sensor is placed in the gas chamber, and the gas sensor is connected to a Keithley 4200 semiconductor characterization system by alternately flowing a specific gas (ammonia) and nitrogen to be detected using a mass flow controller. The change in the current in it was measured.
  • FIG. 27 is a diagram showing a result of measuring performance of a gas sensor manufactured in Example 13.
  • FIG. 27 is a diagram showing a result of measuring performance of a gas sensor manufactured in Example 13.
  • a gas sensor was manufactured in the same manner as in Example 13, except that Compound 1 was used instead of Compound 2 in the manufacturing method of Example 13.
  • Example 28 is a view showing a result of measuring the performance of the gas sensor manufactured in Example 14. Through this, it can be seen that the gas sensor manufactured in one embodiment of the present specification is driven by an ammonia gas sensor.

Landscapes

  • Thin Film Transistor (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 화합물을 포함하는 유기반도체층을 포함하는 유기트랜지스터 및 이를 적용한 가스센서에 관한 것이다.

Description

유기트랜지스터 및 가스센서
본 출원은 2016년 10월 13일에 한국특허청에 제출된 한국 특허 출원 제10-2016-0132940호 및 2017년 9월 14일에 한국특허청에 제출된 한국 특허 출원 제10-2017-0117521호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 유기트랜지스터 및 가스센서에 관한 것이다.
박막형태의 전계효과 트랜지스터(field-effect transistor, FET)는 소스 전극, 드레인 전극, 게이트 전극, 절연층 및 반도체층으로 구성되어 있는데, 최근 단분자, 고분자 및 올리고머와 같은 유기물질을 반도체층에 적용한 유기트랜지스터에 대한 관심이 높아지고 있다.
유기 물질 중에서도 용액공정용 단분자는 플렉서블 기판에 적용가능하고, 저온 공정이 가능하며, 대면적 적용이 가능하여 공정성이 향상되고, 경제적이다. 또한 고분자 대비 배치-투-배치(batch-to-batch) 차이가 없기 때문에 반도체층에 적용 시 상용화에 유리하다.
한편, 유기트랜지스터의 구조는 게이트 전극의 위치에 따라 상부 게이트(top gate) 또는 하부 게이트(bottom gate) 구조를 가질 수 있으며, 하부 게이트 구조에서는 소스/드레인 전극이 반도체층 위 또는 아래에 위치하느냐에 따라 상부 접촉(top contact) 또는 하부 접촉(bottom contact) 구조로 나뉠 수 있다.
상부 게이트 구조는 반도체층이 소스 전극 및 드레인 전극과 접촉하는 면적이 상대적으로 넓기 때문에 성능면에서 유리할 수 있으며, 반도체층 위에 상부 전극을 도포하기 때문에 공기 안정성 면에서 유리할 수 있다. 반면, 하부 게이트 구조는 상부 게이트 구조 대비 안정성 면에서 불리할 수 있다.
유기트랜지스터의 성능은 전하의 이동도, on-off 전류 비율(on/off ratio) 등으로 평가할 수 있으며, 유기트랜지스터의 성능 향상을 위해서 고성능의 유기반도체 개발이 필요하다.
한편, 가스센서는 여러 장소에 설치되어 우리가 생활하는 대기, 환경 중의 유해물질 및 오염물질을 모니터링 하는 중요한 역할을 담당하고 있으며, 얼마나 빨리 반응을 할 수 있는지를 보여주는 신속성, 얼마나 미세한 양이 검출이 되어도 반응할 수 있는지를 보여주는 민감성, 얼마나 오랫동안 동작을 할 수 있는지를 보여주는 내구성, 그리고 소비자가 얼마나 부담 없이 센서를 사용할 수 있는지를 보여주는 경제성 등의 특성을 요구하고 있다. 또 기존의 반도체 공정 기술과 결합하기 위해서는 집적화, 나열화하기 쉬운 특성을 갖고 있어야 한다.
이러한 가스센서의 동작원리로는 가스양의 변화에 따라서 저항 값이 변화하는 것을 이용한 반도체형과 일정 주파수를 갖고 진동하고 있는 진동자에 가스가 흡착되면 진동수가 바뀌는 것을 이용한 진동자형이 있다. 대부분의 가스센서는 회로가 간단하고 상온에서 안정적인 열적 특성을 보이는 반도체형을 이용하고 있다.
반도체형 가스센서는 무기 소재인 실리콘 반도체가 원자간 공유결합을 통해 반도체 결정을 이루는 무기 반도체형 가스센서 및 전도성 고분자의 분자결합 즉 반데르발스 상호작용으로 결합된 유기반도체형 가스센서가 있다. 이 중 산화 주석을 기반으로 하는 가스센서는 센서 작동을 위해서 높은 온도가 필요하여 마이크로 히터를 내장한 제품이 시판되고 있는데 이러한 문제점으로 인해서 박막화에 어려움이 존재한다. 또한 감도가 50 ppm 이하의 가스 농도는 측정이 불가능하여 광범위한 적용에 제한이 있다.
유기반도체를 기반으로 하는 가스센서는 반도체소재를 유기용매에 용해시켜 다양한 인쇄공정을 통해서 용액상으로 제조가 가능하므로 기존의 가스센서 제조 비용을 획기적으로 낮출 수 있다. 따라서 최근에 잉크젯 인쇄등의 인쇄공정을 통하여 유기반도체를 센싱물질로 보고하는 인쇄형 가스센서에 대해서 활발히 연구되고 있으나 센싱을 위한 다양한 유기반도체 소재에 대한 연구는 상대적으로 덜 이루어진 실정이다.
본 명세서는 유기트랜지스터 및 가스센서를 제공한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물을 포함하는 유기반도체층을 포함하는 유기트랜지스터를 제공한다.
[화학식 1]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c15
상기 화학식 1에 있어서,
X1 내지 X6는 서로 같거나 상이하고, 각각 독립적으로 CRR', NR, O, SiRR', PR, S, GeRR', Se 또는 Te이며,
R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 또는 치환 또는 비치환된 알킬기이며,
a 및 b는 각각 1 내지 4의 정수이고,
a 및 b가 각각 2 이상일 경우, 2 이상의 괄호 내의 구조는 서로 같거나 상이하며,
n은 1 내지 10,000의 정수이고,
[A1]은 하기 구조 중 하나 또는 둘 이상의 조합을 포함하며,
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c23
상기 구조에 있어서,
X10 내지 X23은 서로 같거나 상이하고, 각각 독립적으로 CRR', NR, O, SiRR', PR, S, GeRR', Se 또는 Te이며,
c 및 d는 각각 1 또는 2이고,
c 및 d가 각각 2일 경우, 괄호 내의 구조는 서로 같거나 상이하며,
x 및 y는 각각 1 내지 5의 정수이고,
x 및 y가 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하며,
R3 내지 R12, R101 내지 R110, R 및 R'은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 실록산기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
Figure PCTKR2017010170-appb-I000003
는 다른 치환기 또는 결합부에 결합되는 부위이다.
본 명세서의 일 실시상태는 상기 유기트랜지스터를 적용한 가스센서를 제공한다.
본 명세서의 일 실시상태에 따른 유기트랜지스터는 결정성 및 전하이동도가 우수한 화합물을 유기반도체층에 적용함으로써 성능이 우수하다.
본 명세서의 일 실시상태에 따른 가스센서는 저농도의 가스 분위기하에서도 가스 검출이 가능하다.
도 1 내지 4는 본 발명의 일 실시상태에 따른 유기트랜지스터를 나타낸 도이다.
도 5는 화합물 1-a의 NMR 스펙트럼을 나타낸 도이다.
도 6은 화합물 1-a의 MS 스펙트럼을 나타낸 도이다.
도 7은 화합물 1-b의 MS 스펙트럼을 나타낸 도이다.
도 8은 화합물 1-b의 HPLC 측정결과를 나타낸 도이다.
도 9는 화합물 1의 UV 스펙트럼을 나타낸 도이다.
도 10은 화합물 1의 CV 측정 결과를 나타낸 도이다.
도 11은 화합물 2의 UV 스펙트럼을 나타낸 도이다.
도 12는 화합물 2의 CV 측정 결과를 나타낸 도이다.
도 13은 화합물 3의 UV 스펙트럼을 나타낸 도이다.
도 14는 화합물 3의 CV 측정 결과를 나타낸 도이다.
도 15는 화합물 4의 DSC 측정 결과를 나타낸 도이다.
도 16은 화합물 4의 UV 스펙트럼을 나타낸 도이다.
도 17은 화합물 4의 CV 측정 결과를 나타낸 도이다.
도 18은 화합물 5-b의 MS 스펙트럼을 나타낸 도이다.
도 19는 실시예 1에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
도 20은 실시예 2에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
