WO2017043733A1 - 캐스트 바잘트 제품 제조공정 및 그 제조시스템 - Google Patents

캐스트 바잘트 제품 제조공정 및 그 제조시스템 Download PDF

Info

Publication number
WO2017043733A1
WO2017043733A1 PCT/KR2016/005539 KR2016005539W WO2017043733A1 WO 2017043733 A1 WO2017043733 A1 WO 2017043733A1 KR 2016005539 W KR2016005539 W KR 2016005539W WO 2017043733 A1 WO2017043733 A1 WO 2017043733A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
raw material
heat treatment
slag
temperature
Prior art date
Application number
PCT/KR2016/005539
Other languages
English (en)
French (fr)
Inventor
윤희수
윤미정
Original Assignee
동도바잘트산업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동도바잘트산업(주) filed Critical 동도바잘트산업(주)
Publication of WO2017043733A1 publication Critical patent/WO2017043733A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Definitions

  • the present invention relates to a manufacturing process and a manufacturing system of cast bazaal (hereinafter, bazaal) product, and more particularly to a coal ash (Bottom Ash) generated from thermal power generation that burns various slag and coal generated during the steelmaking process.
  • the present invention relates to a casttered product manufacturing process and a manufacturing system for manufacturing a bazaar product having excellent mechanical properties such as compressive strength, abrasion resistance, corrosion resistance, and slip resistance using a raw material included therein.
  • the Basalt product is a cast product obtained by dissolving natural basalt at a high temperature of 1250 ° C. or higher and injecting it into a mold of a predetermined shape to obtain a molded article formed of glassy tissue by a compression or centrifugal casting method, followed by heat treatment to crystallize it. It is called.
  • Such a bazaar product has excellent product characteristics such as wear resistance and corrosion resistance, and is mainly used in industrial complexes such as steel mills or thermal power plants, and various industrial fields such as plants, construction, and water industries. For example, it is used in powder blowing lines, raw material transfer lines, wastewater transfer lines, scale transfer paths in performance factories, skid panels for driving test tracks, hoppers for raw material storage, and the like. It is expected.
  • basalt the main raw material of the Bazaar product, which is used as an industrial core material
  • Basalt the main raw material of the Bazaar product, which is used as an industrial core material
  • Korea's steel industry is at a world-class level, with annual steel production at tens of millions of tons.
  • processes such as steelmaking, steelmaking, rolling, etc., occur in iron ore, a raw material.
  • various by-products such as slag, sludge, dust, etc., are generated in large quantities, accounting for more than half of steel production. do.
  • various by-products such as silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and iron oxide (FeO) are contained in various by-products such as slag and coal ash generated in a large amount during steel production and thermal power generation.
  • These components have excellent mechanical properties such as heat resistance, abrasion resistance, and corrosion resistance, so when used as raw materials for the production of high-quality products, it is expected that the field of application can be further expanded, but the development of technology in related fields is insufficient. .
  • the invention has been invented to solve the problems as described above, the process of manufacturing the cast basalt product of the present invention, the raw material processing for collecting the raw material consisting of ferronickel slag, steelmaking slag, coal ash and mixing at a constant mixing ratio Step (S10); A raw material processing step (S10) of collecting raw materials consisting of ferronickel slag, steelmaking slag, and coal ash and mixing them at a predetermined blending ratio; A melting step (S20) of charging the mixed raw material into a melting furnace to increase the temperature to 1450 to 1500 ° C to repair the melt in a completely dissolved state, and to tap at a temperature of 1100 to 1250 ° C through a tundish; The melt is injected into a tile casting machine having a mold thickness of 10 to 15 mm, preheated to 200 to 400 ° C., and then the injected melt is compressed or the centrifugal casting machine being formed at a mold thickness of 9 to 30 mm and rotating at a constant
  • casting process for taking out the molded product of the tile or tube shape; Charge the molding into the bogie preheated to 700 ⁇ 750 °C in the bogie preheating section of the heat treatment furnace, heat the molding by heating it to 710 ⁇ 910 °C in the heat treatment section, and then move to the cooling section for 16 ⁇ 24 hours at room temperature. It comprises a heat treatment step (S40) for cooling to discharge the final bazaar product at 50 ° C or less.
  • the bazaar product manufacturing system transfers the bazaar product raw materials including ferronickel slag, steelmaking slag, and coal ash, which are separately provided in the raw material storage space 101, to a mixer, and then mix them at a predetermined mixing ratio.
  • a casting unit 300 configured to cast each of the moldings, and to carry the moldings demolded by the ejector to be charged into the heat treatment furnace using a charging machine;
  • the present invention recycles by-products such as slag and coal ash, which are generated in large quantities in steel production and thermal power generation, and uses them in the manufacture of bazaar products. It not only creates economic benefits, but also provides excellent manufacturing characteristics and manufacturing systems for products ranging from raw material processing to heat treatment to enable efficient manufacturing. It has the advantage of providing the Bazaar products and creating high value added by exporting domestic products.
  • FIG. 1 is a flow chart showing a manufacturing process according to an embodiment of the cast basalt product manufacturing process of the present invention.
  • 2 to 3 is a front and plan view showing schematically the configuration according to an embodiment of the cast basalt product manufacturing system of the present invention.
  • the cast basalt product manufacturing process and its manufacturing system to which the technology of the present invention is applied are mechanical properties such as compressive strength and corrosion resistance by actively utilizing various by-products, especially steel slag, sludge, coal ash, etc., generated in large quantities in steel mills and thermal power plants. Note that it relates to a technique for producing this excellent basalt product.
  • the cast basalt product manufacturing process of the present invention comprises a raw material processing step (S10) of collecting raw materials consisting of ferronickel slag, steelmaking slag, and coal ash at a predetermined mixing ratio, and charging the mixed raw materials into a melting furnace to form 1450.
  • the raw material introduced in the raw material processing step (S10) is composed of ferronickel slag incidentally generated in the smelting process of the alloy and steel slag generated during steel smelting and coal ash generated in the thermal power generation process.
  • Analyzing the chemical composition of the components contained in the raw material is as follows.
  • the ferronickel slag is most contained 54 parts by weight of silicon dioxide (SiO 2 ), 32 parts by weight of magnesium oxide (MgO), 5 parts by weight of iron (T-Fe), 2 parts by weight of aluminum oxide (Al 2 O 3 ) Contains wealth.
  • the converter slag contained in the steelmaking slag contains the most amount of calcium oxide (CaO) of 34 parts by weight, 23 parts by weight of iron (T-Fe), 20 parts by weight of iron oxide (FeO), 19 parts by weight of silicon dioxide (SiO2) , And iron oxides (Fe2O3).
  • CaO calcium oxide
  • TiO iron
  • FeO iron oxide
  • SiO2O3 silicon dioxide
  • Tallinn slag contained in the steelmaking slag contains the most amount of calcium oxide (CaO) 26 parts by weight, 25 parts by weight of iron (T-Fe), 19 parts by weight of silicon dioxide (SiO2), 14 parts by weight of iron oxide (FeO) Include.
  • CaO calcium oxide
  • TiO2 iron
  • SiO2 silicon dioxide
  • FeO iron oxide
  • the coal ash contains the most amount of silicon dioxide (SiO 2 ) of 57 parts by weight, 21 parts by weight of aluminum oxide (Al 2 O 3 ), 9 parts by weight of iron oxide (Fe 2 O 3 ), iron (T-Fe) 7 It includes weight parts, calcium oxide (CaO) 4 parts by weight, magnesium oxide (MgO) 1 part by weight.
  • the Tallinn slag is a Tallinn which is removed by floating phosphorus in the reaction process of the molten steel and slag ( Iii) Slag that occurs incidentally in the process, converter slag is the slag generated in the process of making steel after removing impurities such as carbon from pig iron.
  • manganese oxide MnO
  • phosphorus oxide P 2 O 5
  • Cr 2 O 3 chromium oxide
  • titanium dioxide TiO 2
  • sodium oxide Na 2 O
  • potassium oxide Components such as K 2 O
  • carbon C
  • sulfur (S) sulfur and unavoidable impurities.
  • silicon dioxide SiO 2
  • various heat-resistant materials such as quartz glass, building materials
  • the magnesium oxide (MgO) is a compound produced by heating metal magnesium in air, and is used as a raw material for refractory, crucible, and magnesium cement.
  • the aluminum oxide (Al 2 O 3 ) is a raw material used in the production of aluminum, the crystals precipitated after dissolution are formed with high strength and do not corrode acids or alkalis and excellent in corrosion resistance.
  • the calcium oxide (CaO) is produced during pyrolysis of limestone and is widely used as an industrial raw material such as lime fertilizer and mixed cement.
