WO2018066550A1 - 開閉体制御装置 - Google Patents

開閉体制御装置 Download PDF

Info

Publication number
WO2018066550A1
WO2018066550A1 PCT/JP2017/035954 JP2017035954W WO2018066550A1 WO 2018066550 A1 WO2018066550 A1 WO 2018066550A1 JP 2017035954 W JP2017035954 W JP 2017035954W WO 2018066550 A1 WO2018066550 A1 WO 2018066550A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
opening
drive source
unit
closing body
Prior art date
Application number
PCT/JP2017/035954
Other languages
English (en)
French (fr)
Inventor
亮輔 岸野
池田 隆之
正弘 笛木
木村 高志
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to US16/336,725 priority Critical patent/US10907395B2/en
Priority to JP2018543915A priority patent/JP6734928B2/ja
Publication of WO2018066550A1 publication Critical patent/WO2018066550A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/611Power-operated mechanisms for wings using electrical actuators using rotary electromotors for swinging wings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/03Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors
    • H02P7/04Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors by means of a H-bridge circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/10Doors arranged at the vehicle rear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • the present invention relates to an opening / closing body control device.
  • This application claims priority based on Japanese Patent Application No. 2016-198224 filed in Japan on October 06, 2016, the contents of which are incorporated herein by reference.
  • an automobile is provided with an opening / closing body control device that opens and closes a tailgate by the power of a motor.
  • the opening / closing body control device includes an electric mode in which the tailgate is opened / closed electrically by the power of the motor, and a manual mode in which the tailgate can be manually opened / closed.
  • Patent Document 1 discloses a method of suppressing the voltage inside the switch control device to the battery voltage by turning on (conducting) the reverse connection protection relay when non-electrical movement of the tailgate is detected. Yes.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an opening / closing body control device capable of suppressing an overvoltage generated by non-electrical movement of the opening / closing body.
  • One aspect of the present invention is an opening / closing body control device that drives the opening / closing body by supplying electric power from the power supply device to a drive source of the opening / closing body that opens / closes an opening of a vehicle.
  • Control that electrically connects or disconnects the power supply device and the drive source by controlling a switch unit provided between the drive source and a conduction state or a cutoff state of the switch unit.
  • a voltage limiting unit that limits a power generation voltage of the drive source generated by rotation of the drive source by an external force to a predetermined voltage when the connection between the power supply device and the drive source is interrupted.
  • a current detection unit that detects a generated current output from the drive source when the generated voltage is limited to the predetermined voltage, and the control unit detects that the generated current is detected.
  • an opening and closing member control device which electrically connects the driving source and the power supply device.
  • One aspect of the present invention is the opening / closing body control device described above, wherein the control unit controls the switch unit to be in a cut-off state when the rotation of the drive source falls below a predetermined number of rotations. The electrical connection between the power supply device and the drive source is cut off.
  • One aspect of the present invention is the opening / closing body control device described above, wherein the control unit controls the switch unit to be in a conductive state when the generated current is detected.
  • One aspect of the present invention is the above-described opening / closing body control device, wherein the control unit conducts the switch unit when the generated current equal to or greater than a predetermined current value is continuously detected for a predetermined time. Control to the state.
  • One aspect of the present invention is the opening / closing body control device described above, wherein the control unit has a predetermined integrated value of the generated current detected by the current detection unit after the generated voltage is limited to the predetermined voltage. If the value is greater than or equal to the value, the switch unit is controlled to be in a conductive state.
  • An opening / closing body control device that drives the opening / closing body by supplying electric power from the power supply device to a driving source of the opening / closing body that opens and closes an opening of the vehicle, and is provided between the power supply device and the driving source.
  • a switch unit provided; a control unit that electrically connects or disconnects the power source device and the drive source by controlling a conduction state or a cutoff state of the switch unit; and the power source device.
  • a voltage limiting unit that limits the generated voltage of the drive source generated by rotation of the drive source by an external force to a predetermined voltage, and detects the generated voltage
  • the control unit electrically connects the power supply device and the drive source by controlling the switch unit to be in a conductive state according to the generated voltage detected by the voltage detection unit. Open / close body control device .
  • One aspect of the present invention is the opening / closing body control device described above, including a plurality of switching devices, including an inverter that converts a DC voltage supplied from the power supply device into an AC voltage and applies the AC voltage to the drive source, When the rotation of the drive source does not fall below a predetermined number of revolutions after controlling the switch unit to be in a conductive state, the control unit returns the generated current of the drive source among the plurality of switchings A switching element having a diode is controlled to be on.
  • FIG. 1 is a perspective view illustrating an example of a vehicle 1 on which an opening / closing body control device 4 according to a first embodiment is mounted. It is a figure which shows an example of schematic structure of the opening-closing body control apparatus 4 which concerns on 1st Embodiment. It is a figure which shows the detection range of the motor current of the current detection part 16 which concerns on 1st Embodiment. It is a figure which shows the flow of a process of the opening / closing body control apparatus 4 which concerns on 1st Embodiment. It is a figure which shows the flow of the electric power generation electric current in case the voltage limiting part 15 breakdowns in Zener in the manual mode which concerns on 1st Embodiment.
  • FIG. 1 It is a perspective view which shows the example of the vehicle 1 by which the opening / closing body control apparatus 4A which concerns on 2nd Embodiment is mounted. It is a figure which shows an example of schematic structure of the opening-closing body control apparatus 4A which concerns on 2nd Embodiment. It is a figure which shows the 2nd modification in the process of the opening-closing body control apparatus 4 which concerns on 2nd Embodiment. It is a figure which shows the flow of the electric power generation electric current in the case of the manual mode which concerns on the opening-and-closing body control apparatus 4 which concerns on 2nd Embodiment, and the voltage limiting part 15 breakdowns. It is a figure which shows the flow of the electric power generation state in the state where the switch 12 is ON in the case of the manual mode which concerns on 2nd Embodiment.
