WO2018070004A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2018070004A1
WO2018070004A1 PCT/JP2016/080296 JP2016080296W WO2018070004A1 WO 2018070004 A1 WO2018070004 A1 WO 2018070004A1 JP 2016080296 W JP2016080296 W JP 2016080296W WO 2018070004 A1 WO2018070004 A1 WO 2018070004A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
control unit
circuit
filter
relay
Prior art date
Application number
PCT/JP2016/080296
Other languages
English (en)
French (fr)
Inventor
友彦 永島
昭彦 森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/319,032 priority Critical patent/US11124226B2/en
Priority to JP2018544631A priority patent/JP6673615B2/ja
Priority to EP16918879.4A priority patent/EP3527462B1/en
Priority to PCT/JP2016/080296 priority patent/WO2018070004A1/ja
Priority to CN201680089931.0A priority patent/CN109843701B/zh
Publication of WO2018070004A1 publication Critical patent/WO2018070004A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to an electric power steering apparatus in which redundancy is provided to an electric motor and a control unit that controls the electric motor, and more particularly to an electric power steering apparatus in which redundancy is provided in the vicinity of a power line of the control unit. It is.
  • an electric power steering apparatus in which an assist torque for assisting a steering torque of a vehicle driver is generated by an electric motor, the electric motor has two sets of armature windings having substantially the same configuration.
  • a control unit is provided with an inverter circuit capable of independently driving the armature windings.
  • the conventional electric power steering apparatus configured as described above normally controls the motor by cooperating two sets of inverter circuits, but when an abnormality occurs in one of the two sets of inverter circuits, The motor is continuously driven only by the other normal inverter circuit.
  • Patent Document 1 there has been disclosed an electric power steering device in which the components of the control unit other than the inverter circuit are also doubled so as to increase redundancy and enhance the response to failure (see, for example, Patent Document 1). .
  • the conventional electric power steering device disclosed in Patent Document 1 not only two sets of armature windings of an electric motor are provided, but also a + B power source, an input circuit, a CPU, Two sets of control units each provided with an output circuit and the like are provided, and when an abnormality occurs in one of them, the drive of the electric motor can be continued by the other that is normal.
  • the conventional electric power steering device disclosed in Patent Document 1 is provided with two sets each of + B power source, input circuit, CPU (central processing unit), output circuit, etc. in the control unit, and one of the two sets. If an abnormality occurs in the motor, control of the electric motor can be continued with the other that is normal.
  • providing two sets of control units to provide redundancy is often disadvantageous in terms of ease of installation in vehicles, cost, etc. Therefore, redundancy is configured taking both cost performance and safety into consideration. There was a need to do.
  • the number of connectors increases, the number of harnesses that fit into the connectors increases, and the area required for electrical connection from the connector terminals to the network has only one set of control units. Twice the area is required.
  • the inverter circuit switches a large current, there is still room for improvement in measures against noise emitted from the control unit.
  • the present invention has been made to solve the above-described problems in the conventional electric power steering apparatus.
  • the circuit around the connector can be simplified and noise emission can be suppressed.
  • An object of the present invention is to provide an electric power steering device that can be used.
  • the electric power steering device is: An electric motor that generates an assist torque based on a steering torque by a vehicle driver, a control unit that controls the electric motor, and a power connector that is connected to a battery mounted on the vehicle and supplies power to the control unit and the electric motor
  • an electric power steering device comprising:
  • the electric motor includes two sets of armature windings including a first armature winding and a second armature winding having substantially the same configuration
  • the control unit includes a first control unit configured to be able to independently control the first armature winding, and a second control configured to be capable of independently controlling the second armature winding.
  • the first control unit and the second control unit are respectively A power relay configured to open and close the power supply; A filter circuit connected to the power relay; An input circuit for inputting information from the sensor; A drive circuit for generating a drive signal for driving the electric motor; An inverter circuit controlled by the drive signal; A control circuit unit including a CPU that outputs a command signal for controlling the electric motor to the drive circuit based on the information input to the input circuit;
  • the power connector is composed of a single connector, Among the terminals of the power connector, the power system connected to at least the positive electrode side of the battery is branched into two lines in the immediate vicinity of the terminal, The power relay, the filter, and the inverter circuit in the first control unit are sequentially connected to the one branched line with the power relay upstream of the power system.
  • the power relay, the filter, and the inverter circuit in the second control unit are sequentially connected to the other branched line with the power relay upstream of the power system.
  • the power relay and the filter in the first control unit, and the power relay and the filter in the second control unit have substantially the same configuration and are connected to the terminal of the power connector. Arranged substantially symmetrically, It is characterized by that.
  • the power of only the system in which an abnormality has occurred is shut off so that the normal side is not affected at the time of occurrence of the abnormality, and control can be continued on the normal side so that the handle operation is almost the same as in the normal state. It becomes possible.
  • 1 is an overall circuit diagram of an electric power steering apparatus according to Embodiment 1 of the present invention.
  • 1 is a cross-sectional view of an electric power steering device according to Embodiment 1 of the present invention.
  • 1 is a detailed circuit diagram of a part of an electric power steering apparatus according to Embodiment 1 of the present invention. It is a top view which shows the detailed structure of a part of electric power steering device by Embodiment 1 of this invention. It is a top view which shows the detailed structure of a part of electric power steering apparatus by Embodiment 2 of this invention. It is a perspective view of a heat sink and a cover in an electric power steering device according to Embodiment 2 of the present invention.
  • an electric power steering apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.
  • an electric motor 2 that generates an assist torque that assists the steering torque of a vehicle driver includes two sets of a three-phase first armature winding 2a and a three-phase second armature winding 2b.
  • the armature winding is provided.
  • the first armature winding 2a and the second armature winding 2b have substantially the same configuration, but are arranged so as to be shifted from each other by an electrical angle of 120 degrees.
  • the two sets of control units including the first control unit 1a and the second control unit 1b are configured by the same constituent members, and have substantially the same configuration.
  • the first control unit 1a can independently supply power to the first armature winding 2a
  • the second control unit 1b can independently supply power to the second armature winding 2b. Can be supplied.
  • (circle) in the figure has shown the connection terminal in the 1st control unit 1a and the 2nd control unit 1b.
  • the first control unit 1a includes a first control circuit unit 4a equipped with a first CPU 10a, a first inverter circuit 3a for supplying current to the first armature winding 2a of the electric motor 2, and a first Power relay 5a and a first filter 6a.
  • the pair of power supply terminals of the first control unit 1a are connected to a + B power supply connected to the positive terminal of the battery 9 mounted on the vehicle and a ground terminal GND which is a negative terminal of the battery 9, respectively.
  • the first control unit 1a is configured such that + B power is supplied to the first control circuit unit 4a by the ignition switch 7, and further, for example, torque for detecting steering torque mounted in the vicinity of the steering wheel of the vehicle.
  • Information such as a sensor and a speed sensor for detecting the traveling speed of the vehicle is input from the sensors 8.
  • Information from the sensors 8 is transmitted to the first CPU 10a via the first input circuit 12a provided in the first control circuit unit 4a.
  • the first CPU 10a calculates a current value that is a control amount for rotating the electric motor 2 from the transmitted information, and outputs an output signal corresponding to the calculated value.
  • the output signal from the first CPU 10a is transmitted to the first drive circuit 11a and the first inverter circuit 3a constituting the first output circuit.
  • the first drive circuit 11a receives a first command signal that is an output signal from the first CPU 10a, and outputs a first drive signal that drives each switching element (to be described later) of the first inverter circuit 3a. Since only a small current flows through the first drive circuit 11a, the first drive circuit 11a is mounted on the first control circuit unit 4a in the first embodiment, but can also be disposed on the first inverter circuit 3a.
  • the first inverter circuit 3a is constituted by a three-phase bridge circuit, and includes a U-phase arm composed of a U-phase upper arm switching element 31Ua and a U-phase lower arm switching element 32Ua connected in series, and a V-phase upper connected in series.
  • a V-phase arm composed of an arm switching element 31Va and a V-phase lower arm switching element 32Va, and a W-phase arm composed of a W-phase upper arm switching element 31Wa and a W-phase lower arm switching element 32Wa connected in series are provided. .
  • a series connection portion of U-phase upper arm switching element 31Ua and U-phase lower arm switching element 32Ua is connected to U-phase winding U1 of first armature winding 2a via U-phase motor relay switching element 34Ua. ing.
  • the series connection portion of the V-phase upper arm switching element 31Va and the V-phase lower arm switching element 32Va is connected to the V-phase winding V1 of the first armature winding 2a via the V-phase motor relay switching element 34Va.
  • the series connection portion of the W-phase upper arm switching element 31Wa and the W-phase lower arm switching element 32Wa is connected to the W-phase winding W1 of the first armature winding 2a via the W-phase motor relay switching element 34Wa. ing.
  • the U-phase shunt resistor 33Ua for detecting the U-phase current is connected in series to the U-phase lower arm switching element 32Ua, and the V-phase shunt resistor 33Va for detecting the V-phase current is connected in series to the V-phase lower arm switching element 32Va.
  • the W-phase shunt resistor 33Wa for detecting the W-phase current is connected in series to the W-phase lower arm switching element 32Wa.
  • the U-phase noise suppression capacitor 30Ua is connected in parallel to a U-phase arm composed of a U-phase upper arm switching element 31Ua and a U-phase lower arm switching element 32Ua.
  • the V-phase noise suppression capacitor 30Va is connected in parallel to a V-phase arm composed of a V-phase upper arm switching element 31Va and a V-phase lower arm switching element 32Va.
  • the W-phase noise suppressing capacitor 30Wa is connected in parallel to a W-phase arm composed of a W-phase upper arm switching element 31Wa and a W-phase lower arm switching element 32Wa.
  • the potential difference between both ends of the U-phase shunt resistor 33Ua, the V-phase shunt resistor 33Va, and the W-phase shunt resistor 33Wa and the voltage at each winding terminal of the first armature winding 2a are supplied to the first control circuit unit 4a. It is transmitted and inputted to the first CPU 10a.
  • the first CPU 10a calculates the current command value calculated by itself based on the steering torque of the driver and the detected current value calculated based on the potential difference between both ends of the input shunt resistors 33Ua, 33Va, 33Wa. The deviation is calculated, and a first drive command for making the deviation zero is given to the first drive circuit 11a.
  • the first drive circuit 11a is configured such that the U-phase upper arm switching element 31Ua, the U-phase lower arm switching element 32Ua, and the V-phase upper on the first inverter circuit 3a.
  • a drive signal is given to each gate electrode of the arm switching element 31Va and the V-phase lower arm switching element 32Va, and the W-phase upper arm switching element 31Wa and the W-phase lower arm switching element 32Wa, and these switching elements are PWM (Pulse Width Modulation). )Control.
  • the first control unit 1a supplies the desired motor current to the first armature winding 2a by performing feedback control so that the deviation between the current command value and the current detection value is zero.
  • the motor 2 is configured to generate an assist torque that assists the driver's steering torque.
  • the first control unit 1a is provided with a first power relay 5a for turning on / off the power supply from the + B power source of the battery 9 to the first inverter circuit 3a.
  • the first power relay 5a is composed of a power relay switching element Qa.
  • the first power supply relay 5a is supplied with current to the first armature winding 2a of the electric motor 2 when the power relay switching element Qa is turned on / off by a drive signal from the first control circuit unit 4a. Can be turned on / off.
  • the U-phase motor relay switching element 34Ua, the V-phase motor relay switching element 34Va, and the W-phase motor relay switching element 34Wa provided in the first inverter circuit 3a are driven by a drive signal from the first control circuit unit 4a.
  • the current supplied from the first inverter circuit 3a to the U-phase winding U1, V-phase winding V1, and W-phase winding W1 of the first armature winding 2a is individually turned on. Can be turned off.
  • the first CPU 10a in addition to various information such as the detected steering torque value from the sensors 8 and the vehicle speed, the first drive circuit 11a, the first inverter circuit 3a, the first armature winding 2a, etc.
  • the arm switching element, the lower arm switching element, and the motor relay switching element can be turned off.
  • the first power supply relay 5a can be turned off in order to cut off the power supply itself supplied to the first control unit 1a.
  • the first inverter circuit 3a is PWM driven by the drive signal given from the first drive circuit 11a based on the first drive command from the first CPU 10a.
  • Switching noise is generated by turning on / off each switching element of the first inverter circuit 3a by driving. Therefore, in order to suppress the emission of the switching noise, the first filter 6a including the filter capacitor Ca and the filter coil CLa is disposed on the input side of the first inverter circuit 3a.
  • the ⁇ B power supplied to the first power supply relay 5a and the first filter 6a and the ⁇ mark of the ground terminal GND indicate the parts extended from the connection terminals indicated by the circles. Will be described later.
  • the second control unit 1b includes a second control circuit unit 4b equipped with a second CPU 10b, a first inverter circuit 3b for supplying current to the second armature winding 2b of the electric motor 2, and a second Power relay 5b and a second filter 6b.
  • the second control unit 1 b is connected to a + B power source that is a positive terminal of the battery 9 mounted on the vehicle and a ground terminal GND that is a negative terminal of the battery 9.
  • the second control unit 1b is powered on by the ignition switch 7 to the second control circuit unit 4b, and further, for example, a torque sensor for detecting a steering torque mounted in the vicinity of the steering wheel of the vehicle, Information such as a speed sensor for detecting the speed is input from the sensors 8.
  • Information from the sensors 8 is transmitted to the second CPU 10b via the second input circuit 12a provided in the second control circuit unit 4b.
  • the second CPU 10b calculates a current value that is a control amount for rotating the electric motor 2 from the transmitted information, and outputs an output signal corresponding to the calculated value.
  • the output signal from the second CPU 10b is transmitted to the second drive circuit 11b and the second inverter circuit 3b constituting the second output circuit.
  • the second drive circuit 11b receives a second command signal that is an output signal from the second CPU 10b, and outputs a second drive signal for driving each switching element (to be described later) of the second inverter circuit 3b. Since only a small current flows through the second drive circuit 11b, the second drive circuit 11b is mounted on the second control circuit unit 4b in the first embodiment, but may be disposed on the second inverter circuit 3b.
  • the second inverter circuit 3b is configured by a three-phase bridge circuit, and includes a U-phase arm composed of a U-phase upper arm switching element 31Ub and a U-phase lower arm switching element 32Ub connected in series, and a V-phase upper connected in series.
  • a V-phase arm composed of an arm switching element 31Vb and a V-phase lower arm switching element 32Vb and a W-phase arm composed of a W-phase upper arm switching element 31Wb and a W-phase lower arm switching element 32Wb connected in series are provided. .
  • a series connection portion of U-phase upper arm switching element 31Ub and U-phase lower arm switching element 32Ub is connected to U-phase winding U2 of second armature winding 2b via U-phase motor relay switching element 34Ub. ing.
  • the series connection portion of the V-phase upper arm switching element 31Vb and the V-phase lower arm switching element 32Vb is connected to the V-phase winding V2 of the second armature winding 2b via the V-phase motor relay switching element 34Vb.
  • a series connection portion of W-phase upper arm switching element 31Wb and W-phase lower arm switching element 32Wb is connected to W-phase winding W2 of second armature winding 2b via W-phase motor relay switching element 34Wb. ing.
  • the U-phase shunt resistor 33Ub for detecting the U-phase current is connected in series to the U-phase lower arm switching element 32Ub, and the V-phase shunt resistor 33Vb for detecting the V-phase current is connected in series to the V-phase lower arm switching element 32Vb.
  • W-phase shunt resistor 33Wb for W-phase current detection is connected in series to W-phase lower arm switching element 32Wb.
  • the U-phase noise suppression capacitor 30Ub is connected in parallel to a U-phase arm including a U-phase upper arm switching element 31Ub and a U-phase lower arm switching element 32Ub.
  • V-phase noise suppression capacitor 30Vb is connected in parallel to a V-phase arm composed of V-phase upper arm switching element 31Vb and V-phase lower arm switching element 32Vb.
  • W-phase noise suppression capacitor 30Wb is connected in parallel to a W-phase arm composed of W-phase upper arm switching element 31Wb and W-phase lower arm switching element 32Wb.
  • the potential difference between both ends of the U-phase shunt resistor 33Ub, the V-phase shunt resistor 33Vb, and the W-phase shunt resistor 33Wb and the voltage at each winding terminal of the second armature winding 2b are supplied to the second control circuit unit 4b. It is transmitted and input to the second CPU 10b.
  • the second CPU 10b calculates the current command value calculated by itself based on the steering torque of the driver and the detected current value calculated based on the potential difference between both ends of the input shunt resistors 33Ub, 33Vb, 33Wb.
  • the deviation is calculated, and a second drive command for setting the deviation to zero is given to the second drive circuit 11b.
  • the second drive circuit 11b receives the U-phase upper arm switching element 31Ub, the U-phase lower arm switching element 32Ub, and the V-phase upper on the second inverter circuit 3b.
  • Drive signals are applied to the gate electrodes of the arm switching element 31Vb and the V-phase lower arm switching element 32Vb, and the W-phase upper arm switching element 31Wb and the W-phase lower arm switching element 32Wb, and these switching elements are PWM-controlled.
  • the second control unit 1b performs the feedback control so that the deviation between the current command value and the current detection value becomes zero, similarly to the above-described first control unit 1a.
  • An electric current is supplied to the second armature winding 2b, and the motor 2 is configured to generate an assist torque that assists the driver's steering torque.
  • the second control unit 1b is provided with a second power relay 5b for turning on / off the power supply from the + B power source of the battery 9 to the second inverter circuit 3b.
  • the second power relay 5b is composed of a power relay switching element Qb.
  • the second power supply relay 5b is a current supplied to the second armature winding 2b of the electric motor 2 when the power relay switching element Qb is turned on / off by a drive signal from the second control circuit unit 4b. Can be turned on / off.
  • the U-phase motor relay switching element 34Ub, the V-phase motor relay switching element 34Vb, and the W-phase motor relay switching element 34Wb provided in the second inverter circuit 3b are driven by a drive signal from the second control circuit unit 4b.
  • the current supplied from the second inverter circuit 3b to the U-phase winding U2, V-phase winding V2, and W-phase winding W2 of the second armature winding 2b is individually turned on. Can be turned off.
  • the second CPU 10b receives various information such as the detected steering torque value and the vehicle speed from the sensors 8 as well as the second drive circuit 11b, the second inverter circuit 3b, the second armature winding 2b, etc.
