WO2017030308A1 - 내마모재 및 그 제조방법 - Google Patents
내마모재 및 그 제조방법 Download PDFInfo
- Publication number
- WO2017030308A1 WO2017030308A1 PCT/KR2016/008613 KR2016008613W WO2017030308A1 WO 2017030308 A1 WO2017030308 A1 WO 2017030308A1 KR 2016008613 W KR2016008613 W KR 2016008613W WO 2017030308 A1 WO2017030308 A1 WO 2017030308A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wear
- resistant material
- weight
- basalt
- molding
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/132—Waste materials; Refuse; Residues
- C04B33/138—Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/32—Burning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/60—Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
Definitions
- the present invention relates to a wear-resistant material and a method for manufacturing the same, and more particularly to a wear-resistant material and a method for producing the same by using the by-products generated in steel mills and improved wear resistance and strength.
- the steel industry consumes a large amount of raw materials and energy to produce steel and goes through complex connection production systems such as raw materials, steelmaking, steelmaking, and rolling. These by-products and waste account for 65% of the main product steel. About 80% of the solid by-products and wastes are slag, and the remainder is by-products generated by thermal power plants. Most of these industrial by-products have high iron content, which can be used as resources.
- steel slag of 100 to 500 kg is generated in the process of producing one ton of steel.
- ferronickel (Fe-Ni) slag is generated in excess of 1 million tons per year, and fly ash, an industrial by-product, generates more than 1.3 million tons per year on the basis of Hadong thermal power plant.
- the slag generated in this way is dumped in the yard, cooled and solidified in the air with a large amount of waterproofing, and the solidified slag mass is recycled to cement raw materials or the like.
- it may be disposed of and disposed of, and it is difficult to create high value-added materials or use them as materials.
- Basalt Basalt product mainly manufactured by melting basalt which is a natural ore.
- basalt products are manufactured by melting the basalt by heating it to a melting point of about 1200 ° C. and then injecting and cooling the mold.
- basalt used as the main raw material of the Basalt product is imported from Czech, Germany, China, etc. at high price.
- the present invention provides a wear resistant material and a method of manufacturing the same that can produce a wear resistant material having excellent wear resistance and strength by utilizing various slag and industrial by-products.
- the present invention provides a wear-resistant material and a method of manufacturing the same that can reduce the manufacturing cost.
- the wear-resistant material according to an embodiment of the present invention is a wear-resistant material, the wear-resistant material is prepared by mixing basalt and steelmaking slag, the wear-resistant material is 45 to 55% by weight of silicon dioxide (SiO 2 ), 9 to 16 Wt% iron oxide (Fe 2 O 3 ), 10-18 wt% aluminum oxide (Al 2 O 3 ), 6-14 wt% calcium oxide (CaO) and 6-14 wt% magnesium oxide (MgO) It may contain the main components of and other inevitable mixed impurities.
- SiO 2 silicon dioxide
- Fe 2 O 3 iron oxide
- Al 2 O 3 aluminum oxide
- CaO calcium oxide
- MgO magnesium oxide
- the basalt is 45 to 50% by weight of silicon dioxide (SiO 2 ), 2 to 5% by weight of iron oxide (Fe 2 O 3 ), 16 to 17% by weight of aluminum oxide (Al 2 O 3 ), 8.5 to 10% by weight It may contain a major component of% calcium oxide (CaO) and 7.5 to 9% by weight magnesium oxide (MgO) and other unavoidably mixed impurities.
- SiO 2 silicon dioxide
- Fe 2 O 3 iron oxide
- Al 2 O 3 aluminum oxide
- MgO magnesium oxide
- the steelmaking slag may be at least one of converter slag and Tallinn slag.
- the steelmaking slag may contain 20 to 30% by weight of iron oxide based on the total weight of the steelmaking slag.
- a wear-resistant material manufacturing method the process of preparing a basalt; Preparing a steelmaking slag generated during the steelmaking process; Measuring the basalt and the steelmaking slag and controlling the composition ratio; Combining the basalt with the steelmaking slag; Melting the blend of the basalt and the steelmaking slag to produce a melt; Warming the melt at a temperature lower than the melting temperature of the blend; Injecting the melt into a mold to mold the melt; And heat treating the molding.
- the process of preparing the basalt may include the process of crushing the massive basalt.
- the steelmaking slag is at least one of converter slag and Tallinn slag, and may be blended with 80 to 95% by weight of basalt and 5 to 20% by weight of the steelmaking slag with respect to the total weight of the formulation.
- the process of controlling the composition ratio is 45 to 55% by weight of silicon dioxide (SiO 2 ), 9 to 16% by weight of iron oxide (Fe 2 O 3 ), 10 to 18% by weight of aluminum oxide (Al 2 O 3 ), it can be controlled to contain 6-14% by weight of calcium oxide (CaO) and 6-14% by weight of magnesium oxide (MgO) as the main component and other unavoidably mixed impurities.
- the process of producing the melt may be carried out at 1300 to 1350 °C.
- Insulating the melt may be performed in the range of 1180 to 1250 ° C.
- the molding may include injecting the melt into a mold; Maintaining the melt in the mold for a predetermined time; And separating the molding from the mold.
- the process of preheating the mold before injecting the melt into the mold may be performed at 200 to 400 °C.
- the heat treatment of the molding may be performed at a temperature of 800 to 900 ° C. for 3 to 10 hours in a heating furnace.
- After the heat treatment of the molding may include the step of cooling the molding in the heating furnace.
- the process of cooling the molding may cool the molding at a rate of 0.5 to 1 ° C. per minute in the heating furnace.
- the molding After the process of cooling the molding, when the temperature of the molding becomes 100 ° C. or less, the molding may be withdrawn from the heating furnace.
- the present invention it is possible to manufacture a wear resistant material having excellent wear resistance and strength by using slag generated in the steelmaking process and domestic basalt.
- slag generated in the steelmaking process and domestic basalt.
- the slag to supplement the nucleating agent components lacking in the production of the wear-resistant material using domestic basalt, it is possible to improve the wear resistance and strength of the wear-resistant material produced by facilitating the growth of nucleation and tissue crystals.
- FIG. 1 is a flow chart sequentially showing a process for producing a wear-resistant material in a wear-resistant material manufacturing method according to an embodiment of the present invention.
- Figure 2 is a conceptual diagram showing the ingredient ratio control conditions of the raw material formulation and the formulation according to the embodiment of the present invention.
- Figure 3 is a block diagram showing the temperature change in the process of manufacturing the wear-resistant material according to an embodiment of the present invention.
- the wear-resistant material such as a basalt product, according to an embodiment of the present invention is prepared by mixing basalt with steelmaking slag generated during the steelmaking process, and 45 to 55% by weight of silicon dioxide (SiO 2 ), 9 to 16% by weight.
- silicon dioxide SiO 2
- Fe 2 O 3 iron oxide
- Al 2 O 3 aluminum oxide
- CaO calcium oxide
- MgO magnesium oxide
- Such wear-resistant materials can be formed in various forms such as pipes, tiles, blocks, and can be widely used as industrial materials in construction.
