WO2018070274A1 - 放射線撮像システム、撮像装置、制御装置およびそれらの制御方法 - Google Patents

放射線撮像システム、撮像装置、制御装置およびそれらの制御方法 Download PDF

Info

Publication number
WO2018070274A1
WO2018070274A1 PCT/JP2017/035502 JP2017035502W WO2018070274A1 WO 2018070274 A1 WO2018070274 A1 WO 2018070274A1 JP 2017035502 W JP2017035502 W JP 2017035502W WO 2018070274 A1 WO2018070274 A1 WO 2018070274A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
radiation
image
information
radiation imaging
Prior art date
Application number
PCT/JP2017/035502
Other languages
English (en)
French (fr)
Inventor
光 田中
雄一 西井
健太 遠藤
智大 川西
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016203041A external-priority patent/JP6802683B2/ja
Priority claimed from JP2017050291A external-priority patent/JP6779159B2/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201780063506.9A priority Critical patent/CN109843178B/zh
Publication of WO2018070274A1 publication Critical patent/WO2018070274A1/ja
Priority to US16/381,608 priority patent/US11092698B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to a radiation imaging system, an imaging device, a control device, and a control method thereof.
  • a radiation imaging device and an imaging control device that receives and uses a radiation image from the radiation imaging device are provided, and the radiation image acquired by the radiation imaging device is captured as external data as image data. It is transmitted to the control device.
  • the imaging control apparatus is notified of which radiation imaging apparatus should acquire image data. It is necessary. Then, the imaging control device acquires image data through communication with the notified radiation imaging device. When the user uses a radiation imaging apparatus different from the notified radiation imaging apparatus, the imaging control apparatus cannot acquire a radiation image.
  • a plurality of radiation imaging apparatuses can be imaged, and the imaging control apparatus acquires radiation images from all of the plurality of radiation imaging apparatuses, and selects and uses significant radiation images.
  • the imaging control device receives radiation images from all of the plurality of radiation imaging devices that have performed radiation imaging. For this reason, it takes time to display an image of radiation imaging and to move to the next radiation imaging, and radiation imaging in an early cycle cannot be performed.
  • a radiation imaging system that enables radiation imaging in a fast cycle in a radiation imaging system having a plurality of usable radiation imaging apparatuses is disclosed.
  • a radiation imaging system has the following configuration. That is, A plurality of imaging devices that generate images based on radiation emitted from the radiation generator; A radiation imaging system comprising: a control device that communicates with the plurality of imaging devices; Each of the plurality of imaging devices is Based on an image obtained by an imaging operation, comprising generating means for generating imaging information having a data size smaller than the image; The control device includes: Information acquisition means for acquiring the imaging information from each of the plurality of imaging devices; Selecting means for selecting an imaging device for acquiring an image obtained by an imaging operation from the plurality of imaging devices based on the imaging information acquired by the information acquisition unit.
  • radiation imaging in a fast cycle is possible in a radiation imaging system having a plurality of usable radiation imaging apparatuses.
  • FIG. 1 is a block diagram illustrating a functional configuration example of the radiation imaging system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a hardware configuration example of the radiation imaging system according to the first embodiment.
  • 3A and 3B are flowcharts showing the radiation imaging operation according to the first embodiment.
  • FIG. 4 is a flowchart showing an operation of acquiring a radiation image according to the first embodiment.
  • FIG. 5 is a block diagram illustrating a functional configuration example of the radiation imaging system according to the second embodiment.
  • FIG. 6B are flowcharts showing an operation of acquiring a radiation image according to the second embodiment.
  • FIG. 7 is a flowchart showing an operation of acquiring a radiation image according to the third embodiment.
  • FIG. 8 is a flowchart showing an operation of acquiring a radiation image according to the fourth embodiment.
  • FIG. 9 is a flowchart showing an operation of acquiring a radiation image according to the fifth embodiment.
  • FIG. 10 is a flowchart showing an operation of acquiring a radiation image according to the sixth embodiment.
  • FIG. 11 is a block diagram illustrating a functional configuration example of the radiation imaging system according to the seventh embodiment.
  • FIG. 12 is a flowchart showing an operation of acquiring a radiation image according to the seventh embodiment.
  • FIG. 13 is a block diagram illustrating a functional configuration example of the radiation imaging system according to the eighth embodiment.
  • FIG. 14 is a flowchart showing an operation of acquiring a radiation image according to the eighth embodiment.
  • FIG. 15 is a block diagram illustrating a configuration example of a radiation imaging system according to the ninth embodiment.
  • 16A and 16B are flowcharts illustrating an operation example of radiation imaging according to the ninth embodiment.
  • FIG. 17 is a flowchart illustrating an operation example of radiation image acquisition according to the ninth embodiment.
  • FIG. 18 is a diagram illustrating a configuration example of a radiation imaging system according to the tenth embodiment.
  • 19A and 19B are flowcharts illustrating an operation example of radiation imaging according to the tenth embodiment.
  • FIG. 21 is a timing chart illustrating an example of the timing of imaging operation, generation of imaging information, and selection of a radiation imaging apparatus.
  • FIG. 1 is a diagram illustrating a functional configuration example of a radiation imaging system according to the first embodiment.
  • the radiation imaging system of the present embodiment includes a radiation generating device 104, a plurality of imaging devices that generate images based on radiation emitted from the radiation generating device 104, and a control device that communicates with the plurality of imaging devices.
  • an imaging control device 101 is shown as an example of a control device, and a first radiation imaging device 102 and a second radiation imaging device 103 are shown as examples of a plurality of imaging devices.
  • the imaging control apparatus 101 communicates with the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 connected to control the radiation imaging.
  • the imaging control apparatus 101 communicates with the radiation generation apparatus 104 and acquires information when radiation is emitted from the radiation generation apparatus 104.
  • the number of radiation imaging apparatuses is not limited to two, and may be three or more. In the present embodiment, a configuration having two radiation imaging apparatuses will be described as an example.
  • the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 shift to an imageable state in response to an instruction from the imaging control apparatus 101, and perform radiation imaging while synchronizing with the radiation generation apparatus 104.
  • the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 each generate a radiation image by the radiation emitted from the radiation generation apparatus 104.
  • the imaging execution unit 1021 executes an imaging operation in synchronization with the radiation generation apparatus 104 to obtain a radiation image.
  • the generation unit 1022 generates imaging information having a data size smaller than that of the radiographic image based on the radiographic image obtained by the imaging operation.
  • the imaging information is used by the imaging control apparatus 101 (selection unit 1013) to select a radiation imaging apparatus that acquires a radiation image.
  • the transmission unit 1023 transmits the imaging information generated by the generation unit 1022 to the imaging control device 101 that is an external device. Further, the transmission unit 1023 transmits a radiation image obtained by the imaging operation to the external device in response to a request from the external device (imaging control device 101).
  • the second radiation imaging apparatus 103 has a similar functional configuration.
  • the control unit 1011 controls the information acquisition unit 1012, the selection unit 1013, the image acquisition unit 1014, and the state management unit 1015.
  • the information acquisition unit 1012 acquires imaging information from each of a plurality of radiation imaging apparatuses (the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103) or information when radiation is emitted from the radiation generation apparatus 104. Or get.
  • the selection unit 1013 selects radiographic images obtained by an imaging operation from a plurality of radiation imaging devices (the first radiation imaging device 102 and the second radiation imaging device 103) based on the imaging information acquired by the information acquisition unit 1012. One radiation imaging device for acquisition is selected.
  • the image acquisition unit 1014 acquires a radiation image from one radiation imaging apparatus selected by the selection unit 1013.
  • the state management unit 1015 communicates with the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103, and manages and controls each state.
  • the radiation generation apparatus 104 transmits an irradiation start notification to all usable radiation imaging apparatuses in response to the exposure switch 1041 being turned on. Upon receiving the irradiation start notification, the radiation imaging apparatus starts an imaging operation (charge accumulation), and transmits an irradiation permission notification to the radiation generation apparatus 104. The radiation generation apparatus 104 receives the irradiation permission notification from all usable radiation imaging apparatuses (the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 in this embodiment), and performs radiation irradiation. By this operation, synchronization between the radiation generation apparatus 104 and the radiation imaging apparatuses 102 and 103 is realized.
  • FIG. 2 is a block diagram illustrating a hardware configuration example of the radiation imaging system according to the first embodiment.
  • the CPU 11 implements each function unit illustrated in FIG. 1 of the imaging control apparatus 101 by executing programs stored in the ROM 12 and the RAM 13.
  • the ROM 12 is a read-only memory
  • the RAM 13 is a random access memory.
  • the secondary storage device 14 is composed of, for example, a hard disk, and stores radiation images received from the radiation imaging devices 102 and 103.
  • a program stored in the secondary storage device 14 is loaded into the RAM 13 as necessary and executed by the CPU 11.
  • the input device 15 includes a pointing device and a keyboard, and accepts user operations.
  • the display device 16 is a liquid crystal display device, for example, and displays a radiation image or the like.
  • the interface unit 17 connects the imaging control apparatus 101 to the network 120.
  • the above components are connected to each other via a bus 18 so that they can communicate with each other.
  • the network 120 connects the imaging control apparatus 101, the first radiation imaging apparatus 102, the second radiation imaging apparatus 103, and the radiation generation apparatus 104 so that they can communicate with each other.
  • the network 120 may have any form such as a wired network or a wireless network.
  • the network 120 may be used for communication for synchronizing the radiation generation apparatus 104 and the radiation imaging apparatuses 102 and 103 described above, or a dedicated wired / wireless connection may be used.
  • the first radiation imaging apparatus 102 includes a radiation detection panel 51 and a controller 52.
  • the radiation detection panel 51 is composed of, for example, an FPD (Flat Panel Detector), and generates a radiation image by generating an electrical signal corresponding to the radiation dose.
  • the controller 52 reads a signal from the radiation detection panel 51 and generates a radiation image. Further, the controller 52 generates imaging information having a data size smaller than that of the radiographic image based on the radiographic image, and transmits the imaging information to the imaging control apparatus 101.
  • the controller 52 has, for example, a CPU and a memory, and performs imaging control by the radiation detection panel 51, processing of the acquired image, and the like, and implements each functional unit shown in FIG. 1, for example.
  • the configuration of the second radiation imaging apparatus 103 is the same.
  • FIG. 3A and 3B are flowcharts illustrating an example of operations from preparation for radiation imaging to radiation imaging performed by the imaging control device 101, the first radiation imaging device 102, and the second radiation imaging device 103.
  • the operations of the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are realized by a CPU (not shown) in the controller 52 executing a predetermined program stored in a memory (not shown).
  • step S101 the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are in a standby state.
  • the radiation imaging apparatus establishes communication with the imaging control apparatus 101 (for example, communication via the network 120).
  • the imaging control apparatus 101 (state management unit 1015) transmits a transition instruction for transitioning to an imaging enabled state to all usable radiation imaging apparatuses.
  • the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are usable radiation imaging apparatuses.
  • step S ⁇ b> 103 the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 transition to an imageable state in response to a transition instruction from the imaging control apparatus 101, and image capture control that has transitioned to the imageable state. Notify the device 101.
  • step S ⁇ b> 104 the imaging execution unit 1021 of the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 performs radiation imaging in synchronization with the radiation generation apparatus 104.
  • step S105 the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 notify the imaging control apparatus 101 that radiation imaging has been performed.
  • FIG. 4 is a flowchart illustrating an example of an operation from the execution of radiation imaging by the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 until the imaging control apparatus 101 acquires a radiation image.
  • step S201 the generation unit 1022 of the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 calculates statistical information of pixel values of the generated radiation image as imaging information.
  • the transmission unit 1023 transmits the calculated statistical information to the imaging control apparatus 101 as imaging information.
  • an average value of pixel values (hereinafter, pixel average value) is used as an example of statistical information.
  • the statistical information is not limited to this, and for example, a maximum value, a median value, a variance value, or the like may be used. Alternatively, it may be statistical information such as a maximum value of a difference between adjacent pixel values or a width between a maximum value and a minimum value of pixel values. Further, there may be two or more pieces of statistical information to be calculated.
  • the pixel value may be a luminance value or a density value.
  • the imaging control apparatus 101 acquires the pixel average value calculated in step S201 from the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103.
  • the imaging control apparatus 101 compares the pixel average values acquired in step S202, and selects the radiation imaging apparatus that provides the largest pixel average value.
  • the structure which selects the radiation imaging device which provided the largest pixel average value was shown above, it is not limited to this.
  • a radiation imaging apparatus that provides statistical information closest to a preset threshold value may be selected.
  • the radiation imaging apparatus may be selected by comparing a plurality of statistical information. As a comparison of a plurality of pieces of statistical information, for example, a combination of “pixel average value” and “width of maximum value and minimum value of pixel value” may be used.
  • the determination is basically made based on the “pixel average value”, and when the average value is not so different, the determination is made using the “width between the maximum value and the minimum value of the pixel value”. For example, when irradiation is performed with a narrow irradiation area, it is difficult for the difference in the pixel average value to appear between the radiographic images. Therefore, radiation that provides a significant radiographic image taking into account the “maximum and minimum widths of pixel values” Select an imaging device.
  • the present invention is not limited to such an example. For example, when a radiation imaging apparatus is normally selected with reference to “maximum and minimum widths of pixel values” and there is no significant difference, “pixel average” The radiation imaging apparatus may be selected in consideration of “value”.
  • This method is effective when, for example, there is no difference in “maximum pixel value and minimum value width” between radiographic images due to some noise or the like. Of course, other combinations of statistical information may be used. Further, when the comparison results are the same and one radiation imaging apparatus cannot be selected, the radiation imaging apparatus that has previously notified that the radiation imaging has been performed may be selected.
  • the imaging control apparatus 101 acquires a radiation image from the radiation imaging apparatus (here, referred to as the first radiation imaging apparatus 102) selected in step S203. That is, the imaging control apparatus 101 requests an image from the first radiation imaging apparatus 102, and the transmission unit 1023 of the first radiation imaging apparatus 102 receives a radiographic image in response to an image request from the imaging control apparatus 101. Is transmitted to the imaging control apparatus 101.
  • the imaging control device 101 in a system that performs radiation imaging in a state where a plurality of radiation imaging devices can be imaged, the imaging control device 101 generates a radiation image based on imaging information (for example, pixel average value) having a data size smaller than that of the radiation image.
  • imaging information for example, pixel average value
  • a radiation imaging apparatus to be acquired is selected. Since the imaging control apparatus 101 acquires a radiation image from the selected radiation imaging apparatus, the radiation imaging cycle can be shortened as compared with a configuration in which radiation images are acquired from all the radiation imaging apparatuses. Therefore, it is possible to realize a radiation imaging system that can perform radiation imaging in a fast cycle while reducing the possibility of giving unnecessary exposure due to re-imaging.
  • a radiation imaging apparatus that has performed imaging under radiation irradiation is selected based on imaging information (statistical information) acquired by the selection unit 1013, and radiation is acquired from the selected radiation imaging apparatus by the image acquisition unit 1014. The image was acquired.
  • imaging information status information
  • the second embodiment after receiving a radiation image from the radiation imaging apparatus automatically selected in this way, it is possible to further acquire a radiation image from another radiation imaging apparatus by an instruction from the user or the like. The configuration will be described.
  • FIG. 5 is a block diagram illustrating a functional configuration example of the radiation imaging system according to the second embodiment.
  • the same components as those in the first embodiment (FIG. 1) are denoted by the same reference numerals.
  • the hardware configuration of the radiation imaging system of the second embodiment is the same as that of the first embodiment (FIG. 2).
  • an input unit 105 and a reacquisition instruction unit 1016 are added to the configuration of the first embodiment.
  • the input unit 105 receives an operation input from the outside through a user interface provided to the display device 16 or the input device 15 (mouse, keyboard, etc.).
  • the reacquisition instructing unit 1016 acquires another radiation imaging apparatus in response to a predetermined operation input from the input unit 105 after the image acquisition unit 1014 acquires a radiation image from one radiation imaging apparatus selected by the selection unit 1013.
  • the control unit 1011 is instructed to acquire a radiation image from the control unit 1011.
  • the control unit 1011 instructs the image acquisition unit 1014 to acquire a radiation image from a radiation imaging apparatus for which a radiation image has not yet been acquired.
  • the image acquisition unit 1014 acquires a radiation image from the radiation imaging apparatus according to an instruction from the control unit 1011.
  • the reacquisition instruction unit 1016 may directly instruct the image acquisition unit 1014 to specify a radiographic image and acquire a radiographic image.
  • FIGS. 3A and 3B show an example of an operation in which the imaging control apparatus 101 acquires a radiation image after performing radiation imaging by the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 according to the second embodiment. It is a flowchart. In addition, the same step number is attached
  • the image acquisition unit 1014 acquires a radiation image from the radiation imaging apparatus (in this example, the first radiation imaging apparatus 102) selected by the selection unit 1013 based on the imaging information (statistical information). Thereafter, in step S301, the control unit 1011 determines whether there is a reacquisition instruction from the reacquisition instruction unit 1016. If there is a reacquisition instruction, the process proceeds to step S302. If there is no reacquisition instruction, the process proceeds to step S304. In this example, the reacquisition instruction is input by the user operation from the input unit 105, but is not limited thereto. For example, as a result of analyzing a radiographic image acquired by the image acquisition unit 1014, if the reflection of the subject cannot be confirmed, the control unit 1011 may automatically issue a re-acquisition instruction.
  • the selection unit 1013 selects one radiation imaging apparatus from other than the radiation imaging apparatus for which a radiation image has been acquired.