도 21은 실시예 4에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
도 22는 실시예 5에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
도 23은 실시예 7에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
도 24는 실시예 9에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
도 25는 실시예 10에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
도 26은 실시예 12에서 제조된 인버터의 성능측정 결과를 나타낸 도이다.
도 27은 실시예 13에서 제조된 가스센서의 성능측정 결과를 나타낸 도이다.
도 28은 실시예 14에서 제조된 가스센서의 성능측정 결과를 나타낸 도이다.
[부호의 설명]
10: 기판
20: 게이트 전극
30: 절연층
40: 소스 전극
50: 드레인 전극
60: 유기반도체층
이하 본 명세서에 대하여 상세히 설명한다.
본 명세서는 상기 화학식 1로 표시되는 화합물을 포함하는 유기반도체층을 포함하는 유기트랜지스터를 제공한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에 있어서 “조합”은 하나의 구조를 여러 개 연결하거나, 상이한 종류의 구조를 연결하는 것을 의미한다.
본 명세서에 있어서, "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 카르보닐기; 에스테르기; 히드록시기; 알킬기; 시클로알킬기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 알케닐기; 실릴기; 실록산기; 붕소기; 아민기; 아릴포스핀기; 포스핀옥사이드기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에 있어서,
Figure PCTKR2017010170-appb-I000004
는 다른 치환기 또는 결합부에 결합되는 부위를 의미한다.
본 명세서에 있어서, 할로겐기는 불소, 염소, 브롬 또는 요오드가 될 수 있다.
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2017010170-appb-I000005
본 명세서에 있어서, 아미드기는 아미드기의 질소가 수소, 탄소수 1 내지 30의 직쇄, 분지쇄 또는 고리쇄의 치환 또는 비치환된 알킬기 또는 탄소수 6 내지 30의 아릴기로 치환되거나, 인접하는 치환기가 서로 결합하여 치환 또는 비치환된 탄화수소고리를 형성할 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2017010170-appb-I000006
본 명세서에서 카르보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2017010170-appb-I000007
본 명세서에 있어서, 에스테르기는 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 30의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2017010170-appb-I000008
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 30인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 30인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; N-아릴알킬아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 바이페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, N-페닐나프틸아민기, 디톨릴아민기, N-페닐톨릴아민기, 트리페닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, N-알킬아릴아민기는 아민기의 N에 알킬기 및 아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-아릴헤테로아릴아민기는 아민기의 N에 아릴기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-알킬헤테로아릴아민기는 아민기의 N에 알킬기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, 알킬아민기, N-아릴알킬아민기, 알킬티옥시기, 알킬술폭시기, N-알킬헤테로아릴아민기 중의 알킬기는 전술한 알킬기의 예시와 같다. 구체적으로 알킬티옥시기로는 메틸티옥시기, 에틸티옥시기, tert-부틸티옥시기, 헥실티옥시기, 옥틸티옥시기 등이 있고, 알킬술폭시기로는 메실, 에틸술폭시기, 프로필술폭시기, 부틸술폭시기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 30인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 붕소기는 -BR100R200일 수 있으며, 상기 R100 및 R200은 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 니트릴기; 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기로 이루어진 군으로부터 선택될 수 있다.
본 명세서에 있어서, 포스핀옥사이드기는 구체적으로 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 단환식 또는 다환식일 수 있다.
상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 30인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2017010170-appb-I000009
,
Figure PCTKR2017010170-appb-I000010
,
Figure PCTKR2017010170-appb-I000011
Figure PCTKR2017010170-appb-I000012
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴옥시기, 아릴티옥시기, 아릴술폭시기, N-아릴알킬아민기, N-아릴헤테로아릴아민기 및 아릴포스핀기 중의 아릴기는 전술한 아릴기의 예시와 같다. 구체적으로 아릴옥시기로는 페녹시기, p-토릴옥시기, m-토릴옥시기, 3,5-디메틸-페녹시기, 2,4,6-트리메틸페녹시기, p-tert-부틸페녹시기, 3-바이페닐옥시기, 4-바이페닐옥시기, 1-나프틸옥시기, 2-나프틸옥시기, 4-메틸-1-나프틸옥시기, 5-메틸-2-나프틸옥시기, 1-안트릴옥시기, 2-안트릴옥시기, 9-안트릴옥시기, 1-페난트릴옥시기, 3-페난트릴옥시기, 9-페난트릴옥시기 등이 있고, 아릴티옥시기로는 페닐티옥시기, 2-메틸페닐티옥시기, 4-tert-부틸페닐티옥시기 등이 있으며, 아릴술폭시기로는 벤젠술폭시기, p-톨루엔술폭시기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 아릴기가 2 이상을 포함하는 아릴아민기는 단환식 아릴기, 다환식 아릴기, 또는 단환식 아릴기와 다환식 아릴기를 동시에 포함할 수 있다. 예컨대, 상기 아릴아민기 중의 아릴기는 전술한 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 헤테로고리기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 30인 것이 바람직하며, 상기 헤테로고리기는 단환식 또는 다환식일 수 있다. 헤테로고리기의 예로는 티오펜기, 퓨라닐기, 피롤기, 이미다졸릴기, 티아졸릴기, 옥사졸릴기, 옥사디아졸릴기, 피리딜기, 바이피리딜기, 피리미딜기, 트리아지닐기, 트리아졸릴기, 아크리딜기, 피리다지닐기, 피라지닐기, 퀴놀리닐기, 퀴나졸리닐기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미딜기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀리닐기, 인돌릴기, 카바졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티아졸릴기, 벤조카바졸릴기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤리닐기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴아민기의 예로는 치환 또는 비치환된 모노헤테로아릴아민기, 치환 또는 비치환된 디헤테로아릴아민기, 또는 치환 또는 비치환된 트리헤테로아릴아민기가 있다. 상기 헤테로아릴기가 2 이상을 포함하는 헤테로아릴아민기는 단환식 헤테로아릴기, 다환식 헤테로아릴기, 또는 단환식 헤테로아릴기와 다환식 헤테로아릴기를 동시에 포함할 수 있다. 예컨대, 상기 헤테로아릴아민기 중의 헤테로아릴기는 전술한 헤테로고리기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, N-아릴헤테로아릴아민기 및 N-알킬헤테로아릴아민기 중의 헤테로아릴기의 예시는 전술한 헤테로고리기의 예시와 같다.
본 명세서에 있어서, 상기 화학식 1의 [A1]은 화합물 내에서 산화(oxidation)특성을 갖는다.
다만, 본 명세서에 있어서, 산화특성 및 환원특성은 상대적인 것으로 상기 [A1]는 산화특성을 갖지만, 환원특성도 함께 가질 수 있다.
본 명세서의 일 실시상태에 따른 화합물에서 [A1]는 상대적으로 전자 주개로서 작용한다.
본 명세서의 일 실시상태에 있어서, 상기 화합물은 엑시톤이 분자내에서 빠르게 이동할 수 있으며, 엑시톤의 분극을 극대화 할 수 있어, 낮은 밴드갭의 특성을 가질 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시될 수 있다.