  • the opening / closing body control apparatus according to the present embodiment will be described with reference to the drawings.
  • this embodiment demonstrates the case where the opening / closing body provided in a vehicle is a tailgate of a vehicle, it is not limited to this, For example, a sliding door may be sufficient.
  • FIG. 1 is a perspective view illustrating an example of a vehicle 1 on which the opening / closing body control device 4 according to the first embodiment is mounted.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of the opening / closing body control device 4 according to the first embodiment.
  • the vehicle 1 includes an actuator 100, and this actuator is driven by the opening / closing body control device 4 according to the first embodiment, for example, the tailgate of the vehicle 1.
  • Open and close 2 The tailgate 2 is provided to the opening 3 formed at the rear of the vehicle body of the vehicle 1 so as to be openable and closable via an unillustrated hinge mechanism at the upper part 3 a of the opening 3.
  • the actuator 100 is provided between the periphery of the opening 3 on the vehicle body side and the tailgate 2 provided in the opening 3 so as to be openable and closable.
  • the actuator 100 opens and closes the tailgate 2 by being driven to expand and contract in the axial direction by driving a motor 5 (drive source) provided in the device 100. Therefore, the opening / closing body control device 4 controls the opening / closing of the tailgate 2 by rotationally driving the motor 5.
  • the actuator 100 is provided on each of the left and right sides of the opening 3.
  • the motor 5 has one end connected to the first output terminal 4a of the opening / closing body control device 4 and the other end connected to the second output terminal 4b.
  • the rotation sensor 6 detects the rotation of the motor 5.
  • the rotation sensor 6 is a magnetic rotary encoder provided with a Hall IC.
  • the rotation sensor 6 detects a change in magnetic flux density received from a sensor magnet (not shown) provided in the motor 5.
  • the rotation sensor 6 generates detection signals of two phases (A phase and B phase) having different phases from each other using the detected change in magnetic flux density as an electrical signal.
  • the rotation sensor 6 outputs an output value depending on whether or not the value of the alternating signal of each phase exceeds a preset value (that is, the strength of the magnetic field received by the rotation sensor 6 exceeds a predetermined strength). It is converted into a binary digital signal (pulse signal) that changes between High and Low.
  • the rotation sensor 6 outputs an A-phase pulse signal and a B-phase pulse signal as detection signals to the opening / closing body control device 4 as pulse signals of each phase.
  • the opening / closing body control device 4 includes an inverter 11, a switch unit 12, a first drive unit 13, a second drive unit 14, a voltage limiting unit 15, a current detection unit 16, a shunt resistor 17, and a rotation state calculation.
  • a unit 18 and a control unit 19 are provided.
  • the inverter 11 converts the DC voltage supplied from the power supply device 7 into an AC voltage and applies it to the motor 5.
  • the inverter 11 includes four switching elements 111 to 114.
  • the inverter 11 switches the conduction state and the interruption state of each of the switching elements 111 to 114 based on the first drive signal and the second drive signal supplied from the second drive unit 14 to change the rotation speed and torque of the motor 5.
  • the power supply device 7 is a battery.
  • the inverter 11 includes upper switching elements 111 and 112 and lower switching elements 113 and 114.
  • the inverter 11 is configured by H-bridge connection of upper switching elements 111 and 112 and lower switching elements 113 and 114.
  • the switching elements 111 and 113 connected in series and the switching elements 112 and 114 connected in series are connected in parallel between the high potential side of the power supply device 7 and the ground potential.
  • one end of a power supply terminal of the motor 5 is connected to a connection point 131 between the switching element 111 and the switching element 113 via the first output terminal 4a.
  • the other end of the power supply terminal of the motor 5 is connected to the connection point 132 between the switching element 112 and the switching element 114 via the second output terminal 4b.
  • the switching elements 111 to 114 are FETs (Field Effective Transistors) or IGBTs (Insulated Gate Bipolar Transistors).
  • the shunt resistor 17 is provided between the inverter 11 and the ground.
  • the switching elements 111 to 114 are connected in parallel with the free wheeling diodes 121 to 124. Specifically, the switching element 111 is connected in parallel with the free wheel diode 121. The switching element 112 is connected in parallel with the free wheel diode 122. The switching element 113 is connected in parallel with the reflux diode 123. The switching element 114 is connected in parallel with the reflux diode 124.
  • the switch unit 12 is provided between the power supply device 7 and the motor 5. Specifically, the switch unit 12 is provided between the power supply device 7 and the inverter 11 connected to the motor 5.
  • the switch unit 12 is a so-called relay that opens and closes the switch 12b according to an input signal input to the coil 12a.
  • one end of the coil 12 a is connected to the drive power supply 8 and the other end is connected to the first drive unit 13.
  • the switch 12 b has one end connected to the output of the power supply device 7 and the other end connected to the drain terminal of the switching element 111 and the voltage limiting unit 15.
  • the first drive unit 13 electrically connects or disconnects the power supply device 7 and the motor 5 by controlling the conduction state or the cutoff state of the switch unit 12. Specifically, when the first drive unit 13 obtains a conduction state transition signal indicating that the switch unit 12 is in a conduction state from the control unit 19, the first drive unit 13 connects the other end of the coil 12a to the ground. Then, a current (input signal) is supplied from the drive power supply 8 to the switch unit 12. Thereby, the switch part 12 will be in a conduction
  • the first drive unit 13 releases the connection between the other end of the coil 12a and the ground when acquiring a cut-off state transition signal indicating that the switch unit 12 is put into a cut-off state from the control unit 19.
  • the electrical connection between the power supply device 7 and the inverter 11 is released. That is, the electrical connection between the power supply device 7 and the motor 5 is released when the switch unit 12 is cut off.
