WO2018068609A1 - 一种掺稀土双包层光纤及其制备方法 - Google Patents

一种掺稀土双包层光纤及其制备方法 Download PDF

Info

Publication number
WO2018068609A1
WO2018068609A1 PCT/CN2017/101992 CN2017101992W WO2018068609A1 WO 2018068609 A1 WO2018068609 A1 WO 2018068609A1 CN 2017101992 W CN2017101992 W CN 2017101992W WO 2018068609 A1 WO2018068609 A1 WO 2018068609A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
inner cladding
clad fiber
double
preform
Prior art date
Application number
PCT/CN2017/101992
Other languages
English (en)
French (fr)
Inventor
杨玉诚
曹蓓蓓
张心贲
黄宏琪
王鹏
岳天勇
Original Assignee
长飞光纤光缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆股份有限公司 filed Critical 长飞光纤光缆股份有限公司
Priority to US16/334,831 priority Critical patent/US10838143B2/en
Publication of WO2018068609A1 publication Critical patent/WO2018068609A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03694Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01237Removal of preform material to modify the diameter by heat-polishing, e.g. fire-polishing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02371Cross section of longitudinal structures is non-circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/12Non-circular or non-elliptical cross-section, e.g. planar core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/347Holmium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3476Erbium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3482Thulium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3488Ytterbium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/1208Rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding

