WO2018066803A1 - 제철 공정의 부산물을 이용한 무기 섬유 및 이의 제조 방법 - Google Patents

제철 공정의 부산물을 이용한 무기 섬유 및 이의 제조 방법 Download PDF

Info

Publication number
WO2018066803A1
WO2018066803A1 PCT/KR2017/008616 KR2017008616W WO2018066803A1 WO 2018066803 A1 WO2018066803 A1 WO 2018066803A1 KR 2017008616 W KR2017008616 W KR 2017008616W WO 2018066803 A1 WO2018066803 A1 WO 2018066803A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
weight
fiber
oxide
inorganic fiber
Prior art date
Application number
PCT/KR2017/008616
Other languages
English (en)
French (fr)
Inventor
정은진
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170045097A external-priority patent/KR101937807B1/ko
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to JP2019539720A priority Critical patent/JP6830542B2/ja
Priority to CN201780060972.1A priority patent/CN109790063B/zh
Publication of WO2018066803A1 publication Critical patent/WO2018066803A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to inorganic fibers using by-products of the steelmaking process and methods for producing the same, and to manufacturing inorganic fibers used in various materials using by-products such as slag produced by-products in steel manufacturing processes.
  • LFT Long Fiber Reinforced Thermoplastic
  • FEMs front end modules
  • IP instrument panels
  • LFT is a material capable of injection molding with reinforcing fibers in pellets of about 8 to 12 mm in length.
  • the length of the fiber in the pellet is less than 2 mm, about 4 to 6 times longer in terms of the length of the reinforcing fiber, which has a great influence on the property reinforcement after the final injection.
  • the field of use is limited because the manufacturing cost is 10 times more expensive than glass fiber.
  • One aspect of the present invention is to provide an inorganic fiber using the by-products of the steelmaking process.
  • Another aspect of the present invention is to provide a method for producing an inorganic fiber using the by-product of the iron making process.
  • the fiber body is prepared by combining the slag generated during the steel manufacturing process, the fiber body is 20 to 60% by weight of silicon dioxide (SiO 2 ), 5 to 30% by weight of iron oxide ( Fe 2 O 3 ), 1 to 5 wt% aluminum oxide (Al 2 O 3 ), 15 to 40 wt% calcium oxide (CaO) and 15 to 35 wt% magnesium oxide (MgO) Is provided.
  • SiO 2 silicon dioxide
  • Fe 2 O 3 iron oxide
  • Al 2 O 3 aluminum oxide
  • CaO calcium oxide
  • MgO magnesium oxide
  • the slag preferably contains at least one of ferronickel slag, converter slag, Tallinn furnace slag, blast furnace slag.
  • the fiber body has an amount of slag of 70% by weight or more based on the total fiber body amount.
  • the fiber body preferably further comprises a cullet.
  • the average diameter of the fibers is preferably in the range of 5 ⁇ m to 50 ⁇ m.
  • the process of providing a slag generated during the steel manufacturing process was measured and the composition ratio was 20 to 60% by weight of silicon dioxide (SiO 2 ), 5 to 30% by weight of iron oxide (Fe 2 O 3 ), 1 to 5% by weight of aluminum oxide (Al 2 O 3 )
  • SiO 2 silicon dioxide
  • Fe 2 O 3 iron oxide
  • Al 2 O 3 aluminum oxide
  • the slag preferably includes at least one of ferronickel slag, converter slag, Tallinn furnace slag, blast furnace slag, high manganese steel slag, steelmaking slag and electric furnace slag.
  • the melting process is preferably carried out using at least one selected from the group consisting of an electric furnace, hydrogen energy and Brown gas.
  • the melting process is preferably performed at a temperature range of 1300 to 1650 °C.
  • the fiberizing process is preferably carried out in a spinning manner by rotating the container in which the molten raw material is granulated.
  • the rotational speed of the winder for winding is preferably 5 to 2000 rpm.
  • the melted compound may have a viscosity in the range of more than 0 and less than 800 poise based on 1500 ° C.
  • the discharge pressure through the nozzle during spinning is preferably in the range of 3 to 30 kPa.
  • the inorganic fiber manufacturing method by adopting a composition having a low viscosity, it is possible to pull out the fiber fluidly, to prevent the clogging of the bushing hole and to produce the fiber in an amorphous state. Furthermore, according to the present invention, not only the cost of raw materials can be reduced by using slag generated as a by-product, but also an eco-friendly process using industrial by-products can be established.
  • the inorganic fiber manufacturing method by adopting a composition having a low viscosity, it is possible to pull out the fiber fluidly, to prevent the clogging of the bushing hole and to produce the fiber in an amorphous state. Furthermore, according to the present invention, not only the cost of raw materials can be reduced by using slag generated as a by-product, but also an eco-friendly process using industrial by-products can be established.
  • Figure 2 shows the viscosity of the melt blend according to the silicon dioxide (SiO 2 ) content.
  • Figure 3 shows the viscosity of the melt blend according to the iron oxide (Fe 2 O 3 ) content.
  • Figure 4 shows the viscosity of the melt blend according to the calcium oxide (CaO) content.
  • Figure 5 shows the viscosity of the melt blend according to the magnesium oxide (MgO) content.
  • FIG. 6 diagrammatically illustrates an exemplary apparatus used in the Examples.
  • an inorganic fiber made from by-products such as slag produced by-products in steel production.
  • Such inorganic fibers may also be used as interior materials of various buildings.
  • the formulation for the production of fiber may be prepared by mixing various slags and the like in the form of powder, and blending the raw materials in a set component ratio.
  • Slag is a material produced as a by-product of manufacturing steel products from natural resources such as iron ore, coal and limestone, and the slag used in the present invention is not particularly limited, but is produced by the process of producing an alloy of iron and nickel, for example.
  • Blast furnace slag, high manganese steel slag, steelmaking slag, electric furnace slag, etc., which are produced by-products in the smelting furnace, such as FINEX melting furnace, can be used.
  • the main chemical compositions of the various slags have the following ranges.
  • the components of ferronickel slag are 45 to 55% by weight of silicon dioxide (SiO 2 ), 7 to 15% by weight of iron oxide (Fe 2 O 3 ), and 1 to 5% by weight of aluminum oxide (Al 2 O 3 ).
  • Calcium oxide (CaO) is 0 to 5% by weight, magnesium oxide (MgO) 25 to 35% by weight.
  • the components of the converter slag are 5 to 15% by weight of silicon dioxide (SiO 2 ), 25 to 35% by weight of iron oxide (Fe 2 O 3 ), 0 to 5% by weight of aluminum oxide (Al 2 O 3 ), calcium oxide (CaO) comprises 40 to 50% by weight, and 5 to 15% by weight magnesium oxide (MgO).
  • the components of the Tallinn furnace slag are 15 to 25% by weight of silicon dioxide (SiO 2 ), 45 to 55% by weight of iron oxide (Fe 2 O 3 ), 0 to 10% by weight of aluminum oxide (Al 2 O 3 ), calcium Oxide (CaO) comprises 5 to 20% by weight, magnesium oxide (MgO) 1 to 5% by weight.
  • the blast furnace slag is composed of 30 to 40% by weight of silicon dioxide (SiO 2 ), 1 to 5% by weight of iron oxide (Fe 2 O 3 ), 10 to 20% by weight of aluminum oxide (Al 2 O 3 ), calcium oxide (CaO) includes 5 to 20% by weight, and magnesium oxide (MgO) 5 to 20% by weight.
  • various slags are inevitably contained in addition to the main components such as other components or impurities such as fluorine (F), phosphorus pentoxide (P 2 O 5 ), chrome oak (Cr 2 O 3 ), nickel oxide (NiO), copper oxide (CuO), zinc oxide (ZnO), strontium oxide (SrO), zirconium oxide (ZrO 2 ), niobium pentoxide (Nb 2 O 5 ), sulfur (P), carbon (C), and the like.
  • fluorine (F) phosphorus pentoxide
  • P 2 O 5 chrome oak
  • Cr 2 O 3 chrome oak
  • NiO nickel oxide
  • CuO copper oxide
  • ZnO zinc oxide
  • ZrO 2 zirconium oxide
  • niobium pentoxide Nb 2 O 5
  • sulfur P
  • C carbon
  • the inorganic fiber of the present invention is a fiber body is prepared by mixing the slag generated during the steel manufacturing process, the fiber body is 20 to 60% by weight of silicon dioxide (SiO 2 ), 5 to 30% by weight of iron Oxide (Fe 2 O 3 ), 1 to 5 wt% aluminum oxide (Al 2 O 3 ), 15 to 40 wt% calcium oxide (CaO) and 15 to 35 wt% magnesium oxide (MgO) .
  • silicon dioxide SiO 2
  • Fe 2 O 3 iron Oxide
  • Al 2 O 3 aluminum oxide
  • CaO calcium oxide
  • MgO magnesium oxide
  • the fiber body comprises at least 20% and less than 60% by weight of silicon dioxide (SiO 2 ), more than 15% and up to 30% by weight of iron oxide (Fe 2 O 3 ), 1-5% by weight Aluminum oxide (Al 2 O 3 ), more than 15% to 40% by weight of calcium oxide (CaO) and more than 15% to 35% by weight of magnesium oxide (MgO).
  • SiO 2 silicon dioxide
  • Fe 2 O 3 iron oxide
  • Al 2 O 3 Aluminum oxide
  • CaO calcium oxide
  • MgO magnesium oxide
  • the fiber body preferably has an amount of slag of 70% by weight or more based on the total amount of the fiber body.
  • the fiber body of the present invention when silicon dioxide (SiO 2 ) is contained in less than 20% by weight, if the product is cracked in the product manufacturing process or after, and if contained in excess of 60% by weight, the product contains a large amount of glass The strength may be lowered. On the other hand, the viscosity tends to increase as the content of silicon dioxide (SiO 2 ) increases, but since silicon dioxide plays a role in forming a network of slag, when the content of silicon dioxide is insufficient, networking of the glass structure is not easy.
  • NBO non-bridging-oxygen
  • SiO 2 silicon dioxide
  • Aluminum oxide (Al 2 O 3 ) is closely related to the function of reducing the melting point of the composition and the viscosity when the composition is in the molten state.
  • the actual slag contains alumina even at a small amount, and aluminum oxide (Al 2 O 3 ) is 1% by weight or more to allow Al 2 O 3 to supplement SiO 2 so that the glassy material can sufficiently form a network structure. It is preferably included, but if it exceeds 5% by weight, it is difficult to reduce the melting point of the composition, making it difficult to melt the composition, the viscosity rises, the deformation occurs in the product. Therefore, preferably, aluminum oxide (Al 2 O 3 ) in the total composition of the composition contains 1 to 5% by weight.