  • the arm switching element, the lower arm switching element, and the motor relay switching element can be turned off.
  • the second power supply relay 5b can be turned off in order to shut off the power supply itself supplied to the second control unit 1b.
  • the second inverter circuit 3b is PWM driven by the drive signal given from the second drive circuit 11b based on the second drive command from the second CPU 10b.
  • Switching noise is generated by turning on / off each switching element of the second inverter circuit 3b by the PWM drive. Therefore, a second filter 6b including a filter capacitor Cb and a filter coil CLb is disposed on the input side of the second inverter circuit 3b for the purpose of suppressing the emission of the switching noise.
  • the ⁇ B power of the + B power supply and the ground terminal GND supplied to the second power supply relay 5b and the second filter 6b indicate the parts extended from the connection terminals indicated by the circles, but their details Will be described later.
  • the electric motor 2 is a brushless motor in which two sets of armature windings including a three-phase first armature winding 2a and a three-phase second armature winding 2b are respectively delta-connected. It is configured.
  • a first rotation sensor 17a and a second rotation sensor 17b are mounted to detect the rotational position of the rotor for the brushless electric motor.
  • two sets of rotation sensors having substantially the same configuration are mounted.
  • Information indicating the rotational position of the rotor detected by the first rotation sensor 17a is transmitted to the first control circuit unit 4a and input to the first input circuit 12a.
  • Information indicating the rotational position of the rotor detected by the second rotation sensor 17b is transmitted to the second control circuit unit 4b and input to the second input circuit 12b.
  • the electric motor 2 may not be a three-phase delta connection brushless motor, may be a star connection, or a two-pole two-pair brush motor.
  • the winding specification of the armature winding may be either distributed winding or concentrated winding, as in the conventional device.
  • a tandem electric motor having two so-called stators may be used. In this case, only one set of armature windings may be provided, or two sets of armature windings may be provided and driven by the cooperation of these armature windings, In short, any configuration that can output a desired motor speed and torque can be used.
  • the notification unit 15 is configured to be able to turn on a lamp, and when the first CPU 10a detects the above-described abnormality, an alarm signal output from the first CPU 10a via the first output circuit 16a. Based on the above, an operation such as turning on the lamp is performed to notify the driver of the above, or when the second CPU 10b detects the above-described abnormality, the second CPU 10b passes the second output circuit 16b. The driver is informed of the abnormality by performing an operation such as turning on a lamp based on the alarm signal output.
  • the first control unit 1a and the second control unit 1b are configured such that the electric motor 2 can be driven independently using input information and a calculated value of the control amount.
  • the first control unit 1a and the second control unit 1b are connected to each other by a communication line 14 so that data and information of the other party can be exchanged.
  • This communication line 14 can grasp the situation of the other party by connecting the first CPU 10a and the second CPU 10b to each other. For example, if the first CPU 10a detects the above-described abnormality and, as a result, turns off the predetermined switching element, the contents of abnormality detection, abnormal parts, motor drive details, etc. are transmitted to the second CPU 10b. Can do. If an abnormality occurs in the CPU itself, periodic communication signals in a predetermined format cannot be exchanged, so that one CPU can detect the occurrence of an abnormality in the other CPU itself.
  • FIG. 2 is a cross-sectional view of the electric power steering apparatus according to Embodiment 1 of the present invention.
  • the lower part is the electric motor 2 in the figure
  • the control unit 1 including the first control unit and the second control unit described above is arranged on the upper part of the electric motor 2.
  • the electric motor 2 and the control unit 1 are integrated in the axial direction coaxially with the electric motor output shaft 21 via a frame 28 described later.
  • the electric motor 2 includes an electric motor case 25 configured substantially in a cylindrical shape.
  • the motor case 25 is closed at the bottom of the figure by a wall portion extending perpendicularly to the axial direction, and the top of the figure is opened.
  • the aforementioned wall portion in the motor case 25 is connected to a case (not shown) of the speed reduction mechanism portion.
  • the motor output shaft 21 is rotatably supported by a bearing member provided on the wall portion of the motor case 25, and passes through the wall portion of the motor case 25, and is connected to an input shaft of a speed reduction mechanism portion (not shown). Is done.
  • a rotor 23 having a plurality of pairs of field poles made of permanent magnets, and a stator 22 having an inner peripheral surface facing the outer peripheral surface of the rotor 23 via a gap.
  • the rotor 23 is fixed to the outer peripheral surface of the motor output shaft 21.
  • the armature winding 24 is inserted into a slot provided in the stator 22, and the above-described three-phase first armature winding 2a (not shown) and the three-phase second armature winding 2b. (Not shown).
  • the annular connection ring 27 fixed to the stator 22 is disposed adjacent to one end of the armature winding 24 in the axial direction in the axial direction.
  • the first armature winding and the second armature winding constituting the armature winding 24 include a U-phase winding, a V-phase winding, and a W-phase winding, respectively.
  • the U-phase winding, V-phase winding, and W-phase winding of the first armature winding in the armature winding 24 are delta-connected by the connection ring 27 and are connected to each phase winding.
  • the first winding end 26 a is led out from the connection ring 27 in the axial direction of the electric motor 2 and extends to the inside of the control unit 1.
  • connection ring 27 the connection ring 27 and connected to each phase winding.
  • the three second winding end portions 26 b thus formed are led out from the connection ring 27 in the axial direction of the electric motor 2 and extend to the inside of the control unit 1.
  • the metal frame 28 is coupled to the opening of the motor case 25, closes the opening of the motor case 25, and rotatably supports the motor output shaft 21 with a bearing member.
  • the motor output shaft 21 extends through the frame 28 in the axial direction and into the housing 40 that covers the control unit 1.
  • the frame 28 has a through hole (not shown) that penetrates the first winding end portion 26a in the axial direction and a through hole (not shown) that penetrates the second winding end portion 26b. The first winding end portion 26a and the second winding end portion 26b are respectively penetrated through these through-holes.
  • a housing 40 made of resin covers the control unit 1, and includes a control board 4 and a first inverter circuit which constitute the first control circuit unit 4a and the second control circuit unit 4b shown in FIG. 3a, a second inverter circuit 3b and the like are incorporated.
  • a convex first filter chamber 41a projecting in the axial direction and a convex second filter chamber 41b projecting in the axial direction are provided on the upper portion of the housing 40 in the drawing, that is, on the end face in the axial direction. .
  • Inside the first filter chamber 41a there are a power relay switching element Qa (not shown) constituting the first power relay 5a, and a filter capacitor Ca (not shown) constituting the first filter 6a.
  • a filter coil CLa is accommodated.
  • a power relay switching element Qb (not shown) constituting the second power relay 5b and a filter capacitor Cb (not shown) constituting the second filter 6b are provided.
  • the filter coil CLb is accommodated.
  • a power connector 42 is disposed in the vicinity of the first filter chamber 41 a and the second filter chamber 41 b on the axial end surface of the housing 40 and in the peripheral portion of the housing 40. Further, a first signal connector 43a and a second signal connector 43b from the sensors 8 are disposed at a position further away from the power connector 42.
  • the housing 40, the first filter chamber 41a, the second filter chamber 41b, the power connector 42, the first signal connector 43a, and the second signal connector 43b are made of resin. The whole or a part is integrated.
  • the control board 4 is mounted with circuit components constituting the first control circuit unit 4a and the second control circuit unit 4b described above. That is, the first CPU 10a and the second CPU 10b are mounted on the upper surface in the drawing of the control board 4, that is, the surface on the side opposite to the motor, and the first drive circuit 11a is mounted on the lower surface in the drawing of the control board 4 in FIG. And the second drive circuit 11b and the like are mounted.
  • the first inverter circuit 3a includes a U-phase upper arm switching element 31Ua, a V-phase upper arm switching element 31Va, a W-phase upper arm switching element 31Wa, a U-phase lower arm switching element 32Ua, a V-phase lower arm switching element 32Va, and a W-phase.
  • the capacitor 30Va, the W-phase noise suppressing capacitor 30Wa, the U-phase shunt resistor 33Ua, the V-phase shunt resistor 33Va, and the W-phase shunt resistor 33Wa are configured as a first power module that is integrally molded with resin. Yes.
  • the second inverter circuit 3b includes a U-phase upper arm switching element 31Ub, a V-phase upper arm switching element 31Vb, a W-phase upper arm switching element 31Wb, a U-phase lower arm switching element 32Ub, a V-phase lower arm switching element 32Vb, and a W-phase.
  • the capacitor 30Vb, the W-phase noise suppressing capacitor 30Wb, and the U-phase shunt resistor 33Ub, the V-phase shunt resistor 33Vb, and the W-phase shunt resistor 33Wb are configured as a second power module that is integrally molded with resin.
  • the first inverter circuit 3a as the first power module and the second inverter circuit 3b as the second power module are mounted on the resin intermediate frame 401, respectively, and each generates heat when driven.
  • the frame 28 is in contact with the surface on the control unit side so that heat can be transferred to the metal frame 28. That is, the frame 28 also serves as a heat sink.
  • the first winding end 26a is connected to the output terminal of the first inverter circuit 3a as the first power module.
  • the second winding end 26b is connected to the output terminal of the second inverter circuit 3b as the second power module.
  • FIG. 3 is a detailed circuit diagram of a part of the electric power steering apparatus according to Embodiment 1 of the present invention, and shows in detail the circuit configuration of a part of the first control unit 1a shown in FIG.
  • the + B power source connected to the positive electrode of the battery 9 is connected to the electric power steering device via the connection terminal indicated by a circle in the figure, and the branch point indicated by the triangle in the figure.
  • the first control unit 1a and the second control unit 1b are branched.
  • the first control unit 1a branches to a first detection circuit 36a and a first power supply relay 5a, which will be described later, at a second branch point following the branch point indicated by ⁇ .
  • the first power supply relay 5a is configured by connecting power supply relay switching elements Qa1 and Qa2 in which the directions of diodes connected in parallel are opposite to each other in series.
  • the power relay switching element Qa in the first power relay 5a shown in FIG. 1 is described as including the power relay switching elements Qa1 and Qa2 shown in FIG.
  • the switching elements Qa1 and Qa2 for power relay in the first power relay 5a are connected in series with the direction of the diodes connected in parallel as the reverse direction, the direction in which the current flows is determined. Even if the positive electrode and the negative electrode of the battery 9 are connected in reverse, no current flows. Furthermore, as described above, the power supply can be cut off based on a command from the first CPU 10a in case of any abnormality.
  • the power supply composed of resistors R1, R2, R3 and transistors T1, T2 for driving the power relay switching elements Qa1, Qa2 in the first power relay 5a.
  • a relay drive circuit 35a is provided.
  • the transistor T1 has an emitter connected to the power supply indicated by the ⁇ mark in the first control unit 1a, and a collector connected to a series connection point of the resistor R1 and the resistor R4.
  • the resistor R1 is connected to the gate electrodes of the power relay switching elements Q1 and Q2.
  • the base of the transistor T1 is connected to the collector of the transistor T2 via the resistor R2.
  • the emitter of the transistor T2 is connected to the ground level, and the base electrode is connected to the first control circuit unit 4a via the resistor R3.
  • the voltage across the resistor R5 is input to the first control circuit unit 4a.
  • the transistor T2 is on / off controlled by a drive signal from the first control circuit unit 4a based on a command from the first CPU 10a, and the transistor T1 is on / off controlled based on the on / off of the transistor T2. .
  • the power supply ⁇ to which the emitter of the transistor T1 is connected is a power supply having a higher potential than the + B power supply connected to the positive electrode of the battery 9, thereby turning on the power relay switching elements Qa1 and Qa2. Is possible.
  • the resistors R4 and R5 are voltage-dividing resistors for monitoring, and are configured so that the ON state of the transistors T1 and T2 can be detected by the first control circuit unit 4a.
  • a first filter 6a including a filter capacitor Ca, a filter coil CLa, and the like is connected to the downstream side of the first power supply relay 5a, and a first inverter circuit 3a is connected to the downstream side of the first filter 6a.
  • a potential at a connection point as an intermediate point between the first filter 6a and the first inverter circuit 3a is detected by the second detection circuit 13a and input to the first control circuit unit 4a, and the first control circuit
  • the voltage is monitored by the unit 4a.
  • the first CPU 10a Based on the voltage monitored by the resistors R4 and R5 and the voltage from the second detection circuit 13a, the first CPU 10a performs the second detection even though the first power supply relay 5a is turned on. If the circuit 13a cannot detect a voltage corresponding to the output voltage of the battery 9, it is determined that a ground fault may have occurred upstream of the first inverter circuit 3a in the first control unit 1a. be able to.
  • the third detection circuit 18u detects the current flowing through the U-phase lower arm in the first inverter circuit 3a and inputs the current to the first control circuit unit 4a.
  • the fourth detection circuit 19u has the first armature winding.
  • the terminal voltage of the U-phase winding U1 of the line 2a is detected and input to the first control circuit unit 4a.
  • the currents flowing through the V-phase lower arm and the W-phase lower arm in the first inverter circuit 3a are also detected by the same detection circuit as the third detection circuit 18u and input to the first control circuit unit 4a.
  • the terminal voltages of the V-phase winding V1 and the W-phase winding W1 of the first armature winding 2a are also detected by a detection circuit similar to the fourth detection circuit and input to the first control circuit unit 4a. .
  • the first control circuit unit 4a monitors the input current of the lower arm of each phase and the voltage of each winding terminal of the first armature winding 2a of the electric motor 2, and performs each switching in the first inverter circuit 3a.
  • a short circuit failure or a ground fault of the element, the first armature winding 2a, etc. of the motor 2 can be detected, and the first power supply relay 5a can be cut off depending on the content of the failure.
  • the aforementioned power supply relay drive circuit 35a, second detection circuit 13a, third detection circuit 18u and other current detection circuits of each phase, and the winding terminal voltage detection circuit such as the fourth detection circuit 19u have first control. It is desirable to be installed in all three sets of three phases including the unit 1a and the second control unit 1b.
  • the voltage or current monitored by each detection circuit described above is transmitted to the first CPU 10a in the first control circuit unit 4a.
  • the first CPU 10a grasps the contents of the monitor voltage or the monitor current in accordance with its own control command and determines whether there is an abnormality. That is, when the first CPU 10a does not detect the voltage by the third detection circuit 18u even though a predetermined current is flowing to the electric motor 2, or when a voltage other than the predetermined current is generated. In addition, it can be determined as abnormal. Further, the first CPU 10a monitors the terminal voltage of each phase of the electric motor 2 in the detection circuit of each phase such as the fourth detection circuit 19u, so that a voltage is generated even though the electric motor 2 is driven.
  • the first CPU 10a When the voltage is generated when the motor 2 is not driven or when the electric motor 2 is not driven, it can be determined that there is an abnormality. When these abnormalities occur, the first CPU 10a outputs a control command to the first drive circuit 11a so as to shut off the first power supply relay 5a. Furthermore, the first CPU 10a can stop the power supply circuit 12 when these abnormalities occur.
  • the other branch of the + B power supply line of the battery 9 is connected to a power supply for turning on the first power supply relay 5a through which a relatively small current flows, and a control command circuit thereof. Therefore, there is a possibility that a failure may occur even in this circuit network. When an overcurrent flows due to the failure, it is necessary to cut off the power supply relay. Therefore, the first detection circuit 36a is installed. As shown in FIG. 3, in the first detection circuit 36a, resistors R6, R7, and R9 having one ends connected to the branch point ⁇ of the + B power source, emitters are connected to the other end of the resistor R9, and collectors are resistors R11.
  • the transistor T3 connected to the ground level via the resistor, the resistor R8 having one end connected to the other end of the resistor R9, one input terminal connected to the other ends of the resistors R7 and R8, and the other input terminal connected to the resistor R6.
  • the amplifier I1 is connected to the other end and the output terminal is connected to the base of the transistor T3 via the resistor R10.
  • the basic operation of the first detection circuit 36a is to amplify the potential difference generated by the current flowing through the resistor R6 by the amplifier I1, and the value amplified by the first detection circuit 36a is within a predetermined range. 1st CPU10a monitors whether it is in.
  • the first control circuit unit 4a is provided with a first power supply circuit 12 having a circuit (not shown) including a capacitor and a diode and a circuit (not shown) including a transistor,
  • the input terminal of the first power supply circuit 12 is connected to the other input terminal of the amplifier I1.
  • the output terminal of the first power supply circuit 12 is connected to the first CPU 10a.
  • the first CPU 10a monitors whether or not the value amplified by the first detection circuit 36a is within a predetermined range.
  • the predetermined range is set by the first detection circuit 36a and the first detection circuit 36a. It is determined by the current value consumed by one power supply circuit I2 and the like. If the first detection circuit 36a detects that an overcurrent flows through the resistor R6, the first CPU 10a has detected that an abnormality has occurred in the first detection circuit 36a, the first power supply circuit I2, and the like. Therefore, in addition to outputting so as to cut off the first power supply relay 5a, for example, the first power supply circuit I2 is stopped and measures for preventing overcurrent are taken.
  • the first power supply circuit I2 generates a high voltage indicated by ⁇ and a voltage that is lower than the battery voltage but serves as a power source for a circuit that should be directly driven by the battery.
  • the first power supply circuit I2 is constituted by, for example, a charge pump circuit, a circuit (not shown) including a capacitor and a diode, and a circuit including a transistor having a function of a constant power supply used for the first CPU 10a ( (Not shown). Therefore, the first CPU 10a can execute the function even when the ignition switch 7 is not turned on.
  • a plurality of circuit networks are formed around the power relay, and the plurality of circuit networks are respectively provided in the first control unit 1a and the second control unit 1b, and there are two sets as a whole.
  • each circuit is configured in a double system after being connected to the apparatus, and it is necessary to shut off so that one does not affect the other when an abnormality occurs.
  • a filter and an inverter circuit are connected via a power relay first.
  • the failure point is located downstream of the power relay, so that the normal system is not affected by the power relay interruption.
  • the wiring pattern is connected by a thin pattern that can be cut by the current. It is also possible to prevent current from flowing.
  • FIG. 4 is a plan view showing a detailed configuration of a part of the electric power steering apparatus according to Embodiment 1 of the present invention, and includes a power connector 42, a first signal connector 43a, a second signal connector 43b, and a first signal connector. It is shown as an internal configuration excluding the configuration of the upper surface portion of the housing 40 such as the filter chamber 41a and the second filter chamber 41b.