Definitions

  • the invention belongs to the technical field of optical fiber preparation, and more particularly to a rare earth doped double-clad fiber and a preparation method thereof.
  • a fiber laser is a type of solid-state laser that uses a rare earth-doped fiber as a laser oscillating or amplifying gain medium.
  • the doping of different rare earth elements can radiate different wavelengths of light under the excitation of the corresponding wavelength, and can cover a large spectral range.
  • the gain laser output of different wavelengths is obtained by doping rare earth elements such as yttrium Yb, ⁇ Er, ⁇ Nd, ⁇ Ho, ⁇ Tm, etc. in the core of the optical fiber.
  • fiber lasers Compared with traditional solid-state lasers, fiber lasers have higher heat dissipation performance, higher conversion efficiency, simpler and easier maintenance optical system, and better output beam quality. They are the most developed and most concerned in the field of laser technology in recent years. One of the hottest technologies with a growing market share.
  • the rare earth-doped fiber used in the early fiber lasers used a single-clad design.
  • the pump light injected into the core is required to be single-mode. This condition greatly limits the injection efficiency and power of the pump light. It is difficult to increase the output power of the fiber laser.
  • Sintzer proposed the concept of cladding pump and double-clad fiber, it completely changed the pattern of fiber laser, which greatly promoted the development of fiber laser technology. As the power of fiber lasers increases, their applications in materials processing, medicine, and scientific research, including military, are becoming more widespread.
  • the design of double-clad fiber uses the outer low-profile coating (or fluorine-doped glass layer) to limit the pump light transmission in the inner cladding, increase the area of the inner cladding, and significantly increase the pump light injection power, but use a circular shape.
  • the inner cladding design will significantly reduce the absorption efficiency of the pump light. This is due to the completely symmetrical circular inner cladding A large amount of spiral light is formed in the middle, and it is impossible to pass through the doped core and cannot be absorbed and converted by the rare earth ions. In order to improve the absorption efficiency of the cladding, it is an effective method to destroy the spiral light in the cladding.
  • the shape of the inner cladding layer generally does not adopt a highly symmetrical circular cladding layer, and the heterogeneous asymmetric inner cladding layer is often used, for example, the octagonal inner cladding layer is the most, and the plum octagonal shape is also used.
  • the less-used D-cladding (as shown in Figure 7 for a conventional D-type fiber inner cladding cross-section schematic), the hexagonal cladding, and the rectangular cladding are only used in small amounts during the study.
  • the non-circular inner cladding can greatly improve the utilization efficiency of the optical fiber to the pump light, reduce the length of the optical fiber, reduce the nonlinear effect, reduce the manufacturing cost of the optical fiber laser, and improve the comprehensive performance of the fiber laser.
  • the octagonal inner cladding structure is mostly used, and a few plum-shaped inner cladding structures are used.
  • the two inner cladding structures can obviously optimize the pumping efficiency of the double-clad fiber, but there are certain disadvantages.
  • the double-clad fiber pump of the plum-shaped inner cladding has high utilization efficiency, but the technical requirements for optical processing and polishing of the quartz preform are relatively high, and it is not easy to control the shape of the concave, and the control of the grinding precision is difficult.
  • the processing difficulty of the octagonal inner cladding is small, but the eight surfaces are polished separately, and it is necessary to ensure that the grinding is not eccentric, and the eight surfaces of the optical processing are often polished and the time is long. Due to the certain stress of the preform, the cracking is cracked. The probability is also large, and the grinding requires the use of particles such as silicon carbide or grinding and polishing powder, which may cause the surface to be unclean, so that the loss after drawing the optical fiber is increased. The octagonal or plum-shaped sharp edges are sharp, the processing is difficult, and the fiber strength after drawing is adversely affected.