  • the second radiation imaging apparatus 103 is selected as a radiation imaging apparatus other than the first radiation imaging apparatus 102 from which a radiation image has been acquired.
  • the input unit 105 may allow the user to select the radiation imaging apparatus.
  • a list of selectable radiation imaging devices may be displayed in a list so that the user can select from the list.
  • the selection unit 1013 may select the radiation imaging device based on the imaging information acquired by the information acquisition unit 1012 from among the radiation imaging devices from which the radiation image is acquired. For example, the selection unit 1013 may select a radiation imaging apparatus that provides the largest pixel average value from among radiation imaging apparatuses for which a radiation image has not been acquired.
  • step S303 the image acquisition unit 1014 acquires a radiation image from the radiation imaging apparatus (here, the second radiation imaging apparatus 103) selected by the selection unit 1013 in step S302. That is, when the image acquisition unit 1014 requests a radiation image from the second radiation imaging apparatus 103, the transmission unit 1023 of the second radiation imaging apparatus 103 is acquired by the imaging execution unit 1021 in response to this request. A radiation image is transmitted to the imaging control apparatus 101.
  • the control unit 1011 determines whether or not to end the radiation imaging. For example, the user can instruct the end of radiation imaging from the input device 15. If the radiation imaging is not terminated, the process returns to step S301, and the processes after step S301 are repeated. On the other hand, when ending the radiation imaging process, the process of this flowchart is ended.
  • the radiographic image can be acquired without performing re-imaging.
  • ⁇ Third Embodiment> statistical information obtained from a radiographic image is used as imaging information for determining from which radiographic imaging device a radiographic image is acquired.
  • the generation unit 1022 obtains statistical information from an image (pixel group) generated based on a radiographic image and having a data size smaller than that of the radiographic image will be described.
  • the functional configuration and hardware configuration of the radiation imaging system of the third embodiment are the same as those of the first embodiment (FIGS. 1 and 2).
  • FIG. 7 shows an example of operations until the imaging control apparatus 101 acquires a radiation image after performing radiation imaging by the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 according to the third embodiment. It is a flowchart.
  • step S401 the generation unit 1022 of the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 calculates pixel value statistical information as imaging information from the thinned image of the radiation image acquired by the imaging execution unit 1021.
  • an average value of pixel values is calculated as statistical information.
  • a thinned image is used as an image for which statistical information is calculated (an image having a data size smaller than that of a radiation image), but the present invention is not limited to this.
  • statistical information may be calculated from a reduced image of a radiographic image, pixels having one or more predetermined coordinates, pixels of a region of interest, and the like.
  • the reduced image is generated, for example, by calculating a pixel value of one pixel from pixel values of a plurality of pixels (for example, an average value of neighboring pixels).
  • the region of interest is detected by a well-known method by analyzing the radiographic image.
  • the average value of the pixel values is used as an example of the statistical information, but the present invention is not limited to this.
  • statistical information such as the maximum value, median value, and variance value of pixel values may be used.
  • it may be statistical information such as a maximum value of a difference between adjacent pixel values or a width between a maximum value and a minimum value of pixel values.
  • the pixel value may be luminance or density.
  • step S402 the imaging control apparatus 101 (information acquisition unit 1012) acquires the pixel average value calculated in step S401 from the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 (transmission unit 1023).
  • step S403 the selection unit 1013 compares the pixel average values acquired in step S402, and selects the radiation imaging apparatus having the largest pixel average value.
  • the radiation imaging apparatus having the largest pixel average value is selected, but the present invention is not limited to this.
  • a radiation imaging apparatus whose acquired statistical information is closest to a preset threshold value may be selected.
  • a plurality of pieces of statistical information may be compared and selected.
  • the radiation imaging apparatus that has previously notified that the radiation imaging has been performed may be selected.
  • the imaging control apparatus 101 acquires a radiographic image from the radiation imaging apparatus (here, the first radiation imaging apparatus 102) selected by the selection unit 1013 in step S403.
  • imaging information for example, statistical information of pixel values
  • imaging information for example, statistical information of pixel values
  • the information acquisition unit 1012 acquires statistical information about a radiation image from the radiation imaging apparatus.
  • the information acquisition unit 1012 acquires, as imaging information, an image generated based on a radiographic image and having a data size smaller than that of the radiographic image from a plurality of radiographic imaging devices, and from the acquired imaging information (image). Calculate statistical information.
  • the functional configuration and hardware configuration of the radiation imaging system according to the fourth embodiment are the same as those of the first embodiment (FIGS. 1 and 2).
  • FIG. 8 shows an example of operations until the imaging control apparatus 101 acquires a radiation image after performing radiation imaging by the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 according to the fourth embodiment. It is a flowchart.
  • step S501 the generation unit 1022 of the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 generates, as imaging information, an image having data smaller than the radiation image and having a smaller figure than the radiation image based on the radiation image.
  • a thinned image of the radiation image generated by the imaging execution unit 1021 is extracted and used as imaging information.
  • a thinned image is shown as an example of an image having a small data size, but the present invention is not limited to this.
  • the part of the radiographic image may be, for example, a reduced image of the radiographic image, a pixel with coordinates set in advance, or an image of a region of interest in the radiographic image.
  • the imaging control apparatus 101 acquires the thinned image extracted in step S501 from the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103.
  • the selection unit 1013 In step S503, the selection unit 1013 generates predetermined statistical information from pixel values of an image having a small data size, and selects one radiation imaging apparatus based on the generated statistical information. For example, the selection unit 1013 calculates statistical information (average value in this example) of the pixel value from the thinned image acquired in step S502, and selects one radiation imaging apparatus based on this.
  • the average value is used as the statistical information of the pixel value, but the present invention is not limited to this.
  • statistical information such as the maximum value, median value, and variance value of pixel values may be used. Alternatively, it may be statistical information such as a maximum value of a difference between adjacent pixel values or a width between a maximum value and a minimum value of pixel values. Further, there may be two or more pieces of statistical information to be calculated.
  • the pixel value may be luminance and density.
  • the selection unit 1013 compares the pixel average values acquired in step S503, and selects the radiation imaging apparatus that has generated the thinned image having the largest pixel average value.
  • the radiation imaging apparatus having the largest pixel average value is selected, but the present invention is not limited to this.
  • a radiation imaging apparatus that provides a periodical image whose acquired statistical information is closest to a preset threshold value may be selected.
  • a plurality of pieces of statistical information may be compared and selected. If the comparison result in the selection unit 1013 is equivalent and cannot be selected, the radiation imaging apparatus that has previously notified that the radiation imaging has been performed may be selected.
  • the imaging control apparatus 101 acquires a radiation image from the radiation imaging apparatus (here, the first radiation imaging apparatus 102) selected by the selection unit 1013 in step S504.
  • the fourth embodiment even if a part of a radiographic image is used as information used for comparison selection of a radiographic imaging device that acquires a radiographic image, the same effect as in the first embodiment is obtained. It is done.
  • a thinned image is used as partial information of a radiation image.
  • an image of an irradiation field among generated radiographic images is used. That is, in the fifth embodiment, the radiation imaging apparatus is selected based on the statistical information of the irradiation field pixels.
  • the functional configuration and hardware configuration of the radiation imaging system according to the fifth embodiment are the same as those in the first embodiment (FIGS. 1 and 2).
  • FIG. 9 shows an example of operations until the imaging control apparatus 101 acquires a radiation image after performing radiation imaging by the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 according to the fifth embodiment. It is a flowchart.
  • step S601 the generation unit 1022 of the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 analyzes the acquired radiation image and detects an irradiation field that is a range irradiated with radiation.
  • step S602 the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 use the irradiation field detected by the analysis in step S601 to calculate the average value of the pixel values from the irradiation field range of the generated radiation image. Is calculated.
  • the average value of pixel values is used as an example of statistical information, but the present invention is not limited to this. Similar to the first embodiment, statistical information such as the maximum value, median value, and variance value of pixel values may be used.
  • the pixel value may be luminance or density.
  • step S603 the imaging control apparatus 101 (information acquisition unit 1012) acquires the pixel average value calculated in step S602 from the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103.
  • the processing in steps S604 to S605 selection of a radiation imaging apparatus using acquired imaging information (pixel average value) and acquisition of a radiation image from the selected radiation imaging apparatus) is performed in the first embodiment (step S203 in FIG. 4). To S204).
  • imaging information obtained from the range of the irradiation field can be used as information used for comparison and selection of a radiation imaging apparatus that acquires a radiation image. Since the radiation imaging apparatus only has to calculate statistical information about the range of the irradiation field, the load is reduced.
  • FIG. 10 is a flowchart showing an operation example from preparation for radiation imaging to execution of radiation imaging by the imaging control apparatus 101, the first radiation imaging apparatus 102, and the second radiation imaging apparatus 103 according to the sixth embodiment. It is.
  • step S ⁇ b> 701 the imaging control apparatus 101 (state management unit 1015) acquires information when the radiation is emitted from the radiation generation apparatus 104, and uses collimator information of the first radiation imaging apparatus 102 and the second radiation imaging. Notify the device 103.
  • collimator information is acquired and notified as an example of information related to radiation irradiation, but is not limited to this.
  • irradiation field information calculated from the distance between the tube of the radiation generator 104 and the radiation imaging device or the angle of the tube may be used.
  • the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 calculate an irradiation field from the collimator information notified in step S701, and calculate a pixel average value from the range of the irradiation field of the generated radiation image. calculate.
  • the pixel average value is used as an example of the statistical information, but the present invention is not limited to this. Similar to the first embodiment, statistical information such as the maximum value, median value, and variance value of pixel values may be used. Alternatively, it may be statistical information such as a maximum value of a difference between adjacent pixel values or a width between a maximum value and a minimum value of pixel values. Further, there may be two or more pieces of statistical information to be calculated. Further, the pixel value may be luminance, density, or the like.
  • steps S703 to S705 selection of a radiation imaging apparatus using acquired imaging information (pixel average value) and acquisition of a radiation image from the selected radiation imaging apparatus
  • steps S703 to S705 selection of a radiation imaging apparatus using acquired imaging information (pixel average value) and acquisition of a radiation image from the selected radiation imaging apparatus
  • the irradiation field as the range for calculating the statistical information can be determined based on the information related to the radiation irradiation acquired from the external device, so that the irradiation field is detected from the radiation image.
  • the processing load is reduced.
  • radiation information is obtained by acquiring imaging information (statistical information, reduced image, partial image, etc.) having a data size smaller than that of each radiation image from a plurality of radiation imaging apparatuses and comparing the imaging information.
  • a radiation imaging apparatus that acquires an image is selected.
  • a configuration will be described in which a radiation imaging apparatus can be selected more accurately by considering such individual differences of the radiation imaging apparatus.
  • FIG. 11 is a block diagram illustrating a functional configuration example of the radiation imaging system according to the seventh embodiment.
  • the same components as those in the first embodiment (FIG. 1) are denoted by the same reference numerals.
  • the imaging control apparatus 101 of the seventh embodiment has a configuration in which a characteristic information storage unit 1017 and an information correction unit 1018 are added to the configuration of the first embodiment.
  • the hardware configuration of the radiation imaging system of the seventh embodiment is the same as that of the first embodiment (FIG. 2).
  • the information acquisition unit 1012 acquires the characteristic information of the radiation imaging apparatus from each of the plurality of radiation imaging apparatuses, in addition to the same function as the first embodiment (acquisition of imaging information and information when irradiated with radiation).
  • the characteristic information storage unit 1017 stores characteristic information indicating each characteristic of the plurality of radiation imaging apparatuses acquired by the information acquisition unit 1012.
  • the characteristic information includes, for example, sensitivity information indicating pixel values that can be converted when an element that receives radiation in the radiation imaging apparatus receives radiation of 1 mR (millientgen).
  • the sensitivity information for example, a ratio between a target value of a pixel average value that can be acquired when the imaging apparatus is irradiated with radiation under a predetermined condition and a pixel average value that can be actually acquired may be used.
  • the target value may be determined according to the type of phosphor.
  • an image (gain image) generated when radiation imaging is performed under a predetermined condition may be used as sensitivity information.
  • Sensitivity information may be updated periodically or determined by the manufacturing process.
  • the information correction unit 1018 corrects the imaging information acquired by the information acquisition unit 1012 from the plurality of radiation imaging apparatuses based on the characteristic information stored in the characteristic information storage unit 1017.
  • the selection unit 1013 selects one radiation imaging apparatus from a plurality of radiation imaging apparatuses (in the embodiment, the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103) based on the imaging information corrected by the information correction unit 1018. select.
  • FIG. 12 is a flowchart illustrating an example of operations from the execution of radiation imaging by the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 until the imaging control apparatus 101 acquires a radiation image.
  • the operations from the preparation of radiation imaging to the execution of radiation imaging by the imaging control device 101, the first radiation imaging device 102, and the second radiation imaging device 103 are the same as in the first embodiment (FIGS. 3A and 3B). It is.
  • step S ⁇ b> 1201 the information correction unit 1018 of the imaging control apparatus 101 corrects the pixel average value acquired from the plurality of radiation imaging apparatuses based on the characteristic information stored in the characteristic information storage unit 1017.
  • the information correction unit 1018 uses the sensitivity information of the radiation imaging apparatus to correct the pixel average value when each radiation imaging apparatus is matched with a predetermined sensitivity as a reference.
  • step S1202 the imaging control apparatus 101 (selection unit 1013) compares the pixel average values corrected in step S1201, and selects the radiation imaging apparatus that provides the largest pixel average value.
  • the structure which selects the radiation imaging device which provided the largest pixel average value was shown above, it is not limited to this. For example, various modifications as described with respect to step S203 of the first embodiment are possible.
  • the imaging control apparatus 101 acquires a radiographic image from the radiation imaging apparatus (here, the first radiation imaging apparatus 102) selected in step S1202.
  • the imaging control apparatus 101 requests an image from the first radiation imaging apparatus 102, and the transmission unit 1023 of the first radiation imaging apparatus 102 receives a radiographic image in response to an image request from the imaging control apparatus 101. Is transmitted to the imaging control apparatus 101.
  • imaging information acquired from the plurality of radiation imaging devices is characteristic information of each radiation imaging device. Is corrected based on The imaging control apparatus 101 can compare imaging information of a plurality of radiation imaging apparatuses fairly by referring to the corrected imaging information. Therefore, the possibility of acquiring a radiographic image in which a subject is not reflected due to erroneous selection of the radiographic imaging device is reduced.
  • the information correction unit 1018 in the imaging control apparatus 101 corrects the imaging information acquired by the information acquisition unit 1012 based on characteristic information of a plurality of radiation imaging apparatuses, and the selection unit 1013 performs imaging after correction. A radiation imaging apparatus is selected based on the information.
  • the eighth embodiment a configuration in which the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 correct imaging information using characteristic information and provide the corrected imaging information to the imaging control apparatus 101 will be described. To do.
  • FIG. 13 is a block diagram illustrating a functional configuration example of the radiation imaging system according to the eighth embodiment.
  • the same components as those in the first embodiment (FIG. 1) are denoted by the same reference numerals.
  • the hardware configuration of the radiation imaging system of the eighth embodiment is the same as that of the first embodiment (FIG. 2).
  • a characteristic information storage unit 1024 and an information correction unit 1025 are added to the first radiation imaging apparatus 102.
  • the characteristic information storage unit 1024 has the same function as the characteristic information storage unit 1017 in the seventh embodiment, and the information correction unit 1025 has the same function as the information correction unit 1018 in the seventh embodiment.
  • each of the plurality of radiation imaging apparatuses of the eighth embodiment has a characteristic information storage unit 1024 that stores characteristic information indicating characteristics of the radiation imaging apparatus.
  • each of the plurality of radiation imaging apparatuses of the eighth embodiment includes an information correction unit 1025 that corrects imaging information generated by the generation unit 1022 based on the characteristic information stored in the characteristic information storage unit 1024. ing.
  • FIG. 14 is a flowchart illustrating an example of an operation from the execution of radiation imaging by the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 until the imaging control apparatus 101 acquires a radiation image.
  • the operation from the preparation for radiation imaging to the execution of radiation imaging in the eighth embodiment is the same as that in the first embodiment (FIGS. 3A and 3B).
  • step S1401 the generation unit 1022 of the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 calculates statistical information of pixel values of the generated radiation image as imaging information.
  • Step S1401 is the same as S201 of the first embodiment.
  • the information correction unit 1025 corrects the pixel average value calculated by the radiation imaging apparatus based on the characteristic information stored in the characteristic information storage unit 1024.
  • the correction method is the same as in the seventh embodiment.
  • the transmission unit 1023 transmits the imaging information corrected by the information correction unit 1025 to the imaging control apparatus 101.