  • the opening / closing body control device 4 brings the switch unit 12 into a conducting state when the motor 5 is in the electric mode in which the tail gate 2 is opened and closed electrically.
  • the opening / closing body control device 4 puts the switch unit 12 into a shut-off state in the manual mode in which the tailgate 2 can be manually opened and closed.
  • the voltage limiting unit 15 When the connection between the power supply device 7 and the motor 5 is interrupted, the voltage limiting unit 15 generates a power generation voltage of the motor 5 generated by the rotation of the motor 5 by an external force (hereinafter referred to as “threshold voltage”). It is limited to Ez .
  • the case where the motor 5 is rotated by an external force is a case where the motor 5 is rotated by non-electrical movement of the tailgate 2, for example, the tailgate 2 is opened and closed by a user.
  • the voltage limiting unit 15 is a Zener diode.
  • the Zener diode When the voltage limiting unit 15 is a Zener diode, the Zener diode has an anode connected to the ground and a cathode connected between the switch unit 12 and the inverter 11.
  • Zener diodes when reverse voltage is applied, and the Zener breakdown at the threshold voltage E z, in which a constant voltage regardless of the value of the current flowing is obtained. Therefore, when the voltage applied between the switch unit 12 and the inverter 11 exceeds the threshold voltage E z is the Zener diode is a Zener breakdown. When the Zener diode breaks down, a current flows from the cathode toward the anode. In the following description, the case where the voltage limiting unit 15 is a Zener diode will be described.
  • the current detector 16 is a detector that detects the current flowing through the motor 5. For example, the current detection unit 16 detects the potential difference between both ends of the shunt resistor 17 provided on the path of the current flowing through the motor 5. The current detection unit 16 detects a current value (hereinafter referred to as “motor current”) flowing through the motor 5 that actually flows through the motor 5 based on a potential difference between both ends of the shunt resistor. The current detection unit 16 outputs the detected motor current to the control unit 19.
  • motor current a current value flowing through the motor 5 that actually flows through the motor 5 based on a potential difference between both ends of the shunt resistor.
  • the opening / closing body control device 4 detects, as a motor current, a current flowing from the power supply device 7 to the motor 5 via the switch unit 12 in the electric mode.
  • the opening / closing body control device 4 determines that the generated current output from the motor 5 is the motor current when the generated voltage of the motor 5 is limited to the threshold voltage E z by the voltage limiting unit 15. Detect as.
  • the opening / closing body control device 4 detects the generated current flowing from the cathode to the anode as a motor current when the voltage limiting unit 15 breaks down with a Zener.
  • the current detection unit 16 may detect the motor current based on an electromagnetic principle using a Hall element, a current detection coil, or the like.
  • the direction of the motor current detected by the current detection unit 16 is opposite between the electric mode and the manual mode. Therefore, the detection range of the motor current of the current detector 16 is set so that a positive motor current and a negative motor current can be detected, as shown in FIG. Become.
  • the rotation state calculation unit 18 calculates the rotation state of the motor 5 based on the detection signal supplied from the rotation sensor 6.
  • the rotational state is the rotational speed, but is not limited to this, and may be a rotational speed or an angular speed.
  • the rotation state calculation unit 18 outputs the calculated number of rotations to the control unit 19.
  • the control unit 19 When the control unit 19 obtains an opening / closing operation signal indicating opening / closing of the tailgate 2 from the outside, the control unit 19 outputs the conduction state transition signal to the first driving unit 13 to set the switch unit 12 to the conduction state. . And the control part 19 controls the inverter 11 by PWM (Pulse Width Modulation) by outputting the 1st drive signal which opens or closes the tailgate 2 to the inverter 11. For example, when the motor 5 rotates in the forward direction, the control unit 19 performs PWM control on the inverter 11 so that the switching element 111 and the switching element 114 are in a conductive state, thereby rotating the motor 5 in the forward direction. The gate 2 is opened.
  • PWM Pulse Width Modulation
  • control unit 19 When the control unit 19 rotates the motor 5 in the reverse direction, the control unit 19 performs PWM control on the inverter 11 so that the switching element 112 and the switching element 113 are in a conductive state, thereby rotating the motor 5 in the reverse direction.
  • the gate 2 is closed.
  • the control unit 19 when the control unit 19 does not acquire the opening / closing operation signal from the outside, the control unit 19 outputs the cutoff state transition signal to the first drive unit 13 to set the switch unit 12 in the cutoff state, and the first drive signal and the first 2 The drive signal is not output. That is, the control unit 19 does not perform PWM control on the inverter 11.
  • the control unit 19 controls the switch unit 12 to be in a conductive state in response to detection of the generated current by the current detection unit 16, so that the power supply device 7 and the motor 5 is electrically connected.
  • the control unit 19 controls the switch unit 12 to be in a conductive state.
  • the control unit 19 suppresses the generated voltage of the motor 5 (the voltage between the connection point of the switch unit 12 and the inverter 11 and the ground) from being equal to or higher than the power supply voltage E Batt of the power supply device 7.
  • the power supply voltage E Batt is a value lower than the threshold voltage E z .
  • the predetermined time is a time from when the generated current is detected by the current detection unit 16 until the switch unit 12 becomes conductive.
  • the switch unit 12 becomes conductive, the generated voltage becomes the power supply voltage E Batt, and the zener breakdown by the voltage limiting unit 15 is stopped. That is, the time when the generated current flows from the cathode to the anode due to the Zener breakdown of the voltage limiting unit 15 is limited to the predetermined time.