  • the range of weights of calcium oxide (CaO) and magnesium oxide (MgO) controls the acidity of the composition.
  • a large amount of calcium oxide (CaO) in excess of 40% by weight causes cracks or fractures in the product after or during the manufacturing process, and the content of less than 15% by weight causes deformation of the product.
  • Magnesium oxide (MgO) similarly contains a large amount of more than 35% by weight cracks or breaks the product during or after the manufacturing process, and less than 15% by weight causes deformation of the product.
  • Iron oxide (Fe 2 O 3 ) functions as an inoculum for nucleation and is closely related to the strength of the product. When included in less than 10% by weight, nucleation is insignificant, and in excess of 30% by weight, cracks occur in the product after or during the manufacturing process. However, iron oxide (Fe 2 O 3) is intended to cover the more reduced because the amount increases the viscosity, preferably greater than 15% by weight to 30% by weight of iron oxide of less than (Fe 2 O 3).
  • the combination of the above components may be prepared by mixing the various slag by-produced in the steel manufacturing process in the form of powder so as to have a set weight ratio and composition ratio.
  • the slag may include all slags generated in steel mills other than steelmaking and steelmaking slag, and when using the slag Some oxides and the like may be added to meet enhanced strength and operating conditions.
  • composition fiber body of the present invention may further comprise cullet and / or together industrial by-products as necessary to control the composition of the formulation for preparing the inorganic fiber of the present invention within the scope of the present invention.
  • the average diameter of the fibers obtained by the present invention may range from 5 ⁇ m to 50 ⁇ m, preferably from 10 ⁇ m to 40 ⁇ m.
  • the manufacturing method of the inorganic fiber of the present invention comprises the steps of providing a slag generated during the manufacturing process of steel;
  • the composition of the slag was measured and the composition ratio was 20 to 60% by weight of silicon dioxide (SiO 2 ), 5 to 30% by weight of iron oxide (Fe 2 O 3 ), 1 to 5% by weight of aluminum oxide (Al 2 O 3 )
  • the slag is at least any one of ferronickel slag, converter slag, Tallinn furnace slag, blast furnace slag, high manganese steel slag, steelmaking slag and electric furnace slag. It may be to include one, but is not particularly limited thereto.
  • the slag generated during the steel manufacturing process is sufficiently dried at 100 or more, and then various kinds of raw materials may be prepared in powder form using a grinder.
  • various slags may be pulverized to a predetermined particle size (eg, within 5 m / m) in a magnetic ball mill to have a powder form.
  • the inoculation agent which is a nucleus material (TiO 2 , Fe 2 O 3 , Na 2 O, K 2 O) may also be prepared in a powder form by grinding to a predetermined particle size (eg 5 m / m).
  • the raw material may be prepared to have 70% or more of various slag powders in the weight ratio of the total composition, and at the same time, each raw material is controlled to have the composition ratio described above with respect to the inorganic fiber.
  • various raw materials whose composition ratio control is completed are blended.
  • various slags and the like, each prepared in powder form may be introduced into the kneader and blended in the basic blending ratio described above.
  • various slag, waste refractories, and inoculants provided in powder form may be added together into the kneader and blended.
  • the composition is charged to the melting furnace, and the melting furnace is heated to a complete melting temperature of the composition to completely melt it.
  • the melting process of the present invention can be carried out at 1300 °C to 1650 °C, the temperature for complete melting is preferably about 10 to 100 °C higher than the melting point of the composition.
  • the complete melting temperature it can be discharged based on the melting point of the various slag constituting the composition.
  • the melting point of ferronickel slag is 1412 ° C
  • the melting point of converter slag is 1382 ° C
  • the melting point of blast furnace slag is 1364 ° C.
  • the melting process may be performed using at least one selected from the group consisting of an electric furnace, hydrogen energy and Brown gas, for example, molten slag when the slag is transferred from the toppedo to continuous fiber manufacturing equipment It may be maintained in the form, and some solidified slag may be melted as a whole through the melting process using an electric furnace, hydrogen energy, Brown gas and the like.
  • the brown gas used at this time may include all of the gases generated during the electrolysis of water.
  • the melt in which the composition is completely melted is granulated in a container and fiberized into a fibrous shape.
  • a drawing method, a spinning method, and the like can be used as the fiberizing method.
  • the fiberizing process of the present invention may be carried out in a spinning manner, for example, by rotating the vessel in which the molten raw material is granulated.
  • the container that can be used as an example is a container made of a material such as a tundish, ladle, etc., can proceed the fiberization process by granulating the melt into the container.
  • the container When the fiberization proceeds in a radial manner, the container has a plurality of nozzle holes penetrating from the side to the inside, and when the container rotates, the melt in the container may be spun through the nozzle hole to allow the fiber to proceed.
  • the rotational speed of the winder can be maintained at 5 to 2000 rpm to wind the long fibers. If the rotational speed is less than 5rpm, there is a problem that the fiber is not made, and if the rotational speed is more than 2000rpm, the fiber is broken in the middle.
  • the viscosity of the melted compound is preferably in the range of more than 0 and less than 800 poise based on 1500 ° C. Do. When the viscosity range exceeds 800 poise, there is a problem in that the viscosity of the melt is too high and the fluidity of the melt is not smooth, and thus the fiber may not be manufactured.
  • the discharge pressure through the nozzle during spinning is preferably in the range of 3 to 30 kPa, the pressure control by compressed air to maintain a constant discharge pressure through the nozzle when spinning the molten composition It is possible. If the pressure is less than 3kPa, there is a problem that the fiber may not be spun through the nozzle, if the pressure exceeds 30kPa there is a problem that the fiber is broken or the thickness may not be constant.
  • one or more nozzle holes are provided on the lower surface of the container, the rotary container is positioned spaced downwardly of the container, and the rotation rotates when the melt is dropped and discharged through the nozzle hole provided in the container.
  • the melt in the vessel can be spun by the sawtooth protrusion provided in the rotating vessel to proceed with fiberization.
  • the drawing method of the fiber is not limited to a specific method, and may be fiberized in a variety of modified manners, such as a horizontal rotary motion method, a vertical rotary motion method, an extrusion method, a method of injecting a gas into the melt.
  • a step of gas cleaning may be included for a predetermined period of time prior to introducing the completely molten composition into the vessel, i.
  • a step of preheating and preparing various shapes of containers at a predetermined temperature may be included before the completely melted composition is introduced into the container during the fiberization process. This can prevent the fiber from being quenched and disconnected from the various shapes of the container due to the difference between the temperature of the completely melted composition flowing into the various shapes of the container and the surface temperature of the various shapes of the container.
  • the present invention is to control the viscosity and interfacial tension, which is one of the most important physical properties for the production of the actual inorganic fiber, the viscosity of the melt blended to be pulled amorphous without clogging in the bushing hole, it is possible to pull the fiber more fluid
  • the fiber when the fiber is pulled through the bushing, the fiber may be broken, or a shot may be solved.
  • the converter slag and the ferronickel slag were blended in a weight ratio of 1: 1, and the blend was melted at 1480 ° C. to form a liquid.
  • the composition is 20 to 60% by weight of silicon dioxide (SiO 2 ), 5 to 30% by weight of iron oxide (Fe 2 O 3 ), 1 to 5% by weight of aluminum oxide (Al 2 O 3 ), 15 It was controlled within the range from 40 to 40 wt% calcium oxide (CaO) and 15 to 35 wt% magnesium oxide (MgO) and blended using cullet when necessary to obtain this composition.
  • the molten formulation was spun by ejecting it through a bushing nozzle at a pressure of 10 kPa.
  • the crucible bushing was directly heated in an electric furnace to control to a target spinning temperature of 150 ° C.
  • the end of the fiber was attached to the winder drum by controlling the speed of the melt at the end of the bushing according to the viscosity and melting point, and winding the fiber at a speed of 1200 rpm to produce a fiber having a constant thickness.
  • An exemplary apparatus used at this time is shown in FIG. 6, and the resulting slag fibers are shown in FIG. 7.
  • the inorganic fiber can be produced from the slag and industrial by-products.
  • Aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), iron oxide (Fe 2 O 3 ), calcium oxide (CaO) and magnesium in order to check the viscosity change of the melt blend according to the composition of the above 1. Viscosity changes were measured at about 1500 ° C. with varying oxide (MgO) content.
  • Figure 1 is a viscosity of the melt blend according to the aluminum oxide (Al 2 O 3 ) content
  • Figure 2 is a viscosity of the melt blend according to the silicon dioxide (SiO 2 ) content
  • Figure 3 The viscosity of the melt blended according to the content of silver iron oxide (Fe 2 O 3 )
  • Figure 4 is the viscosity of the melt blended according to the calcium oxide (CaO) content
  • Figure 5 shows the viscosity of the melt blended according to the magnesium oxide (MgO) content It is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