  • step S1403 the imaging control apparatus 101 (information acquisition unit 1012) acquires the corrected pixel average value from the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103.
  • step S1404 the imaging control apparatus 101 (selecting unit 1013) compares the corrected pixel average values acquired in step S1403, and selects the radiation imaging apparatus that provided the largest pixel average value.
  • Steps S1403 and S1404 are the same as steps S202 and S203 of the first embodiment (FIG. 4) except that the corrected pixel average value is used. Therefore, as described with respect to step S203, selection of the radiation imaging apparatus based on various imaging information is applicable. However, the imaging information used is information corrected in each radiation imaging apparatus.
  • step S1405 the imaging control apparatus 101 (image acquisition unit 1014) acquires a radiation image from the radiation imaging apparatus selected in step S1404 (here, the first radiation imaging apparatus 102).
  • the processing in step S1405 is the same as that in step S204.
  • the imaging control apparatus 101 acquires imaging information corrected by the characteristic information obtained based on a predetermined criterion from each of the plurality of radiation imaging apparatuses, and performs correction.
  • a radiation imaging apparatus is selected using the acquired imaging information.
  • the imaging information of a plurality of radiation imaging apparatuses is compared fairly. Therefore, the possibility of acquiring a radiographic image in which a subject is not reflected due to erroneous selection of the radiographic imaging device is reduced.
  • the present invention is not limited to this.
  • the correction of the imaging information and the selection of the radiation imaging apparatus based on the corrected imaging information in the seventh embodiment and the eighth embodiment can also be applied to the imaging information acquired in the second to sixth embodiments. It is clear.
  • ⁇ Modification> In the seventh embodiment and the eighth embodiment, the example in which the pixel average value as the imaging information is corrected using the sensitivity information as the characteristic information has been described.
  • the characteristic information that can be used for correcting the imaging information is not limited to sensitivity information.
  • effective pixel information that can detect radiation and invalid pixel information (missing pixel information) that cannot detect radiation may be used as characteristic information.
  • the characteristic information may include missing pixel information indicating pixels that cannot detect radiation of the imaging apparatus, and the information correction unit 1018 or the information correction unit 1025 may correct the imaging information using the missing pixel information.
  • the pixel average value may be corrected by the ratio of the effective pixel number to the total pixel number obtained from the effective pixel information and the invalid pixel information.
  • dark correction information (or a dark image) obtained by performing an imaging operation without irradiating the radiation imaging apparatus with radiation may be used as the characteristic information. That is, the characteristic information includes a dark image acquired by performing an imaging operation without irradiating the radiation imaging apparatus, and the information correction unit 1018 or the information correction unit 1025 corrects the imaging information using the dark image. .
  • the pixel average value may be corrected using the dark correction information or the pixel average value calculated from the dark image. Since the dark image is obtained along with the imaging operation, it is preferable that the correction of the imaging information using the dark image is executed by the information correction unit 1025 of the radiation imaging apparatus.
  • the type of phosphor of the radiation imaging apparatus may be used as characteristic information.
  • the type of phosphor is related to the sensitivity of the radiation imaging apparatus.
  • the characteristic information includes phosphor type information of the radiation imaging apparatus, and the information correction unit 1018 or the information correction unit 1025 corrects the imaging information using the type information of the phosphor.
  • imaging information transmitted from the radiation imaging apparatus includes a pixel average value and phosphor type information.
  • the model number of the radiation imaging apparatus may be used as the type information of the phosphor.
  • the sensitivity information of the radiation imaging apparatus is used to correct the pixel average value when each radiation imaging apparatus is matched with a predetermined sensitivity as a reference.
  • a reference radiation imaging apparatus may be determined from a plurality of radiation imaging apparatuses, and pixel average values from other radiation imaging apparatuses may be corrected in accordance with sensitivity information of the reference radiation imaging apparatus.
  • correction information for correcting the above-described characteristic information (for example, sensitivity information) such as the imaging environment of the radiation imaging apparatus (air temperature, the temperature of the imaging apparatus itself, etc.) and deterioration information due to changes over time is characteristic information. May be included.
  • the information correction unit 1018 or the information correction unit 1025 corrects the characteristic information using correction information (for example, sensitivity correction information) indicating a change in the characteristic information (for example, sensitivity information), and uses the corrected characteristic information to obtain imaging information. (For example, the pixel average value) may be corrected.
  • correction information information on temporal changes (functions with respect to time) determined in advance for each of the plurality of radiation imaging apparatuses is stored as correction information, and the information correction unit 1018 or the information correction unit 1025 operates the respective radiation imaging apparatuses.
  • the characteristic information may be corrected based on the time. Thereby, the change of the characteristic information due to the change with time can be taken into consideration.
  • the characteristic information of the radiation imaging apparatus is not limited to the above, and a plurality of characteristic information may be used in combination. That is, the imaging information correction method is not limited to the above, and a plurality of correction methods may be used in combination.
  • FIG. 15 is a diagram illustrating a configuration example of a radiation imaging system according to the ninth embodiment.
  • the same components as those in the first embodiment (FIG. 1) are denoted by the same reference numerals.
  • the hardware configuration of the radiation imaging system of the ninth embodiment is the same as that of the first embodiment (FIG. 2).
  • a correction unit 1026 is added to the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103.
  • the imaging execution unit 1021 executes a first imaging operation at the time of radiation irradiation to acquire a radiation image.
  • the imaging execution unit 1021 executes the second imaging operation when radiation is not irradiated to obtain a dark image (dark output).
  • the generation unit 1022 generates imaging information having a data size smaller than that of the radiographic image based on the radiographic image obtained by the first imaging operation. In the present embodiment, the average value of the pixel values of the radiation image is used as the imaging information.
  • the correction unit 1026 acquires a dark image by the second imaging operation, corrects the radiation image acquired by the first imaging operation with the dark image (first image correction), and generates a corrected image.
  • the transmission unit 1023 transmits the imaging information generated by the generation unit 1022 to an external device (the imaging control device 101 in the present embodiment). Further, the transmission unit 1023 transmits the corrected image generated by the correction unit 1026 to the external device in response to a request from the external device (imaging control device 101).
  • the second radiation imaging apparatus 103 has a similar functional configuration.
  • 16A and 16B are examples of operations from preparation for radiation imaging to implementation of radiation imaging by the imaging control device 101, the first radiation imaging device 102, and the second radiation imaging device 103 according to the ninth embodiment. It is a flowchart which shows. The operations from step S101 to S104 are the same as those in the first embodiment (FIGS. 3A and 3B).
  • step S1605 the generation unit 1022 of the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 calculates statistical information calculated based on the pixel value of the radiation image obtained by radiation imaging as imaging information. .
  • an average value of pixel values in a radiographic image (hereinafter referred to as pixel average value) is used as statistical information.
  • step S1606 the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 notify the imaging control apparatus 101 that imaging has ended.
  • the pixel average value is used as the statistical information, but the present invention is not limited to this.
  • statistical information such as the maximum value, median value, and variance value of pixel values may be used.
  • it may be statistical information such as a maximum value of a difference between adjacent pixel values or a width between a maximum value and a minimum value of pixel values.
  • the pixel value may be luminance or density. Two or more pieces of statistical information may be calculated.
  • the range for calculating the statistical information may not be the entire radiation image as described in the third embodiment, the fifth embodiment, and the sixth embodiment. That is, the statistical information as the imaging information may be calculated using pixel values of an image (a pixel group) generated based on the radiographic image and having a data size smaller than that of the radiographic image.
  • a region of interest or an irradiation field pixel detected from a radiographic image may be a target of statistical information
  • a pixel of a thinned image or a reduced image derived from a radiographic image may be a target of statistical information.
  • a pixel having one or more predetermined coordinates in the radiation image may be a target of statistical information.
  • the reduced image is generated, for example, by calculating the pixel value of one pixel from the pixel values of a plurality of pixels (for example, the average value of neighboring pixels).
  • the region of interest is detected by a well-known method by analyzing the radiographic image.
  • the irradiation field may be detected by analysis of a radiographic image, or may be determined based on information (such as information on a collimator) regarding the irradiation condition of the radiation generation apparatus 104 acquired from the imaging control apparatus 101.
  • the generation unit 1022 generates statistical information as imaging information.
  • the generation unit 1022 generates an image having a data size smaller than that of the radiographic image based on the radiographic image, and the information acquisition unit 1012 acquires this as imaging information. May be.
  • the selection unit 1013 generates predetermined statistical information (for example, pixel average value) from the acquired imaging information (image having a small data size), and selects one radiation imaging apparatus based on the generated statistical information.
  • predetermined statistical information for example, pixel average value
  • FIG. 17 shows an operation example from the execution of radiation imaging to the acquisition of a radiation image by the imaging control apparatus 101, the first radiation imaging apparatus 102, and the second radiation imaging apparatus 103 according to the first embodiment. It is a flowchart.
  • step S1701 the imaging control apparatus 101 (information acquisition unit 1012) receives the pixel average value calculated in step S1605 from each of the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 via the transmission unit 1023. get.
  • step S1702 the selection unit 1013 compares the pixel average values acquired in step S1701, and selects the radiation imaging apparatus that provided the largest pixel average value.
  • the radiation imaging apparatus that provides the largest pixel average value is selected, but the present invention is not limited to this. For example, a radiation imaging apparatus that provides statistical information closest to a preset threshold value may be selected, or a plurality of statistical information may be compared and selected. In addition, when the compared results are the same and one radiation imaging apparatus cannot be selected, the radiation imaging apparatus that has previously notified that the radiation imaging has been performed may be selected.
  • step S1704 the first radiation imaging apparatus 102 and the correction unit 1026 of the second radiation imaging apparatus 103 execute imaging under the same imaging conditions as the radiation imaging in step S104 in the absence of radiation irradiation, and obtain a dark image. get. Then, the correcting unit 1026 obtains a corrected radiographic image by subtracting the dark image acquired in step S1704 from the radiographic image acquired in step S104. In step S1705, the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 notify the imaging control apparatus 101 that the correction has been completed.
  • the imaging control apparatus 101 (image acquisition unit 1014) that has received the notification of the end of correction in step S1705 from the radiation imaging apparatus selected in step S1702 (here, referred to as the first radiation imaging apparatus 102) in step S1703. A corrected radiation image is acquired.
  • the dark image acquisition and correction processing (S1704) in the radiation imaging apparatus and the radiation imaging apparatus selection (S1702) processing in the imaging control apparatus 101 are executed in parallel.
  • the radiation imaging apparatus at least imaging information generation and notification processing (S1605, S1606) after acquisition of a radiographic image, and post-correction image generation and notification processing (S1704, S1705) from acquisition of a dark image.
  • Some can be executed in parallel. Therefore, the first period from the start of generation of imaging information by the generation unit 1022 until the selection unit 1013 selects a radiation imaging apparatus, and the second period in which the correction unit 1026 acquires a dark image and generates a corrected image. At least part of the period can be overlapped. As a result, the photographing cycle can be shortened.
  • the imaging execution unit 1021 executes a first imaging operation (accumulation operation 2101 and readout operation 2102 in the radiation detection panel 51) in synchronization with radiation irradiation by the radiation generation device 104 (S104, S1605). . Further, the imaging execution unit 1021 executes a second imaging operation (accumulation operation 2103 and readout operation 2104 in the radiation detection panel 51 under non-irradiation of radiation) for obtaining a dark image following the first imaging operation. (S1704).
  • the correction unit 1026 corrects the radiation image obtained by the first imaging operation using the dark image obtained by the second imaging operation (correction processing 2106), and obtains a corrected image.
  • the period of the second imaging operation and the correction process 2106 performed by the imaging execution unit 1021 corresponds to the above-described second period (S1704, S1705).
  • the generation unit 1022 Independent of the second imaging operation and correction processing 2106, the generation unit 1022 performs imaging information generation 2105 from the radiation image, and the transmission unit 1023 transmits imaging information to the imaging control apparatus 101.
  • the information acquisition unit 1012 sequentially acquires imaging information from the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 (2121, 2122), and the selection unit 1013 acquires the acquired imaging information.
  • the radiation imaging apparatus is selected based on the above (2123).
  • a period from when the generation unit 1022 starts generating imaging information to when the selection unit 1013 selects a radiation imaging apparatus corresponds to the first period (S1605, S1606, S1701, and S1702).
  • the information acquisition unit 1012 and the selection unit 1013 acquire imaging information from a plurality of radiation imaging apparatuses and select the radiation imaging apparatus, and the correction unit 1026 displays a dark image. A part of the period for obtaining and generating the corrected image overlaps. In this way, the imaging cycle of the radiation imaging system can be shortened by executing the process for selecting the radiation imaging apparatus (generation and selection of imaging information) in parallel with the dark image acquisition and correction processes. Can do.
  • the selection of the radiation imaging apparatus in S1702 may be slower than the correction completion notification in S1705.
  • the imaging cycle can be shortened more than the collection of imaging information (pixel average value) and the selection of the radiation imaging apparatus (steps S1701 and S1702) are started after waiting for the correction completion notification in step S1705.
  • FIG. 18 is a block diagram illustrating a configuration example of a radiation imaging system according to the tenth embodiment.
  • the same reference numerals are assigned to the same components as those of the ninth embodiment (FIG. 15).
  • the hardware configuration of the radiation imaging system according to the tenth embodiment is the same as that of the first embodiment (FIG. 2).
  • the imaging control apparatus 101 according to the tenth embodiment uses a characteristic correction unit 1116 that corrects a radiation image (second image correction) using characteristic correction information corresponding to each of a plurality of radiation imaging apparatuses, and has high-speed access.
  • a memory unit 1117 that can be used, and a storage unit 1118 that holds data in a nonvolatile manner.
  • the memory unit 1117 is configured using, for example, the RAM 13, and the storage unit 1118 is configured using the secondary storage device 14.
  • the storage unit 1118 stores characteristic correction information for each of the plurality of radiation imaging apparatuses.
  • the characteristic correction unit 1116 can perform characteristic correction at high speed by developing information for characteristic correction from a non-volatile recordable storage unit 1118 typified by an HDD to a memory unit 1117 accessible at high speed.
  • the characteristics corrected by the characteristic correction unit 1116 are characteristics of the radiation imaging apparatus such as gain variations and pixel defects in the radiation detection panel 51, for example.
  • gain correction gain variation is corrected using an image captured in a state where the reference light is incident on the photoelectric conversion element of the radiation detection panel 51 as an image for gain correction.
  • the characteristic correction unit 1116 acquires a gain correction image captured in advance from the storage unit 1118 and develops it in the memory unit 1117 for use.
  • the characteristic correction unit 1116 acquires defect information for defect correction that has been imaged in advance from the storage unit 1118 and develops it in the memory unit 1117 for use.
  • 19A and 19B are examples of operations from preparation for radiation imaging to implementation of radiation imaging by the imaging control device 101, the first radiation imaging device 102, and the second radiation imaging device 103 according to the tenth embodiment. It is a flowchart to show.
  • step S101 the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 are in a standby state. In the standby state, the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 establish communication with the imaging control apparatus 101.
  • the characteristic correction unit 1116 expands characteristic correction information (gain correction image and defect information) of all usable radiation imaging apparatuses from the storage unit 1118 to the memory unit 1117. That is, prior to imaging operations of a plurality of radiation imaging apparatuses, the memory unit 1117 that can be accessed at a higher speed than the storage unit 1118 holds the characteristic correction information of the plurality of radiation imaging apparatuses stored in the storage unit 1118. .
  • characteristic correction information corresponding to the first radiation imaging apparatus 102 and the second radiation imaging apparatus 103 is expanded in the memory unit 1117.
  • the processing after step S102 is the same as that in the ninth embodiment (FIGS. 16A and 16B).
  • FIGS. 20A and 20B show the radiographic image obtained after the radiographic imaging is performed by the imaging control apparatus 101, the first radiographic imaging apparatus 102, and the second radiographic imaging apparatus 103 according to the tenth embodiment, and the characteristics are corrected. It is a flowchart which shows the operation example until it does. The processing in steps S1701 to S1705 is the same as that in the tenth embodiment (FIG. 17).
  • the characteristic correction unit 1116 reads out the characteristic correction information of the radiation imaging apparatus selected by the selection unit 1013 from the memory unit 1117, and corrects the image acquired by the image acquisition unit 1014. That is, in step S2001, the characteristic correction unit 1116 selects the characteristic of the radiation imaging apparatus (first radiation imaging apparatus in this example) selected in step S1702 from the characteristic correction information developed in the memory unit 1117 in step S1901. Get correction information. And the characteristic correction
  • step S2001 a step of expanding the characteristic correction information of the radiation imaging apparatus selected in step S1702 from the storage unit 1118 to the memory unit 1117 is required, and the radiation imaging cycle becomes longer.
  • the characteristic correction information of all the radiation imaging apparatuses can be accessed at high speed before imaging. Be expanded. Therefore, the characteristic correction process after image acquisition can be executed at high speed, and the radiation imaging cycle can be shortened.
  • the present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program
  • This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