  • the present invention provides a rare earth doped double-clad fiber and a preparation method thereof, the fiber has a non-circular shaped inner cladding design, and can maintain the original preform preparation process unchanged. Simplify the optical processing and polishing process of the preform, reduce the polishing time, reduce the polishing surface, and change Good fiber strength.
  • the present invention provides a rare earth doped double-clad fiber comprising a rare earth ion doped core, an inner cladding and an outer cladding, wherein the inner cladding has a cross section of at least two arcuate notches a circular plane, wherein the at least two arcuate notches are not connected to each other.
  • the relationship between the core portion refractive index n 1 and the inner cladding refractive index n 2 is: (n 1 2 - n 2 2 ) 1/2 ranges between 0.01 and 0.25 .
  • the relationship between the inner cladding refractive index n 2 and the outer cladding refractive index n 3 is such that (n 2 2 -n 3 2 ) 1/2 ranges between 0.2 and 0.5.
  • the core-doped rare earth ions include one or both of Tm, Yb, Ho, and Er.
  • the inner cladding is a quartz substrate having a refractive index of 1.4573 and a test wavelength of 632 nm.
  • the cross section of the inner cladding is a non-circular plane comprising four identical arcuate indentations.
  • the four identical arcuate notches are symmetrically distributed on the non-circular plane.
  • the ratio of the height of the arcuate notch to the diameter of the circle of the inner cladding is from 0.01 to 0.05.
  • a method of preparing a rare earth doped double-clad fiber comprising:
  • the quartz preform is drawn and coated with a coating to form an outer cladding layer to obtain a rare earth doped double-clad fiber.
  • the cross-section of the quartz preform is a non-circular plane comprising four identical and symmetrically distributed arcuate notches, the ratio of the arcuate notch height to the circular diameter of the inner cladding being from 0.01 to 0.05.
  • the present invention has the following beneficial effects:
  • the conventional D-type optical fiber needs to be ground on the basis of the circular optical fiber, and the double-clad fiber provided by the present invention only needs to discard a small amount of the portion in the circular optical fiber, and has D with The function of destroying spiral light like the fiber is similar, and the absorption and utilization efficiency of the cladding pump light is close to the same level;
  • the traditional plum-shaped cladding needs to be meticulously irregular on the basis of the circular optical fiber preform. Then the surface is polished and polished, the requirements for optical processing are too high, and the precision control is difficult.
  • the double-clad fiber of the present invention only needs to be polished on the side of the preform to form a discontinuous 2 to 8 planes, and the number of times of grinding is less. Shorter grinding time can improve the efficiency of the rod, reduce the risk of cracking and contamination of the preform due to grinding, simple process control and low cost; and the absorption efficiency of the cladding pump is comparable to that of the regular octagonal fiber;
  • the invention is optimized in reliability and optical performance, has obvious advantages in manufacturing yield, simplifies the preparation process of the optical fiber, and is suitable for large-scale production;
  • FIG. 1 is a schematic cross-sectional view showing a refractive index of a double-clad fiber according to an embodiment of the present invention
  • Figure 5 is a schematic cross-sectional view of the octagonal inner cladding in the comparative example (the central circular portion is a rare earth doped core);
  • FIG. 6 is a graph showing the normalized energy distribution percentage of the 915 nm pump light in the core of a 4D type 20/130 erbium-doped double-clad fiber having different arcuate notch heights according to an embodiment of the present invention
  • Figure 7 is a schematic cross-sectional view of a conventional D-type fiber inner cladding.
  • the core layer is a portion with a higher refractive index in the middle of the fiber, is a circular light, is a light guiding layer of signal light in the optical fiber, and has a refractive index n 1 ;
  • Inner cladding a portion close to the core, having a refractive index of n 2 , generally a quartz matrix, having a refractive index of 1.4573;
  • Outer layer a low refractive index portion of the optical fiber near the inner cladding, which is a low refractive index coating or a fluorine doped layer, and has a refractive index of n 3 ;
  • a 1 core diameter in micrometers ( ⁇ m);