본 발명은 제철 공정의 부산물을 이용한 무기 섬유 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 섬유 몸체는 강의 제조 공정 중 발생된 슬래그를 배합하여 제조되며, 상기 섬유 몸체는 20 내지 60 중량%의 이산화규소(SiO2), 5 내지 30 중량%의 철 산화물(Fe2O3), 1 내지 5 중량%의 산화알루미늄(Al2O3), 15 내지 40 중량%의 칼슘 산화물(CaO) 및 15 내지 35 중량%의 마그네슘 산화물(MgO)을 함유하는 무기 섬유, 그리고 이의 제조방법에 관한 것이다.

Description

제철 공정의 부산물을 이용한 무기 섬유 및 이의 제조 방법
본 발명은 제철 공정의 부산물을 이용한 무기 섬유 및 이의 제조 방법에 관한 것으로, 강 제조 공정에서 부생되는 슬래그 등의 부산물을 원료로 하여 각종 재료로 사용되는 무기 섬유를 제조하는 것에 관한 것이다.
최근 자동차 산업은 세계적으로 이산화탄소 저감과 관련된 각종 규제 증가 및 연료 효율성에 대한 요구가 높아짐에 따라 기존 플라스틱 부품에 대한 경량화 노력은 물론 금속 부품을 플라스틱 복합재로 대체하는 차량 경량화에 많은 연구 개발을 진행하고 있다. 특히, 세계 각국은 지역별로 새로운 자동차 배기 가스 배출량 및 이산화탄소 배출에 대한 규제와 자동차 연비에 대한 새로운 목표를 설정함으로써 자동차 경량화에 대한 의지를 강력하게 표명하고 있다. 이러한 정책은 기존 2020년을 목표로 추진하던 것을 2016년까지 앞당김으로써 자동차 경량화를 통한 환경오염문제 해결과 효율성 향상을 목적으로 한 세계 각국의 복합재 개발에 적극 참여하겠다는 의지를 나타내고 있다. 이에 따라 국내 정부에서도 자동차 연비 개선에 대한 새로운 방향 및 가이드라인을 2009년 6월에 제시하였으며, 향후 5년간 약 1,500억원의 연구 개발비를 투입하여 매년 자동차 연비를 5% 씩 개선하겠다는 계획을 마련하였다.
주요 자동차 부품 복합재인 LFT(Long Fiber Reinforced Thermoplastic)는 도어모듈, FEM(Front End Module), IP(Instrument Panel) 등 다양한 곳에 적용되고 있다. 그 이유는 유가 급등으로 인한 에너지 위기로 자동차의 경량화 요구가 크게 증가한 것과 생산성을 높이면서 경량화를 도모하는 재료로써 LFT가 큰 기대를 모았기 때문이다. 산업에서는 가격이 상대적으로 저렴한 폴리프로필렌을 기재로 사용하고 장섬유를 보강재로 이용한 장섬유 보강 열가소성 복합재와 관련한 많은 연구를 수행하고 있다. 대표적인 것이 LFT이며, 자동차 산업에서 엔지니어링 플라스틱, 열경화성 소재, 그리고 일부 금속 부품을 대체할 수 있는 이상적인 기술로 주목받고 있다.
복합재의 물성은 다양한 인자에 의해 영향을 받는데 그 중 하나가 보강용 섬유의 길이이다. LFT는 그 단어에서 의미하는 것처럼 펠렛(Pellet) 내의 보강섬유의 길이가 약 8 mm에서 12 mm를 유지하고 사출성형이 가능한 소재이다. 기존 섬유 복합재에서 펠렛 내에 있는 섬유의 길이가 2 mm 이하인 것과 비교해 볼 때 보강 섬유의 길이 면에서 약 4배에서 6배 정도 길고 이로 인하여 최종 사출 후 물성 보강에 큰 영향을 주게 된다. 앞으로는 다양한 엔지니어링 플라스틱을 기재로 하여 친환경 바이오 섬유 등을 이용한 보강재 개발이 필수적이다. 그러나 이러한 기계적, 물리적 물성이 뛰어남에도 불구하고 제조비용이 유리섬유 대비 10배 이상 고가인 이유로 이용 분야가 국한되어 있다.
한편, 제선, 제강 공정 등에서 발생되는 슬래그는 연간 1,700만톤이며 대부분 시멘트 및 도료제로 사용되고 있다. 이러한 슬래그의 고부가 가치화를 위한 연구는 계속 진행되어 왔으며 제철부산물 또는 산업폐기물을 이용한 유리섬유에 대한 연구 또한 향후 무기질섬유 시장의 급속한 성장에 대응하기 위해 충분한 가치가 있다고 판단된다. 산업폐기물을 이용한 복합재 활용은 아직 국내에서 처음 제안되고 있으며, 현무암과 그 구성성분이 유사하여 바잘트 섬유와 비슷한 물성을 가질 수 있을 것으로 판단된다. 현무암을 이용하여 유리섬유를 제조할 경우, 국내에서는 현재 전량 고가로 수입되고 있으며, 대량소비에 의한 자원 부족, 채취 과정에서 발생하는 환경 훼손 등 환경 문제 등이 문제점으로 야기될 수 있으므로, 제조비용 중 높은 원가를 차지하는 현무암 대신 철강 부산물인 슬래그를 사용함으로써 새로운 재자원화 방법을 제시하고자 한다.
이에 본 발명의 한 측면은 제철 공정의 부산물을 이용한 무기 섬유를 제공하는 것이다.
본 발명의 다른 측면은 제철 공정의 부산물을 이용한 무기 섬유의 제조 방법을 제공하는 것이다.
본 발명의 일 견지에 의하면, 섬유 몸체는 강의 제조 공정 중 발생된 슬래그를 배합하여 제조되며, 상기 섬유 몸체는 20 내지 60 중량%의 이산화규소(SiO2), 5 내지 30 중량%의 철 산화물(Fe2O3), 1 내지 5 중량%의 산화알루미늄(Al2O3), 15 내지 40 중량%의 칼슘 산화물(CaO) 및 15 내지 35 중량%의 마그네슘 산화물(MgO)을 함유하는, 무기 섬유가 제공된다.
상기 슬래그는 페로니켈 슬래그, 전로 슬래그, 탈린로 슬래그, 고로 슬래그 중 적어도 어느 하나를 포함하는 것이 바람직하다.
상기 섬유 몸체는 상기 슬래그의 량이 전체 섬유 몸체 량에 대하여 70 중량% 이상인 것이 바람직하다.
상기 섬유 몸체는 파유리를 추가로 포함하는 것이 바람직하다.
상기 섬유의 평균 직경은 5㎛ 내지 50㎛ 범위인 것이 바람직하다.
본 발명의 다른 견지에 의하면, 강의 제조 공정 중 발생된 슬래그를 마련하는 과정; 상기 슬래그의 조성을 측량하고 조성비를 20 내지 60 중량%의 이산화규소(SiO2), 5 내지 30 중량%의 철 산화물(Fe2O3), 1 내지 5 중량%의 산화알루미늄(Al2O3), 15 내지 40 중량%의 칼슘 산화물(CaO) 및 15 내지 35 중량%의 마그네슘 산화물(MgO)을 포함하도록 제어한 배합물을 제조하는 과정; 상기 배합물을 용융시키는 과정; 및 용융물을 섬유 형상으로 섬유화하는 과정을 포함하는, 무기 섬유의 제조방법이 제공된다.