[화학식 1-1]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c111
[화학식 1-2]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c113
상기 화학식 1-1 및 화학식 1-2에 있어서,
R1 내지 R8, [A1], X1 내지 X6, a, b 및 n의 정의는 상기 화학식 1과 동일하고,
e, f, g 및 h는 각각 1 내지 5의 정수이며,
e, f, g 및 h가 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하고,
i, j, k 및 l은 각각 1 내지 3의 정수이며,
i, j, k 및 l이 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하고,
R21 내지 R28은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-3 내지 1-8 중 어느 하나로 표시될 수 있다.
[화학식 1-3]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c123
[화학식 1-4]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c125
[화학식 1-5]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c127
[화학식 1-6]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c129
[화학식 1-7]
[규칙 제91조에 의한 정정 07.11.2017] 
[화학식 1-8]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c133
상기 화학식 1-3 내지 화학식 1-8에 있어서,
R1 내지 R8, R103 내지 R110, X1 내지 X6, X12 내지 X23, a, b, c, d, x, y 및 n의 정의는 상기 화학식 1과 동일하고,
e, f, g 및 h는 각각 1 내지 5의 정수이며,
e, f, g 및 h가 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하고,
i, j, k 및 l은 각각 1 내지 3의 정수이며,
i, j, k 및 l이 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하고,
R21 내지 R28은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 R5 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 실록산기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R5 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기; 또는 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기로 치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 각각 불소로 치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, R1 및 R2는 각각 CF3이다.
본 명세서의 일 실시상태에 있어서, R3 및 R4는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R3 및 R4는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R3 및 R4는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 또는 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, R3 및 R4는 각각 수소이다.
본 명세서의 일 실시상태에 있어서, R5 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 실록산기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R5 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R5 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R5 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 할로겐기이다.
본 명세서의 일 실시상태에 있어서, R5 내지 R8은 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 불소이다.
본 명세서의 일 실시상태에 있어서, R9 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 실록산기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R9 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R9 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R9 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R9 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 6 내지 30의 치환 또는 비치환된 아릴기; 또는 탄소수 2 내지 30의 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, R9 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 6 내지 30의 치환 또는 비치환된 페닐기; 또는 탄소수 2 내지 30의 치환 또는 비치환된 티오펜기이다.
본 명세서의 일 실시상태에 있어서, R9 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 알킬기로 치환된 페닐기; 또는 알킬기로 치환된 티오펜기이다.
본 명세서의 일 실시상태에 있어서, X1 내지 X6는 서로 같거나 상이하고, 각각 독립적으로 CRR', NR, O, SiRR', PR, S, GeRR', Se 또는 Te이다.
본 명세서의 일 실시상태에 있어서, X1 내지 X6는 서로 같거나 상이하고, 각각 독립적으로 CRR', O, 또는 S이다.
본 명세서의 일 실시상태에 있어서, X1 내지 X6는 각각 S이다.
본 명세서의 일 실시상태에 있어서, X10 내지 X23는 서로 같거나 상이하고, 각각 독립적으로 CRR', NR, O, SiRR', PR, S, GeRR', Se 또는 Te이다.
본 명세서의 일 실시상태에 있어서, X10 내지 X23은 서로 같거나 상이하고, 각각 독립적으로 NR, S, 또는 Se이다.
본 명세서의 일 실시상태에 있어서, X10 내지 X13은 각각 S이다.
본 명세서의 일 실시상태에 있어서, X14 및 X15는 각각 NR이다. 이때, R은 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, X14 및 X15는 각각 NR이다. 이때, R은 수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, X14 및 X15는 각각 NR이다. 이때, R은 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, X14 및 X15는 각각 NR이다. 이때, R은 탄소수 1 내지 30의 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, X14 및 X15는 각각 NR이다. 이때, R은 탄소수 1 내지 20의 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, X14 및 X15는 각각 NR이다. 이때, R은 탄소수 1 내지 10의 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, X14 및 X15는 각각 NR이다. 이때, R은 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 있어서, X16 내지 X19는 각각 S 또는 Se이다.
본 명세서의 일 실시상태에 있어서, X16 및 X17은 각각 S이다.
본 명세서의 일 실시상태에 있어서, X18 및 X19는 각각 S이다.
본 명세서의 일 실시상태에 있어서, X18 및 X19는 각각 Se이다.
본 명세서의 일 실시상태에 있어서, X20 내지 X23은 각각 S이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화합물 1 내지 화합물 5 중 어느 하나로 표시될 수 있다.
[화합물 1]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c184
[화합물 2]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c186
[화합물 3]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c188
[화합물 4]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c190
[화합물 5]
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c192
상기 화합물 1 내지 화합물 5에 있어서, n은 1 내지 10,000의 정수이다.
본 명세서의 일 실시상태는 게이트 전극, 소스 전극, 드레인 전극 및 상기 유기반도체층과 접하는 절연층을 포함하는 유기트랜지스터를 제공한다.