  • the control unit 19 controls the switch unit 12 to be cut off to cut off the electrical connection between the power supply device 7 and the motor 5. Specifically, when the control unit 19 controls the switch unit 12 to be in a conductive state in response to detection of the generated current, the rotation number of the motor 5 calculated by the rotation state calculation unit 18 is a predetermined rotation. When it becomes less than the number, the switch unit 12 is controlled to be in the cutoff state by outputting the cutoff state transition signal to the first drive unit 13. In this way, the control unit 19 detects that the generated voltage has become a voltage that is low enough not to affect the internal components of the switching body control device 4 based on the number of rotations of the motor 5, and manually operates the switch unit 12. Return to the normal state (blocking state) in the mode.
  • FIG. 4 is a diagram illustrating a processing flow of the opening / closing body control device 4 according to the first embodiment.
  • FIG. 5 is a diagram illustrating a flow of the generated current when the voltage limiting unit 15 according to the first embodiment breaks down in a Zener.
  • FIG. 6 is a diagram illustrating the flow of the generated current in the manual mode according to the first embodiment.
  • the control unit 19 outputs the cutoff state transition signal to the first drive unit 13 when the tailgate 2 stops during the automatic operation, thereby putting the switch unit 12 in the cutoff state. Thereafter, when the tailgate 2 is manually operated by the user, a generated voltage by the motor 5 is generated. Since the inverter 11 is connected to both ends of the motor 5, a generated voltage is applied to the inverter 11.
  • Voltage limiter 15 when the generated voltage is equal to or higher than the threshold voltage E z, limits the generated voltage to be applied to the inverter 11 to the threshold voltage E z.
  • the voltage limiting unit 15 since the voltage limiting unit 15 has a zener breakdown, a generated current flows from the cathode to the anode. Therefore, as shown in FIG. 5, the generated current output from the other end of the motor 5 passes through the path P ⁇ b> 1 passing through the freewheeling diode 122, the voltage limiting unit 15, the shunt resistor 17, and the freewheeling diode 123 in order.
  • the control unit 19 determines whether or not the generated current is detected by the current detection unit 16 (step S ⁇ b> 101).
  • the control unit 19 outputs a conduction state transition signal to the first drive unit 13, thereby bringing the switch unit 12 into a conduction state ( Step S102).
  • the generated current output from the other end of the motor 5 passes through the path P ⁇ b> 2 that sequentially passes through the free wheel diode 122, the switch unit 12, the power supply device 7, the shunt resistor 17, and the free wheel diode 123. Return to one end of the motor 5. Therefore, the generated voltage applied to the inverter 11 is limited to the power supply voltage E Batt or less.
  • control unit 19 determines whether or not the rotation of the motor 5 is equal to or less than a predetermined number of rotations (step S103). When the control unit 19 determines that the rotation of the motor 5 is equal to or less than the predetermined rotation number, the control unit 19 outputs the shut-off state transition signal to the first drive unit 13 to put the switch unit 12 in the shut-off state (Step S19). S104).
  • the opening / closing body control device 4 is configured such that when the connection between the power supply device 7 and the motor 5 is interrupted, the motor 5 is generated by rotating the motor 5 with an external force.
  • the generated voltage is limited to a predetermined voltage (threshold voltage E z ).
  • the opening / closing body control device 4 turns on the switch unit 12 in response to detecting the power generation current output from the motor 5.
  • the opening / closing body control device 4 detects the non-electrical movement of the tailgate 2 and detects the non-electrical movement of the tailgate 2 even when there is a time delay from when the switch unit 12 becomes conductive.
  • produces can be suppressed.
  • the switch unit 12 is set in the conductive state so that the power supply voltage E Batt or higher is exceeded.
  • the manual operation load becomes heavier than power generation. Therefore, in the conventional method, there is a possibility that even a manual operation (manual operation at a manual operation speed between V 1max and V 2max shown in FIG. 7) whose manual operation speed is not fast may be suppressed.
  • the opening / closing body control device 4 restricts the generated voltage with a threshold voltage E z higher than the power supply voltage E Batt , and then turns the switch unit 12 into a conductive state when a generated current is detected. Accordingly, as shown in FIG.
  • the opening / closing body control device 4 can set a wide range in which the manual operation load does not become heavier as compared with the conventional case, so that the manual operation speed is not high (FIG. 7). It is possible to prevent the manual operation of the manual operation speed between V 1max and V 2max shown in FIG.
  • the switch unit 12 is turned on to stop the Zener breakdown so that the generated current does not flow to the voltage limiting unit 15. Thereby, since the power consumption of the voltage limiting unit 15 can be reduced, the voltage limiting unit 15 having a lower capacitance value can be used.
  • control unit 19 has been described with respect to the example in which the switch unit 12 is controlled to be in a conductive state when the generated current is detected when the switch unit 12 is in the cutoff state. It is not limited to.
  • the control unit 19 when the switch unit 12 is in the cut-off state, the control unit 19 continuously detects a generated current that is equal to or greater than a predetermined current value (specified current) for a predetermined time (specified time). If the generated current equal to or greater than the specified current is detected continuously for a specified time, the switch unit 12 may be controlled to be in a conductive state (step S202).
  • the specified current and the specified time are set in advance, for example, and may be set according to the power consumption and temperature characteristics of the voltage limiting unit 15. In this way, when the generated current equal to or greater than the specified current is detected for a specified time, the control unit 19 controls the switch unit 12 to be in a conductive state so that the generated current flows through the voltage limiting unit 15. To prevent. As a result, the control unit 19 suppresses the overvoltage generated by the non-electrical movement of the tailgate 2 to be equal to or lower than the power supply voltage E Batt , and the generated current exceeding the specified value flows through the voltage limiting unit 15 for a long time. It is possible to prevent the temperature of 15 from rising and thermal runaway.
  • control unit 19 has been described with respect to the example in which the switch unit 12 is controlled to be in a conductive state when the generated current is detected when the switch unit 12 is in the cutoff state. It is not limited to.