放射線撮像システムは、放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と、複数の撮像装置と通信する制御装置と、を備える。複数の撮像装置のそれぞれは、撮像動作により得られた画像に基づいて、当該画像よりもデータサイズが小さい撮像情報を生成する。制御装置は、複数の撮像装置のそれぞれから撮像情報を取得し、取得した撮像情報に基づいて複数の撮像装置から撮像動作により得られた画像を取得するための撮像装置を選択する。

Description

放射線撮像システム、撮像装置、制御装置およびそれらの制御方法
 本発明は、放射線撮像システム、撮像装置、制御装置およびそれらの制御方法に関する。
 近年、照射された放射線に基づくデジタル放射線画像を生成する放射線撮像装置の普及により、放射線撮像システムのデジタル化が進んでいる。放射線撮像システムのデジタル化により、放射線撮像直後の画像確認が可能となり、これまでのフィルムやCR(Computed Radiography)装置を使用した撮像方法に比べてワークフローが大幅に改善され、早いサイクルで放射線撮像が行えるようになった。
 このような放射線撮像システムでは、放射線撮像装置と、放射線撮像装置から放射線画像を受信して利用する撮像制御装置とが設けられ、放射線撮像装置で取得された放射線画像は、画像データとして外部の撮像制御装置へ送信される。ユーザが複数の放射線撮像装置から一つの放射線撮像装置を選択して放射線撮像を実行するような使用形態では、どの放射線撮像装置から画像データを取得すればよいかを撮像制御装置に通知しておくことが必要である。そして、撮像制御装置は、通知された放射線撮像装置との通信により、画像データを取得する。通知された放射線撮像装置とは異なる放射線撮像装置をユーザが使用した場合には、撮像制御装置は放射線画像を取得できなくなる。
 特許文献1に記載の放射線撮像システムでは、複数の放射線撮像装置を撮像可能とし、撮像制御装置が複数の放射線撮像装置のすべてから放射線画像を取得し、有意な放射線画像を選択して用いる。
特許第5577114号
 しかしながら、特許文献1に記載の放射線撮像システムでは、撮像制御装置が放射線撮像を実行した複数の放射線撮像装置すべてから放射線画像を受信する。そのため、放射線撮像の画像表示や、次の放射線撮像に移るまでに時間がかかり、早いサイクルでの放射線撮像を行なうことができない。
 本発明の一実施形態では、複数の使用可能な放射線撮像装置を有する放射線撮像システムにおいて、早いサイクルでの放射線撮像を可能とする放射線撮像システムが開示される。
 本発明の一態様による放射線撮像システムは以下の構成を備える。すなわち、
 放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と、
 前記複数の撮像装置と通信する制御装置と、を備える放射線撮像システムであって、
 前記複数の撮像装置のそれぞれは、
 撮像動作により得られた画像に基づいて、前記画像よりもデータサイズが小さい撮像情報を生成する生成手段を備え、
 前記制御装置は、
 前記複数の撮像装置のそれぞれから前記撮像情報を取得する情報取得手段と、
 前記情報取得手段で取得した前記撮像情報に基づいて前記複数の撮像装置から撮像動作により得られた画像を取得するための撮像装置を選択する選択手段と、を備える。
 本発明によれば、複数の使用可能な放射線撮像装置を有する放射線撮像システムにおいて、早いサイクルでの放射線撮像が可能となる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、第1実施形態の放射線撮像システムの機能構成例を示すブロック図である。 図2は、第1実施形態の放射線撮像システムのハードウエア構成例を示すブロック図である。 図3A、図3Bは、第1実施形態による放射線撮像の動作を示すフローチャートである。 図4は、第1実施形態による放射線画像取得の動作を示すフローチャートである。 図5は、第2実施形態による放射線撮像システムの機能構成例を示すブロック図である。 図6A、図6Bは、第2実施形態による放射線画像取得の動作を示すフローチャートである。 図7は、第3実施形態による放射線画像取得の動作を示すフローチャートである。 図8は、第4実施形態による放射線画像取得の動作を示すフローチャートである。 図9は、第5実施形態による放射線画像取得の動作を示すフローチャートである。 図10は、第6実施形態による放射線画像取得の動作を示すフローチャートである。 図11は、第7実施形態の放射線撮像システムの機能構成例を示すブロック図である。 図12は、第7実施形態による放射線画像取得の動作を示すフローチャートである。 図13は、第8実施形態の放射線撮像システムの機能構成例を示すブロック図である。 図14は、第8実施形態による放射線画像取得の動作を示すフローチャートである。 図15は、第9実施形態に係る放射線撮像システムの構成例を示すブロック図である。 図16A、図16Bは、第9実施形態に係る放射線撮像の動作例を示すフローチャートである。 図17は、第9実施形態に係る放射線画像取得の動作例を示すフローチャートである。 図18は、第10実施形態に係る放射線撮像システムの構成例を示す図である。 図19A、図19Bは、第10実施形態に係る放射線撮像の動作例を示すフローチャートである。 図20A、図20Bは、第10実施形態に係る放射線画像取得・特性補正の動作例を示すフローチャートである。 図21は、撮像動作と撮像情報の生成、放射線撮像装置の選択のタイミングの一例を示すタイミングチャートである。
 以下、添付図面を参照して本発明の好適な実施形態について説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また本実施形態で説明されている特徴の組み合わせの全てが本発明の解決手段として必須のものとは限らない。
 <第1実施形態>
 図1は第1実施形態における放射線撮像システムの機能構成例を示した図である。本実施形態の放射線撮像システムは、放射線発生装置104と、放射線発生装置104から照射された放射線に基づき画像を生成する複数の撮像装置と、これら複数の撮像装置と通信する制御装置を有する。本実施形態では、制御装置の例として撮像制御装置101、複数の撮像装置の例として第一の放射線撮像装置102および第二の放射線撮像装置103を示す。撮像制御装置101は接続されている第一の放射線撮像装置102および第二の放射線撮像装置103と通信し、放射線撮像を制御する。また、撮像制御装置101は、放射線発生装置104と通信し、放射線発生装置104から放射線を照射した際の情報を取得する。なお、放射線撮像装置の台数は2つに限定されるものではなく、3つ以上でもよい。本実施形態では例として2つの放射線撮像装置を有する構成を説明する。
 第一の放射線撮像装置102、第二の放射線撮像装置103は、撮像制御装置101からの指示により撮像可能状態へと遷移し、放射線発生装置104と同期を取りながら放射線撮像を実施する。この同期により、第一の放射線撮像装置102および第二の放射線撮像装置103は、それぞれ放射線発生装置104から照射された放射線により放射線画像を生成する。第一の放射線撮像装置102において、撮像実行部1021は、放射線発生装置104との同期により撮像動作を実行し、放射線画像を得る。生成部1022は、撮像動作により得られた放射線画像に基づいて、放射線画像よりもデータサイズが小さい撮像情報を生成する。撮像情報は、撮像制御装置101(選択部1013)が放射線画像を取得する放射線撮像装置を選択するのに用いられる。送信部1023は、生成部1022で生成された撮像情報を外部装置である撮像制御装置101へ送信する。また、送信部1023は、外部装置(撮像制御装置101)からの要求に応じて、撮像動作により得られた放射線画像をその外部装置へ送信する。第二の放射線撮像装置103も同様の機能構成を有する。
 撮像制御装置101において、制御部1011は情報取得部1012、選択部1013、画像取得部1014、状態管理部1015を制御する。情報取得部1012は、複数の放射線撮像装置(第一の放射線撮像装置102および第二の放射線撮像装置103)のそれぞれから撮像情報を取得したり、放射線発生装置104から放射線を照射した際の情報を取得したりする。選択部1013は、情報取得部1012が取得した撮像情報に基づいて複数の放射線撮像装置(第一の放射線撮像装置102と第二の放射線撮像装置103)から、撮像動作により得られた放射線画像を取得するための1つの放射線撮像装置を選択する。画像取得部1014は、選択部1013が選択した1つの放射線撮像装置から放射線画像を取得する。状態管理部1015は、第一の放射線撮像装置102や第二の放射線撮像装置103と通信し、それぞれの状態の管理、制御を行う。
 放射線発生装置104は、曝射スイッチ1041のオンに応じて、照射開始通知を使用可能なすべての放射線撮像装置に送信する。照射開始通知を受けた放射線撮像装置は、撮像動作(電荷の蓄積)を開始し、照射許可通知を放射線発生装置104に送信する。放射線発生装置104は、使用可能なすべての放射線撮像装置(本実施形態では第一の放射線撮像装置102および第二の放射線撮像装置103)からの照射許可通知を受けて放射線照射を実施する。この動作により、放射線発生装置104と放射線撮像装置102,103との同期が実現される。
 図2は、第1実施形態による放射線撮像システムのハードウエア構成例を示すブロック図である。撮像制御装置101において、CPU11はROM12、RAM13に格納されているプログラムを実行することにより撮像制御装置101の図1に示した各機能部を実現する。ROM12は読み出し専用メモリであり、RAM13はランダムアクセスメモリである。二次記憶装置14は、たとえばハードディスクで構成され、放射線撮像装置102,103から受信した放射線画像などを格納する。また、二次記憶装置14に格納されているプログラムが必要に応じてRAM13へロードされ、CPU11により実行される。入力装置15は、ポインティングデバイスやキーボードを含み、ユーザの操作を受け付ける。表示装置16は、たとえば液晶表示装置であり、放射線画像などを表示する。インターフェース部17は撮像制御装置101をネットワーク120に接続する。以上の各構成は、バス18により相互に通信可能に接続されている。
 ネットワーク120は撮像制御装置101、第一の放射線撮像装置102、第二の放射線撮像装置103、放射線発生装置104を通信可能に接続する。ネットワーク120は有線ネットワーク、無線ネットワークなど、いかなる形態のものでもよい。また、上述した放射線発生装置104と放射線撮像装置102,103との同期をとるための通信には、ネットワーク120が用いられてもよいし、専用の有線/無線接続が用いられてもよい。
 第一の放射線撮像装置102は、放射線検出パネル51およびコントローラ52を有する。放射線検出パネル51は、たとえばFPD(Flat Panel Detector)で構成され、放射線量に応じた電気信号を発生することにより放射線画像を生成する。コントローラ52は、放射線検出パネル51から信号を読み出し、放射線画像を生成する。また、コントローラ52は、放射線画像に基づいて、放射線画像よりもデータサイズが小さい撮像情報を生成し、撮像制御装置101に送信する。コントローラ52はたとえばCPUやメモリを有し、放射線検出パネル51による撮像の制御、取得された画像の処理などを行い、たとえば図1に示した各機能部を実現する。第二の放射線撮像装置103の構成も同様である。
 図3A,3Bは、撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103により、放射線撮像の準備から放射線撮像を実施するまでの動作の一例を示すフローチャートである。なお、以下に示す撮像制御装置101の動作はCPU11が所定のプログラムを実行することにより実現される。また、第一の放射線撮像装置102および第二の放射線撮像装置103の動作は、コントローラ52内のCPU(不図示)がメモリ(不図示)に格納された所定のプログラムを実行することで実現される。
 ステップS101で、第一の放射線撮像装置102および第二の放射線撮像装置103は待機状態となる。待機状態において、放射線撮像装置は撮像制御装置101との通信(たとえばネットワーク120を介した通信)が確立される。ステップS102で、撮像制御装置101(状態管理部1015)は使用可能なすべての放射線撮像装置に対し、撮像可能状態へと遷移するための遷移指示を送信する。本実施形態では第一の放射線撮像装置102と第二の放射線撮像装置103が使用可能な放射線撮像装置である。
 ステップS103で、第一の放射線撮像装置102および第二の放射線撮像装置103は、撮像制御装置101からの遷移指示に応じて撮像可能状態へと遷移し、撮像可能状態へ遷移したことを撮像制御装置101に通知する。そして、ステップS104で、第一の放射線撮像装置102および第二の放射線撮像装置103の撮像実行部1021は放射線発生装置104と同期をとり、放射線撮像を実施する。ステップS105で、第一の放射線撮像装置102と第二の放射線撮像装置103は、それぞれ放射線撮像を実施したことを撮像制御装置101に通知する。
 図4は、第一の放射線撮像装置102と第二の放射線撮像装置103による放射線撮像の実施後から、撮像制御装置101が放射線画像を取得するまでの動作の一例を示すフローチャートである。
 ステップS201で、第一の放射線撮像装置102および第二の放射線撮像装置103の生成部1022は、生成した放射線画像の画素値の統計情報を撮像情報として算出する。送信部1023は算出された統計情報を撮像情報として撮像制御装置101へ送信する。ここでは、統計情報の一例として画素値の平均値(以下、画素平均値)を用いるものとする。もちろん、統計情報はこれに限定されるものではなく、たとえば、最大値、中央値、分散値などが用いられてもよい。あるいは隣接する画素同士の画素値の差分の最大値や、画素値の最大値と最小値の幅などの統計情報でもよい。また、算出する統計情報は2つ以上あってもよい。なお、画素値は、輝度値であっても濃度値であってもよい。ステップS202で、撮像制御装置101(情報取得部1012)は第一の放射線撮像装置102と第二の放射線撮像装置103から、ステップS201で算出された画素平均値を取得する。
 ステップS203で、撮像制御装置101(選択部1013)は、ステップS202で取得した画素平均値を比較し、最も大きい画素平均値を提供した放射線撮像装置を選択する。なお、上記では、最も大きい画素平均値を提供した放射線撮像装置を選択する構成を示したが、これに限定されるものではない。たとえば、予め設定した閾値に最も近い統計情報を提供した放射線撮像装置が選択されるようにしてもよい。また、複数の統計情報の比較により放射線撮像装置が選択されるようにしてもよい。複数の統計情報の比較としては、たとえば、「画素平均値」と「画素値の最大値と最小値の幅」の組み合わせを用いることが挙げられる。この場合、基本的には「画素平均値」で判定し、平均値にあまり差が表れない場合には、「画素値の最大値と最小値の幅」を利用して判定する。例えば照射領域を狭めて照射した場合では、放射線画像間において画素平均値に差が表れにくくなるので、「画素値の最大値と最小値の幅」を加味して有意な放射線画像を提供する放射線撮像装置を選択する。もちろんこのような例に限られるものではなく、たとえば、通常は「画素値の最大値と最小値の幅」を参照して放射線撮像装置を選択し、有意な差がでない場合に、「画素平均値」を加味して放射線撮像装置を選択するようにしてもよい。この方法は、たとえば、何らかのノイズ等により放射線画像間で「画素値の最大値と最小値の幅」に差が出ないような場合に有効である。もちろん、他の統計情報の組み合わせが用いられてもよい。また、比較した結果が同等で一つの放射線撮像装置を選択することができない場合、放射線撮像を実施したことを先に通知してきた放射線撮像装置を選択するようにしてもよい。