- Basalt contained in the wear-resistant material may be used natural ores existing in the country. Domestic basalts contain less Fe components than overseas basalts, especially basalts for the manufacture of basalt products. Therefore, in the present invention, a wear resistant material can be prepared by blending steelmaking slag containing a large amount of domestic basalt and Fe components.
- Steelmaking slag is a by-product of the steelmaking process and is produced by manufacturing steel products from natural resources such as iron ore, coal and limestone.
- Steelmaking slag used in the embodiment of the present invention may be a converter slag by-produced in the steelmaking process of refining the water of the converter with steel or Tallinn slag generated during the Tallinn process. At this time, the steelmaking slag may contain about 20 to 30% by weight of the Fe component.
- the wear-resistant material prepared by melting and recrystallizing a blend of basalt and steelmaking slag may be prepared to have a crystalline phase of a fluorine-based phase, such as an augite or enstatite crystalline phase.
- the basalt product represents the chemical composition of the basalt product manufactured using the basalt abroad.
- each slag and fly ash is a major component of the Basalt product: silicon dioxide (SiO 2 ), iron oxide (Fe 2 O 3 ), aluminum oxide (Al 2 O 3 ), calcium oxide (CaO) and magnesium oxide (MgO). ) Contains the main ingredients.
- basalt and basalt products in Korea have a large difference in the content of Fe oxide (Fe 2 O 3 ). Therefore, in the present invention, basal rocks scattered in various regions in Korea can be used as a raw material for wear-resistant materials by supplementing Fe components lacking in domestic basalt from steelmaking slag.
- Abrasion resistant material having a can be prepared. That is, at least one of a converter slag and a Tallinn slag containing a large amount of Fe, such as 20 to 30% by weight, is combined with a domestic basalt, which is a wear-resistant material having a compositional ratio similar to that of a basalt product imported from abroad. Basalt products can be prepared.
- composition ratio of the compound and main component elements which are prepared by blending basalt and steelmaking slag will be described below.
- the weight ratio of the formulation used in the production of the wear-resistant material of the present invention is prepared by mixing the ratio of basalt and steelmaking slag at a ratio of 80 to 95% by weight and 5 to 20% by weight, respectively, based on the total weight of the formulation.
- the blend containing each raw material is 45 to 55% by weight of silicon dioxide (SiO 2 ), 9 to 16% by weight of iron oxide (Fe 2 O 3 ), 10 to 18% by weight of aluminum oxide (Al 2 O 3 ), 6 to 14 wt% of calcium oxide (CaO) and 6 to 14 wt% of magnesium oxide (MgO) may be contained.
- silicon dioxide SiO 2
- Iron oxide (Fe 2 O 3 ) is used as a nucleating agent that contributes to nucleation and crystal growth of tissues, and affects the strength of the product. Since the content of such iron oxide is small in domestic basalt, there is a problem in that it is difficult to obtain a product having a desired strength because the formation of nucleation and tissue growth is not performed smoothly when using domestic basalt alone. Therefore, by using steelmaking slag containing a large amount of iron oxide, it is possible to manufacture a wear-resistant material using domestic crunch. If iron oxide is included in less than 9% by weight, nucleation is insignificant, and when included in excess of 16% by weight, cracks may occur in the product during or after manufacture. Thus, the iron oxide in the total composition of the composition preferably contains 9 to 16% by weight.
- Aluminum oxide affects the function of lowering the melting point of the composition and the viscosity when the composition is in the molten state. At this time, when the aluminum oxide is included in less than 10% by weight it is difficult to reduce the melting point of the composition is not easy to melt the composition, if contained in excess of 18% by weight rises the viscosity of the composition causes a problem that causes deformation in the product . Therefore, it is preferable that aluminum oxide contains 10 to 18 weight% of the total composition of a composition.
- Calcium oxide (CaO) and magnesium oxide (MgO) control the basicity of the composition. It is preferred that the basicity (CaO + MgO) / SiO 2 is in the range of 0.4 to 0.6. At this time, if the basicity has a value of less than 0.4, cracks are generated or broken in the manufacturing process or a product after manufacture, and having a basicity value exceeding 0.6 causes deformation in the product.
- the calcium oxide in the total composition of the composition is preferably contained 6 to 14% by weight, magnesium oxide 6 to 14% by weight.
- CaO and MgO in each raw material can be mutually adjusted within an appropriate range.
- FIG. 1 is a flow chart sequentially showing a process for producing a wear-resistant material in a method for producing a wear-resistant material according to an embodiment of the present invention
- Figure 2 shows the ingredient ratio control conditions of the raw material formulation and formulation according to an embodiment of the present invention
- 3 is a conceptual diagram and a block diagram showing a temperature change in a process of manufacturing a wear resistant material according to an embodiment of the present invention.
- the wear-resistant material manufacturing equipment uses a melting furnace for dissolving a blend of basalt and steelmaking slag, an insulating furnace for maintaining the melt melted at the melting furnace at an appropriate temperature, and a molded product having a predetermined shape by using the melt melted at the thermal furnace. And a heating furnace for heat-treating the molded product separated from the mold. At this time, the heating furnace may be provided with a heating device to maintain the melt at a predetermined temperature for a predetermined time.
- the mold is a tool for forming a molding by forming a space therein, injecting and cooling a melt into the interior space. Accordingly, the mold is made of a melt and a heterogeneous material to facilitate separation of the molding from the mold, and has an internal space corresponding to the shape of the molding to be manufactured, for example, a polyhedron or a pipe.
- the mold can control the heat transfer of the molding, can easily perform the separation of the molding, can be used many times without deformation of the mold, it is possible to stably cast a large product.
- the mold may be entirely made of cast iron or cast steel.
- at least a part of the mold may be made of a material containing steel having a carbon content in the range of 0.15 to 0.5%.
- the use of a material with a high carbon content as the material of the mold is because carbon plays a role in lubricating the molding from the mold. If the mold has a low carbon content, it may not play a lubricating role in separating the molding from the mold, and scale may occur due to surface oxidation of the mold, which may adversely affect the molded product.
- cast steel contains more than 0.15% of carbon, and elongation is better than cast iron. Thus, cast iron can be used as a mold when the strength is insufficient.
- the wear-resistant material manufacturing method the process of preparing the raw material basalt and steel slag, that is, the raw material (S100), the process of measuring the basalt and steelmaking slag and controlling the composition ratio (S200), Process of blending steelmaking slag (S300), the process of melting the compound (S400), the process of insulating the melt (S500), the process of injecting the melt into the mold (S600), and the process of heat-treating the molding (S700) and the process of cooling the heat-treated molding (S800) may be included.
- Basalt and steelmaking slag which are used as the main raw materials of wear-resistant materials, are prepared.
- Basalt may be basalt that is scattered throughout the country. Basalts are usually bulky and can be used by crushing them before the survey.
- Steelmaking slag may be converter slag and Tallinn slag generated during the steel production process. Steelmaking slag may be used as it is in the yard, for example, as a mass, or may be used by crushing with a crusher.
- the prepared raw material that is, basalt and steelmaking slag is measured and the composition ratio of each component is controlled by adjusting the amount of each raw material.