  • the 4D inner cladding layer is taken as an example, and the distance between the two parallel planes is a 2 , and the unit is micro micrometer ( ⁇ m);
  • the inner cladding has a circular diameter of a 3 and the unit is micrometer ( ⁇ m).
  • FIG. 1 is a schematic diagram showing a refractive index profile of a double-clad fiber according to an embodiment of the present invention. As shown in the figure, the relationship between the refractive indices of the core layer, the inner cladding layer and the outer cladding layer is: n 1 >n 2 >n 3 .
  • the present invention provides a rare earth doped double-clad fiber comprising a rare earth ion doped core, an inner cladding and an outer cladding, wherein the inner cladding has a cross section of at least two arcuate notches. a non-circular plane, wherein the at least two arcuate notches are not connected to each other.
  • the core portion of the optical fiber has a refractive index of n 1 and the inner cladding has a refractive index of n 2 , generally a quartz matrix, a refractive index of 1.4573, and a test wavelength of 632 nm.
  • (n 1 2 -n 2 2 ) 1/2 ranges from 0.01 to 0.25, wherein the core is doped with rare earth ions, including Tm, Yb, Ho, Er or double doping such as Yb/Er.
  • the outer cladding of the optical fiber has a refractive index of n 3 , generally F-doped quartz or a plastic coating, and the range of (n 2 2 -n 3 2 ) 1/2 is between 0.2 and 0.5.
  • the outermost layer of the optical fiber is a protective layer, and generally has a refractive index of about 1.5.
  • the pump light is mainly transmitted in the inner cladding.
  • the D-type inner cladding in the prior art means that the inner cladding of the double-clad fiber has one side and only one side is flat, and the rest are circular.
  • the cross section of the inner cladding is a non-circular plane including four identical arcuate notches (for simplicity, the optical fiber is referred to as a 4D double cladding in the embodiment of the present invention).
  • Optical fiber), and the four identical arcuate notches are symmetrically distributed on the non-circular plane. It should be noted that all 4D double-clad fibers including different core doping ions, and analogous 3D, 5D, 6D, 7D, etc., are included in the protection scope of the present invention.
  • the ratio of the height of the arcuate notch on the cross section of the inner cladding to the diameter of the inner cladding is 0.01-0.05.
  • the height of the arcuate notch is the arcuate chord height (the vertical line from the center of the circle to the chord, and the length of the line segmented by the chord and the arc is called the height of the bow).
  • the existing preparation process can be improved, specifically, a vapor-crystal deposition method or a solution method or a sol-gel method for preparing a round quartz preform doped with rare earth elements.
  • the following is a specific process for preparing a 4D double-clad fiber-doped rare earth double-clad fiber, including: using a vapor deposition method, a solution immersion method to prepare a doped rare earth element including Tm, Yb, Ho, Er or double doping Round quartz preforms such as Yb/Er; the diameter of the circular preform is adjusted by horizontal or vertical stretching of the casing, corrosion, etc., which is a preform in which the preform meets the ratio of the specific core diameter to the inner cladding diameter; The two arbitrary vertical faces of the preform are polished by optical processing, and the polishing method is used to polish four identical planes and precisely control the spacing between the two sides parallel to each other; the wire drawing is performed at a high temperature through the drawing tower, and the refractive index is n 3 outside the glass.
  • the inner coating forms a 4D double-clad rare earth doped fiber.
  • Figure 6 taking a 20/130 double-clad fiber as an example, the ratio of the diameter of the different arcuate notches to the inner cladding, the normalized energy distribution of the pump light with a wavelength of 915 nm in a 20um core
  • the ratio of the octagonal cladding in FIG. 5 to the diameter of the arcuate notch and the inner cladding is 0.025
  • the normalized energy distribution of the pump light having a wavelength of 915 nm in the 20 um core is 10.374%.
  • the difference from the 4D cladding is small, indicating that the effect of 4D in destroying the spiral pump light is consistent with the octagon, and even better.
  • 3, 2, and 4 are schematic views showing the ratio of the height of the arcuate notch to the diameter of the inner cladding, respectively, of 0.05, 0.038, and 0.005.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Lasers (AREA)

