WO2018068235A1 - 一种贴片式 nfc 天线及天线系统 - Google Patents

一种贴片式 nfc 天线及天线系统 Download PDF

Info

Publication number
WO2018068235A1
WO2018068235A1 PCT/CN2016/101917 CN2016101917W WO2018068235A1 WO 2018068235 A1 WO2018068235 A1 WO 2018068235A1 CN 2016101917 W CN2016101917 W CN 2016101917W WO 2018068235 A1 WO2018068235 A1 WO 2018068235A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
nfc antenna
dielectric layer
electrode
antenna
Prior art date
Application number
PCT/CN2016/101917
Other languages
English (en)
French (fr)
Inventor
赵安平
艾付强
刘春雷
杨兆国
Original Assignee
深圳市信维通信股份有限公司
上海光线新材料科技有限公司
昆山洲源电子器材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市信维通信股份有限公司, 上海光线新材料科技有限公司, 昆山洲源电子器材有限公司 filed Critical 深圳市信维通信股份有限公司
Priority to US15/507,762 priority Critical patent/US10411767B2/en
Priority to DE112016000113.4T priority patent/DE112016000113T5/de
Priority to PCT/CN2016/101917 priority patent/WO2018068235A1/zh
Publication of WO2018068235A1 publication Critical patent/WO2018068235A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/266One coil at each side, e.g. with primary and secondary coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/43Antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication

Definitions

  • the present invention relates to the field of NFC antenna technologies, and in particular, to a patch type NFC antenna and an antenna system.
  • NFC Near Field Communkatkm
  • the NFC antenna radiator In the application of the conventional NFC handheld device, it is generally preferred to place the NFC antenna radiator on the battery, and in order to reduce the negative influence of the eddy current generated on the battery opposite to the current direction of the antenna on the NFC antenna, A ferrite is placed between the NFC antenna coil and the battery to isolate the antenna coil from the battery. In order to ensure the performance of the NFC antenna, the NFC antenna using this design must meet certain size requirements. Due to the large antenna size of the conventional NFC antenna solution, the demand for miniaturization of the handheld device cannot be met.
  • the Chinese invention patent No. 201610076899.4 discloses an orthogonal winding type patch type NFC antenna and antenna system, which is composed of a plurality of laminated ferrite units. a ferrite core extending along the XY plane, and first and second coils of the NFC antenna orthogonally surrounding the ferrite core, the first coil being spirally wound in the -X or +X axis direction, The second coil is spirally wound in a +Z or -Z axis in the up and down direction, and a tail end of the second coil is connected to a first end of the first coil.
  • the patented Orthogonal Winding SMD NFC Antenna through the superposition of B1 and B2, can improve the performance of the NFC antenna.
  • the horizontal magnetic field generated by the first coil and the vertical magnetic field generated by the second coil are strongly reverse coupled, so that the second The magnetic field of the coil is weakened. This kind of setting does not achieve the best match between the antenna and the metal plate.
  • the technical problem to be solved by the present invention is: to provide a patch type N with small size and high performance
  • the FC antenna further provides an antenna system.
  • a patch type NFC antenna includes a magnetic core, a first dielectric layer, a first coil, and a second coil, wherein the first dielectric layer is stacked with the magnetic core, and the first coil is wound around On the outer surface of the magnetic core, a side of the first dielectric layer away from the magnetic core is a first surface, and a second coil is disposed on the first surface, and the first coil and the second coil are respectively A head end and a tail end are included, and a tail end of the first coil is electrically connected to a first end of the second coil.
  • An antenna system includes a substrate, a metal plate, and a patch type NFC antenna, the metal plate being disposed on the substrate, and the patch type NFC antenna disposed on the metal plate.
  • the first coil is wound on the outer surface of the magnetic core, and the second coil is disposed on the first dielectric layer, A dielectric layer completely isolates the first coil from the second coil, such that the reverse coupling between the magnetic field generated by the first coil and the magnetic field generated by the second coil is reduced, and the magnetic field generated by the first coil is generated for the second coil
  • the magnetic field has a small effect, so that the magnetic field generated by the second coil is not weakened, and the antenna achieves a high performance effect.
  • FIG. 1 is a schematic overall structural view of a patch type NFC antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic exploded view of a patch type NFC antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a patchless NFC antenna having only a first coil ⁇ according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a patchless NFC antenna having only a second coil ⁇ according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing the operation of an antenna system according to an embodiment of the present invention.
  • magnetic core-1 first dielectric layer-2; first surface-21; first coil-3; second coil-4; second dielectric layer-5; first via electrode-51; Via electrode - 52; first electrode - 61; second electrode - 62; substrate - 7; metal plate - 8.
  • the most critical idea of the present invention is that the second coil is disposed on the first dielectric layer outside the magnetic core, so that the reverse coupling effect of the first coil and the second coil is small, so that the performance of the antenna can be improved.
  • a patch type NFC antenna includes a magnetic core 1, a first dielectric layer 2, a first coil 3, and a second coil 4.
  • the first dielectric layer 2 and the The magnetic cores 1 are stacked, the first coil 3 is wound on the outer surface of the magnetic core 1.
  • the first dielectric layer 2 is away from the magnetic core 1 and the first surface 21 is the first surface.
  • 4 is disposed on the first surface 21, the first coil 3 and the second coil 4 respectively include a first end and a tail end, and the tail end of the first coil 3 and the first end of the second coil 4 are electrically connection.
  • the present invention has the following advantages: the first coil is disposed on the outer surface of the magnetic core, the second coil is disposed on the first dielectric layer, and the first dielectric layer is disposed on the first coil and the second The coil completely isolates the crucible, so that the reverse coupling between the magnetic field generated by the first coil and the magnetic field generated by the second coil is reduced, and the magnetic field generated by the first coil has a smaller effect on the magnetic field generated by the second coil, thereby making the The magnetic field generated by the two coils does not weaken, which makes the antenna achieve higher performance.
  • the second coil 4 is disposed on the first surface 21 around the center of the first surface 21.
  • the second coil is attached to the first surface and is wound from the outer side of the first surface toward the inner side of the first surface.
  • the number of turns of the first coil 3 and the second coil 4 is two or more.
  • the number of turns of the first coil and the second coil is greater than two turns, the performance of the antenna is better, and the actual design can be designed according to the specific size of the antenna.
  • the turns ratio of the second coil 4 to the first coil 3 is 0.2-0.4.
  • the overall performance of the antenna is related to the window area of the second coil. Theoretically, the more the number of turns of the second coil, the better the performance of the antenna, and the better the number of turns of the second coil. If the window area is small, the performance of the antenna will be weakened. Therefore, when the turns ratio of the second coil to the first coil is 0.2-0.4 ⁇ , the antenna can have superior performance.
  • first coil 3 is spirally wound around the core in the longitudinal direction or the width direction of the magnetic core 1.
  • the electrodes are disposed on a side of the second dielectric layer 5 away from the magnetic core 1, and the electrodes include a first electrode 61 and a second electrode 62, and the tail of the second coil 4 The end is electrically connected to the first electrode 61, and the first end of the first coil 3 is electrically connected to the second electrode 62.
  • the first electrode and the second electrode are provided, and the first coil and the second coil are electrically connected to the outside through the first electrode and the second electrode.
  • the second dielectric layer 5 is provided with a first via electrode 51 and a second via electrode 52, and the tail end of the second coil 4 passes through the first via electrode 51 and the first An electrode 61 is electrically connected, and a first end of the first coil 3 is electrically connected to the second electrode 62 through the second via electrode 52.
  • an antenna system includes a substrate 7 and a metal plate 8.
  • the metal plate 8 is disposed on the substrate 7, and further includes the above-mentioned patch type NFC antenna, and the sticker A chip type NFC antenna is disposed on the metal plate 8.
  • the presence of the first coil causes a eddy current circuit to be generated on the metal plate, and the magnetic field generated by the eddy current circuit on the metal plate and the second coil are generated.
  • the magnetic field produces a positive superposition that enhances the performance of the overall antenna system.
  • the patch type NFC antennas are all disposed on the metal plate 8.
  • the patch type NFC antennas are all disposed on the metal plate, and the first coil located on the metal plate is coupled with the metal plate to generate a eddy current circuit on the metal plate, and the magnetic field generated by the eddy current circuit and the second coil The generated magnetic fields are superimposed to enhance the overall performance of the antenna.
  • the patch type NFC antenna portion is disposed on the metal plate 8.
  • the performance of the antenna system depends on the magnitude of the sum of the magnetic field B1 generated by the first coil and the magnetic field B2 generated by the second coil.
  • the first coil is completely located on the metal plate (or the inner side)