상기 슬래그는 페로니켈 슬래그, 전로 슬래그, 탈린로 슬래그, 고로 슬래그, 고망간강슬래그, 제강슬래그 및 전기로슬래그 중 적어도 어느 하나를 포함하는 것이 바람직하다.
상기 용융시키는 과정은 전기로, 수소 에너지 및 브라운 가스로 이루어진 그룹으로부터 선택되는 적어도 하나를 이용하여 수행되는 것이 바람직하다.
상기 용융시키는 과정은 1300 내지 1650℃의 온도 범위에서 수행되는 것이 바람직하다.
상기 섬유화하는 과정은 용융된 원료가 입조되는 용기가 회전하여 방사 방식으로 수행되는 것이 바람직하다.
권취를 위한 와인더의 회전 속도는 5 내지 2000 rpm인 것이 바람직하다.
상기 방사 방식으로 섬유화하는 과정이 수행되는 경우 용융된 배합물의 점도는 1500도(℃) 기준 0 초과 800 poise 이하의 범위인 것이 바람직하다.
상기 방사 방식으로 섬유화하는 과정이 수행되는 경우 방사 시 노즐을 통한 방출 압력은 3 내지 30kPa의 범위인 것이 바람직하다.
본 발명에 따른 무기섬유 제조 방법에 의하면, 점성이 낮은 조성을 채용함에 따라 유동적으로 섬유를 뽑을 수 있으며, 부싱 구멍의 막힘을 방지하고 비정질로 섬유의 제조가 가능하다. 나아가, 본 발명에 의하면 부산물로 발생된 슬래그를 이용하여 원료의 비용을 절감할 수 있을 뿐만 아니라, 산업 부산물을 이용한 친환경 공정을 확립할 수 있다.
본 발명에 따른 무기섬유 제조 방법에 의하면, 점성이 낮은 조성을 채용함에 따라 유동적으로 섬유를 뽑을 수 있으며, 부싱 구멍의 막힘을 방지하고 비정질로 섬유의 제조가 가능하다. 나아가, 본 발명에 의하면 부산물로 발생된 슬래그를 이용하여 원료의 비용을 절감할 수 있을 뿐만 아니라, 산업 부산물을 이용한 친환경 공정을 확립할 수 있다.
도 1은 산화알루미늄(Al2O3) 함량에 따른 용융 배합물의 점도를 나타낸 것이다.
도 2는 이산화규소(SiO2) 함량에 따른 용융 배합물의 점도를 나타낸 것이다.
도 3은 철 산화물(Fe2O3) 함량에 따른 용융 배합물의 점도를 나타낸 것이다.
도 4는 칼슘 산화물(CaO) 함량에 따른 용융 배합물의 점도를 나타낸 것이다.
도 5는 마그네슘 산화물(MgO) 함량에 따른 용융 배합물의 점도를 나타낸 것이다.
도 6은 실시예에서 사용된 예시적인 장치를 도식적으로 나타낸 것이다.
도 7은 실시예에서 제조된 예시적인 슬래그 섬유를 나타낸 것이다.
이하, 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.
본 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명에 의하면, 강 제조 공정에서 부생되는 슬래그 등의 부산물을 원료로 한 무기 섬유가 제공된다. 이러한 무기 섬유는 각종 건축물의 내 외장재 등으로 사용될 수도 있다.
이때, 섬유 제조를 위한 배합물은 각종 슬래그 등을 분말 형태로 만들고, 설정된 성분비로 원료를 배합하여 제조할 수 있다.
슬래그는 철광석, 석탄, 석회석 등의 천연 자원으로부터 철강 제품을 제조하면서 부산물로 생성된 물질로, 본 발명에 사용되는 슬래그는 특히 제한되는 것은 아니나, 예를 들어 철과 니켈의 합금 제조 공정에서 부생되는 페로니켈 슬래그, 전로에 쇳물을 강철로 정련하는 제강공정에서 부생되는 전로 슬래그, 고급강의 일종인 극저탄소강을 제조하기 위해 탈인 및 탈탄 기능을 수행하는 탈린로 제조 공정에서 부생되는 탈린로 슬래그, 고로, 파이넥스(Finex) 융용로 등 용광로에 쇳물을 제조하면서 부생되는 고로 슬래그, 고망간강슬래그, 제강슬래그, 전기로슬래그 등을 사용할 수 있다.
각종 슬래그의 주요 화학 조성은 다음과 같은 범위를 갖는다.
일반적으로 페로니켈 슬래그의 성분은 이산화규소(SiO2)가 45 내지 55 중량%, 철 산화물(Fe2O3)이 7 내지 15 중량%, 알루미늄 산화물(Al2O3)이 1 내지 5 중량%, 칼슘 산화물(CaO)이 0 내지 5 중량%, 마그네슘 산화물(MgO) 25 내지 35 중량%을 포함한다. 전로 슬래그의 성분은 이산화규소(SiO2)가 5 내지 15 중량%, 철 산화물(Fe2O3)이 25 내지 35 중량%, 산화알루미늄(Al2O3)이 0 내지 5 중량%, 칼슘 산화물(CaO)이 40 내지 50 중량%, 마그네슘 산화물(MgO) 5 내지 15 중량%을 포함한다. 탈린로 슬래그의 성분은 이산화규소(SiO2)가 15 내지 25 중량%, 철 산화물(Fe2O3)이 45 내지 55 중량%, 알루미늄 산화물(Al2O3)이 0 내지 10 중량%, 칼슘 산화물(CaO)이 5 내지 20 중량%, 마그네슘 산화물(MgO) 1 내지 5 중량%을 포함한다. 고로 슬래그의 성분은 이산화규소(SiO2)가 30 내지 40 중량%, 철 산화물(Fe2O3)이 1 내지 5 중량%, 알루미늄 산화물(Al2O3)이 10 내지 20 중량%, 칼슘산화물(CaO)이 5 내지 20 중량%, 마그네슘 산화물(MgO) 5 내지 20 중량%을 포함한다.
또한, 각종 슬래그는 주요 성분 이외에 기타 성분 혹은 불순물 등 불가피하게 함유되는 성분으로 플루오르(F), 오산화인(P2O5), 크롬오커(Cr2O3), 산화니켈(NiO), 산화구리(CuO), 산화아연(ZnO), 산화스트론튬(SrO), 산화지르코늄(ZrO2),오산화니오(Nb2O5), 황(P), 탄소(C) 등을 포함할 수 있다.
보다 상세하게, 본 발명의 무기 섬유는 섬유 몸체는 강의 제조 공정 중 발생된 슬래그를 배합하여 제조되며, 상기 섬유 몸체는 20 내지 60 중량%의 이산화규소(SiO2), 5 내지 30 중량%의 철 산화물(Fe2O3), 1 내지 5 중량%의 산화알루미늄(Al2O3), 15 내지 40 중량%의 칼슘 산화물(CaO) 및 15 내지 35 중량%의 마그네슘 산화물(MgO)을 함유하는 것이다. 보다, 바람직하게 상기 섬유 몸체는 20 중량% 이상 내지 60 중량% 미만의 이산화규소(SiO2), 15 중량% 초과 내지 30 중량% 이하의 철 산화물(Fe2O3), 1 내지 5 중량%의 산화알루미늄(Al2O3), 15 중량% 초과 내지 40 중량% 이하의 칼슘 산화물(CaO) 및 15 중량% 초과 내지 35 중량% 이하의 마그네슘 산화물(MgO)을 함유하는 것이다.
본 발명의 무기 섬유 제조 시 상기 섬유 몸체는 상기 슬래그의 량이 전체 섬유 몸체 량에 대하여 70 중량% 이상인 것이 바람직하다.
