WO2018070529A1 - ビスマス系ガラス、ビスマス系ガラスの製造方法及び封着材料 - Google Patents

ビスマス系ガラス、ビスマス系ガラスの製造方法及び封着材料 Download PDF

Info

Publication number
WO2018070529A1
WO2018070529A1 PCT/JP2017/037257 JP2017037257W WO2018070529A1 WO 2018070529 A1 WO2018070529 A1 WO 2018070529A1 JP 2017037257 W JP2017037257 W JP 2017037257W WO 2018070529 A1 WO2018070529 A1 WO 2018070529A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
bismuth
laser
sealing
content
Prior art date
Application number
PCT/JP2017/037257
Other languages
English (en)
French (fr)
Inventor
将行 廣瀬
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016201762A external-priority patent/JP6840982B2/ja
Priority claimed from JP2016201763A external-priority patent/JP6768194B2/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201780041191.8A priority Critical patent/CN109415244B/zh
Priority to KR1020187031887A priority patent/KR102427006B1/ko
Publication of WO2018070529A1 publication Critical patent/WO2018070529A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Definitions

  • the present invention relates to a bismuth-based glass, a bismuth-based glass manufacturing method and a sealing material, and in particular, a bismuth-based glass suitable for laser beam sealing (hereinafter referred to as laser sealing), a bismuth-based glass manufacturing method, and sealing. Regarding materials.
  • organic EL displays have attracted attention as flat display panels.
  • an organic resin adhesive having low-temperature curability has been used as an adhesive material for organic EL displays.
  • organic resin adhesives cannot completely block the ingress of gas and moisture, so active elements with low water resistance and organic light emitting layers are likely to deteriorate, and the display characteristics of organic EL displays deteriorate over time. Has occurred.
  • the sealing material containing glass powder is less permeable to gas and moisture than the organic resin adhesive, the airtightness inside the organic EL display can be secured.
  • the glass powder has a higher softening temperature than the organic resin adhesive, there is a possibility that the active element and the organic light emitting layer are thermally deteriorated at the time of sealing. Under such circumstances, laser sealing has attracted attention. According to laser sealing, it is possible to locally heat only the part to be sealed, and seal an object to be sealed such as an alkali-free glass substrate without causing thermal degradation of the active element or the organic light emitting layer. can do.
  • LTCC low-temperature fired substrate
  • the substrate and lid (lid) are used.
  • an airtight package on which an LED element that emits light in the ultraviolet wavelength region is mounted it becomes easy to maintain light emission characteristics in the ultraviolet wavelength region by laser sealing. Furthermore, thermal degradation of the LED element can be prevented by laser sealing.
  • the sealing material used for laser sealing generally includes glass powder, refractory filler powder, and laser absorber.
  • the glass powder is a component that softens and flows during laser sealing, reacts with an object to be sealed, and ensures sealing strength.
  • the refractory filler powder is a material that acts as an aggregate and reduces the coefficient of thermal expansion, and does not soften and flow during laser sealing.
  • the laser absorbing material is a material for absorbing laser light at the time of laser sealing and converting it into thermal energy, and does not soften and flow at the time of laser sealing.
  • lead borate glass has been used as the glass powder, but in recent years, lead-free glass has been used from an environmental point of view.
  • bismuth-based glass is promising as a lead-free glass because it has a low melting point and excellent softening fluidity.
  • the main component Bi 2 O 3 has almost no laser absorption capability, and therefore the laser absorption capability tends to be insufficient. For this reason, in order to supplement the laser absorption capability of bismuth-based glass, the content of the laser absorber must be increased.
  • the laser absorbing material dissolves into the bismuth-based glass during laser sealing, thereby devitrifying the bismuth-based glass, and the desired softening fluidity cannot be secured.
  • the thermal expansion coefficient of the sealing material is unduly increased, and cracks may occur in the material to be sealed and the sealing material layer during laser sealing. Will occur, and airtight defects are likely to occur.
  • the present invention has been made in view of the above circumstances, and its technical problem is to create a bismuth-based glass that can achieve both softening fluidity and laser absorption capability at a high level and a sealing material using the same. That is.
  • the bismuth-based glass of the present invention has a glass composition of mol% in terms of the following oxides: Bi 2 O 3 25 to 45%, B 2 O 3 20 to 35%, Bi 2 O 3 + B 2 O 3 + BaO + ZnO + CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO 90-100% (however, not including 90%), containing a molar ratio (Bi 2 O 3 + B 2 O 3 + BaO + ZnO) / ( CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO) is 2.0 to 3.5.
  • Bi 2 O 3 + B 2 O 3 + BaO + ZnO + CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO means Bi 2 O 3 , B 2 O 3 , BaO, ZnO, CuO, It refers to the total amount of MnO, Fe 2 O 3 , TiO 2 , V 2 O 5 , Cr 2 O 3 , Co 3 O 4 and NiO.
  • (Bi 2 O 3 + B 2 O 3 + BaO + ZnO) / (CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO)” means Bi 2 O 3 , B 2 O 3 , BaO and ZnO Is the value obtained by dividing the total amount of CuO, MnO, Fe 2 O 3 , TiO 2 , V 2 O 5 , Cr 2 O 3 , Co 3 O 4 and NiO.
  • the bismuth-based glass of the present invention strictly regulates the ratio of non-colored components and colored components. Specifically, the bismuth glass of the present invention has a molar ratio of (Bi 2 O 3 + B 2 O 3 + BaO + ZnO) / (CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO). Restricted to 0 to 3.5. If the molar ratio (Bi 2 O 3 + B 2 O 3 + BaO + ZnO) / (CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO) is too small, it becomes thermally unstable and the laser is sealed.
  • the bismuth glass of the present invention preferably has a ZnO content of 1 to 20 mol%.
  • the bismuth-based glass of the present invention preferably has a MnO content of 3 to 25 mol%.
  • the bismuth-based glass of the present invention does not substantially contain PbO.
  • substantially does not contain PbO refers to a case where the content of PbO in the glass composition is less than 0.1% by mass.
  • the bismuth-based glass manufacturing method of the present invention is the above-described bismuth-based glass manufacturing method, wherein a glass batch containing any one of a nitrate raw material, a sulfate raw material, a dioxide raw material, and a peroxide raw material is used. It is preferable to produce bismuth glass by melting and molding.
  • the dioxide raw material is a manganese dioxide raw material.
  • the peroxide raw material is preferably a permanganate raw material.
  • the sealing material of the present invention is a sealing material containing a glass powder made of bismuth-based glass and a refractory filler powder, wherein the glass powder content is 50 to 95% by volume, and the refractory filler powder is contained.
  • the amount is preferably 1 to 40% by volume, and the bismuth glass is preferably the above bismuth glass.
  • the above refractory filler powder comprises cordierite, willemite, alumina, zirconium phosphate compound, zircon, zirconia, tin oxide, quartz glass, ⁇ -eucryptite, spodumene. It is preferable that it is 1 type, or 2 or more types chosen from these.
  • the sealing material of the present invention preferably has a laser absorber content of 5% by volume or less.
  • the sealing material of the present invention is preferably used for laser sealing.
  • the light source of the laser beam used for laser sealing is not particularly limited.
  • a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, an infrared laser, and the like are preferable in terms of easy handling.
  • the emission center wavelength of the laser beam is preferably 500 to 1600 nm, particularly preferably 750 to 1300 nm, in order for the sealing material to absorb the laser beam accurately.
  • the bismuth-based glass of the present invention has a glass composition of mol% in terms of the following oxides: Bi 2 O 3 25 to 45%, B 2 O 3 20 to 35%, Bi 2 O 3 + B 2 O 3 + BaO + ZnO + CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO 90-100% (excluding 90%), molar ratio (Bi 2 O 3 + B 2 O 3 + BaO + ZnO) / (CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO) is 2.0 to 3.5.
  • the reason for limiting the glass composition range of bismuth-based glass as described above is shown below.
  • the content of Bi 2 O 3 + B 2 O 3 + BaO + ZnO + CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO is more than 90%, preferably 93% or more, 95% or more, 97% or more, In particular, it is 98% or more. If the content of Bi 2 O 3 + B 2 O 3 + BaO + ZnO + CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO is too small, it becomes difficult to achieve both softening fluidity and laser absorption ability. As a result, laser sealing becomes difficult unless an excessive amount of laser absorber is added to the sealing material or the laser output is increased.
  • the content of CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO is preferably 22 to 33%, more preferably 25 to 30%.
  • the content of CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO is too small, the laser absorption ability tends to be lowered. As a result, laser sealing becomes difficult unless an excessive amount of laser absorber is added to the sealing material or the laser output is increased.
