WO2018070198A1 - 変圧器およびそれを備えた電力変換器 - Google Patents

変圧器およびそれを備えた電力変換器 Download PDF

Info

Publication number
WO2018070198A1
WO2018070198A1 PCT/JP2017/033990 JP2017033990W WO2018070198A1 WO 2018070198 A1 WO2018070198 A1 WO 2018070198A1 JP 2017033990 W JP2017033990 W JP 2017033990W WO 2018070198 A1 WO2018070198 A1 WO 2018070198A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
layer
transformer
layers
gap
Prior art date
Application number
PCT/JP2017/033990
Other languages
English (en)
French (fr)
Inventor
西川 武男
都司如 横井
隆圭 俵木
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP17860593.7A priority Critical patent/EP3509077B1/en
Priority to CN201780061208.6A priority patent/CN109804441B/zh
Priority to US16/338,997 priority patent/US20190287716A1/en
Priority to KR1020197009622A priority patent/KR101984464B1/ko
Publication of WO2018070198A1 publication Critical patent/WO2018070198A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • H01F27/325Coil bobbins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Definitions

  • the present invention relates to a transformer (transformer) and a power converter including the same, and more particularly to a transformer having a winding structure suitable for a power converter such as an insulating converter and a power converter including the transformer.
  • LLC current resonance converter has been put to practical use as a highly efficient isolated converter.
  • LLC has been used in converters that require a wide range of voltage fluctuations, such as solar power conditioners. In that case, in order to cope with a wide input / output voltage range, it is necessary to design the LLC excitation current to be large. In order to increase the excitation current, it is necessary to reduce the excitation inductance of the transformer, and the transformer gap tends to increase.
  • an object of the present invention is to provide a transformer capable of suppressing abnormal heat generation of windings due to leakage magnetic flux from the core gap with a simple configuration without providing the core gap in two places. And a power converter comprising such a transformer.
  • the transformer of the present invention forms a magnetic circuit and has a core at least partially provided with a gap, a bobbin attached to the core, and the closest to the gap of the bobbin.
  • a first winding wound in two or more layers including a first winding first layer wound on the side and a first winding second layer wound on the side farther from the gap,
  • a second winding comprising a first winding wound between the first winding first layer and the first winding second layer, the second winding being insulated from the first winding;
  • the first winding first layer and the first winding second layer are connected in series.
  • the first winding may be three or more layers including layers other than the first winding first layer and the first winding second layer, and the second winding also includes the second winding first.
  • Two or more layers including layers other than the layers may be used.
  • the innermost winding layer of the bobbin corresponds to the first winding first layer.
  • the outermost winding layer of the bobbin corresponds to the first winding first layer.
  • the transformer having such a configuration, even if the leakage magnetic flux from the air gap is linked between the first winding and the second winding, no loop current can be generated, so that abnormal heating of the winding is suppressed.
  • the second winding is also wound in two or more layers, and the layers of the first winding and the layers of the second winding are alternately stacked on the bobbin.
  • Each layer of the winding and each layer of the second winding may be connected in series.
  • each layer of the first winding and each layer of the second winding are alternately stacked on the bobbin.
  • the first winding specifying layer and thereby the gap Are connected in series, and the first winding specific layer and the layers farther from the gap are connected in parallel, and the second winding also has the second winding specific layer and
  • the layers closer to the gap may be connected in series, and the second winding specific layer and the layers farther from the gap may be connected in parallel.
  • the coupling coefficient of the transformer can be further increased while reducing the influence of leakage magnetic flux from the air gap.
  • the bobbin is provided with a winding holding portion for holding a series connection line between the first winding and the second winding.
  • the transformer having such a configuration, it is not necessary to connect with solder or the like in order to connect each layer in separate windings in series, so that it is possible to reduce man-hours and space.
  • the entry / exit of the wire between the layers of the first winding and the entry / exit of the wire between the layers of the second winding are arranged apart from each other.
  • the power converter provided with one of the transformers mentioned above is also the category of the present invention.
  • the transformer of the present invention even if the leakage magnetic flux from the air gap is linked between the first winding and the second winding, no loop current can be generated, so that abnormal heating of the winding is suppressed.
  • FIG. 1 is a cross-sectional view showing an overview configuration of a transformer 1 according to a first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing details of a winding part 30 in the transformer 1.
  • 3 is a cross-sectional view showing electrical connections between layers of a first winding 31 and a second winding 32 in the transformer 1.
  • FIG. It is sectional drawing which shows the electrical connection between each layer of the 1st coil
  • FIG. 3 is a cross-sectional view illustrating a leakage magnetic flux ⁇ from a gap 11 in a transformer 1.
  • PHI leakage magnetic flux
  • FIG. 6 is a graph illustrating a temperature rise of a winding during operation of the transformer 1 and a conventional transformer 101. It is sectional drawing which shows the electrical connection between each layer of the 1st coil
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the transformer 1 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing details of the winding portion 30 in the transformer 1.
  • the transformer 1 forms a magnetic circuit and has a core 10 having a gap 11 in the middle leg 10b, and a bobbin (winding frame) 20 attached to the middle leg 10b of the core 10.
  • the bobbin 20 is provided with a winding portion 30 wound in a plurality of layers.
  • the core 10 has one middle leg 10b and outer legs 10a and 10c branched from the middle leg 10b into two (referred to as the left leg 10a and the right leg 10c, if necessary). Among these, a gap 11 is provided in the middle leg 10b. The gap 11 is provided in order to prevent magnetic saturation of the core 10 and adjust the exciting inductance of the transformer 1, but it is not always necessary to provide it in the middle leg 10b.
  • the core 10 can be configured by combining two E-type cores, for example, but it is necessary to shorten the portion corresponding to the middle leg by a length corresponding to the gap G of the gap 11.
  • the portions corresponding to the outer legs of both E-type cores may be shortened by a length corresponding to 1 ⁇ 2 of the gap interval G, or corresponding to the outer legs of one E-type core. Only the portion may be shortened by a length corresponding to the gap interval G.
  • the material of the core 10 may be a common material.
  • the bobbin 20 is wound so that the layers of the first winding 31 and the layers of the second winding 32 that are electrically insulated are alternately stacked. Specifically, it is wound in the following order from the inside of the bobbin 20 (side closer to the gap 11).
  • the first winding 31 is not limited to three layers and the second winding 32 is not limited to five layers in total.
  • the layer 31a is the “first winding first layer” of the present invention
  • the layer 31b is the “first winding second layer”. It corresponds to each.
  • the layer 32a corresponds to the “second winding first layer”.
  • the first winding 31 and the second winding 32 correspond to, for example, the primary side / secondary side or the secondary side / primary side of the power converter.