본 발명의 섬유 몸체에 있어서, 이산화규소(SiO2)가 20 중량% 미만으로 포함되면, 제품 제조 과정 혹은 후 제품에 크랙이 발생하고, 60 중량%를 초과하여 포함되면, 제품에 유리질이 다량 함유되어 강도가 저하될 수 있다. 한편, 이산화규소(SiO2) 함량이 증가함에 따라 점도가 증가하는 경향이 있으나, 이산화규소는 슬래그 중 네트워크를 형성하는 역할을 하므로 이산화규소의 함량이 불충분한 경우 유리 구조의 네트워킹이 용이하지 못하므로, 바람직하게는 20 중량% 이상 내지 60 중량% 미만의 이산화규소(SiO2)를 포함하여 NBO(non-bridging-oxygen)의 수를 3 전후로 유지할 수 있도록 하는 것이 바람직하며, 이와 같은 본원발명의 함량 범위의 경우 충분한 구조의 네트워킹(networking) 형성으로 끊어지지 않는 장섬유를 제조할 수 있다.
산화알루미늄(Al2O3)은 조성물의 용융점을 저감하는 기능과 조성물이 융용 상태일 때 점도와 관련이 깊다. 실제 슬래그에는 미량이라도 알루미나가 포함되어 있고, 유리질이 망목 구조를 충분히 조성할 수 있도록 Al2O3가 SiO2의 보충역할을 할 수 있도록 하기 위해 산화알루미늄(Al2O3)은 1 중량% 이상 포함되는 것이 바람직하고, 다만 5 중량%를 초과하면 조성물의 융용점을 저감시키기 어려워 조성물 용융이 어려워지고, 점도가 상승하여 제품에 변형이 발생한다. 따라서 바람직하게는 조성물의 전체 조성 중 산화알루미늄(Al2O3)은 1 내지 5 중량%를 함유하는 것이 좋다.
칼슘 산화물(CaO)과 마그네슘 산화물(MgO)의 중량의 범위는 조성물의 산도를 제어한다. 칼슘 산화물(CaO)이 40 중량%를 초과하여 다량 함유되면 제조 공정 혹은 후에 제품에 크랙이 발생하거나 파괴되고, 15 중량% 미만으로 함유되면 제품에 변형을 초래한다. 마그네슘 산화물(MgO)도 유사하게 35 중량%를 초과하여 다량 함유되면 제조 공정 혹은 후에 제품에 크랙이 발생하거나 파괴되고, 15 중량% 미만으로 함유되면 제품에 변형을 초래한다.
철 산화물(Fe2O3)은 핵 생성을 위한 접종제로서 기능을 하며, 제품의 강도와 관련이 깊다. 10 중량% 미만으로 포함되면, 핵 생성이 미미하고, 30 중량% 초과하여 포함되면, 제조 과정 혹은 후 제품에 크랙이 발생한다. 다만, 철 산화물(Fe2O3)은 함량이 감소할수록 점도를 상승시키므로, 바람직하게는 15 중량% 초과 내지 30 중량% 이하의 철 산화물(Fe2O3)을 포함하는 것이다.
상기 성분들의 배합물은 강 제조 공정에서 부생되는 각종 슬래그을 분말 형태로 만들어 설정된 중량비 및 조성비가 되도록 배합되어 제작될 수 있다.
상기 제철소에서 부산물로 발생하는 슬래그를 토페도카 등을 이용하여 용융 상태로 슬래그를 이동 시 적용 슬래그는 제선 및 제강슬래그 외 제철소에서 발생되는 모든 슬래그를 모두 포함할 수 있으며, 상기 슬래그를 이용 시 더 향상된 강도 및 조업조건 만족을 위해 일부의 산화물 등을 첨가할 수도 있다.
나아가, 본 발명의 무기 섬유 제조를 위한 배합물의 조성을 본 발명의 범위 내로 조절하기 위해 필요에 따라 본 발명의 조성섬유 몸체는 파유리 및/또는 함께 산업부산물을 추가로 포함할 수 있다.
본 발명에 의해 획득되는 상기 섬유의 평균 직경은 5㎛ 내지 50㎛ 범위일 수 있으며, 바람직하게는 10㎛ 내지 40㎛ 범위인 것이다.
본 발명의 다른 견지에 의하면, 상술한 본 발명의 무기섬유 제조를 위한 제조 방법에 제공되며, 보다 상세하게 본 발명의 무기 섬유의 제조방법은 강의 제조 공정 중 발생된 슬래그를 마련하는 과정; 상기 슬래그의 조성을 측량하고 조성비를 20 내지 60 중량%의 이산화규소(SiO2), 5 내지 30 중량%의 철 산화물(Fe2O3), 1 내지 5 중량%의 산화알루미늄(Al2O3), 15 내지 40 중량%의 칼슘 산화물(CaO) 및 15 내지 35 중량%의 마그네슘 산화물(MgO)을 포함하도록 제어한 배합물을 제조하는 과정; 상기 배합물을 용융시키는 과정; 및 용융물을 섬유 형상으로 섬유화하는 과정을 포함하는 것이다.
상기 슬래그를 마련하는 과정과 관련하여서는 상기 본 발명의 무기 섬유과 관련하여 상술한 바와 같이 상기 슬래그는 페로니켈 슬래그, 전로 슬래그, 탈린로 슬래그, 고로 슬래그, 고망간강슬래그, 제강슬래그 및 전기로슬래그 중 적어도 어느 하나를 포함하는 것일 수 있으며, 이에 특히 제한되는 것은 아니다.
보다 상세하게, 먼저 강의 제조 공정 중 발생 된 슬래그 등을 100 이상에서 충분히 건조한 후 분쇄기를 사용하여 각각 분말 형태로 각종 원료를 마련할 수 있다. 예컨대 각종 슬래그를 자기질 볼밀(Ball mill)에서 소정 입도(예: 5m/m 이내)까지 분쇄하여 각각 분말 형태를 가지도록 마련할 수 있다. 또한, 필요에 따라서 기핵물질인 접종제가(TiO2, Fe2O3, Na2O, K2O)도 소정 입도(예: 5m/m)까지 분쇄하여 분말 형태로 마련할 수 있다.
분말 형태로 마련된 각종 원료를 측정하고 조성비를 제어한다. 예컨대 전체 조성물의 중량비 중 각종 슬래그의 분말이 70% 이상 갖도록 준비할 수 있으며, 동시에 상기 무기 섬유과 관련하여 상술한 조성비를 갖도록 각 원료를 제어한다.
그 후, 조성비 제어가 완료된 각종 원료를 배합한다. 예컨대 분말 형태로 각각 마련된 각종 슬래그 등을 혼련기 내부로 투입하여 위에서 설명된 기본적인 배합 비율로 배합할 수 있다. 또한, 필요에 따라서 분말 형태로 마련된 각종 슬래그, 폐 내화물, 접종제를 함께 혼련기 내부로 투입하여 배합할 수 있다.
배합물이 마련되면, 조성물을 용해로에 장입하고, 조성물의 완전 융용 온도까지 용해로를 승온하여 완전 용융시킨다. 예컨대 본 발명의 상기 용융시키는 과정은 1300℃ 내지 1650℃에서 수행될 수 있으며, 완전 융용을 위한 온도는 조성물의 융용점보다 약 10 내지 100℃ 높은 것이 바람직하다. 여기서 완전 융용 온도를 결정하기 위해 조성물의 구성을 이루는 각종 슬래그의 융용점 기반으로 유출할 수 있다. 예컨대 페로니켈 슬래그의 용융점은 1412℃, 전로 슬래그의 용융점은 1382℃, 고로 슬래그의 용융점은 1364℃이다.