Abstract

一种掺稀土双包层光纤,包括掺杂稀土离子的纤芯、内包层以及外包层,其中内包层的横截面为包含至少两个弓形缺口的非圆平面。该光纤能够在不改变制备预制棒工艺及拉丝工艺的情况对预制棒进行光学加工,将内包层设计为横截面为包含至少两个弓形缺口的非圆平面结构,在保持同等包层泵浦光吸收效率的同时,能简化预制棒打磨工艺,降低预制棒多面打磨断裂几率与被加工杂质污染的风险,更好拉丝控制精度,提高光纤的综合性能。

Description

一种掺稀土双包层光纤及其制备方法 技术领域
本发明属于光纤制备技术领域,更具体地,涉及一种掺稀土双包层光纤及其制备方法。
背景技术
光纤激光器是固体激光器的一种,是使用掺稀土光纤作为激光震荡或放大增益介质的激光器。不同稀土元素的掺杂在相应的波长激发下能辐射不同波长的光,且能覆盖很大的光谱范围。通过在光纤的纤芯中掺杂稀土元素,如镱Yb,铒Er,钕Nd,钬Ho,铥Tm等,获得不同波长的增益激光输出。光纤激光器相较于传统的固体激光器具有更高的散热性能、更高的转换效率、更简单更易于维护的光学系统以及更优的输出光束质量,是近年来在激光技术领域发展最多、关注最广且市场占有比例越来越高的热点技术之一。
早期的光纤激光器所使用的掺稀土光纤使用了单包层设计,对于单模光纤激光器就要求注入纤芯的泵浦光为单模,这个条件极大的限制了泵浦光的注入效率和功率,难以提升光纤激光器的输出功率。直到Sintzer提出包层泵浦和双包层光纤的概念,彻底改变了光纤激光器的格局,极大的促进了光纤激光器技术的发展。随着光纤激光器功率的提升,其在材料加工、医学以及科研包括军事领域的应用愈加广泛。
双包层光纤的设计中使用外层的低折涂层(或是掺氟玻璃层)限制泵浦光在内包层传输,增加内包层的面积,显著提高泵浦光注入功率,但是使用圆形内包层设计会明显降低泵浦光的吸收利用率。这是由于完全对称的圆形内包层 中会形成大量的螺旋光,始终无法穿越掺杂纤芯,不能被稀土离子吸收转换。为了提高包层的吸收效率,破坏包层中的螺旋光是行之有效的方法,在当前商用的双包层掺稀土光纤中,如掺Tm,Yb,Ho,Er或是双掺杂如Yb/Er双包层光纤中,内包层的形状一般不采用高度对称的圆形包层,多采用异形非对称的内包层,如采用八边形内包层为最多,也有采用梅花八边形,较少采用的D型包层(如图7所示为传统的D型光纤内包层横截面示意图)、六边形包层以及矩形包层都只在研究中少量使用。非圆内包层可以很大程度的改善光纤对泵浦光的利用效率,减少光纤使用长度,降低非线性效应,降低光纤激光器的制造成本,提升光纤激光器的综合性能。
现有商用双包层光纤中多使用八边形内包层结构,少数使用梅花形内包层结构,两种内包层结构能明显的优化双包层光纤的泵浦效率,但都存在一定的不足。例如梅花形内包层的双包层光纤泵浦利用效率高,但是对石英预制棒进行光学加工打磨的技术要求却较高,不容易控制内凹的形状,打磨精度控制难。而八边形内包层的加工难度虽小,但是八个面单独打磨,需确保打磨不偏心,而且光学加工八个面磨抛次数多,时间长,由于预制棒存在一定的应力,打磨开裂的机率也较大,且打磨需要使用金刚砂或磨抛粉等颗粒物,可能造成表面的不洁净,使得拉制光纤后的损耗增加。八边形或梅花形打磨棱角分明,加工困难,而且对拉丝后的光纤强度有不利的影响。
发明内容
针对现有技术的上述不足,本发明提供了一种掺稀土双包层光纤及其制备方法,该光纤具有非圆异形内包层设计,能够在保持原有预制棒制备工艺不变的前提下,简化预制棒的光学加工抛磨工艺,降低抛磨时间,减少抛磨面,改 善光纤强度。
为了实现上述目的,本发明提供了一种掺稀土双包层光纤,包括掺杂稀土离子的纤芯、内包层以及外包层,其中所述内包层的横截面为包含至少两个弓形缺口的非圆平面,其中所述至少两个弓形缺口互不相连。
本发明的一个实施例中,所述纤芯部分折射率n1与内包层折射率n2之间的关系为:(n1 2-n2 2)1/2的范围在0.01-0.25之间。
本发明的一个实施例中,所述内包层折射率n2与外包层折射率n3之间的关系为:(n2 2-n3 2)1/2的范围在0.2-0.5之间。
本发明的一个实施例中,所述纤芯掺杂的稀土离子,包括Tm、Yb、Ho和Er中的一种或两种。
本发明的一个实施例中,所述内包层为石英基质,折射率为1.4573,测试波长为632nm。
本发明的一个实施例中,所述内包层的横截面为包含四个相同弓形缺口的非圆平面。
本发明的一个实施例中,所述四个相同弓形缺口对称分布在所述非圆平面上。
本发明的一个实施例中,所述弓形缺口高度与内包层的圆直径之比为0.01-0.05。
按照本发明的另一方面,还提供了一种掺稀土双包层光纤的制备方法,包括:
采用气相沉积法或溶液法或溶胶凝胶法制备掺杂有稀土元素的圆形石英预制棒;
调节圆形石英预制棒的直径,使其满足预设纤芯直径与内包层直径比例;
在圆形石英预制棒的侧面进行光学加工打磨,得到横截面为包含至少两个弓形缺口的非圆形状的石英预制棒;