- basalt may be used 80 to 95% by weight relative to the total weight of the formulation for the wear-resistant material
- steel slag may be used 5 to 20% by weight relative to the total weight of the formulation.
- converter slag or Tallinn slag may be used alone, or converter slag and Tallinn slag may be used together.
- Basalt and steel slag have five main components of wear resistant materials: silicon dioxide (SiO 2 ), iron oxide (Fe 2 O 3 ), aluminum oxide (Al 2 O 3 ), calcium oxide (CaO) and magnesium oxide (The compounding amount can be adjusted within the range shown so that MgO) has the composition ratio mentioned above.
- a raw material having completed the measurement and the control of the component ratio is blended to prepare a blend for producing an antiwear material.
- the raw materials that is, basalt and steelmaking slag may be mixed using a mixer so as to be uniformly mixed.
- the blend is charged into a melting furnace to melt and homogenize to produce a melt.
- the furnace may be preheated to at least 1000 ° C. prior to loading the formulation.
- Melting of the blend may be performed at 1300 to 1350 ° C. higher than 1200 ° C., the melting point of the basalt, and below 1350 to 1380 ° C., the melting point of the steelmaking slag.
- the melt produced in the melting furnace may be tapped into a separate heating furnace and warmed at a temperature lower than the melting temperature.
- the melt is maintained at about 1180 to 1250 ° C, and the Fe component (Fe 2 O 3 ) in the melt acts as a nucleating agent to achieve crystallization.
- This temperature range is an optimum temperature range in which the Fe component in the melt can act as a nucleation material, and can be easily crystallized to the inside and the surface of the wear resistant material.
- the melt in the heating furnace is injected into the mold to form a molding.
- the melt may be tapped into a separate container, and the melt may be injected into the mold using the container.
- the mold can be preheated to about 200 to 400 °C before injecting the melt. If the mold is not preheated, the melt may be quenched due to the difference between the surface temperature of the mold and the high temperature melt of 1000 ° C. or higher, and glass may be formed on the surface of the molding and cracks may be caused. This may affect the strength and abrasion resistance of the product, which may act as a factor that lowers the quality and reliability of the product. Therefore, by preheating the mold in advance, the temperature difference between the melt and the mold can be reduced to suppress or prevent occurrence of the aforementioned problems.
- the melt is injected into the mold during the manufacture of the molding, and then held in the mold for a predetermined time, for example, 2 to 5 minutes. That is, the total time from the injection of the melt to the point of separation of the molding from the mold may take about 2 to 5 minutes. Separation of the molding from the mold earlier than the suggested range may cause the molding to flow without retaining formability, thereby degrading its value as a product. In addition, if the molding is separated from the mold later than the suggested range, the surface portion in contact with the mold is formed into glass due to a sudden temperature difference, thereby causing a cracking phenomenon, thereby losing the value as a product.
- the molding is separated from the mold and loaded into a separate heating furnace and heat-treated for a predetermined time.
- the molding separated from the mold can be charged to the furnace within 1 minute.
- the heat treatment process may include an annealing step of maintaining at a temperature near or below the crystallization temperature of the molding, for example, about 800 to 900 ° C.
- the heat treatment process is proportional to the size or thickness of the molding, and may be performed for about 3 hours to about 10 hours.
- the molding may be cooled in a heating furnace, and the molding may be cooled at a rate of 0.5 to 1.0 ° C. per minute.
- the molded product is taken out of the heating furnace at a temperature of 100 ° C or less.
- the wear-resistant material manufactured by using domestic basalt and steel slag may be manufactured to have a composition ratio similar to that of a conventional apelalt product, and may exhibit similar compressive strength and wear rate as that of a conventional apelalt product.
- the wear resistant material and the manufacturing method thereof according to the present invention can utilize domestic basalt and various slags to produce a high value added wear resistant material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
본 발명은 내마모재 및 그 제조방법에 관한 것으로, 내마모재로서, 상기 내마모재는 현무암과 제강 슬래그를 배합하여 제조되고, 상기 내마모재는 45 내지 55 중량%의 이산화규소(SiO2), 9 내지 16 중량%의 철 산화물(Fe2O3), 10 내지 18 중량%의 산화알루미늄(Al2O3), 6 내지 14 중량%의 칼슘 산화물(CaO) 및 6 내지 14 중량%의 마그네슘 산화물(MgO)의 주요 성분 및 기타 불가피하게 섞인 불순물을 함유하여, 고가의 수입 바잘트 제품을 대체할 수 있는 내마모성 및 강도가 우수한 내마모재를 제조할 수 있다.
Description
본 발명은 내마모재 및 그 제조방법에 관한 것으로, 더욱 상세하게는 제철소에서 발생하는 부산물을 활용하여 제조되고 내마모성 및 강도가 향상된 내마모재 및 그 제조방법에 관한 것이다.
제철산업은 대량의 원료와 에너지를 소비하여 철강을 생산하는 것과 더불어 원료, 제선, 제강, 압연 등의 복잡한 연결생산체제를 거치면서, 여러 가지 종류의 부산물과 폐기물을 다량 발생시키고 있다. 이들 부산물과 폐기물은 양적으로 주제품인 철강의 65%에 이르고 있다. 이중 고체상태의 부산물과 폐기물의 약 80% 정도가 슬래그(Slag)이고, 나머지는 화력 발전소에서 발생하는 부산물이 발생하는데 이와 같은 산업 부산물에는 유용한 철분함량이 높아 대부분 자원으로서의 활용이 가능하다.
통상적으로, 철강재 1톤을 생산하는 과정에서 100 내지 500kg의 제강 슬래그(slag)가 발생된다. 예컨대 페로니켈(Fe-Ni) 슬래그(slag)는 년간 100만톤이 넘게 발생하고, 산업 부산물인 플라이 애쉬는 하동화력발전소 기준으로, 년간 130만톤 이상이 발생한다. 이와 같이 발생된 슬래그(slag)는 야드에 덤핑되어, 대량의 방수와 함께 대기 중에서 냉각되어 응고되고, 응고된 슬래그 덩어리는 시멘트 원료 등으로 재활용된다. 하지만 시장상황에 따라 매립되어 처리되기도 하며, 고부가화 또는 소재로서의 용도창출은 잘되지 않는 실정이다.
한편, 건축용에서 산업용 자재 등으로 사용되는 내마모재는 주로 천연광석인 현무암을 용융시켜 제조되는 바잘트(Basalt) 제품이 있다. 이와 같은 바잘트 제품은 현무암을 용융점인 1200℃ 정도로 가열하여 용융시킨 다음 주형에 주입 및 냉각하여 제조되고 있다. 그런데 바잘트 제품의 주원료로 사용되는 현무암은 체코, 독일, 중국 등으로부터 고가로 전량 수입되고 있는 실정이다.