  • the control unit 19 has a current detection unit after the generated voltage is limited to a predetermined voltage (threshold voltage E z ) by the voltage limiting unit 15. It is determined whether or not the integrated value of the generated current detected by 16 is greater than or equal to a predetermined value (step S301).
  • control part 19 may control the switch part 12 to a conduction
  • the predetermined value is set in advance, for example, and may be set according to the power consumption and temperature characteristics of the voltage limiting unit 15.
  • the control unit 19 controls the switch unit 12 to be in a conductive state, thereby preventing the generated current from flowing through the voltage limiting unit 15.
  • control unit 19 suppresses the overvoltage generated by the non-electrical movement of the tailgate 2 to be equal to or lower than the power supply voltage E Batt and the generated current of a predetermined value or more flows through the voltage limiting unit 15, thereby It is possible to prevent the temperature from rising and thermal runaway.
  • FIG. 10 is a perspective view showing an example of the vehicle 1 on which the opening / closing body control device 4A according to the second embodiment is mounted.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of an opening / closing body control device 4A according to the second embodiment.
  • the configuration of the opening / closing body control device 4A according to the second embodiment is different from that of the first embodiment in that a voltage detection unit is provided.
  • the opening / closing body control device 4A includes an inverter 11, a switch unit 12, a first drive unit 13, a second drive unit 14, a voltage limiting unit 15, a current detection unit 16, a shunt resistor 17, and a rotation state calculation.
  • the voltage detection unit 20 is a detection unit that detects a voltage between the other end of the switch 12b and the cathode of the voltage limiting unit 15 (zener diode), that is, a generated voltage.
  • the voltage detection unit 20 outputs the detected voltage to the control unit 19.
  • the control unit 19A has the same function as the control unit 19 according to the first embodiment. Further, when the switch unit 12 is in the cut-off state, the control unit 19 controls the switch unit 12 to be in a conductive state according to the voltage value detected by the voltage detection unit 20, so that the power supply device 7 and the motor 5 are connected. Connect electrically.
  • the control unit 19A controls the switch unit 12 to be in a conductive state when the generated voltage detected by the voltage detection unit 20 is equal to or higher than a predetermined specified voltage.
  • This specified voltage is a voltage corresponding to the threshold voltage Ez .
  • the control unit 19 suppresses the power generation voltage of the motor 5 from becoming equal to or higher than the power supply voltage E Batt of the power supply device 7.
  • the power supply voltage E Batt is a value lower than the threshold voltage E z .
  • the predetermined time is a time from when the power generation voltage is detected by the voltage detection unit 20 until the switch unit 12 becomes conductive.
  • the switch unit 12 becomes conductive, the generated voltage becomes the power supply voltage E Batt, and the zener breakdown by the voltage limiting unit 15 is stopped. That is, the time when the generated current flows from the cathode to the anode due to the Zener breakdown of the voltage limiting unit 15 is limited to the predetermined time.
  • the control unit 19 controls the switch unit 12 to be cut off to cut off the electrical connection between the power supply device 7 and the motor 5. Specifically, in the case where the control unit 19 controls the switch unit 12 to be in a conductive state, when the rotation number of the motor 5 calculated by the rotation state calculation unit 18 is less than a predetermined rotation number, The switch unit 12 is controlled to be in a cut-off state by outputting a cut-off state transition signal to the first drive unit 13. In this way, the control unit 19 detects that the generated voltage has become a voltage that is low enough not to affect the internal components of the switching body control device 4 based on the number of rotations of the motor 5, and manually operates the switch unit 12. Return to the normal state (blocking state) in the mode.
  • FIG. 12 is a diagram illustrating a processing flow of the opening / closing body control device 4A according to the second embodiment.
  • FIG. 13 is a diagram illustrating a flow of the generated current when the voltage limiting unit 15 according to the second embodiment has zener breakdown.
  • FIG. 14 is a diagram illustrating a flow of the generated current in a state where the switch 12b is ON in the manual mode according to the second embodiment.
  • the control unit 19A outputs the cutoff state transition signal to the first drive unit 13 when the tailgate 2 stops during the automatic operation, thereby setting the switch unit 12 in the cutoff state. Thereafter, when the tailgate 2 is manually operated by the user, a generated voltage by the motor 5 is generated. Since the inverter 11 is connected to both ends of the motor 5, a generated voltage is applied to the inverter 11.
  • Voltage limiter 15 when the generated voltage is equal to or higher than the threshold voltage E z, limits the generated voltage to be applied to the inverter 11 to the threshold voltage E z.
  • the voltage limiting unit 15 since the voltage limiting unit 15 has a zener breakdown, a generated current flows from the cathode to the anode. Therefore, as shown in FIG. 13, the generated current output from the other end of the motor 5 passes through the path P ⁇ b> 3 passing through the free wheel diode 122, the voltage limiting unit 15, the shunt resistor 17, and the free wheel diode 123 in order.
  • the control unit 19A determines whether or not the generated voltage detected by the voltage detection unit 20 is equal to or higher than a specified voltage (step S401).
  • the control unit 19A outputs the conduction state transition signal to the first drive unit 13 to make the switch unit 12 conductive (Ste S402).
  • the generated current output from the other end of the motor 5 passes through the path P4 that passes through the free wheel diode 122, the switch unit 12, the power supply device 7, the shunt resistor 17, and the free wheel diode 123 in order. Return to one end of the motor 5. Therefore, the generated voltage applied to the inverter 11 is limited to the power supply voltage E Batt or less.
  • control unit 19A determines whether or not the rotation of the motor 5 is equal to or less than a predetermined rotation number (step S403).
  • control unit 19A determines that the rotation of the motor 5 is equal to or less than the predetermined number of rotations, the control unit 19A outputs the shut-off state transition signal to the first drive unit 13 to place the switch unit 12 in the shut-off state (step S1). S404).