  • an insulating tape (insulating member) 41 for preventing dielectric breakdown is pasted between each layer of the first winding 31 and the second winding 32, and the layers adjacent to both ends of the winding of each layer are also connected.
  • a barrier tape (insulating member) 42 for preventing dielectric breakdown is attached.
  • the insulating tape 41 and the barrier tape 42 are actually different from each other, but the same tape may be used.
  • the degree of coupling between the first winding 31 and the second winding 32 of the transformer 1 is indicated by a coupling coefficient that takes a value of 0 to 1, and approaches 1 as the leakage flux decreases.
  • a coupling coefficient that takes a value of 0 to 1, and approaches 1 as the leakage flux decreases.
  • FIG. 3 is a cross-sectional view showing electrical connections between the layers of the first winding 31 and the second winding 32 in the transformer 1.
  • FIG. 4 is a cross-sectional view showing the electrical connection between the layers of the first winding 31 and the second winding 32 in the conventional transformer 101.
  • the layers of the first winding 31 are connected in series (see the right side of FIG. 3), and the layers of the second winding 32 ( Layers 32a and 32b) are also connected in series (see left side of FIG. 3).
  • connection line 33a On the first winding side.
  • connection line 33b On the other end (lower end in FIG. 3) of the layer 31b and one end (lower end in FIG. 3) of the layer 31c are connected by a connection line 33b.
  • connection line 34a On the second winding side.
  • each layer of the first winding 31 is connected in parallel by the connection line 133a and the connection line 133b on the first winding side (see the right side of FIG. 4).
  • Each layer of the second winding 32 was also connected in parallel by the connection line 134a and the connection line 134b on the second winding side (see the left side of FIG. 4).
  • the electrical resistance value of the entire first winding 31 and the electrical resistance value of the entire second winding 32 in the transformer 1 be approximately the same as those of the conventional transformer 101. Therefore, for example, thicker wires may be used for the first winding 31 and the second winding 32 in the transformer 1. Specifically, a wire having an electrical resistance value of 1/3 per unit length is used for the first winding 31 consisting of three layers, and an electric power per unit length is used for the second winding 32 consisting of two layers. A wire having a resistance value of 1/2 may be used.
  • FIG. 5 is a cross-sectional view illustrating the leakage magnetic flux ⁇ from the gap 11 in the transformer 1.
  • FIG. 6 is a cross-sectional view illustrating the influence of the leakage magnetic flux ⁇ in the conventional transformer 101.
  • FIG. 7 is a cross-sectional view illustrating the influence of the leakage magnetic flux ⁇ in the transformer 1.
  • FIG. 8 is a graph illustrating the temperature rise of the windings when the transformer 1 and the conventional transformer 101 are in operation. In FIGS. 6 and 7, the second winding 32 is not shown.
  • a leakage magnetic flux ⁇ is generated from a gap (air gap) 11 provided in the core 10.
  • the gap 11 is large, the leakage flux ⁇ reaches the first winding 31 and the second winding 32, and magnetic flux fluctuations occur between the layers of these windings.
  • the layers of the first winding 31 and the second winding 32 are connected in series. Therefore, as shown in FIG. Even when linked, the loop current I cannot be generated because the loop does not exist originally. As a result, there is no excess current due to the loop current I, and abnormal heating of the winding is prevented.
  • the loop current I cannot be generated even if the leakage flux ⁇ from the gap 11 is linked between the first winding 31 and the second winding 32. There is no excess current due to I, and abnormal heat generation of the first winding 31 and the second winding 32 is suppressed.
  • FIG. 9 is a cross-sectional view showing the electrical connection between the layers of the first winding 31 and the second winding 32 in the transformer 1A according to the second embodiment of the present invention.
  • the same referential mark is attached
  • the layer 31a and the layer 31b of the first winding 31 are connected in series, and the layer 31b and the layer 31c are connected in parallel. That is, the specific layer (here, layer 31b) of the first winding 31 and the respective layers (here, only the layer 31a) on the inner side (side closer to the gap 11) are connected in series, and the specific layer (layer 31b) and The layers outside this (the side far from the gap 11) (here, only the layer 31c) are connected in parallel.
  • All the layers (layer 32a, layer 32b) of the second winding 32 are connected in parallel.
  • winding 32 has three or more layers, like the 1st coil
  • the coupling coefficient of the transformer 1A can be further increased while avoiding the influence of the leakage magnetic flux ⁇ by a simpler configuration than connecting all the layers in series (see, for example, FIG. 3).
  • FIG. 10 is a cross-sectional view showing the general configuration of the transformer 1B according to the third embodiment of the present invention and the electrical connection between the first winding 31 and the second winding 32. Note that the same components as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and different points will be mainly described below.
  • connection line holding part 21 is provided on the bobbin 20 as a structure for holding a connection line for connecting each layer in series.
  • a groove into which the connecting line enters may be dug on the bobbin 20.
  • connection line holding part 21 is also arranged at a distant place, it is possible to prevent dielectric breakdown between the first winding 31 and the second winding 32.
  • a single winding can be simply and stably wound in series alternately.
  • FIG. 11 is a cross-sectional view showing a general configuration of a transformer 1C according to the fourth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing the electrical connection between the layers of the first winding 31 in the transformer 1C. In FIG. 12, the second winding 32 is not shown.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and the differences will be mainly described below.
  • the transformer 1C forms a magnetic circuit and has a core 10C in which two outer legs 10Ca and 10Cc are provided with a gap 11C, and a bobbin 20 attached to the middle leg 10Cb of the core 10C. And a winding portion 30 wound around the bobbin 20 in a plurality of layers.
  • the layers (the layer 31a, the layer 31b, and the layer 31c) of the first winding 31 are connected in series. Specifically, one end (upper end in FIG. 12) of the layer 31a and one end (upper end in FIG. 12) of the layer 31b are connected by the connection line 33a, and the other end (lower end in FIG. 12) and the layer are connected. One end (lower end in FIG. 12) of 31c is connected by a connecting line 33b.
  • a loop current cannot be generated even if the leakage flux ⁇ from each gap 11C of the outer legs 10Ca and 10Cc is linked between the first windings 31. There is no excess current due to, and abnormal heating of the first winding 31 is suppressed. The same applies to the second winding 32.
  • the layer 31c and the layer 31b of the first winding 31 are connected in series, and the layer 31b and the layer 31a are connected in parallel. That is, a specific layer (here, layer 31b) of the first winding 31 and each layer (here, only the layer 31c) closer to the gap 11C are connected in series, and the specific layer (layer 31b) and the gap from this Each layer far from 11C (here, only the layer 31a) is connected in parallel.
  • the layer (outer layer) close to the gap 11C that is easily affected by the leakage magnetic flux ⁇ from the gap 11C is connected in series with the other layers.
  • the coupling coefficient of the transformer 1C can be further increased while avoiding the influence of the leakage magnetic flux ⁇ .
  • any of the above-described transformer 1, transformer 1A, transformer 1B, or transformer 1C may be applied to a power converter such as an insulating converter. Such a power converter can cope with a wide input / output voltage range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Dc-Dc Converters (AREA)