将所述石英预制棒拉丝,并在玻璃外涂覆涂料形成外包层,得到掺稀土双包层光纤。
本发明的一个实施例中,所述石英预制棒的横截面为包含四个相同且对称分布的弓形缺口的非圆平面,所述弓形缺口高度与内包层的圆直径之比为0.01-0.05。
与现有技术相比,本发明具有如下有益效果:
(1)传统的D型光纤,需要在圆形光纤的基础上磨削掉的部分较大,而本发明提供的双包层光纤只需要在圆形光纤抛磨掉少量的部分,具有与D型光纤一样的破坏螺旋光的功能,在包层泵浦光的吸收利用效率接近,具有同等水平;
(2)传统的正八边形光纤,需要在圆形光纤预制棒的侧面打磨形成8个面使得预制棒截面成为正八边形,进行8个面的抛磨增加了研磨抛光时间,增大污染光纤的风险,增加预制棒打磨因应力炸裂的风险,同时8个面保持同样的公差,维持掺杂区域不偏心对打磨夹具,旋转角度等要求高,而本发明双包层光纤仅需要在两个垂直的面打磨多个平面即可,更少的打磨次数,更短的打磨时间能提高成棒的效率,降低由于打磨带来的预制棒炸裂和被污染的风险;且具有和正八边形光纤一样的破坏螺旋光的功能,在包层泵浦光的利用效率接近,具有同等水平;本发明光纤外沿没有正八边形棱角分明,拉丝过程中丝径测量仪测试更准,波动更小,精度更好控制,拉丝稳定性高于正八边形光纤;
(3)传统的梅花形包层,需要在圆形光纤预制棒的基础上进行细致的不规 则面打磨抛光,对于光学加工的要求太高,精度控制难度大,而本发明双包层光纤仅需要在预制棒侧面打磨形成不连续的2至8个平面即可,更少的打磨次数,更短的打磨时间能提高成棒的效率,降低由于打磨带来的预制棒炸裂和被污染的风险,工艺控制简单,成本低;且其包层泵浦光吸收效率与正八边形光纤相当;
(4)本发明相对现有商用的双包层光纤,可靠性和光学性能进行了优化,制造成品率有明显优势,简化了光纤的制备工艺,适用于规模化的生产;
(5)对于本发明实施例提供的4D型双包层光纤,仅需要在两个垂直的面打磨4个平面即可,并且具有对称性。
附图说明
图1为本发明实施例中双包层光纤折射率剖面示意图;
图2为本发明实施例中4D内包层横截面示意图(中心圆形部分为掺稀土纤芯,a2/a3=0.924,对应弓形缺口高度与内包层的圆直径之比为0.038);
图3为本发明实施例中4D内包层横截面示意图(中心圆形部分为掺稀土纤芯,a2/a3=0.90,对应弓形缺口高度与内包层的圆直径之比为0.05);
图4为本发明实施例中4D内包层横截面示意图(中心圆形部分为掺稀土纤芯,a2/a3=0.98,对应弓形缺口高度与内包层的圆直径之比为0.01);
图5为比较例中八边形内包层横截面示意图(中心圆形部分为掺稀土纤芯);
图6为本发明实施例为具有不同弓形缺口高度的4D型20/130掺镱双包层光纤,915nm的泵浦光在纤芯的归一化能量分布百分比;
图7为传统的D型光纤内包层横截面示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步 详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
为方便介绍本发明技术方案,首先对本发明中的相关术语进行定义和解释如下:
芯层:是光纤中间折射率较高的部分,为圆形,是光纤中信号光的导光层,折射率为n1
内包层:紧靠纤芯的部分,折射率为n2,一般为石英基质,折射率为1.4573;
外包层:光纤中靠近内包层的低折射率部分,为低折射率涂层或掺氟层,折射率为n3
a1:芯层直径,单位为微米(μm);
a2:本发明实施例中以4D形内包层为例,两平行平面之间的距离为a2,单位为微米(μm);
a3:内包层圆形直径为a3,单位为微米(μm)。
如图1所示为本发明实施例中双包层光纤折射率剖面示意图,如图所示,芯层、内包层及外包层的折射率的关系为:n1>n2>n3。
如图2所示,本发明提供了一种掺稀土双包层光纤,包括掺杂稀土离子的纤芯、内包层以及外包层,其中所述内包层的横截面为包含至少两个弓形缺口的非圆平面,其中所述至少两个弓形缺口互不相连。
其中,所述光纤纤芯部分折射率为n1,内包层折射率为n2,一般为石英基质,折射率为1.4573,测试波长632nm。(n1 2-n2 2)1/2的范围在0.01-0.25之间,其中纤芯掺杂稀土离子,包括Tm,Yb,Ho,Er或是双掺杂如Yb/Er等。
所述光纤外包层折射率为n3,一般为掺F石英或者是塑料涂层,(n2 2-n3 2)1/2的范围在0.2-0.5之间。
所述光纤最外层为保护层,一般折射率为1.5左右。
泵浦光主要在内包层传输,现有技术中的D型内包层是指双包层光纤的内包层有且仅有一面为平面,其余均为圆形。如图2所示,在本发明实施例中,所述内包层的横截面为包含四个相同弓形缺口的非圆平面(简便起见,本发明实施例中将所述光纤称为4D双包层光纤),并且所述四个相同弓形缺口对称分布在所述非圆平面上。需要说明的是,包括不同纤芯掺杂离子的所有的4D双包层光纤,以及类推的3D、5D、6D、7D等均应包含在本发明的保护范围之内。