  • the opening / closing body control device 4 ⁇ / b> A is configured such that when the connection between the power supply device 7 and the motor 5 is interrupted, the motor 5 is generated by rotating the motor 5 with an external force.
  • the generated voltage is limited to a predetermined voltage (threshold voltage E z ).
  • the opening / closing body control device 4A turns on the switch unit 12 in response to the detection of the power generation voltage output from the motor 5. To control. Thereby, even when a time delay occurs after the non-electrical movement of the tailgate 2 is detected until the switch unit 12 becomes conductive, the overvoltage generated by the non-electrical movement of the tailgate 2 is suppressed. Can do.
  • the switching body control device 4 ⁇ / b> A has the voltage detection unit 20.
  • the switch unit 12 can be controlled to be in a conductive state according to the detection result.
  • control unit 19A has described the example in which the switch unit 12 is controlled to be in a conductive state when the generated voltage is equal to or higher than the specified voltage.
  • the present invention is not limited to this.
  • the control unit 19A sets the switch unit 12 in the conductive state when the time during which the generated voltage is equal to or higher than the specified voltage continues for a predetermined time (specified time) in step S401.
  • the control unit 19A determines whether or not the time during which the generated voltage is equal to or higher than the specified voltage has continued for a predetermined time (specified time).
  • control unit 19A suppresses the overvoltage generated by the non-electrical movement of the tailgate 2 to be equal to or lower than the power supply voltage E Batt , and the voltage limiting unit 15 causes the generated current to flow beyond the specified value for a long time. It is possible to prevent the temperature of 15 from rising and thermal runaway.
  • the current detection unit 16 when the current detection unit 16 is not necessary, the current detection unit 16 may be omitted from the configuration of the opening / closing body control device 4A. In that case, the function related to the detection result of the current detection unit 16 in the control unit 19A may be omitted.
  • the modification shown below is applicable also to the opening-closing body control apparatus 4A which concerns on 2nd Embodiment.
  • the modification shown below is a modification of the operation of the opening / closing body control device 4A when it is determined in step S103 that the rotation of the motor 5 is not less than or equal to a predetermined rotation speed.
  • the control unit 19 determines in step S103 that the rotation of the motor 5 is not equal to or less than the predetermined rotation number, the direction in which the generated current flows (the generated current direction) is based on the rotation direction of the motor 5. Determine whether it is positive or negative. Then, the control unit 19 selects two switching elements through which the generated current flows from the switching elements 111 to 114 from the determined generated current direction. And the control part 19 controls the selected two switching elements to an ON state. For example, in FIG. 5, when it is determined in step S103 that the rotation of the motor 5 is not less than or equal to a predetermined rotation number, the control unit 19 controls the switching element 112 and the switching element 113 to be in an on state.
  • the control unit 19 can prevent the free-wheeling diodes 122 and 123 from generating heat and failing due to the generated current flowing through the path P1.
  • the control unit 19 controls the two selected switching elements to be always in the on state, and determines that the rotation of the motor 5 is equal to or lower than the predetermined rotation number, the control unit 19 notifies the first drive unit 13 of the cutoff state transition signal. Is output to turn off the switch unit 12 (step S104). Then, the control unit 19 stops the control to always turn on the two selected switching elements.
  • control unit 19 may not always control the selected two switching elements to be in the on state.
  • control unit 19 may control the two selected switching elements to be alternately turned on. Thereby, the control part 19 can prevent reliably that the motor 5 drives even if the timing which makes the switch part 12 the interruption
  • step S103 When it is determined in step S103 that the rotation of the motor 5 is not equal to or less than the predetermined rotation number, the control unit 19 controls the inverter 11 to turn on the switching elements 111 and 112 of the upper arm. Thereby, the control unit 19 causes the motor 5 to brake by short-circuiting both ends of the motor 5. Thereby, the control part 19 can suppress the electric power generation by the motor 5, and can suppress that the free-wheeling diodes 122 and 123 generate
  • the control unit 19 controls the upper arm switching elements 111 and 112 to be in the ON state, when the rotation of the motor 5 is determined to be equal to or lower than the predetermined rotation number, the control unit 19 shifts to the first drive unit 13 in the cutoff state. By outputting the signal, the switch unit 12 is turned off (step S104). And the control part 19 stops the control which turns on the switching elements 111 and 112 of an upper arm.
  • the control unit 19 may not always control the upper arm switching elements 111 and 112 to be in the on state.
  • the control unit 19 may control the switching elements 111 and 112 of the upper arm to be turned on alternately.
  • the control part 19 can give a smooth brake with respect to the motor 5 compared with the case where the switching elements 111 and 112 of an upper arm are always controlled to an ON state. Thereby, it can suppress that a brake becomes heavy suddenly.
  • the control unit electrically connects the power supply device 7 and the motor 5 by controlling the switch unit 12 to be in a conductive state according to the generated power of the motor 5.
  • the control unit suppresses the overvoltage generated by the non-electrical movement of the tailgate 2 to the power supply voltage E Batt or less, and the generated current exceeding the predetermined value flows through the voltage limiting unit 15, thereby causing the temperature of the voltage limiting unit 15 Can rise and prevent thermal runaway.
  • the generated power includes at least one of a generated current and a generated voltage.
  • the control unit 19 and the control unit 19A in the embodiment described above may be realized by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client in that case may be included and a program held for a certain period of time.