  • the molar ratio (Bi 2 O 3 + B 2 O 3 + BaO + ZnO) / (CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO) is 2.0 to 3.5, preferably 2. It is 1 to 3.2, more preferably 2.2 to 3.1, and particularly preferably 2.4 to 3.0. If the molar ratio (Bi 2 O 3 + B 2 O 3 + BaO + ZnO) / (CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO) is too small, it becomes thermally unstable and the laser is sealed. Glass is easily devitrified when worn.
  • Bi 2 O 3 is a main component of bismuth-based glass and is a component that improves softening fluidity.
  • the content of Bi 2 O 3 is 25 to 45%, preferably 30 to 42%, more preferably 35 to 40%.
  • the softening point becomes too high, and the glass is softened and hardly flows even when irradiated with laser light.
  • the thermal expansion coefficient becomes unduly high, and cracks are likely to occur in the sealed material or the sealing material layer during laser sealing, which tends to cause poor airtightness. Become. In addition, it becomes thermally unstable and the glass tends to be devitrified during laser sealing.
  • B 2 O 3 is a component that forms a glass network.
  • the content of B 2 O 3 is 20 to 35%, preferably 22 to 32%, more preferably 24 to 30%.
  • glass becomes thermally unstable, the glass is liable to devitrify during laser sealing.
  • the content of B 2 O 3 is too large, the softening point becomes too high, and the glass becomes difficult to soften and flow even when irradiated with laser light.
  • BaO is a component that lowers the softening point and is a component that improves thermal stability.
  • the content of BaO is preferably 0 to 15%, 0 to 8%, 0 to 5%, particularly 0.1 to less than 2%.
  • ZnO is a component that decreases the thermal expansion coefficient.
  • the content of ZnO is preferably 0 to 25%, more preferably 1 to 20%, still more preferably 5 to 15%. When there is too little content of ZnO, a thermal expansion coefficient will become high easily. On the other hand, if the content of ZnO is too large, the glass becomes thermally unstable when the content of Bi 2 O 3 is 35% or more, and the glass tends to devitrify during laser sealing.
  • CuO and MnO are components that greatly increase the laser absorption ability.
  • the total amount of CuO and MnO is preferably 15 to 35%, more preferably 20 to 40%, still more preferably 25 to 30%.
  • the total amount of CuO and MnO is too small, the laser absorption ability tends to be lowered.
  • the total amount of CuO and MnO is too large, the softening point becomes too high, and the glass becomes difficult to soften and flow even when irradiated with laser light. Further, the glass becomes thermally unstable, and the glass tends to be devitrified during laser sealing.
  • the CuO content is preferably 5 to 30%, more preferably 8 to 30%, and still more preferably 13 to 25%.
  • the MnO content is preferably 0 to 20%, more preferably 3 to 25%, and still more preferably 5 to 15%.
  • MnO-introduced raw materials such as MnO 2 have an oxidizing action when melted.
  • CuO and MnO are used in combination and the molar ratio CuO / MnO is regulated to 0.5 to 6.2
  • Cu 2 O existing in the glass at the time of melting is oxidized by the MnO introduced raw material.
  • the molar ratio CuO / MnO is preferably 0.5 to 6.2, more preferably 0.7 to 6.0, and still more preferably 1.0 to 3.5.
  • the glass becomes thermally unstable, and the glass tends to devitrify during laser sealing.
  • the molar ratio CuO / MnO is too large, Cu 2 O is not sufficiently oxidized at the time of melting, and it becomes difficult to obtain a desired laser absorption ability.
  • Fe 2 O 3 is a component that enhances the laser absorption ability, and is a component that suppresses devitrification at the time of laser sealing when the content of Bi 2 O 3 is 35% or more.
  • the content of Fe 2 O 3 is preferably 0 to 5%, 0.1 to 3%, particularly 0.2 to 2%. When the content of Fe 2 O 3 is too large, is impaired balance of components in the glass composition, the glass is liable to devitrify reversed.
  • TiO 2 , V 2 O 5 , Cr 2 O 3 , Co 2 O 3 and NiO are components that increase the laser absorption ability.
  • the content of each component is preferably 0-7%, 0.1-4%, in particular 0.5-2%. When there is too much content of each component, it will become easy to devitrify glass at the time of laser sealing.
  • Al 2 O 3 is a component that improves water resistance.
  • the content is preferably 0 to 5%, 0 to 3%, particularly preferably 0.1 to 2%. If the content of Al 2 O 3 is too large, the softening point becomes too high, and the glass is softened and hardly flows even when irradiated with laser light.
  • MgO, CaO and SrO are components that enhance the thermal stability. However, if the contents of MgO, CaO and SrO are too large, it is difficult to reduce the thermal expansion coefficient while ensuring softening fluidity. Therefore, the total amount and individual content of MgO, CaO and SrO are preferably 0-7%, 0-5%, 0-3%, 0-2%, 0-1%, especially 0-1%. It is.
  • SiO 2 is a component that improves water resistance.
  • the content is preferably 0 to 8%, 0 to 5%, particularly preferably 0 to less than 1%.
  • the softening point becomes too high, and the glass is softened and hardly flows even when irradiated with laser light.
  • Li 2 O, Na 2 O, K 2 O and Cs 2 O are components that lower the softening point, but have a function of promoting devitrification at the time of melting. Therefore, the total content of these components is preferably 2% or less, particularly preferably less than 1%.
  • P 2 O 5 is a component that suppresses devitrification at the time of melting. However, if the amount of P 2 O 5 added is too large, the glass is likely to undergo phase separation during melting. Therefore, the content of P 2 O 5 is preferably 0 to 5%, particularly preferably 0 to less than 1%.
  • La 2 O 3 , Y 2 O 3 and Gd 2 O 3 are components that suppress phase separation at the time of melting, but if the contents of La 2 O 3 , Y 2 O 3 and Gd 2 O 3 are too large, The softening point becomes too high, and the glass becomes difficult to soften even when irradiated with laser light. Therefore, the contents of La 2 O 3 , Y 2 O 3 and Gd 2 O 3 are each preferably 0 to 5%, particularly preferably 0 to less than 1%.
  • MoO 3 and CeO 2 are components that increase the laser absorption ability.
  • the content of each component is preferably 0-7%, 0-4%, in particular 0-1%. When there is too much content of each component, it will become easy to devitrify glass at the time of laser sealing.
  • PbO is not substantially contained from an environmental viewpoint.
  • the sealing material of the present invention is a sealing material containing a glass powder made of bismuth-based glass and a refractory filler powder.
  • the glass powder content is 50 to 95% by volume, and the refractory filler powder content is 1 to It is preferably 40% by volume and the bismuth glass is the above bismuth glass.
  • the glass powder content is preferably 50 to 95% by volume, 60 to 80% by volume, particularly 65 to 75% by volume.
  • the softening fluidity liquidity of a sealing material will fall easily.
  • the content of the glass powder is large, the content of the refractory filler powder is relatively decreased, and the thermal expansion coefficient of the sealing material may be unduly increased.
  • the maximum particle diameter D max of the glass powder is preferably 10 ⁇ m or less, particularly 5 ⁇ m or less.
  • the “maximum particle diameter D max ” refers to a value measured by a laser diffractometer, and in the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle.
  • the particle size is 99%.
  • the softening point of the glass powder is preferably 480 ° C. or lower, 450 ° C. or lower, particularly preferably 350 to 430 ° C. If the softening point of the glass powder is too high, the glass becomes difficult to soften during laser sealing, so that the sealing strength cannot be increased unless the output of the laser beam is increased.
  • the “softening point” refers to the temperature at the fourth inflection point when measured by macro-type differential thermal analysis.
  • the glass powder for example, a glass batch prepared by mixing various raw materials is prepared, and this is put into platinum melting, melted at 900 to 1200 ° C. for 1 to 3 hours, and then the molten glass is poured between water-cooled twin rollers to form a film. It is produced by pulverizing the obtained glass film with a ball mill and performing classification such as air classification.
  • nitrate raw material is preferably used as the Bi 2 O 3 introduction raw material
  • a manganese dioxide raw material is preferably used as the dioxide raw material
  • a permanganate raw material is preferably used as the peroxide raw material.
  • the coloring components there is a component (particularly CuO) that increases the laser absorption ability when the oxidation number is high. And if such a raw material is used, the oxidation number of the coloring component in a molten glass can be made high.
  • the content of the refractory filler powder is preferably 1 to 40% by volume, 10 to 45% by volume, 20 to 40% by volume, particularly 22 to 35% by volume. If the content of the refractory filler powder is small, the thermal expansion coefficient of the sealing material may be unduly high. On the other hand, when the content of the refractory filler powder is large, the content of the glass powder is relatively small, and the softening fluidity of the sealing material is likely to be lowered.
  • refractory filler powder Various materials can be used as the refractory filler powder. Among them, cordierite, willemite, alumina, zirconium phosphate compounds, zircon, zirconia, tin oxide, quartz glass, ⁇ -eucryptite, spodumene. 1 type or 2 types or more chosen from are preferable. These refractory filler powders have a low thermal expansion coefficient, a high mechanical strength, and a good compatibility with the bismuth glass of the present invention. ⁇ -eucryptite is particularly preferable because it has a high effect of reducing the thermal expansion coefficient of the sealing material.