이렇게 해외에서 수입되고 있는 기존 바잘트 제품은 50%SiO2-11%Al2O3-11%MgO-11%CaO-11%Fe 성분으로 이루어져 있으나, 국내 현무암의 경우 45%SiO2-16%Al2O3-8%MgO-9%CaO-3.6%Fe 성분으로 이루어져 있다. 이와 같이 기존 바잘트 제품과 국내 현무암은 성분상의 차이를 보이고 있다. 특히, 핵생성 물질로 작용하는 Fe 성분이 기존 바잘트 제품에 비해 절대적으로 부족하기 때문에 국내 현무암을 단독으로 사용하는 경우 바잘트 제품을 제조하기가 어려운 문제점이 있다. 즉, Fe 성분은 용융 후 출탕 시 Fe 산화물로 존재하며 핵생성 물질로 작용을 하여 핵생성 및 조직의 결정성장에 상당한 기여를 하게 된다. 그런데 국내 현무암에는 Fe 성분이 부족하여 TiO2나 Cr2O3와 같은 고가의 기핵제를 활용하게 되므로 제조비용이 상승하는 문제점이 있다.
따라서 Fe 성분을 다량 함유하고 있는 슬래그와 국내 현무암을 접목하여 고가의 바잘트 제품을 대체할 수 있는 방안이 절실히 요구되고 있다.
본 발명은 각종 슬래그 및 산업 부산물을 활용하여 내마모성 및 강도가 우수한 내마모재를 제조할 수 있는 내마모재 및 그 제조방법을 제공한다.
본 발명은 제조 비용을 절감할 수 있는 내마모재 및 그 제조방법을 제공한다.
본 발명의 실시 형태에 따른 내마모재는, 내마모재로서, 상기 내마모재는 현무암과 제강 슬래그를 배합하여 제조되고, 상기 내마모재는 45 내지 55 중량%의 이산화규소(SiO2), 9 내지 16 중량%의 철 산화물(Fe2O3), 10 내지 18 중량%의 산화알루미늄(Al2O3), 6 내지 14 중량%의 칼슘 산화물(CaO) 및 6 내지 14 중량%의 마그네슘 산화물(MgO)의 주요 성분 및 기타 불가피하게 섞인 불순물을 함유할 수 있다.
상기 현무암은 45 내지 50 중량%의 이산화규소(SiO2), 2 내지 5 중량%의 철 산화물(Fe2O3), 16 내지 17 중량%의 산화알루미늄(Al2O3), 8.5 내지 10 중량%의 칼슘 산화물(CaO) 및 7.5 내지 9 중량%의 마그네슘 산화물(MgO)의 주요 성분 및 기타 불가피하게 섞인 불순물을 함유할 수 있다.
상기 제강 슬래그는 전로 슬래그와 탈린 슬래그 중 적어도 어느 하나일 수 있다.
상기 제강 슬래그는 상기 제강 슬래그 전체 중량에 대하여 20 내지 30중량%의 철산화물을 함유할 수 있다.
본 발명의 실시 형태에 따른 내마모재 제조방법은, 내마모재 제조방법으로서, 현무암을 마련하는 과정; 제강 공정 중 발생하는 제강 슬래그를 마련하는 과정; 상기 현무암과 상기 제강 슬래그를 측량하고 조성비를 제어하는 과정; 상기 현무암과 상기 제강 슬래그를 배합하는 과정; 상기 현무암과 상기 제강 슬래그의 배합물을 용융시켜 용융물을 생성하는 과정; 상기 배합물의 용융 온도보다 낮은 온도에서 상기 용융물을 보온하는 과정; 상기 용융물을 몰드에 주입하여 성형하는 과정; 성형물을 열처리하는 과정;을 포함할 수 있다.
상기 현무암을 마련하는 과정에서 괴상의 현무암을 파쇄하는 과정을 포함할 수 있다.
상기 제강 슬래그는 전로 슬래그와 탈린 슬래그 중 적어도 어느 하나이고, 상기 배합하는 과정에서 상기 배합물 전체 중량에 대해서 80 내지 95중량%의 현무암과 5 내지 20중량%의 제강 슬래그를 배합할 수 있다.
상기 조성비를 제어하는 과정은 상기 배합물이 45 내지 55 중량%의 이산화규소(SiO2), 9 내지 16 중량%의 철 산화물(Fe2O3), 10 내지 18 중량%의 산화알루미늄(Al2O3), 6 내지 14 중량%의 칼슘 산화물(CaO) 및 6 내지 14 중량%의 마그네슘 산화물(MgO)의 주요 성분 및 기타 불가피하게 섞인 불순물을 함유하도록 제어할 수 있다.
상기 용융물을 생성하는 과정은 1300 내지 1350℃에서 수행할 수 있다.
상기 용융물을 보온하는 과정은 1180 내지 1250℃의 범위에서 수행할 수 있다.
상기 성형하는 과정은, 상기 용융물을 몰드에 주입하는 과정; 상기 용융물을 상기 몰드에서 소정 시간 유지시키는 과정; 및 상기 몰드로부터 성형물을 분리하는 과정을 포함할 수 있다.
상기 몰드에 용융물을 주입하기 전에 상기 몰드를 예열하는 과정을 포함하고, 상기 몰드를 예열하는 과정은 200 내지 400℃로 수행할 수 있다.
상기 성형물을 열처리하는 과정은 가열로에서 800 내지 900℃의 온도로 3 내지 10시간 동안 수행할 수 있다.
상기 성형물을 열처리하는 과정 이후에 상기 가열로 내에서 상기 성형물을 냉각시키는 과정을 포함할 수 있다.
상기 성형물을 냉각시키는 과정은 상기 가열로에서 상기 분당 0.5 내지 1℃의 속도로 상기 성형물을 냉각시킬 수 있다.
상기 성형물을 냉각시키는 과정 이후에 상기 성형물의 온도가 100℃ 이하가 되면 상기 가열로에서 상기 성형물을 인출할 수 있다.
본 발명에 의하면, 제철공정에서 발생하는 슬래그와 국내 현무암을 이용하여 내마모성 및 강도가 우수한 내마모재를 제조할 수 있다. 즉, 국내 현무암을 이용하여 내마모재를 제조함에 있어 부족한 기핵제 성분을 슬래그를 이용하여 보완함으로써 핵성성 및 조직의 결정성장을 용이하게 하여 제조되는 내마모재의 내마모성 및 강도를 향상시킬 수 있다.
이에 년간 매립처분되는 각종 슬래그를 부가가치가 높은 고 수익성의 신규 용도에 활용할 수 있다. 또한, 국내에서 생산되는 원료를 이용하여 내마모성 및 강도가 우수한 바잘트 제품을 제조할 수 있으므로 고가의 수입 바잘트 제품을 수입하는 소요되는 비용을 절감할 수 있다.
도 1은 본 발명의 실시 예에 따른 내마모재 제조방법으로 내마모재를 제조하는 과정을 순차적으로 보여주는 순서도.
도 2는 본 발명의 실시 예에 따른 원료 배합 및 배합물의 성분비 조절 조건을 보여주는 개념도.
도 3은 본 발명의 실시 예에 따른 내마모재를 제조하는 과정에서 온도 변화를 보여주는 블록도.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.