  • the first coil is most strongly coupled to the metal plate, maximizing the magnetic field B1 generated by the eddy current circuit. Therefore, the magnetic field B2 generated by the second coil of this crucible is weak because a part of the magnetic field B2 will be separated by the metal plate. Therefore, in order to ensure the overall performance of the antenna system, it should be considered how to maximize the sum of B1 and B2, that is, 50-80% of the first coil should be placed on the inner side of the metal plate.
  • Embodiment 1 of the present invention is:
  • An antenna system includes a substrate 7, a metal plate 8, and the above-described chip type NFC antenna.
  • the metal plate 8 is disposed on the substrate 7, and the chip type NFC antenna is disposed on the metal plate 8.
  • the patch type NFC antenna includes a magnetic core 1, a first dielectric layer 2, a first coil 3, a second coil 4, and a second dielectric layer 5, a first dielectric layer 2, a magnetic core 1 and a second dielectric layer 5 Stack settings in turn.
  • the first coil 3 is spirally wound around the outer surface of the magnetic core 1 along the circumferential direction of the magnetic core 1, while the first coil 3 is along the magnetic core.
  • the length direction or width direction of 1 is spirally set.
  • a side of the first dielectric layer 2 away from the magnetic core 1 is a first surface 21, and a second coil 4 is spirally wound around the center of the first surface 21 in a direction from the outer side to the inner side of the first surface 21 at the first surface 21 on.
  • the first coil 3 is disposed perpendicular to the second coil 4.
  • the number of turns of the first coil 3 and the second coil 4 is one or more turns, respectively.
  • the turns ratio of the second coil 4 to the first coil 3 is 0.2 - 0.4.
  • the first coil 3 and the second coil 4 respectively include a head end and a tail end, and a tail end of the first coil 3 is electrically connected to a head end of the second coil 4.
  • the second dielectric layer 5 is provided with an electrode on a side away from the magnetic core 1, and the electrode includes a first electrode 61 and a second electrode 62.
  • the tail end of the second coil 4 is electrically connected to the first electrode 61, and the first end of the first coil 3 is electrically connected to the second electrode 62.
  • the second dielectric layer 5 is further provided with a first via electrode 51 and a second via electrode 52.
  • the tail end of the second coil 4 is electrically connected to the first electrode 61 through the first via electrode 51, first The leading end of the coil 3 is electrically connected to the second electrode 62 through the second via electrode 52.
  • the first via electrode 51 is disposed corresponding to the first electrode 61, and the second via electrode 52 is disposed corresponding to the second electrode 62.
  • the magnetic core 1 is a ferrite having a rectangular parallelepiped structure, and may be other existing structures, such as a cube, etc., and the magnetic core
  • the magnetic permeability of 1 is greater than 100.
  • the magnetic core 1 of the rectangular parallelepiped structure includes an upper surface, a lower surface, a left surface, a right surface, a front surface, and a rear surface, and the first coil 3 is along the upper surface, the left surface, the lower surface, and the right surface.
  • the direction is spirally wound around the magnetic core 1.
  • the length direction of the magnetic core 1 is the X-axis
  • the width direction of the magnetic core 1 is the Y-axis
  • the height direction of the magnetic core 1 is the Z-axis.
  • the second coil 4 is wound on the first surface 21 of the first dielectric layer 2.
  • the arrows on the first coil 3 and the second coil 4 in Figs. 1 and 2 are the current directions of the first coil 3 and the second coil 4, respectively.
  • the size of the magnetic core 1 is 6 mm (length) x 3 mm (width) x 0.8 mm (height), the number of turns of the first coil 3 is 13; the number of turns of the second coil 4 is 3, The thickness of one dielectric layer 2 and the second dielectric layer 5 is 0.1 mm, respectively.
  • the magnetic field components of the first coil 3 on the plane above the magnetic core 1 constitute equal amplitude absolute values (the absolute values are equal) Because the antenna structure is symmetrical, there are two modes of positive and negative.
  • Fig. 6 for the NFC antenna having only the second coil 4 in Fig.
  • the magnetic field component of the second coil 4 constitutes a mode in which the amplitude is positive.
  • the magnetic field component constitutes a positive and negative mode in which the absolute amplitudes of the amplitudes are not equal, and the performance ratio of the mode in which the amplitude is positive is The performance of the negative mode is strong.
  • the reason for forming the special mode shown in Fig. 7 is that the two modes having positive and negative amplitudes in Fig. 5 and the one mode having only positive amplitude in Fig. 6 are effectively superimposed on each other in space. The effective superposition of this magnetic field in space is exactly the working principle of the dual-surrounded patch NFC antenna proposed in this case.
  • the magnetic permeability of the magnetic core 1 is much larger than that of the first dielectric layer 2, so that the magnetic flux generated by the first coil 3 is large. Part of the core 1 passes through, and only a small portion passes through the first dielectric layer 2.
  • the reverse coupling effect of the magnetic field generated by the first coil 3 and the magnetic field generated by the second coil 4 is small, and the first coil 3 does not weaken.
  • the magnitude of the magnetic field component of the second coil 4 is such that the magnetic field component of the second coil 4 is large. In the near field communication process of the patch type NFC antenna, when the magnetic field component in the vertical direction is larger, the performance of the NFC antenna is better. Therefore, the performance of the antenna can be increased.
  • the second coil 4 is directly disposed on the first dielectric layer 2, and the processing of the second coil 4 can be made more convenient.
  • the chip type NFC antenna is placed on the metal plate 8 in the manner shown in FIG. 8, a eddy current effective for the patch type NFC antenna is generated on the metal plate 8, so that the metal plate 8 becomes a patch.
  • the amplifier of the NFC antenna increases the performance of the patch NFC antenna.
  • the patch type NFC antenna can be placed anywhere above the metal plate 8, in order to optimize the performance of the antenna system, 50-80% of the patch NFC antenna should be placed on the metal plate 8, thereby The intensity of the eddy current excited on the metal plate 8 is the largest. As shown in Fig.
  • the first coil 3 generates a magnetic field component A1
  • the second coil 4 generates a magnetic field component B1
  • the eddy current loop on the metal plate 8 generates a magnetic field component B2, as shown in Fig. 9, the magnetic field components B1, B2 and A1 Effective combination enhances the performance of the overall antenna system. Comparing Fig. 9 with Fig. 10, it can be seen that the antenna system having the first coil 3 and the second coil 4 has a great improvement in performance compared to the antenna system having only the first coil 3.
  • the performance of the NFC antenna will increase as the number of turns of the second coil 4 increases, because the magnetic field B2 generated by the second coil 4 will increase, and the number of turns of the second coil 4 will increase.
  • the window area of the second coil 4 needs to be considered, and the window area of the second coil 4 is small, which causes the performance of the NFC antenna to be lowered, so that the number of turns of the second coil 4 cannot be increased indefinitely.
  • FIGS. 9 and 10 show the case where the patch type NFC antenna of FIG. 8 is placed on the edge of the metal plate 8+X direction.
  • the patch type NFC antenna of the present invention has directivity, so if the patch type NFC antenna is placed on the other edge of the metal plate 8, for example, on the edge of the -X direction, then the patch type The NFC antenna needs to be rotated by 180 degrees, because this is the only way to ensure that the direction of the magnetic field generated by the eddy current on the metal plate 8 is in the same direction as the direction of the magnetic field generated by the second coil 4, thereby achieving the purpose of superimposing in the same direction. In short, it is necessary to ensure that the direction of the magnetic field B1 generated by the eddy current of the metal plate 8 is the same as the direction of the magnetic field B2 generated by the second coil 4. In order to avoid errors in practical applications, a mark can be printed on one corner of the upper surface of the patch NFC antenna like most chips.
  • the present invention provides a patch type NFC antenna in which a second coil is disposed on a dielectric layer to isolate the first coil from the second coil, thereby preventing a magnetic field generated by the first coil.
  • the magnitude of the magnetic field generated by the second coil is weakened, so that the magnetic field generated by the second coil is large, so that the NFC antenna not only has a small size but also has better antenna performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明公开了一种贴片式NFC天线,包括磁芯、第一电介质层、第一线圈和第二线圈,所述第一电介质层与所述磁芯层叠设置,所述第一线圈缠绕在所述磁芯的外表面上,所述第一电介质层远离所述磁芯的一面为第一表面,所述第二线圈设置在所述第一表面上,所述第一线圈和第二线圈分别包括首端和尾端,所述第一线圈的尾端与所述第二线圈的首端电连接。本发明提供的一种贴片式NFC天线,将第二线圈设置在介质层上,使第一线圈与第二线圈被隔离开,可防止第一线圈产生的磁场减弱第二线圈产生的磁场大小,使得第二线圈产生的磁场较大,从而使NFC天线不仅具有较小的尺寸,而且具有较好的天线性能。