한편, 상기 용융시키는 과정은 전기로, 수소 에너지 및 브라운 가스로 이루어진 그룹으로부터 선택되는 적어도 하나를 이용하여 수행될 수 있으며, 예를 들어 상기 슬래그를 토페도카에서 연속 섬유 제조 장비로 이송 시 용융 슬래그 형태로 유지될 수도 있으며, 일부 응고된 슬래그는 전기로, 수소에너지, 브라운가스 등을 사용하여 용융시키는 과정을 통해 전체적으로 용융될 수 있다. 이때 사용되는 브라운 가스는 물의 전기분해 시 발생된 가스 모두를 포함할 수 있다.
그 후, 조성물이 완전 용융된 용융물은 용기에 입조되어 섬유 형상으로 섬유화하는 과정이 진행된다. 여기서 섬유화 방법으로 인발 방법과 방사 방법 등을 사용할 수 있다. 예를 들어, 본 발명의 상기 섬유화하는 과정은 예를 들어 용융된 원료가 입조되는 용기가 회전하여 방사 방식으로 수행될 수 있다.
이때, 예시적으로 사용될 수 있는 용기는 턴디쉬, 레이들 등과 같은 재질의 용기이며, 용기 안으로 용융물을 입조시켜 섬유화 과정을 진행할 수 있다.
방사 방식으로 섬유화가 진행되는 경우, 용기 측면에서 내부까지 관통되는 다수의 노즐공을 구비하고, 용기가 회전운동을 하면 용기 내에 용융물은 노즐공을 통해 방사되어 섬유화가 진행되도록 할 수 있다.
여기서, 장섬유를 권취하기 위해 와인더의 회전 속도를 5 내지 2000 rpm으로 유지할 수 있다. 회전 속도가 5rpm 미만이면 섬유가 만들어지지 않는 문제가 있고, 2000 rpm 초과이면 섬유가 중간에 끊어지는 문제가 있다.
상기 방사 방식으로 섬유화하는 과정이 수행되는 경우, 예를 들어 상기 이송된 용융물이 부싱 공정을 통해 방사될 때, 용융된 배합물의 점도는 1500도(℃) 기준 0 초과 800 poise 이하의 범위인 것이 바람직하다. 점도 범위가 800 poise를 초과하는 경우에는 너무 점성이 높아 용융물의 유동성이 원활하지 않아 섬유제조가 되지 않을 수 있는 문제가 있다.
한편, 상기 방사 방식으로 섬유화하는 과정이 수행되는 경우 방사 시 노즐을 통한 방출 압력은 3 내지 30kPa의 범위인 것이 바람직하며, 상기 용융 조성을 방사 시 노즐을 통한 방출 압력이 일정하도록 압축공기로 압력제어가 가능하다. 상기 압력 이 3kPa 미만인 경우에는 섬유가 노즐을 통해 방사되지 않을 수 있는 문제가 있고, 30kPa를 초과하는 경우에는 섬유가 끊어지거나 굵기가 일정하지 않을 수 있는 문제가 있다.
방사 방식으로 섬유화가 진행되는 경우, 용기 하면에 하나 이상의 노즐공을 구비하고, 용기의 하측 방향으로 이격되어 회전용기를 위치시키며, 용융물이 용기에 구비된 노즐공을 통해 낙하 배출될 때 회전하는 회전 용기 내의 용융물은 회전 용기에 구비된 톱니모양의 돌출부에 의해 방사되어 섬유화가 진행될 수 있다.
또한, 섬유의 인발 방법은 특정한 방법에 국한되지 않고, 수평 회전 운동 방식, 수직 회전 운동 방식, 압출 방식, 용융물에 기체를 주입하는 방식 등 다양한 변형된 방식으로 섬유화할 수 있다.
또한, 용기 내로 완전 용융된 조성물을 유입하기 전에 소정의 시간 동안 가스 청정 과정 즉 가스 배출을 시키는 단계가 포함될 수 있다.
또한, 섬유화 과정에서 용기 내로 완전 용융된 조성물을 유입하기 전에 각종 형상의 용기를 소정 온도로 예열하여 마련하는 단계가 포함될 수 있다. 이는 각종 형상의 용기 내로 유입되는 완전 용융된 조성물의 온도와 각종 형상의 용기의 표면 온도의 차이에 의해 각종 형상의 용기에서 섬유화되는 섬유가 급랭되어 단선되는 현상이 발생하는 것을 방지할 수 있다.
본 발명은 실제 무기섬유를 제조하기 위한 가장 중요한 물성 중 하나인 점성 및 계면장력을 제어한 것으로, 용융 배합물의 점성이 낮아야 부싱 구멍에서 막히지 않고 비정질로 뽑을 수 있으며, 좀 더 유동적으로 섬유를 뽑을 수 있는 이점이 있는 것으로, 본 발명에 의하면 부싱을 통해 섬유를 뽑을 때 섬유가 끊어지거나, 쇼트(shot, 일부 뭉친 덩어리)가 발생하는 등의 문제를 해결할 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.
실시예
1. 무기 섬유의 제조
전로슬래그와 페로니켈슬래그를 1:1의 중량비로 배합하고, 배합물을 1480℃로 용융하여 액상형태로 만들었다.
이때 상기 배합물의 조성은 20 내지 60 중량%의 이산화규소(SiO2), 5 내지 30 중량%의 철 산화물(Fe2O3), 1 내지 5 중량%의 산화알루미늄(Al2O3), 15 내지 40 중량%의 칼슘 산화물(CaO) 및 15 내지 35 중량%의 마그네슘 산화물(MgO) 범위 내에서 제어하였으며, 이러한 조성을 획득하는 데 일부 필요 시 파유리를 사용하여 배합하였다.
상기 용융된 배합물을 10kPa의 압력으로 부싱 노즐을 통해 방출시켜 방사하였다. 도가니 부싱은 전기로에서 직접 가열하여 타겟 방사 온도 150℃로 제어하였다.
부싱 끝에 있는 용융물을 점성치와 융점에 맞게 속도를 제어하여 잡아당겨 섬유의 끝을 와인더 드럼에 부착시켜 1200rpm 속도로 감아 일정 굵기의 섬유를 제조하였다. 이때 사용되는 예시적인 장치를 도 6에 도시하였으며, 그 결과 제조된 슬래그 섬유를 도 7에 나타내었다.
본 실시예를 통해 슬래그 및 산업부산물로부터 무기섬유 제조가 가능함을 확인할 수 있었다.
2. 조성에 따른 용융 상태 배합물의 점도 변화 확인
상기 1.의 배합물의 조성에 따라 용융 배합물의 점도 변화를 확인하기 위하여 산화알루미늄(Al2O3), 이산화규소(SiO2), 철 산화물(Fe2O3),칼슘 산화물(CaO) 및 마그네슘 산화물(MgO) 함량을 변화시키면서 약 1500 도(℃)에서 점도 변화를 측정하였다.
그 결과를 도 1 내지 도 5에 나타내었으며, 도 1은 산화알루미늄(Al2O3) 함량에 따른 용융 배합물의 점도, 도 2는 이산화규소(SiO2) 함량에 따른 용융 배합물의 점도, 도 3은 철 산화물(Fe2O3) 함량에 따른 용융 배합물의 점도, 도 4는 칼슘 산화물(CaO) 함량에 따른 용융 배합물의 점도, 그리고 도 5는 마그네슘 산화물(MgO) 함량에 따른 용융 배합물의 점도를 나타낸 것이다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.
[부호의 설명]
1: 로(furnace)
2: 부싱(bushing)
3: 와인더(winder)