Abstract

トランス(1)は、磁気回路を形成するとともに、少なくとも一部にギャップ(11)が設けられたコア(10)と、このコア(10)に装着されたボビン(20)と、このボビン(20)のギャップ(11)に最も近い側に巻かれた層(31a)とこれよりギャップ(11)から遠い側に巻かれた層(31b)とを含む2層以上に分けて巻かれた第1巻線(31)と、第1巻線(31)側の層(31a)と層(31b)との間に巻かれた第2巻線(32)側の層(32a)を含み、第1巻線(31)とは絶縁されている第2巻線(32)とを備え、第1巻線(31)の層(31a)と層(31b)とが直列に接続されている。

Description

変圧器およびそれを備えた電力変換器
 本発明は、変圧器(トランス)およびそれを備えた電力変換器に関し、特に、絶縁型コンバータなどの電力変換器に適した巻線構造を有する変圧器およびそれを備えた電力変換器に関する。
 高効率な絶縁型コンバータとして、LLC電流共振コンバータが実用化されている。近年、太陽光パワーコンディショナーなどのように広い範囲の電圧変動が求められるコンバータにLLCが用いられるケースが出てきた。その場合、広い入出力電圧範囲に対応するために、LLCの励磁電流が大きくなるように設計する必要がある。励磁電流を大きくするには、トランスの励磁インダクタンスを小さくする必要があり、トランスのギャップが大きくなる傾向があった。
 また、リーケージインダクタンスが低く、サージ電圧の発生を抑制でき、ノイズを低減できるトランスが提案されていた(例えば特許文献1を参照)。
 さらに、渦電流損を低減し、発熱を低減したトランスも提案されていた(例えば特許文献2を参照)。
特開2013- 62399号公報 特開2010-232272号公報
 特許文献1に記載されたトランスの巻線構造では、積層された各巻線層が並列で接続されていた。そのため、トランスのコアギャップが大きい場合に、そのギャップからの漏れ磁束によって並列巻線間で電流ばらつきが生じて、一部の巻線が異常発熱するという課題があった。
 一方、特許文献2に記載されたトランスでは、2箇所のコアギャップをそれぞれの漏れ磁束が磁気干渉で打ち消しあうような場所に設ける必要があった。
 従来技術のこのような課題に鑑み、本発明の目的は、コアギャップを2箇所に設けることも無く、簡単な構成によって、コアギャップからの漏れ磁束による巻線の異常発熱を抑止可能な変圧器と、そのような変圧器を備えた電力変換器とを提供することである。
 上記目的を達成するため、本発明の変圧器は、磁気回路を形成するとともに、少なくとも一部に空隙が設けられたコアと、前記コアに装着されたボビンと、前記ボビンの前記空隙に最も近い側に巻かれた第1巻線第1層とこれより前記空隙から遠い側に巻かれた第1巻線第2層とを含む2層以上に分けて巻かれた第1巻線と、前記第1巻線第1層と前記第1巻線第2層との間に巻かれた第2巻線第1層を含み、前記第1巻線とは絶縁されている第2巻線とを備え、前記第1巻線第1層と前記第1巻線第2層とが直列に接続されていることを特徴とする。
 ここで、第1巻線は、第1巻線第1層および第1巻線第2層以外の層を含む3層以上であってもよく、第2巻線も、第2巻線第1層以外の層を含む2層以上であってもよい。例えば、コアが2つの外脚および中脚を有しており、この中脚に空隙が設けられている場合、ボビンの最内側の巻線層が第1巻線第1層に該当する。逆に、2つの外脚に空隙がそれぞれ設けられている場合、ボビンの最外側の巻線層が第1巻線第1層に該当する。
 このような構成の変圧器によれば、空隙からの漏れ磁束が第1巻線および第2巻線間に鎖交してもループ電流が発生し得ないので、巻線の異常発熱が抑止される。
 本発明の変圧器において、前記第2巻線も2層以上に分けて巻かれ、前記第1巻線の各層と前記第2巻線の各層とが前記ボビンに交互に積層され、前記第1巻線の各層および前記第2巻線の各層がそれぞれ直列に接続されていてもよい。
 このような構成の変圧器によれば、積層される層が多いほど、変圧器の第1巻線および第2巻線の結合の度合いを示す結合係数は高くなるので、漏れインダクタンスが低減される。
 本発明の変圧器において、前記第1巻線の各層と前記第2巻線の各層とが前記ボビンに交互に積層され、前記第1巻線では、第1巻線特定層およびこれより前記空隙に近い側の各層が直列に接続されるとともに、前記第1巻線特定層およびこれより前記空隙から遠い側の各層が並列に接続され、前記第2巻線でも、第2巻線特定層およびこれより前記空隙に近い側の各層が直列に接続されるとともに、前記第2巻線特定層およびこれより前記空隙から遠い側の各層が並列に接続されていてもよい。
 このような構成の変圧器によれば、空隙からの漏れ磁束の影響は低減しつつ、変圧器の結合係数をさらに大きくすることができる。
 本発明の変圧器において、前記ボビンには、前記第1巻線または前記第2巻線の各層間の直列接続線を保持する巻線保持部が設けられていることが好ましい。
 このような構成の変圧器によれば、別々の巻線とした各層を直列接続するためにはんだなどによる接続が不要となるので、工数およびスペースの削減が可能となる。