Description

一种贴片式 NFC天线及天线系统
[0001] 技术领域
[0002] 本发明涉及 NFC天线技术领域, 尤其涉及一种贴片式 NFC天线及天线系统。
[0003] ¾體
[0004] 近场通讯 (Near Field Communkatkm, NFC) 是一种利用磁场感应收发电磁 波实现电子设备之间进行近距离通信的无线通讯技术。 这种技术可以为消费者 提供简单直观的信息交换、 内容访问与服务。 由于 NFC技术的这种特殊性, 近 期 NFC得到了越来越广泛的重视, 并且该技术已经被应用于移动设备、 PC、 以 及智能控件等设备中。
[0005] 在传统的 NFC手持设备的应用中, 一般选择将 NFC天线辐射体放在电池上面, 同吋为了减少电池上产生的与天线本身电流方向相反的涡流对 NFC天线的负面 影响, 需要在 NFC天线线圈和电池中间放置一层能把天线线圈与电池隔离幵的 铁氧体。 为了保证 NFC天线的性能, 使用该设计方案的 NFC天线必须满足一定 的尺寸要求。 由于该传统 NFC天线方案的天线尺寸较大, 故而不能满足手持设 备小型化的需求。
[0006] 为了达到减少 NFC天线尺寸的目的, 日本株式会社村田制作所在公幵号为 CN1 03620869A的中国发明专利中提出了一种小型的贴片式 NFC天线解决方案。 并且 在公幵号为 CN102959800B的中国发明专利中展示了该方案在实际通信设备中的 具体应用。 与传统 NFC天线方案相比, 该方案的最大不同之处是把传统的尺寸 较大的 NFC天线线圈以螺旋的方式绕置在尺寸很小的铁氧体芯体周围, 形成螺 线管型天线。 通过把该小尺寸 NFC天线单体放置在金属板 (或 PCB板) 上方并 与之进行有效的耦合, 在金属板上激发出有正面作用的涡流, 进而增强整个天 线系统 (也即包括贴片 NFC天线和金属板) 的性能。 虽然与传统的大尺寸 NFC 天线方案相比, 村田提出的 NFC天线方案在天线尺寸方面有了巨大的改进。 伹 是该贴片天线有一个缺点: 当该天线单体被放置在 PCB或金属板上吋, 由于天 线线圈在铁氧体上的特殊绕行方式, 使得天线本身产生磁场的主要方案与其在 金属板上激发的有效涡流产生的磁场相互垂直正交。 这种在磁场方向上的相互 垂直正交使得整个天线系统的性能不是很好。
[0007] 为了提高 NFC天线的性能, 申请号为 201610076899.4的中国发明专利公幵了一 种正交绕线型贴片式 NFC天线及天线系统, 包括由若干层片状铁氧体单元层叠 而成的沿 XY平面延伸的铁氧体芯体, 及正交环绕于铁氧体芯体的 NFC天线的第 一线圈和第二线圈, 所述第一线圈沿 -X或 +X轴方向螺旋缠绕, 所述第二线圈沿 上下方向的 +Z或 -Z轴螺旋缠绕, 所述第二线圈的尾端与所述第一线圈的首端连 接。 该专利公幵的正交绕线型贴片式 NFC天线, 通过 B1和 B2的叠加可使 NFC天 线的性能具有一定的提高。 伹是, 由于第二线圈的每一圈都与第一线圈交叉设 置, 第一线圈产生的水平方向磁场与第二线圈产生的竖直方向的磁场会发生较 强的反向耦合, 使得第二线圈的磁场减弱, 该种设置方式并不能使天线与金属 板达到最佳的匹配状态。
[0008] 因此, 有必要对上面所述的贴片式 NFC天线进行改进, 幵发出一种不仅具有小 尺寸而且同吋具有能与在金属板上激发的涡流产生的磁场达到最佳匹配的高性 能贴片式 NFC天线。
[0009] 发明内容
[0010] 本发明所要解决的技术问题是: 提供一种同吋具有小尺寸和高性能的贴片式 N
FC天线, 进一步地提供一种天线系统。
[0011] 为了解决上述技术问题, 本发明采用的技术方案为:
[0012] 一种贴片式 NFC天线, 包括磁芯、 第一电介质层、 第一线圈和第二线圈, 所述 第一电介质层与所述磁芯层叠设置, 所述第一线圈缠绕在所述磁芯的外表面上 , 所述第一电介质层远离所述磁芯的一面为第一表面, 所述第二线圈设置在所 述第一表面上, 所述第一线圈和第二线圈分别包括首端和尾端, 所述第一线圈 的尾端与所述第二线圈的首端电连接。
[0013] 一种天线系统, 包括基板、 金属板和贴片式 NFC天线, 所述金属板设置在所述 基板上, 所述贴片式 NFC天线设置在所述金属板上。
[0014] 本发明的有益效果在于:
[0015] (1) 第一线圈绕设在磁芯的外表面上, 第二线圈设置在第一电介质层上, 第 一电介质层将第一线圈与第二线圈完全隔离幵, 使得第一线圈产生的磁场与第 二线圈产生的磁场之间的反向耦合作用减小, 第一线圈产生的磁场对第二线圈 产生的磁场的作用较小, 进而使第二线圈产生的磁场不会减弱, 使天线达到高 性能的效果。
[0016] (2) 将贴片式 NFC天线设置在金属板上后, 第一线圈的存在, 使金属板上产 生涡流回路, 金属板上的涡流回路产生的磁场与第二线圈产生的磁场产生正向 叠加, 从而可增强整体天线系统的性能。
[0017] 國綱
[0018] 图 1为本发明实施例的贴片式 NFC天线的整体结构示意图;
[0019] 图 2为本发明实施例的贴片式 NFC天线的分解结构示意图;
[0020] 图 3为本发明实施例的贴片式 NFC天线只有第一线圈吋的结构示意图;
[0021] 图 4为本发明实施例的贴片式 NFC天线只有第二线圈吋的结构示意图;
[0022] 图 5为图 3中贴片式 NFC天线只有第一线圈吋在金属板上方 Z=20mm处的磁场 Hz 分量分布图;