Claims (11)

  1. 섬유 몸체는 강의 제조 공정 중 발생된 슬래그를 배합하여 제조되며,
    상기 섬유 몸체는 20 내지 60 중량%의 이산화규소(SiO2), 5 내지 30 중량%의 철 산화물(Fe2O3), 1 내지 5 중량%의 산화알루미늄(Al2O3), 15 내지 40 중량%의 칼슘 산화물(CaO) 및 15 내지 35 중량%의 마그네슘 산화물(MgO)을 함유하는, 무기 섬유.
  2. 제1항에 있어서, 상기 슬래그는 페로니켈 슬래그, 전로 슬래그, 탈린로 슬래그, 고로 슬래그, 고망간강슬래그, 제강슬래그 및 전기로슬래그 중 적어도 어느 하나를 포함하는, 무기 섬유.
  3. 제1항에 있어서, 상기 섬유 몸체는 상기 슬래그의 량이 전체 섬유 몸체 량에 대하여 70 중량% 이상인, 무기 섬유.
  4. 제1항에 있어서, 섬유 몸체는 파유리를 추가로 포함하는, 무기 섬유.
  5. 제1항에 있어서, 상기 섬유의 평균 직경은 5㎛ 내지 50㎛ 범위인, 무기 섬유.
  6. 강의 제조 공정 중 발생된 슬래그를 마련하는 과정;
    상기 슬래그의 조성을 측량하고 조성비를 20 내지 60 중량%의 이산화규소(SiO2), 5 내지 30 중량%의 철 산화물(Fe2O3), 1 내지 5 중량%의 산화알루미늄(Al2O3), 15 내지 40 중량%의 칼슘 산화물(CaO) 및 15 내지 35 중량%의 마그네슘 산화물(MgO)을 포함하도록 제어한 배합물을 제조하는 과정;
    상기 배합물을 용융시키는 과정; 및
    용융물을 섬유 형상으로 섬유화하는 과정
    을 포함하는, 무기 섬유의 제조방법.
  7. 제6항에 있어서, 상기 슬래그는 페로니켈 슬래그, 전로 슬래그, 탈린로 슬래그, 고로 슬래그, 고망간강슬래그, 제강슬래그 및 전기로슬래그 중 적어도 어느 하나를 포함하는, 무기 섬유의 제조방법.
  8. 제6항에 있어서, 상기 용융시키는 과정은 전기로, 수소 에너지 및 브라운 가스로 이루어진 그룹으로부터 선택되는 적어도 하나를 이용하여 수행되는, 무기 섬유의 제조방법.
  9. 제6항에 있어서, 상기 용융시키는 과정은 1300 내지 1650℃의 온도 범위에서 수행되는, 무기 섬유의 제조방법.
  10. 제6항에 있어서, 상기 섬유화하는 과정은 용융된 원료가 입조되는 용기가 회전하여 방사 방식으로 수행되는, 무기 섬유의 제조방법.
  11. 제10항에 있어서, 권취를 위한 와인더의 회전 속도는 5 내지 2000 rpm인, 무기 섬유의 제조방법.
PCT/KR2017/008616 2016-10-04 2017-08-09 제철 공정의 부산물을 이용한 무기 섬유 및 이의 제조 방법 WO2018066803A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019539720A JP6830542B2 (ja) 2016-10-04 2017-08-09 製鉄工程の副産物を用いた無機繊維及びその製造方法
CN201780060972.1A CN109790063B (zh) 2016-10-04 2017-08-09 利用炼铁工艺的副产物的无机纤维及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160127531 2016-10-04
KR10-2016-0127531 2016-10-04
KR10-2017-0045097 2017-04-07
KR1020170045097A KR101937807B1 (ko) 2016-10-04 2017-04-07 제철 공정의 부산물을 이용한 무기 섬유 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2018066803A1 true WO2018066803A1 (ko) 2018-04-12