 本発明の変圧器において、前記第1巻線の各層間の線の出入口と前記第2巻線の各層間の線の出入口とが離れて配置されていることが好ましい。
 このような構成の変圧器によれば、第1巻線と第2巻線との間での絶縁破壊を防止できる。
 なお、上述したいずれかの変圧器を備えた電力変換器も本発明の範疇である。
 本発明の変圧器によれば、空隙からの漏れ磁束が第1巻線および第2巻線間に鎖交してもループ電流が発生し得ないので、巻線の異常発熱が抑止される。
 また、本発明の変圧器を備えた電力変換器によれば、広い入出力電圧範囲への対応が可能となる。
本発明の第1実施形態に係るトランス1の概観構成を示す断面図である。 トランス1における巻線部30の詳細を示す断面図である。 トランス1における第1巻線31および第2巻線32の各層間の電気的接続を示す断面図である。 従来のトランス101における第1巻線31および第2巻線32の各層間の電気的接続を示す断面図である。 トランス1におけるギャップ11からの漏れ磁束Φを例示する断面図である。 従来のトランス101における漏れ磁束Φの影響を例示する断面図である。 トランス1における漏れ磁束Φの影響を例示する断面図である。 トランス1と従来のトランス101との動作時の巻線の温度上昇を例示するグラフである。 本発明の第2実施形態に係るトランス1Aにおける第1巻線31および第2巻線32の各層間の電気的接続を示す断面図である。 本発明の第3実施形態に係るトランス1Bの概観構成と第1巻線31および第2巻線32の各層間の電気的接続を示す断面図である。 本発明の第4実施形態に係るトランス1Cの概観構成を示す断面図である。 トランス1Cにおける第1巻線31の各層間の電気的接続を示す断面図である。
 以下、本発明のいくつかの実施形態を、図面を参照して説明する。
 <第1実施形態>
 1.1 概略構成
 図1は本発明の第1実施形態に係るトランス1の概観構成を示す断面図である。図2はトランス1における巻線部30の詳細を示す断面図である。
 図1に示すように、トランス1は、磁気回路を形成するとともに、中脚10bにギャップ11が設けられたコア10と、このコア10の中脚10bに装着されるボビン(巻き枠)20と、このボビン20に複数層に分けて巻かれた巻線部30とを備えている。
 コア10は、1つの中脚10bとこの中脚10bから2つに分岐した外脚10a、10c(必要な場合にはそれぞれ左脚10a、右脚10cと呼んで区別する)とを有しており、これらのうちで中脚10bにギャップ11が設けられている。このギャップ11は、コア10の磁気飽和を防いだり、トランス1の励磁インダクタンスを調整するために設けられるが、必ずしも中脚10bに設けなくてもよい。
 コア10は、例えば2つのE型コアを組み合わせて構成できるが、中脚に対応する部分をギャップ11の間隔Gに相当する長さだけ短くしておく必要がある。その場合、例えば、両方のE型コアの外脚に対応する部分をギャップ間隔Gの1/2に相当する長さずつそれぞれ短くしてもよいし、一方のE型コアの外脚に対応する部分だけをギャップ間隔Gに相当する長さ短くしてもよい。なお、コア10の材質は一般的なものでよい。
 図2に示すように、ボビン20には、電気的に絶縁された第1巻線31の各層と第2巻線32の各層とが交互に積層するように巻かれている。具体的には、ボビン20の内側(ギャップ11に近い側)から次の順で巻かれている。
  1)第1巻線31の層31a
  2)第2巻線32の層32a
  3)第1巻線31の層31b
  4)第2巻線32の層32b
  5)第1巻線31の層31c
 ただし、第1巻線31が3層、第2巻線32が2層の計5層に限るわけではない。なお、この場合は、ギャップ11に近い順で、第1巻線31については、層31aが本発明の「第1巻線第1層」に、層31bが「第1巻線第2層」にそれぞれ該当する。第2巻線32については、層32aが「第2巻線第1層」に該当する。また、第1巻線31および第2巻線32は、例えば、電力変換器の一次側/二次側もしくは二次側/一次側に対応する。
 また、第1巻線31および第2巻線32の各層間には、絶縁破壊を防ぐための絶縁テープ(絶縁部材)41が貼られており、各層の巻線両端にも隣接する層との絶縁破壊を防止するためのバリアテープ(絶縁部材)42が貼られている。これらの絶縁テープ41およびバリアテープ42は、実際には別物を用いるが、同一テープを用いてもよい。
 トランス1の第1巻線31および第2巻線32の結合の度合いは、0~1の値をとる結合係数で示され、漏れ磁束が少なければ少ないほど1に近づく。第1巻線31および第2巻線32の各層を交互に巻くことで、同じ巻線間で発生する近接効果を低減し、巻線に発生する損失を低減できる。また、このような構成によって、トランス1の結合係数が高く(漏れインダクタンスが小さく)なることで、このトランス1を使用した電力変換器の回路構成によっては、高効率化につながる。
 1.2 第1巻線31および第2巻線32の電気的接続
 図3はトランス1における第1巻線31および第2巻線32の各層間の電気的接続を示す断面図である。図4は従来のトランス101における第1巻線31および第2巻線32の各層間の電気的接続を示す断面図である。