  • the insulating member 50 formed of resin is embedded or attached to the inner surface of the housing 40 as shown in FIG. 2, and the first surface that is the anti-motor side surface and the first surface that is the motor side surface. 2 surfaces.
  • the first surface and the second surface of the insulating member 50 are in a front-back relationship.
  • the power supply terminal 44 a in the power supply connector 42 is provided on the second first surface of the insulating member 50 and is connected to a + B power supply connected to the positive terminal of the battery 9.
  • the power terminal 44b in the power connector 42 is provided on the second surface of the insulating member 50 and connected to the ground terminal GND.
  • the first power relay 5a and the second power relay 5b are juxtaposed in the vertical direction in FIG. 4 and fixed to the first surface of the insulating member 50.
  • the pair of power relay switching elements Qa1 and Qa2 in the first power relay 5a are juxtaposed in the left-right direction of FIG. 4 and are disposed so as to be opposite to each other in the vertical direction.
  • the pair of power relay switching elements Qb1 and Qb2 in the second power relay 5b are juxtaposed in the left-right direction in FIG. 4 and arranged so as to be opposite to each other in the vertical direction.
  • the first power relay 5a and the second power relay 5b have the same configuration.
  • the first filter 6a and the second filter 6b are disposed on the terminal 46 side described later with respect to the first power relay 5a and the second power relay 5b.
  • the first filter 6a and the second filter 6b are juxtaposed in the vertical direction in FIG. 4 and fixed to the first surface of the insulating member 50.
  • the filter capacitor Ca and the filter coil CLa of the first filter 6a are arranged in the left-right direction of FIG. 4, and similarly, the filter capacitor Cb and the filter coil CLb of the second filter 6b are arranged in the left-right direction of FIG. ing.
  • Both of the filter capacitor Ca and the filter capacitor Cb have a positive terminal on the lower side in FIG.
  • the first filter 6a and the second filter 6b have the same configuration.
  • the conductive member 701 as a bus bar connected to the power terminal 44a is disposed on the first surface of the insulating member 50, and is symmetrically branched into the first part 701a and the second part 701b in the vicinity of the power terminal 44a. ing.
  • the branched first portion 701a is connected to the power relay switching elements Qa1 and Qa2 of the first power relay 5a in the first control unit 1a.
  • the branched second portion 701b is connected to the power relay switching elements Qb1 and Qb2 of the second power relay 5b in the second control unit 1b.
  • the conductive member 702a as a bus bar disposed on the first surface of the insulating member 50 is connected to the power relay switching elements Qa1 and Qa2 of the first power relay 5a, and the filter capacitor Ca of the first filter 6a. Are connected to the positive electrode side terminal and one end of the filter coil CLa.
  • the conductive member 702b as a bus bar disposed on the first surface of the insulating member 50 is connected to the power relay switching elements Qb1 and Qb2 of the second power relay 5b and the filter capacitor Cb of the second filter 6b. To the positive electrode side terminal and one end of the filter coil CLb.
  • the terminal portion 46 includes a first positive electrode side terminal 46 a 1 and a second positive electrode side terminal 46 b 1, and a first negative electrode side terminal 46 a 2 and a second negative electrode side terminal 46 b 2, and these terminals are the first of the insulating member 50.
  • the first negative electrode side terminal 46a2 the first positive electrode side terminal 46a1, the second negative electrode side terminal 46b2, and the second positive electrode side terminal 46b1, in order from the top to the bottom of FIG. Arranged in order.
  • these terminals are connected to the first power module including the first inverter circuit 3a mounted on the intermediate frame 401 and the second inverter circuit via the control board 4, respectively. It extends to the second power module including 3b.
  • the first positive terminal 46a1 is connected to the positive DC terminal of the first inverter circuit 3a
  • the first negative terminal 46a2 is connected to the negative DC terminal of the first inverter circuit 3a
  • the second The positive terminal 46b1 is connected to the positive DC terminal of the second inverter circuit 3b
  • the second negative terminal 46b2 is connected to the negative DC terminal of the second inverter circuit 3b.
  • the conductive member 703 a as a bus bar disposed on the first surface of the insulating member 50 is connected to the other end of the filter coil CLa in the first filter 6 a and the first positive terminal 46 a 1 of the terminal portion 46. It is connected.
  • the conductive member 703b serving as a bus bar disposed on the first surface of the insulating member 50 is connected to the other end of the filter coil CLa in the second filter 6b and the second positive terminal 46b1 of the terminal portion 46. ing.
  • the conductive member 704 connected to the power supply terminal 44b in the power connector 42 is disposed on the second surface of the insulating member 50 and is branched into a first part 704a and a second part 704b.
  • the conductive member 705a disposed on the first surface of the insulating member 50 is electrically connected to the first portion 704a of the conductive member 704 disposed on the second surface of the insulating member 50.
  • the filter 6 a is connected to the negative terminal of the filter capacitor Ca and the first negative terminal 46 a 2 of the terminal portion 46.
  • the conductive member 705 b disposed on the first surface of the insulating member 50 is electrically connected to the second portion 704 b of the conductive member 704 disposed on the second surface of the insulating member 50, and the second The filter 6 b is connected to the negative terminal of the filter capacitor Cb and the second negative terminal 46 a 2 of the terminal portion 46.
  • the first power relay 5a and the second power relay 5b, and the first filter 6a and the second power in the first control unit 1a and the second control unit 1b configured in two systems.
  • Each of the filters 6b is symmetrically arranged in the same direction with the same parts, and is connected to each conductive member, but there is no difference in inductance and impedance between the two systems. Thus, it is comprised so that the width
  • the insulating member 50 may replace with the insulating member 50 and may use the wiring board by which the wiring pattern was provided by the printed wiring etc.
  • the switching elements Qa1, Qa2, Qb1, Qb2 of the first power relay 5a and the second power relay 5a, and the filter capacitors Ca, Cb of the first filter 6a and the second filter 6b are used.
  • the filter coils CLa and CLb are mounted on the wiring board and connected by wiring patterns provided on the wiring board, respectively.
  • the power supply terminal 44a of the power connector 42 includes a first wiring pattern 801a and a second wiring pattern 801b having a relatively narrow width for a small current in addition to the conductive member 701 having a large width as the bus bar described above. It is connected. Since these wiring patterns 801a and 801b are collectively connected to the power terminal 44a, the first wiring pattern 801a and the second wiring pattern 801b are branched from the power terminal 44a. .
  • the first wiring pattern 801a and the second wiring pattern 801b are provided on one surface of the insulating member 50 in the same manner as the conductive members 701, 702a, 702b, 703a, 703b, 705a, and 705b as the bus bars described above. It has been. Instead of the first wiring pattern 801a and the second wiring pattern 801b, normal lead wires may be used.
  • the first wiring pattern 801a branched from the power supply terminal 44a is connected to the first circuit unit 51a.
  • the first circuit unit 51a is equipped with the power supply relay drive circuit 35a shown in FIG. 3 in the first control unit 1a, the first detection circuit 36a having the current detection resistor R6, and the like.
  • the second wiring pattern 801b branched from the power supply terminal 44a is connected to the second circuit unit 51b.
  • the second circuit unit 51b is mounted with a power relay drive circuit (not shown) in the second control unit 1b described above, a first detection circuit (not shown) having a current detection resistor R6, and the like. ing.
  • a part of the first wiring pattern 801a and a part of the second wiring pattern 801b are provided with a thin pattern portion that can be melted by an overcurrent of a predetermined value or more as shown in FIG.
  • a ground fault occurs in the power supply relay drive circuit 35a and the detection circuits in the 1a and the second control unit 1b, it is possible to prevent an excessive current exceeding a predetermined value from flowing.
  • the insulating member 50 includes a plurality of first through holes 52a formed in the vicinity of the first circuit portion 51a and a plurality of second second through holes 52b formed in the vicinity of the second circuit portion 51b. It has. As shown in FIG. 2, the first through hole 52 a is connected to a lead wire 521 a connected to the first CPU 10 a mounted on the control board 4, and the second through hole 52 b is mounted on the control board 4. Connected to the lead wire 521b connected to the second CPU 10b. As shown in FIG. 2, the signal line from the first signal connector 43a is connected to the first power module having the first inverter circuit 3a via the intermediate frame 401. As shown in FIG. 2, the signal line from the second signal connector 43b is connected to the second power module having the second inverter circuit 3b via the intermediate frame 401.
  • the power supply system line supplied from the power supply connector 42 provided on the upper surface of the housing 40 of the control unit 1 is connected to the first part 701a and the second part by the conductive members 701 as two thick bus bars.
  • This part 701b is further branched into two narrower first wiring patterns 801a and second wiring patterns 801b.
  • the first power supply relay 5a, the first filter 6a, etc. in the first control unit 1a are connected to the system of the first portion 701a of the conductive member 701 as a branched bus bar, and the second of the conductive member 701 is connected.
  • the second power supply relay 5b, the second filter 6b and the like in the second control unit 1b are connected to the system of the part 701b.
  • the first power relay 5a and the second power relay 5b are arranged at the most upstream position of the + B power source connected to the power connector 42 of the electric power steering apparatus, and downstream of these power relays.
  • the power supply can be cut off for failures that occur on the side. Further, the redundancy of the control unit can be ensured only by providing one power connector 42 without arranging two power connectors.
  • the first filter 6a and the second filter 6b can be arranged close to the first inverter circuit 3a and the second inverter circuit 3b, which are noise generating portions, and noise emission by the inverter circuit is effectively performed. Can be.
  • the filter capacitors Ca and Cb and the filter coils CLa and CLb which constitute the first filter 6a and the second filter 6b, respectively, are connected to the convex first filter chamber 41a and the first filter chamber 41a that protrude in the axial direction. Since the two filter chambers 41b are arranged in a concentrated manner, the apparatus can be reduced in size.
  • first power supply relay 5a, the second power supply relay 5b, the first filter 6a, the second filter 6b, the first circuit portion 51a, and the second circuit portion 51b are respectively provided on the upper surface portion of the housing 40.
  • the control board 4, the first inverter circuit 3a, and the second inverter circuit 3b are arranged inside the housing 40, so that the control board 4, the first inverter The first power relay 5a, the second power relay 5b, the first filter 6a, the second filter 6b, the first circuit unit 51a, and the first power relay 5a without being influenced by the circuit 3a and the second inverter circuit 3b.
  • Each of the two circuit portions 51b can be designed independently, which can contribute to downsizing of the device.
  • FIG. 5 is a plan view showing a detailed configuration of a part of an electric power steering apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a plan view corresponding to FIG. 4 in the first embodiment, and the same reference numerals as those in FIG. 4 indicate the same or corresponding parts. 1 to 3 are also applied to the second embodiment of the present invention.
  • Embodiment 1 is the arrangement direction of the power relay switching elements Qa1 and Qa2 of the first power relay 5a, the power relay switching elements Qb1 and Qb2 of the second power relay 5b, and the filter capacitor Cb of the second filter 6b.
  • the arrangement order of the first positive electrode side terminal 46a1, the first negative electrode side terminal 46a2, the second positive electrode side terminal 46b1, and the second negative electrode side terminal 46b2 in the terminal portion 46 is also the same as that of the first embodiment. It is different from the case.
  • the shape and arrangement of each conductive member are different from those in the first embodiment.
  • the conductive member connected to the power supply terminal 44b of the power supply connector 42 is branched into two, and then branched into two ground lines each having a narrower width.
  • the insulating member 50 formed of resin is embedded or attached to the inner surface of the housing 40 as shown in FIG. 2, and the first surface that is the anti-motor side surface and the second surface that is the motor side surface. It has a surface.
  • the first surface and the second surface of the insulating member 50 are in a front-back relationship.
  • the power supply terminal 44 a in the power supply connector 42 is provided on the second first surface of the insulating member 50 and is connected to a + B power supply connected to the positive terminal of the battery 9.
  • the power terminal 44b in the power connector 42 is provided on the second surface of the insulating member 50 and connected to the ground terminal GND.
  • the first power relay 5 a and the second power relay 5 b are juxtaposed in the vertical direction in FIG. 5 and fixed to the first surface of the insulating member 50.
  • the pair of power relay switching elements Qa1 and Qa2 in the first power relay 5a are juxtaposed in the left-right direction in FIG. 5 and arranged to be opposite to each other in the left-right direction.
  • the pair of power relay switching elements Qb1 and Qb2 in the second power relay 5b are juxtaposed in the left-right direction in FIG. 5 and arranged opposite to each other in the white hot water direction.
  • the first power relay 5a and the second power relay 5b have the same configuration.
  • the first filter 6a and the second filter 6b are arranged on the terminal portion 46 side with respect to the first power supply relay 5a and the second power supply relay 5b.
  • the first filter 6 a and the second filter 6 b are juxtaposed in the vertical direction of FIG. 5 and fixed to the first surface of the insulating member 50.
  • the filter capacitor Ca and the filter coil CLa of the first filter 6a are arranged in the left-right direction of FIG. 5, and similarly, the filter capacitor Cb and the filter coil CLb of the second filter 6b are arranged in the left-right direction of FIG. ing.
  • the filter capacitor Ca of the first filter 6a has a positive terminal on the lower side of FIG. 5, whereas the filter capacitor Cb of the second filter 6b has a positive terminal on the upper side of FIG. Has been.
  • the conductive member 701 as a bus bar connected to the power terminal 44a is disposed on the first surface of the insulating member 50, and is symmetrically branched into the first part 701a and the second part 701b in the vicinity of the power terminal 44a. ing.
  • the branched first portion 701a is connected to the power relay switching elements Qa1 and Qa2 of the first power relay 5a in the first control unit 1a.
  • the branched second portion 701b is connected to the power relay switching elements Qb1 and Qb2 of the second power relay 5b in the second control unit 1b.
  • the conductive member 702a as a bus bar disposed on the first surface of the insulating member 50 is connected to the power relay switching elements Qa1 and Qa2 of the first power relay 5a, and the filter capacitor Ca of the first filter 6a. Are connected to the positive electrode side terminal and one end of the filter coil CLa.
  • the conductive member 702b as a bus bar disposed on the first surface of the insulating member 50 is connected to the power relay switching elements Qb1 and Qb2 of the second power relay 5b and the filter capacitor Cb of the second filter 6b. To the positive electrode side terminal and one end of the filter coil CLb.
  • the conductive member 702b is bent upward as shown and connected to the positive electrode side terminal of the filter capacitor Cb of the second filter 6b, and is opposite to the conductive member 702b in the first embodiment bent downward. It has a shape. This is because the position of the positive electrode side terminal of the filter capacitor Cb is reversed between the first embodiment and the second embodiment.
  • the terminal portion 46 includes a first positive electrode side terminal 46 a 1 and a second positive electrode side terminal 46 b 1, and a first negative electrode side terminal 46 a 2 and a second negative electrode side terminal 46 b 2, and these terminals are the first of the insulating member 50.
  • the first negative electrode side terminal 46a2 the first positive electrode side terminal 46a1, the second positive electrode side terminal 46b1, and the second negative electrode side terminal 46b2, in order from the top to the bottom of FIG. Arranged in order.
  • the arrangement order of the second positive terminal 46b1 and the second negative terminal 46b2 is reversed.
  • these terminals are connected to the first power module including the first inverter circuit 3a mounted on the intermediate frame 401 and the second inverter circuit 3b via the control board 4, respectively. It extends to the second power module it contains.
  • the first positive terminal 46a1 is connected to the positive DC terminal of the first inverter circuit 3a
  • the first negative terminal 46a2 is connected to the negative DC terminal of the first inverter circuit 3a
  • the second The positive terminal 46b1 is connected to the positive DC terminal of the second inverter circuit 3b
  • the second negative terminal 46b2 is connected to the negative DC terminal of the second inverter circuit 3b.
  • the conductive member 703 a serving as a bus bar disposed on the first surface of the insulating member 50 is connected to the other end of the filter coil CLa in the first filter 6 a and the first positive terminal 46 a 1 of the terminal portion 46. It is connected.
  • the conductive member 703b serving as a bus bar disposed on the first surface of the insulating member 50 is connected to the other end of the filter coil CLa in the second filter 6b and the second positive terminal 46b1 of the terminal portion 46. ing.
  • the conductive member 703a and the conductive member 703b arranged adjacent to each other are substantially line-symmetric with each other.
  • the conductive member 704 connected to the power supply terminal 44b in the power connector 42 is disposed on the second surface of the insulating member 50 and is branched into a first part 704a and a second part 704b.
  • the conductive member 705a disposed on the first surface of the insulating member 50 is electrically connected to the first portion 704a of the conductive member 704 disposed on the second surface of the insulating member 50.
  • the filter 6 a is connected to the negative terminal of the filter capacitor Ca and the first negative terminal 46 a 2 of the terminal portion 46.
  • the conductive member 705 b disposed on the first surface of the insulating member 50 is electrically connected to the second portion 704 b of the conductive member 704 disposed on the second surface of the insulating member 50, and the second The filter 6 b is connected to the negative terminal of the filter capacitor Cb and the second negative terminal 46 a 2 of the terminal portion 46.
  • the conductive member 705 b is disposed at substantially the center of the insulating member 50, but in the second embodiment, the conductive member 705 b is disposed at the peripheral edge of the insulating member 50.
  • the first portion 704a of the branched conductive member 704 further branches the first ground line 706a having a narrow width. Further, the second portion 704b of the branched conductive member 704 further branches the second ground line 706b having a narrow width. The first ground line 706 a and the second ground line 706 b are disposed on the second surface of the insulating member 50.
  • the first ground line 706a is a conductor corresponding to a small current circuit, and includes a substrate on which a first circuit unit 51a, which will be described later, and switching elements Qa1, Qa2 of the first power relay 5a are mounted.
  • the board extends to and is connected to these.
  • the second ground line 706b is a conductor corresponding to a small current circuit, and includes a substrate on which a second circuit unit 51b described later is mounted, and the switching elements Qb1 and Qb2 of the second power supply relay 5b.
  • the board extends to and is connected to these.
  • the first control unit 1a and the second control unit 1b configured in two systems
  • Each of the filters 6b is symmetrically arranged in the same direction with the same parts, and is connected to each conductive member, but there is no difference in inductance and impedance between the two systems.
  • it is comprised so that the width
  • the insulating member 50 may replace with the insulating member 50 and may use the wiring board by which the wiring pattern was provided by the printed wiring etc.