본 발명의 실시 예에 따른 내마모재, 예컨대 바잘트 제품은 현무암과, 제철 공정 중 발생하는 제강 슬래그를 배합하여 제조되며, 45 내지 55 중량%의 이산화규소(SiO2), 9 내지 16 중량%의 철 산화물(Fe2O3), 10 내지 18 중량%의 산화알루미늄(Al2O3), 6 내지 14 중량%의 칼슘 산화물(CaO) 및 6 내지 14 중량%의 마그네슘 산화물(MgO)의 주요 성분 및 기타 불가피하게 섞인 불순물을 함유할 수 있다. 이들 주요 성분 이외에 기타 성분 혹은 불순물 등 불가피하게 함유되는 성분으로 플루오르(F), 오산화인(P2O5), 크롬오커(chrome ochre, Cr2O3), 산화니켈(NiO), 산화구리(CuO), 산화아연(ZnO), 산화스트론튬(SrO), 산화지르코늄(ZrO2), 오산화니오브(Nb2O5), 황(P), 탄소(C) 등을 포함할 수 있다.
이러한 내마모재는 파이프, 타일, 블럭 등 다양한 형태로 형성될 수 있으며, 건축용에서 산업용 자재로 폭 넓게 사용될 수 있다.
본 발명의 실시 예에 따른 내마모재에 함유되는 현무암은 국내에 존재하는 천연 광석이 사용될 수 있다. 국내 현무암은 해외 현무암, 특히 바잘트 제품 제조용 현무암에 비해 Fe 성분을 적게 함유하고 있어 내마모재 제조에 어려움이 있다. 따라서 본 발명에서는 국내 현무암과 Fe 성분을 다량 함유하고 있는 제강 슬래그를 배합하여 내마모재를 제조할 수 있다.
제강 슬래그는 제철 공정에서 발생하는 부산물로서, 철광석, 석탄, 석회석 등의 천연자원으로부터 철강 제품을 제조하면서 생성된 물질이다. 본 발명의 실시 예에 사용되는 제강 슬래그는 전로의 쇳물을 강철로 정련하는 제강공정에서 부생되는 전로 슬래그 또는 탈린 과정에서 발생하는 탈린 슬래그일 수 있다. 이때, 제강 슬래그는 약 20 내지 30중량% 정도의 Fe 성분을 함유할 수 있다.
이와 같이 현무암과 제강 슬래그의 배합물을 용융시킨 후 재결정시켜 제조되는 내마모재는 휘석 계통의 결정질의 상 예컨대, 아우가이트(augite) 또는 엔스타타이트(enstatite) 결정질의 상을 가지도록 제조될 수 있다.
다음은 표1을 참조하여 현무암, 제강 슬래그 및 바잘트 제품의 주요 화학 조성을 예시적으로 설명한다. 이때, 바잘트 제품은 국내 현무암이 아닌 해외 현무암을 이용하여 제조된 바잘트 제품의 화학 조성을 나타낸다.
구분 | SiO2(wt%) | Al2O3(wt%) | CaO(wt%) | MgO(wt%) | Fe2O3(wt%) |
국내 현무암(울진) | 47.6 | 16.5 | 9.2 | 8.3 | 3.6 |
전로 슬래그 | 15.4 | 3.0 | 36.4 | 5.0 | 23.3 |
탈린 슬래그 | 17.7 | 3.2 | 28.9 | 3.2 | 25.3 |
바잘트 제품(해외) | 46.4 | 11.2 | 11.2 | 11.5 | 12.3 |
표 1에 표현된 바와 같이 국내 현무암의 주요 화학 조성과 바잘트 제품의 화학 조성은 각 성분의 함유량에 차이가 있을 뿐, 각 구성 성분이 유사한 것을 확인할 수 있다. 즉, 각 슬래그 및 플라이 애쉬는 바잘트 제품의 주요 성분인 이산화규소(SiO2), 철 산화물(Fe2O3), 알루미늄 산화물(Al2O3), 칼슘 산화물(CaO) 및 마그네슘 산화물(MgO)의 주요 성분을 포함한다.
다만, 국내 현무암과 바잘트 제품은 Fe 성분인 철 산화물(Fe2O3)의 함유량에 큰 차이를 갖는 것을 알 수 있다. 이에 본 발명에서는 국내 현무암에 부족한 Fe 성분을 제강 슬래그로부터 보완함으로써 국내 여러 지역에 산재해 있는 현무암을 내마모재의 원료로 사용할 수 있다.
상기 각 원료들의 사용량을 조절하면, 각 원료들을 배합한 배합물의 조성비를 조절할 수 있으며, 이러한 조성비 제어에 의하여, 바잘트 제품의 조성과 유사한 휘석 계통의 결정질 상(즉, 아우가이트 또는 엔스타타이트)을 가지는 내마모재를 제조할 수 있다. 즉, Fe 성분을 다량, 예컨대 20 내지 30중량% 정도 함유하고 있는 전로 슬래그와 탈린 슬래그 중 적어도 어느 하나를 국내 현무암과 배합하여 해외에서 수입되고 있는 바잘트 제품과 유사한 조성비를 갖는 내마모재, 즉 바잘트 제품을 제조할 수 있다.
하기에서 현무암과 제강 슬래그를 배합하여 제조되는 배합물 및 주요 성분 원소의 조성비에 대해 설명한다.
본 발명의 내마모재 제조에 사용되는 배합물의 중량비는, 현무암과 제강 슬래그의 비율이 배합물 전체 중량에 대하여 각각 80 내지 95중량%, 5 내지 20중량%의 비율로 배합하여 조성물을 제조한다.
각 원료가 배합된 배합물은 이산화규소(SiO2)가 45 내지 55 중량%, 철 산화물(Fe2O3)이 9 내지 16 중량%, 산화알루미늄(Al2O3)이 10 내지 18 중량%, 칼슘 산화물(CaO)이 6 내지 14 중량%, 마그네슘 산화물(MgO)이 6 내지 14 중량% 함유될 수 있다.
이산화규소(SiO2)는 45 중량% 미만으로 포함되면, 열처리 과정 혹은 열처리 후 최종 제품 내마모재에서 크랙이 발생하고, 55 중량%를 초과하여 포함되면, 제품에 유리질이 다량 함유되어 강도가 저하된다. 따라서, 45 내지 55 중량%를 함유하는 것이 좋다.
철 산화물은(Fe2O3)은 핵생성 및 조직의 결정 성장에 기여를 하는 기핵제로 사용되며, 제품의 강도에 영향을 미친다. 국내 현무암에는 이와 같은 철 산화물의 함유량이 미미하기 때문에 국내 현무암을 단독으로 사용하는 경우 핵생성 및 조직의 결정 성장이 원활하게 이루어지지 않아 원하는 강도의 제품을 얻기 어려운 문제점이 있다. 따라서 철 산화물을 다량 함유하고 있는 제강 슬래그를 사용함으로써 국내 현무함을 이용한 내마모재의 제조를 가능하게 할 수 있다. 철 산화물이 9 중량% 미만으로 포함되면 핵 생성이 미미하고, 16 중량% 초과하여 포함되면, 제조과정 혹은 제조 후 제품에 크랙이 발생할 수 있다. 이에, 조성물의 전체 조성 중 철 산화물은 9 내지 16 중량%를 함유하는 것이 좋다.