 図3に示すように、トランス1では、第1巻線31の各層(層31a、層31bおよび層31c)が直列に接続され(図3の右側を参照)、第2巻線32の各層(層32aおよび層32b)も直列に接続されている(図3の左側を参照)。
 具体的には、第1巻線31については、層31aの一端(図3では上端)と層31bの一端(図3では上端)とが第1巻線側の接続線33aによって接続されるとともに、層31bの他端(図3では下端)と層31cの一端(図3では下端)とが接続線33bによって接続されている。第2巻線32については、層32aの一端(図3では上端)と層32bの一端(図3では上端)とが第2巻線側の接続線34aによって接続されている。
 一方、従来のトランス101では、図4に示すように、第1巻線31の各層が第1巻線側の接続線133aおよび接続線133bによって並列に接続され(図4の右側を参照)、第2巻線32の各層も第2巻線側の接続線134aおよび接続線134bによって並列に接続されていた(図4の左側を参照)。
 ただし、トランス1における第1巻線31全体の電気抵抗値および第2巻線32全体の電気抵抗値は、従来のトランス101と同程度にすることが好ましい。そのため、例えば、トランス1における第1巻線31および第2巻線32に、より太い線材を用いてもよい。具体的には、3層から成る第1巻線31には単位長さ辺りの電気抵抗値が1/3の線材を用い、2層から成る第2巻線32には単位長さ辺りの電気抵抗値が1/2の線材を用いてもよい。
 1.3 ギャップ11からの漏れ磁束Φの影響
 図5はトランス1におけるギャップ11からの漏れ磁束Φを例示する断面図である。図6は従来のトランス101における漏れ磁束Φの影響を例示する断面図である。図7はトランス1における漏れ磁束Φの影響を例示する断面図である。図8はトランス1と従来のトランス101との動作時の巻線の温度上昇を例示するグラフである。なお、図6および図7では、第2巻線32の図示を省略している。
 図5に示すように、トランス1が動作した場合に、コア10に設けられたギャップ(エアギャップ)11からは漏れ磁束Φが発生する。このギャップ11が大きいときには漏れ磁束Φが第1巻線31や第2巻線32巻線まで到達し、これらの巻線の層間に磁束変動が生じることとなる。
 従来のトランス101では、第1巻線31および第2巻線32の各層がそれぞれ並列に接続されているので、図6に示すように、漏れ磁束Φが並列のループ内を鎖交すると、そのループ内に誘導起電力が発生してループ電流Iが流れる。このループ電流Iによって、本来均一な電流が流れるべき各層間で電流のばらつきが発生し、一部の巻線で過剰電流による発熱が生じる。
 一方、第1実施形態に係るトランス1では、第1巻線31および第2巻線32の各層がそれぞれ直列に接続されているので、図7に示すように、たとえ各層間に漏れ磁束Φが鎖交しても、もともとループが存在しないためループ電流Iも発生し得ない。その結果、ループ電流Iによる過剰電流が無く、巻線の異常発熱の発生が防止される。
 実際に試作したトランス1と従来のトランス101との各巻線の温度上昇を同一動作条件で比較したところ、図8に示すように、従来のトランス101では55.1℃(図8の左側)だったが、トランス1では31.4℃(図8の右側)に留まった。つまり、トランス1の第1巻線31および第2巻線32を直列積層構造とすることで、温度上昇を大幅に抑制できることが確認された。
 以上で説明した第1実施形態によれば、ギャップ11からの漏れ磁束Φが第1巻線31および第2巻線32間に鎖交してもループ電流Iが発生し得ないので、ループ電流Iによる過剰電流が無く、第1巻線31や第2巻線32の異常発熱が抑止される。
 <第2実施形態>
 図9は本発明の第2実施形態に係るトランス1Aにおける第1巻線31および第2巻線32の各層間の電気的接続を示す断面図である。なお、第1実施形態と同一の構成部材には同一の参照符号を付し、以下では主として相違点について説明する。
 図9に示すように、トランス1Aでは、第1巻線31の層31aと層31bとが直列に接続され、層31bと層31cとは並列に接続されている。つまり、第1巻線31の特定層(ここでは層31b)およびこれより内側(ギャップ11に近い側)の各層(ここでは層31aのみ)が直列に接続され、その特定層(層31b)およびこれより外側(ギャップ11から遠い側)の各層(ここでは層31cのみ)が並列に接続されている。
 第2巻線32の各層(層32a、層32b)はすべて並列に接続されている。なお、第2巻線32が3層以上を有する場合には、第1巻線31と同様に、特定層およびこれより内側の各層が直列に接続されるとともに、その特定層およびこれより外側の各層が並列に接続されてもよい。
 以上で説明した第2実施形態によれば、ギャップ11からの漏れ磁束Φの影響を受けやすい内側層(ギャップ11に近い層)のみが他の層と直列に接続されている。全ての層を直列接続(例えば図3を参照)するよりも簡便な構成によって、漏れ磁束Φの影響を回避しつつ、トランス1Aの結合係数をさらに大きくすることができる。