  • the program may be a program for realizing a part of the above-described functions, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system. It may be realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • the above opening / closing body control device it is possible to suppress overvoltage generated by non-electrical movement of the opening / closing body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Power-Operated Mechanisms For Wings (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

電源装置と駆動源との間に設けられているスイッチ部と、前記スイッチ部の導通状態又は遮断状態を制御することで、前記電源装置と前記駆動源とを電気的に接続又は前記接続を遮断する制御部と、前記電源装置と前記駆動源との接続が遮断されている場合に、前記駆動源が外力により回転することで発生する当該駆動源の発電電圧を所定の電圧に制限する電圧制限部と、前記発電電圧が前記所定の電圧に制限されている場合に、前記駆動源から出力される発電電流を検出する電流検出部と、を備え、前記制御部は、前記発電電流が検出されたことに応じて前記スイッチ部を導通状態に制御することで、前記電源装置と前記駆動源とを電気的に接続する開閉体制御装置である。

Description

開閉体制御装置
 本発明は、開閉体制御装置に関する。
本願は、2016年10月06日に、日本に出願された特願2016-198224号に基づき優先権を主張し、その内容をここに援用する。
 従来、自動車には、モータの動力によりテールゲートを開閉駆動する開閉体制御装置が設けられている。この開閉体制御装置は、モータの動力により電動でテールゲートを開閉する電動モードと、テールゲートを手動で開閉可能とする手動モードと、を備える。
 ところで、一般的にモータは、外力によって回転した場合には発電機として動作し、誘起電圧が発生する。したがって、手動モードにおいて、ユーザによりテールゲートが手動で操作されると、モータに発電電圧が発生することで開閉体制御装置内部に過電圧が発生してしまう場合がある。そこで、特許文献1には、テールゲートの非電動移動を検出した場合に、逆接保護用のリレーをON(導通)することで開閉体制御装置内部の電圧をバッテリ電圧に抑える方法が開示されている。
特表2014-531885号公報
 しかしながら、特許文献1に開示の方法では、テールゲートの非電動移動を検出してから逆接保護用のリレーがONするまでに時間遅れが生じるため、その時間における過電圧には対応できない。その結果、開閉体制御装置の内部部品が過電圧により故障してしまう場合がある。このような問題はテールゲートに限られた問題ではなく、車両に設けられる開閉体に共通する問題である。
 本発明は、このような事情に鑑みてなされたもので、その目的は、開閉体の非電動移動により発生する過電圧を抑制可能な開閉体制御装置を提供することである。
 本発明の一態様は、電源装置からの電力を、車両の開口部を開閉する開閉体の駆動源に供給することで、前記開閉体を駆動する開閉体制御装置であって、前記電源装置と前記駆動源との間に設けられているスイッチ部と、前記スイッチ部の導通状態又は遮断状態を制御することで、前記電源装置と前記駆動源とを電気的に接続又は前記接続を遮断する制御部と、前記電源装置と前記駆動源との接続が遮断されている場合に、前記駆動源が外力により回転することで発生する当該駆動源の発電電圧を所定の電圧に制限する電圧制限部と、前記発電電圧が前記所定の電圧に制限されている場合に、前記駆動源から出力される発電電流を検出する電流検出部と、を備え、前記制御部は、前記発電電流が検出されたことに応じて前記スイッチ部を導通状態に制御することで、前記電源装置と前記駆動源とを電気的に接続する開閉体制御装置である。
 本発明の一態様は、上述の開閉体制御装置であって、前記制御部は、駆動源の回転が所定の回転数を下回った場合には、前記スイッチ部を遮断状態に制御することで、前記電源装置と前記駆動源との電気的な接続を遮断する。
 本発明の一態様は、上述の開閉体制御装置であって、前記制御部は、前記発電電流が検出された場合には、前記スイッチ部を導通状態に制御する。
 本発明の一態様は、上述の開閉体制御装置であって、前記制御部は、所定の電流値以上の前記発電電流が所定の時間継続して検出された場合には、前記スイッチ部を導通状態に制御する。
 本発明の一態様は、上述の開閉体制御装置であって、前記制御部は、前記発電電圧が前記所定の電圧に制限されてから前記電流検出部により検出された発電電流の積算値が所定値以上である場合には、前記スイッチ部を導通状態に制御する。
 電源装置からの電力を、車両の開口部を開閉する開閉体の駆動源に供給することで、前記開閉体を駆動する開閉体制御装置であって、前記電源装置と前記駆動源との間に設けられているスイッチ部と、前記スイッチ部の導通状態又は遮断状態を制御することで、前記電源装置と前記駆動源とを電気的に接続又は前記接続を遮断する制御部と、前記電源装置と前記駆動源との接続が遮断されている場合に、前記駆動源が外力により回転することで発生する当該駆動源の発電電圧を所定の電圧に制限する電圧制限部と、前記発電電圧を検出する電圧検出部と、を備え、前記制御部は、前記電圧検出部が検出した発電電圧に応じて前記スイッチ部を導通状態に制御することで、前記電源装置と前記駆動源とを電気的に接続する開閉体制御装置である。
 本発明の一態様は、上述の開閉体制御装置であって、複数のスイッチングを備え、前記電源装置から供給される直流電圧を交流電圧に変換して前記駆動源に印加するインバータを備え、前記制御部は、前記スイッチ部を導通状態に制御した後に、前記駆動源の回転が所定の回転数を下回らない場合には、前記複数のスイッチングのうち、前記駆動源の発電電流が流れている還流ダイオードを有するスイッチング素子をオン状態に制御する。
 以上説明したように、本発明によれば、開閉体の非電動移動により発生する過電圧を抑制することができる。