산화알루미늄(Al2O3)은 조성물의 용융점을 낮추는 기능과 조성물이 용융 상태일 때 점도에 영향을 미친다. 이때, 산화알루미늄이 10 중량% 미만으로 포함되면 조성물의 용융점을 감소시키는 것이 어려워 조성물 용융이 용이하지 않고, 18 중량% 초과하여 포함되면 조성물의 점도가 상승하여 제품에 변형이 야기되는 문제점이 발생한다. 따라서, 산화알루미늄은 조성물의 전체 조성 중 10 내지 18 중량% 함유하는 것이 좋다.
칼슘 산화물(CaO)과 마그네슘 산화물(MgO)은 조성물의 염기도를 제어한다. 염기도 (CaO+MgO)/SiO2가 0.4 내지 0.6 범위인 것이 바람직하다. 이때, 염기도가 0.4 미만의 값을 가지면, 제조 공정 혹은 제조 후 제품에서 크랙이 발생하거나 파괴되고, 0.6를 초과하는 염기도 값을 가지면 제품에 변형을 초래한다.
이에, 조성물의 전체 조성 중 칼슘 산화물은 6 내지 14 중량%, 마그네슘 산화물은 6 내지 14 중량%를 함유하는 것이 좋다. 이때, 각 원료에 있는 CaO와 MgO는 적정 범위 내에서 상호 비율 조정이 가능하다.
하기에서는 본 발명의 실시 예에 따른 내마모재 제조 방법을 설명한다.
도 1은 본 발명의 실시 예에 따른 내마모재 제조방법으로 내마모재를 제조하는 과정을 순차적으로 보여주는 순서도이고, 도 2는 본 발명의 실시 예에 따른 원료 배합 및 배합물의 성분비 조절 조건을 보여주는 개념도이고, 도 3은 본 발명의 실시 예에 따른 내마모재를 제조하는 과정에서 온도 변화를 보여주는 블록도이다.
먼저, 내마모재 제조 설비는 현무암과 제강 슬래그를 배합한 배합물을 용해시키는 용해로와, 용해로에서 출탕된 용융물을 적정 온도로 유지하는 보온로와, 보온로에서 출탕된 용융물을 이용하여 소정 형상의 성형물을 제조하는 몰드와, 몰드에서 분리된 성형물을 열처리하는 가열로를 포함할 수 있다. 이때, 보온로에는 용융물을 소정 시간 동안 일정 온도로 유지할 수 있도록 가열장치가 구비될 수 있다.
몰드는 내부에 공간이 형성되어, 내부 공간에 용융물을 주입하고 냉각시켜, 성형물을 제조하는 도구이다. 이에, 몰드는 용융물과 이종의 재질로 제조되어 성형물과 몰드의 분리가 용이하도록 하며, 제조되는 성형물의 형상, 예컨대 다면체나 파이프 등에 대응하는 내부 공간을 가진다.
그리고 몰드는 성형물의 열전달을 조절하고, 성형물의 분리를 용이하게 수행할 수 있고, 몰드의 변형 없이 여러 번 사용할 수 있으며, 대형 제품을 안정적으로 주조할 수 있다. 이에 몰드는 전체가 주철(cast iron)이나 주강(cast steel)으로 제조될 수 있다. 또한, 몰드의 적어도 일부는 카본 함유량이 0.15 내지 0.5% 범위인 강을 함유하는 재질로 제조될 수 있다. 이처럼 몰드의 재질로 카본 함량이 높은 재료를 사용하는 것은 카본이 성형물을 몰드로부터 분리하는데 윤활 역할을 하기 때문이다. 몰드에 카본 함량이 낮으면, 성형물을 몰드로부터 분리하는데 윤활 역할을 제대로 해 줄 수 없고, 몰드의 표면 산화로 스케일이 발생하여 성형되는 제품에 악영향을 줄 수 있다. 또한, 주강은 카본을 0.15% 이상 함유하며, 주철보다는 연신율이 좋다. 이에, 주철로는 강도가 부족한 경우에 주강을 몰드로 사용할 수 있다.
도 1을 참조하면, 내마모재 제조방법은, 원료인 현무암과 제강 슬래그, 즉 원료를 마련하는 과정(S100)과, 현무암과 제강 슬래그를 측량하고 조성비를 제어하는 과정(S200)과, 현무암과 제강 슬래그를 배합하는 과정(S300)과, 배합물을 용융하는 과정(S400)과, 용융물을 보온하는 과정(S500)과, 용융물을 몰드에 주입하여 성형하는 과정(S600)과, 성형물을 열처리하는 과정(S700) 및 열처리된 성형물을 냉각시키는 과정(S800)을 포함할 수 있다.
먼저, 내마모재의 주원료로 사용되는 현무암과 제강 슬래그를 마련한다. 현무암은 국내에서 산재하고 있는 현무암일 수 있다. 현무암은 보통 괴상으로 존재하고 있으므로 측량 전 파쇄기로 파쇄하여 사용할 수 있다. 제강 슬래그는 강의 생산 공정 중 발생된 전로 슬래그와 탈린 슬래그일 수 있다. 제강 슬래그는 야드에 적재된 상태 그대로, 예컨대 괴상으로 사용될 수도 있고, 파쇄기로 파쇄하여 사용할 수도 있다.
다음, 마련된 원료, 즉 현무암과 제강 슬래그를 측량하고 각 원료의 양을 조절하여 각 성분의 조성비를 제어한다. 도 2를 참조하면, 현무암은 내마모재 제조를 위한 배합물 전체 중량에 대하여 80 내지 95중량%, 제강 슬래그는 배합물 전체 중량에 대하여 5 내지 20중량% 사용될 수 있다. 이때, 제강 슬래그는 전로 슬래그나 탈린 슬래그가 단독으로 사용될 수도 있고, 전로 슬래그와 탈린 슬래그가 함께 사용될 수도 있다. 현무암과 제강 슬래그는 배합물이 내마모재의 5가지 주요성분, 즉 이산화규소(SiO2), 철 산화물(Fe2O3), 산화알루미늄(Al2O3), 칼슘 산화물(CaO) 및 마그네슘 산화물(MgO)이 전술한 조성비를 갖도록 제시된 범위 내에서 그 배합량이 조절될 수 있다.
이후, 측량 및 성분비 제어가 완료된 원료를 배합하여 내마모재 제조를 위한 배합물을 마련한다. 이때, 원료들, 즉 현무암과 제강 슬래그가 균일하게 혼합될 수 있도록 혼합기를 이용하여 혼합할 수도 있다.
이하에서는 도 3에 도시된 각 공정 별 온도 변화를 참조하여 설명한다.
배합물이 마련되면, 배합물을 용융로에 장입하여 용융 및 균질화시킴으로써 용융물을 생성한다. 배합물 장입 전 용해로는 1000℃ 이상으로 예열될 수 있다. 배합물의 용융은 현무암의 용융점인 1200℃보다는 높고, 제강 슬래그의 용융점인 1350 ~ 1380℃보다 낮은 1300 내지 1350℃에서 수행될 수 있다.