본 명세서의 일 실시상태에 따른 유기트랜지스터는 상기 화합물이 유기반도체층에 적용됨으로써 양극성(ambipolar) 특성을 나타낸다. 따라서, 본 명세서의 일 실시상태에 따른 유기트랜지스터는 n-type 특성과 p-type 특성을 모두 나타내며, 인버터의 구현이 가능하다.
일반적으로, 인버터의 경우 회로를 구성하기 위하여 전자와 정공이 각각 흐르는 두 개의 유기트랜지스터가 접합되어야 한다. 따라서, 인버터를 구현하기 위하여 N-type 특성과 P-type 특성을 나타내는 물질을 각각 코팅한 두 개의 유기트랜지스터가 구비되어야 한다. 반면, 본 명세서의 일 실시상태에 따르면, 상기 화합물이 N-type 특성과 P-type 특성을 모두 나타내는 양극성(ambipolar)을 가지기 때문에, 하나의 물질로도 인버터의 구현이 가능하다. 즉, 본 명세서의 일 실시상태에 따른 유기트랜지스터는 상기 화합물을 유기반도체층에 포함함으로써, 인버터 구현이 가능하다. 따라서, 인버터를 구현하기 위하여 하나의 물질만 코팅하면 되므로 일반적인 인버터의 제조방법에 비하여 공정이 간단하다.
본 명세서의 일 실시상태에 있어서, P-type 특성은 게이트 전극에 마이너스 전압을 가한 후 소스 전극과 드레인 전극 사이에서 흐르는 전류를 측정하여 확인한다. P-type 특성을 나타낼 경우, 게이트 전극에 마이너스 전압을 가하면, 유기반도체층 내에서 정공이 이동한다.
본 명세서의 일 실시상태에 있어서, N-type 특성은 게이트 전극에 플러스 전압을 가한 후 소스 전극과 드레인 전극 사이에서 흐르는 전류를 측정하여 확인한다. N-type 특성을 나타낼 경우, 게이트 전극에 플러스 전압을 가하면, 유기반도체층 내에서 전자가 이동한다.
본 명세서에 있어서, 상기 유기반도체층의 제조방법은 당 기술분야에서 이용되는 방법이면 특별히 한정되지 않으며, 진공 증착법, 스퍼터링, E-빔, 열증착, 스핀 코팅, 스크린 프린팅, 잉크젯 프린팅, 닥터 블레이드 또는 그라비아 프린팅법을 사용하여 제조될 수 있다.
본 명세서에 있어서, 유기트랜지스터는 하부 게이트(bottom gate) 구조 중 상부 접촉(top contact) 구조일 수 있다. 구체적으로, 기판 상에 게이트 전극 및 절연층이 순차적으로 형성되고 그 후에 절연층 상에 유기반도체층이 형성되며, 마지막으로 유기반도체층 상에 소스 전극 및 드레인 전극이 형성될 수 있다. 도 1에는 이에 따른 유기트랜지스터 구조를 나타내었다.
본 명세서에 있어서, 유기트랜지스터는 하부 게이트(bottom gate) 구조 중 하부 접촉(bottom contact) 구조일 수 있다. 구체적으로, 기판 상에 게이트 전극이 및 절연층이 순차적으로 형성되고 그 후에 절연층 상에 소스 전극 및 드레인 전극이 형성되며 마지막으로 소스 전극 및 드레인 전극 상에 유기반도체층이 형성될 수 있다. 도 2 및 도 3에는 이에 따른 유기트랜지스터 구조를 나타내었다.
본 명세서에 있어서, 유기트랜지스터는 상부 게이트(top gate) 구조일 수 있다. 구체적으로, 기판 상에 소스 전극 및 드레인 전극이 먼저 형성되고 그 후에 유기반도체층 및 절연층 게이트 전극이 순차적으로 형성될 수 있다. 도 4에는 이에 따른 유기트랜지스터 구조를 나타내었다.
본 명세서에 있어서, 상기 기판은 당 기술분야에서 사용되는 물질이 사용될 수 있다. 예컨대 유리, 폴리에틸렌나프탈레이트(Polyethylenenaphthalate:PEN), 폴리에틸렌테레프탈레이트(Polyethyleneterephthalate:PET), 폴리카보네이트(Polycarbonate:PC), 폴리비닐알콜(Polyvinylalcohol:PVP), 폴리아크릴레이트(Polyacrylate), 폴리이미드(Polyimide), 폴리노르보넨(Polynorbornene) 및 폴리에테르설폰(Polyethersulfone: PES)과 같은 플라스틱 기판 도는 유리기판이 사용될 수 있다.
또한, 소스 전극 및 드레인 전극과 유기반도체층 사이에 표면처리로서 HMDS(1,1,1,3,3,3-hexamethyldisilazane)나 OTS(octyltrichlorosilane), OTDS(octadecyltrichlorosilane)를 코팅하거나 하지 않을 수 있다.
본 명세서에 있어서, 게이트 전극, 소스 전극, 드레인 전극은 당 기술분야에서 사용되는 물질이면 특별히 한정되지 않는다. 예컨대, 전도성 물질이면 가능하다. 구체적으로, 금(Au), 은(Ag), 알루미늄(Al), 니켈(Ni), 크롬(Cr) 및 인듐틴산화물(ITO)로 이루어진 군으로부터 선택된 물질일 수 있다.
본 명세서에 있어서, 상기 소스 전극 및 드레인 전극은 각각 E-빔 또는 포토리소그래피 방법을 사용하여 제조될 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 절연층은 당 기술분야에서 사용되는 물질이면 특별히 한정되지 않는다. 예컨대, 절연율이 높고 게이트 전극위에 쉽게 형성할 수 있는 실리콘 디옥사이드(SiO2)를 사용할 수 있다.
본 명세서에 있어서, 상기 절연층의 제조방법은 당 기술분야에서 이용되는 방법이면 특별히 한정되지 않으며, 예컨대, E-빔 또는 포토리소그래피 방법을 사용하여 제조될 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 유기트랜지스터는 단층 또는 다층으로 형성될 수 있다.
본 명세서는 전술한 유기트랜지스터를 적용한 가스센서를 제공한다. 구체적으로, 상기 가스센서는 유기트랜지스터를 특정 가스에 노출시킴으로써, 유기트랜지스터의 유기반도체층이 가스물질과의 접촉을 통해 전기적 특성이 변하게 되는 특성을 이용한 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 게이트 전극, 소스 전극, 드레인 전극, 절연층, 및 상기 화학식 1의 단위를 포함하는 화합물을 포함하는 유기반도체층이 구비된다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 유기반도체층에 탄소 기반의 물질을 더 포함할 수 있다.
본 명세서에 있어서, 탄소 기반의 물질은 카본블랙, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire)로 이루어진 군에서 선택되는 1 종 이상을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 암모니아(NH3), 에틸렌(C2H4), 포름알데히드(HCHO), 불산(HF), 질소산화물, 황산화물 및/또는 에탄올을 감지한다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 가스센서를 각각의 가스의 포화 증기압에 노출시키고, 센서를 probe station에 연결하여 감도를 측정할 수 있으나, 이에 한정되지 않으며, 당업계에서 사용되는 트랜지스터의 전극과 연결되어 전류값을 측정할 수 있는 장치들로 가스센서의 특성 평가가 가능하다.
본 명세서에 있어서, “감지”는 상기 가스센서의 유기반도체층 표면과 기체의 상호작용에 의해 유기반도체층 표면의 전도 전자의 밀도가 변화하는 것을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 저농도의 가스 분위기하에서도 가스 검출이 가능하다. 구체적으로, 상기 가스센서는 10ppm 이하의 가스 분위기하에서도 가스 검출이 가능하다. 보다 구체적으로, 상기 가스센서는 암모니아(NH3), 에틸렌(C2H4), 포름알데히드(HCHO), 불산(HF), 질소산화물, 황산화물 및/또는 에탄올이 각각 10ppm 이하로 존재할 때도, 각각의 물질의 검출이 가능하다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 암모니아(NH3)에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상일 수 있다. 구체적으로, 상기 가스센서는 암모니아(NH3)에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상 90% 이하일 수 있다. 보다 구체적으로, 본 명세서의 일 실시상태에 있어서, 상기 가스센서는 10ppm의 암모니아 분위기 하에서, 암모니아(NH3)에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상 90% 이하일 수 있다.
본 명세서에 있어서, “감도가 공기 대비 0.1ppm 이상”은 공기 중에 0.1ppm 이상이 존재하면 감지 가능하다는 것을 의미할 수 있다. 예컨대, “황산화물에 대한 감도가 공기 대비 0.1ppm 이상”은 공기 중에 황산화물이 0.1ppm만 존재하여도 감지 가능한 것을 의미할 수 있다.