 ステップS204で、撮像制御装置101(画像取得部1014)は、ステップS203で選択した放射線撮像装置(ここでは第一の放射線撮像装置102とする)から放射線画像を取得する。すなわち、撮像制御装置101は、第一の放射線撮像装置102に対して画像を要求し、第一の放射線撮像装置102の送信部1023は、撮像制御装置101からの画像の要求に応じて放射線画像を撮像制御装置101へ送信する。
 以上のように、複数の放射線撮像装置を撮像可能状態として放射線撮像を実施するシステムにおいて、撮像制御装置101は放射線画像よりもデータサイズの小さい撮像情報(たとえば画素平均値)を基に放射線画像を取得する放射線撮像装置を選択する。撮像制御装置101は、選択した放射線撮像装置から放射線画像を取得するので、全ての放射線撮像装置から放射線画像を取得する構成に比べて、放射線撮像のサイクルを短縮できる。したがって、再撮像による無駄な被ばくを与えるおそれを軽減しつつ、早いサイクルで放射線撮像が行える放射線撮像システムが実現できる。
 <第2実施形態>
 第1実施形態では、選択部1013が取得した撮像情報(統計情報)に基づいて放射線の照射下で撮像を行った放射線撮像装置を選択し、画像取得部1014が選択された放射線撮像装置から放射線画像を取得した。第2実施形態では、このように自動的に選択された放射線撮像装置から放射線画像を受信した後に、さらに、ユーザからの指示などにより別の放射線撮像装置から放射線画像を取得することを可能にした構成について説明する。
 図5は、第2実施形態における放射線撮像システムの機能構成例を示すブロック図である。第1実施形態(図1)と同様の構成には同一の参照番号を付してある。なお、第2実施形態の放射線撮像システムのハードウエア構成は第1実施形態(図2)と同様である。図5において、第2実施形態では、第1実施形態の構成に、入力部105と再取得指示部1016が加わっている。入力部105は、表示装置16に提供されるユーザーインターフェースや入力装置15(マウス、キーボードなど)により外部からの操作入力を受け付ける。再取得指示部1016は、画像取得部1014が選択部1013により選択された1つの放射線撮像装置から放射線画像を取得した後に、入力部105からの所定の操作入力に応じて、別の放射線撮像装置から放射線画像を取得することを制御部1011に指示する。制御部1011は再取得指示部1016からの指示に応じて、まだ放射線画像が取得されていない放射線撮像装置から放射線画像を取得するよう画像取得部1014に指示する。画像取得部1014は制御部1011からの指示により、放射線撮像装置から放射線画像を取得する。もちろん、再取得指示部1016が画像取得部1014に対して、放射線画像の指定と放射線画像の取得を直接に指示するようにしてもよい。
 撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103により、放射線撮像の準備から放射線撮像を実施するまでの動作は第1実施形態(図3A,3B)と同様である。図6A,6Bは、第2実施形態に係る、第一の放射線撮像装置102と第二の放射線撮像装置103による放射線撮像の実施後に、撮像制御装置101が放射線画像を取得する動作の一例を示すフローチャートである。なお、第1実施形態(図4)と同様の動作には同一のステップ番号が付してある。
 S204において画像取得部1014は、選択部1013が撮像情報(統計情報)に基づいて選択した放射線撮像装置(本例では第一の放射線撮像装置102)から放射線画像を取得する。その後、ステップS301で、制御部1011は再取得指示部1016から再取得の指示があるか否かを判定する。再取得の指示がある場合、処理はステップS302へ進み、再取得の指示がない場合、処理はステップS304へ進む。なお、本例では、再取得の指示は入力部105からユーザ操作により入力されるものとしているが、これに限定されるものではない。たとえば、画像取得部1014が取得した放射線画像を解析した結果、被写体の写りこみが確認できない場合に、制御部1011が自動的に再取得の指示を発生するようにしてもよい。
 ステップS302で、選択部1013は、放射線画像を取得済みとなっている放射線撮像装置以外から1つの放射線撮像装置を選択する。ここでは放射線画像を取得済みの第一の放射線撮像装置102以外の放射線撮像装置として第二の放射線撮像装置103が選択される。3つ以上の放射線撮像装置が存在する場合、入力部105によって放射線撮像装置をユーザが選択できるようにしてもよい。この場合、選択が可能な放射線撮像装置(放射線画像が未取得である放射線撮像装置)をリスト表示して、その中からユーザが選択できるようにしてもよい。或いは、放射線画像が取得である放射線撮像装置の中から、情報取得部1012が取得した撮像情報に基づいて選択部1013が放射線撮像装置を選択するようにしてもよい。たとえば、選択部1013は、放射線画像が未取得である放射線撮像装置の中から、最も大きい画素平均値を提供した放射線撮像装置を選択するようにしてもよい。
 ステップS303で、画像取得部1014は、ステップS302において選択部1013により選択された放射線撮像装置(ここでは第二の放射線撮像装置103とする)から放射線画像を取得する。すなわち、画像取得部1014が第二の放射線撮像装置103に対して放射線画像を要求すると、この要求に応じて、第二の放射線撮像装置103の送信部1023が撮像実行部1021によりに取得された放射線画像を撮像制御装置101に送信する。ステップS304で、制御部1011は、当該放射線撮像を終了するか否かを判断する。たとえば入力装置15から、放射線撮像の終了をユーザが指示することができる。放射線撮像を終了しない場合、処理はステップS301に戻り、ステップS301以降の処理が繰り返される。他方、放射線撮像処理を終了する場合は、本フローチャートの処理を終了する。
 以上のように、第2実施形態によれば、撮像情報に基づいて選択された1つの放射線撮像装置から放射線画像を取得した後に、それ以外の放射線撮像装置からの放射線画像を取得することができる。したがって、放射線画像の自動的な選択に誤りがあった場合などでも、再撮像を行うことなく、放射線画像を取得することができる。
 <第3実施形態>
 第1実施形態では、どの放射線撮像装置から放射線画像を取得するかを決定するための撮像情報として、放射線画像から得られる統計情報が用いられた。第3実施形態では、生成部1022が、放射線画像に基づいて生成された、放射線画像よりもデータサイズの小さい画像(画素群)から統計情報を得る構成を説明する。なお、第3実施形態の放射線撮像システムの機能構成およびハードウエア構成は第1実施形態(図1、図2)と同様である。
 撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103により、放射線撮像の準備から放射線撮像を実施するまでの動作は第1実施形態(図3A,3B)と同様である。図7は、第3実施形態に係る、第一の放射線撮像装置102と第二の放射線撮像装置103による放射線撮像の実施後に、撮像制御装置101が放射線画像を取得するまでの動作の一例を示すフローチャートである。
 ステップS401で、第一の放射線撮像装置102および第二の放射線撮像装置103の生成部1022は、撮像実行部1021が取得した放射線画像の間引き画像から画素値の統計情報を撮像情報として算出する。ここでは、統計情報として画素値の平均値が算出されるものとする。また、ここでは一例として、統計情報を算出する対象の画像(放射線画像よりデータサイズの小さい画像)として間引き画像を用いているがこれに限定されるものではない。たとえば、放射線画像の縮小画像、予め定められた1つ以上の座標の画素、関心領域の画素などから統計情報が算出されてもよい。縮小画像は、たとえば複数の画素の画素値から1つの画素の画素値を算出(たとえば、近傍画素の平均値)することにより生成される。また、関心領域は放射線画像の解析により周知の方法で検出される。また、ここでは統計情報の一例として画素値の平均値を用いたが、これに限定されるものではない。第一の実施形態と同様に、たとえば、画素値の最大値、中央値、分散値などの統計情報が用いられてもよい。あるいは隣接する画素同士の画素値の差分の最大値や、画素値の最大値と最小値の幅などの統計情報でもよい。また、算出する統計情報は2つ以上あってもよい。また、画素値は、輝度や濃度であってもよい。
 ステップS402で、撮像制御装置101(情報取得部1012)は第一の放射線撮像装置102と第二の放射線撮像装置103(送信部1023)から、ステップS401で算出された画素平均値を取得する。ステップS403で、選択部1013は、ステップS402で取得した画素平均値を比較し、画素平均値が最も大きい放射線撮像装置を選択する。ここでは一例として画素平均値が最も大きい放射線撮像装置を選択するが、これに限定されるものではない。第1実施形態と同様に、取得した統計情報が予め設定した閾値に最も近い放射線撮像装置を選択するなどでもよい。また、複数の統計情報を比較して選択するようにしてもよい。また、比較した結果が同等で選択することができない場合、放射線撮像を実施したことを先に通知してきた放射線撮像装置を選択するようにしてもよい。ステップS404で、撮像制御装置101(画像取得部1014)は、ステップS403で選択部1013が選択した放射線撮像装置(ここでは第一の放射線撮像装置102とする)から放射線画像を取得する。
 以上のように、第3実施形態によれば、放射線画像を取得する放射線撮像装置の選択のために比較される撮像情報(たとえば画素値の統計情報)が放射線画像の部分的な情報から生成される。そのため、放射線撮像装置が撮像情報を算出するための処理負荷が低減される。
 <第4実施形態>
 第1実施形態~第3実施形態では、情報取得部1012が放射線撮像装置から放射線画像に関する統計情報を取得していた。第4実施形態では、情報取得部1012が、複数の放射線撮像装置から、放射線画像に基づいて生成され放射線画像よりもデータサイズの小さい画像を撮像情報として取得し、取得した撮像情報(画像)から統計情報を算出する。なお、第4実施形態による放射線撮像システムの機能構成およびハードウエア構成は第1実施形態(図1、図2)と同様である。画素平均値などの統計情報を複数の放射線撮像装置の全てから取得する撮像情報として用いる第1~第3の実施形態の構成と比べて、撮像情報のデータサイズが大きくなる可能性があるが、放射線撮像装置の処理負荷を軽減することができる。
 撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103により、放射線撮像の準備から放射線撮像を実施するまでの動作は第1実施形態(図3A,3B)と同様である。図8は、第4実施形態に係る、第一の放射線撮像装置102と第二の放射線撮像装置103による放射線撮像の実施後に、撮像制御装置101が放射線画像を取得するまでの動作の一例を示すフローチャートでる。
 ステップS501で、第一の放射線撮像装置102および第二の放射線撮像装置103の生成部1022は、放射線画像に基づいて、該放射線画像よりもデータしア図の小さい画像を撮像情報として生成する。たとえば、撮像実行部1021により生成された放射線画像の間引き画像が抽出され撮像情報として用いられる。ここでは、データサイズの小さい画像の一例として、間引き画像を示したが、これに限定されるものではない。放射線画像の一部は、たとえば、放射線画像の縮小画像、予め設定した座標の画素、放射線画像における関心領域の画像でもよい。ステップS502で、撮像制御装置101(情報取得部1012)は第一の放射線撮像装置102と第二の放射線撮像装置103から、ステップS501で抽出した間引き画像を取得する。
 ステップS503で、選択部1013は、データサイズの小さい画像の画素値から所定の統計情報を生成し、生成した統計情報に基づいて1つの放射線撮像装置を選択する。たとえば、選択部1013は、ステップS502で取得された間引き画像から画素値の統計情報(本例では平均値)を算出し、これに基づいて1つの放射線撮像装置を選択する。なお、ここでは一例として画素値の統計情報として平均値が用いられるが、これに限定されるものではない。たとえば、画素値の最大値、中央値、分散値などの統計情報でもよい。あるいは隣接する画素同士の画素値の差分の最大値や、画素値の最大値と最小値の幅などの統計情報でもよい。また、算出する統計情報は2つ以上あってもよい。また、画素値は輝度、濃度であってもよい。
 ステップS504で、選択部1013は、ステップS503で取得した画素平均値を比較し、画素平均値が最も大きい間引き画像を生成した放射線撮像装置を選択する。ここでは一例として画素平均値が最も大きい放射線撮像装置を選択するが、これに限定されるものではない。たとえば、第1実施形態と同様に、取得した統計情報が予め設定した閾値に最も近い毎期画像を提供した放射線撮像装置を選択するようにしてもよい。また、複数の統計情報を比較して選択するようにしてもよい。また、選択部1013において比較した結果が同等で選択することができない場合、放射線撮像を実施したことを先に通知してきた放射線撮像装置を選択するようにしてもよい。ステップS505で、撮像制御装置101(画像取得部1014)は、ステップS504で選択部1013が選択した放射線撮像装置(ここでは第一の放射線撮像装置102とする)から放射線画像を取得する。
 以上のように、第4実施形態によれば、放射線画像を取得する放射線撮像装置の比較選択に用いる情報として、放射線画像の一部を使用しても、第1実施形態と同様の効果が得られる。
 <第5実施形態>
 第3実施形態では、放射線画像の部分的な情報として間引き画像を用いた。第5実施形態では、放射線画像の部分的な情報の例として、生成された放射線画像のうちの照射野の画像を用いる。すなわち、第5実施形態では、照射野の画素の統計情報に基づいて放射線撮像装置の選択が行われる。なお、第5実施形態による放射線撮像システムの機能構成およびハードウエア構成は第1実施形態(図1、図2)と同様である。
 撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103により、放射線撮像の準備から放射線撮像を実施するまでの動作は第1実施形態(図3A,3B)と同様である。図9は、第5実施形態に係る、第一の放射線撮像装置102と第二の放射線撮像装置103による放射線撮像の実施後、撮像制御装置101が放射線画像を取得するまでの動作の一例を示すフローチャートである。