[0023] 图 6为图 4中贴片式 NFC天线只有第二线圈吋在金属板上方 Z=20mm处的磁场 Hz 分量分布图;
[0024] 图 7为本发明实施例的贴片式 NFC天线在金属板上方 Z=20mm处的磁场 Hz分量 分布图;
[0025] 图 8为本发明实施例的天线系统的工作原理图;
[0026] 图 9为本发明实施例的天线系统在金属板上方 Z=20mm处的磁场 Hz分量分布图; [0027] 图 10为本发明实施例的天线系统只有第一线圈吋在金属板上方 Z=20mm处的磁 场 Hz分量分布图。
[0028] 标号说明:
[0029] 磁芯 -1; 第一电介质层 -2; 第一表面 -21; 第一线圈 -3; 第二线圈 -4; 第二电介 质层 -5; 第一过孔电极 -51; 第二过孔电极 -52; 第一电极 -61; 第二电极 -62; 基 板 -7; 金属板 -8。
[0030] t m^
[0031] 为详细说明本发明的技术内容、 构造特征、 所实现目的及效果, 以下结合实施 方式并配合附图详予说明。
[0032] 本发明最关键的构思在于: 第二线圈设置在磁芯外的第一电介质层上, 使第一 线圈与第二线圈的反向耦合作用较小, 从而可提高天线的性能。
[0033] 请参阅图 1至图 7, —种贴片式 NFC天线, 包括磁芯 1、 第一电介质层 2、 第一线 圈 3和第二线圈 4, 所述第一电介质层 2与所述磁芯 1层叠设置, 所述第一线圈 3缠 绕在所述磁芯 1的外表面上, 所述第一电介质层 2远离所述磁芯 1的一面为第一表 面 21 , 所述第二线圈 4设置在所述第一表面 21上, 所述第一线圈 3和第二线圈 4分 别包括首端和尾端, 所述第一线圈 3的尾端与所述第二线圈 4的首端电连接。
[0034] 从上述描述可知, 本发明的有益效果在于: 第一线圈绕设在磁芯的外表面上, 第二线圈设置在第一电介质层上, 第一电介质层将第一线圈与第二线圈完全隔 离幵, 使得第一线圈产生的磁场与第二线圈产生的磁场之间的反向耦合作用减 小, 第一线圈产生的磁场对第二线圈产生的磁场的作用较小, 进而使第二线圈 产生的磁场不会减弱, 使天线达到更高性能的效果。
[0035] 进一步地, 所述第二线圈 4围绕所述第一表面 21的中心设置在所述第一表面 21 上。
[0036] 由上述描述可知, 第二线圈是贴设在第一表面上, 并从第一表面的外侧向第一 表面的内侧绕设。
[0037] 进一步地, 所述第一线圈 3和第二线圈 4的匝数分别为两圈以上。
[0038] 由上述描述可知, 第一线圈与第二线圈的匝数大于两圈吋, 天线的性能更好, 实际设计吋, 可根据天线的具体尺寸进行设计。
[0039] 进一步地, 所述第二线圈 4与第一线圈 3的匝数比为 0.2-0.4。
[0040] 由上述描述可知, 天线的整体性能与第二线圈的窗口面积大小有关, 理论上, 第二线圈的匝数越多, 天线的性能越好, 伹是当第二线圈的匝数较多, 窗口面 积较小吋, 会减弱天线的性能, 因此, 当第二线圈与第一线圈的匝数比为 0.2-0.4 吋, 可使天线具有较优的性能。
[0041] 进一步地, 所述第一线圈 3沿磁芯 1的长度方向或宽度方向螺旋缠绕在所述磁芯
1上。
[0042] 进一步地, 还包括第二电介质层 5和电极, 所述第一电介质层 2、 磁芯 1和第二 电介质 5层依次层叠设置, 所述电极设置在所述第二电介质层 5远离所述磁芯 1的 一面, 所述电极包括第一电极 61和第二电极 62, 所述第二线圈 4的尾端与所述第 一电极 61电连接, 所述第一线圈 3的首端与所述第二电极 62电连接。
[0043] 由上述描述可知, 设置第一电极和第二电极, 第一线圈和第二线圈通过第一电 极和第二电极与外部进行电连接。
[0044] 进一步地, 所述第二电介质层 5上设有第一过孔电极 51和第二过孔电极 52, 第 二线圈 4的尾端通过所述第一过孔电极 51与所述第一电极 61电连接, 所述第一线 圈 3的首端通过所述第二过孔电极 52与所述第二电极 62电连接。
[0045] 请参阅图 8至图 10, —种天线系统, 包括基板 7和金属板 8, 所述金属板 8设置在 所述基板 7上, 还包括上述的贴片式 NFC天线, 所述贴片式 NFC天线设置在所述 金属板 8上。
[0046] 由上述描述可知, 将贴片式 NFC天线设置在金属板上后, 第一线圈的存在, 使 金属板上产生涡流回路, 金属板上的涡流回路产生的磁场与第二线圈产生的磁 场产生正向叠加, 从而可增强整体天线系统的性能。
[0047] 进一步地, 所述贴片式 NFC天线全部设置于所述金属板 8上。
[0048] 由上述描述可知, 贴片式 NFC天线全部设置于金属板上, 位于金属板上的第一 线圈与金属板耦合, 使金属板上产生涡流回路, 涡流回路产生的磁场与第二线 圈产生的磁场进行叠加, 以增强天线的整体性能。
[0049] 进一步地, 所述贴片式 NFC天线部分设置于所述金属板 8上。
[0050] 由上述描述可知, 天线系统的性能好坏取决于第一线圈产生的磁场 B1和第二线 圈产生的磁场 B2之和的大小。 虽然第一线圈完全位于金属板上 (或内侧) 吋, 第一线圈与金属板的耦合最强, 使涡流回路产生的磁场 B1最大。 伹是, 此吋第 二线圈产生的磁场 B2较弱, 因为磁场 B2的一部分将被金属板隔离掉。 因此为了 保证天线系统的整体性能, 应该考虑如何使得 B1和 B2之和达到最大, 也即应将 第一线圈的 50-80%的部分放置在金属板的内侧上。