용융로에서 생성된 용융물은 별도의 보온로로 출탕되어 용융 시 온도보다 낮은 온도에서 보온될 수 있다. 이 과정에서 용융물은 1180 내지 1250℃ 정도로 유지되고, 용융물 내 Fe 성분(Fe2O3)이 기핵제로 작용하여 결정화가 이루어진다. 이 온도 범위는 용융물 내 Fe 성분이 핵생성 물질로 작용할 수 있는 최적의 온도 범위로서, 내마모재의 내부 및 표면까지 용이하게 결정화시킬 수 있다.
이후, 보온로 내 용융물을 몰드로 주입하여 성형물을 형성한다. 이때, 용융물은 별도의 용기로 출탕하고, 용기를 이용하여 용융물을 몰드에 주입할 수도 있다. 그리고 몰드는 용융물을 주입하기 전 200 내지 400℃ 정도로 예열할 수 있다. 이는 몰드가 예열되지 않은 경우, 몰드로 유입되는 1000℃ 이상의 고온의 용융물과 몰드의 표면 온도 차이에 의해 용융물이 급냉되어 성형물의 표면에 유리질이 형성되고 크랙이 유발될 수 있다. 이는 제품의 강도 및 내마모도에 영향을 미쳐 제품의 품질 및 신뢰성을 저하시키는 요인으로 작용될 수 있다. 따라서 몰드를 미리 예열함으로써 용융물과 몰드 간의 온도 차이를 감소시켜 전술한 문제점이 발생하는 것을 억제 혹은 방지할 수 있다.
성형물을 제조하는 과정에서 몰드에 용융물을 주입한 다음, 몰드에서 소정 시간, 예컨대 2 내지 5분 정도 유지한다. 즉, 용융물 주입 후 성형물을 몰드로부터 분리하는 시점까지의 총 시간이 2 내지 5분 정도 소요될 수 있다. 제시된 범위보다 빨리 성형물을 몰드로부터 분리하면 성형물이 성형성을 유지하지 못하고 흘러내려 제품으로서의 가치가 저하될 수 있다. 또한, 제시된 범위보다 늦게 성형물을 몰드로부터 분리하면 몰드와 맞닿아 있는 표면 부위가 급격한 온도 차이에 의해 유리질로 생성되어 깨짐 현상이 발생되므로 제품으로서의 가치를 잃어버리게 된다.
성형물이 제조되면 몰드로부터 성형물을 분리하여 별도의 가열로에 적재하고 소정 시간동안 열처리를 실시한다. 몰드에서 분리된 성형물은 1분 이내에 가열로에 장입될 수 있다. 여기서 열처리 과정은 성형물의 결정화 온도 부근의 온도 혹은 그 이하의 온도, 예컨대 800 내지 900℃ 정도에서 유지하는 어닐링 단계를 포함할 수 있다. 열처리 과정은 성형물의 크기나 두께에 비례하며, 3시간 내지 10시간 정도 수행될 수 있다.
열처리 과정 후 가열로 내에서 성형물을 냉각시킬 수 있으며 성형물은 분당 0.5 내지 1.0℃의 속도로 냉각될 수 있다.
다음, 성형물의 열처리 공정 및 냉각 공정이 완료되면, 성형물을 100℃ 이하의 온도에서 가열로로부터 인출한다. 이는 급격한 온도변화에 의해 성형물인 내마모재의 물성이 변화하는 것을 억제하거나 방지하기 위해서 상기 온도 이하에서 인출하는 것이 좋다.
이렇게 제조된 내마모재에 대해서는 표면 가공 등의 후속 공정이 추가로 수행될 수 있다.
이처럼, 국내 현무암과 제강 슬래그를 이용하여 제조된 내마모재는 기존의 바잘트 제품과 유사한 조성비를 갖도록 제조되어, 기존 바잘트 제품과 유사한 압축강도와 마모율을 나타낼 수 있다.
본 발명을 첨부 도면과 전술된 바람직한 실시 예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술 되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술 되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.
본 발명에 따른 내마모재 및 그 제조방법은, 국내 현무암과 각종 슬래그를 부가가치가 높은 내마모재를 제조하는데에 활용할 수 있다.
Claims (16)
- 내마모재로서,상기 내마모재는 현무암과 제강 슬래그를 배합하여 제조되고,상기 내마모재는 45 내지 55 중량%의 이산화규소(SiO2), 9 내지 16 중량%의 철 산화물(Fe2O3), 10 내지 18 중량%의 산화알루미늄(Al2O3), 6 내지 14 중량%의 칼슘 산화물(CaO) 및 6 내지 14 중량%의 마그네슘 산화물(MgO)의 주요 성분 및 기타 불가피하게 섞인 불순물을 함유하는 내마모재.
- 청구항 1에 있어서,상기 현무암은 45 내지 50 중량%의 이산화규소(SiO2), 2 내지 5 중량%의 철 산화물(Fe2O3), 16 내지 17 중량%의 산화알루미늄(Al2O3), 8.5 내지 10 중량%의 칼슘 산화물(CaO) 및 7.5 내지 9 중량%의 마그네슘 산화물(MgO)의 주요 성분 및 기타 불가피하게 섞인 불순물을 함유하는 내마모재.
- 청구항 2에 있어서,상기 제강 슬래그는 전로 슬래그와 탈린 슬래그 중 적어도 어느 하나인 내마모재.
- 청구항 3에 있어서,상기 제강 슬래그는 상기 제강 슬래그 전체 중량에 대하여 20 내지 30중량%의 철산화물을 함유하는 내마모재.
- 내마모재 제조방법으로서,현무암을 마련하는 과정;제강 공정 중 발생하는 제강 슬래그를 마련하는 과정;상기 현무암과 상기 제강 슬래그를 측량하고 조성비를 제어하는 과정;상기 현무암과 상기 제강 슬래그를 배합하는 과정;상기 현무암과 상기 제강 슬래그의 배합물을 용융시켜 용융물을 생성하는 과정;상기 배합물의 용융 온도보다 낮은 온도에서 상기 용융물을 보온하는 과정;상기 용융물을 몰드에 주입하여 성형하는 과정;성형물을 열처리하는 과정;을 포함하는 내마모재 제조방법.
- 청구항 5에 있어서,상기 현무암을 마련하는 과정에서 괴상의 현무암을 파쇄하는 과정을 포함하는 내마모재 제조방법.
- 청구항 5에 있어서,상기 제강 슬래그는 전로 슬래그와 탈린 슬래그 중 적어도 어느 하나이고,상기 배합하는 과정에서 상기 배합물 전체 중량에 대해서 80 내지 95중량%의 현무암과 5 내지 20중량%의 제강 슬래그를 배합하는 내마모재 제조방법.
- 청구항 7에 있어서,상기 조성비를 제어하는 과정은 상기 배합물이 45 내지 55 중량%의 이산화규소(SiO2), 9 내지 16 중량%의 철 산화물(Fe2O3), 10 내지 18 중량%의 산화알루미늄(Al2O3), 6 내지 14 중량%의 칼슘 산화물(CaO) 및 6 내지 14 중량%의 마그네슘 산화물(MgO)의 주요 성분 및 기타 불가피하게 섞인 불순물을 함유하도록 제어하는 내마모재 제조방법.