본 명세서에 있어서, 1%는 10,000ppm이다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 황산화물에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상일 수 있다. 구체적으로, 상기 가스센서는 황산화물에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상 90% 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 에틸렌(C2H4)에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상일 수 있다. 구체적으로, 상기 가스센서는 에틸렌(C2H4)에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상 90% 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 에탄올에 대한 감도(sensitivity)가 공기(air) 대비 0 초과 20% 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 포름알데히드(HCHO) 에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상일 수 있다. 구체적으로, 상기 가스센서는 포름알데히드(HCHO) 에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상 90% 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 불산(HF)에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상일 수 있다. 구체적으로, 상기 가스센서는 불산(HF)에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상 90% 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 가스센서는 질소산화물에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상일 수 있다. 구체적으로, 상기 가스센서는 질소산화물에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상 90% 이하일 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
제조예 1. 화합물 1의 제조
(1) 화합물 1-b의 제조
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c230
250mL의 플라스크에 톨루엔(toluene) 50mL, 화합물 1-a(2.0g, 1.4868mmol) 및 화합물 A(1.067g, 3.4196mmol)를 넣고 가열하며 교반하였다. 이 때 화합물 1-a는 Yun-Xiang Xu et al, Adv.Mater. 2012, 24, 6356-6361 에 기재된 합성 방법과 동일한 방법으로 제조하여 첨가하였다. 그 후, 테트라키스(트리페닐포스핀)팔라듐(0) (Pd(PPh3)4) (50mg, 3mol%)를 넣고 100℃에서 16시간 동안 교반하였다. 반응 후, 온도를 상온으로 하여 고체가 석출되면 필터를 통하여 거른 후 메틸클로라이드(methyl chloride, MC)에 녹여 실리카 컬럼을 통하여 정제하였다.
도 5는 화합물 1-a의 NMR 스펙트럼을 나타낸 도이다.
도 6은 화합물 1-a의 MS 스펙트럼을 나타낸 도이다.
도 7은 화합물 1-b의 MS 스펙트럼을 나타낸 도이다.
도 8은 화합물 1-b의 HPLC 측정결과를 나타낸 도이다.
(2) 화합물 1의 제조
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c237
마이크로 웨이브 리엑터 바이알(microwave reactor vial)에 클로로벤젠(chlorobenzene) 18ml, 화합물 1-b (0.45g, 0.3044mmol), 화합물 B (0.2753g, 0.3044mmol), 트리스(디벤질리덴아세톤)디팔라듐(0) ((tris(dibenzylideneacetone)dipalladium(0), Pd2(dba)3) 10mg 및 트라이-(오-톨릴)포스핀 (tri-(o-tolyl)phosphine) 28mg을 넣고 170℃ 조건하에서 1시간 동안 반응 시켰다. 혼합물을 실온까지 냉각하여 메탄올에 부은 후 고체를 걸러 아세톤, 헥산, 메틸렌클로라이드, 클로로폼, 클로로벤젠에 속슬렛 추출(Soxhlet extraction)한 다음, 클로로벤젠 부분을 다시 메탄올에 침전시켜 고체를 걸러내었다. (수율: 42%, 수 평균 분자량: 83,805g/mol, 중량 평균 분자량: 86,677g/mol)
도 9는 화합물 1의 UV 스펙트럼을 나타낸 도이다.
도 9에서 (a)는 화합물 1의 용액상태에서의 UV 데이터이며, (b)는 필름상태에서의 화합물 1를 측정한 UV 데이터이다.
도 10은 화합물 1의 CV 측정 결과를 나타낸 도이다.
제조예 2. 화합물 2의 제조
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c243
마이크로 웨이브 리엑터 바이알(microwave reactor vial)에 클로로벤젠(chlorobenzene) 18ml, 화합물 1-b (0.45g, 0.3044mmol), 화합물 C (0.2753g, 0.3044mmol), 트리스(디벤질리덴아세톤)디팔라듐(0) ((tris(dibenzylideneacetone)dipalladium(0), Pd2(dba)3) 10mg 및 트라이-(오-톨릴)포스핀(tri-(o-tolyl)phosphine, 28mg)을 넣고 170℃ 조건 하에서 1시간 동안 반응 시켰다. 혼합물을 실온까지 냉각하여 메탄올에 부은 후 고체를 걸러 아세톤, 헥산, 메틸렌클로라이드, 클로로폼, 클로로벤젠에 속슬렛 추출(soxhlet extraction)한 다음, 클로로벤젠 부분을 다시 메탄올에 침전시켜 고체를 걸러내었다. (수율: 40%, 수 평균 분자량: 57,914g/mol, 중량 평균 분자량: 67.920g/mol)
도 11은 화합물 2의 UV 스펙트럼을 나타낸 도이다.
도 11에서 (a)는 화합물 2의 용액상태에서의 UV 데이터이며, (b)는 필름상태에서의 화합물 2를 측정한 UV 데이터이다.
도 12는 화합물 2의 CV 측정 결과를 나타낸 도이다.
제조예 3. 화합물 3의 제조
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c249
마이크로 웨이브 리엑터 바이알(microwave reactor vial)에 클로로벤젠(chlorobenzene) 18ml, 화합물 1-b (0.30g, 0.2029mmol), 화합물 D (0.1454g, 0.2029mmol), 트리스(디벤질리덴아세톤)디팔라듐(0) ((tris(dibenzylideneacetone)dipalladium(0), Pd2(dba)3) 8mg 및 트라이-(오-톨릴)포스핀 (tri-(o-tolyl)phosphine) 18mg을 넣고 170℃ 조건 하에서 1시간 동안 반응 시켰다. 혼합물을 실온까지 냉각하여 메탄올에 부은 후 고체를 걸러 아세톤, 헥산, 메틸렌클로라이드, 클로로폼, 클로로벤젠에 속슬렛 추출(soxhlet extraction)한 다음, 클로로벤젠 부분을 다시 메탄올에 침전시켜 고체를 걸러내었다(수율: 20%, 수 평균 분자량: 47,999g/mol, 중량 평균 분자량: 60.451g/mol)
도 13은 화합물 3의 UV 스펙트럼을 나타낸 도이다.
도 13에서 (a)는 화합물 3의 용액상태에서의 UV 데이터이며, (b)는 필름상태에서의 화합물 3을 측정한 UV 데이터이다.
도 14는 화합물 3의 CV 측정 결과를 나타낸 도이다.
제조예 4. 화합물 4의 제조
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c255
마이크로 웨이브 리엑터 바이알(microwave reactor vial)에 클로로벤젠(chlorobenzene) 18ml, 화합물 1-b (0.50g, 0.3382mmol), 화합물 E (0.4549g, 0.3382mmol), 트리스(디벤질리덴아세톤)디팔라듐(0) ((tris(dibenzylideneacetone)dipalladium(0), Pd2(dba)3) 10mg 및 트라이-(오-톨릴)포스핀(tri-(o-tolyl)phosphine, 28mg)을 넣고 170℃ 조건 하에서 1시간 동안 반응 시켰다. 혼합물을 실온까지 냉각하여 메탄올에 부은 후 고체를 걸러 아세톤, 헥산, 메틸렌클로라이드, 클로로폼, 클로로벤젠에 속슬렛 추출(soxhlet extraction)한 다음, 클로로벤젠 부분을 다시 메탄올에 침전시켜 고체를 걸러내었다. (수율: 40%, 수 평균 분자량: 61,851g/mol, 중량 평균 분자량: 70.465g/mol)
도 15는 화합물 4의 DSC 측정 결과를 나타낸 도이다.
도 16은 화합물 4의 UV 스펙트럼을 나타낸 도이다.
도 16에서 (a)는 화합물 4의 용액상태에서의 UV 데이터이며, (b)는 필름상태에서의 화합물 4를, (c)는 150℃에서 열처리하여 필름으로 형성한 화합물 4를, (d)는 180℃에서 열처리하여 필름으로 형성한 화합물 4 측정한 UV 데이터이다.
도 17은 화합물 4의 CV 측정 결과를 나타낸 도이다.
제조예 5. 화합물 5의 제조
(1) 화합물 5-b의 제조
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c263
250mL의 플라스크에 톨루엔(toluene) 50mL, 화합물 5-a(2.02g, 1.48mmol) 및 화합물 A (1.063g, 3.41mmol)를 넣고 가열하며 교반하였다. 그 후, 테트라키스(트리페닐포스핀)팔라듐(0) (Pd(PPh3)4) (50mg, 3mol%)를 넣고 100℃에서 16시간 동안 교반하였다. 반응 후, 온도를 상온으로 하여 고체가 석출되면 필터를 통하여 거른 후 메틸클로라이드(methyl chloride, MC)에 녹여 실리카 컬럼을 통하여 정제하였다.
도 18은 화합물 5-b의 MS 스펙트럼을 나타낸 도이다.
(2) 화합물 5의 제조
[규칙 제91조에 의한 정정 07.11.2017] 
Figure WO-DOC-FIGURE-c267
마이크로 웨이브 리엑터 바이알(microwave reactor vial)에 클로로벤젠(chlorobenzene) 18ml, 화합물 F (0.50g, 0.33mmol), 화합물 5-b (0.4519g, 0.33mmol), 트리스(디벤질리덴아세톤)디팔라듐(0) ((tris(dibenzylideneacetone)dipalladium(0), 테트라키스(트리페닐포스핀)팔라듐(0) (Pd(PPh3)4) (50mg, 3mol%)을 넣고 170℃ 조건 하에서 1시간 동안 반응 시켰다. 혼합물을 실온까지 냉각하여 메탄올에 부은 후 고체를 걸러 아세톤, 헥산, 메틸렌클로라이드, 클로로폼, 클로로벤젠에 속슬렛 추출(soxhlet extraction)한 다음, 클로로벤젠 부분을 다시 메탄올에 침전시켜 고체를 걸러내었다. (수율: 62%, 수 평균 분자량: 75,213g/mol, 중량 평균 분자량: 82,032g/mol)