  • the iron oxide (Fe 2 O 3 ) contains iron and some titanium and is the main raw material of steel. In nature, the olivine in basalt is produced by alteration.
  • composition of the compounds contained in the above-described ferronickel slag, steelmaking slag and coal ash shows characteristics similar to the mineral composition of basalt containing plagioclase, feldspar, olivine, and quartz. It is configured to realize high quality while replacing natural basalt which has been used as
  • raw materials consisting of 45 to 55 parts by weight of ferronickel slag, 10 to 20 parts by weight of converter slag of steelmaking slag, and 30 to 40 parts by weight of coal ash are mixed in a mixer.
  • the raw material processing step (S10) in the case of quaternary system, 33 to 38 parts by weight of ferronickel slag, 15 to 20 parts by weight of Tallinn slag of steelmaking slag, 5 to 10 parts by weight of converter slag of steelmaking slag, and 35 to 45 weight of coal ash.
  • the raw material consisting of negative blending ratio is mixed in a mixer.
  • the compounding ratio of the raw material is calculated through a number of experiments to obtain an optimal value for deriving the optimum result according to the chemical properties of each raw material and the operating conditions in the subsequent process, so that product defects occur when out of the above range
  • compounding in the above range is preferable. Details thereof will be described through experimental examples to be described later.
  • the raw materials may include procedures such as crushing each raw material to a predetermined size or refining impurities to increase the mixing efficiency.
  • a dissolution step (S20) for dissolving the mixed raw material in the melting furnace.
  • the melting furnace loaded with the mixed raw material is heated to 1450 to 1500 ° C to tap the repaired melt at a temperature of 1100 to 1250 ° C through a tundish.
  • the dissolution temperature is a temperature at which the compound contained in the mixed raw material can be completely dissolved through a number of experiments. If it is out of the above range, the dissolution temperature affects dissolution efficiency such as product defects and poor operation. It is preferable to perform process (S20).
  • the melt is preferably smoothly supplied to the casting machine while controlling the supply flow rate, speed, temperature through the tundish so that the continuous casting can be made.
  • the casting step (S30) is to inject the melt melted through the dissolution step (S20) to the tile casting machine to take out the tile-shaped molding, or to inject into a centrifugal casting machine to take out the tubular molding.
  • the mold thickness of the tile shape is set to 10 to 15 mm, preheated to 200 to 400 ° C., and then the injected melt is pressed to form a tile shaped molding.
  • the centrifugal casting machine After forming the mold thickness of 9 ⁇ 30mm and preheated to 350 ⁇ 500 °C to rotate the injected melt to form a tube-shaped molding to prevent the deformation of the mold refractory can be molded of the desired shape effectively.
  • the pressure condition of the tile casting machine and the rotational speed condition of the centrifugal casting machine can be variably applied according to the injection amount of the melt and the thickness and shape of the molding.
  • the heat treatment step (S40) is to heat the molding molded in the shape of a tile or tube at a predetermined temperature to complete the final bazaal product retaining mechanical properties such as the desired strength through the solidification of the crystalline.
  • Cast bazaal product manufacturing process according to the present invention is possible through the continuous process of each step from the raw material processing step (S10) to the heat treatment step (S40) is possible to improve the process efficiency, which will be described later with the Bazaar product manufacturing system It can be implemented to enable mass production of Basalt products.
  • the moldings taken out through the casting step (S30) are sequentially loaded on the bogie preheated at 700 to 750 ° C. in the bogie preheating section, and then charged into a heat treatment section to be heat treated at 710 to 910 ° C.
  • natural cooling in the cooling section for 16 to 24 hours to discharge the final bazaar product below 50 °C to ensure efficient and systematic operation.
  • the system for manufacturing a bazaar product is largely composed of a raw material processing unit 100, a melting unit 200, a casting unit 300, and a heat treatment unit 400. It is composed.
  • the raw material processing unit 100 transfers the raw material of bazaal products including ferronickel slag, steelmaking slag, and coal ash, which are separately provided in the raw material storage space 101, to a mixer, mixed at a predetermined mixing ratio, and then into a melting furnace through an injector 102. Charge to 201.
  • the dissolution unit 200 warms up the melting furnace 201 in which the mixed raw material is charged to set temperature, repairs the melt and taps the casting machine through the tundish 202.
  • the melting furnace 201 may be configured to control the temperature by installing an LPG for heating and an oxygen supply line and a cooling water line for preventing overheating.
  • the tundish 202 is an intermediate process means for transferring the melt between the melting furnace 201 and the casting machine to enable continuous casting by adjusting the flow rate, speed, and temperature of the melt. Since the conventional tundish configuration has been well known through a number of related technologies, a detailed description thereof will be omitted.
  • the casting unit 300 is a tile casting machine 301 for injecting the melt from the dissolution unit 200 into the mold and compression at a set temperature and pressure conditions to cast a tile molding, and the mold being rotated under the set temperature and speed conditions It is composed of a centrifugal caster 302 for casting a molten product into a tube-shaped molding to cast each of the moldings, and transported the moldings demolded by a blower (not shown) to heat treatment using a charging machine (not shown) Charge it into the furnace.
  • the tile caster 301 is composed of a tile mold for crimping the grid shape of the tile floor in the state in which the melt is injected to form a tile-shaped bazaal product.
  • the centrifugal caster 302 is a casting machine configured to apply the centrifugal force to the melt by the rotational force of the mold. When the melt is injected and solidified in a state of rotating at a constant speed, the tubular bazaar product is formed.
  • the detailed configuration of the centrifugal caster 302 will be referred to the known related art.
  • the molded product demolded in each casting machine is transferred to a heat treatment furnace using a predetermined conveying means such as a conveyor belt and charged using a charging machine (not shown) provided according to the product shape.
  • the heat treatment unit 400 is a bogie preheating section 401, a heat treatment section 402, the cooling section 403 controlled by the temperature set separately, the molding material is loaded into the heat treatment furnace partition (403) It is configured to transport and discharge the final bazaar product by sequential movement by section and heat-treated and cooled.
  • the trolley (not shown) is driven by a kind of pusher (not shown) that is manually or automatically operated as a means for mounting a molding and moving the inside of the heat treatment furnace.
  • the cooling section 403 completes the final bazaal product discharged by cooling the heat-treated molding to a predetermined temperature using a predetermined cooling device and the like so that a person can handle the loading operation.
  • each section of the heat treatment furnace is set to different temperatures for each section due to the characteristics of the operation, it will be desirable to configure a separate control means in the heat treatment unit 400 to monitor the real-time temperature for each section of the heat treatment furnace.
  • the raw material processing step (S10) is made in advance according to the composition and blending ratio of the raw material according to the production method of the present invention as described above.
  • the cast chili product manufacturing process according to the present invention is obtained in order to obtain the best bazaal product results using raw material of bazaal products including ferronickel slag, steelmaking slag, and coal ash.
  • raw material of bazaal products including ferronickel slag, steelmaking slag, and coal ash.
  • the cast basalt product manufacturing process and the manufacturing system to which the technology of the present invention having the above-described configuration is applied are configured to efficiently manufacture high-quality basalt products by recycling by-products generated from steel production and thermal power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 캐스트 바잘트 제품 제조공정 및 그 제조시스템에 관한 것으로서, 본 발명의 캐스트 바잘트 제품 제조공정은, 페로니켈 슬래그, 제강 슬래그, 석탄재로 이루어진 원료를 취합하여 일정 배합 비율로 혼합하는 원료처리공정(S10)과; 혼합 원료를 용해로에 장입하여 1450~1500℃로 승온해 완전히 용해된 상태의 용융물을 수선하고, 턴디쉬를 통해 1100~1250℃의 온도에서 출탕하는 용해공정(S20)과; 용융물을 몰드 두께가 10~15mm로 조성된 타일주조기에 주입하여 200~400℃로 예열한 후 주입된 용융물을 압착하거나, 또는 몰드 두께가 9~30mm로 조성되고 일정 속도로 회전중인 원심주조기에 주입하여 350~500℃로 예열한 후 주입된 용융물을 회전시켜, 타일 또는 튜브 형상의 성형물을 취출하는 주조공정(S30)과; 열처리로의 대차예열구간에서 700~750℃로 예열된 대차에 상기 성형물을 장입하고, 열처리구간에서 710~910℃로 승온하여 성형물을 열처리한 후, 냉각구간으로 이동해 상온에서 16~24시간 동안 자연 냉각하여 50℃ 이하에서 최종 바잘트 제품을 배출하는 열처리공정(S40)을 포함하여 구성됨에 따라 철강 및 화력발전의 부산물을 원료로 하여 고품질의 바잘트 제품을 효율적으로 제조하도록 하는 이점이 있다.