  • the maximum particle diameter D max of the refractory filler powder is preferably 15 ⁇ m or less, less than 10 ⁇ m, less than 5 ⁇ m, and particularly less than 0.5 to 3 ⁇ m. If the maximum particle diameter Dmax of the refractory filler powder is too large, it becomes difficult to make the gap between the sealed objects uniform, and it becomes difficult to narrow the gap between the sealed objects, thereby reducing the thickness of the organic EL display and hermetic package. It becomes difficult to plan. Note that when the gap between the objects to be sealed is large and the difference in thermal expansion coefficient between the objects to be sealed and the sealing material layer is large, cracks or the like are likely to occur in the objects to be sealed or the sealing material layer.
  • the content of the laser absorbing material is preferably 0 to 5% by volume, 0 to 3% by volume, 0 to 1% by volume, particularly 0 to 0.1% by volume.
  • a laser absorber will melt in glass at the time of laser sealing, and this will devitrify glass, and it will become easy to fall the softening fluidity of a sealing material.
  • the content of the refractory filler powder is relatively reduced, and the thermal expansion coefficient is unduly increased.
  • the light absorptance in monochromatic light having a wavelength of 808 nm is preferably 75% or more, and more preferably 80% or more. If this light absorptance is low, the sealing material layer cannot absorb light properly at the time of laser sealing, and the sealing strength cannot be increased unless the output of the laser light is increased. If the output of the laser beam is increased, the element may be thermally deteriorated during laser sealing.
  • the thermal expansion coefficient is preferably 75 ⁇ 10 ⁇ 7 / ° C. or less, particularly 50 ⁇ 10 ⁇ 7 / ° C. or more and 71 ⁇ 10 ⁇ 7 / ° C. or less.
  • the thermal expansion coefficient refers to a value measured by a push rod type thermal expansion coefficient measurement (TMA) apparatus, and the measurement temperature range is 30 to 300 ° C.
  • the softening point is preferably 510 ° C. or lower, 480 ° C. or lower, particularly 350 to 450 ° C. If the softening point of the sealing material is too high, the sealing material layer becomes difficult to soften and flow at the time of laser sealing, so that the sealing strength cannot be increased unless the output of the laser beam is increased.
  • the sealing material of the present invention may be used in the form of powder, but it is easy to handle if it is uniformly kneaded with a vehicle and processed into a sealing material paste.
  • the vehicle is mainly composed of a solvent and a resin.
  • the resin is added for the purpose of adjusting the viscosity of the sealing material paste.
  • surfactant, a thickener, etc. can also be added as needed.
  • the sealing material paste is applied to an object to be sealed using an applicator such as a dispenser or a screen printer, and then subjected to a binder removal step.
  • acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used.
  • acrylic acid esters and nitrocellulose are preferable because they have good thermal decomposability.
  • Solvents include N, N'-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, diethylene glycol Monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene Glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-methyl -2-pyrrolidone and the like can be used.
  • DMF dimethylformamide
  • ⁇ -BL ⁇ -butyllactone
  • Tables 1 and 2 show examples of the present invention (Sample Nos. 1 to 6) and comparative examples (Sample Nos. 7 to 10).
  • the glass powder described in the table was produced as follows. First, a glass batch in which various raw materials were prepared so as to have the glass composition in the table was prepared, and this was put in a platinum crucible and melted at 1000 ° C. for 1 hour. Upon melting, the mixture was stirred with a platinum rod to homogenize the molten glass. Sample No. For 3-5, 10% of the Bi 2 O 3 content was introduced by the nitrate raw material. Next, a part of the obtained molten glass was poured out between water-cooled twin rollers and formed into a film shape, and the remaining molten glass was poured out into a carbon mold and formed into a rod shape.
  • the obtained glass film was pulverized with a ball mill and then classified with an air classifier so that the average particle diameter D 50 was 1.0 ⁇ m and the maximum particle diameter D max was 4.0 ⁇ m. Further, the rod-shaped glass was put into an electric furnace maintained at a temperature about 20 ° C. higher than the annealing point, and then slowly cooled to room temperature at a temperature lowering rate of 3 minutes / minute.
  • ⁇ -eucryptite was used as the refractory filler powder.
  • the refractory filler powder is adjusted to an average particle diameter D 50 of 1.0 ⁇ m and a maximum particle diameter D max of 3.0 ⁇ m by air classification.
  • Glass powder and refractory filler powder were mixed at the mixing ratio shown in the table. 1 to 10 were produced.
  • a component represents the total amount of Bi 2 O 3 , B 2 O 3 , BaO and ZnO
  • B component represents CuO, MnO, Fe 2 O 3 , TiO 2 , V 2. This represents the total amount of O 5 , Cr 2 O 3 , Co 3 O 4 and NiO, and “N / A” represents that evaluation is impossible.
  • the thermal expansion coefficient is a value measured in a temperature range of 30 to 300 ° C. using a TMA apparatus.
  • TMA thermal expansion coefficient
  • the light absorption rate was measured as follows. First, each sample and vehicle (tripropylene glycol monobutyl ether containing ethylcellulose resin) were uniformly kneaded with a three-roll mill and made into a paste, and then an alkali-free glass substrate (OA-10, 40 mm ⁇ Nippon Electric Glass Co., Ltd.) (40 mm ⁇ 0.5 mm thickness) on a 30 mm ⁇ 30 mm square and dried in a drying oven at 120 ° C. for 10 minutes. Next, the temperature was raised from room temperature at 10 ° C./minute, baked at 510 ° C. for 10 minutes, then cooled to room temperature at 10 ° C./minute, and fixed on the glass substrate.
  • OA-10 40 mm ⁇ Nippon Electric Glass Co., Ltd.
  • a powder having a mass corresponding to 0.6 cm 3 minutes was dry-pressed into a button shape having an outer diameter of 20 mm using a mold, and this was placed on an alumina substrate having a thickness of 25 mm ⁇ 25 mm ⁇ 0.6 mm. After being placed and heated in air at a rate of 10 ° C / min, held at 510 ° C for 10 minutes, then cooled to room temperature at 10 ° C / min, and evaluated by measuring the diameter of the resulting button It is a thing. Specifically, the case where the flow diameter was 16.0 mm or more was evaluated as “ ⁇ ”, and the case where it was less than 16.0 mm was evaluated as “x”.
  • each sample and vehicle tripropylene glycol monobutyl ether containing ethylcellulose resin
  • an alkali-free glass substrate OA-10, ⁇ manufactured by Nippon Electric Glass Co., Ltd. 40 mm ⁇ 0.5 mm thickness, thermal expansion coefficient 38 ⁇ 10 ⁇ 7 / ° C.) along the edge of the alkali-free glass substrate in a frame shape (5 ⁇ m thickness, 0.6 mm width). Dry at 10 ° C. for 10 minutes.
  • the temperature is raised from room temperature at 10 ° C./minute, baked at 510 ° C.
  • the laser light irradiation conditions (output and irradiation speed) were adjusted according to the average thickness of the sealing material layer.
  • “ ⁇ ” indicates that no peeling occurred at the interface between the alkali-free glass and the sealing material layer
  • the sealing strength was evaluated with “ ⁇ ” indicating that the interface of the adhesive material layer was partially peeled, and “x” indicating that the interface between the alkali-free glass and the sealing material layer was completely peeled.
  • the airtightness was evaluated as follows.
  • the sealing structure obtained by the above method was held for 24 hours in a constant temperature and humidity chamber maintained at 121 ° C., 100% humidity and 2 atm. After that, the sealing structure was observed with an optical microscope.
  • the sealing material layer did not change in quality and the invasion of moisture was not recognized in the sealing structure.
  • the airtightness was evaluated with “ ⁇ ” indicating that the sealing material layer was altered and “X” indicating that water had entered the sealing structure.
  • sample No. 7 has a small molar ratio (Bi 2 O 3 + B 2 O 3 + BaO + ZnO) / (CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO) and is lost during firing and laser sealing. Permeation occurred, and the evaluation of softening fluidity was poor due to this devitrification, and the evaluation of sealing strength and airtightness was impossible.
  • Sample No. No. 9 has a small content of Bi 2 O 3 + B 2 O 3 + BaO + ZnO + CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO. The evaluation of sex was poor. Sample No. No.
  • Sample No. 8 had a slightly high thermal expansion coefficient because the molar ratio (Bi 2 O 3 + B 2 O 3 + BaO + ZnO) / (CuO + MnO + Fe 2 O 3 + TiO 2 + V 2 O 5 + Cr 2 O 3 + Co 3 O 4 + NiO) was too large. .
  • sample no. 3 a volume of 7.5% by volume of the refractory filler powder was added to the laser absorber (Fe 2 O 3 —Cr 2 O 3 —MnO-based composite oxide, average particle size D 50 1.0 ⁇ m, maximum particle size D max 3 0.0 ⁇ m), the thermal expansion coefficient increased to 77 ⁇ 10 ⁇ 7 / ° C.
  • the laser absorber Fe 2 O 3 —Cr 2 O 3 —MnO-based composite oxide, average particle size D 50 1.0 ⁇ m, maximum particle size D max 3 0.0 ⁇ m
  • the bismuth glass of the present invention and the sealing material using the glass are dye-sensitized solar cells, CIGS thin film compound solar cells, in addition to laser sealing of organic EL devices such as organic EL displays and organic EL lighting devices. It is also suitable for laser sealing of solar cells such as, laser sealing of airtight packages such as MEMS packages and LED packages.