실시예 1.
증류수(DI water), 아세톤(acetone), 이소프로필알코올(IPA) 순으로 각각 10분씩 세척된 유리 기판 위에 포토리쏘그라피를 이용하여 소스 전극과 드레인 전극으로 13nm Au/3nm Ni을 열 증착 공정을 통해 형성하였다. 형성된 소스 전극과 드레인 전극 사이의 채널 길이는 10μm, 너비는 1mm로 형성하였다. 전극이 형성된 기판을 증류수(DI water), 아세톤(acetone), 이소프로필알코올(IPA) 순으로 각각 10분씩 세척한 뒤 잘 건조하였다. 건조된 기판에 클로로벤젠 용매에 녹아있는 화합물 1을 스핀코팅하고 상온에서 건조하였다. 이후 절연층으로 폴리메틸메타크릴레이트(PMMA)를 30mg/mL 농도로 메틸에티케톤(methyl ethyl ketone)에 녹여 화합물 1 위에 스핀코팅하고 80℃에서 2시간 건조하였다. 이후 게이트 전극으로 알루미늄을 50nm 두께로 열증착하여 유기트랜지스터를 제조하였다.
도 19는 실시예 1에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
실시예 2.
상기 실시예 1의 제조방법 중 화합물 1이 포함된 필름을 150℃에서 열처리한 것을 제외하고는 실시예 1과 동일한 방법으로 유기트랜지스터를 제조하였다.
도 20은 실시예 2에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
실시예 3.
상기 실시예 2의 제조방법 중 절연층으로 폴리비닐리덴플루오라이드-트리플루오르에틸렌(P(VDF-TrEE))을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 유기트랜지스터를 제조하였다.
실시예 4.
상기 실시예 1의 제조방법 중 화합물 1 대신 화합물 2를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기트랜지스터를 제조하였다.
도 21은 실시예 4에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
실시예 5.
상기 실시예 2의 제조방법 중 화합물 1 대신 화합물 2를 사용한 것을 제외하고는 실시예 2과 동일한 방법으로 유기트랜지스터를 제조하였다.
도 22는 실시예 5에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
실시예 6.
상기 실시예 3의 제조방법 중 화합물 1 대신 화합물 2를 사용한 것을 제외하고는 실시예 3과 동일한 방법으로 유기트랜지스터를 제조하였다.
실시예 7.
상기 실시예 1의 제조방법 중 화합물 1 대신 화합물 3을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기트랜지스터를 제조하였다.
도 23은 실시예 7에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
실시예 8.
상기 실시예 2의 제조방법 중 화합물 1 대신 화합물 3을 사용한 것을 제외하고는 실시예 2과 동일한 방법으로 유기트랜지스터를 제조하였다.
실시예 9.
상기 실시예 3의 제조방법 중 화합물 1 대신 화합물 3을 사용한 것을 제외하고는 실시예 3과 동일한 방법으로 유기트랜지스터를 제조하였다.
도 24는 실시예 9에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
실시예 10.
상기 실시예 2의 제조방법 중 화합물 1 대신 화합물 4를 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 유기트랜지스터를 제조하였다.
도 25는 실시예 10에서 제조된 유기트랜지스터의 성능측정 결과를 나타낸 도이다.
실시예 11.
상기 실시예 2의 제조방법 중 화합물 1 대신 화합물 5를 사용한 것을 제외하고는 실시예 2과 동일한 방법으로 유기트랜지스터를 제조하였다.
실시예 12.
증류수(DI water), 아세톤(acetone), 이소프로필알코올(IPA) 순으로 각각 10분씩 세척된 유리 기판 위에 포토리쏘그라피를 이용하여 소스 전극과 드레인 전극으로 13nm Au/3nm Ni을 열 증착 공정을 통해 형성하였다. 형성된 소스 전극과 드레인 전극 사이의 채널 길이는 10μm, 너비는 1mm로 형성하였다. 전극이 형성된 기판을 증류수(DI water), 아세톤(acetone), 이소프로필알코올(IPA) 순으로 각각 10분씩 세척한 뒤 잘 건조하였다. 건조된 기판에 클로로벤젠 용매에 녹아있는 화합물 3을 스핀코팅하고 상온에서 건조하였다. 이후 절연층으로 폴리메틸메타크릴레이트(PMMA)를 30mg/mL 농도로 메틸에틸케톤(methyl ethyl ketone)에 녹여 화합물 3 위에 스핀코팅하고 80℃에서 2시간 건조하였다. 이후 게이트 전극으로 알루미늄을 50nm 두께로 열증착하여 인버터를 제조하였다.
도 26 (a) 및 (b)는 실시예 12에서 제조된 인버터의 성능측정 결과를 나타낸 도이다.
표 1은 본 명세서의 일 실시상태에 따른 유기트랜지스터의 정공 이동도의 특성을 나타내었다.
화합물 열처리 온도(℃) 절연층 물질 평균 정공 이동도(cm2/Vs) Threshold voltage(V) on/off
실시예 1 화합물 1 25 PMMA 0.03 -34.31 3.58x103
실시예 2 화합물 1 150 PMMA 0.0283 -37.54 1.65x104
실시예 3 화합물 1 150 P(VDF-TrEE) 0.113 -13.34 5.58x103
실시예 4 화합물 2 25 PMMA 0.0227 -46.33 1.64x103
실시예 5 화합물 2 150 PMMA 0.0290 -33.45 2.43x103
실시예 6 화합물 2 150 P(VDF-TrEE) 0.109 -10.28 2.23x103
실시예 7 화합물 3 25 PMMA 0.0068 -11.22 1.15x10
실시예 8 화합물 3 150 PMMA 0.0072 -16.18 5.26
실시예 9 화합물 3 150 P(VDF-TrEE) 0.094 -19.62 4.35x10
실시예 10 화합물 4 150 PMMA 0.057 -31.93 1.83x103
실시예 11 화합물 5 150 PMMA 0.126 -34.26 6.72x102
표 2에는 본 명세서의 일 실시상태에 따른 유기트랜지스터의 전자 이동도 특성을 나타내었다.
화합물 열처리 온도(℃) 절연층 물질 평균 전자 이동도(cm2/Vs) Threshold voltage(V) on/off
실시예 1 화합물 1 25 PMMA 0.0006 54.15 2.49x10
실시예 2 화합물 1 150 PMMA 0.0004 62.08 1.85x10
실시예 3 화합물 1 150 P(VDF-TrEE) - - -
실시예 4 화합물 2 25 PMMA 0.0005 48.22 1.28x10
실시예 5 화합물 2 150 PMMA 0.001 61.10 3.57x10
실시예 6 화합물 2 150 P(VDF-TrEE) - - -
실시예 7 화합물 3 25 PMMA 0.013 30.00 9.95
실시예 8 화합물 3 150 PMMA 0.015 19.71 8.24
실시예 9 화합물 3 150 P(VDF-TrEE) - - -
실시예 10 화합물 4 150 PMMA - - -
실시예 11 화합물 5 150 PMMA - - -
상기 표 1 및 표 2에 있어서, on/off 값이 높을수록, 유기트랜지스터가 오작동 없이 잘 구동되며, threshold 전압이 낮을수록 구동 전압을 낮출 수 있다.
표 1 및 표 2를 통해, 본 명세서의 실시예에 따른 화합물 1 내지 5가 양극성(ambipolar) 특성을 나타냄을 확인할 수 있다. 특히, 화합물 3은 정공과 전자의 이동도가 유사하여 인버터의 제작에 유리한 것을 알 수 있다.
실시예 13.
증류수(DI water), 아세톤(acetone), 이소프로필알코올(IPA) 순으로 각각 10분씩 세척된 유리 기판 위에 포토리쏘그라피를 이용하여 소스 전극과 드레인 전극으로 13nm Au/3nm Ni을 열 증착 공정을 통해 형성하였다. 형성된 소스 전극과 드레인 전극 사이의 채널 길이는 10μm, 너비는 1mm로 형성하였다. 전극이 형성된 기판을 증류수(DI water), 아세톤(acetone), 이소프로필알코올(IPA) 순으로 각각 10분씩 세척한 뒤 잘 건조하였다. 건조된 기판에 클로로벤젠 용매에 녹아있는 화합물 2를 스핀코팅하고 상온에서 건조하였다. 이후 절연층으로 폴리메틸메타크릴레이트(PMMA)를 30mg/mL 농도로 메틸에티케톤(methyl ethyl ketone)에 녹여 화합물 1 위에 스핀코팅하고 80℃에서 2시간 건조하였다. 이후 게이트 전극으로 알루미늄을 50nm 두께로 열증착하여 유기트랜지스터 기반의 가스센서를 제조하였다. 제조된 가스센서를 가스챔버 내 위치하고, 메스 플로우 컨트롤러(mass flow controller)를 이용하여 검출하고자 하는 특정 가스(암모니아)와 질소를 번갈아 흘려주면서, Keithley 4200 semiconductor characterization system과 연결된 probe station을 이용하여 가스센서 내의 전류 변화를 측정하였다.
도 27은 실시예 13에서 제조된 가스센서의 성능측정 결과를 나타낸 도이다.
실시예 14.
상기 실시예 13의 제조방법 중 화합물 2 대신 화합물 1을 사용한 것을 제외하고는 실시예 13과 동일한 방법으로 가스센서를 제조하였다.
도 28은 실시예 14에서 제조된 가스센서의 성능측정 결과를 나타낸 도이다. 이를 통해 본 명세서의 일 실시상태에서 제조된 가스센서가 암모니아 가스 센서로 구동하는 것을 확인할 수 있다.