- 청구항 5 또는 청구항 8에 있어서,상기 용융물을 생성하는 과정은 1300 내지 1350℃에서 수행하는 내마모재 제조방법.
- 청구항 9에 있어서,상기 용융물을 보온하는 과정은 1180 내지 1250℃의 범위에서 수행하는 내마모재 제조방법.
- 청구항 10에 있어서,상기 성형하는 과정은,상기 용융물을 몰드에 주입하는 과정;상기 용융물을 상기 몰드에서 소정 시간 유지시키는 과정; 및상기 몰드로부터 성형물을 분리하는 과정을 포함하는 내마모재 제조방법.
- 청구항 11에 있어서,상기 몰드에 용융물을 주입하기 전에 상기 몰드를 예열하는 과정을 포함하고,상기 몰드를 예열하는 과정은 200 내지 400℃로 수행하는 내마모재 제조방법.
- 청구항 12에 있어서,상기 성형물을 열처리하는 과정은 가열로에서 800 내지 900℃의 온도로 3 내지 10시간 동안 수행하는 내마모재 제조방법.
- 청구항 13에 있어서,상기 성형물을 열처리하는 과정 이후에 상기 가열로 내에서 상기 성형물을 냉각시키는 과정을 포함하는 내마모재 제조방법.
- 청구항 14에 있어서,상기 성형물을 냉각시키는 과정은 상기 가열로에서 상기 분당 0.5 내지 1℃의 속도로 상기 성형물을 냉각시키는 내마모재 제조방법.
- 청구항 15에 있어서,상기 성형물을 냉각시키는 과정 이후에 상기 성형물의 온도가 100℃ 이하가 되면 상기 가열로에서 상기 성형물을 인출하는 내마모재 제조방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0116083 | 2015-08-18 | ||
KR20150116083 | 2015-08-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017030308A1 true WO2017030308A1 (ko) | 2017-02-23 |
Family
ID=58051081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/008613 WO2017030308A1 (ko) | 2015-08-18 | 2016-08-04 | 내마모재 및 그 제조방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017030308A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107417251A (zh) * | 2017-07-17 | 2017-12-01 | 张翔 | 一种耐磨性好的特种陶瓷及其制备方法 |
CN111410547A (zh) * | 2020-03-04 | 2020-07-14 | 中南大学 | 一种固废基陶瓷催化膜及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4443392A (en) * | 1980-11-06 | 1984-04-17 | Dynamit Nobel Aktiengesellschaft | Process for the production of molded decorative articles from a hardenable substance based on thermosetting synthetic resin |
KR100749368B1 (ko) * | 2006-05-24 | 2007-08-14 | 동도바잘트산업(주) | 용융주조법에 의한 현무암 타일의 제조방법 |
CN101318801A (zh) * | 2008-07-09 | 2008-12-10 | 东南大学 | 流动性好、强度高的水泥基材料及其制备方法 |
CN104446161A (zh) * | 2014-11-26 | 2015-03-25 | 武汉钢铁(集团)公司 | 一种耐磨沥青混凝土及其生产方法 |
KR101526442B1 (ko) * | 2014-01-27 | 2015-06-05 | 주식회사 포스코 | 파이프 및 이의 제조 방법 |
-
2016
- 2016-08-04 WO PCT/KR2016/008613 patent/WO2017030308A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4443392A (en) * | 1980-11-06 | 1984-04-17 | Dynamit Nobel Aktiengesellschaft | Process for the production of molded decorative articles from a hardenable substance based on thermosetting synthetic resin |
KR100749368B1 (ko) * | 2006-05-24 | 2007-08-14 | 동도바잘트산업(주) | 용융주조법에 의한 현무암 타일의 제조방법 |
CN101318801A (zh) * | 2008-07-09 | 2008-12-10 | 东南大学 | 流动性好、强度高的水泥基材料及其制备方法 |
KR101526442B1 (ko) * | 2014-01-27 | 2015-06-05 | 주식회사 포스코 | 파이프 및 이의 제조 방법 |
CN104446161A (zh) * | 2014-11-26 | 2015-03-25 | 武汉钢铁(集团)公司 | 一种耐磨沥青混凝土及其生产方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107417251A (zh) * | 2017-07-17 | 2017-12-01 | 张翔 | 一种耐磨性好的特种陶瓷及其制备方法 |
CN111410547A (zh) * | 2020-03-04 | 2020-07-14 | 中南大学 | 一种固废基陶瓷催化膜及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5133964B2 (ja) | MgO−Al2O3−SiO2系結晶性ガラス及び結晶化ガラス、並びに該結晶性ガラス及び結晶化ガラスの製造方法 | |
JP6404959B2 (ja) | 省エネ型高炉スラグ製ガラスセラミックスの製造方法 | |
CN105130190B (zh) | 以花岗石尾矿为主要原料生产的微晶玻璃及其制备方法 | |
WO2017030308A1 (ko) | 내마모재 및 그 제조방법 | |
EP4143351A1 (de) | Verfahren zum herstellen von flüssigem roheisen aus einem dri-produkt | |
JP4727773B2 (ja) | 合成ケイ酸カルシウムを使用した鋼の連続鋳造用モールドパウダー | |
KR101597708B1 (ko) | 타일 및 이의 제조 방법 | |
US7989381B2 (en) | Fusion-cast fireproof product | |
KR101419403B1 (ko) | 타일 및 이의 제조 방법 | |
KR101526442B1 (ko) | 파이프 및 이의 제조 방법 | |
CN108314324B (zh) | 利用铁尾渣和钢渣为主要原料制备微晶玻璃新材料的方法 | |
CN107324825A (zh) | 一种不含游离碳的不烧镁钙锆砖 | |
KR101485914B1 (ko) | 파이프 및 이의 제조 방법 | |
CN101125735A (zh) | 一种热态浇注法制备黄磷矿渣微晶玻璃的方法 | |
CN102731127B (zh) | 电熔镁锆共晶材料的制作工艺 | |
CN105347684A (zh) | 一种高炉渣玻璃陶瓷及其制备方法 | |
WO2017204379A1 (ko) | 파이프 및 이의 제조방법 | |
WO2017043733A1 (ko) | 캐스트 바잘트 제품 제조공정 및 그 제조시스템 | |
US4348485A (en) | Spinel type fused refractory product | |
KR20140004281A (ko) | 동 슬래그에서 주철용 선철을 제조하는 방법 | |
KR101382380B1 (ko) | 파이프 및 이의 제조 방법 | |
KR101568721B1 (ko) | U자형 관 및 이의 제조 방법 | |
KR20120110899A (ko) | 내열 시멘트의 제조방법 | |
KR101568720B1 (ko) | U자형 관 및 이의 제조 방법 | |
KR101372958B1 (ko) | 전기로용 내화물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16837250 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16837250 Country of ref document: EP Kind code of ref document: A1 |