Abstract

本発明のビスマス系ガラスは、ガラス組成として、下記酸化物換算のモル%で、Bi23 25~45%、B23 20~35%、Bi23+B23+BaO+ZnO+CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO 90~100%(但し、90%を含まない)を含有し、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が2.0~3.5であることを特徴とする。

Description

ビスマス系ガラス、ビスマス系ガラスの製造方法及び封着材料
 本発明は、ビスマス系ガラス、ビスマス系ガラスの製造方法及び封着材料に関し、特にレーザー光による封着処理(以下、レーザー封着)に好適なビスマス系ガラス、ビスマス系ガラスの製造方法及び封着材料に関する。
 近年、フラットディスプレイパネルとして、有機ELディスプレイが注目されている。従来まで、有機ELディスプレイの接着材料として、低温硬化性を有する有機樹脂系接着剤が使用されてきた。しかし、有機樹脂系接着剤では、気体や水分の浸入を完全に遮断できないため、耐水性が低いアクティブ素子や有機発光層が劣化し易く、有機ELディスプレイの表示特性が経時的に劣化するという不具合が生じていた。
 一方、ガラス粉末を含む封着材料は、有機樹脂系接着剤に比べて、気体や水分が透過し難いため、有機ELディスプレイ内部の気密性を確保することができる。
 しかし、ガラス粉末は、有機樹脂系接着剤よりも軟化温度が高いため、封着時にアクティブ素子や有機発光層を熱劣化させる虞がある。このような事情から、レーザー封着が注目されている。レーザー封着によれば、封着すべき部分のみを局所的に加熱することが可能であり、アクティブ素子や有機発光層を熱劣化させることなく、無アルカリガラス基板等の被封着物を封着することができる。
 また、近年、気密パッケージの特性維持や長寿命化を図ることが検討されている。例えば、LED素子が実装された気密パッケージでは、熱伝導性の観点から、基体として、窒化アルミニウム、サーマルビアを有する低温焼成基板(LTCC)が使用されるが、この場合も、基体と蓋(リッド)をレーザー封着することが好ましい。特に、紫外波長領域で発光するLED素子が実装された気密パッケージでは、レーザー封着により紫外波長領域で発光特性を維持し易くなる。更にレーザー封着によりLED素子の熱劣化を防止することもできる。
 更に、MEMS(Micro Electric Mechanical System)素子が実装された気密パッケージでも、MEMS素子の特性劣化を防止するために、レーザー封着が好適である。
米国特許第6416375号明細書 特開2006-315902号公報
 レーザー封着に用いる封着材料は、一般的に、ガラス粉末、耐火性フィラー粉末及びレーザー吸収材を含んでいる。ガラス粉末は、レーザー封着の際に軟化流動して、被封着物と反応し、封着強度を確保するための成分である。耐火性フィラー粉末は、骨材として作用し、熱膨張係数を低下させるための材料であり、レーザー封着の際に軟化流動するものではない。レーザー吸収材は、レーザー封着の際にレーザー光を吸収して、熱エネルギーに変換するための材料であり、レーザー封着の際に軟化流動するものではない。
 ガラス粉末として、従来までは鉛ホウ酸系ガラスが使用されていたが、環境的観点から、近年では無鉛ガラスが使用されている。特に、ビスマス系ガラスは、低融点であり、軟化流動性に優れるため、無鉛ガラスとして有望視されている。しかし、ビスマス系ガラスは、主成分のBi23がレーザー吸収能を殆ど有しないため、レーザー吸収能が不十分になり易い。このため、ビスマス系ガラスのレーザー吸収能を補うために、レーザー吸収材の含有量を増やさなければならない。しかし、レーザー吸収材の含有量が多くなると、レーザー封着の際に、ビスマス系ガラス中にレーザー吸収材が溶け込み、これによりビスマス系ガラスが失透して、所望の軟化流動性を確保できなくなる。そして、軟化流動性を確保するために、耐火性フィラー粉末を低下させると、封着材料の熱膨張係数が不当に高くなり、レーザー封着の際に、被封着物や封着材料層にクラックが生じて、気密不良が発生し易くなる。
 そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、軟化流動性とレーザー吸収能を高いレベルで両立し得るビスマス系ガラス及びそれを用いた封着材料を創案することである。
 本発明者は、鋭意検討の結果、ビスマス系ガラス中の非着色成分と着色成分の割合を厳密に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のビスマス系ガラスは、ガラス組成として、下記酸化物換算のモル%で、Bi23 25~45%、B23 20~35%、Bi23+B23+BaO+ZnO+CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO 90~100%(但し、90%を含まない)を含有し、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が2.0~3.5であることを特徴とする。ここで、「Bi23+B23+BaO+ZnO+CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO」は、Bi23、B23、BaO、ZnO、CuO、MnO、Fe23、TiO2、V25、Cr23、Co34及びNiOの合量を指す。「(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)」は、Bi23、B23、BaO及びZnOの合量をCuO、MnO、Fe23、TiO2、V25、Cr23、Co34及びNiOの合量で割った値を指す。
 本発明のビスマス系ガラスは、非着色成分と着色成分の割合を厳密に規制している。具体的には、本発明のビスマス系ガラスは、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)を2.0~3.5に規制している。モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が小さ過ぎると、熱的に不安定になり、レーザー封着時にガラスが失透し易くなる。一方、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が大き過ぎると、レーザー吸収能が低下し易くなる。結果として封着材料中にレーザー吸収材を過剰に添加するか、或いはレーザー出力を上昇させないと、レーザー封着が困難になる。また熱膨張係数が不当に高くなり、レーザー封着の際に、被封着物や封着材料層にクラックが生じて、気密不良が発生し易くなる。
 第二に、本発明のビスマス系ガラスは、ZnOの含有量が1~20モル%であることが好ましい。
 第三に、本発明のビスマス系ガラスは、MnOの含有量が3~25モル%であることが好ましい。
 第四に、本発明のビスマス系ガラスは、実質的にPbOを含有しないことが好ましい。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が0.1質量%未満の場合を指す。
 第五に、本発明のビスマス系ガラスの製造方法は、上記のビスマス系ガラスの製造方法であって、硝酸塩原料、硫酸塩原料、二酸化物原料、過酸化物原料の何れかを含むガラスバッチを溶融、成形して、ビスマス系ガラスを作製することが好ましい。
 第六に、本発明のビスマス系ガラスの製造方法は、上記二酸化物原料が二酸化マンガン原料であることが好ましい。
 第七に、本発明のビスマス系ガラスの製造方法は、上記過酸化物原料が過マンガン酸塩原料であることが好ましい。
 第八に、本発明の封着材料は、ビスマス系ガラスからなるガラス粉末と耐火性フィラー粉末とを含む封着材料において、ガラス粉末の含有量が50~95体積%、耐火性フィラー粉末の含有量が1~40体積%であり、且つビスマス系ガラスが、上記のビスマス系ガラスであることが好ましい。