  • the switching elements Qa1, Qa2, Qb1, Qb2 of the first power relay 5a and the second power relay 5b, and the filter capacitors Ca, Cb of the first filter 6a and the second filter 6b are used.
  • the filter coils CLa and CLb are mounted on the wiring board and connected by wiring patterns provided on the wiring board, respectively.
  • the power supply terminal 44a of the power connector 42 includes a first wiring pattern 801a and a second wiring pattern 801b having a relatively narrow width for a small current in addition to the conductive member 701 having a large width as the bus bar described above. It is connected. Since these wiring patterns 801a and 801b are collectively connected to the power terminal 44a, the first wiring pattern 801a and the second wiring pattern 801b are branched from the power terminal 44a. .
  • the first wiring pattern 801a and the second wiring pattern 801b are provided on one surface of the insulating member 50 in the same manner as the conductive members 701, 702a, 702b, 703a, 703b, 705a, and 705b as the bus bars described above. It has been. Instead of the first wiring pattern 801a and the second wiring pattern 801b, normal lead wires may be used.
  • the first wiring pattern 801a branched from the power supply terminal 44a is connected to the first circuit unit 51a.
  • the first circuit unit 51a is equipped with the power supply relay drive circuit 35a shown in FIG. 3 in the first control unit 1a, the first detection circuit 36a having the current detection resistor R6, and the like.
  • the second wiring pattern 801b branched from the power supply terminal 44a is connected to the second circuit unit 51b.
  • the second circuit unit 51b is mounted with a power relay drive circuit (not shown) in the second control unit 1b described above, a first detection circuit (not shown) having a current detection resistor R6, and the like. ing.
  • a part of the first wiring pattern 801a and a part of the second wiring pattern 801b are provided with a thin pattern portion that can be melted by an overcurrent of a predetermined value or more as shown in FIG.
  • a ground fault occurs in the power supply relay drive circuit 35a and the detection circuits in the 1a and the second control unit 1b, it is possible to prevent an excessive current exceeding a predetermined value from flowing.
  • the insulating member 50 includes a plurality of first through holes 52a formed in the vicinity of the first circuit portion 51a and a plurality of second second through holes 52b formed in the vicinity of the second circuit portion 51b. It has. As shown in FIG. 2, the first through hole 52 a is connected to a lead wire 521 a connected to the first CPU 10 a mounted on the control board 4, and the second through hole 52 b is mounted on the control board 4. Connected to the lead wire 521b connected to the second CPU 10b. As shown in FIG. 2, the signal line from the first signal connector 43a is connected to the first power module having the first inverter circuit 3a via the intermediate frame 401. As shown in FIG. 2, the signal line from the second signal connector 43b is connected to the second power module having the second inverter circuit 3b via the intermediate frame 401.
  • the power relay switching elements Qa1, Qa2, Qb1, and Qb2 of the first power relay 5a and the second power relay 5b generate a large amount of heat and must be considered for heat dissipation. These switching elements are disposed in the vicinity of the upper surface of the housing 40 and are present at positions close to the outside of the electric power steering apparatus. Therefore, the power relay switching elements Qa 1, Qa 2, Qb 1, Qb 2 are brought into contact with a heat sink, and a part of the heat sink is exposed to the outside of the housing 40.
  • FIG. 6 is a perspective view of the heat sink and the cover in the electric power steering apparatus according to Embodiment 2 of the present invention.
  • the resin cover 54 is provided with an opening 41d for inserting a heat sink 53, and the screen-like heat sink 53 is exposed from the opening 41d.
  • the lower surface 53a of the heat sink 53 is in contact with the power relay switching elements Qa1, Qa2, Qb1, and Qb2, and ensures the heat dissipation of these power relay switching elements.
  • the filter chamber 41c which is a part of the cover 54, is configured to incorporate two sets of filter capacitors Ca and Cb and two sets of filter coils CLa and CLb together.
  • the cover 54 is provided in the housing 40 in place of the first filter chamber 41a and the second filter chamber 41b shown in FIG. 2, and each power relay switching of the two sets of power relays 5a and 5b mounted on the housing 40 is performed.
  • Elements Qa1, Qa2, Qb1, Qb2, two sets of filter capacitors Ca, Cb, two sets of filter coils CLa, CLb, and the like are arranged so as to cover the capacitors, filters, and the like.
  • the power supply system line supplied from the power supply connector 42 provided on the upper surface of the housing 40 of the control unit 1 is connected to the first part 701a and the second part by the conductive members 701 as two thick bus bars.
  • This part 701b is further branched into two narrower first wiring patterns 801a and second wiring patterns 801b.
  • the first power supply relay 5a, the first filter 6a, etc. in the first control unit 1a are connected to the system of the first portion 701a of the conductive member 701 as a branched bus bar, and the second of the conductive member 701 is connected.
  • the second power supply relay 5b, the second filter 6b and the like in the second control unit 1b are connected to the system of the part 701b.
  • the first power relay 5a and the second power relay 5b are arranged at the most upstream position of the + B power source connected to the power connector 42 of the electric power steering apparatus, and downstream of these power relays.
  • the power supply can be cut off for failures that occur on the side. Further, the redundancy of the control unit can be ensured only by providing one power connector 42 without arranging two power connectors.
  • the first filter 6a and the second filter 6b can be arranged close to the first inverter circuit 3a and the second inverter circuit 3b, which are noise generating portions, and noise emission by the inverter circuit is effectively performed. Can be.
  • the filter capacitors Ca and Cb and the filter coils CLa and CLb which constitute the first filter 6a and the second filter 6b, respectively, are connected to the convex first filter chamber 41a and the first filter chamber 41a that protrude in the axial direction. Since the two filter chambers 41b are arranged in a concentrated manner, the apparatus can be reduced in size.
  • first power supply relay 5a, the second power supply relay 5b, the first filter 6a, the second filter 6b, the first circuit portion 51a, and the second circuit portion 51b are respectively provided on the upper surface portion of the housing 40.
  • the control board 4, the first inverter circuit 3a, and the second inverter circuit 3b are arranged inside the housing 40, so that the control board 4, the first inverter The first power relay 5a, the second power relay 5b, the first filter 6a, the second filter 6b, the first circuit unit 51a, and the first power relay 5a without being influenced by the circuit 3a and the second inverter circuit 3b.
  • Each of the two circuit portions 51b can be designed independently, which can contribute to downsizing of the device.
  • the heat dissipation of the power supply relay is ensured and the ground line is divided into four branches, so that each of the lines of the + B power supply A ground line can be arranged in each circuit of the set.
  • each set of circuits and power supply system lines are also arranged and connected independently, so that it is possible to reduce the possibility of the influence on the other when one is abnormal.
  • the present invention is not limited to the electric power steering device according to the first and second embodiments described above, and the configurations of the first and second embodiments may be combined as appropriate without departing from the spirit of the present invention. It is possible to add a part of the configuration or to omit a part of the configuration.
  • the present invention can be used for an electric power steering device mounted on a vehicle such as an automobile, and thus can be used for the automobile industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

2組の独立した巻線を有する電動機を駆動する2組の制御ユニットを有し、単一の電源用コネクタにより電源を供給し、電源用コネクタのターミナルに接続された導電部材を電源用コネクタの近傍で少なくとも2つに分岐し、2組の電源リレー、フィルタ、インバータ回路を、電源用コネクタに対して対称的に配置するようにした。

Description

電動パワーステアリング装置
 この発明は、電動機とこの電動機を制御する制御ユニットに冗長性を持たせるようにした電動パワーステアリング装置に関し、特に制御ユニットの電源ラインの近傍に冗長性を有するようにした電動パワーステアリング装置に関するものである。
 従来、電動機により車両の運転者の操舵トルクを補助するアシストトルクを発生するようにした電動パワーステアリング装置において、実質的に同一構成の2組の電機子巻線を有する電動機を備え、その2組の電機子巻線をそれぞれ独立に駆動できるインバータ回路を制御ユニットに備えた電動パワーステアリング装置が存在する。このように構成された従来の電動パワーステアリング装置は、通常時には2組のインバータ回路を協働させて電動機を制御するが、2組のインバータ回路のうち一方のインバータ回路に異常が発生したときには、正常な他方のインバータ回路のみで電動機の駆動を継続させるように構成されている。
 又、従来、インバータ回路以外の制御ユニットの構成要素も2重系として冗長性を高め、故障に対する対応をより充実させるようにした電動パワーステアリング装置が開示されている(例えば、特許文献1参照)。特許文献1に開示された従来の電動パワーステアリング装置にあっては、電動機の電機子巻線が2組設けられるのみならず、車載バッテリの正極側に接続される+B電源、入力回路、CPU、出力回路等をそれぞれ備えた2組の制御ユニットが設けられ、それらのうちの一方に異常が発生したときは、正常である他方により電動機の駆動を継続することができる。
特許第3839358号公報
 特許文献1に開示された従来の電動パワーステアリング装置は、制御ユニットにおける+B電源、入力回路、CPU(central processing unit)、出力回路等がそれぞれ2組ずつ設けられており、2組のうちの一方に異常が発生すると正常である他方により電動機の制御を継続することができる。しかし、制御ユニットを2組備えて冗長性を持たせることは、車両への搭載性、コスト面等から不利なことが多く、従って、コストパフォーマンスと安全性の両方を考慮して冗長性を構成する必要があった。特に、コネクタは、その数が増加すればするほど、コネクタに嵌合するハーネスが増加するばかりでなく、コネクタターミナルから回路網への電気的接続に要する面積も、制御ユニットを1組しか持たない場合に対して2倍の面積が必要となる。さらにインバータ回路は大電流をスイッチングするため制御ユニットから放出するノイズに対する対策にもまだ改良の余地があった。
 この発明は、従来の電動パワーステアリング装置における前述のような課題を解決するためになされたもので、冗長性を有した上でコネクタ周辺の回路の簡略化、さらにはノイズ放出抑制をすることができる電動パワーステアリング装置を提供することを目的とする。
 この発明による電動パワーステアリング装置は、
 車両の運転者による操舵トルクに基づきアシストトルクを発生する電動機と、前記電動機を制御する制御ユニットと、前記車両に搭載されたバッテリに接続され前記制御ユニットと前記電動機に電源を供給する電源用コネクタと、を備えた電動パワーステアリング装置であって、
 前記電動機は、実質的の同一構成の第1の電機子巻線と第2の電機子巻線からなる2組の電機子巻線を備え、
 前記制御ユニットは、前記第1の電機子巻線を独立に制御可能に構成された第1の制御ユニットと、前記第2の電機子巻線を独立に制御可能に構成された第2の制御ユニットからなる実質的に同一構成の2組の制御ユニットにより構成され、
 前記第1の制御ユニットと前記第2の制御ユニットは、それぞれ、
 電源を開閉可能に構成された電源リレーと、
 前記電源リレーに接続されたフィルタ回路と、
 センサからの情報が入力される入力回路と、
 前記電動機を駆動する駆動信号を発生する駆動回路と、
 前記駆動信号により制御されるインバータ回路と、
 前記入力回路に入力された前記情報に基づき前記電動機を制御するための指令信号を前記駆動回路へ出力するCPUを備えた制御回路部と、を備え、
 前記電源用コネクタは、単一のコネクタにより構成され、
 前記電源用コネクタのターミナルのうち、少なくとも前記バッテリの正極側に接続される電源系統は、前記ターミナルの直近において2つのラインに分岐され、
 前記第1の制御ユニットにおける前記電源リレーと前記フィルタと前記インバータ回路は、前記電源リレーを前記電源系統の上流側にして順次前記分岐された一方のラインに接続され、