 <第3実施形態>
 図10は本発明の第3実施形態に係るトランス1Bの概観構成と第1巻線31および第2巻線32の各層間の電気的接続を示す断面図である。なお、第1実施形態や第2実施形態と同一の構成部材には同一の参照符号を付し、以下では主として相違点について説明する。
 巻線を直列に接続する際、層毎に別々の巻線を巻いて、その端を直列になるようにはんだなどで接続する方法も考えられるが、その場合は接続作業のための工数が必要となる。
 そこで、各層間を直列接続するための接続線を保持する構造として、接続線保持部21がボビン20上にそれぞれ設けられている。例えば、接続線が入るような溝がボビン20上に掘ってあってもよい。
 さらに、第1巻線31の層間の線の出入口と第2巻線32の層間の線の出入口とが離れて(この図では左側と右側とに分けて)配置されており、それぞれに対応する接続線保持部21も離れた箇所に配置されるので、第1巻線31と第2巻線32との間での絶縁破壊を防止可能である。
 以上で説明した第3実施形態によれば、一本の巻線で簡便に安定して交互に直列に巻くことができる。また、接続線間で接触することによる絶縁破壊なども防止可能である。
 <第4実施形態>
 図11は本発明の第4実施形態に係るトランス1Cの概観構成を示す断面図である。図12はトランス1Cにおける第1巻線31の各層間の電気的接続を示す断面図である。なお、図12では第2巻線32の図示を省略した。第1実施形態~第3実施形態と同一の構成部材には同一の参照符号を付し、以下では主として相違点について説明する。
 図11に示すように、トランス1Cは、磁気回路を形成するとともに、2つの外脚10Ca、10Ccにギャップ11Cがそれぞれ設けられたコア10Cと、このコア10Cの中脚10Cbに装着されるボビン20と、このボビン20に複数層に分けて巻かれた巻線部30とを備えている。
 また、図12に示すように、トランス1Cでは、第1巻線31の各層(層31a、層31bおよび層31c)が直列に接続されている。具体的には、層31aの一端(図12では上端)と層31bの一端(図12では上端)とが接続線33aによって接続されるとともに、層31bの他端(図12では下端)と層31cの一端(図12では下端)とが接続線33bによって接続されている。
 以上で説明した第4実施形態によれば、外脚10Ca、10Ccの各ギャップ11Cからの漏れ磁束Φが第1巻線31間に鎖交してもループ電流が発生し得ないので、ループ電流による過剰電流が無く、第1巻線31の異常発熱が抑止される。第2巻線32についても同様である。
 <第4実施形態の変形例>
 また、第2実施形態と同様に、例えば、第1巻線31について、各ギャップ11Cからの漏れ磁束Φの影響を受けやすいギャップ11Cに近い層(ここでは外側層)のみを他の層と直列に接続してもよい。なお、この場合は、ギャップ11Cに近い順で、層31cが「第1巻線第1層」に、層31bが「第1巻線第2層」にそれぞれ該当する。
 具体的には、第1巻線31の層31cと層31bとを直列に接続し、層31bと層31aとを並列に接続する。つまり、第1巻線31の特定層(ここでは層31b)およびこれよりギャップ11Cに近い側の各層(ここでは層31cのみ)を直列に接続し、その特定層(層31b)およびこれよりギャップ11Cから遠い側の各層(ここでは層31aのみ)を並列に接続する。
 以上で説明した第4実施形態の変形例によれば、ギャップ11Cからの漏れ磁束Φの影響を受けやすいギャップ11Cに近い層(外側層)のみが他の層と直列に接続されている。全ての層を直列接続するよりも簡便な構成によって、漏れ磁束Φの影響を回避しつつ、トランス1Cの結合係数をさらに大きくすることができる。
 <その他の実施形態>
 上述したトランス1、トランス1A、トランス1B、またはトランス1Cのいずれかを絶縁型コンバータなどの電力変換器に適用してもよい。このような電力変換器は、広い入出力電圧範囲への対応が可能となる。
 なお、本発明は、その主旨または主要な特徴から逸脱すること無く、他のいろいろな形で実施することができる。そのため、上述の各実施形態や各実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 この出願は、日本で2016年10月12日に出願された特願2016-200694号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。また、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組み込まれるものである。
1   トランス
1A  トランス
1B  トランス
1C  トランス
10  コア
10a  外脚(左脚)
10b  中脚
10c  外脚(右脚)
10C コア
11  ギャップ
11C ギャップ
20  ボビン
21  接続線保持部
30  巻線部
31  第1巻線
32  第2巻線
33a 接続線
33b 接続線
34a 接続線
41  絶縁テープ
42  バリアテープ
101 トランス(従来技術)