Description

캐스트 바잘트 제품 제조공정 및 그 제조시스템
본 발명은 캐스트 바잘트(이하, 바잘트) 제품 제조공정 및 그 제조시스템에 관한 것으로서 더욱 상세하게는 제강 공정 시에 발생하는 각종 슬래그와 석탄을 연소하는 화력 발전에서 발생하는 석탄재(Bottom Ash)를 포함한 원료를 이용하여 압축강도, 내마모성, 내식성, 미끄럼성 등의 기계적 특성이 우수한 바잘트 제품을 제조하도록 하는 캐스트 바잘트 제품 제조공정 및 그 제조시스템의 제공에 관한 것이다.
일반적으로, 바잘트(Basalt) 제품은 천연 현무암을 1250℃ 이상의 고온에서 용해한 후 일정 형상의 몰드에 주입하여 압착 또는 원심 주조 방법에 의해 유리질 형태의 조직으로 이루어진 성형물을 수득하고 이를 열처리하여 결정화시킨 주조품을 일컫는다.
이와 같은 바잘트 제품은 내마모성, 내식성 등 제품특성이 우수하여 주로 제철소나 화력발전소 등의 산업단지 및 플랜트, 건축, 물 산업 등 다양한 산업 분야에서 활용되고 있다. 예컨대 분체 취입 라인, 원료 이송 라인, 폐수 이송 라인, 연주 공장의 스케일 이송로, 주행 테스트 트랙용 스키드 패널, 원료 저장용 호퍼 등에 바잘트 제품이 사용되고 있고 앞으로도 고기능성 제품으로서의 그 사용범위가 더욱 확대될 것으로 예상된다.
그러나, 산업용 핵심 소재로 사용되고 있는 바잘트 제품의 주원료인 현무암은 천연 자원이 부족한 우리나라에서는 제주도 등 일부 지역에만 존재하므로 산업용 원료로 사용되는 현무암의 대부분은 수입에 의존하고 있어 경제적 비용부담이 막대한 실정이며 이마저도 해외 시장의 독점화가 이루어지고 있어 국제정세의 변동에 따라 원료 수급에 빈번한 차질이 빚어지고 있는 실정이다.
한편, 우리나라의 철강 산업은 세계적인 수준에 있으며 연간 제철소에서 생산되는 철강 생산량은 수천만 톤에 이르고 있다. 철강의 제조를 위해서는 원료인 철광석에서 제선, 제강, 압연 등의 공정을 거치게 되는데 이 과정에서 부수적으로 발생하는 각종 슬래그, 슬러지, 분진 등의 철강 부산물이 철강 생산량의 절반 이상을 차지하는 등 대량으로 발생하게 된다.
상기와 같은 철강 부산물은 일부는 선별, 가공하여 철강 산업의 원부재료로 재활용되고 있으나 사용되지 못하고 폐기되는 부산물의 폐기량 역시 막대하여 매립에 따른 비용 소요 및 환경오염의 유발과 같은 문제점이 있는 실정이다.
상기와 같은 문제점을 인지하여 철강 부산물을 더욱 효율적으로 재활용하기 위한 관련 기술이 개발되어 이용되고 있으며, 대표적인 예로서 공지된 등록특허 제10-0284752호의 철강 슬래그의 종합재활용 시스템의 개략적인 구성을 살펴보면, 입상 규산질 비료용 미분말을 생산하기 위한 분쇄기로 구성되어 입상 규산질 비료가 생산되는 제1라인과, 콘크리트, 미장용 잔골재가 생산되는 제2라인과, 고미분말 제품으로 생산되는 제3라인을 포함하여 구성된다.
상기와 같은 종래 기술이 적용되는 철강 슬래그의 종합재활용 시스템은 철강 슬래그를 분쇄하고 모래 등의 부원료를 첨가하여 비료나, 콘크리트 및 미장용 골재 등으로 재활용하도록 하는 구성으로 이루어지고 있다.
그러나, 상기 등록특허를 포함해 현재까지 철강 부산물의 재가공 및 정제기술을 통해 생산되는 제품 대부분이 철광석 대체재나 광물 대체재, 시멘트 원료, 비료의 원료 등에 그치고 있어 활용분야가 국한되어 있는 실정이다.
상기하였다시피 철강 생산 및 화력발전 과정에서 대량으로 발생하는 각종 슬래그, 석탄재 등의 부산물에는 이산화규소(SiO2), 산화알루미늄(Al2O3), 산화철(FeO) 등의 각종 화합물이 다량 함유되어 있으며 이들 성분은 내열성, 내마모성, 내식성 등의 기계적 특성이 우수하여 고품질의 제품 제조에 원료로 사용할 경우 그 활용분야를 더욱 확대할 수 있을 것으로 기대되나 이를 실현하기 위한 관련 분야의 기술 개발이 미흡한 실정이다.
이에 본 발명에서는 상술한 바와 같은 문제점을 해결하기 위하여 발명한 것으로서, 본 발명의 캐스트 바잘트 제품 제조공정은, 페로니켈 슬래그, 제강 슬래그, 석탄재로 이루어진 원료를 취합하여 일정 배합 비율로 혼합하는 원료처리공정(S10)과; 페로니켈 슬래그, 제강 슬래그, 석탄재로 이루어진 원료를 취합하여 일정 배합 비율로 혼합하는 원료처리공정(S10)과; 상기 혼합 원료를 용해로에 장입하여 1450~1500℃로 승온해 완전히 용해된 상태의 용융물을 수선하고, 턴디쉬를 통해 1100~1250℃의 온도에서 출탕하는 용해공정(S20)과; 상기 용융물을 몰드 두께가 10~15mm로 조성된 타일주조기에 주입하여 200~400℃로 예열한 후 주입된 용융물을 압착하거나, 또는 몰드 두께가 9~30mm로 조성되고 일정 속도로 회전중인 원심주조기에 주입하여 350~500℃로 예열한 후 주입된 용융물을 회전시켜, 타일 또는 튜브 형상의 성형물을 취출하는 주조공정(S30)과; 열처리로의 대차예열구간에서 700~750℃로 예열된 대차에 상기 성형물을 장입하고, 열처리구간에서 710~910℃로 승온하여 성형물을 열처리한 후, 냉각구간으로 이동해 상온에서 16~24시간 동안 자연 냉각하여 50℃ 이하에서 최종 바잘트 제품을 배출하는 열처리공정(S40)을 포함하여 이루어진다.
또한, 본 발명의 바잘트 제품 제조시스템은, 원료저장공간(101)에 별도로 마련된 페로니켈 슬래그, 제강 슬래그, 석탄재를 포함한 바잘트 제품 원료를 혼합기로 이송하여 일정 배합 비율로 혼합한 후 투입기(102)를 통해 용해로(201)로 장입시키는 원료처리유닛(100)과; 혼합 원료가 장입된 용해로(201)를 설정된 온도로 승온하여 용융물을 수선하고 턴디쉬(202)를 통해 주조기로 출탕하는 용해유닛(200)과; 용해유닛(200)에서 출탕된 용융물을 몰드에 주입하고 설정된 온도 및 압력 조건에서 압착하여 타일 성형물을 주조하는 타일주조기(301)와, 설정된 온도 및 속도 조건에서 회전중인 몰드에 용융물을 주입하여 튜브 형상의 성형물을 주조하는 원심주조기(302)로 구성되어 각각의 성형물을 주조하고, 취출기에 의해 탈형된 성형물을 운반하여 장입기를 이용해 열처리로로 장입시키는 주조유닛(300)과; 개별 설정된 온도에 의해 제어되는 대차예열구간(401), 열처리구간(402), 냉각구간(403)으로 구획된 열처리로 내부에 장입되는 성형물을 대차를 이용해 구간별로 순차 이동시켜 열처리하고 냉각된 최종 바잘트 제품을 외부로 운반하여 배출하는 열처리유닛(400)으로 구성된다.