 前記第2の制御ユニットにおける前記電源リレーと前記フィルタと前記インバータ回路は、前記電源リレーを前記電源系統の上流側にして順次前記分岐された他方のラインに接続され、
 前記第1の制御ユニットにおける前記電源リレーと前記フィルタと、前記第2の制御ユニットにおける前記電源リレーと前記フィルタとは、実質的に同一の構成を備えかつ前記電源用コネクタの前記ターミナルに対して実質的に対称的に配置されている、
ことを特徴とする。
 この発明によれば、異常発生時正常側に影響が及ぶことがないように異常発生した系統のみの電源を遮断し、正常側で制御を継続することができハンドル操作が正常時とほぼ同様に可能となる。
この発明の実施の形態1による電動パワーステアリング装置の全体回路図である。 この発明の実施の形態1による電動パワーステアリング装置の断面図である。 この発明の実施の形態1による電動パワーステアリング装置の一部分の詳細回路図である。 この発明の実施の形態1による電動パワーステアリング装置の一部分の詳細構成を示す平面図である。 この発明の実施の形態2による電動パワーステアリング装置の一部分の詳細構成を示す平面図である。 この発明の実施の形態2による電動パワーステアリング装置における、ヒートシンクとカバーの斜視図である。
実施の形態1.
 以下、この発明の実施の形態1による電動パワーステアリング装置について、図に基づいて説明する。図1は、この発明の実施の形態1による電動パワーステアリング装置の全体回路図である。図1において、車両の運転者の操舵トルクを補助するアシストトルクを発生する電動機2は、3相の第1の電機子巻線2aと3相の第2の電機子巻線2bからなる2組の電機子巻線を備えている。第1の電機子巻線2aと第2の電機子巻線2bは、実質的に同一構成とされているが、互いに電気角120度ずれて配置されている。
 第1の制御ユニット1aと第2の制御ユニット1bからなる2組の制御ユニットは、それぞれ同一の構成部材により構成されており、実質的に同一の構成である。第1の制御ユニット1aは、独立して第1の電機子巻線2aに電力を供給することができ、第2の制御ユニット1bは、独立して第2の電機子巻線2bに電力を供給することができる。なお、図中の○印は、第1の制御ユニット1aおよび第2の制御ユニット1bにおける接続端子を示している。
 先ず、2組の制御ユニットのうち、第1の制御ユニット1aについて説明する。第1の制御ユニット1aは、第1のCPU10aを搭載した第1の制御回路部4aと、電動機2の第1の電機子巻線2aに電流を供給する第1のインバータ回路3aと、第1の電源リレー5aと、第1のフィルタ6aを備えている。第1の制御ユニット1aの一対の電源端子は、車両に搭載されたバッテリ9の正極側端子に接続される+B電源と、バッテリ9の負極側端子であるグランド端子GNDにそれぞれ接続されている。又、第1の制御ユニット1aは、イグニッションスイッチ7により第1の制御回路部4aに+B電源が投入されるように構成され、さらに例えば車両のハンドルの近傍に搭載された操舵トルクを検出するトルクセンサや、車両の走行速度を検出する速度センサ等の情報がセンサ類8から入力されるように構成されている。
 センサ類8からの情報は、第1の制御回路部4aに設けられた第1の入力回路12aを介して第1のCPU10aに伝達される。第1のCPU10aは、伝達されたそれらの情報から電動機2を回転させるための制御量である電流値を演算し、その演算値に相当する出力信号を出力する。第1のCPU10aからの出力信号は、第1の出力回路を構成する第1の駆動回路11aと第1のインバータ回路3aへ伝達される。第1の駆動回路11aは、第1のCPU10aからの出力信号である第1の指令信号を受け、第1のインバータ回路3aの後述する各スイッチング素子を駆動する第1の駆動信号を出力する。第1の駆動回路11aには小電流しか流れないため、実施の形態1では第1の制御回路部4aに搭載されているが、第1のインバータ回路3aに配置することもできる。
 第1のインバータ回路3aは、3相ブリッジ回路により構成され、直列接続されたU相上アームスイッチング素子31UaとU相下アームスイッチング素子32UaとからなるU相アームと、直列接続されたV相上アームスイッチング素子31VaとV相下アームスイッチング素子32VaとからなるV相アームと、直列接続されたW相上アームスイッチング素子31WaとW相下アームスイッチング素子32WaとからなるW相アームとを備えている。
 U相上アームスイッチング素子31UaとU相下アームスイッチング素子32Uaとの直列接続部は、U相電動機リレー用スイッチング素子34Uaを介して第1の電機子巻線2aのU相巻線U1に接続されている。V相上アームスイッチング素子31VaとV相下アームスイッチング素子32Vaとの直列接続部は、V相電動機リレー用スイッチング素子34Vaを介して第1の電機子巻線2aのV相巻線V1に接続されている。W相上アームスイッチング素子31WaとW相下アームスイッチング素子32Waとの直列接続部は、W相電動機リレー用スイッチング素子34Waを介して第1の電機子巻線2aのW相巻線W1に接続されている。
 U相電流検出用のU相シャント抵抗33Uaは、U相下アームスイッチング素子32Uaに直列接続され、V相電流検出用のV相シャント抵抗33Vaは、V相下アームスイッチング素子32Vaに直列接続され、W相電流検出用のW相シャント抵抗33Waは、W相下アームスイッチング素子32Waに直列接続されている。
 U相ノイズ抑制用コンデンサ30Uaは、U相上アームスイッチング素子31UaとU相下アームスイッチング素子32UaとからなるU相アームに並列接続されている。V相ノイズ抑制用コンデンサ30Vaは、V相上アームスイッチング素子31VaとV相下アームスイッチング素子32VaとからなるV相アームに並列接続されている。そしてW相ノイズ抑制用コンデンサ30Waは、W相上アームスイッチング素子31WaとW相下アームスイッチング素子32WaとからなるW相アームに並列接続されている。
 U相シャント抵抗33Ua、V相シャント抵抗33Va、およびW相シャント抵抗33Waの両端間の電位差、および、第1の電機子巻線2aの各巻線端子の電圧は、第1の制御回路部4aに伝達されて第1のCPU10aに入力される。第1のCPU10aは、運転者の操舵トルク等に基づいて自身が演算した電流指令値と、入力された各シャント抵抗33Ua、33Va、33Waの両端間の電位差に基づいて算出した電流検出値との偏差を演算し、その偏差を零とする第1の駆動指令を第1の駆動回路11aに与える。
 第1の駆動回路11aは、第1のCPU10aからの第1の駆動指令に基づいて、第1のインバータ回路3aのU相上アームスイッチング素子31UaとU相下アームスイッチング素子32Ua、およびV相上アームスイッチング素子31VaとV相下アームスイッチング素子32Va、およびW相上アームスイッチング素子31WaとW相下アームスイッチング素子32Wa、の各ゲート電極に駆動信号を与え、これらのスイッチング素子をPWM(Pulse Width Modulation)制御する。
 このように、第1の制御ユニット1aは、電流指令値と電流検出値との偏差を零とするようにフィードバック制御を行うことで、所望の電動機電流を第1の電機子巻線2aに供給し、運転者の操舵トルクをアシストするアシストトルクを電動機2に発生させるように構成されている。
 さらに、第1の制御ユニット1aには、バッテリ9の+B電源から第1のインバータ回路3aへの電源の供給をオン/オフする第1の電源リレー5aが設けられている。第1の電源リレー5aは、電源リレー用スイッチング素子Qaにより構成されている。第1の電源リレー5aは、第1の制御回路部4aからの駆動信号により電源リレー用スイッチング素子Qaがオン/オフされることにより、電動機2の第1の電機子巻線2aへ供給する電流をオン/オフすることができる。
 第1のインバータ回路3aに設けられたU相電動機リレー用スイッチング素子34Ua、V相電動機リレー用スイッチング素子34Va、W相電動機リレー用スイッチング素子34Waは、第1の制御回路部4aからの駆動信号によりオン/オフされることにより、第1のインバータ回路3aから第1の電機子巻線2aのU相巻線U1、V相巻線V1、W相巻線W1へ供給する電流を、個別にオン/オフすることができる。
 第1のCPU10aは、入力されたセンサ類8からの操舵トルク検出値や車速等の各種情報のほか、第1の駆動回路11a、第1のインバータ回路3a、第1の電機子巻線2a等の異常を検出する異常検出機能を有し、これらの異常を検出した場合には、その異常に応じて例えば所定の相のみへの電流供給を遮断するために、異常を検出した相における、上アームスイッチング素子、下アームスイッチング素子、電動機リレー用スイッチング素子をオフすることができる。あるいは、前述の異常を検出した場合に、第1の制御ユニット1aに供給する電源自体を遮断するために、第1の電源リレー5aをオフすることも可能である。
 また、前述のように、第1のインバータ回路3aは、第1のCPU10aからの第1の駆動指令に基づいて第1の駆動回路11aから与えられる駆動信号により、PWM駆動されるが、このPWM駆動による第1のインバータ回路3aの各スイッチング素子のオン/オフによりスイッチングノイズが発生してしまう。そこで、このスイッチングノイズの放出を抑制する目的で、フィルタコンデンサCaとフィルタコイルCLaからなる第1のフィルタ6aが第1のインバータ回路3aの入力側に配置されている。
 なお、第1の電源リレー5a、および第1のフィルタ6aに供給される+B電源とグランド端子GNDの△印は、○印で示す接続端子から延長された部位を示しているが、それらの詳細は後述する。
 次に、第2の制御ユニット1bについて説明する。第2の制御ユニット1bは、第2のCPU10bを搭載した第2の制御回路部4bと、電動機2の第2の電機子巻線2bに電流を供給する第1のインバータ回路3bと、第2の電源リレー5bと、第2のフィルタ6bを備えている。第2の制御ユニット1bは、車両に搭載されたバッテリ9の正極側端子である+B電源と、バッテリ9の負極側端子であるグランド端子GNDに接続されている。又、第2の制御ユニット1bは、イグニッションスイッチ7により第2の制御回路部4bに電源が投入され、さらに例えば車両のハンドルの近傍に搭載された操舵トルクを検出するトルクセンサや、車両の走行速度を検出する速度センサ等の情報がセンサ類8から入力される。
 センサ類8からの情報は、第2の制御回路部4bに設けられた第2の入力回路12aを介して第2のCPU10bに伝達される。第2のCPU10bは、伝達されたそれらの情報から電動機2を回転させるための制御量である電流値を演算し、その演算値に相当する出力信号を出力する。第2のCPU10bからの出力信号は、第2の出力回路を構成する第2の駆動回路11bと第2のインバータ回路3bへ伝達される。第2の駆動回路11bは、第2のCPU10bからの出力信号である第2の指令信号を受け、第2のインバータ回路3bの後述する各スイッチング素子を駆動する第2の駆動信号を出力する。第2の駆動回路11bには小電流しか流れないため、実施の形態1では第2の制御回路部4bに搭載されているが、第2のインバータ回路3bに配置することもできる。
 第2のインバータ回路3bは、3相ブリッジ回路により構成され、直列接続されたU相上アームスイッチング素子31UbとU相下アームスイッチング素子32UbとからなるU相アームと、直列接続されたV相上アームスイッチング素子31VbとV相下アームスイッチング素子32VbとからなるV相アームと、直列接続されたW相上アームスイッチング素子31WbとW相下アームスイッチング素子32WbとからなるW相アームとを備えている。
 U相上アームスイッチング素子31UbとU相下アームスイッチング素子32Ubとの直列接続部は、U相電動機リレー用スイッチング素子34Ubを介して第2の電機子巻線2bのU相巻線U2に接続されている。V相上アームスイッチング素子31VbとV相下アームスイッチング素子32Vbとの直列接続部は、V相電動機リレー用スイッチング素子34Vbを介して第2の電機子巻線2bのV相巻線V2に接続されている。W相上アームスイッチング素子31WbとW相下アームスイッチング素子32Wbとの直列接続部は、W相電動機リレー用スイッチング素子34Wbを介して第2の電機子巻線2bのW相巻線W2に接続されている。
 U相電流検出用のU相シャント抵抗33Ubは、U相下アームスイッチング素子32Ubに直列接続され、V相電流検出用のV相シャント抵抗33Vbは、V相下アームスイッチング素子32Vbに直列接続され、W相電流検出用のW相シャント抵抗33Wbは、W相下アームスイッチング素子32Wbに直列接続されている。
 第2のインバータ回路3bにおいて、U相ノイズ抑制用コンデンサ30Ubは、U相上アームスイッチング素子31UbとU相下アームスイッチング素子32UbとからなるU相アームに並列接続されている。V相ノイズ抑制用コンデンサ30Vbは、V相上アームスイッチング素子31VbとV相下アームスイッチング素子32VbとからなるV相アームに並列接続されている。そしてW相ノイズ抑制用コンデンサ30Wbは、W相上アームスイッチング素子31WbとW相下アームスイッチング素子32WbとからなるW相アームに並列接続されている。
 U相シャント抵抗33Ub、V相シャント抵抗33Vb、およびW相シャント抵抗33Wbの両端間の電位差、および、第2の電機子巻線2bの各巻線端子の電圧は、第2の制御回路部4bに伝達されて第2のCPU10bに入力される。第2のCPU10bは、運転者の操舵トルク等に基づいて自身が演算した電流指令値と、入力された各シャント抵抗33Ub、33Vb、33Wbの両端間の電位差に基づいて算出した電流検出値との偏差を演算し、その偏差を零とする第2の駆動指令を第2の駆動回路11bに与える。
 第2の駆動回路11bは、第2のCPU10bからの第2の駆動指令に基づいて、第2のインバータ回路3bのU相上アームスイッチング素子31UbとU相下アームスイッチング素子32Ub、およびV相上アームスイッチング素子31VbとV相下アームスイッチング素子32Vb、およびW相上アームスイッチング素子31WbとW相下アームスイッチング素子32Wb、の各ゲート電極に駆動信号を与え、これらのスイッチング素子をPWM制御する。
 このように、第2の制御ユニット1bは、前述の第1の制御ユニット1aと同様に、電流指令値と電流検出値との偏差を零とするようにフィードバック制御を行うことで、所望の電動機電流を第2の電機子巻線2bに供給し、運転者の操舵トルクをアシストするアシストトルクを電動機2に発生させるように構成されている。
 さらに、第2の制御ユニット1bには、バッテリ9の+B電源から第2のインバータ回路3bへの電源の供給をオン/オフする第2の電源リレー5bが設けられている。第2の電源リレー5bは、電源リレー用スイッチング素子Qbにより構成されている。第2の電源リレー5bは、第2の制御回路部4bからの駆動信号により電源リレー用スイッチング素子Qbがオン/オフされることにより、電動機2の第2の電機子巻線2bへ供給する電流をオン/オフすることができる。
 第2のインバータ回路3bに設けられたU相電動機リレー用スイッチング素子34Ub、V相電動機リレー用スイッチング素子34Vb、W相電動機リレー用スイッチング素子34Wbは、第2の制御回路部4bからの駆動信号によりオン/オフされることにより、第2のインバータ回路3bから第2の電機子巻線2bのU相巻線U2、V相巻線V2、W相巻線W2へ供給する電流を、個別にオン/オフすることができる。
 第2のCPU10bは、入力されたセンサ類8からの操舵トルク検出値や車速等の各種情報のほか、第2の駆動回路11b、第2のインバータ回路3b、第2の電機子巻線2b等の異常を検出する異常検出機能を有し、これらの異常を検出した場合には、その異常に応じて例えば所定の相のみへの電流供給を遮断するために、異常を検出した相における、上アームスイッチング素子、下アームスイッチング素子、電動機リレー用スイッチング素子をオフすることができる。あるいは、前述の異常を検出した場合に、第2の制御ユニット1bに供給する電源自体を遮断するために、第2の電源リレー5bをオフすることも可能である。
 また、前述のように、第2のインバータ回路3bは、第2のCPU10bからの第2の駆動指令に基づいて第2の駆動回路11bから与えられる駆動信号により、PWM駆動される。このPWM駆動による第2のインバータ回路3bの各スイッチング素子のオン/オフによりスイッチングノイズが発生してしまう。そこで、このスイッチングノイズの放出を抑制する目的でフィルタコンデンサCbとフィルタコイルCLbからなる第2のフィルタ6bが第2のインバータ回路3bの入力側に配置されている。
 なお、第2の電源リレー5b、および第2のフィルタ6bに供給される+B電源とグランド端子GNDの△印は、○印で示す接続端子から延長された部位を示しているが、それらの詳細は後述する。
 電動機2は、前述のように3相の第1の電機子巻線2aと3相の第2の電機子巻線2bからなる2組の電機子巻線が、それぞれデルタ結線されたブラシレス電動機により構成されている。ブラシレス電動機のためにロータの回転位置を検出するために、第1の回転センサ17aと第2の回転センサ17bが搭載されている。このように、冗長性を確保するために、実質的に同一構成の2組の回転センサが搭載されている。第1の回転センサ17aが検出したロータの回転位置を示す情報は、第1の制御回路部4aに伝達され、第1の入力回路12aに入力される。第2の回転センサ17bが検出したロータの回転位置を示す情報は、第2の制御回路部4bに伝達され、第2の入力回路12bに入力される。
 なお、電動機2は、3相デルタ結線のブラシレス電動機でなくても、スター結線であっても、あるいは2極2対のブラシ付き電動機であってもよい。また、電機子巻線の巻線仕様は、従来の装置と同様に、分布巻き、集中巻きのいずれでもあってもよい。さらに、いわゆる2個のステータを有するタンデム電動機であってもよい。この場合、1組の電機子巻線のみであってもよく、あるいは、2組の電機子巻線を設けてこれらの電機子巻線の協働により駆動するように構成されていてもよく、要は、所望の電動機回転数、トルクが出力できる構成であればよい。
 報知手段15は、例えばランプを点灯できるように構成されており、第1のCPU10aが前述の異常を検出した場合に、第1のCPU10aから第1の出力回路16aを介して出力される警報信号に基づいてランプを点灯するなどの動作を行って運転者に以上を報知し、あるいは、第2のCPU10bが前述の異常を検出した場合に、第2のCPU10bから第2の出力回路16bを介して出力される警報信号に基づいてランプを点灯するなどの動作を行って運転者に異常を報知するように構成されている。
 以上述べたように、第1の制御ユニット1aと第2の制御ユニット1bは、それぞれ独立に入力情報、制御量の演算値を使用して、独立に電動機2を駆動できる構成となっている。また、第1の制御ユニット1aと第2の制御ユニット1bは、相手側のデータ、情報を授受できるように通信ライン14により相互に接続されている。この通信ライン14は、第1のCPU10aと第2のCPU10bの間を相互に接続することにより、相手方の状況を把握することができる。例えば第1のCPU10aが前述の異常を検出し、その結果、前述の所定のスイッチング素子をオフにしたとすると、異常検知の内容、異常部品、電動機駆動内容等を第2のCPU10bへ伝達することができる。もし、CPU自体に異常を発生した場合は、所定のフォーマットによる定期的な通信信号を授受することができなくなり、これにより一方のCPUが他方CPU自体の異常発生を検知することもできる。
 次に、この発明の実施の形態1による電動パワーステアリング装置の構造について説明する。図2は、この発明の実施の形態1による電動パワーステアリング装置の断面図である。図2において、図中、下側部分が電動機2であり、電動機2の上側部分に前述の第1の制御ユニットと第2の制御ユニットからなる制御ユニット1が配置されている。電動機2と制御ユニット1は、後述するフレーム28を介して電動機出力軸21と同軸上に軸方向に一体化されている。
 電動機2は、実質的に円筒形に構成された電動機ケース25を備えている。電動機ケース25は、図の最下部が軸方向に対して垂直に延びる壁部により閉塞され、図の最上部が開口されている。電動機ケース25における前述の壁部は減速機構部のケース(図示せず)に連結される。電動機出力軸21は、電動機ケース25の壁部に設けられた軸受部材により回転自在に支持され、そして電動機ケース25の壁部を貫通しており、図示していない減速機構部の入力軸に連結される。
 電動機ケース25の内部には、永久磁石により構成された複数対の界磁極を備えたロータ23と、ロータ23の外周面に対して間隙を介して対向する内周面を備えたステータ22とが配置されている。ロータ23は、電動機出力軸21の外周面に固定されている。電機子巻線24は、ステータ22に設けられたスロットに挿入されており、前述の3相の第1の電機子巻線2a(図示せず)と3相の第2の電機子巻線2b(図示せず)により構成されている。
 ステータ22に固定された環状の接続リング27は、電機子巻線24の軸方向の一方の端部に軸方向に近接して配置されている。電機子巻線24を構成する第1の電機子巻線と第2の電機子巻線は、前述のようにそれぞれU相巻線、V相巻線、W相巻線を備えている。電機子巻線24における第1の電機子巻線のU相巻線、V相巻線、W相巻線は、接続リング27によりデルタ結線され、各相巻線にそれぞれ接続された3本の第1の巻線端部26aは、接続リング27から電動機2の軸方向に導出されて制御ユニット1の内部まで延びている。同様に、電機子巻線24に於ける第2の電機子巻線のU相巻線、V相巻線、W相巻線は、接続リング27によりデルタ結線され、各相巻線にそれぞれ接続された3本の第2の巻線端部26bは、接続リング27から電動機2の軸方向に導出されて制御ユニット1の内部まで延びている。
 金属製のフレーム28は、電動機ケース25の開口部に結合され、電動機ケース25の開口部を閉塞すると共に、軸受部材により電動機出力軸21を回転自在に支持している。電動機出力軸21は、フレーム28を軸方向に貫通して制御ユニット1を覆うハウジング40の内部に延びている。また、フレーム28は、第1の巻線端部26aを軸方向に貫通させる貫通孔(図示せず)と、第2の巻線端部26bを貫通させる貫通孔(図示せず)を、軸心を介して対向する周縁部近傍の位置にそれぞれ備え、これらの貫通孔に前述の第1の巻線端部26aと第2の巻線端部26bをそれぞれ貫通させている。
 樹脂により形成されたハウジング40は、制御ユニット1を覆い、内部に前述の図1に示す第1の制御回路部4aと第2の制御回路部4bを構成する制御基板4、第1のインバータ回路3a、第2のインバータ回路3b等を内蔵している。ハウジング40の図における上部、つまり軸方向の端面には、軸方向に突出する凸状の第1のフィルタ室41aと、軸方向に突出する凸状の第2のフィルタ室41bとを備えている。第1のフィルタ室41aの内部には、第1の電源リレー5aを構成する電源リレー用スイッチング素子Qa(図示せず)と、第1のフィルタ6aを構成するフィルタコンデンサCa(図示せず)とフィルタコイルCLaとが収納されている。第2のフィルタ室41bの内部には、第2の電源リレー5bを構成する電源リレー用スイッチング素子Qb(図示せず)と、第2のフィルタ6bを構成するフィルタコンデンサCb(図示せず)とフィルタコイルCLbとが収納されている。
 また、後述する図4に示すように、ハウジング40の軸方向の端面における第1のフィルタ室41aと第2のフィルタ室41bの近傍で且つハウジング40の周縁部には電源用コネクタ42が配置され、さらに電源用コネクタ42から離れた位置に、センサ類8からの第1の信号コネクタ43aと第2の信号コネクタ43bが配設されている。ハウジング40と、第1のフィルタ室41aと、第2のフィルタ室41bと、電源用コネクタ42と、第1の信号コネクタ43aと、第2の信号コネクタ43bは、樹脂により形成されており、これら全体若しくは一部分が一体化されている。
 制御基板4は、前述の第1の制御回路部4aと第2の制御回路部4bを構成する回路部品を搭載している。すなわち、制御基板4の図における上面、つまり反電動機側表面には第1のCPU10aと第2のCPU10bが搭載され、制御基板4の図における下面、つまり電動機側表面には第1の駆動回路11aと第2の駆動回路11b等が搭載されている。