Family

ID=61831453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008616 WO2018066803A1 (ko) 2016-10-04 2017-08-09 제철 공정의 부산물을 이용한 무기 섬유 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2018066803A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538785A (zh) * 2022-04-02 2022-05-27 郑州大学 一种磷石膏高温熔融制备矿物棉的方法及矿物棉
CN115335557A (zh) * 2020-03-24 2022-11-11 新日本繊维株式会社 纤维、纤维制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0184163B1 (ko) * 1995-07-12 1999-04-15 사가라 아쓰히꼬 고 강도 암석 섬유 및 그의 제조방법
JP2002220744A (ja) * 2001-01-19 2002-08-09 Paratekku Kk 無機繊維とその製造方法
WO2012176799A1 (ja) * 2011-06-21 2012-12-27 ニチアス株式会社 ロックウール、その製造方法及び無機繊維フェルト
KR101382377B1 (ko) * 2012-08-13 2014-04-08 주식회사 포스코 섬유 및 이의 제조 방법
KR101516981B1 (ko) * 2011-12-14 2015-05-06 주식회사 케이씨씨 염용해성이 향상된 미네랄울 섬유 조성물 및 이로부터 얻어진 미네랄울 섬유를 함유하는 건축자재

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0184163B1 (ko) * 1995-07-12 1999-04-15 사가라 아쓰히꼬 고 강도 암석 섬유 및 그의 제조방법
JP2002220744A (ja) * 2001-01-19 2002-08-09 Paratekku Kk 無機繊維とその製造方法
WO2012176799A1 (ja) * 2011-06-21 2012-12-27 ニチアス株式会社 ロックウール、その製造方法及び無機繊維フェルト
KR101516981B1 (ko) * 2011-12-14 2015-05-06 주식회사 케이씨씨 염용해성이 향상된 미네랄울 섬유 조성물 및 이로부터 얻어진 미네랄울 섬유를 함유하는 건축자재
KR101382377B1 (ko) * 2012-08-13 2014-04-08 주식회사 포스코 섬유 및 이의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115335557A (zh) * 2020-03-24 2022-11-11 新日本繊维株式会社 纤维、纤维制造方法
CN114538785A (zh) * 2022-04-02 2022-05-27 郑州大学 一种磷石膏高温熔融制备矿物棉的方法及矿物棉

Similar Documents

Publication Publication Date Title
JP6830542B2 (ja) 製鉄工程の副産物を用いた無機繊維及びその製造方法
KR101382377B1 (ko) 섬유 및 이의 제조 방법
CN107021641B (zh) 一种锰硅合金渣生产矿渣棉的方法
CN112500139B (zh) 一种高强度抗冲刷侵蚀钢包自流浇注料及其制备方法
WO2018066803A1 (ko) 제철 공정의 부산물을 이용한 무기 섬유 및 이의 제조 방법
EP1037861B1 (en) Briquettes for mineral fibre production and their use
CN106637663A (zh) 以固体废弃物为原料的岩棉及其制备方法和应用
EP2623614B1 (en) Method for manufacturing planar inorganic non-metallic material using molten slag
WO2012036488A2 (ko) 철계 분말의 제조방법
CN110041087B (zh) 一种真空处理硅钢用无铬砖及其生产方法
CN110317920B (zh) 一种顶底复吹转炉的炉底的维护方法
CN115650747B (zh) 一种镁铁铝尖晶石质钢包包壁喷补料及其制备方法
CN109133654B (zh) 一种高性能珍珠岩纤维及其制备方法
CN109160743A (zh) 一种高强耐火岩棉及制备方法
CN110863077A (zh) 转炉炼钢造渣剂及其制备方法
CN103353232B (zh) 电磁矿渣熔炉左轮弹盒式多孔下拉塞石墨质水口装置
KR101438366B1 (ko) 석탄폐석을 이용한 e-글라스 섬유 제조방법 및 이를 통해 제조된 e-글라스 섬유
WO2017043733A1 (ko) 캐스트 바잘트 제품 제조공정 및 그 제조시스템
CN113774183B (zh) 一种利用中间包耐材转炉炼钢造渣的方法
CN108149009A (zh) 处理赤泥的方法
WO2017030308A1 (ko) 내마모재 및 그 제조방법
Madias A review on recycling of refractories for the iron and steel industry
CN114195483A (zh) 一种矿热炉用补炉料及其施工方法
KR102221329B1 (ko) 동슬래그와 아연슬래그로부터 유가금속을 회수한 후 발생하는 2차 슬래그를 급냉 및 미분쇄하여 제조한 시멘트 콘크리트 및 시멘트 콘크리트 제품에 사용되는 수열합성용 시멘트 콘크리트 혼화재
EP1036042B1 (en) Production of man-made vitreous fibres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858598

Country of ref document: EP

Kind code of ref document: A1