Claims (13)

  1. [규칙 제91조에 의한 정정 07.11.2017] 
    하기 화학식 1로 표시되는 화합물을 포함하는 유기반도체층을 포함하는 유기트랜지스터:
    [화학식 1]
    Figure WO-DOC-FIGURE-cc11

    상기 화학식 1에 있어서,
    X1 내지 X6는 서로 같거나 상이하고, 각각 독립적으로 CRR', NR, O, SiRR', PR, S, GeRR', Se 또는 Te이며,
    R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 또는 치환 또는 비치환된 알킬기이며,
    a 및 b는 각각 1 내지 4의 정수이고,
    a 및 b가 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하며,
    n은 1 내지 10,000의 정수이고,
    [A1]은 하기 구조 중 하나 또는 둘 이상의 조합을 포함하며,
    Figure WO-DOC-FIGURE-cc12

    상기 구조에 있어서,
    X10 내지 X23은 서로 같거나 상이하고, 각각 독립적으로 CRR', NR, O, SiRR', PR, S, GeRR', Se 또는 Te이며,
    c 및 d는 각각 1 또는 2이고,
    c 및 d가 각각 2일 경우, 괄호 내의 구조는 서로 같거나 상이하며,
    x 및 y는 각각 1 내지 5의 정수이고,
    x 및 y가 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하며,
    R3 내지 R12, R101 내지 R110, R 및 R'은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 실록산기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
    Figure PCTKR2017010170-appb-I000035
    는 다른 치환기 또는 결합부에 결합되는 부위이다.
  2. 청구항 1에 있어서,
    상기 R5 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 실록산기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기인 것인 유기트랜지스터.
  3. 청구항 1에 있어서,
    상기 R5 내지 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기인 것인 유기트랜지스터.
  4. 청구항 1에 있어서,
    상기 X1 내지 X6는 서로 같거나 상이하고, 각각 독립적으로 CRR', O, 또는 S인 것인 유기트랜지스터.
  5. 청구항 1에 있어서,
    상기 X10 내지 X23은 서로 같거나 상이하고, 각각 독립적으로 NR, S, 또는 Se인 것인 유기트랜지스터.
  6. [규칙 제91조에 의한 정정 07.11.2017] 
    청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시되는 것인 유기트랜지스터:
    [화학식 1-1]
    Figure WO-DOC-FIGURE-cc61