 第1のインバータ回路3aは、U相上アームスイッチング素子31Ua、V相上アームスイッチング素子31Va、W相上アームスイッチング素子31Wa、U相下アームスイッチング素子32Ua、V相下アームスイッチング素子32Va、W相下アームスイッチング素子32Wa、および、U相電動機リレー用スイッチング素子34Ua、V相電動機リレー用スイッチング素子34Va、W相電動機リレー用スイッチング素子34Wa、および、U相ノイズ抑制用コンデンサ30Ua、V相ノイズ抑制用コンデンサ30Va、W相ノイズ抑制用コンデンサ30Wa、および、U相シャント抵抗33Ua、V相シャント抵抗33Va、W相シャント抵抗33Waを、樹脂により一体にモールドした第1のパワーモジュールとして構成されている。
 第2のインバータ回路3bは、U相上アームスイッチング素子31Ub、V相上アームスイッチング素子31Vb、W相上アームスイッチング素子31Wb、U相下アームスイッチング素子32Ub、V相下アームスイッチング素子32Vb、W相下アームスイッチング素子32Wb、および、U相電動機リレー用スイッチング素子34Ub、V相電動機リレー用スイッチング素子34Vb、W相電動機リレー用スイッチング素子34Wb、および、U相ノイズ抑制用コンデンサ30Ub、V相ノイズ抑制用コンデンサ30Vb、W相ノイズ抑制用コンデンサ30Wb、および、U相シャント抵抗33Ub、V相シャント抵抗33Vb、W相シャント抵抗33Wbを、樹脂により一体にモールドした第2のパワーモジュールとして構成されている。
 第1のパワーモジュールとしての第1のインバータ回路3aと、第2のパワーモジュールとしての第2のインバータ回路3bは、樹脂製の中間フレーム401にそれぞれ搭載されるとともに、それぞれ駆動により発熱を伴うため、金属製のフレーム28へ伝熱可能なように、フレーム28の制御ユニット側の表面に当接されている。つまり、フレーム28は、ヒートシンクの役目もなしている。第1の巻線端部26aは、第1のパワーモジュールとしての第1のインバータ回路3aの出力端子に接続されている。第2の巻線端部26bは、第2のパワーモジュールとしての第2のインバータ回路3bの出力端子に接続されている。
 次に、制御ユニットにおける電源リレー、フィルタ等の周辺の回路構成について詳細に説明する。以下の説明では第1の制御ユニット1aについて説明するが、第2の制御ユニット1bも同様の構成である。図3は、この発明の実施の形態1による電動パワーステアリング装置の一部分の詳細回路図であって、図1に示す第1の制御ユニット1aの一部分の回路構成を詳細に示すものである。図3において、バッテリ9の正極側電極に接続された+B電源が図中の○印で示された接続端子を介して電動パワーステアリング装置に接続され、図中の△印により示される分岐点により、第1の制御ユニット1aと第2の制御ユニット1bに分岐される。
 さらに、第1の制御ユニット1aにおいて、△印で示す分岐点に続く第2の分岐点により後述する第1の検出回路36aと第1の電源リレー5aとに分岐される。第1の電源リレー5aは、図3に示すように、並列接続されたダイオードの向きが逆向きの電源リレー用スイッチング素子Qa1、Qa2が直列に接続されて構成されている。なお、図1に示す第1の電源リレー5aにおける電源リレー用スイッチング素子Qaは、図3に示す電源リレー用スイッチング素子Qa1、Qa2を包含するものとして記載したものである。
 前述のように、第1の電源リレー5aにおける電源リレー用スイッチング素子Qa1、Qa2は、並列接続されたダイオードの向きを逆向きとして直列に接続されているので、電流の流れる方向が決定され、例えばバッテリ9の正極側電極と負極側電極を逆に接続したとしても電流が流れることがない。さらには前述のように何らかの異常時には第1のCPU10aからの指令に基づいて電源供給を遮断することができる。
 この発明の実施の形態1による電動パワーステアリング装置では、第1の電源リレー5aにおける電源リレー用スイッチング素子Qa1、Qa2を駆動するため、抵抗R1、R2、R3、トランジスタT1、T2で構成された電源リレー駆動回路35aを備えている。電源リレー駆動回路35aにおいて、トランジスタT1は、エミッタが第1の制御ユニット1a内の▽印で示す電源に接続され、コレクタが抵抗R1と抵抗R4との直列接続点に接続されている。
 抵抗R1の一端は、電源リレー用スイッチング素子Q1、Q2のゲート電極にそれぞれ接続されている。トランジスタT1のベースは、トランジスタT2のコレクタに抵抗R2を介して接続されている。トランジスタT2のエミッタはグランドレベルに接続され、ベース電極は抵抗R3を介して第1の制御回路部4aに接続されている。抵抗R5の両端間の電圧は、第1の制御回路部4aに入力される。トランジスタT2は、第1のCPU10aからの指令に基づく第1の制御回路部4aからの駆動信号によりオン/オフ制御され、トランジスタT1は、トランジスタT2のオン/オフに基づいてオン/オフ制御される。
 なお、トランジスタT1のエミッタの接続先である電源▽は、バッテリ9の正極側電極に接続された+B電源よりも高電位の電源であり、これにより電源リレー用スイッチング素子Qa1、Qa2をオンすることが可能となる。抵抗R4、R5はモニタ用の分圧抵抗であり、トランジスタT1、T2のオン状態を第1の制御回路部4aにより検出できるように構成されている。
 第1の電源リレー5aの下流側にフィルタコンデンサCa、フィルタコイルCLa等から構成された第1のフィルタ6aが接続され、第1のフィルタ6aの下流側に第1のインバータ回路3aが接続されている。第1のフィルタ6aと第1のインバータ回路3aとの中間点としての接続点の電位は、第2の検出回路13aにより検出されて第1の制御回路部4aに入力され、第1の制御回路部4aによりその電圧が監視される。第1のCPU10aは、抵抗R4、R5によりモニタされた電圧と、第2の検出回路13aからの電圧に基づいて、第1の電源リレー5aをオンしているにもかかわらず、第2の検出回路13aがバッテリ9の出力電圧に相当する電圧を検出できない場合は、第1の制御ユニット1aにおける第1のインバータ回路3aの上流側に地絡故障が発生している可能性があると判断することができる。
 第3の検出回路18uは、第1のインバータ回路3aにおけるU相下アームに流れる電流を検出して第1の制御回路部4aに入力し、第4の検出回路19uは第1の電機子巻線2aのU相巻線U1の端子電圧を検出して第1の制御回路部4aに入力する。第1のインバータ回路3aにおけるV相下アーム、およびW相下アームに流れる電流も第3の検出回路18uと同様の検出回路により検出されて第1の制御回路部4aに入力される。第1の電機子巻線2aのV相巻線V1、およびW相巻線W1の端子電圧も第4の検出回路と同様の検出回路により検出され、第1の制御回路部4aに入力される。第1の制御回路部4aは、入力された各相下アームの電流、電動機2の第1の電機子巻線2aの各巻線端子の電圧をモニタして、第1のインバータ回路3aにおける各スイッチング素子、電動機2の第1の電機子巻線2a等の短絡故障や、地絡故障を検出し、それらの故障内容によっては第1の電源リレー5aを遮断することができる。
 前述の電源リレー駆動回路35a、第2の検出回路13a、第3の検出回路18u等の各相の電流検出回路、第4の検出回路19u等の巻線端子電圧検出回路は、第1の制御ユニット1a、および第2の制御ユニット1bからなる3相2組すべてに設置されることが望ましい。
 前述の各検出回路により監視された電圧または電流は、第1の制御回路部4aにおける第1のCPU10aに伝達される。第1のCPU10aは、自身の制御指令に応じて、モニタ電圧またはモニタ電流の内容を把握して異常の有無を判断する。つまり、第1のCPU10aは、電動機2へ所定電流を流しているにもかかわらず、第3の検出回路18uにより電圧が検出できない場合、又は所定電流に相当する以外の電圧が発生している場合に、異常と判断することができる。また第1のCPU10aは、第4の検出回路19u等の各相の検出回路では電動機2の各相の端子電圧をモニタしているので、電動機2を駆動しているにもかかわらず電圧が発生しない場合、あるいは電動機2を駆動していないときに電圧が発生している場合に、異常と判断できる。これらの異常時には、第1のCPU10aは、第1の電源リレー5aを遮断するように第1の駆動回路11aに制御指令を出力する。さらには、これらの異常時には、第1のCPU10aは、電源回路12を停止することも可能である。
 バッテリ9の+B電源のラインのもう1つの分岐には、比較的小電流が流れる第1の電源リレー5aをオンするための電源、およびその制御指令回路に接続されている。そのためこの回路網でも故障が発生する可能性があり、その故障により過電流が流れる場合は電源リレーを遮断する必要がある。そこで第1の検出回路36aが設置されている。図3に示すように、第1の検出回路36aは、+B電源の分岐点▽に一端が接続された抵抗R6とR7とR9、および抵抗R9の他端にエミッタが接続され、コレクタが抵抗R11を介してグランドレベルに接続されたトランジスタT3、一端が抵抗R9の他端に接続された抵抗R8、入力端子の一報が抵抗R7とR8の他端に接続され、他方の入力端子が抵抗R6の他端に接続され、出力端子がトランジスタT3のベースに抵抗R10を介して接続された増幅器I1、により構成されている。
 この第1の検出回路36aの基本的な動作は、抵抗R6に電流が流れることで発生する電位差を増幅器I1で増幅することであり、第1の検出回路36aにより増幅された値が所定範囲内に入っているか否かを第1のCPU10aがモニタする。
 第1の制御回路部4aには、コンデンサとダイオードを備えた回路(図示せず)と、トランジスタを備えた回路(図示せず)と、を有する第1の電源回路12が設けられており、この第1の電源回路12の入力端子は増幅器I1の他方の入力端に接続されている。第1の電源回路12の出力端は、第1のCPU10aに接続されている。
 前述のように、第1の検出回路36aにより増幅された値が所定範囲に入っているか否かを第1のCPU10aがモニタするが、この所定範囲の設定は、第1の検出回路36aおよび第1の電源回路I2等が消費する電流値で決定する。もし第1の検出回路36aが抵抗R6に過電流が流れていることを検出した場合、第1のCPU10aは、第1の検出回路36a、第1の電源回路I2等に異常が発生したことになるので、第1の電源リレー5aを遮断するように出力すること以外に、例えば第1の電源回路I2を停止し、過電流防止の措置を取る。
 なお、第1の電源回路I2は、▽印で示す高い電圧と、およびバッテリ電圧よりも低いがバッテリで直接駆動されるべき回路への電源となる電圧と、を生成している。また、第1の電源回路I2は、例えばチャージポンプ回路により構成され、コンデンサとダイオードからなる回路(図示せず)、さらには第1のCPU10aに用いる定電源の機能を有するトランジスタを備えた回路(図示せず)も有している。従って、第1のCPU10aは、イグニッションスイッチ7が投入されていないときであってもその機能を実行することができる。
 以上述べたように、電源リレー周辺に複数の回路網が構成され、この複数の回路網が第1の制御ユニット1aと第2の制御ユニット1bとにそれぞれ設けられており、全体として2組存在する。冗長性を考慮すると、装置に接続された後は2重系で各回路が構成され、さらに一方が異常時に他方に影響を及ぼすことがないように遮断することが必要である。そのため電源リレーをまず介して、その後にフィルタ、インバータ回路を接続する。例えばフィルタのコンデンサに短絡故障が発生した場合、故障箇所が電源リレーより下流に位置するため電源リレー遮断により正常系統に影響を及ぼすことがない。なお、第2の駆動回路、第1の検出回路36aで地絡故障時のように過電流が流れた場合には、例えば配線パターンをその電流で切断できるような細いパターンで接続することで大電流が流れることを防止することもできる。
 次に、図1、図3に示した第1の電源リレー5a、第2の電源リレー5b、第1のフィルタ6a、第2のフィルタ6b、電源リレー駆動回路35a、第1の検出回路36aの配置、および接続構成について説明する。図4は、この発明の実施の形態1による電動パワーステアリング装置の一部分の詳細構成を示す平面図であって、電源用コネクタ42、第1の信号コネクタ43a、第2の信号コネクタ43b、第1のフィルタ室41a、第2のフィルタ室41b、等のハウジング40の上面部の構成を除いた内部構成として示している。
 図4に於いて、樹脂により形成された絶縁部材50は、図2に示すようにハウジング40の内面部に埋設若しくは装着され、反電動機側表面である第1の表面と電動機側表面である第2の表面を備えている。絶縁部材50の第1の表面と第2の表面は、互いに表裏の関係をなしている。電源用コネクタ42における電源ターミナル44aは、絶縁部材50の2第1の表面に設けられ、バッテリ9の正極側端子に接続された+B電源に接続される。電源用コネクタ42における電源ターミナル44bは、絶縁部材50の第2の表面に設けられ、グランド端子GNDに接続される。
 第1の電源リレー5aと第2の電源リレー5bは、図4の上下方向に並置されて絶縁部材50の第1の表面に固定されている。第1の電源リレー5aにおける一対の電源リレー用スイッチング素子Qa1、Qa2は、図4の左右方向に並置されるとともに上下方向に互いに逆向きとなるように配置されている。第2の電源リレー5bにおける一対の電源リレー用スイッチング素子Qb1、Qb2は、図4の左右方向に並置されるとともに上下方向に互いに逆向きとなるように配置されている。第1の電源リレー5aと第2の電源リレー5bは、同一の構成である。
 第1のフィルタ6aと第2のフィルタ6bは、第1の電源リレー5aと第2の電源リレー5bに対して後述する端子部46側に配置されている。そして、第1のフィルタ6aと第2のフィルタ6bは、図4の上下方向に並置されて絶縁部材50の第1の表面に固定されている。第1のフィルタ6aのフィルタコンデンサCaとフィルタコイルCLaは、図4の左右方向に配置され、同様に、第2のフィルタ6bのフィルタコンデンサCbとフィルタコイルCLbは、図4の左右方向に配置されている。フィルタコンデンサCaとフィルタコンデンサCbは、ともに図4の下方側に正極側端子が配置されている。第1のフィルタ6aと第2のフィルタ6bは、同一の構成である。
 電源ターミナル44aに接続されたバスバーとしての導電部材701は、絶縁部材50の第1の表面に配置され、電源ターミナル44aの近傍で第1の部位701aと第2の部位701bに対称形に分岐されている。分岐された第1の部位701aは、第1の制御ユニット1aにおける第1の電源リレー5aの電源リレー用スイッチング素子Qa1、Qa2に接続されている。分岐された第2の部位701bは、第2の制御ユニット1bにおける第2の電源リレー5bの電源リレー用スイッチング素子Qb1、Qb2に接続されている。
 絶縁部材50の第1の表面に配置されたバスバーとしての導電部材702aは、第1の電源リレー5aの電源リレー用スイッチング素子Qa1、Qa2に接続されるとともに、第1のフィルタ6aのフィルタコンデンサCaの正極側端子とフィルタコイルCLaの一端に接続されている。絶縁部材50の第1の表面に配置されたバスバーとしての導電部材702bは、第2の電源リレー5bの電源リレー用スイッチング素子Qb1、Qb2に接続されると共に、第2のフィルタ6bのフィルタコンデンサCbの正極側端子とフィルタコイルCLbの一端とに接続されている。
 端子部46は、第1の正極側端子46a1と第2の正極側端子46b1、および第1の負極側端子46a2と第2の負極側端子46b2を備え、これらの端子は絶縁部材50の第1の表面に設けられ、図4の上から下の方向に順次、第1の負極側端子46a2、第1の正極側端子46a1、第2の負極側端子46b2、第2の正極側端子46b1、の順序で配置されている。そして、これらの端子は、図2に示されるように、それぞれ制御基板4を介して、中間フレーム401に搭載された第1のインバータ回路3aを含む第1のパワーモジュールと、第2のインバータ回路3bを含む第2のパワーモジュールまで延びている。
 第1の正極側端子46a1は、第1のインバータ回路3aの正極側直流端子に接続され、第1の負極側端子46a2は、第1のインバータ回路3aの負極側直流端子に接続され、第2の正極側端子46b1は、第2のインバータ回路3bの正極側直流端子に接続され、第2の負極側端子46b2は、第2のインバータ回路3bの負極側直流端子に、それぞれ接続されている。
 図4において、絶縁部材50の第1の表面に配置されたバスバーとしての導電部材703aは、第1のフィルタ6aにおけるフィルタコイルCLaの他端と、端子部46の第1の正極側端子46a1に接続されている。絶縁部材50の第1の表面に配置されたバスバーとしての導電部材703bは、第2のフィルタ6bにおけるフィルタコイルCLaの他端と、端子部46の第2の正極側端子46b1と、に接続されている。
 電源用コネクタ42における電源ターミナル44bに接続された導電部材704は、絶縁部材50の第2の表面に配置され、第1の部位704aと第2の部位704bに分岐されている。絶縁部材50の第1の表面に配置された導電部材705aは、絶縁部材50の第2の表面に配置された導電部材704の第1の部位704aに電気的に接続されており、第1のフィルタ6aにおけるフィルタコンデンサCaの負極側端子と、端子部46の第1の負極側端子46a2に接続されている。絶縁部材50の第1の表面に配置された導電部材705bは、絶縁部材50の第2の表面に配置された導電部材704の第2の部位704bに電気的に接続されており、第2のフィルタ6bにおけるフィルタコンデンサCbの負極側端子と、端子部46の第2の負極側端子46a2に接続されている。
 導電部材704の第2の部位704bの一部分と導電部材702aの一部分は、図4の紙面に対して垂直方向に重なっているが、前述したように導電部材704は絶縁部材50の第2の表面に配置されており、導電部材702aは絶縁部材50の第1の表面に配置されているので、互いに接触することはない。
 図4に示すように、2系統に構成された第1の制御ユニット1aと第2の制御ユニット1bにおける第1の電源リレー5aと第2の電源リレー5b、および第1のフィルタ6aと第2のフィルタ6bは、それぞれ、ともに同一部品で同一方向に対称的に対照的に配置されるとともに、各導電部材にそれぞれ接続されているが、2系統の間に例えばインダクタンス、インピーダンスにおいて差異が生じないように各導電部材の幅、長さ等が可能な限り同じになるように構成されている。
 なお、絶縁部材50に代えて、配線パターンが印刷配線等により設けられた配線基板を用いても良い。この配線基板を用いた場合、第1の電源リレー5aおよび第2の電源リレー5aのスイッチング素子Qa1、Qa2、Qb1、Qb2、および第1のフィルタ6aおよび第2のフィルタ6bのフィルタコンデンサCa、Cb、フィルタコイルCLa、CLbはその配線基板に装着され、それぞれ配線基板に設けられた配線パターンにより接続される。
 電源用コネクタ42の電源ターミナル44aは、前述のバスバーとしての太い幅を有する導電部材701の他に、比較的小電流用の細い幅を有する第1の配線パターン801aと第2の配線パターン801bが接続されている。これらの配線パターン801a、801bは、一括して電源ターミナル44aに接続されているので、電源ターミナル44aから第1の配線パターン801aと第2の配線パターン801bが分岐して設けられていることになる。第1の配線パターン801aと第2の配線パターン801bは、前述のバスバーとしての導電部材701、702a、702b、703a、703b、705a、」および705bと同様に、絶縁部材50における一方の表面に設けられている。なお、第1の配線パターン801aと第2の配線パターン801bに代えて、通常のリード線を用いても良い。
 電源ターミナル44aから分岐した第1の配線パターン801aは、第1の回路部51aに接続されている。第1の回路部51aは、第1の制御ユニット1aにおける前述の図3に示す電源リレー駆動回路35aと電流検出用の抵抗R6を有する第1の検出回路36a等が装着されている。電源ターミナル44aから分岐した第2の配線パターン801bは、第2の回路部51bに接続されている。第2の回路部51bは、前述の第2の制御ユニット1bにおける電源リレー駆動回路(図示せず)と、電流検出用の抵抗R6を有する第1の検出回路(図示せず)等が装着されている。
 第1の配線パターン801aの一部分と第2の配線パターン801bの一部分には、図4に示すように、所定値以上の過電流で溶断できる細いパターン部分が設けられており、第1の制御ユニット1aおよび第2の制御ユニット1bにおける電源リレー駆動回路35a、および各検出回路等での地絡故障発生時に、所定値以上の過大電流が流れることを防止することが可能である。
 絶縁部材50は、第1の回路部51aの近傍に形成された複数の第1の貫通穴52aと、第2の回路部51bの近傍に形成された複数の第2の第2の貫通穴52bを備えている。図2に示すように、第1の貫通穴52aは、制御基板4に搭載された第1のCPU10aに接続されたリード線521aに接続され、第2の貫通穴52bは、制御基板4に搭載された第2のCPU10bに接続されたリード線521bに接続されている。第1の信号コネクタ43aからの信号線は、図2に示すように、中間フレーム401を介して第1のインバータ回路3aを有する第1のパワーモジュールに接続されている。第2の信号コネクタ43bからの信号線は、図2に示すように、中間フレーム401を介して第2のインバータ回路3bを有する第2のパワーモジュールに接続されている。
 以上述べたように、制御ユニット1のハウジング40の上面部に設けられた電源用コネクタ42から供給された電源系ラインは、太い2つのバスバーとしての導電部材701により第1の部位701aと第2の部位701bに分岐され、さらに細い2つの第1の配線パターン801aと第2の配線パターン801bに分岐されている。分岐されたバスバーとしての導電部材701の第1の部位701aの系統には、第1の制御ユニット1aにおける第1の電源リレー5a、第1のフィルタ6a等が接続され、導電部材701の第2の部位701bの系統には、第2の制御ユニット1bにおける第2の電源リレー5b、第2のフィルタ6b等が接続される。
 上記の構成により、電動パワーステアリング装置の電源用コネクタ42に接続された+B電源の最上流位置に第1の電源リレー5a、第2の電源リレー5bが配置されており、これらの電源リレーの下流側で発生する故障に対して電源供給を遮断することができる。また、電源用コネクタを2個配置することなく1個の電源用コネクタ42を設けるのみで、制御ユニットの冗長性を確保することができる。さらに、第1のフィルタ6aおよび第2のフィルタ6bを、ノイズ発生部分である第1のインバータ回路3a及び第2のインバータ回路3bに近づけて配置することができ、インバータ回路によるノイズ放出を効果的にすることができる。また、第1のフィルタ6aおよび第2のフィルタ6bをそれぞれ構成するフィルタコンデンサCa、Cbと、フィルタコイルCLa、CLb等の部品を、軸方向に突出する凸状の第1のフィルタ室41aおよび第2のフィルタ室41bに集中して配置するようにしたので、装置の小型化を図ることができる。
 さらに、第1の電源リレー5a、第2の電源リレー5b、第1のフィルタ6a、第2のフィルタ6b、第1の回路部51a、および第2の回路部51bは、それぞれハウジング40の上面部に集中して配置されているのに対して、制御基板4、第1のインバータ回路3a、第2のインバータ回路3bがハウジング40の内部に配置されているので、制御基板4、第1のインバータ回路3a、第2のインバータ回路3bにより影響されることなく第1の電源リレー5a、第2の電源リレー5b、第1のフィルタ6a、第2のフィルタ6b、第1の回路部51a、および第2の回路部51bそれぞれが独立に設計することができ、装置の小型化に寄与することができる。なお、ハウジング40の上面部に配置された第1の電源リレー5a、第2の電源リレー5b、第1のフィルタ6a、第2のフィルタ6b、第1の回路部51a、および第2の回路部51bと、ハウジング40の内部に配置された制御基板4、第1のインバータ回路3a、第2のインバータ回路3b等とは、接続が容易となるようにそれぞれの端子の配置が考慮されている。
実施の形態2.