 ステップS601で、第一の放射線撮像装置102および第二の放射線撮像装置103の生成部1022は、取得された放射線画像を解析して放射線が照射された範囲である照射野を検出する。ステップS602で、第一の放射線撮像装置102および第二の放射線撮像装置103は、ステップS601の解析により検出された照射野を用いて、生成した放射線画像の照射野の範囲から画素値の平均値を算出する。ここでは統計情報の一例として画素値の平均値を用いたが、これに限定されるものではない。第一の実施形態と同様に、画素値の最大値、中央値、分散値などの統計情報が用いられてもよい。あるいは隣接する画素同士の画素値の差分の最大値や、画素値の最大値と最小値の幅などの統計情報でもよい。また、算出する統計情報は2つ以上あってもよい。また、画素値は、輝度、濃度であってもよい。
 ステップS603で、撮像制御装置101(情報取得部1012)は第一の放射線撮像装置102と第二の放射線撮像装置103から、ステップS602で算出した画素平均値を取得する。ステップS604~S605の処理(取得した撮像情報(画素平均値)を用いた放射線撮像装置の選択と、選択した放射線撮像装置からの放射線画像の取得)は、第1実施形態(図4のステップS203~S204)と同様である。
 以上のように、放射線画像を取得する放射線撮像装置の比較選択に用いる情報として、照射野の範囲から得られた撮像情報を用いることができる。放射線撮像装置は、照射野の範囲について統計情報を算出すればよいので、負荷が軽減される。
 <第6実施形態>
 第5実施形態では、放射線撮像装置が生成した放射線画像から照射野を検出しているが、これに限られるものではない。第6実施形態では、放射線発生装置104の放射線照射に関わる情報に基づいて、放射線画像の照射野を決定する構成を説明する。なお、第6実施形態の放射線撮像システムの機能構成およびハードウエア構成は第1実施形態(図1、図2)と同様である。また、撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103により、放射線撮像の準備から放射線撮像を実施するまでの動作は第1実施形態(図3A,3B)と同様である。図10は、第6実施形態に係る、撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103により、放射線撮像の準備から放射線撮像を実施するまでの動作例を示すフローチャートである。
 ステップS701で、撮像制御装置101(状態管理部1015)は、放射線発生装置104から放射線を照射した際の情報を取得し、そのうちのコリメータ情報を第一の放射線撮像装置102と第二の放射線撮像装置103に通知する。ここでは、放射線照射に関わる情報の一例として、コリメータ情報を取得・通知しているが、これに限定されるものではない。たとえば、放射線発生装置104の管球と放射線撮像装置の距離や管球の角度から算出した照射野情報などでもよい。
 ステップS702で、第一の放射線撮像装置102および第二の放射線撮像装置103は、ステップS701で通知されたコリメータ情報から照射野を算出し、生成した放射線画像の照射野の範囲から画素平均値を算出する。ここでは、統計情報の一例として、画素平均値を用いているが、これに限定されるものではない。第一の実施形態と同様に、画素値の最大値、中央値、分散値などの統計情報でもよい。あるいは隣接する画素同士の画素値の差分の最大値や、画素値の最大値と最小値の幅などの統計情報でもよい。また、算出する統計情報は2つ以上あってもよい。また、画素値は、輝度、濃度などでもよい。
 ステップS703~S705の処理(取得した撮像情報(画素平均値)を用いた放射線撮像装置の選択と、選択した放射線撮像装置からの放射線画像の取得))は、第1実施形態(S202~S204)と同様である。
 以上のように、第6実施形態によれば、統計情報を算出する範囲としての照射野を外部装置から取得した放射線照射に関わる情報に基づいて決定できるので、放射線画像から照射野を検出する第5実施形態に比べて、処理負荷が軽減される。
 <第7実施形態>
 第1実施形態から第6実施形態では、複数の放射線撮像装置からそれぞれ放射線画像よりデータサイズの小さい撮像情報(統計情報、縮小画像、部分画像など)を取得し、撮像情報を比較することにより放射線画像を取得する放射線撮像装置を選択している。複数の放射線撮像装置には、放射線の受光感度や欠損画素などの個体差が存在する。そのため、同一の放射線量が照射されても放射線撮像装置毎に異なる撮像情報が通知される可能性がある。第7実施形態では、このような放射線撮像装置の個体差を考慮することにより、より正確に放射線撮像装置の選択を行えるようにした構成を説明する。
 図11は、第7実施形態における放射線撮像システムの機能構成例を示すブロック図である。第1実施形態(図1)と同様の構成には同一の参照番号を付してある。第7実施形態の撮像制御装置101は、第1実施形態の構成に、特性情報記憶部1017と情報補正部1018が加わった構成を有している。なお、第7実施形態の放射線撮像システムのハードウエア構成は第1実施形態(図2)と同様である。
 情報取得部1012は、第1実施形態と同様の機能(撮像情報や放射線を照射した際の情報の取得)に加えて、複数の放射線撮像装置のそれぞれから放射線撮像装置の特性情報を取得する。特性情報記憶部1017は、情報取得部1012が取得した、複数の放射線撮像装置の各々の特性を示す特性情報を記憶する。特性情報としては、例えば、放射線撮像装置における放射線を受光する素子が、1mR(ミリレントゲン)の放射線を受光した場合に変換できる画素値を示す感度情報があげられる。また、感度情報として、たとえば、撮像装置に対して所定の条件で放射線を照射した場合に取得できる画素平均値の目標値と、実際に取得できた画素平均値との比率が用いられてもよい。この場合、目標値は蛍光体の種類によって定められていてもよい。あるいは、感度情報として、所定の条件で放射線撮像した場合に生成される画像(ゲイン画像)が用いられてもよい。感度情報は定期的に更新されるものでもよいし、製造工程で決まるものでもよい。
 情報補正部1018は、特性情報記憶部1017に記憶されている特性情報に基づいて、情報取得部1012が複数の放射線撮像装置から取得した撮像情報を補正する。選択部1013は、情報補正部1018で補正された撮像情報に基づいて複数の放射線撮像装置(実施形態では第一の放射線撮像装置102と第二の放射線撮像装置103)から1つの放射線撮像装置を選択する。
 図12は、第一の放射線撮像装置102と第二の放射線撮像装置103による放射線撮像の実施後から、撮像制御装置101が放射線画像を取得するまでの動作の一例を示すフローチャートである。なお、撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103により、放射線撮像の準備から放射線撮像を実施するまでの動作は第1実施形態(図3A,3B)と同様である。
 ステップS201~S202の動作は第1実施形態(図4)と同様である。ステップS1201で、撮像制御装置101の情報補正部1018は、複数の放射線撮像装置から取得した画素平均値を、特性情報記憶部1017に記憶されている特性情報に基づいて補正する。例えば、情報補正部1018は、放射線撮像装置の感度情報を用いて、それぞれの放射線撮像装置を基準となる所定の感度に合わせた場合の画素平均値に補正する。
 ステップS1202において、撮像制御装置101(選択部1013)は、ステップS1201で補正された画素平均値を比較し、最も大きい画素平均値を提供した放射線撮像装置を選択する。なお、上記では、最も大きい画素平均値を提供した放射線撮像装置を選択する構成を示したが、これに限定されるものではない。たとえば、第1実施形態のステップS203に関して説明したような、種々の変形が可能である。続いて、ステップS1203において、撮像制御装置101(画像取得部1014)は、ステップS1202で選択した放射線撮像装置(ここでは第一の放射線撮像装置102とする)から放射線画像を取得する。すなわち、撮像制御装置101は、第一の放射線撮像装置102に対して画像を要求し、第一の放射線撮像装置102の送信部1023は、撮像制御装置101からの画像の要求に応じて放射線画像を撮像制御装置101へ送信する。
 以上のように、第7実施形態によれば、複数の放射線撮像装置を撮像可能状態として放射線撮像を実施するシステムにおいて、複数の放射線撮像装置から取得した撮像情報が、各放射線撮像装置の特性情報に基づいて補正される。撮像制御装置101は、補正された撮像情報を参照することにより、複数の放射線撮像装置の撮像情報を公平に比較することができる。したがって、誤った放射線撮像装置の選択により被写体の写りこんでいない放射線画像を取得してしまうことの可能性が低減される。
 <第8実施形態>
 第7実施形態では、撮像制御装置101にある情報補正部1018が、情報取得部1012により取得された撮像情報を複数の放射線撮像装置の特性情報に基づき補正し、選択部1013が補正後の撮像情報に基づいて放射線撮像装置を選択している。第8実施形態では、第一の放射線撮像装置102および第二の放射線撮像装置103が、特性情報を用いて撮像情報を補正し、補正された撮像情報を撮像制御装置101に提供する構成について説明する。
 図13は、第8実施形態における放射線撮像システムの機能構成例を示すブロック図である。第1実施形態(図1)と同様の構成には同一の参照番号を付してある。なお、第8実施形態の放射線撮像システムのハードウエア構成は第1実施形態(図2)と同様である。第8実施形態では、第一の放射線撮像装置102に特性情報記憶部1024および情報補正部1025が加わっている。特性情報記憶部1024は第7実施形態における特性情報記憶部1017、情報補正部1025は第7実施形態における情報補正部1018と同様の機能を有する。すなわち、第8実施形態の複数の放射線撮像装置のそれぞれは、当該放射線撮像装置の特性を示す特性情報を記憶する特性情報記憶部1024を有している。また、第8実施形態の複数の放射線撮像装置のそれぞれは、特性情報記憶部1024に記憶されている特性情報に基づいて、生成部1022が生成した撮像情報を補正する情報補正部1025を有している。
 図14は、第一の放射線撮像装置102と第二の放射線撮像装置103による放射線撮像の実施後から、撮像制御装置101が放射線画像を取得するまでの動作の一例を示すフローチャートである。なお、第8実施形態における放射線撮像の準備から放射線撮像を実施するまでの動作は、第1実施形態(図3A,3B)と同様である。
 図14において、ステップS1401で、第一の放射線撮像装置102および第二の放射線撮像装置103の生成部1022は、生成した放射線画像の画素値の統計情報を撮像情報として算出する。ステップS1401は、第1実施形態のS201と同様である。ステップS1402で、情報補正部1025は、放射線撮像装置が算出した画素平均値を特性情報記憶部1024に記憶されている特性情報に基づいて補正する。補正方法は第7実施形態と同様である。送信部1023は情報補正部1025が補正した撮像情報を撮像制御装置101へ送信する。
 ステップS1403で、撮像制御装置101(情報取得部1012)は、第一の放射線撮像装置102と第二の放射線撮像装置103から、補正された画素平均値を取得する。ステップS1404で、撮像制御装置101(選択部1013)は、ステップS1403で取得された補正された画素平均値を比較し、最も大きい画素平均値を提供した放射線撮像装置を選択する。ステップS1403、ステップS1404の処理は、補正後の画素平均値が用いられる点を除いて、第1実施形態(図4)のステップS202、ステップS203と同様である。したがって、ステップS203に関して説明したように、種々の撮像情報に基づいた放射線撮像装置の選択が適用可能である。ただし、用いられる撮像情報は、それぞれの放射線撮像装置において補正された情報である。
 続いて、ステップS1405において、撮像制御装置101(画像取得部1014)は、ステップS1404で選択した放射線撮像装置(ここでは第一の放射線撮像装置102とする)から放射線画像を取得する。ステップS1405の処理はステップS204と同様である。
 以上のように、第8実施形態によれば、撮像制御装置101は、複数の放射線撮像装置のそれぞれから、所定の基準に基づいて得られた特性情報によって補正された撮像情報を取得し、補正された撮像情報を用いて放射線撮像装置を選択する。補正後の撮像情報を用いることにより、複数の放射線撮像装置の撮像情報が公平に比較される。したがって、誤った放射線撮像装置の選択により被写体の写りこんでいない放射線画像を取得してしまうことの可能性が低減される。
 なお、第7実施形態および第8実施形態では、第1実施形態の構成をベースとして説明したがこれに限られるものでない。第7実施形態および第8実施形態における撮像情報の補正および補正された撮像情報に基づく放射線撮像装置の選択は、第2実施形態~第6実施形態で取得される撮像情報にも適用可能であることは明らかである。
 <変形例>
 上記第7実施形態および第8実施形態では、特性情報として感度情報を用いて撮像情報としての画素平均値を補正する例を説明した。撮像情報の補正に用いることのできる特性情報は感度情報に限られるものではない。
 たとえば、放射線検出可能な有効画素情報および放射線検出不可な無効画素情報(欠損画素情報)を特性情報としてもよい。すなわち、特性情報は、撮像装置の放射線を検出できない画素を示す欠損画素情報を含み、情報補正部1018または情報補正部1025が、欠損画素情報を用いて撮像情報を補正するようにしてもよい。この場合、たとえば、有効画素情報と無効画素情報から得られる全画素数における有効画素数の割合で、画素平均値を補正するようにしてもよい。
 あるいは、放射線撮像装置に放射線を照射せずに撮像動作をすることで得られるダーク補正情報(あるいはダーク画像)を特性情報としてもよい。すなわち、特性情報は、放射線撮像装置に放射線を照射せずに撮像動作を行って取得されるダーク画像を含み、情報補正部1018または情報補正部1025が、ダーク画像を用いて撮像情報を補正する。この場合、たとえば、ダーク補正情報あるいはダーク画像から算出された画素の平均値を用いて、画素平均値を補正してもよい。なお、ダーク画像は、撮像動作に付随して得られるので、ダーク画像を用いた撮像情報の補正は、放射線撮像装置の情報補正部1025で実行されることが好ましい。
 あるいは、放射線撮像装置の蛍光体の種類を特性情報としてもよい。蛍光体の種類は放射線撮像装置の感度に関連する。この場合、特性情報は、放射線撮像装置の蛍光体の種別情報を含み、情報補正部1018または情報補正部1025は、蛍光体の種別情報を用いて撮像情報を補正する。撮像制御装置101の情報補正部1018で補正を行う場合、放射線撮像装置から送信される撮像情報は画素平均値と蛍光体の種別情報を含む。なお、放射線撮像装置の型番により蛍光体の種別を識別できる場合は、放射線撮像装置の型番が蛍光体の種別情報として用いられてもよい。
 また、上記実施形態では、放射線撮像装置の感度情報を用いて、それぞれの放射線撮像装置を基準となる所定の感度に合わせた場合の画素平均値に補正したが、これに限られるものではない。たとえば、複数の放射線撮像装置から基準となる放射線撮像装置を定め、基準となる放射線撮像装置の感度情報に合わせて他の放射線撮像装置からの画素平均値を補正するようにしてもよい。