 第九に、本発明の封着材料は、上記耐火性フィラー粉末が、コーディエライト、ウイレマイト、アルミナ、リン酸ジルコニウム系化合物、ジルコン、ジルコニア、酸化スズ、石英ガラス、β-ユークリプタイト、スポジュメンから選ばれる一種又は二種以上であることが好ましい。
 第十に、本発明の封着材料は、レーザー吸収材の含有量が5体積%以下であることが好ましい。
 第十一に、本発明の封着材料は、レーザー封着に用いることが好ましい。このようにすれば、封着の際に、素子の熱劣化を防止することができる。なお、レーザー封着に使用するレーザー光の光源は、特に限定されないが、例えば、半導体レーザー、YAGレーザー、CO2レーザー、エキシマレーザー、赤外レーザー等が、取り扱いが容易な点で好適である。また、レーザー光の発光中心波長は、上記封着材料にレーザー光を的確に吸収させるために、500~1600nm、特に750~1300nmが好ましい。
 本発明のビスマス系ガラスは、上記の通り、ガラス組成として、下記酸化物換算のモル%で、Bi23 25~45%、B23 20~35%、Bi23+B23+BaO+ZnO+CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO 90~100%(但し、90%を含まない)を含有し、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が2.0~3.5である。上記のように、ビスマス系ガラスのガラス組成範囲を限定した理由を下記に示す。なお、ガラス組成の説明において、%表示は、モル%を指す。
 Bi23+B23+BaO+ZnO+CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiOの含有量は90%より大きく、好ましくは93%以上、95%以上、97%以上、特に98%以上である。Bi23+B23+BaO+ZnO+CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiOの含有量が少な過ぎると、軟化流動性とレーザー吸収能の両立が困難になる。結果として封着材料中にレーザー吸収材を過剰に添加するか、或いはレーザー出力を上昇させないと、レーザー封着が困難になる。
 CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiOの含有量は、好ましくは22~33%、更に好ましくは25~30%である。CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiOの含有量が少な過ぎると、レーザー吸収能が低下し易くなる。結果として封着材料中にレーザー吸収材を過剰に添加するか、或いはレーザー出力を高めないと、レーザー封着が困難になる。一方、CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiOの含有量が多過ぎると、熱的に不安定になり、レーザー封着時にガラスが失透し易くなる。
 モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)は2.0~3.5であり、好ましくは2.1~3.2、更に好ましくは2.2~3.1、特に好ましくは2.4~3.0である。モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が小さ過ぎると、熱的に不安定になり、レーザー封着時にガラスが失透し易くなる。一方、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が大き過ぎると、レーザー吸収能が低下し易くなる。結果として封着材料中にレーザー吸収材を過剰に添加するか、或いはレーザー出力を高めないと、レーザー封着が困難になる。また熱膨張係数が不当に高くなり、レーザー封着の際に、被封着物や封着材料層にクラックが生じて、気密不良が発生し易くなる。
 Bi23は、ビスマス系ガラスの主要成分であり、軟化流動性を高める成分である。Bi23の含有量は25~45%であり、好ましくは30~42%、更に好ましくは35~40%である。Bi23の含有量が少な過ぎると、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化流動し難くなる。一方、Bi23の含有量が多過ぎると、熱膨張係数が不当に高くなり、レーザー封着の際に、被封着物や封着材料層にクラックが生じて、気密不良が発生し易くなる。また熱的に不安定になり、レーザー封着時にガラスが失透し易くなる。
 B23は、ガラスネットワークを形成する成分である。B23の含有量は20~35%であり、好ましくは22~32%、更に好ましくは24~30%である。B23の含有量が少な過ぎると、ガラスが熱的に不安定になり、レーザー封着時にガラスが失透し易くなる。一方、B23の含有量が多過ぎると、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化流動し難くなる。
 BaOは、軟化点を低下させる成分であり、また熱的安定性を高める成分である。しかし、BaOの含有量が多過ぎると、熱膨張係数を低下させることが困難になる。結果として、封着材料層にクラック等が発生し易くなる。よって、BaOの含有量は、好ましくは0~15%、0~8%、0~5%、特に0.1~2%未満である。
 ZnOは、熱膨張係数を低下させる成分である。ZnOの含有量は、好ましくは0~25%、より好ましくは1~20%、更に好ましくは5~15%である。ZnOの含有量が少な過ぎると、熱膨張係数が高くなり易い。一方、ZnOの含有量が多過ぎると、Bi23の含有量が35%以上である場合に、ガラスが熱的に不安定になり、レーザー封着時にガラスが失透し易くなる。
 CuOとMnOは、レーザー吸収能を大幅に高める成分である。CuOとMnOの合量は、好ましくは15~35%、より好ましくは20~40%、更に好ましくは25~30%である。CuOとMnOの合量が少な過ぎると、レーザー吸収能が低下し易くなる。一方、CuOとMnOの合量が多過ぎると、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化流動し難くなる。またガラスが熱的に不安定になり、レーザー封着時にガラスが失透し易くなる。なお、CuOの含有量は、好ましくは5~30%、より好ましくは8~30%、更に好ましくは13~25%である。MnOの含有量は、好ましくは0~20%、より好ましくは3~25%、更に好ましくは5~15%である。
 MnO2等のMnOの導入原料は、溶融時に酸化作用を有する。そして、ビスマス系ガラスにおいて、CuOとMnOを併用し、モル比CuO/MnOを0.5~6.2に規制すると、溶融時にガラス中に存在するCu2Oが、MnOの導入原料により酸化されて、酸化数が2以上の酸化銅が増加し、これにより近赤外波長域におけるレーザー吸収能を大幅に高めることができる。モル比CuO/MnOは、好ましくは0.5~6.2、より好ましくは0.7~6.0、更に好ましくは1.0~3.5である。モル比CuO/MnOが小さ過ぎると、ガラスが熱的に不安定になり、レーザー封着時にガラスが失透し易くなる。一方、モル比CuO/MnOが大き過ぎると、溶融時にCu2Oが十分に酸化されず、所望のレーザー吸収能を得ることが困難になる。
 Fe23は、レーザー吸収能を高める成分であり、更にBi23の含有量が35%以上である場合に、レーザー封着時の失透を抑制する成分である。Fe23の含有量は、好ましくは0~5%、0.1~3%、特に0.2~2%である。Fe23の含有量が多過ぎると、ガラス組成中の成分バランスが損なわれて、逆にガラスが失透し易くなる。