 次に、この発明の実施の形態2による電動パワーステアリング装置について説明する。図5は、この発明の実施の形態2による電動パワーステアリング装置の一部分の詳細構成を示す平面図である。図5は、前述の実施の形態1における図4に相当する平面図であり、図4と同一符号は、同一又は相当部分を示している。図1から図3は、この発明の実施の形態2にも適用される。
 図5において、各部品は実質的に線対称に配置されている。第1の電源リレー5aの電源リレー用スイッチング素子Qa1、Qa2、第2の電源リレー5bの電源リレー用スイッチング素子Qb1、Qb2、および第2のフィルタ6bのフィルタコンデンサCbの配置方向が実施の形態1の場合と異なり、また、端子部46における第1の正極側端子46a1、第1負極側端子46a2、第2の正極側端子46b1、第2の負極側端子46b2の配置順序も実施の形態1の場合とは異なっている。さらに各導電部材の形状、配置も実施の形態1の場合とは異なる部分を備えている。また、実施の形態2では、電源用コネクタ42の電源ターミナル44bに接続された導電部材は、2つに分岐され、その分岐後にさらに細い幅を有する2つのグランドラインにそれぞれ分岐されている。
 以下、実施の形態2による電動パワーステアリングについて詳細に説明する。図5において、樹脂により形成された絶縁部材50は、図2に示すようにハウジング40の内面部に埋設若しくは装着され、反電動機側表面である第1の表面と電動機側表面である第2の表面を備えている。絶縁部材50の第1の表面と第2の表面は、互いに表裏の関係をなしている。電源用コネクタ42における電源ターミナル44aは、絶縁部材50の2第1の表面に設けられ、バッテリ9の正極側端子に接続された+B電源に接続される。電源用コネクタ42における電源ターミナル44bは、絶縁部材50の第2の表面に設けられ、グランド端子GNDに接続される。
 第1の電源リレー5aと第2の電源リレー5bは、図5の上下方向に並置されて絶縁部材50の第1の表面に固定されている。第1の電源リレー5aにおける一対の電源リレー用スイッチング素子Qa1、Qa2は、図5の左右方向に並置されるとともに左右方向に互いに逆向きとなるように配置されている。第2の電源リレー5bにおける一対の電源リレー用スイッチング素子Qb1、Qb2は、図5の左右方向に並置されるとともに白湯方向に互いに逆向きとなるように配置されている。第1の電源リレー5aと第2の電源リレー5bは、同一の構成である。
 第1のフィルタ6aと第2のフィルタ6bは、第1の電源リレー5aと第2の電源リレー5bに対して端子部46側に配置されている。そして、第1のフィルタ6aと第2のフィルタ6bは、図5の上下方向に並置されて絶縁部材50の第1の表面に固定されている。第1のフィルタ6aのフィルタコンデンサCaとフィルタコイルCLaは、図5の左右方向に配置され、同様に、第2のフィルタ6bのフィルタコンデンサCbとフィルタコイルCLbは、図5の左右方向に配置されている。第1のフィルタ6aのフィルタコンデンサCaは、図5の下方に正極側端子が配置されているのに対して、第2のフィルタ6bのフィルタコンデンサCbは、図5の上方に正極側端子が配置されている。
 電源ターミナル44aに接続されたバスバーとしての導電部材701は、絶縁部材50の第1の表面に配置され、電源ターミナル44aの近傍で第1の部位701aと第2の部位701bに対称形に分岐されている。分岐された第1の部位701aは、第1の制御ユニット1aにおける第1の電源リレー5aの電源リレー用スイッチング素子Qa1、Qa2に接続されている。分岐された第2の部位701bは、第2の制御ユニット1bにおける第2の電源リレー5bの電源リレー用スイッチング素子Qb1、Qb2に接続されている。
 絶縁部材50の第1の表面に配置されたバスバーとしての導電部材702aは、第1の電源リレー5aの電源リレー用スイッチング素子Qa1、Qa2に接続されるとともに、第1のフィルタ6aのフィルタコンデンサCaの正極側端子とフィルタコイルCLaの一端に接続されている。絶縁部材50の第1の表面に配置されたバスバーとしての導電部材702bは、第2の電源リレー5bの電源リレー用スイッチング素子Qb1、Qb2に接続されると共に、第2のフィルタ6bのフィルタコンデンサCbの正極側端子とフィルタコイルCLbの一端とに接続されている。
 ここで、導電部材702bは、図示のごとく上方に屈曲して第2のフィルタ6bのフィルタコンデンサCbの正極側端子に接続されており、下方に屈曲した実施の形態1における導電部材702bとは逆形状となっている。これはフィルタコンデンサCbの正極側端子の位置が、実施の形態1と実施の形態2とで逆転しているからである。
 端子部46は、第1の正極側端子46a1と第2の正極側端子46b1、および第1の負極側端子46a2と第2の負極側端子46b2を備え、これらの端子は絶縁部材50の第1の表面に設けられ、図5の上から下の方向に順次、第1の負極側端子46a2、第1の正極側端子46a1、第2の正極側端子46b1、第2の負極側端子46b2、の順序で配置されている。実施の形態2では、第2の正極側端子46b1と第2の負極側端子46b2の配置順序が逆となっている。これらの端子は、図2に示されるように、それぞれ制御基板4を介して、中間フレーム401に搭載された第1のインバータ回路3aを含む第1のパワーモジュールと、第2のインバータ回路3bを含む第2のパワーモジュールまで延びている。
 第1の正極側端子46a1は、第1のインバータ回路3aの正極側直流端子に接続され、第1の負極側端子46a2は、第1のインバータ回路3aの負極側直流端子に接続され、第2の正極側端子46b1は、第2のインバータ回路3bの正極側直流端子に接続され、第2の負極側端子46b2は、第2のインバータ回路3bの負極側直流端子に、それぞれ接続されている。
 図5において、絶縁部材50の第1の表面に配置されたバスバーとしての導電部材703aは、第1のフィルタ6aにおけるフィルタコイルCLaの他端と、端子部46の第1の正極側端子46a1に接続されている。絶縁部材50の第1の表面に配置されたバスバーとしての導電部材703bは、第2のフィルタ6bにおけるフィルタコイルCLaの他端と、端子部46の第2の正極側端子46b1と、に接続されている。隣接して配置された導電部材703aと導電部材703bは、互いに実質的に線対称形状をなしている。
 電源用コネクタ42における電源ターミナル44bに接続された導電部材704は、絶縁部材50の第2の表面に配置され、第1の部位704aと第2の部位704bに分岐されている。絶縁部材50の第1の表面に配置された導電部材705aは、絶縁部材50の第2の表面に配置された導電部材704の第1の部位704aに電気的に接続されており、第1のフィルタ6aにおけるフィルタコンデンサCaの負極側端子と、端子部46の第1の負極側端子46a2に接続されている。絶縁部材50の第1の表面に配置された導電部材705bは、絶縁部材50の第2の表面に配置された導電部材704の第2の部位704bに電気的に接続されており、第2のフィルタ6bにおけるフィルタコンデンサCbの負極側端子と、端子部46の第2の負極側端子46a2に接続されている。実施の形態1では導電部材705bは絶縁部材50のほぼ中央部に配置されていたが、実施の形態2では導電部材705bは絶縁部材50の周縁部に配置されている。
 導電部材704の第2の部位704bの一部分と導電部材702aの一部分は、図5の紙面に対して垂直方向に重なっているが、前述したように導電部材704は絶縁部材50の第2の表面に配置されており、導電部材702aは絶縁部材50の第1の表面に配置されているので、互いに接触することはない。
 分岐された導電部材704の第1の部位704aは、さらに、細い幅を有する第1のグランドライン706aを分岐している。また、分岐された導電部材704の第2の部位704bは、さらに、細い幅を有する第2のグランドライン706bを分岐している。第1のグランドライン706aと第2のグランドライン706bは、絶縁部材50の第2の表面に配置されている。
 第1のグランドライン706aは、小電流回路に対応した導電体であり、後述する第1の回路部51aが搭載された基板と、第1の電源リレー5aの各スイッチング素子Qa1、Qa2が搭載された基板まで延びてこれらに接続されている。第2のグランドライン706bは、小電流回路に対応した導電体であり、後述する第2の回路部51bが搭載された基板と、第2の電源リレー5bの各スイッチング素子Qb1、Qb2が搭載された基板まで延びてこれらに接続されている。
 図5に示すように、2系統に構成された第1の制御ユニット1aと第2の制御ユニット1bにおける第1の電源リレー5aと第2の電源リレー5b、および第1のフィルタ6aと第2のフィルタ6bは、それぞれ、ともに同一部品で同一方向に対称的に対照的に配置されるとともに、各導電部材にそれぞれ接続されているが、2系統の間に例えばインダクタンス、インピーダンスにおいて差異が生じないように各導電部材の幅、長さ等が可能な限り同じになるように構成されている。
 なお、絶縁部材50に代えて、配線パターンが印刷配線等により設けられた配線基板を用いても良い。この配線基板を用いた場合、第1の電源リレー5aおよび第2の電源リレー5bのスイッチング素子Qa1、Qa2、Qb1、Qb2、および第1のフィルタ6aおよび第2のフィルタ6bのフィルタコンデンサCa、Cb、フィルタコイルCLa、CLbはその配線基板に装着され、それぞれ配線基板に設けられた配線パターンにより接続される。
 電源用コネクタ42の電源ターミナル44aは、前述のバスバーとしての太い幅を有する導電部材701の他に、比較的小電流用の細い幅を有する第1の配線パターン801aと第2の配線パターン801bが接続されている。これらの配線パターン801a、801bは、一括して電源ターミナル44aに接続されているので、電源ターミナル44aから第1の配線パターン801aと第2の配線パターン801bが分岐して設けられていることになる。第1の配線パターン801aと第2の配線パターン801bは、前述のバスバーとしての導電部材701、702a、702b、703a、703b、705a、」および705bと同様に、絶縁部材50における一方の表面に設けられている。なお、第1の配線パターン801aと第2の配線パターン801bに代えて、通常のリード線を用いても良い。
 電源ターミナル44aから分岐した第1の配線パターン801aは、第1の回路部51aに接続されている。第1の回路部51aは、第1の制御ユニット1aにおける前述の図3に示す電源リレー駆動回路35aと電流検出用の抵抗R6を有する第1の検出回路36a等が装着されている。電源ターミナル44aから分岐した第2の配線パターン801bは、第2の回路部51bに接続されている。第2の回路部51bは、前述の第2の制御ユニット1bにおける電源リレー駆動回路(図示せず)と、電流検出用の抵抗R6を有する第1の検出回路(図示せず)等が装着されている。
 第1の配線パターン801aの一部分と第2の配線パターン801bの一部分には、図4に示すように、所定値以上の過電流で溶断できる細いパターン部分が設けられており、第1の制御ユニット1aおよび第2の制御ユニット1bにおける電源リレー駆動回路35a、および各検出回路等での地絡故障発生時に、所定値以上の過大電流が流れることを防止することが可能である。
 絶縁部材50は、第1の回路部51aの近傍に形成された複数の第1の貫通穴52aと、第2の回路部51bの近傍に形成された複数の第2の第2の貫通穴52bを備えている。図2に示すように、第1の貫通穴52aは、制御基板4に搭載された第1のCPU10aに接続されたリード線521aに接続され、第2の貫通穴52bは、制御基板4に搭載された第2のCPU10bに接続されたリード線521bに接続されている。第1の信号コネクタ43aからの信号線は、図2に示すように、中間フレーム401を介して第1のインバータ回路3aを有する第1のパワーモジュールに接続されている。第2の信号コネクタ43bからの信号線は、図2に示すように、中間フレーム401を介して第2のインバータ回路3bを有する第2のパワーモジュールに接続されている。
 第1の電源リレー5aおよび第2の電源リレー5bの電源リレー用スイッチング素子Qa1、Qa2、Qb1、Qb2は、大電流が流れるため発熱が多く放熱性を考慮しなければならない。これらのスイッチング素子は、ハウジング40の上面付近に配置され、電動パワーステアリング装置の外部に近い位置に存在する。そのため、電源リレー用スイッチング素子Qa1、Qa2、Qb1、Qb2にヒートシンクを当接させ、このヒートシンクの一部をハウジング40の外部へ露出させる構成とする。
 図6は、この発明の実施の形態2による電動パワーステアリング装置における、ヒートシンクとカバーの斜視図である。図6において、樹脂製のカバー54は、ヒートシンク53を挿入するための開口部41dを備えており、この開口部41dから衝立状のヒートシンク53が露出するように構成されている。ヒートシンク53の下面53aは、電源リレー用スイッチング素子Qa1、Qa2、Qb1、Qb2に当接しており、これらの電源リレー用スイッチング素子の放熱性を確保している。
 カバー54の一部であるフィルタ室41cは、2組のフィルタコンデンサCa、Cbと、2組のフィルタコイルCLa、CLb等を一緒に内蔵するように構成されている。カバー54は、図2に示す第1のフィルタ室41aと第2のフィルタ室41bに代えてハウジング40に設けられ、ハウジング40に搭載された2組の電源リレー5a、5bの各電源リレー用スイッチング素子Qa1、Qa2、Qb1、Qb2、および、2組のフィルタコンデンサCa、Cbと、2組のフィルタコイルCLa、CLb等をコンデンサ、フィルタ等を覆うように配置される。
 以上述べたように、制御ユニット1のハウジング40の上面部に設けられた電源用コネクタ42から供給された電源系ラインは、太い2つのバスバーとしての導電部材701により第1の部位701aと第2の部位701bに分岐され、さらに細い2つの第1の配線パターン801aと第2の配線パターン801bに分岐されている。分岐されたバスバーとしての導電部材701の第1の部位701aの系統には、第1の制御ユニット1aにおける第1の電源リレー5a、第1のフィルタ6a等が接続され、導電部材701の第2の部位701bの系統には、第2の制御ユニット1bにおける第2の電源リレー5b、第2のフィルタ6b等が接続される。
 上記の構成により、電動パワーステアリング装置の電源用コネクタ42に接続された+B電源の最上流位置に第1の電源リレー5a、第2の電源リレー5bが配置されており、これらの電源リレーの下流側で発生する故障に対して電源供給を遮断することができる。また、電源用コネクタを2個配置することなく1個の電源用コネクタ42を設けるのみで、制御ユニットの冗長性を確保することができる。さらに、第1のフィルタ6aおよび第2のフィルタ6bを、ノイズ発生部分である第1のインバータ回路3a及び第2のインバータ回路3bに近づけて配置することができ、インバータ回路によるノイズ放出を効果的にすることができる。また、第1のフィルタ6aおよび第2のフィルタ6bをそれぞれ構成するフィルタコンデンサCa、Cbと、フィルタコイルCLa、CLb等の部品を、軸方向に突出する凸状の第1のフィルタ室41aおよび第2のフィルタ室41bに集中して配置するようにしたので、装置の小型化を図ることができる。
 さらに、第1の電源リレー5a、第2の電源リレー5b、第1のフィルタ6a、第2のフィルタ6b、第1の回路部51a、および第2の回路部51bは、それぞれハウジング40の上面部に集中して配置されているのに対して、制御基板4、第1のインバータ回路3a、第2のインバータ回路3bがハウジング40の内部に配置されているので、制御基板4、第1のインバータ回路3a、第2のインバータ回路3bにより影響されることなく第1の電源リレー5a、第2の電源リレー5b、第1のフィルタ6a、第2のフィルタ6b、第1の回路部51a、および第2の回路部51bそれぞれが独立に設計することができ、装置の小型化に寄与することができる。なお、ハウジング40の上面部に配置された第1の電源リレー5a、第2の電源リレー5b、第1のフィルタ6a、第2のフィルタ6b、第1の回路部51a、および第2の回路部51bと、ハウジング40の内部に配置された制御基板4、第1のインバータ回路3a、第2のインバータ回路3b等とは、接続が容易となるようにそれぞれの端子の配置が考慮されている。
 以上述べたように、この発明の実施の形態2による電動パワーステアリング装置によれば、電源リレーの放熱性の確保と、グランドラインについても4分岐させることにより、+B電源のラインと同様に、各組の各回路にそれぞれグランドラインを配置することができる。これにより、各組の回路、電源系ラインもそれぞれ独立に配置、接続されているので一方異常時他方へその影響が及ぶ可能性を少なくすることができる。
 なお、この発明は前述の実施の形態1および2による電動パワーステアリング装置に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、実施の形態1および2の構成を適宜組み合わせたり、その構成に一部変形を加えたり、構成を一部省略することが可能である。
 この発明は、自動車等の車両に搭載される電動パワーステアリング装置に利用することができ、ひいては自動車産業に利用することができる。
1 制御ユニット、1a 第1の制御ユニット、1b 第2の制御ユニット、2 電動機、24 電機子巻線、2a 第1の電機子巻線、2b 第2の電機子巻線、10a 第1のCPU、10b 第2のCPU、3a 第1のインバータ回路、3b 第2のインバータ回路、4 制御基板、4a 第1の制御回路部、4b 第2の制御回路部、5a 第1の電源リレー、5b 第2の電源リレー、6a 第1のフィルタ、6b 第2のフィルタ、7 イグニッションスイッチ、8 センサ類、9 バッテリ、12a 第1の入力回路、12b 第2の入力回路、11a 第1の駆動回路、11b 第2の駆動回路、17a 第1の回転センサ、17b 第2の回転センサ、15 報知手段、16a 第1の出力回路、16b 第2の出力回路、21 電動機出力軸、25 電動機ケース、26a 第1の巻線端部、26b 第2の巻線端部、27 接続リング、28 フレーム、40 ハウジング、41a 第1のフィルタ室、41b 第2のフィルタ室、42 電源用コネクタ、43a 第1の信号コネクタ、43b 第2の信号コネクタ、35a 電源リレー駆動回路、36a 第1の検出回路、13a 第2の検出回路、18u 第3の検出回路、19u 第4の検出回路、44a、44b 電源ターミナル、46 端子部、46a1、46b1 正極側端子、46a2、46b2 負極側端子、 701,702a,702b 導電部材、50 絶縁部材、51a 第1の回路部、51b 第2の回路部、52a 第1の貫通穴、52b 第2の貫通穴、401 中間フレーム、521a、521b リード線、706a 第1のグランドライン、706b 第2のグランドライン、54 カバー、53 ヒートシンク。

Claims (8)

  1.  車両の運転者による操舵トルクに基づきアシストトルクを発生する電動機と、前記電動機を制御する制御ユニットと、前記車両に搭載されたバッテリに接続され前記制御ユニットと前記電動機に電源を供給する電源用コネクタと、を備えた電動パワーステアリング装置であって、
     前記電動機は、実質的の同一構成の第1の電機子巻線と第2の電機子巻線からなる2組の電機子巻線を備え、