[0051] 请参照图 1至图 10, 本发明的实施例一为:
[0052] 一种天线系统, 包括基板 7、 金属板 8和上述的贴片式 NFC天线, 金属板 8设置 在基板 7上, 贴片式 NFC天线设置在金属板 8上。 [0053] 贴片式 NFC天线包括磁芯 1、 第一电介质层 2、 第一线圈 3、 第二线圈 4和第二电 介质层 5 , 第一电介质层 2、 磁芯 1和第二电介质层 5依次层叠设置。
[0054] 第一线圈 3沿磁芯 1的周向螺旋缠绕在磁芯 1的外表面上, 同吋第一线圈 3沿磁芯
1的长度方向或宽度方向螺旋设置。 第一电介质层 2远离所述磁芯 1的一面为第一 表面 21 , 第二线圈 4围绕第一表面 21的中心沿第一表面 21的外侧至内侧的方向螺 旋绕设在在第一表面 21上。 第一线圈 3与第二线圈 4垂直设置。 第一线圈 3和第二 线圈 4的匝数分别为一圈或多圈。 第二线圈 4与第一线圈 3的匝数比为 0.2-0.4。
[0055] 所述第一线圈 3和第二线圈 4分别包括首端和尾端, 所述第一线圈 3的尾端与所 述第二线圈 4的首端电连接。
[0056] 第二电介质层 5远离磁芯 1的一面设有电极, 电极包括第一电极 61和第二电极 62
, 第二线圈 4的尾端与第一电极 61电连接, 第一线圈 3的首端与第二电极 62电连 接。
[0057] 第二电介质层 5上还设有第一过孔电极 51和第二过孔电极 52, 第二线圈 4的尾端 通过第一过孔电极 51与第一电极 61电连接, 第一线圈 3的首端通过第二过孔电极 52与第二电极 62电连接。 第一过孔电极 51对应第一电极 61设置, 第二过孔电极 5 2对应第二电极 62设置。
[0058] 磁芯 1为长方体结构的铁氧体, 也可为现有的其他结构, 如正方体等, 且磁芯
1的磁导率大于 100。
[0059] 如图 1所示, 长方体结构的磁芯 1包括上表面、 下表面、 左表面、 右表面、 前表 面和后表面, 第一线圈 3沿上表面、 左表面、 下表面、 右表面的方向螺旋缠绕在 磁芯 1上, 磁芯 1的长度方向为 X轴, 磁芯 1的宽度方向为 Y轴, 磁芯 1的高度方向 为 Z轴。 第二线圈 4在第一电介质层 2的第一表面 21上绕行。 图 1和图 2中第一线圈 3和第二线圈 4上的箭头分别为第一线圈 3和第二线圈 4的电流方向。 当第一线圈 3 和第二线圈 4按照上述的方式绕行和连接吋, 第一线圈 3产生水平方向的磁场分 量, 第二线圈 4产生竖直方向的磁场分量。
[0060] 本实施例中, 磁芯 1的尺寸为 6mm (长) x3mm (宽) x0.8mm (高) , 第一线 圈 3的匝数为 13; 第二线圈 4的匝数为 3 , 第一电介质层 2和第二电介质层 5的厚度 分别为 0.1mm。 [0061] 如图 5所示, 对于图 3中只具有第一线圈 3的 NFC天线而言, 第一线圈 3在磁芯 1 上方的平面上的磁场分量构成振幅绝对值相等 (绝对值相等是因为天线结构是 对称的) 的正负数两个模式。 如图 6所示, 对于图 4中只具有第二线圈 4的 NFC天 线而言, 第二线圈 4的磁场分量构成振幅为正的一个模式。 如图 7所示, 对于同 吋具有第一线圈 3和第二线圈 4的 NFC天线, 磁场分量构成振幅绝对值不等的正 负两个模式, 而且振幅为正值的模式的性能比振幅为负值的模式的性能强。 事 实上, 形成图 7所示的特殊模式的原因是由于图 5中的具有正负振幅的两个模式 和图 6中的只具有正振幅的一个模式在空间中相互有效叠加的结果。 这种磁场在 空间中的有效叠加恰好正是本案所提出的双环绕线的贴片式 NFC天线的工作原 理。
[0062] 并且, 由于第一线圈 3与第二线圈 4被第一电介质层 2完全隔幵, 磁芯 1的磁导率 远大于第一电介质层 2, 使得第一线圈 3产生的磁通大部分会经过磁芯 1 , 只有很 少的部分会经过第一电介质层 2, 第一线圈 3产生的磁场与第二线圈 4产生的磁场 的反向耦合作用较小, 第一线圈 3不会减弱第二线圈 4的磁场分量大小, 使得第 二线圈 4的磁场分量较大, 贴片式 NFC天线在近场通信过程中, 当竖直方向的磁 场分量较大吋, NFC天线的性能较好, 因此可增大天线的性能。
[0063] 第二线圈 4直接设置在第一电介质层 2上, 还可使第二线圈 4的加工制作更方便
, 从而可简化整个 NFC天线的制作工艺。
[0064] 将贴片式 NFC天线按图 8所示的方式放置在金属板 8上后, 在金属板 8上将产生 对贴片式 NFC天线而言有效的涡流, 使得金属板 8成为贴片式 NFC天线的放大器 , 进而增大贴片式 NFC天线的性能。 虽然贴片式 NFC天线可以被放置在金属板 8 上方的任何位置上, 伹是为了优化天线系统的性能, 应当使贴片式 NFC天线的 5 0-80%设置于金属板 8上, 从而使金属板 8上被激发的涡流强度最大。 如图 8所示 , 第一线圈 3产生磁场分量 A1 , 第二线圈 4产生磁场分量 B1 , 金属板 8上的涡流 回路产生磁场分量 B2, 如图 9所示, 磁场分量 Bl、 B2和 A1的有效结合增强了整 体天线系统的性能。 对比图 9和图 10可知, 同吋具有第一线圈 3和第二线圈 4的天 线系统比只具有第一线圈 3的天线系统的性能有很大的提升。