 TiO2、V25、Cr23、Co23及びNiOは、レーザー吸収能を高める成分である。各々の成分の含有量は、好ましくは0~7%、0.1~4%、特に0.5~2%未満である。各々の成分の含有量が多過ぎると、レーザー封着時にガラスが失透し易くなる。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 Al23は、耐水性を高める成分である。その含有量は0~5%、0~3%、特に0.1~2%が好ましい。Al23の含有量が多過ぎると、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化流動し難くなる。
 MgO、CaO及びSrOは、熱的安定性を高める成分である。しかし、MgO、CaO及びSrOの含有量が多過ぎると、軟化流動性を確保しながら、熱膨張係数を低下させることが困難になる。よって、MgO、CaO及びSrOの合量及び個別含有量は、好ましくは0~7%、0~5%、0~3%、0~2%未満、0~1%、特に0~1%未満である。
 SiO2は、耐水性を高める成分である。その含有量は0~8%、0~5%、特に0~1%未満が好ましい。SiO2の含有量が多過ぎると、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化流動し難くなる。
 Li2O、Na2O、K2O及びCs2Oは、軟化点を低下させる成分であるが、溶融時に失透を促進する作用を有する。よって、これらの成分の含有量は、合量で2%以下、特に1%未満が好ましい。
 P25は、溶融時の失透を抑制する成分であるが、その添加量が多過ぎると、溶融時にガラスが分相し易くなる。よって、P25の含有量は0~5%、特に0~1%未満が好ましい。
 La23、Y23及びGd23は、溶融時の分相を抑制する成分であるが、La23、Y23及びGd23の含有量が多過ぎると、軟化点が高くなり過ぎて、レーザー光を照射しても、ガラスが軟化し難くなる。よって、La23、Y23及びGd23の含有量は、それぞれ0~5%、特に0~1%未満が好ましい。
 MoO3及びCeO2は、レーザー吸収能を高める成分である。各々の成分の含有量は、好ましくは0~7%、0~4%、特に0~1%未満である。各々の成分の含有量が多過ぎると、レーザー封着時にガラスが失透し易くなる。
 PbOは、環境的観点から、実質的に含有しないことが好ましい。
 本発明の封着材料は、ビスマス系ガラスからなるガラス粉末と耐火性フィラー粉末とを含む封着材料において、ガラス粉末の含有量が50~95体積%、耐火性フィラー粉末の含有量が1~40体積%であり、且つビスマス系ガラスが、上記のビスマス系ガラスであることが好ましい。
 本発明の封着材料において、ガラス粉末の含有量は50~95体積%、60~80体積%、特に65~75体積%が好ましい。ガラス粉末の含有量が少ないと、封着材料の軟化流動性が低下し易くなる。一方、ガラス粉末の含有量が多いと、耐火性フィラー粉末の含有量が相対的に少なくなり、封着材料の熱膨張係数が不当に高くなる虞がある。
 ガラス粉末の最大粒子径Dmaxは、好ましくは10μm以下、特に5μm以下である。ガラス粉末の最大粒子径Dmaxが大き過ぎると、レーザー封着に要する時間が長くなると共に、被封着物間のギャップを均一化し難くなり、レーザー封着の精度が低下し易くなる。ここで、「最大粒子径Dmax」とは、レーザー回折装置で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。
 ガラス粉末の軟化点は、好ましくは480℃以下、450℃以下、特に350~430℃が好ましい。ガラス粉末の軟化点が高過ぎると、レーザー封着時にガラスが軟化し難くなるため、レーザー光の出力を上昇させない限り、封着強度を高めることができない。ここで、「軟化点」は、マクロ型示差熱分析で測定した時の第四変曲点の温度を指す。
 ガラス粉末は、例えば、各種原料を調合したガラスバッチを準備し、これを白金溶融に入れて900~1200℃で1~3時間溶融した後、溶融ガラスを水冷双ローラー間に流し出して、フィルム状に成形し、得られたガラスフィルムをボールミルにて粉砕し、空気分級等の分級を行うことにより作製される。
 ビスマス系ガラスの作製に用いる原料の一部に、硝酸塩原料、硫酸塩原料、二酸化物原料、過酸化物原料の一種又は二種以上を用いることが好ましい。特に、Bi23の導入原料として、硝酸塩原料を用いることが好ましく、二酸化物原料として、二酸化マンガン原料を用いることが好ましく、過酸化物原料として、過マンガン酸塩原料を用いることが好ましい。着色成分の中には、酸化数が高いと、レーザー吸収能が高まる成分(特に、CuO)がある。そして、このような原料を使用すれば、溶融ガラス中の着色成分の酸化数を高くすることができる。
 本発明の封着材料において、耐火性フィラー粉末の含有量は、好ましくは1~40体積%、10~45体積%、20~40体積%、特に22~35体積%である。耐火性フィラー粉末の含有量が少ないと、封着材料の熱膨張係数が不当に高くなる虞がある。一方、耐火性フィラー粉末の含有量が多いと、ガラス粉末の含有量が相対的に少なくなり、封着材料の軟化流動性が低下し易くなる。
 耐火性フィラー粉末として、種々の材料が使用可能であるが、その中でも、コーディエライト、ウイレマイト、アルミナ、リン酸ジルコニウム系化合物、ジルコン、ジルコニア、酸化スズ、石英ガラス、β-ユークリプタイト、スポジュメンから選ばれる一種又は二種以上が好ましい。これらの耐火性フィラー粉末は、熱膨張係数が低いことに加えて、機械的強度が高く、しかも本発明のビスマス系ガラスとの適合性が良好である。また、β-ユークリプタイトは、封着材料の熱膨張係数を低下させる効果が高いため、特に好ましい。
 耐火性フィラー粉末の最大粒子径Dmaxは、好ましくは15μm以下、10μm未満、5μm未満、特に0.5~3μm未満である。耐火性フィラー粉末の最大粒子径Dmaxが大き過ぎると、被封着物間のギャップを均一化し難くなると共に、被封着物間のギャップを狭小化し難くなり、有機ELディスプレイや気密パッケージの薄型化を図り難くなる。なお、被封着物間のギャップが大きい場合に、被封着物と封着材料層の熱膨張係数差が大きいと、被封着物や封着材料層にクラック等が発生し易くなる。
 本発明の封着材料において、レーザー吸収材の含有量は、好ましくは0~5体積%、0~3体積%、0~1体積%、特に0~0.1体積%である。レーザー吸収材の含有量が多過ぎると、レーザー封着の際に、ガラス中にレーザー吸収材が溶け込み、これによりガラスが失透して、封着材料の軟化流動性が低下し易くなる。また耐火性フィラー粉末の含有量が相対的に少なくなり、熱膨張係数が不当に上昇する虞がある。
 本発明の封着材料において、波長808nmの単色光における光吸収率は、好ましくは75%以上、更に好ましくは80%以上である。この光吸収率が低いと、レーザー封着時に封着材料層が光を適正に吸収できず、レーザー光の出力を上昇させない限り、封着強度を高めることができない。なお、レーザー光の出力を上昇させると、レーザー封着の際に素子が熱劣化する虞がある。ここで、「波長808nmの単色光における光吸収率」は、膜厚5μmに焼成した封着材料層について、λ=808nmの単色光の反射率と透過率を分光光度計でそれぞれ測定し、それらの合計値を100%から減じた値に相当する。
 本発明の封着材料において、熱膨張係数は、好ましくは75×10-7/℃以下、特に50×10-7/℃以上、且つ71×10-7/℃以下である。このようにすれば、被封着物が低膨張である場合、被封着物や封着材料層に残留する応力が小さくなるため、被封着物や封着材料層にクラックが生じ難くなる。ここで、「熱膨張係数」は、押棒式熱膨張係数測定(TMA)装置で測定した値を指し、測定温度範囲は30~300℃とする。
 本発明の封着材料において、軟化点は、好ましくは510℃以下、480℃以下、特に350~450℃である。封着材料の軟化点が高過ぎると、レーザー封着時に封着材料層が軟化流動し難くなるため、レーザー光の出力を上昇させない限り、封着強度を高めることができない。