Claims (6)

  1.  磁気回路を形成するとともに、少なくとも一部に空隙が設けられたコアと、
     前記コアに装着されたボビンと、
     前記ボビンの前記空隙に最も近い側に巻かれた第1巻線第1層とこれより前記空隙から遠い側に巻かれた第1巻線第2層とを含む2層以上に分けて巻かれた第1巻線と、
     前記第1巻線第1層と前記第1巻線第2層との間に巻かれた第2巻線第1層を含み、前記第1巻線とは絶縁されている第2巻線と
    を備え、
     前記第1巻線第1層と前記第1巻線第2層とが直列に接続されていることを特徴とする変圧器。
  2.  請求項1に記載の変圧器において、
     前記第2巻線も2層以上に分けて巻かれ、
     前記第1巻線の各層と前記第2巻線の各層とが前記ボビンに交互に積層され、
     前記第1巻線の各層および前記第2巻線の各層がそれぞれ直列に接続されていることを特徴とする変圧器。
  3.  請求項2に記載の変圧器において、
     前記第1巻線の各層と前記第2巻線の各層とが前記ボビンに交互に積層され、
     前記第1巻線では、第1巻線特定層およびこれより前記空隙に近い側の各層が直列に接続されるとともに、前記第1巻線特定層およびこれより前記空隙から遠い側の各層が並列に接続され、
     前記第2巻線でも、第2巻線特定層およびこれより前記空隙に近い側の各層が直列に接続されるとともに、前記第2巻線特定層およびこれより前記空隙から遠い側の各層が並列に接続されていることを特徴とする変圧器。
  4.  請求項1~3のいずれか1項に記載の変圧器において、
     前記ボビンには、前記第1巻線または前記第2巻線の各層間の直列接続線を保持する巻線保持部が設けられていることを特徴とする変圧器。
  5.  請求項1~4のいずれか1項に記載の変圧器において、
     前記第1巻線の各層間の線の出入口と前記第2巻線の各層間の線の出入口とが離れて配置されていることを特徴とする変圧器。
  6.  請求項1~5のいずれか1項に記載の変圧器を備えた電力変換器。
PCT/JP2017/033990 2016-10-12 2017-09-20 変圧器およびそれを備えた電力変換器 WO2018070198A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17860593.7A EP3509077B1 (en) 2016-10-12 2017-09-20 Transformer and power converter provided with same
CN201780061208.6A CN109804441B (zh) 2016-10-12 2017-09-20 变压器及具备该变压器的电力转换器
US16/338,997 US20190287716A1 (en) 2016-10-12 2017-09-20 Transformer and power converter equipped with the same
KR1020197009622A KR101984464B1 (ko) 2016-10-12 2017-09-20 변압기 및 그것을 구비한 전력 변환기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-200694 2016-10-12
JP2016200694A JP6428742B2 (ja) 2016-10-12 2016-10-12 変圧器およびそれを備えた電力変換器

Publications (1)

Publication Number Publication Date
WO2018070198A1 true WO2018070198A1 (ja) 2018-04-19

Family

ID=61905489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033990 WO2018070198A1 (ja) 2016-10-12 2017-09-20 変圧器およびそれを備えた電力変換器

Country Status (6)