따라서, 철강 및 화력발전의 부산물로 대량 발생되는 각종 슬래그 및 석탄재를 원료로 하여 본 발명의 캐스트 바잘트 제품 제조공정 및 그 제조시스템을 통해 기계적 특성이 우수한 고품질의 바잘트 제품을 효율적으로 제조할 수 있는 목적 달성이 가능하다.
본 발명은 철강 생산 및 화력발전 과정에서 대량으로 발생하는 각종 슬래그, 석탄재 등의 부산물을 재활용하여 바잘트 제품의 제조에 이용함으로써 종래 원료 대부분을 수입에 의존하고 있는 실정에서 원료 대체를 통해 수입량 감소에 따른 경제적 이익을 창출함은 물론이고, 원료처리공정에서부터 열처리공정에 이르는 제품의 제조공정 및 이를 위한 제조시스템을 제공하여 효율적인 제조 공정이 이루어질 수 있도록 함으로써 다양한 산업분야에서 활용될 수 있는 기계적 특성이 우수한 바잘트 제품을 제공하고 국산 제품의 수출에 따른 고부가가치를 창출하는 이점이 있다.
아울러, 종래 원료로 사용된 천연 현무암 등의 자원 고갈을 방지하고 재활용에 사용되지 못하고 폐기되는 부산물의 폐기량을 감소하여 매립 비용 절감 및 이산화탄소 배출량 저감 등 환경보존에도 이바지할 수 있는 이점이 있다.
도 1은 본 발명의 캐스트 바잘트 제품 제조공정의 실시 예에 따른 제조과정을 도시한 플로차트도.
도 2 내지 도 3은 본 발명의 캐스트 바잘트 제품 제조시스템의 실시 예에 따른 구성을 개략적으로 도시한 정면 및 평면 구성도.
본 발명의 기술이 적용되는 캐스트 바잘트 제품 제조공정 및 그 제조시스템은 제철소나 화력발전소 등에서 대량으로 발생하는 각종 부산물, 특히 철강 슬래그, 슬러지, 석탄재 등을 적극 활용하여 압축강도, 내식성 등의 기계적 특성이 우수한 바잘트 제품을 제조하도록 하는 기술에 관한 것임을 주지한다.
이를 위해서 본 발명의 캐스트 바잘트 제품 제조공정은, 페로니켈 슬래그, 제강 슬래그, 석탄재로 이루어진 원료를 취합하여 일정 배합 비율로 혼합하는 원료처리공정(S10)과, 상기 혼합 원료를 용해로에 장입하여 1450~1500℃로 승온해 완전히 용해된 상태의 용융물을 수선하고, 턴디쉬를 통해 1100~1250℃의 온도에서 출탕하는 용해공정(S20)과, 상기 용융물을 몰드 두께가 10~15mm로 조성된 타일주조기에 주입하여 200~400℃로 예열한 후 주입된 용융물을 압착하거나, 또는 몰드 두께가 9~30mm로 조성되고 일정 속도로 회전중인 원심주조기에 주입하여 350~500℃로 예열한 후 주입된 용융물을 회전시켜, 타일 또는 튜브 형상의 성형물을 취출하는 주조공정(S30)과, 열처리로의 대차예열구간에서 700~750℃로 예열된 대차에 상기 성형물을 장입하고, 열처리구간에서 710~910℃로 승온하여 성형물을 열처리한 후, 냉각구간으로 이동해 상온에서 16~24시간 동안 자연 냉각하여 50℃ 이하에서 최종 바잘트 제품을 배출하는 열처리공정(S40)으로 이루어진다.
상기 원료처리공정(S10)에서 투입되는 원료는 합금의 제련 과정에서 부수적으로 발생하는 페로니켈 슬래그 및 철강 제련시 발생하는 제강 슬래그와 화력발전 과정에서 발생하는 석탄재(Bottom Ash)로 구성된다.
상기 원료에 함유된 성분의 화학적 조성을 분석하면 다음과 같다.
상기 페로니켈 슬래그에는 이산화규소(SiO2)가 54중량부로 가장 많이 함유되어 있고, 산화마그네슘(MgO) 32중량부, 전철(T-Fe) 5중량부, 산화알루미늄(Al2O3) 2중량부를 포함한다.
상기 제강 슬래그에 포함된 전로 슬래그에는 산화칼슘(CaO)이 34중량부로 가장 많이 함유되어 있고, 전철(T-Fe) 23중량부, 산화철(FeO) 20중량부, 이산화규소(SiO2) 19중량부, 및 철산화물(Fe2O3)을 포함한다.
상기 제강 슬래그에 포함된 탈린 슬래그에는 산화칼슘(CaO)이 26중량부로 가장 많이 함유되어 있고, 전철(T-Fe) 25중량부, 이산화규소(SiO2) 19중량부, 산화철(FeO) 14중량부를 포함한다.
상기 석탄재에는 이산화규소(SiO2)가 57중량부로 가장 많이 함유되어 있고, 산화알루미늄(Al2O3) 21중량부, 철산화물(Fe2O3) 9중량부, 전철(T-Fe) 7중량부, 산화칼슘(CaO) 4중량부, 산화마그네슘(MgO) 1중량부를 포함한다.
상기 탈린 슬래그는 용융된 상태의 강과 슬래그의 반응 과정에서 인을 부유시켜 제거하는 탈린(
Figure 812b
燐) 과정에서 부수적으로 발생하는 슬래그이며, 전로 슬래그는 선철에서 탄소 등의 불순물을 제거한 후 강으로 만드는 과정에서 발생하는 슬래그이다.
한편, 상기한 성분들 외에 기타 산화망간(MnO), 산화인(P2O5), 산화크롬(Cr2O3), 이산화티타늄(TiO2), 산화나트륨(Na2O), 산화칼륨(K2O), 탄소(C), 황(S), 및 불가피한 불순물 등의 성분을 포함한다.
상기한 화학적 조성으로 이루어지는 성분들 중에서도 큰 비중을 차지하는 주요 화합물의 특성을 살펴보면, 우선 이산화규소(SiO2)는 열팽창률이 낮아 내열성이 우수하므로 석영유리, 건축자재 등 각종 내열재의 원료로 사용된다.
상기 산화마그네슘(MgO)은 금속 마그네슘을 공기 중에서 가열하여 생성되는 화합물로서 내화물, 도가니, 마그네시아시멘트 등의 원료로 사용된다.
상기 산화알루미늄(Al2O3)은 알루미늄의 제조에 사용되는 원료로서 용해 후에 석출시킨 결정은 고강도로 형성되고 산이나 알칼리에 부식되지 않아 내식성이 우수하다.
상기 산화칼슘(CaO)은 석회석을 열분해 시 생성되며 석회질비료, 혼합시멘트 등 공업용 원료로 광범위하게 사용된다.