    [화학식 1-2]
    Figure WO-DOC-FIGURE-cc62

    상기 화학식 1-1 및 화학식 1-2에 있어서,
    R1 내지 R8, [A1], X1 내지 X6, a, b 및 n의 정의는 상기 화학식 1과 동일하고,
    e, f, g 및 h는 각각 1 내지 5의 정수이며,
    e, f, g 및 h가 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하고,
    i, j, k 및 l은 각각 1 내지 3의 정수이며,
    i, j, k 및 l이 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하고,
    R21 내지 R28은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
  7. [규칙 제91조에 의한 정정 07.11.2017] 
    청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 1-3 내지 화학식 1-8 중 어느 하나로 표시되는 것인 유기트랜지스터:
    [화학식 1-3]
    Figure WO-DOC-FIGURE-cc71

    [화학식 1-4]
    Figure WO-DOC-FIGURE-cc72

    [화학식 1-5]
    Figure WO-DOC-FIGURE-cc73

    [화학식 1-6]
    Figure WO-DOC-FIGURE-cc74

    [화학식 1-7]
    Figure WO-DOC-FIGURE-cc75

    [화학식 1-8]
    Figure WO-DOC-FIGURE-cc76

    상기 화학식 1-3 내지 화학식 1-8에 있어서,
    R1 내지 R8, R103 내지 R110, X1 내지 X6, X12 내지 X23, a, b, c, d, x, y 및 n의 정의는 상기 화학식 1과 동일하고,
    e, f, g 및 h는 각각 1 내지 5의 정수이며,
    e, f, g 및 h가 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하고,
    i, j, k 및 l은 각각 1 내지 3의 정수이며,
    i, j, k 및 l이 각각 2 이상일 경우, 괄호 내의 구조는 서로 같거나 상이하고,
    R21 내지 R28은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미드기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴포스핀기; 치환 또는 비치환된 포스핀옥사이드기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
  8. [규칙 제91조에 의한 정정 07.11.2017] 
    청구항 1에 있어서,
    상기 화학식 1은 하기 화합물 1 내지 화합물 5 중 어느 하나로 표시되는 것인 유기트랜지스터:
    [화합물 1]
    Figure WO-DOC-FIGURE-cc81

    [화합물 2]
    Figure WO-DOC-FIGURE-cc82

    [화합물 3]
    Figure WO-DOC-FIGURE-cc83

    [화합물 4]
    Figure WO-DOC-FIGURE-cc84

    [화합물 5]
    Figure WO-DOC-FIGURE-cc85

    상기 화합물 1 내지 화합물 5에 있어서,
    n은 1 내지 10,000의 정수이다.
  9. 청구항 1에 있어서,
    상기 유기트랜지스터는 게이트 전극, 소스 전극, 드레인 전극 및 상기 유기반도체층과 접하는 절연층을 포함하는 유기트랜지스터.
  10. 청구항 1 내지 9 중 어느 한 항에 따른 유기트랜지스터를 적용한 가스센서.
  11. 청구항 10에 있어서,
    상기 유기반도체층이 탄소 기반의 물질을 더 포함하는 것인 가스센서.
  12. 청구항 10에 있어서,
    상기 가스센서는 암모니아(NH3), 에틸렌(C2H4), 포름알데히드(HCHO), 불산(HF), 질소산화물, 황산화물 또는 에탄올을 감지하는 것인 가스센서.
  13. 청구항 10에 있어서,
    상기 가스센서는 암모니아에 대한 감도(sensitivity)가 공기(air) 대비 0.1ppm 이상 90% 이하인 것인 가스센서.
PCT/KR2017/010170 2016-10-13 2017-09-18 유기트랜지스터 및 가스센서 WO2018070679A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0132940 2016-10-13
KR20160132940 2016-10-13
KR10-2017-0117521 2017-09-14
KR1020170117521A KR102054047B1 (ko) 2016-10-13 2017-09-14 유기트랜지스터 및 가스센서

Publications (1)

Publication Number Publication Date
WO2018070679A1 true WO2018070679A1 (ko) 2018-04-19

Family

ID=61906144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010170 WO2018070679A1 (ko) 2016-10-13 2017-09-18 유기트랜지스터 및 가스센서

Country Status (1)

Country Link
WO (1) WO2018070679A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090107874A (ko) * 2008-04-10 2009-10-14 주식회사 잉크테크 광전자 소자용 잉크 조성물
US20150155494A1 (en) * 2012-07-13 2015-06-04 Merck Patent Gmbh Organic electronic device comprising an organic semiconductors formulation
KR20150142834A (ko) * 2014-06-12 2015-12-23 주식회사 엘지화학 공중합체 및 이를 포함하는 유기 태양 전지
JP2016065746A (ja) * 2014-09-24 2016-04-28 富士フイルム株式会社 ガスセンサ、トランジスタ
KR20160048137A (ko) * 2013-10-04 2016-05-03 아사히 가세이 가부시키가이샤 태양 전지 및 그 제조 방법, 반도체 소자 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090107874A (ko) * 2008-04-10 2009-10-14 주식회사 잉크테크 광전자 소자용 잉크 조성물
US20150155494A1 (en) * 2012-07-13 2015-06-04 Merck Patent Gmbh Organic electronic device comprising an organic semiconductors formulation
KR20160048137A (ko) * 2013-10-04 2016-05-03 아사히 가세이 가부시키가이샤 태양 전지 및 그 제조 방법, 반도체 소자 및 그 제조 방법
KR20150142834A (ko) * 2014-06-12 2015-12-23 주식회사 엘지화학 공중합체 및 이를 포함하는 유기 태양 전지
JP2016065746A (ja) * 2014-09-24 2016-04-28 富士フイルム株式会社 ガスセンサ、トランジスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPOKU, H.: "Conjugated Side Chain Tuning Effect of Indacenodithieno[3,2-b]thiophene and Fluoro-Benzothiadiazole-Based Regioregular Copolymers for High-Performance Organic Field-Effect Transistors", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 218, no. 20, 1700225, 19 July 2017 (2017-07-19), pages 1 - 8, XP055603763, DOI: 10.1002/macp.201700225 *

Similar Documents

Publication Publication Date Title
WO2015008939A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2018216880A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2015142067A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2011068346A2 (ko) 유기금속염료 및 이를 이용한 광전소자, 염료감응 태양전지
WO2016171406A2 (ko) 유기 발광 소자
WO2013119022A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2017204594A1 (ko) 유기 발광 소자
WO2016039501A1 (ko) 유기 발광 소자
WO2016182388A2 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2016133368A2 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2013191428A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2018236100A1 (ko) 유기 태양 전지
WO2017213379A1 (ko) 유기트랜지스터 및 가스센서
WO2017086713A1 (ko) 화합물 및 이를 포함하는 유기전자소자
WO2017188680A1 (ko) 유기 발광 소자
WO2014181986A1 (ko) 플러렌 유도체를 포함하는 유기 전자 소자
WO2019066305A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2019083235A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2016175573A2 (ko) 화합물 및 이를 포함하는 유기 태양 전지
WO2021080254A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018070679A1 (ko) 유기트랜지스터 및 가스센서
WO2020231242A1 (ko) 유기 발광 소자
WO2015099453A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2023177186A1 (ko) 클릭반응을 이용한 cnt 필름, 이를 이용한 cnt 기반 바이오 센서 및 이의 제조방법
WO2019054655A2 (ko) 유기트랜지스터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859831

Country of ref document: EP

Kind code of ref document: A1