 本発明の封着材料は、粉末の状態で使用に供してもよいが、ビークルと均一に混練し、封着材料ペーストに加工すると取り扱い易い。ビークルは、主に溶媒と樹脂で構成される。樹脂は、封着材料ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。封着材料ペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いて被封着物上に塗布された後、脱バインダー工程に供される。
 樹脂として、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロースは、熱分解性が良好であるため、好ましい。
 溶媒として、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。
 実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1、2は、本発明の実施例(試料No.1~6)と比較例(試料No.7~10)を示している。
Figure JPOXMLDOC01-appb-T000001
 次のようにして、表中に記載のガラス粉末を作製した。まず表中のガラス組成になるように、各種原料を調合したガラスバッチを準備し、これを白金坩堝に入れて1000℃で1時間溶融した。溶融に際し、白金棒を用いて攪拌し、溶融ガラスの均質化を行った。なお、試料No.3~5については、Bi23の含有量の1割を硝酸塩原料により導入した。次に、得られた溶融ガラスの一部を水冷双ローラー間に流し出して、フィルム状に成形し、残りの溶融ガラスをカーボン製の型枠に流し出して、棒状に成形した。最後に、得られたガラスフィルムをボールミルにて粉砕後、平均粒子径D50が1.0μm、最大粒子径Dmaxが4.0μmになるように空気分級機で分級した。また、棒状のガラスについては、徐冷点よりも約20℃高い温度に保持された電気炉内に投入した後、3分/分の降温速度で常温まで徐冷した。
 耐火物フィラー粉末として、β-ユークリプタイトを用いた。耐火物フィラー粉末は、空気分級により、平均粒子径D501.0μm、最大粒子径Dmax3.0μmに調整されている。
 ガラス粉末と耐火性フィラー粉末を表中に示す混合割合で混合し、試料No.1~10を作製した。試料No.1~10につき、熱膨張係数、光吸収率、軟化流動性、封着強度及び気密性を評価した。なお、表中の「A成分」は、Bi23、B23、BaO及びZnOの合量を表し、「B成分」は、CuO、MnO、Fe23、TiO2、V25、Cr23、Co34及びNiOの合量を表し、「N/A」は、評価不能を表している。
 熱膨張係数は、TMA装置により、30~300℃の温度範囲で測定した値である。なお、TMAの測定試料として、各試料を緻密に焼結させた後、所定形状に加工したものを用いた。
 次のようにして光吸収率を測定した。まず、各試料とビークル(エチルセルロース樹脂含有のトリプロピレングリコールモノブチルエーテル)を三本ロールミルで均一に混錬し、ペースト化した後、無アルカリガラス基板(日本電気硝子株式会社製OA-10、40mm×40mm×0.5mm厚)上に、30mm×30mmの正方形に塗布し、乾燥オーブンで120℃、10分間乾燥した。次に、室温から10℃/分で昇温し、510℃で10分間焼成した後、室温まで10℃/分で降温し、ガラス基板の上に定着させた。続いて、得られた膜厚5μmの焼成膜について、波長λ=808nmの単色光の反射率と透過率を分光光度計でそれぞれ測定し、それらの合計値を100%から減じた値を光吸収率とした。
 軟化流動性は、各試料について、0.6cm3分に相当する質量の粉末を金型により外径20mmのボタン状に乾式プレスし、これを25mm×25mm×0.6mm厚のアルミナ基板上に載置し、空気中で10℃/分の速度で昇温した後、510℃で10分間保持した上で室温まで10℃/分で降温し、得られたボタンの直径を測定することで評価したものである。具体的には、流動径が16.0mm以上である場合を「○」、16.0mm未満である場合を「×」として評価した。
 次のようにして、封着強度を評価した。最初に、各試料とビークル(エチルセルロース樹脂含有のトリプロピレングリコールモノブチルエーテル)を三本ロールミルで均一に混錬し、ペースト化した後、無アルカリガラス基板(日本電気硝子株式会社製OA-10、□40mm×0.5mm厚、熱膨張係数38×10-7/℃)上に、無アルカリガラス基板の端縁に沿って額縁状(5μm厚、0.6mm幅)に塗布し、乾燥オーブンで120℃、10分間乾燥した。次に、室温から10℃/分で昇温し、510℃で10分間焼成した後、室温まで10℃/分で降温し、ペースト中の樹脂成分の焼却(脱バインダー処理)及び封着材料の固着を行い、無アルカリガラス基板上に封着材料層を形成した。次に、封着材料層を有する無アルカリガラス基板の上に、封着材料層が形成されていない別の無アルカリガラス基板(□40mm×0.5mm厚)を正確に重ねた後、封着材料層を有する無アルカリガラス基板側から、封着材料層に沿って、波長808nmのレーザー光を照射することにより、封着材料層を軟化流動させて、無アルカリガラス基板同士を気密封着した。なお、封着材料層の平均厚みに応じて、レーザー光の照射条件(出力、照射速度)を調整した。最後に、得られた封着構造体を上方1mからコンクリート上に落下させた後、無アルカリガラスと封着材料層の界面に剥離が発生しなかったものを「○」、無アルカリガラスと封着材料層の界面が部分的に剥離したものを「△」、無アルカリガラスと封着材料層の界面が完全に剥離したものを「×」として、封着強度を評価した。
 次のようにして、気密性を評価した。上記の方法で得られた封着構造体を121℃、湿度100%、2気圧に保持された恒温恒湿槽内で24時間保持した。その後、封着構造体を光学顕微鏡で観察して、封着材料層が変質せず、封着構造体内に水分の侵入が認められなかったものを「○」、封着構造体内に水分の侵入が認められなかったが、封着材料層が変質したものを「△」、封着構造体内に水分の侵入が認められたものを「×」として、気密性を評価した。
 表1から分かるように、試料No.1~6は、ガラス粉末のガラス組成が所定範囲に規制されているため、熱膨張係数、光吸収率、軟化流動性、封着強度及び気密性の評価が良好であった。一方、試料No.7は、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が小さいため、焼成時及びレーザー封着時に失透が生じ、この失透によって軟化流動性の評価が不良であり、封着強度、気密性の評価が不能であった。試料No.8は、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が大きいため、光吸収率が低く、封着強度と気密性の評価が良好ではなかった。試料No.9は、Bi23+B23+BaO+ZnO+CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiOの含有量が少ないため、光吸収率が低く、流動性、接着強度、気密性の評価が不良であった。試料No.10は、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が大きいため、光吸収率が低く、封着強度と気密性の評価が良好ではなかった。なお、試料No.8は、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が大き過ぎるため、熱膨張係数がやや高かった。
 参考までに、試料No.3について、耐火性フィラー粉末の7.5体積%分をレーザー吸収材(Fe23-Cr23-MnO系複合酸化物、平均粒子径D501.0μm、最大粒子径Dmax3.0μm)に置換したところ、熱膨張係数が77×10-7/℃まで上昇した。
 本発明のビスマス系ガラス及びそれを用いた封着材料は、有機ELディスプレイ、有機EL照明装置等の有機ELデバイスのレーザー封着以外にも、色素増感型太陽電池、CIGS系薄膜化合物太陽電池等の太陽電池のレーザー封着、MEMSパッケージ、LEDパッケージ等の気密パッケージのレーザー封着等にも好適である。