상기 철산화물(Fe2O3)은 철과 다소의 티탄을 함유하며 철강의 주요 원료이다. 천연에서는 현무암 내의 감람석이 변질되어 생성되기도 한다.
상술한 페로니켈 슬래그, 제강 슬래그 및 석탄재에 함유된 화합물의 조성은 사장석, 휘석, 감람석, 석영을 함유하는 현무암의 광물 조성과 유사한 특성을 보이는데 따라서 본 발명의 제조방법을 통해서 종래 바잘트 제품의 원료로 사용되어온 천연 현무암을 대체하면서 고품질을 구현할 수 있도록 구성한다.
상기 원료처리공정(S10)에서는 3원계의 경우 페로니켈 슬래그 45~55중량부, 제강 슬래그의 전로 슬래그 10~20중량부, 석탄재 30~40중량부의 배합 비율로 이루어진 원료를 혼합기에서 혼합하도록 한다.
또는, 상기 원료처리공정(S10)에서는 4원계의 경우 페로니켈 슬래그 33~38중량부, 제강 슬래그의 탈린 슬래그 15~20중량부, 제강 슬래그의 전로 슬래그 5~10중량부, 석탄재 35~45중량부의 배합 비율로 이루어진 원료를 혼합기에서 혼합하도록 한다.
상기 원료의 배합비율은 다수의 실험을 통해 각 원료의 화학적 특성 및 후속되는 공정에서의 조업 조건에 따른 최적의 결과물을 도출하기 위한 적정 값을 산출한 것이며, 따라서 상기 범위를 벗어날 경우 제품 불량이 발생하거나 공정의 비효율화를 초래할 수 있으므로 상기 범위에서 배합하는 것이 바람직하다. 이와 관련한 구체적인 내용은 후술하게 될 실험 예를 통해서 기술하도록 한다.
상술한 바와 같은 구성으로 이루어지는 원료처리공정(S10)에서는 혼합 효율을 높이도록 필요에 따라 각 원료를 일정 크기의 입도로 파쇄하거나 불순물을 정련하는 등의 절차를 포함할 수 있음은 당연하다 할 것이다.
상기 원료처리공정(S10)을 거친 후에는 용해로에서 혼합 원료를 용해시키는 용해공정(S20)을 실시한다.
상기 용해공정(S20)에서는 혼합 원료가 장입된 용해로를 1450~1500℃로 승온하여 수선된 용융물을 턴디쉬를 통해 1100~1250℃의 온도에서 출탕하도록 이루어진다.
상기한 용해 온도는 다수의 실험을 통해 혼합 원료에 함유된 화합물이 완전히 용해될 수 있는 온도를 산출한 것으로 상기 범위를 벗어날 경우 제품 불량 및 조업 불량 등 용해 효율에 영향을 미치게 되므로 상기 온도범위에서 용해공정(S20)을 실시하는 것이 바람직하다.
또한, 상기 용융물은 턴디쉬를 통해 공급 유량 및 속도, 온도를 제어하면서 주조기에 원활하게 공급하여 연속 주조가 이루어질 수 있도록 함이 바람직하다.
상기 주조공정(S30)은 용해공정(S20)을 통해 출탕된 용융물을 타일주조기에 주입하여 타일 형상의 성형물을 취출하거나, 또는 원심주조기에 주입하여 튜브 형상의 성형물을 취출하도록 한다.
타일주조기의 경우 타일 형상의 몰드 두께를 10~15mm로 조성하고 200~400℃로 예열한 후 주입된 용융물을 압착하여 타일 형상의 성형물을 형성하고, 원심주조기의 경우 일정 속도로 회전중인 원심주조기의 몰드 두께를 9~30mm로 조성하고 350~500℃로 예열한 후 주입된 용융물을 회전시켜 튜브 형상의 성형물을 형성하여 몰드 내화물의 변형을 방지하면서 효과적으로 목적하는 형상의 성형물이 주조될 수 있도록 한다.
또한, 상기 타일주조기의 압력 조건 및 원심주조기의 회전 속도 조건은 용융물의 주입량 및 성형물의 두께, 형상 등에 따라 가변적으로 적용할 수 있음은 당연하다 할 것이다.
상기 열처리공정(S40)은 타일 또는 튜브 형상으로 성형된 성형물을 일정 온도로 열처리하여 결정질의 고형화를 통해 목적하는 바의 강도 등 기계적 특성을 보유하는 최종 바잘트 제품을 완성하도록 한다.
본 발명에 따른 캐스트 바잘트 제품 제조공정은 원료처리공정(S10)에서부터 열처리공정(S40)에 이르는 각 공정의 연속적인 순차 진행을 통해 공정 효율화가 가능하고 이는 후술하게 될 바잘트 제품 제조시스템과 함께 구현되어 바잘트 제품의 대량 생산이 가능해질 수 있다.
따라서, 상기 열처리공정(S40)에서는 주조공정(S30)을 통해 취출되는 성형물을 대차예열구간에서 700~750℃에서 예열된 대차에 순차적으로 탑재한 후 열처리구간으로 장입하여 710~910℃에서 열처리하고, 냉각구간에서 16~24시간 동안 자연 냉각하여 50℃ 이하에서 최종 바잘트 제품을 배출하여 효율적이고 체계적인 조업이 이루어질 수 있도록 한다.
본 발명의 바잘트 제품 제조시스템은 도 2 내지 도 3에 개략적으로 도시된 바와 같이 크게 원료처리유닛(100)과, 용해유닛(200)과, 주조유닛(300)과, 열처리유닛(400)으로 구성된다.
상기 원료처리유닛(100)은 원료저장공간(101)에 별도로 마련된 페로니켈 슬래그, 제강 슬래그, 석탄재를 포함한 바잘트 제품 원료를 혼합기로 이송하여 일정 배합 비율로 혼합한 후 투입기(102)를 통해 용해로(201)로 장입시킨다.
상기 용해유닛(200)은 혼합 원료가 장입된 용해로(201)를 설정된 온도로 승온하여 용융물을 수선하고 턴디쉬(202)를 통해 주조기로 출탕한다.
상기 용해로(201)에는 가열을 위한 LPG와 산소 공급 라인 및 과열 방지용 냉각수 라인 등을 설치하여 온도를 제어하도록 구성함이 바람직할 것이다.
상기 턴디쉬(202)는 용해로(201)와 주조기의 사이에서 용융물을 이송하는 중간 과정 수단으로써 용융물의 공급 유량 및 속도, 온도를 조절하면서 원활한 공급이 이루어지도록 하여 연속 주조를 가능하게 한다. 통상적인 턴디쉬의 구성은 이미 다수의 관련 기술을 통해 주지된 바 있으므로 구체적인 설명은 생략하도록 한다.
상기 주조유닛(300)은 용해유닛(200)에서 출탕된 용융물을 몰드에 주입하고 설정된 온도 및 압력 조건에서 압착하여 타일 성형물을 주조하는 타일주조기(301)와, 설정된 온도 및 속도 조건에서 회전중인 몰드에 용융물을 주입하여 튜브 형상의 성형물을 주조하는 원심주조기(302)로 구성되어 각각의 성형물을 주조하고, 취출기(미도시)에 의해 탈형된 성형물을 운반하여 장입기(미도시)를 이용해 열처리로에 장입시킨다.
상기 타일주조기(301)는 용융물이 주입된 상태에서 타일 바닥의 그리드 형상을 압착하는 타일몰드로 구성되어 타일 형상의 바잘트 제품을 성형하도록 한다.