Country Link
US (1) US20190287716A1 (ja)
EP (1) EP3509077B1 (ja)
JP (1) JP6428742B2 (ja)
KR (1) KR101984464B1 (ja)
CN (1) CN109804441B (ja)
WO (1) WO2018070198A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022018098A2 (en) * 2020-07-20 2022-01-27 Eggtronic Engineering SpA Improved performance of converter
WO2022079871A1 (ja) * 2020-10-15 2022-04-21 住友電気工業株式会社 トランス、及び電力変換装置
CN116206869A (zh) * 2021-12-01 2023-06-02 广州视源电子科技股份有限公司 平面磁性器件及布线方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4226487B1 (ja) * 1966-05-20 1967-12-15
JPH02178905A (ja) * 1988-12-29 1990-07-11 Matsushita Electric Ind Co Ltd コンバータトランス
JPH0727135U (ja) * 1993-10-13 1995-05-19 株式会社明電舎 交流リアクトル
JP2013062399A (ja) * 2011-09-14 2013-04-04 Minebea Co Ltd トランス
JP2016005004A (ja) * 2014-06-19 2016-01-12 エフォア オーユーイー 変成器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448340A (en) * 1965-06-29 1969-06-03 Wagner Electric Corp Transformer
US4300112A (en) * 1980-05-19 1981-11-10 General Electric Company Circuit arrangement for controlling transformer current
JPS57183729U (ja) * 1981-05-18 1982-11-20
JPS59155710U (ja) * 1983-04-05 1984-10-19 日本電気株式会社 トランス
US5696477A (en) * 1994-05-30 1997-12-09 Tabuchi Electric Co., Ltd. Transformer
JP2974967B2 (ja) * 1996-04-27 1999-11-10 ティーディーケイ株式会社 コンバータトランス
FR2756967B1 (fr) * 1996-12-09 1999-01-08 Thomson Television Components Transformateur pour alimentation a haute frequence de decoupage
JP2000294433A (ja) * 1999-04-09 2000-10-20 Matsushita Electric Ind Co Ltd コンバータトランス
US6320490B1 (en) * 1999-08-13 2001-11-20 Space Systems/Loral, Inc. Integrated planar transformer and inductor assembly
US7119647B2 (en) * 2001-12-21 2006-10-10 Power Integrations, Inc. Method and apparatus for substantially reducing electrical earth displacement current flow generated by wound components without requiring additional windings
JP2004047731A (ja) * 2002-07-11 2004-02-12 Canon Inc コイル部品およびその製造方法、並びに、電源装置
JP2005311155A (ja) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd スイッチング電源用トランスとこれを用いたスイッチング電源
JP4674545B2 (ja) * 2005-12-28 2011-04-20 パナソニック電工株式会社 電磁誘導部品および電源装置
US8330434B2 (en) * 2008-07-25 2012-12-11 Cirrus Logic, Inc. Power supply that determines energy consumption and outputs a signal indicative of energy consumption
JP2010232272A (ja) 2009-03-26 2010-10-14 Seiko Epson Corp トランス
US8692638B2 (en) * 2011-06-14 2014-04-08 Samsung Electro-Mechanics Co., Ltd. Transformer and display device using the same
CN103608877A (zh) * 2012-04-17 2014-02-26 株式会社村田制作所 电感器阵列式芯片以及dc-dc转换器
KR101456525B1 (ko) * 2013-11-21 2014-11-03 국립대학법인 울산과학기술대학교 산학협력단 양방향 고주파 변압기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4226487B1 (ja) * 1966-05-20 1967-12-15
JPH02178905A (ja) * 1988-12-29 1990-07-11 Matsushita Electric Ind Co Ltd コンバータトランス
JPH0727135U (ja) * 1993-10-13 1995-05-19 株式会社明電舎 交流リアクトル
JP2013062399A (ja) * 2011-09-14 2013-04-04 Minebea Co Ltd トランス
JP2016005004A (ja) * 2014-06-19 2016-01-12 エフォア オーユーイー 変成器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3509077A4 *

Also Published As

Publication number Publication date
EP3509077A1 (en) 2019-07-10
KR101984464B1 (ko) 2019-05-30
CN109804441B (zh) 2020-07-24
EP3509077B1 (en) 2020-11-04
JP6428742B2 (ja) 2018-11-28
EP3509077A4 (en) 2019-10-02
KR20190044114A (ko) 2019-04-29
JP2018064009A (ja) 2018-04-19
US20190287716A1 (en) 2019-09-19
CN109804441A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
US9959970B2 (en) Resonant high current density transformer with improved structure
JP5861805B2 (ja) トランス、電源装置およびトランスの製造方法
CN108231361B (zh) 电磁设备、电动机驱动装置、机械装置以及整流装置
WO2018070198A1 (ja) 変圧器およびそれを備えた電力変換器
JP2013501369A (ja) 電流補償チョークおよび電流補償チョークの製造方法
JP2014535172A (ja) 誘導部品及び使用方法
JP5343948B2 (ja) トランス
JP2010050368A (ja) 三相高周波トランス
US10825605B2 (en) Transformer
US20160268037A1 (en) Stationary Induction Electric Apparatus and Method for Making the Same
EP3062319B1 (en) Transformer for reducing eddy current losses of coil
US20220189687A1 (en) Leakage transformer
JP2008205212A (ja) トランス
JP6205302B2 (ja) ノイズ低減用巻線素子およびインバータ装置
US20160211070A1 (en) Coupling coil structure and transformer
US20180040408A1 (en) Reactor
JP6171384B2 (ja) トランス
JP4183194B2 (ja) インダクタンス素子
JP2014093378A (ja) 電力用トランス及びその製造方法
JP2015053369A (ja) コイル部品およびそれを用いた電源装置
JP2014049681A (ja) トランス
CN113574619B (zh) 漏磁变压器
JP2009272438A (ja) スイッチングトランス
JP2009176989A (ja) 共振型スイッチング電源回路用トランスユニット
JP6823130B2 (ja) フィルタ装置

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197009622

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017860593

Country of ref document: EP

Effective date: 20190405