[0065] 需要指出的是, 当 NFC天线单体的长、 宽、 高的比例以及第一线圈 3的匝数固 定吋, NFC天线的性能将随着第二线圈 4的匝数的增加而增强, 因为此吋第二线 圈 4所产生的磁场 B2将增加, 在增大第二线圈 4的匝数吋, 还需考虑第二线圈 4的 窗口面积, 第二线圈 4的窗口面积较小吋会导致 NFC天线的性能降低, 因此第二 线圈 4的匝数并不能无限增大。 当 NFC天线单体的长、 宽、 高的比例有所变化伹 第一线圈 3和第二线圈 4的匝数不变吋, 天线性能的提升将随着这个比例的变化 而变化; 比如当长和宽的比例较小或者高度有所增加吋, 相对而言第二线圈 4所 产生的磁场 B2的将有所增加, 因此天线系统性能的提升比例将会更高。 此外, 图 9和图 10为图 8中的贴片式 NFC天线被放置在金属板 8+X方向边缘上的情况。 伹 是如前所述, 本案的贴片式 NFC天线具有方向性, 因此如果贴片式 NFC天线是 被放置在金属板 8的其它边缘上吋, 比如 -X方向的边缘上, 那么贴片式 NFC天线 需要旋转 180度, 因为只有这样才能保证金属板 8上涡流产生的磁场方向与第二 线圈 4产生的磁场方向是同向的, 进而达到同向叠加的目的。 总之, 一定要保证 金属板 8涡流所产生磁场 B1的方向与第二线圈 4所产生磁场 B2的方向相同。 为了 避免在实际应用中出错, 可以像大部分芯片一样, 在贴片式 NFC天线的上表面 的一个角上打印一个标记点。
[0066] 综上所述, 本发明提供的一种贴片式 NFC天线, 将第二线圈设置在介质层上, 使第一线圈与第二线圈被隔离幵, 可防止第一线圈产生的磁场减弱第二线圈产 生的磁场大小, 使得第二线圈产生的磁场较大, 从而使 NFC天线不仅具有较小 的尺寸, 而且具有较好的天线性能。
[0067] 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等同变换, 或直接或间接运用在相关的技术领域 , 均同理包括在本发明的专利保护范围内。
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
一种贴片式 NFC天线, 其特征在于, 包括磁芯、 第一电介质层、 第一 线圈和第二线圈, 所述第一电介质层与所述磁芯层叠设置, 所述第一 线圈缠绕在所述磁芯的外表面上, 所述第一电介质层远离所述磁芯的 一面为第一表面, 所述第二线圈设置在所述第一表面上, 所述第一线 圈和第二线圈分别包括首端和尾端, 所述第一线圈的尾端与所述第二 线圈的首端电连接。
根据权利要求 1所述的贴片式 NFC天线, 其特征在于, 所述第二线圈 围绕所述第一表面的中心设置在所述第一表面上。
根据权利要求 1所述的贴片式 NFC天线, 其特征在于, 所述第一线圈 和第二线圈的匝数分别为两圈以上。
根据权利要求 1所述的贴片式 NFC天线, 其特征在于, 所述第二线圈 与第一线圈的匝数比为 0.2-0.4。
根据权利要求 1所述的贴片式 NFC天线, 其特征在于, 所述第一线圈 沿磁芯的长度方向或宽度方向螺旋缠绕在所述磁芯上。
根据权利要求 1所述的贴片式 NFC天线, 其特征在于, 还包括第二电 介质层和电极, 所述第一电介质层、 磁芯和第二电介质层依次层叠设 置, 所述电极设置在所述第二电介质层远离所述磁芯的一面, 所述电 极包括第一电极和第二电极, 所述第二线圈的尾端与所述第一电极电 连接, 所述第一线圈的首端与所述第二电极电连接。
根据权利要求 6所述的贴片式 NFC天线, 其特征在于, 所述第二电介 质层上设有第一过孔电极和第二过孔电极, 第二线圈的尾端通过所述 第一过孔电极与所述第一电极电连接, 所述第一线圈的首端通过所述 第二过孔电极与所述第二电极电连接。
一种天线系统, 包括基板和金属板, 所述金属板设置在所述基板上, 其特征在于, 还包括权利要求 1-7任意一项所述的贴片式 NFC天线, 所述贴片式 NFC天线设置在所述金属板上。
根据权利要求 8所述的天线系统, 其特征在于, 所述贴片式 NFC天线 全部设置于所述金属板上。
[权利要求 10] 根据权利要求 8所述的天线系统, 其特征在于, 所述贴片式 NFC天线 部分设置于所述金属板上。
PCT/CN2016/101917 2016-10-12 2016-10-12 一种贴片式 nfc 天线及天线系统 WO2018068235A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/507,762 US10411767B2 (en) 2016-10-12 2016-10-12 Surface mounted type NFC antenna and antenna system
DE112016000113.4T DE112016000113T5 (de) 2016-10-12 2016-10-12 NFC-Antenne des Oberflächenmontagetyps und Antennensystem
PCT/CN2016/101917 WO2018068235A1 (zh) 2016-10-12 2016-10-12 一种贴片式 nfc 天线及天线系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101917 WO2018068235A1 (zh) 2016-10-12 2016-10-12 一种贴片式 nfc 天线及天线系统