상기 원심주조기(302)는 몰드의 회전력에 의해 용융물에 원심력이 가해지도록 구성된 주조기로써, 일정 속도로 회전하는 상태에서 용융물이 주입되어 고형화시키면 튜브 형상의 바잘트 제품을 성형하도록 한다. 원심주조기(302)의 세부 구성은 주지된 관련 기술을 참고하면 될 것이다.
각각의 주조기에서 탈형된 성형물은 컨베이어 벨트와 같은 소정의 운반수단을 이용해 열처리로로 운반하고 제품 형상에 따라 구비된 장입기(미도시)를 이용해 장입시킨다.
상기 열처리유닛(400)은 개별 설정된 온도에 의해 제어되는 대차예열구간(401), 열처리구간(402), 냉각구간(403)으로 구획된 열처리로 내부에 장입되는 성형물을 대차(미도시)를 이용해 구간별로 순차 이동시켜 열처리하고 냉각된 최종 바잘트 제품을 외부로 운반하여 배출하도록 구성된다.
상기 대차(미도시)는 성형물을 탑재하여 열처리로 내부를 이동하는 수단으로써 수동 또는 자동 작동하는 일종의 푸셔(Pusher, 미도시)에 의해 구동된다. 열처리구간(402)에 진입하기 전 대차예열구간(401)에서 미리 설정 온도로 예열하여 열처리구간(402) 내에 진입 시 내부 온도하강으로 인한 제품 불량을 초래하는 현상을 방지하도록 한다.
따라서, 초기 온도인 상온에서 성형물의 열처리 온도범위까지 승온하여 예열한 후 열처리구간(402)으로 진입하여 성형물을 장입시키고 성형물이 열처리 되도록 한다.
상기 냉각구간(403)은 열처리된 성형물을 소정의 냉각장치 등을 이용해 일정 온도로 냉각하여 배출되는 최종 바잘트 제품을 완성하고 사람이 취급하여 적재작업을 할 수 있도록 한다.
상기 열처리로의 각 구간은 조업의 특성상 구간별 온도가 상이하게 설정되므로 열처리유닛(400)에는 열처리로의 구간별 실시간 온도를 모니터링할 수 있는 별도의 제어수단을 함께 구성하는 것이 바람직할 것이다.
<실험 예>
한편, 본 발명의 캐스트 바잘트 제품 제조공정 및 그 제조시스템을 이용하여 타일, 튜브 형상의 바잘트 제품을 제조하되, 각 공정별 조업 조건을 차별하여 실시한 후 최상의 결과물을 도출하도록 하는 최적 조건을 확인하는 실험을 실시하였으며 그 결과는 아래 표 1 내지 표 2에 기재된 바와 같다. 본 실험에 앞서 원료처리공정(S10)은 상술한 바와 같은 본 발명의 제조방법에 의한 원료의 조성 및 배합비율에 따라서 실시하였음을 미리 밝혀둔다.
표 1
구분 타일 캐스트 바잘트 제품 제조공정에서 각 공정별 조업 조건
미만 최적 조건 초과
용해공정(S20) 예열 온도 용해시간 지연 1300~1320℃ 연료 소비량 과다
용해 온도 미용융물에 의한 제품 불량 1450~1500℃ 몰드 내화물 침식에 의한 로체 수명 감소
출탕 온도 출탕 중 고형화로 인한 조업 불량 1100~1250℃ 제품 유리질 및 크랙 발생
주조공정(S30) 몰드 두께 몰드 휨 10~15mm 유리질 과다 발생
몰드 온도 유리질 생성으로 제품 불량 200~400℃ 용융물과 몰드간 해체 시간 지연으로 제품 불량
압착 소요 시간 바닥의 그리드 형태 허물어짐 30~40초 제품 고형화로 인한 그리드 불량
탈형 소요 시간 성형물이 허물어지거나 몰드와 분리 안 됨 2분30초~3분 유리질 생성으로 제품 불량
열처리공정(S40) 대차 예열 온도 조업 불량 700~750℃ 제품 불량
열처리 온도 제품 불량 710~910℃ 제품 불량
열처리 소요 시간 제품이 허물어짐 2분40초~3분30초 유리질 과다 발생
냉각 온도 - 50℃이하 제품 불량
냉각 시간 제품 불량 16~24시간 조업 불량
냉각 속도 조업 불량 0.5~1℃/min 결정화율 낮음
표 2
구분 튜브 캐스트 바잘트 제품 제조공정에서 각 공정별 조업 조건
미만 최적 조건 초과
용해공정(S20) 예열 온도 용해시간 지연 1300~1320℃ 연료 소비량 과다
용해 온도 미용융물에 의한 제품 불량 1450~1500℃ 몰드 내화물 침식에 의한 로체 수명 감소
출탕 온도 출탕 중 고형화로 인한 조업 불량 1100~1250℃ 제품 유리질 및 크랙 발생
주조공정(S30) 몰드 두께 몰드 휨 30mm 유리질 과다 발생
몰드 온도 유리질 생성으로 제품 불량 350~500℃ 용융물과 몰드간 해체 시간 지연으로 제품 불량
회전 속도 저속 회전으로 인한 제품 허물어짐 600~700rpm 고속 회전으로 인한 기계 수명 단축
회전 소요 시간 제품 미성형 1분 유리질 과다 발생
탈형 소요 시간 성형물이 허물어지거나 몰드와 분리 안 됨 2분30초~3분 유리질 생성으로 제품 불량
열처리공정(S40) 대차 예열 온도 조업 불량 700~750℃ 제품 불량
열처리 온도 제품 불량 710~910℃ 제품 불량
열처리 소요 시간 제품이 허물어짐 2분40초~3분30초 유리질 과다 발생
냉각 온도 - 50℃이하 제품 불량
냉각 시간 제품 불량 16~24시간 조업 불량
냉각 속도 조업 불량 0.5~1℃/min 결정화율 낮음
상기 표 1 내지 표 2를 통한 실험결과에서도 확인할 수 있듯이 본 발명에 따른 캐스트 바잘트 제품 제조공정은 페로니켈 슬래그, 제강 슬래그, 석탄재를 포함한 바잘트 제품 원료를 이용해 최상의 바잘트 제품 결과물을 수득하기 위하여 원료처리공정(S10) 내지 열처리공정(S40)에 이르는 각 공정에서 상기 제시된 조업 조건에 따라 공정을 실시하는 것이 가장 바람직한 결과물을 도출하도록 함을 확인할 수 있다.
전술한 바와 같은 구성으로 이루어지는 본 발명의 기술이 적용된 캐스트 바잘트 제품 제조공정 및 그 제조시스템은 철강 생산 및 화력발전에서 발생하는 부산물을 재활용하여 고품질의 바잘트 제품을 효율적으로 제조하도록 구성된다.
따라서, 종래 수입에 의존하고 있는 바잘트 제품 원료를 대체하면서 고품질의 바잘트 제품의 제조를 가능하게 하여 다양한 산업분야에서 활용될 수 있는 기계적 특성이 우수한 바잘트 제품을 제공해 고부가가치를 창출함은 물론이고, 자원 고갈 방지 및 환경보존 등에 이바지할 수 있는 등의 다양한 이점이 있다.