Claims (11)

  1.  ガラス組成として、下記酸化物換算のモル%で、Bi23 25~45%、B23 20~35%、Bi23+B23+BaO+ZnO+CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO 90~100%(但し、90%を含まない)を含有し、モル比(Bi23+B23+BaO+ZnO)/(CuO+MnO+Fe23+TiO2+V25+Cr23+Co34+NiO)が2.0~3.5であることを特徴とするビスマス系ガラス。
  2.  ZnOの含有量が1~20モル%であることを特徴とする請求項1に記載のビスマス系ガラス。
  3.  MnOの含有量が3~25モル%であることを特徴とする請求項1又は2に記載のビスマス系ガラス。
  4.  実質的にPbOを含有しないことを特徴とする請求項1~3の何れかに記載のビスマス系ガラス。
  5.  請求項1~4の何れかに記載のビスマス系ガラスの製造方法であって、
     硝酸塩原料、硫酸塩原料、二酸化物原料、過酸化物原料の何れかを含むガラスバッチを溶融、成形して、ビスマス系ガラスを作製することを特徴とするビスマス系ガラスの製造方法。
  6.  二酸化物原料が二酸化マンガン原料であることを特徴とする請求項5に記載のビスマス系ガラスの製造方法。
  7.  過酸化物原料が過マンガン酸塩原料であることを特徴とする請求項5又は6に記載のビスマス系ガラスの製造方法。
  8.  ビスマス系ガラスからなるガラス粉末と耐火性フィラー粉末とを含む封着材料において、
     ガラス粉末の含有量が50~95体積%、耐火性フィラー粉末の含有量が1~40体積%であり、且つビスマス系ガラスが、請求項1~4の何れかに記載のビスマス系ガラスであることを特徴とする封着材料。
  9.  耐火性フィラー粉末が、コーディエライト、ウイレマイト、アルミナ、リン酸ジルコニウム系化合物、ジルコン、ジルコニア、酸化スズ、石英ガラス、β-ユークリプタイト、スポジュメンから選ばれる一種又は二種以上であることを特徴とする請求項8に記載の封着材料。
  10.  レーザー吸収材の含有量が5体積%以下であることを特徴とする請求項8又は9に記載の封着材料。
  11.  レーザー封着に用いることを特徴とする請求項8~10の何れかに記載の封着材料。
PCT/JP2017/037257 2016-10-13 2017-10-13 ビスマス系ガラス、ビスマス系ガラスの製造方法及び封着材料 WO2018070529A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780041191.8A CN109415244B (zh) 2016-10-13 2017-10-13 铋系玻璃、铋系玻璃的制造方法及密封材料
KR1020187031887A KR102427006B1 (ko) 2016-10-13 2017-10-13 비스무트계 유리, 비스무트계 유리의 제조 방법 및 봉착 재료

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-201763 2016-10-13
JP2016201762A JP6840982B2 (ja) 2016-10-13 2016-10-13 ビスマス系ガラス及びそれを用いた封着材料
JP2016-201762 2016-10-13
JP2016201763A JP6768194B2 (ja) 2016-10-13 2016-10-13 ビスマス系ガラス、ビスマス系ガラスの製造方法及び封着材料

Publications (1)

Publication Number Publication Date
WO2018070529A1 true WO2018070529A1 (ja) 2018-04-19

Family

ID=61905577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037257 WO2018070529A1 (ja) 2016-10-13 2017-10-13 ビスマス系ガラス、ビスマス系ガラスの製造方法及び封着材料

Country Status (4)

Country Link
KR (1) KR102427006B1 (ja)
CN (1) CN109415244B (ja)
TW (1) TWI743229B (ja)
WO (1) WO2018070529A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373215A (en) * 1976-12-10 1978-06-29 Nippon Sheet Glass Co Ltd Method of continuously changing color of molten glass in tank furnace
JP2002179436A (ja) * 2000-12-14 2002-06-26 Nippon Electric Glass Co Ltd 銀リン酸系ガラス及びそれを用いた封着材料
JP2012158484A (ja) * 2011-01-31 2012-08-23 Toray Ind Inc ガラスペースト、それを用いたプラズマディスプレイパネルの製造方法
JP2014080351A (ja) * 2012-09-25 2014-05-08 Nippon Electric Glass Co Ltd ビスマス系ガラス及びこれを用いた封着材料
JP2015107906A (ja) * 2013-10-21 2015-06-11 日本電気硝子株式会社 封着材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3814810B2 (ja) * 1996-04-05 2006-08-30 日本電気硝子株式会社 ビスマス系ガラス組成物
US6109994A (en) 1996-12-12 2000-08-29 Candescent Technologies Corporation Gap jumping to seal structure, typically using combination of vacuum and non-vacuum environments
JP4016507B2 (ja) * 1998-10-21 2007-12-05 日本電気硝子株式会社 ビスマス系ガラス組成物
JP4825448B2 (ja) 2005-05-12 2011-11-30 傳 篠田 表示装置を製造する製造装置
EP2168927A4 (en) * 2007-07-20 2012-01-11 Nippon Electric Glass Co SEALING MATERIAL, SEALING COMPRESSOR AND GLASS COMPOSITION FOR SEALED SEALING
JP5224102B2 (ja) * 2008-03-26 2013-07-03 日本電気硝子株式会社 有機elディスプレイ用封着材料
CN101456674B (zh) * 2009-01-04 2011-05-11 武汉理工大学 一种掺稀土无铅低熔点封接玻璃及其的制备方法
WO2013015414A1 (ja) * 2011-07-27 2013-01-31 日本電気硝子株式会社 封着材料層付きガラス基板、これを用いた有機elデバイス、及び電子デバイスの製造方法
CN104428265B (zh) * 2012-03-30 2018-01-09 康宁股份有限公司 用于led磷光体的硼酸铋玻璃包封剂
JP6148943B2 (ja) 2013-09-03 2017-06-14 タイガー魔法瓶株式会社 ステンレス鋼製真空二重容器の封着用無鉛ガラス
CN103964695B (zh) * 2014-03-31 2017-05-17 上海天马有机发光显示技术有限公司 一种玻璃料混合物、其应用以及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373215A (en) * 1976-12-10 1978-06-29 Nippon Sheet Glass Co Ltd Method of continuously changing color of molten glass in tank furnace
JP2002179436A (ja) * 2000-12-14 2002-06-26 Nippon Electric Glass Co Ltd 銀リン酸系ガラス及びそれを用いた封着材料
JP2012158484A (ja) * 2011-01-31 2012-08-23 Toray Ind Inc ガラスペースト、それを用いたプラズマディスプレイパネルの製造方法
JP2014080351A (ja) * 2012-09-25 2014-05-08 Nippon Electric Glass Co Ltd ビスマス系ガラス及びこれを用いた封着材料
JP2015107906A (ja) * 2013-10-21 2015-06-11 日本電気硝子株式会社 封着材料

Also Published As

Publication number Publication date
KR20190069343A (ko) 2019-06-19
CN109415244A (zh) 2019-03-01
KR102427006B1 (ko) 2022-07-29
TWI743229B (zh) 2021-10-21
CN109415244B (zh) 2021-11-02
TW201815712A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
JP6455801B2 (ja) 封着材料
JP5224102B2 (ja) 有機elディスプレイ用封着材料
CN111302629B (zh) 玻璃组合物、玻璃粉末、封接材料、玻璃糊、封接方法、封接封装体和有机电致发光元件
JP2014001134A (ja) 有機elディスプレイの製造方法
JP6075715B2 (ja) ビスマス系ガラス及びこれを用いた封着材料
WO2017170051A1 (ja) ガラス粉末及びそれを用いた封着材料
CN113745427A (zh) 密封的封装体和有机电致发光器件
WO2014010553A1 (ja) 色素増感型太陽電池用封着材料
JP5994438B2 (ja) 封着材料層付きガラス基板の製造方法
JP6768194B2 (ja) ビスマス系ガラス、ビスマス系ガラスの製造方法及び封着材料
JP2019151539A (ja) ガラス粉末及びそれを用いた封着材料
WO2020153061A1 (ja) ガラス粉末及びそれを用いた封着材料
JP6840982B2 (ja) ビスマス系ガラス及びそれを用いた封着材料
KR102427006B1 (ko) 비스무트계 유리, 비스무트계 유리의 제조 방법 및 봉착 재료
JP6108285B2 (ja) 電子デバイスの製造方法
WO2019167549A1 (ja) ガラス粉末及びそれを用いた封着材料
JP6885445B2 (ja) ガラス組成物、ガラス粉末、封着材料、ガラスペースト、封着方法、封着パッケージおよび有機エレクトロルミネセンス素子
JP6075599B2 (ja) 封着材料層付きガラス基板の製造方法
JP2023086521A (ja) ガラスペースト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187031887

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861053

Country of ref document: EP

Kind code of ref document: A1