所述内包层的横截面上弓形缺口高度与内包层的圆直径之比为0.01-0.05。此处弓形缺口高度即弓形的弦高(从圆心向弦作垂线,垂线被弦和弧所截的线段的长,称为弓形的高)。
进一步地,为了制备上述掺稀土双包层光纤,可以对现有制备工艺进行改进,具体地,包括:气相沉积法或溶液法或溶胶凝胶法制备掺杂有稀土元素的圆形石英预制棒;调节圆形石英预制棒的直径,使其满足预设纤芯直径与内包层直径比例;在圆形石英预制棒的至少两个任意垂直面通过光学加工打磨,得到横截面为包含至少两个弓形缺口的非圆平面的石英预制棒;将所述石英预制棒拉丝,并在玻璃外涂覆涂料形成外包层,得到掺稀土双包层光纤。
下面为一制备4D双包层光纤掺稀土双包层光纤的具体工艺过程,包括:采用气相沉积法,溶液浸泡法制备有掺杂稀土元素包括Tm,Yb,Ho,Er或是双掺杂如Yb/Er等的圆形石英预制棒;经过套管水平或者垂直拉伸,腐蚀等工艺调节圆形预制棒直径,是预制棒满足特定纤芯直径与内包层直径比例的预制棒;在圆形预制棒的两个任意垂直面通过光学加工打磨,抛光的方法打磨出4个相同的平面,且精确控制互相平行的两面间距;经过拉丝塔高温拉丝,并在玻璃 外涂覆折射率为n3的内层涂料,形成4D型双包层掺稀土光纤。
如图6,以20/130的双包层光纤为例,不同弓形缺口与内包层的圆直径之比,波长为915nm的泵浦光在20um的纤芯中归一化能量分布占比测试结果,由结果可知,图5中八边形包层对应弓形缺口与内包层的圆直径之比0.025,波长为915nm的泵浦光在20um的纤芯中归一化能量分布占比为10.374%,与4D包层的差异很小,说明4D在破坏螺旋泵浦光的作用与八边形一致,甚至更优。如图3,2,4分别是弓形缺口高度与内包层的圆直径之比分别为0.05,0.038,0.005的示意图。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种掺稀土双包层光纤,其特征在于,包括掺杂稀土离子的纤芯、内包层以及外包层,其中所述内包层的横截面为包含至少两个弓形缺口的非圆平面。
  2. 如权利要求1所述的掺稀土双包层光纤,其特征在于,所述纤芯部分折射率n1与内包层折射率n2之间的关系为:(n1 2-n2 2)1/2的范围在0.01-0.25之间。
  3. 如权利要求1或2所述的掺稀土双包层光纤,其特征在于,所述内包层折射率n2与外包层折射率n3之间的关系为:(n2 2-n3 2)1/2的范围在0.2-0.5之间。
  4. 如权利要求1或2所述的掺稀土双包层光纤,其特征在于,所述纤芯掺杂的稀土离子,包括Tm、Yb、Ho和Er中的一种或两种。
  5. 如权利要求1或2所述的掺稀土双包层光纤,其特征在于,所述内包层为石英基质,折射率为1.4573,测试波长为632nm。
  6. 如权利要求1或2所述的掺稀土双包层光纤,其特征在于,所述内包层的横截面为包含四个相同弓形缺口的非圆平面,其中所述至少两个弓形缺口互不相连。
  7. 如权利要求6所述的掺稀土双包层光纤,其特征在于,所述四个相同弓形缺口对称分布在所述非圆平面上。
  8. 如权利要求7所述的掺稀土双包层光纤,其特征在于,所述内包层的横截面上弓形缺口高度与内包层的圆直径之比为0.01-0.05。
  9. 如权利要求1至8任一项所述掺稀土双包层光纤的制备方法,其特征在于,包括:
    采用气相沉积法制备掺杂有稀土元素的圆形石英预制棒;
    调节圆形石英预制棒的直径,使其满足预设纤芯直径与内包层直径比例;
    在圆形石英预制棒的侧面进行光学加工打磨,得到横截面为包含至少两个弓形缺口的非圆平面的石英预制棒;
    将所述石英预制棒拉丝,并在玻璃外涂覆涂料形成外包层,得到掺稀土双包层光纤。
  10. 如权利要求9所述的掺稀土双包层光纤,其特征在于,所述石英预制棒的横截面为包含两个或以上相同且均匀分布的弓形缺口的非圆平面,所述弓形缺口高度与内包层的圆直径之比为0.01-0.05。
PCT/CN2017/101992 2016-10-12 2017-09-17 一种掺稀土双包层光纤及其制备方法 WO2018068609A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/334,831 US10838143B2 (en) 2016-10-12 2017-09-17 Rare earth-doped double-clad optical fiber and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610895210.0A CN106405728B (zh) 2016-10-12 2016-10-12 一种掺稀土双包层光纤及其制备方法
CN201610895210.0 2016-10-12