Claims (4)

  1. 페로니켈 슬래그, 제강 슬래그, 석탄재로 이루어진 원료를 취합하여 일정 배합 비율로 혼합하는 원료처리공정(S10)과;
    상기 혼합 원료를 용해로에 장입하여 1450~1500℃로 승온해 완전히 용해된 상태의 용융물을 수선하고, 턴디쉬를 통해 1100~1250℃의 온도에서 출탕하는 용해공정(S20)과;
    상기 용융물을 몰드 두께가 10~15mm로 조성된 타일주조기에 주입하여 200~400℃로 예열한 후 주입된 용융물을 압착하거나, 또는 몰드 두께가 9~30mm로 조성되고 일정 속도로 회전중인 원심주조기에 주입하여 350~500℃로 예열한 후 주입된 용융물을 회전시켜, 타일 또는 튜브 형상의 성형물을 취출하는 주조공정(S30)과;
    열처리로의 대차예열구간에서 700~750℃로 예열된 대차에 상기 성형물을 장입하고, 열처리구간에서 710~910℃로 승온하여 성형물을 열처리한 후, 냉각구간으로 이동해 상온에서 16~24시간 동안 자연 냉각하여 50℃ 이하에서 최종 바잘트 제품을 배출하는 열처리공정(S40)으로 이루어지는 것을 특징으로 하는 캐스트 바잘트 제품 제조공정.
  2. 원료저장공간(101)에 별도로 마련된 페로니켈 슬래그, 제강 슬래그, 석탄재를 포함한 바잘트 제품 원료를 혼합기로 이송하여 일정 배합 비율로 혼합한 후 투입기(102)를 통해 용해로(201)로 장입시키는 원료처리유닛(100)과;
    혼합 원료가 장입된 용해로(201)를 설정된 온도로 승온하여 용융물을 수선하고 턴디쉬(202)를 통해 주조기로 출탕하는 용해유닛(200)과;
    용해유닛(200)에서 출탕된 용융물을 몰드에 주입하고 설정된 온도 및 압력 조건에서 압착하여 타일 성형물을 주조하는 타일주조기(301)와, 설정된 온도 및 속도 조건에서 회전중인 몰드에 용융물을 주입하여 튜브 형상의 성형물을 주조하는 원심주조기(302)로 구성되어 각각의 성형물을 주조하고, 취출기에 의해 탈형된 성형물을 운반하여 장입기를 이용해 열처리로로 장입시키는 주조유닛(300)과;
    개별 설정된 온도에 의해 제어되는 대차예열구간(401), 열처리구간(402), 냉각구간(403)으로 구획된 열처리로 내부에 장입되는 성형물을 대차를 이용해 구간별로 순차 이동시켜 열처리하고 냉각된 최종 바잘트 제품을 외부로 운반하여 배출하는 열처리유닛(400)으로 구성되는 것을 특징으로 하는 캐스트 바잘트 제품 제조시스템.
  3. 제 1 항에 있어서,
    상기 원료처리공정(S10)에서는, 3원계의 경우 페로니켈 슬래그 45~55중량부, 제강 슬래그의 전로 슬래그 10~20중량부, 석탄재 30~40중량부의 배합 비율로 이루어진 원료를 혼합기에서 혼합하는 것을 특징으로 하는 캐스트 바잘트 제품 제조공정.
  4. 제 1 항에 있어서,
    상기 원료처리공정(S10)에서는, 4원계의 경우 페로니켈 슬래그 33~38중량부, 제강 슬래그의 탈린 슬래그 15~20중량부, 제강 슬래그의 전로 슬래그 5~10중량부, 석탄재 35~45중량부의 배합 비율로 이루어진 원료를 혼합기에서 혼합하는 것을 특징으로 하는 캐스트 바잘트 제품 제조공정.
PCT/KR2016/005539 2015-09-08 2016-05-25 캐스트 바잘트 제품 제조공정 및 그 제조시스템 WO2017043733A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0127173 2015-09-08
KR20150127173 2015-09-08