 また、放射線撮像装置の撮像環境(気温や撮像装置自体の温度など)や経時変化による劣化情報など、前述した特性情報(たとえば感度情報)を補正するための補正情報(感度補正情報)が特性情報に含まれてもよい。情報補正部1018または情報補正部1025は、特性情報(たとえば感度情報)の変化を示す補正情報(たとえば、感度補正情報)を用いて特性情報を補正し、補正された特性情報を用いて撮像情報(たとえば画素平均値)を補正するようにしてもよい。また、複数の放射線撮像装置のそれぞれについてあらかじめ定められた経時変化の情報(時間に対する関数)を補正情報として保持しておき、情報補正部1018または情報補正部1025は、それぞれの放射線撮像装置の動作時間に基づいて特性情報を補正するようにしてもよい。これにより、経時変化による特性情報の変化を考慮することができる。
 なお、放射線撮像装置の特性情報は、上記に限定されるものではないし、複数の特性情報が組み合わせて用いられてもよい。すなわち、撮像情報の補正方法は上記に限定されるものではなく、また、複数の補正方法が組み合わせて用いられてもよい。
 <第9実施形態>
 図15は第9実施形態における放射線撮像システムの構成例を示す図である。第1実施形態(図1)と同様の構成には同一の参照番号を付してある。なお、第9実施形態の放射線撮像システムのハードウエア構成は第1実施形態(図2)と同様である。第9実施形態では、第一の放射線撮像装置102および第二の放射線撮像装置103に補正部1026が加わっている。
 第一の放射線撮像装置102において、撮像実行部1021は、放射線の照射時における第1の撮像動作を実行して放射線画像を取得する。また、撮像実行部1021は、放射線の非照射時における第2の撮像動作を実行して暗画像(暗時出力)を得る。生成部1022は、第1の撮像動作により得られた放射線画像に基づいて、放射線画像よりもデータサイズが小さい撮像情報を生成する。本実施形態では、撮像情報として、放射線画像の画素値の平均値が用いられる。補正部1026は、第2の撮像動作により暗画像を取得し、第1の撮像動作で取得された放射線画像を暗画像で補正(第1の画像補正)して補正後画像を生成する。第2の撮像動作は例えば第1の撮像動作に続いて実行される。送信部1023は、生成部1022で生成された撮像情報を外部装置(本実施形態では撮像制御装置101)へ送信する。また、送信部1023は、外部装置(撮像制御装置101)からの要求に応じて、補正部1026が生成した補正後画像を外部装置へ送信する。第二の放射線撮像装置103も同様の機能構成を有する。
 図16A,16Bは、第9実施形態に係る、撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103による、放射線撮像の準備から放射線撮像を実施するまでの動作の一例を示すフローチャートである。ステップS101~S104までの動作は第1実施形態(図3A,3B)と同様である。
 ステップS1605で、第一の放射線撮像装置102および第二の放射線撮像装置103の生成部1022は、放射線撮像により得られた放射線画像の画素値に基づいて算出された統計情報を撮像情報として算出する。第9実施形態では、統計情報として放射線画像における画素値の平均値(以下、画素平均値)が用いられる。ステップS1606において、第一の放射線撮像装置102および第二の放射線撮像装置103は、撮像が終了したことを撮像制御装置101に通知する。
 なお、第9実施形態では、統計情報として画素平均値を用いているが、これに限定されるものではない。たとえば、画素値の最大値、中央値、分散値などの統計情報でもよい。あるいは隣接する画素同士の画素値の差分の最大値や、画素値の最大値と最小値の幅などの統計情報でもよい。なお、画素値は、輝度、濃度であってもよい。また、算出する統計情報が2つ以上であってもよい。
 また、統計情報を算出する範囲は、第3実施形態、第5実施形態、第6実施形態で説明したように、放射線画像の全体でなくてもよい。すなわち、撮像情報としての統計情報は、放射線画像に基づいて生成された、放射線画像よりもデータサイズが小さい画像(画素群)の画素値を用いて算出されてもよい。たとえば、放射線画像から検出された関心領域や照射野の画素を統計情報の対象としてもよいし、放射線画像から派生した間引き画像や縮小画像の画素を統計情報の対象としてもよい。或いは、放射線画像における予め定められた1つ以上の座標の画素を統計情報の対象としてもよい。なお、縮小画像は、たとえば複数の画素の画素値から1つの画素の画素値を算出(たとえば、近傍画素の平均値)することにより生成される。また、関心領域は放射線画像の解析により周知の方法で検出される。更に、照射野は、放射線画像の解析により検出されてもよいし、撮像制御装置101から取得した放射線発生装置104の照射条件に関する情報(コリメータに関する情報など)に基づいて決定されてもよい。
 また、上記では、生成部1022が撮像情報として統計情報を生成したが、これに限られるものではない。たとえば、第4実施形態で説明したように、生成部1022が、放射線画像に基づいて、放射線画像よりもデータサイズが小さい画像を生成し、情報取得部1012がこれを撮像情報として取得するようにしてもよい。選択部1013は、取得した撮像情報(データサイズが小さい画像)から所定の統計情報(たとえば画素平均値)を生成し、生成した統計情報に基づいて1つの放射線撮像装置を選択する。この場合も、撮像情報として提供される画像として、上述したような間引き画像、縮小画像、関心領域、照射野、予め定められた座標の画素などを用いることができる。
 図17は、第1実施形態に係る、撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103による、放射線撮像の実施後から放射線画像を取得するまでの動作例を示すフローチャートである。
 ステップS1701で、撮像制御装置101(情報取得部1012)は第一の放射線撮像装置102と第二の放射線撮像装置103のそれぞれから、ステップS1605で算出された画素平均値を送信部1023を介して取得する。ステップS1702で、選択部1013は、ステップS1701で取得した画素平均値を比較し、最も大きい画素平均値を提供した放射線撮像装置を選択する。なお、第9実施形態では最も大きい画素平均値を提供した放射線撮像装置が選択されるが、これに限定されるものではない。たとえば、予め設定した閾値に最も近い統計情報を提供した放射線撮像装置を選択するようにしてもよいし、複数の統計情報を比較して選択してもよい。また、比較した結果が同等で1つの放射線撮像装置を選択することができない場合、放射線撮像を実施したことを先に通知してきた放射線撮像装置を選択するようにしてもよい。
 ステップS1704で第一の放射線撮像装置102と第二の放射線撮像装置103の補正部1026は、放射線照射の無い状態で、ステップS104の放射線撮像と同じ撮像条件での撮像を実行し、暗画像を取得する。そして、補正部1026は、ステップS104で取得された放射線画像からステップS1704で取得された暗画像を差し引くことで、補正後の放射線画像を得る。ステップS1705で第一の放射線撮像装置102と第二の放射線撮像装置103は、上記補正が終了したことを撮像制御装置101に通知する。
 ステップS1705における補正の終了の通知を受け付けた撮像制御装置101(画像取得部1014)は、ステップS1703において、ステップS1702で選択された放射線撮像装置(ここでは第一の放射線撮像装置102とする)から補正後の放射線画像を取得する。
 なお、図16A,16B、図17のフローチャートでは、放射線撮像装置における暗画像の取得と補正(S1704)の処理と、撮像制御装置101における放射線撮像装置の選択(S1702)の処理が並列に実行されているが、これに限られるものではない。たとえば、放射線撮像装置において、放射線画像の取得後の撮像情報の生成と通知の処理(S1605、S1606)と、暗画像の取得から補正後画像の生成と通知の処理(S1704、S1705)との少なくとも一部を並列的に実行できる。したがって、生成部1022による撮像情報の生成の開始から選択部1013が放射線撮像装置を選択するまでの第1の期間と、補正部1026が暗画像を取得して補正後画像を生成する第2の期間の少なくとも一部を重複させることができる。結果、撮影サイクルの短縮を図ることができる。
 この様子を図21に示す。放射線撮像装置において、撮像実行部1021は、放射線発生装置104による放射線の照射と同期して第1の撮像動作(放射線検出パネル51における蓄積動作2101および読出し動作2102)を実行する(S104,S1605)。また、撮像実行部1021は、第1の撮像動作に続いて暗画像を得るための第2の撮像動作(放射線の非照射下での放射線検出パネル51における蓄積動作2103および読出し動作2104)を実行する(S1704)。補正部1026は、第2の撮像動作により得られた暗画像を用いて第1の撮像動作により得られた放射線画像を補正し(補正処理2106)、補正後画像を得る。撮像実行部1021による第2の撮像動作と補正処理2106の期間が上述の第2の期間(S1704、S1705)に相当する。また、第2の撮像動作および補正処理2106とは独立に、生成部1022が放射線画像からの撮像情報生成2105を行い、送信部1023が撮像制御装置101へ撮像情報を送信する。撮像制御装置101において、情報取得部1012は第一の放射線撮像装置102および第二の放射線撮像装置103から撮像情報を順次に取得し(2121,2122)、選択部1013は、取得された撮像情報に基づいて放射線撮像装置を選択する(2123)。生成部1022による撮像情報の生成の開始から選択部1013が放射線撮像装置を選択するまでの期間が上述の第1の期間(S1605、S1606、S1701、S1702)に相当する。
 以上のように、第9実施形態によれば、情報取得部1012と選択部1013が複数の放射線撮像装置から撮像情報を取得して放射線撮像装置を選択する期間と、補正部1026が暗画像を取得して補正後画像を生成する期間との一部が重複する。このように、放射線撮像装置を選択するための処理(撮像情報の生成と選択)を、暗画像の取得と補正の処理と並行して実行させることで、放射線撮像システムの撮像サイクルを短縮させることができる。
 なお、放射線撮像装置の数が多い場合等は、S1705の補正終了通知よりもS1702の放射線撮像装置の選択の方が遅くなる可能性もある。しかしながら、ステップS1705の補正終了の通知を待って、撮像情報(画素平均値)の収集と放射線撮像装置の選択(ステップS1701、S1702)を開始するよりも撮像サイクルを短縮できることは明らかである。
 <第10実施形態>
 図18は、第10実施形態における放射線撮像システムの構成例を示すブロック図である。第9実施形態の構成(図15)と同様の構成には同一の参照番号を付してある。また、第10実施形態による放射線撮像システムのハードウエア構成は第1実施形態(図2)と同様である。第10実施形態の撮像制御装置101は、複数の放射線撮像装置のそれぞれに対応した特性補正情報を用いて、放射線画像を補正(第2の画像補正)する特性補正部1116と、高速なアクセスが可能なメモリ部1117と、データを不揮発に保持するストレージ部1118を有する。なお、メモリ部1117はたとえばRAM13を用いて構成され、ストレージ部1118は二次記憶装置14を用いて構成される。ストレージ部1118は、複数の放射線撮像装置の各々についての特性補正情報を格納する。
 特性補正部1116は、HDDに代表される不揮発に記録可能なストレージ部1118から高速にアクセス可能なメモリ部1117に特性補正のための情報を展開することで高速に特性補正が可能となる。なお、特性補正部1116で補正する特性とは、たとえば放射線検出パネル51におけるゲインのばらつきや画素欠陥などの、放射線撮像装置の特性である。ゲイン補正では、放射線検出パネル51の光電変換素子に基準光が入射された状態で撮像した画像をゲイン補正用の画像として用いてゲインのばらつきが補正される。ゲイン補正の場合、特性補正部1116は、事前に撮像しておいたゲイン補正用の画像をストレージ部1118から取得してメモリ部1117に展開して用いる。また、例えば、欠陥補正の場合は、特性補正部1116は、事前に撮像しておいた欠陥補正用の欠陥情報をストレージ部1118から取得しメモリ部1117に展開して用いる。
 図19A,19Bは、第10実施形態に係る、撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103による、放射線撮像の準備から放射線撮像を実施するまでの動作例を示すフローチャートである。
 ステップS101で、第一の放射線撮像装置102および第二の放射線撮像装置103は待機状態となる。待機状態において、第一の放射線撮像装置102および第二の放射線撮像装置103は撮像制御装置101との通信を確立する。ステップS1901で、特性補正部1116は、使用可能なすべての放射線撮像装置の特性補正情報(ゲイン補正用の画像、欠陥情報)をストレージ部1118からメモリ部1117へ展開する。すなわち、複数の放射線撮像装置の撮像動作に先立って、ストレージ部1118よりも高速にアクセスが可能なメモリ部1117へ、ストレージ部1118に格納されている複数の放射線撮像装置の特性補正情報を保持させる。第10実施形態では、第一の放射線撮像装置102および第二の放射線撮像装置103に対応する特性補正情報がメモリ部1117へ展開される。ステップS102以降の処理は、第9実施形態(図16A,16B)と同様である。
 図20A,20Bは、第10実施形態に係る、撮像制御装置101と第一の放射線撮像装置102と第二の放射線撮像装置103による、放射線撮像を実施した後から放射線画像を取得し特性を補正するまでの動作例を示すフローチャートである。ステップS1701~S1705の処理は、第10実施形態(図17)と同様である。
 ステップS1703の後、特性補正部1116は、選択部1013により選択された放射線撮像装置の特性補正情報をメモリ部1117から読み出して、画像取得部1014により取得された画像を補正する。すなわち、ステップS2001において、特性補正部1116は、ステップS1901でメモリ部1117に展開しておいた特性補正情報から、ステップS1702で選択した放射線撮像装置(本例では第一の放射線撮像装置)の特性補正情報を取得する。そして、特性補正部1116は、取得した特性補正情報を用いて、ステップS1703で取得された放射線画像を補正する。
 仮に、ステップS1901で全ての放射線撮像装置の特性補正情報をストレージ部1118からメモリ部1117へ展開していない場合を想定する。この場合、ステップS2001の実行前に、ステップS1702で選択した放射線撮像装置の特性補正情報をストレージ部1118からメモリ部1117へ展開するステップが必要となり、放射線撮像サイクルが長くなる。
 以上のように、第10実施形態によれば、撮像制御装置101で放射線撮像装置の特性補正を実施する場合に、撮像前に全ての放射線撮像装置の特性補正情報を高速にアクセス可能なメモリへ展開される。そのため、画像取得後の特性補正処理を高速に実行することができ、放射線撮像のサイクルを短縮することができる。
 なお、上述した第1実施形態~第10実施形態の構成および制御は、適宜組み合わせることが可能である。
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2016年10月14日提出の日本国特許出願特願2016-203038および特願2016-203041、ならびに2017年3月15日提出の日本国特許出願特願2017-050291を基礎として優先権を主張するものであり、それらの記載内容の全てを、ここに援用する。