     前記制御ユニットは、前記第1の電機子巻線を独立に制御可能に構成された第1の制御ユニットと、前記第2の電機子巻線を独立に制御可能に構成された第2の制御ユニットからなる実質的に同一構成の2組の制御ユニットにより構成され、
     前記第1の制御ユニットと前記第2の制御ユニットは、それぞれ、
     電源を開閉可能に構成された電源リレーと、
     前記電源リレーに接続されたフィルタ回路と、
     センサからの情報が入力される入力回路と、
     前記電動機を駆動する駆動信号を発生する駆動回路と、
     前記駆動信号により制御されるインバータ回路と、
     前記入力回路に入力された前記情報に基づき前記電動機を制御するための指令信号を前記駆動回路へ出力するCPUを備えた制御回路部と、を備え、
     前記電源用コネクタは、単一のコネクタにより構成され、
     前記電源用コネクタのターミナルのうち、少なくとも前記バッテリの正極側に接続される電源系統は、前記ターミナルの直近において2つのラインに分岐され、
     前記第1の制御ユニットにおける前記電源リレーと前記フィルタと前記インバータ回路は、前記電源リレーを前記電源系統の上流側にして順次前記分岐された一方のラインに接続され、
     前記第2の制御ユニットにおける前記電源リレーと前記フィルタと前記インバータ回路は、前記電源リレーを前記電源系統の上流側にして順次前記分岐された他方のラインに接続され、
     前記第1の制御ユニットにおける前記電源リレーと前記フィルタと、前記第2の制御ユニットにおける前記電源リレーと前記フィルタとは、実質的に同一の構成を備えかつ前記電源用コネクタの前記ターミナルに対して実質的に対称的に配置されている、
    ことを特徴とする電動パワーステアリング装置。
  2.  前記分岐された2つのラインは、それぞれさらに2つのラインに再分岐され、
     前記分岐された前記一方のラインから再分岐された一方のラインは、前記第1の制御ユニットにおける前記電源リレーと前記フィルタと前記インバータ回路に接続され、
     前記分岐された前記一方のラインから再分岐された他方のラインは、少なくとも前記第1の制御ユニットにおける電源系統をモニタする第1の検出回路に接続され、
     前記分岐された前記他方のラインから再分岐された一方のラインは、前記第2の制御ユニットにおける前記電源リレーと前記フィルタと前記インバータ回路に接続され、
     前記分岐された前記他方のラインから再分岐された他方のラインは、少なくとも前記第2の制御ユニットにおける電源系統をモニタする第1の検出回路に接続され、
     前記第1の制御ユニットにおける前記再分岐された2つのラインと前記第2の制御ユニットにおける前記再分岐された2つのラインは、前記電源用コネクタの前記ターミナルに対して前記実質的に対称的に配置され、
     前記第1の制御ユニットにおける前記第1の検出回路と前記第2の制御ユニットにおける前記第1の検出回路は、実質的に同一の構成を備えている、
    ことを特徴とする請求項1に記載の電動パワーステアリング装置。
  3.  前記電動機と前記制御ユニットは、同軸状に配置され、
     前記電源用コネクタは、前記制御ユニットの軸方向の端部に配置され、
     前記電源リレーと前記フィルタと前記第1の検出回路は、前記電源用コネクタに隣接して前記制御ユニットの前記軸方向の端部に配置され、
     前記入力回路と前記駆動回路と前記インバータ回路と前記CPUを備えた制御回路部とのうちの少なくとも一つは、前記電源リレーと前記フィルタと前記第1の検出回路よりも電動機側で前記制御ユニットに配置されている、
    ことを特徴とする請求項2に記載の電動パワーステアリング装置。
  4.  前記制御ユニットの前記第1の検出回路は、少なくとも前記電源系統の過電流を検出する機能を備え、所定の値以上の電流が流れたとき前記CPUが異常であると判定するとともに、前記異常と判定された前記CPUが属する前記電源系統を遮断させるように構成されている、
    ことを特徴とする請求項2または3に記載の電動パワーステアリング装置。
  5.  前記制御ユニットにおける前記フィルタ回路より前記電源系統の下流側の過電流または電源系統の地絡を検出する第2の検出回路を有し、
     前記第2の検出回路が前記過電流または地絡を検出したときは、前記過電流または地絡が検出された電源系統における前記電源リレーを遮断させるように構成されている、
    ことを特徴とする請求項2から4のうちのいずれか一項に記載の電動パワーステアリング装置。
  6.  前記制御ユニットの前記第1の検出回路の近傍に前記電源リレーを駆動する第2の駆動回路を備え、
     前記第1の検出回路は、少なくとも前記第2の駆動回路とそれより前記電源系統の下流側に流れる電流をモニタするように構成されている、
    ことを特徴とする請求項4または5に記載の電動パワーステアリング装置。
  7.  前記制御ユニットは、前記電源用コネクタに隣接して、前記電源リレーと前記第1の検出回路と前記フィルタを各組毎に内蔵するケースを備えている、
    ことを特徴とする請求項3から6のうちのいずれか一項に記載の電動パワーステアリング装置。
  8.  前記電源用コネクタのターミナルのうち、前記バッテリの負極側に接続されるターミナルは、その直近で2つに分岐され、
     前記分岐された2つのラインは、それぞれさらに2つに再分岐され、
     前記再分岐された2つのラインのうちの一方は、少なくとも前記第1の検出回路のグランドレベルの部位に接続されたグランドラインにより構成されている、
    ことを特徴とする請求項2から7のうちのいずれか一項に記載の電動パワーステアリング装置。
PCT/JP2016/080296 2016-10-13 2016-10-13 電動パワーステアリング装置 WO2018070004A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/319,032 US11124226B2 (en) 2016-10-13 2016-10-13 Electric power steering apparatus
JP2018544631A JP6673615B2 (ja) 2016-10-13 2016-10-13 電動パワーステアリング装置
EP16918879.4A EP3527462B1 (en) 2016-10-13 2016-10-13 Electric power steering apparatus
PCT/JP2016/080296 WO2018070004A1 (ja) 2016-10-13 2016-10-13 電動パワーステアリング装置
CN201680089931.0A CN109843701B (zh) 2016-10-13 2016-10-13 电动助力转向装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080296 WO2018070004A1 (ja) 2016-10-13 2016-10-13 電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2018070004A1 true WO2018070004A1 (ja) 2018-04-19

Family

ID=61905277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080296 WO2018070004A1 (ja) 2016-10-13 2016-10-13 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US11124226B2 (ja)
EP (1) EP3527462B1 (ja)
JP (1) JP6673615B2 (ja)
CN (1) CN109843701B (ja)
WO (1) WO2018070004A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2563102A (en) * 2016-12-07 2018-12-05 Trw Ltd A motor drive and control circuit for electric power steering
WO2020039572A1 (ja) * 2018-08-24 2020-02-27 三菱電機株式会社 電動パワーステアリング装置
CN111953145A (zh) * 2019-05-17 2020-11-17 株式会社电装 驱动装置
JP2020188638A (ja) * 2019-05-17 2020-11-19 三菱電機株式会社 駆動装置、および電動パワーステアリング装置
EP3865356A4 (en) * 2018-10-09 2021-12-01 Mitsubishi Electric Corporation ELECTRIC VEHICLE BRAKING DEVICE AND RELATED CONTROL PROCEDURE
EP3937355A1 (en) 2020-07-06 2022-01-12 Jtekt Corporation Connecting member

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11014602B2 (en) * 2016-03-04 2021-05-25 Nidec Corporation Power conversion device, motor drive unit, electric power steering device, and relay module
US11398762B2 (en) * 2018-09-28 2022-07-26 Nidec Tosok Corporation Electric pump device
JP7188285B2 (ja) * 2019-06-14 2022-12-13 株式会社デンソー 電源システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202263A (ja) * 2006-01-25 2007-08-09 Hitachi Ltd 電動パワーステアリング用モータ
JP2011228379A (ja) * 2010-04-16 2011-11-10 Denso Corp 半導体モジュール、及び、それを用いた電動装置
JP2016036246A (ja) * 2014-07-31 2016-03-17 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
WO2016063367A1 (ja) * 2014-10-22 2016-04-28 三菱電機株式会社 電動パワーステアリング装置
JP2016073098A (ja) * 2014-09-30 2016-05-09 株式会社デンソー 回転電機制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271483A (ja) * 1985-09-24 1987-04-02 Hitachi Ltd トルク制御式外部防振形回転圧縮機
CN1059626A (zh) * 1990-09-08 1992-03-18 翟佑华 可控硅交流调速装置
KR950002039B1 (ko) * 1992-03-07 1995-03-08 삼성전자주식회사 인버터 구동회로의 자기 진단방법
JP3839358B2 (ja) 2002-06-12 2006-11-01 株式会社ジェイテクト 車両の操舵制御装置及び車両の操舵制御方法
CN1245796C (zh) * 2002-06-20 2006-03-15 文复生 大功率高压直流静电电源装置
GB0311013D0 (en) * 2003-05-13 2003-06-18 Newage Int Ltd An electrical power generating system and a permanent magnet generator for such a system
JP3931181B2 (ja) * 2004-06-02 2007-06-13 三菱電機株式会社 電動パワーステアリング装置
CN1734923B (zh) * 2004-08-09 2010-05-05 三菱电机株式会社 电动动力转向装置
JP4158176B2 (ja) * 2005-02-28 2008-10-01 三菱電機株式会社 電気負荷の電流制御装置
CN201044416Y (zh) * 2007-05-09 2008-04-02 乐星产电(无锡)有限公司 风机、水泵专用变频器
JP5119930B2 (ja) * 2008-01-10 2013-01-16 日本精工株式会社 電動パワーステアリング装置
JP4909961B2 (ja) * 2008-09-02 2012-04-04 日立オートモティブシステムズ株式会社 電動パワーステアリング用制御装置
JP5402948B2 (ja) * 2011-01-05 2014-01-29 日本精工株式会社 モータ制御装置及びそれを用いた電動パワーステアリング装置
US11173952B2 (en) * 2014-10-22 2021-11-16 Mitsubishi Electric Corporation Electric power steering device
WO2016135840A1 (ja) * 2015-02-24 2016-09-01 三菱電機株式会社 電動駆動装置、及び電動パワーステアリング装置
JP6417306B2 (ja) * 2015-09-18 2018-11-07 日立オートモティブシステムズ株式会社 電子制御装置及びその制御方法
WO2017122329A1 (ja) * 2016-01-14 2017-07-20 三菱電機株式会社 電動パワーステアリング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202263A (ja) * 2006-01-25 2007-08-09 Hitachi Ltd 電動パワーステアリング用モータ
JP2011228379A (ja) * 2010-04-16 2011-11-10 Denso Corp 半導体モジュール、及び、それを用いた電動装置
JP2016036246A (ja) * 2014-07-31 2016-03-17 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
JP2016073098A (ja) * 2014-09-30 2016-05-09 株式会社デンソー 回転電機制御装置
WO2016063367A1 (ja) * 2014-10-22 2016-04-28 三菱電機株式会社 電動パワーステアリング装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2563102A (en) * 2016-12-07 2018-12-05 Trw Ltd A motor drive and control circuit for electric power steering
GB2563102B (en) * 2016-12-07 2021-12-15 Trw Ltd A motor drive and control circuit for electric power steering
WO2020039572A1 (ja) * 2018-08-24 2020-02-27 三菱電機株式会社 電動パワーステアリング装置
CN112567604A (zh) * 2018-08-24 2021-03-26 三菱电机株式会社 电动助力转向装置
JPWO2020039572A1 (ja) * 2018-08-24 2021-05-13 三菱電機株式会社 電動パワーステアリング装置
JP7094371B2 (ja) 2018-08-24 2022-07-01 三菱電機株式会社 電動パワーステアリング装置
EP3865356A4 (en) * 2018-10-09 2021-12-01 Mitsubishi Electric Corporation ELECTRIC VEHICLE BRAKING DEVICE AND RELATED CONTROL PROCEDURE
CN111953145A (zh) * 2019-05-17 2020-11-17 株式会社电装 驱动装置
JP2020188638A (ja) * 2019-05-17 2020-11-19 三菱電機株式会社 駆動装置、および電動パワーステアリング装置
WO2020235113A1 (ja) * 2019-05-17 2020-11-26 三菱電機株式会社 駆動装置、および電動パワーステアリング装置
CN113853730A (zh) * 2019-05-17 2021-12-28 三菱电机株式会社 驱动装置以及电动助力转向装置
EP3937355A1 (en) 2020-07-06 2022-01-12 Jtekt Corporation Connecting member

Also Published As

Publication number Publication date
EP3527462B1 (en) 2020-12-30
JPWO2018070004A1 (ja) 2019-06-24
JP6673615B2 (ja) 2020-03-25
US11124226B2 (en) 2021-09-21
CN109843701B (zh) 2021-11-16
EP3527462A4 (en) 2019-10-30
EP3527462A1 (en) 2019-08-21
US20190276071A1 (en) 2019-09-12
CN109843701A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2018070004A1 (ja) 電動パワーステアリング装置
US10906577B2 (en) Electric power steering apparatus
JP7094371B2 (ja) 電動パワーステアリング装置
US20180201302A1 (en) Integrated electric power steering apparatus
JP6676175B2 (ja) 電動パワーステアリング装置
US11565741B2 (en) Electric power steering device
JP6608555B1 (ja) 駆動装置、および電動パワーステアリング装置
JP6230749B2 (ja) 電動駆動装置およびその制御方法
US11046356B2 (en) Electric power steering device
US11855493B2 (en) Electric power steering device
JP2016226125A (ja) バスバーの接続構造及びモータユニット
JP6818903B2 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018544631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016918879

Country of ref document: EP

Effective date: 20190513