Publications (1)

Publication Number Publication Date
WO2017043733A1 true WO2017043733A1 (ko) 2017-03-16

Family

ID=58240922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005539 WO2017043733A1 (ko) 2015-09-08 2016-05-25 캐스트 바잘트 제품 제조공정 및 그 제조시스템

Country Status (1)

Country Link
WO (1) WO2017043733A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114375968A (zh) * 2022-01-24 2022-04-22 河南科技大学 一种自固化无毒抗菌材料及其制备方法和应用
CN117682278A (zh) * 2024-01-29 2024-03-12 四川航天拓达玄武岩纤维开发有限公司 一种玄武岩管道运输储存装置及使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246357A (ja) * 1994-03-09 1995-09-26 Kanto Auto Works Ltd 乾燥炉
KR20080094414A (ko) * 2007-04-20 2008-10-23 손익부 함철 부산물을 이용한 smo 제조 방법 및 장치
KR20120108391A (ko) * 2011-03-24 2012-10-05 한국건설생활환경시험연구원 철강용융 슬래그를 활용한 건축마감용 고품질 석재 제조방법
KR20140146832A (ko) * 2013-06-18 2014-12-29 주식회사 포스코 파이프 및 이의 제조 방법
KR20150089297A (ko) * 2014-01-27 2015-08-05 주식회사 포스코 타일 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246357A (ja) * 1994-03-09 1995-09-26 Kanto Auto Works Ltd 乾燥炉
KR20080094414A (ko) * 2007-04-20 2008-10-23 손익부 함철 부산물을 이용한 smo 제조 방법 및 장치
KR20120108391A (ko) * 2011-03-24 2012-10-05 한국건설생활환경시험연구원 철강용융 슬래그를 활용한 건축마감용 고품질 석재 제조방법
KR20140146832A (ko) * 2013-06-18 2014-12-29 주식회사 포스코 파이프 및 이의 제조 방법
KR20150089297A (ko) * 2014-01-27 2015-08-05 주식회사 포스코 타일 및 이의 제조 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114375968A (zh) * 2022-01-24 2022-04-22 河南科技大学 一种自固化无毒抗菌材料及其制备方法和应用
CN114375968B (zh) * 2022-01-24 2023-09-26 河南科技大学 一种自固化无毒抗菌材料及其制备方法和应用
CN117682278A (zh) * 2024-01-29 2024-03-12 四川航天拓达玄武岩纤维开发有限公司 一种玄武岩管道运输储存装置及使用方法
CN117682278B (zh) * 2024-01-29 2024-04-26 四川航天拓达玄武岩纤维开发有限公司 一种玄武岩管道运输储存装置及使用方法

Similar Documents

Publication Publication Date Title
CN106048109B (zh) 一种混合熔渣熔融还原回收与调质处理的方法
CN103667742B (zh) 红土镍矿处理方法
CN101701312B (zh) 用铬矿粉和红土矿为原料冶炼不锈钢母液的方法
CN107188411B (zh) 一种利用锰合金冶炼高温熔渣制备微晶石的方法
CN101550016A (zh) 一种镁铬碳质涂抹料及其制备方法
CN109369020A (zh) 一种利用液态锰渣生产微晶玻璃或石板材的压延工艺方法
CN101139208A (zh) 一种低成本耐火浇注料及其制备方法
CN103204628A (zh) 热态高炉熔渣直接生产矿棉的工艺方法及装置
CN102351473B (zh) 一种格栅板的制备方法
WO2017043733A1 (ko) 캐스트 바잘트 제품 제조공정 및 그 제조시스템
KR101184595B1 (ko) 수쇄 슬래그 또는 파이넥스 슬래그를 이용한 시멘트 클링커의 제조방법
GB986289A (en) A material produced by devitrification of a glass made from a metallurgical slag
CN102010159B (zh) 一种节能型透气砖及其制备方法
CN103214250A (zh) 用后废弃氧化铝砖的再利用方法
EP1919839B1 (en) A process for conversion of basic oxygen furnace slag into construction materials
CN208266070U (zh) 一种利用热态转炉渣制备水泥混合料的装置
CN105347684B (zh) 一种高炉渣玻璃陶瓷及其制备方法
CN104232826B (zh) 用低品位难选铁矿炼铁的方法及其设备
CN108504799B (zh) 一种熔态转炉渣改质中降低终渣FeO含量的方法
CN108558244A (zh) 一种利用热态转炉渣制备水泥混合料的装置及制备方法
CN105177195A (zh) 一种直接用粉状含铁尘泥冶炼铁水工艺
CN103320562A (zh) 一种除尘灰冶炼铁水的方法
CN103553342B (zh) 工业防护用玻璃陶瓷板材及其制备方法
CN203478998U (zh) 一种电磁感应矿渣熔炉底流式防漩涡中心塞棒水口
KR100976126B1 (ko) 함철부산물을 이용한 저[s] 용융환원철의 제조방법 및장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844553

Country of ref document: EP

Kind code of ref document: A1