Publications (1)

Publication Number Publication Date
WO2018068609A1 true WO2018068609A1 (zh) 2018-04-19

Family

ID=59229255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101992 WO2018068609A1 (zh) 2016-10-12 2017-09-17 一种掺稀土双包层光纤及其制备方法

Country Status (3)

Country Link
US (1) US10838143B2 (zh)
CN (1) CN106405728B (zh)
WO (1) WO2018068609A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405728B (zh) * 2016-10-12 2019-05-31 长飞光纤光缆股份有限公司 一种掺稀土双包层光纤及其制备方法
CN109143464B (zh) * 2018-11-29 2019-03-12 中聚科技股份有限公司 一种稀土掺杂玻璃光纤及其制备方法
CN111517637B (zh) * 2020-05-22 2021-04-27 长飞光纤光缆股份有限公司 掺稀土多芯光纤、光纤预制棒及其制备方法和应用
CN112068243B (zh) * 2020-08-13 2022-11-18 创昇光电科技(苏州)有限公司 大模场三包层光纤、其制备方法及光纤激光器
CN111983748B (zh) * 2020-08-20 2022-10-18 烽火通信科技股份有限公司 一种能量匀化光纤及其制备方法
CN114573226B (zh) * 2022-03-28 2024-04-30 浙江热刺激光技术有限公司 一种有源光纤及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157763A (en) * 1998-01-28 2000-12-05 Sdl, Inc. Double-clad optical fiber with improved inner cladding geometry
US20020122645A1 (en) * 2001-03-02 2002-09-05 Hong Po Fiber for enhanced energy absorption
CN102132178A (zh) * 2008-07-24 2011-07-20 康宁股份有限公司 双包层光纤和具有双包层光纤的设备
CN102992613A (zh) * 2012-12-25 2013-03-27 长飞光纤光缆有限公司 一种稀土均匀掺杂光纤预制棒芯棒及其制备方法
CN106405728A (zh) * 2016-10-12 2017-02-15 长飞光纤光缆股份有限公司 一种掺稀土双包层光纤及其制备方法
CN205982710U (zh) * 2016-07-04 2017-02-22 中电科天之星激光技术(上海)有限公司 一种双包层有源光纤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477307B1 (en) * 2000-10-23 2002-11-05 Nufern Cladding-pumped optical fiber and methods for fabricating
US6831934B2 (en) * 2001-05-29 2004-12-14 Apollo Instruments, Inc. Cladding pumped fiber laser
US6959022B2 (en) * 2003-01-27 2005-10-25 Ceramoptec Gmbh Multi-clad optical fiber lasers and their manufacture
GB0314817D0 (en) * 2003-06-25 2003-07-30 Southampton Photonics Ltd Apparatus for providing optical radiation
WO2005082801A2 (en) * 2004-02-20 2005-09-09 Corning Incorporated Optical fiber and method for making such fiber
CN1278149C (zh) * 2004-03-29 2006-10-04 烽火通信科技股份有限公司 双包层掺稀土光纤及其制造方法
US7050686B2 (en) * 2004-08-05 2006-05-23 Nufern Fiber optic article with inner region
US7062137B2 (en) * 2004-08-05 2006-06-13 Nufern Fiber optic article including fluorine
CN102135641B (zh) * 2011-03-29 2012-07-04 华中科技大学 一种抗光子暗化的有源光纤及其制备方法
US20190319422A1 (en) * 2016-06-30 2019-10-17 Fujikura Ltd. Optical fiber for amplification, and laser device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157763A (en) * 1998-01-28 2000-12-05 Sdl, Inc. Double-clad optical fiber with improved inner cladding geometry
US20020122645A1 (en) * 2001-03-02 2002-09-05 Hong Po Fiber for enhanced energy absorption
US20040156606A1 (en) * 2001-03-02 2004-08-12 Hong Po Fiber for enhanced energy absorption
CN102132178A (zh) * 2008-07-24 2011-07-20 康宁股份有限公司 双包层光纤和具有双包层光纤的设备
CN102992613A (zh) * 2012-12-25 2013-03-27 长飞光纤光缆有限公司 一种稀土均匀掺杂光纤预制棒芯棒及其制备方法
CN205982710U (zh) * 2016-07-04 2017-02-22 中电科天之星激光技术(上海)有限公司 一种双包层有源光纤
CN106405728A (zh) * 2016-10-12 2017-02-15 长飞光纤光缆股份有限公司 一种掺稀土双包层光纤及其制备方法

Also Published As

Publication number Publication date
CN106405728B (zh) 2019-05-31
CN106405728A (zh) 2017-02-15
US10838143B2 (en) 2020-11-17
US20200018897A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018068609A1 (zh) 一种掺稀土双包层光纤及其制备方法
CN109031516B (zh) 一种大模场双包层掺镱光纤
JP7332706B2 (ja) フォトニック結晶ファイバのプリフォーム、その製造方法及びフォトニック結晶ファイバ
CN104865634B (zh) 一种掺镱光纤及其制备方法
CN103323910B (zh) 一种双包层光纤
US20120263428A1 (en) Large mode field active optical fiber and manufacture method thereof
CN110850522A (zh) 一种部分掺稀土光纤及其制备方法
CN104932054B (zh) 一种三包层掺铥光纤及其制备方法
US11780768B2 (en) Photodarkening-resistant ytterbium-doped quartz optical fiber and preparation method therefor
CN202486354U (zh) 一种环形掺杂层光纤及包含该光纤的激光器
CN102998741A (zh) 一种用于增益应用的有源光纤结构及其实现方法
CN112456788A (zh) 一种高功率用保偏型光纤及其制备方法
CN114114527B (zh) 一种用于匀化基模光强分布的有源光纤及其制备方法
CN111517637B (zh) 掺稀土多芯光纤、光纤预制棒及其制备方法和应用
CN114721087B (zh) 一种三包层铒镱共掺光纤及其制备方法与应用
JP5384679B2 (ja) 光ファイバ母材を製造する方法及び光ファイバ母材
CN108459371B (zh) 一种掺镱保偏光纤
JP2014017457A (ja) 希土類元素添加ファイバ、及びそれを用いたファイバレーザ並びにファイバ型増幅器
WO2018050106A1 (zh) 一种防开裂熊猫型保偏光纤
CN108828711B (zh) 一种掺镱光纤
CN107500524B (zh) 一种稀土掺杂光纤预制棒及其制备方法
JP2009188094A (ja) 光増幅用光ファイバ及び光ファイバレーザ
CN107608021B (zh) 一种掺铋全固态带隙型微结构光纤
WO2016192004A1 (zh) 一种椭圆包层保偏大模场增益光纤
CN108761631B (zh) 一种掺镱光纤及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860467

Country of ref document: EP

Kind code of ref document: A1