Claims (26)

  1.  放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と、
     前記複数の撮像装置と通信する制御装置と、を備える放射線撮像システムであって、
     前記複数の撮像装置のそれぞれは、
     撮像動作により得られた画像に基づいて、前記画像よりもデータサイズが小さい撮像情報を生成する生成手段を備え、
     前記制御装置は、
     前記複数の撮像装置のそれぞれから前記撮像情報を取得する情報取得手段と、
     前記情報取得手段で取得した前記撮像情報に基づいて前記複数の撮像装置から撮像動作により得られた画像を取得するための撮像装置を選択する選択手段と、を備えることを特徴とする放射線撮像システム。
  2.  前記選択手段で選択された撮像装置から、画像を取得する画像取得手段と、をさらに備えることを特徴とする請求項1に記載の放射線撮像システム。
  3.  前記生成手段は、前記画像の画素値の統計情報を前記撮像情報として生成することを特徴とする、請求項1または2に記載の放射線撮像システム。
  4.  前記生成手段は、前記画像に基づいて生成された該画像よりもデータサイズの小さい画像を用いて前記統計情報を生成することを特徴とする請求項3に記載の放射線撮像システム。
  5.  前記生成手段は、前記画像に基づいて、該画像よりもデータサイズの小さい画像を前記撮像情報として生成し、
     前記選択手段は、前記データサイズの小さい画像の画素値から所定の統計情報を生成し、生成した統計情報に基づいて撮像装置を選択することを特徴とする請求項1または2に記載の放射線撮像システム。
  6.  前記データサイズの小さい画像とは、前記画像の間引き画像、縮小画像、予め定められた座標の画素で構成された画像、関心領域の画像、照射野の画像の何れかであることを特徴とする請求項4または5に記載の放射線撮像システム。
  7.  前記統計情報は、画素値の平均値、画素値の最大値、画素値の中央値、画素値の分散値、隣接する画素同士の画素値の差分の最大値、画素値の最大値と最小値の幅の何れかであることを特徴とする請求項3乃至6のいずれか1項に記載の放射線撮像システム。
  8.  前記制御装置は、
     前記選択手段により選択された撮像装置から画像を取得した後に別の撮像装置からの画像の取得を指示する指示手段をさらに備え、
     前記画像取得手段は、前記指示手段からの指示に応じて、前記別の撮像装置から画像を取得することを特徴とする請求項2に記載の放射線撮像システム。
  9.  前記複数の撮像装置の各々の特性を示す特性情報を記憶する記憶手段と、
     前記記憶手段に記憶されている前記特性情報に基づいて、前記複数の撮像装置から取得した前記撮像情報を補正する補正手段と、をさらに備えることを特徴とする請求項1乃至8のいずれか1項に記載の放射線撮像システム。
  10.  前記記憶手段は、前記複数の撮像装置のそれぞれにおいて撮像装置の特性を示す特性情報を記憶する記憶部を含むことを特徴とする請求項9に記載の放射線撮像システム。
  11.  前記記憶手段は、前記制御装置において、前記複数の撮像装置の特性を示す特性情報を記憶する記憶部を含むことを特徴とする請求項9に記載の放射線撮像システム。
  12.  前記補正手段は、前記特性情報に基づいて、前記複数の撮像装置のそれぞれの感度を基準となる感度に合わせた場合の撮像情報に補正することを特徴とする請求項9乃至11のいずれか1項に記載の放射線撮像システム。
  13.  前記基準となる感度は前記複数の撮像装置のうちの一つの撮像装置の感度であることを特徴とする請求項12に記載の放射線撮像システム。
  14.  前記特性情報は、前記撮像装置の放射線を検出できない画素を示す欠損画素情報を含み、前記補正手段は、前記欠損画素情報を用いて前記撮像情報を補正することを特徴とする請求項9乃至13のいずれか1項に記載の放射線撮像システム。
  15.  前記特性情報は、前記撮像装置に放射線を照射せずに撮像動作を行って取得されるダーク画像を含み、前記補正手段は、前記ダーク画像を用いて前記撮像情報を補正することを特徴とする請求項9乃至14のいずれか1項に記載の放射線撮像システム。
  16.  前記特性情報は、前記撮像装置の蛍光体の種別情報を含み、前記補正手段は、前記蛍光体の種別情報を用いて前記撮像情報を補正することを特徴とする請求項9乃至15のいずれか1項に記載の放射線撮像システム。
  17.  前記特性情報は、前記複数の撮像装置のそれぞれについてあらかじめ定められた経時変化とそれぞれの撮像装置の動作時間に基づいて補正されることを特徴とする請求項9乃至16のいずれか1項に記載の放射線撮像システム。
  18.  放射線の非照射時の撮像動作により暗画像を取得し、前記画像を前記暗画像で補正して補正後画像を生成する第1の画像補正手段、をさらに備え、
     前記画像取得手段は、前記選択手段で選択された撮像装置から前記補正後画像を取得する、ことを特徴とする請求項2に記載の放射線撮像システム。
  19.  前記撮像情報の生成の開始から前記選択手段が撮像装置を選択するまでの第1の期間と、前記第1の画像補正手段が前記暗画像を取得して補正後画像を生成する第2の期間との少なくとも一部が重複することを特徴とする請求項18に記載の放射線撮像システム。
  20.  前記複数の撮像装置の各々についての特性補正情報を格納する格納手段と、
     前記複数の撮像装置の撮像動作に先立って、前記格納手段よりも高速にアクセスが可能なメモリへ、前記格納手段に格納されている前記複数の撮像装置の特性補正情報を保持させる保持手段と、
     前記選択手段により選択された撮像装置の特性補正情報を前記メモリから読み出して、前記画像取得手段により取得された画像を補正する第2の画像補正手段と、をさらに備えることを特徴とする請求項18または19に記載の放射線撮像システム。
  21.  放射線発生装置から照射された放射線に基づき画像を生成する撮像装置であって、
     撮像動作により得られた画像に基づいて、前記画像よりもデータサイズが小さい撮像情報を生成する生成手段と、
     前記生成手段で生成された前記撮像情報を外部装置へ送信する第1の送信手段と、
     前記外部装置からの要求に応じて、前記撮像動作により得られた前記画像を前記外部装置へ送信する第2の送信手段と、を備えることを特徴とする撮像装置。
  22.  放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と通信が可能な制御装置であって、
     前記複数の撮像装置の各々から、撮像動作により得られた画像に基づいて生成された、前記画像よりもデータサイズが小さい撮像情報を取得する情報取得手段と、
     前記情報取得手段で取得した前記撮像情報に基づいて前記複数の撮像装置から1つの撮像装置を選択する選択手段と、
     前記選択手段で選択された撮像装置から画像を取得する画像取得手段と、を備えることを特徴とする制御装置。
  23.  放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と、
     前記複数の撮像装置と通信する制御装置と、を備える放射線撮像システムの制御方法であって、
     前記複数の撮像装置のそれぞれが、撮像動作により得られた画像に基づいて、前記画像よりもデータサイズが小さい撮像情報を生成する生成工程と、
     前記制御装置が、前記複数の撮像装置のそれぞれから前記撮像情報を取得する情報取得工程と、
     前記制御装置が、前記情報取得工程で取得した前記撮像情報に基づいて前記複数の撮像装置から撮像動作により得られた画像を取得するための撮像装置を選択する選択工程と、を有することを特徴とする放射線撮像システムの制御方法。
  24.  放射線発生装置から照射された放射線に基づき画像を生成する撮像装置の制御方法であって、
     前記放射線発生装置との同期により撮像動作を実行する撮像実行工程と、
     前記撮像動作により得られた画像に基づいて、前記画像よりもデータサイズが小さい撮像情報を生成する生成工程と、
     前記生成工程で生成された前記撮像情報を外部装置へ送信する第1の送信工程と、
     前記外部装置からの要求に応じて、前記撮像動作により得られた前記画像を前記外部装置へ送信する第2の送信工程と、を有することを特徴とする撮像装置の制御方法。
  25.  放射線発生装置から照射された放射線に基づき画像を生成する複数の撮像装置と通信が可能な制御装置の制御方法であって、
     前記複数の撮像装置の各々から、撮像動作により得られた画像に基づいて生成された、前記画像よりもデータサイズが小さい撮像情報を取得する情報取得工程と、
     前記情報取得工程で取得した前記撮像情報に基づいて前記複数の撮像装置から1つの撮像装置を選択する選択工程と、
     前記選択工程で選択された前記1つの撮像装置から画像を取得する画像取得工程と、を有することを特徴とする制御装置の制御方法。
  26.  請求項23乃至25のいずれか1項に記載された制御方法の各工程をコンピュータに実行させるためのプログラム。
PCT/JP2017/035502 2016-10-14 2017-09-29 放射線撮像システム、撮像装置、制御装置およびそれらの制御方法 WO2018070274A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780063506.9A CN109843178B (zh) 2016-10-14 2017-09-29 放射线摄像系统、摄像装置、控制装置、控制方法和介质
US16/381,608 US11092698B2 (en) 2016-10-14 2019-04-11 Radiation imaging system, imaging apparatus, control apparatus, and methods of controlling the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-203041 2016-10-14
JP2016-203038 2016-10-14
JP2016203038 2016-10-14
JP2016203041A JP6802683B2 (ja) 2016-10-14 2016-10-14 放射線撮像システム、撮像装置、制御装置、および制御方法
JP2017050291A JP6779159B2 (ja) 2016-10-14 2017-03-15 放射線撮像システム、制御装置およびそれらの制御方法、プログラム
JP2017-050291 2017-03-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/381,608 Continuation US11092698B2 (en) 2016-10-14 2019-04-11 Radiation imaging system, imaging apparatus, control apparatus, and methods of controlling the same

Publications (1)

Publication Number Publication Date
WO2018070274A1 true WO2018070274A1 (ja) 2018-04-19

Family

ID=61905549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035502 WO2018070274A1 (ja) 2016-10-14 2017-09-29 放射線撮像システム、撮像装置、制御装置およびそれらの制御方法

Country Status (1)

Country Link
WO (1) WO2018070274A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113382222A (zh) * 2021-05-27 2021-09-10 深圳市瑞立视多媒体科技有限公司 一种在用户移动过程中基于全息沙盘的展示方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177348A (ja) * 2010-03-01 2011-09-15 Fujifilm Corp 放射線画像取得装置、放射線画像撮影システム及び放射線画像撮影方法
JP2016000369A (ja) * 2015-10-08 2016-01-07 富士フイルム株式会社 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影プログラム、及び放射線画像撮影方法
JP2016140510A (ja) * 2015-01-30 2016-08-08 キヤノン株式会社 放射線撮影装置、制御装置、長尺撮影システム、制御方法、及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177348A (ja) * 2010-03-01 2011-09-15 Fujifilm Corp 放射線画像取得装置、放射線画像撮影システム及び放射線画像撮影方法
JP2016140510A (ja) * 2015-01-30 2016-08-08 キヤノン株式会社 放射線撮影装置、制御装置、長尺撮影システム、制御方法、及びプログラム
JP2016000369A (ja) * 2015-10-08 2016-01-07 富士フイルム株式会社 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影プログラム、及び放射線画像撮影方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113382222A (zh) * 2021-05-27 2021-09-10 深圳市瑞立视多媒体科技有限公司 一种在用户移动过程中基于全息沙盘的展示方法

Similar Documents

Publication Publication Date Title
JP6208600B2 (ja) 放射線画像撮影装置および放射線画像撮影システム
US9569829B2 (en) Image processing apparatus, radiation imaging apparatus, control methods for them, gain image creation method, radiation imaging system, and storage medium
JP2001351091A (ja) 画像処理装置、撮影装置、画像処理システム、画像処理方法、及び記憶媒体
US11092698B2 (en) Radiation imaging system, imaging apparatus, control apparatus, and methods of controlling the same
WO2020036012A1 (ja) 情報処理装置、放射線撮影装置及びそれらの制御方法
US9606243B2 (en) Radiation imaging apparatus, method of determining radiation irradiation, and storage medium
US10856833B2 (en) Radiation imaging apparatus comprising a processing unit configured to set a control timing of a radiation source with respect to a wired or wireless communication with an imaging capturing unit
US11160527B2 (en) Radiation imaging system
US20140241499A1 (en) Radiation imaging apparatus, control method therefor, and non-transitory computer-readable storage medium
WO2018070274A1 (ja) 放射線撮像システム、撮像装置、制御装置およびそれらの制御方法
US20130336452A1 (en) Radiation imaging apparatus, radiation imaging system, radiation imaging method, and program
US11172898B2 (en) Radiation imaging system, radiation control apparatus and method of controlling radiation imaging system
JP2018064924A (ja) 放射線撮像システム、撮像制御装置およびその制御方法
JP6493893B2 (ja) 放射線画像撮影装置および放射線画像撮影システム
JP6802683B2 (ja) 放射線撮像システム、撮像装置、制御装置、および制御方法
CN110174418B (zh) 放射线成像装置、放射线成像系统和控制该系统的方法
US10939886B2 (en) Radiation imaging apparatus, radiation imaging system, radiation imaging method, and computer-readable medium
JP6945676B2 (ja) 放射線画像撮影装置および放射線画像撮影システム
US20240168183A1 (en) Radiation imaging apparatus
JP2019076219A (ja) 放射線撮影システム、時刻同期方法、及びプログラム
JP2019141114A (ja) 放射線撮影装置、放射線撮影システム、及び放射線撮影システムの制御方法
JP6320155B2 (ja) 画像処理装置、放射線撮影装置、それらの制御方法、放射線撮影システムおよびプログラム
US20230309947A1 (en) Radiation imaging system, control apparatus, radiation imaging apparatus, control methods therefor, and non-transitory computer-readable storage medium
JP2019017441A (ja) 放射線画像撮影システム及び画像処理方法
JP2022053999A (ja) 放射線撮影装置及びその制御方法、放射線撮影システム、並びに、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861158

Country of ref document: EP

Kind code of ref document: A1