Publications (1)

Publication Number Publication Date
WO2018068235A1 true WO2018068235A1 (zh) 2018-04-19

Family

ID=61905032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101917 WO2018068235A1 (zh) 2016-10-12 2016-10-12 一种贴片式 nfc 天线及天线系统

Country Status (3)

Country Link
US (1) US10411767B2 (zh)
DE (1) DE112016000113T5 (zh)
WO (1) WO2018068235A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3166180B1 (en) * 2015-11-04 2018-12-19 Premo, S.A. An antenna device for hf and lf operation
EP3611670B8 (en) * 2018-06-25 2022-02-09 Murata Manufacturing Co., Ltd. Rfid tag and rfid tagged article
US11764462B2 (en) * 2020-08-11 2023-09-19 BCS Access Systems US, LLC Vehicle door handle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192951A (ja) * 2009-02-16 2010-09-02 Panasonic Corp アンテナ装置
CN102354813A (zh) * 2011-09-23 2012-02-15 深圳市江波龙电子有限公司 一种通信天线及其制造方法、应用终端
US20140184462A1 (en) * 2012-06-04 2014-07-03 Murata Manufacturing Co., Ltd. Antenna module and radio communication device
CN104025463A (zh) * 2012-02-01 2014-09-03 株式会社村田制作所 天线装置及无线通信装置
WO2014155689A1 (ja) * 2013-03-29 2014-10-02 株式会社スマート 近距離無線通信アンテナモジュール及びその製造方法、システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752909B2 (ja) * 2008-12-24 2011-08-17 株式会社村田製作所 磁性体アンテナ及びアンテナ装置
CN102301529B (zh) * 2009-01-30 2013-12-04 户田工业株式会社 磁性体天线和rf标签以及安装有该rf标签的基板
WO2012033031A1 (ja) 2010-09-07 2012-03-15 株式会社村田製作所 アンテナ装置および通信端末装置
EP2523255B1 (en) * 2011-02-15 2014-12-31 Murata Manufacturing Co., Ltd. Antenna device and communication terminal device
WO2012144482A1 (ja) * 2011-04-18 2012-10-26 株式会社村田製作所 アンテナ装置および通信端末装置
JP5505571B2 (ja) 2012-04-27 2014-05-28 株式会社村田製作所 コイルアンテナおよび通信端末装置
CN105490009B (zh) 2016-02-03 2018-08-28 深圳市信维通信股份有限公司 正交绕线型贴片式nfc天线及天线系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192951A (ja) * 2009-02-16 2010-09-02 Panasonic Corp アンテナ装置
CN102354813A (zh) * 2011-09-23 2012-02-15 深圳市江波龙电子有限公司 一种通信天线及其制造方法、应用终端
CN104025463A (zh) * 2012-02-01 2014-09-03 株式会社村田制作所 天线装置及无线通信装置
US20140184462A1 (en) * 2012-06-04 2014-07-03 Murata Manufacturing Co., Ltd. Antenna module and radio communication device
WO2014155689A1 (ja) * 2013-03-29 2014-10-02 株式会社スマート 近距離無線通信アンテナモジュール及びその製造方法、システム

Also Published As

Publication number Publication date
US10411767B2 (en) 2019-09-10
DE112016000113T5 (de) 2018-05-30
US20190020379A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6327405B2 (ja) アンテナ装置および電子機器
JP6197918B2 (ja) アンテナ素子
US9692128B2 (en) Antenna device and wireless communication device
US9583834B2 (en) Antenna module and radio communication device
JP5360202B2 (ja) アンテナ装置
WO2013121729A1 (ja) 非接触充電モジュール及びそれを備えた携帯端末
EP2523255B1 (en) Antenna device and communication terminal device
JP5610098B2 (ja) 通信端末装置
WO2013115158A1 (ja) アンテナ装置および無線通信装置
WO2012172813A1 (ja) 通信装置
JP5776868B1 (ja) アンテナ装置および電子機器
JP2013038821A (ja) アンテナ装置及び移動体通信端末
WO2015147132A1 (ja) アンテナ装置および通信機器
WO2017133223A1 (zh) 基于 z 字形的双环绕线式 nfc 天线及天线系统
CN208352514U (zh) 天线模块和具有该天线模块的电子装置
WO2017119215A1 (ja) 複合アンテナおよび電子機器
JPWO2012032974A1 (ja) Rfidモジュールおよびrfidデバイス
KR20170033253A (ko) 근거리 통신 안테나 모듈 및 이를 구비하는 휴대 단말
WO2018068235A1 (zh) 一种贴片式 nfc 天线及天线系统
CN106374209B (zh) 一种贴片式nfc天线及天线系统
WO2016121501A1 (ja) アンテナ装置、カード型情報媒体および通信端末装置
JP5884538B2 (ja) 表面実装型アンテナ
CN206180097U (zh) 一种贴片式nfc天线及天线系统
JP6566181B1 (ja) 複合アンテナ素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112016000113

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918582

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16918582

Country of ref document: EP

Kind code of ref document: A1