第1の実施形態に係る開閉体制御装置4が搭載された車両1の例を示す斜視図である。 第1の実施形態に係る開閉体制御装置4の概略構成の一例を示す図である。 第1の実施形態に係る電流検出部16のモータ電流の検出範囲を示す図である。 第1の実施形態に係る開閉体制御装置4の処理の流れを示す図である。 第1の実施形態に係る手動モードにおいて、電圧制限部15がツェナー降伏した場合における発電電流の流れを示す図である。 第1の実施形態に係る手動モードの場合において、スイッチ12bがONである状態の発電電流の流れを示す図である。 第1の実施形態に係る開閉体制御装置4のスイッチ部12に対する制御の効果を示す図である。 第1の実施形態に係る開閉体制御装置4の処理における第1の変形例を示す図である。 第1の実施形態に係る開閉体制御装置4の処理における第2の変形例を示す図である。 第2の実施形態に係る開閉体制御装置4Aが搭載された車両1の例を示す斜視図である。 第2の実施形態に係る開閉体制御装置4Aの概略構成の一例を示す図である。 第2の実施形態に係る開閉体制御装置4の処理における第2の変形例を示す図である。 第2の実施形態に係る開閉体制御装置4に係る手動モードにおいて、電圧制限部15がツェナー降伏した場合における発電電流の流れを示す図である。 第2の実施形態に係る手動モードの場合において、スイッチ12がONである状態の発電電流の流れを示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。なお、図面において、同一又は類似の部分には同一の符号を付して、重複する説明を省く場合がある。
 以下、本実施形態に係る開閉体制御装置を、図面を用いて説明する。なお、本実施形態では、車両に設けられる開閉体が車両のテールゲートである場合について説明するが、これに限定されず、例えば、スライドドアでもよい。
(第1の実施形態)
 図1は、第1の実施形態に係る開閉体制御装置4が搭載された車両1の例を示す斜視図である。図2は、第1の実施形態に係る開閉体制御装置4の概略構成の一例を示す図である。
 図1に示すように、車両1には、アクチュエータ100が備えられており、このアクチュエータは、第1の実施形態に係る開閉体制御装置4に駆動されることにより、例えば、車両1のテールゲート2を開閉する。テールゲート2は、車両1の車体後部に形成された開口部3に対し、開口部3の上部3aに図示しないヒンジ機構を介して開閉可能に設けられている。
 アクチュエータ100は、車体側の開口部3の周囲とこの開口部3に開閉可能に設けられたテールゲート2との間に設けられている。アクチュエータ100は、自装置に備えられたモータ5(駆動源)の駆動により軸方向に伸縮駆動されることによってテールゲート2を開閉動作させる。したがって、開閉体制御装置4は、このモータ5を回転駆動することで、テールゲート2の開閉を制御する。例えば、アクチュエータ100は、開口部3の左右両側にそれぞれ設けられている。
 モータ5は、一端が開閉体制御装置4の第1の出力端子4aに接続され、他端が第2の出力端子4bに接続されている。
 図2に示すように、回転センサ6は、モータ5の回転を検出する。例えば、回転センサ6は、ホールICを備えた磁気式のロータリエンコーダである。例えば、回転センサ6は、モータ5に設けられているセンサマグネット(不図示)から受ける磁束密度の変化を検出する。回転センサ6は、検出した磁束密度の変化を電気信号として互いに位相が異なる2相(A相及びB相)の検出信号を生成する。そして、回転センサ6は、各相の交番信号の値が予め設定された値を超えた(すなわち、回転センサ6が受ける磁界の強さが所定の強度を超えた)か否かで出力値がHighとLowに変化する2値のデジタル信号(パルス信号)に変換する。回転センサ6は、各相のパルス信号としてA相パルス信号とB相パルス信号とを検出信号として開閉体制御装置4に出力する。
 以下に、第1の実施形態に係る開閉体制御装置4について、具体的に説明する。
 図2に示すように、開閉体制御装置4は、インバータ11、スイッチ部12、第1駆動部13、第2駆動部14、電圧制限部15、電流検出部16、シャント抵抗17、回転状態算出部18及び制御部19を備える。
 インバータ11は、電源装置7から供給される直流電圧を交流電圧に変換してモータ5に印加する。例えば、インバータ11は、4つのスイッチング素子111~114を備える。インバータ11は、第2駆動部14から供給される第1駆動信号及び第2駆動信号に基づいて、スイッチング素子111~114の各々の導通状態と遮断状態とを切り替えてモータ5の回転数やトルクを制御する。ここで、例えば、電源装置7は、バッテリである。
 インバータ11は、上段のスイッチング素子111、112及び下段のスイッチング素子113、114を備える。第1の実施形態では、インバータ11は、上段のスイッチング素子111、112及び下段のスイッチング素子113、114がHブリッジ接続されて構成されている。具体的には、直列に接続されたスイッチング素子111、113と、直列に接続されたスイッチング素子112、114とは、電源装置7の高電位側と接地電位との間に並列に接続されている。また、スイッチング素子111とスイッチング素子113との接続点131には、第1の出力端子4aを介して、モータ5の電源端子の一端が接続されている。スイッチング素子112とスイッチング素子114との接続点132には、第2の出力端子4bを介して、モータ5の電源端子の他端が接続されている。例えば、スイッチング素子111~114は、FET(FieldEffectiveTransistor;電界効果トランジスタ)、又はIGBT(InsulatedGateBipolarTransistor;絶縁ゲートバイポーラトランジスタ)である。シャント抵抗17は、インバータ11とグランドとの間に設けられている。
 また、各スイッチング素子111~114は、各還流ダイオード121~124と並列に接続されている。具体的には、スイッチング素子111は、還流ダイオード121と並列に接続されている。スイッチング素子112は、還流ダイオード122と並列に接続されている。スイッチング素子113は、還流ダイオード123と並列に接続されている。スイッチング素子114は、還流ダイオード124と並列に接続されている。
 スイッチ部12は、電源装置7とモータ5との間に設けられている。具体的には、スイッチ部12は、電源装置7と、モータ5に接続されたインバータ11との間に設けられている。例えば、スイッチ部12は、コイル12aに入力される入力信号によりスイッチ12bの開閉を行う、いわゆるリレーである。第1の実施形態では、コイル12aの一端が駆動電源8に接続され、他端が第1駆動部13に接続されている。スイッチ12bは、一端が電源装置7の出力に接続されており、他端がスイッチング素子111のドレイン端子及び電圧制限部15に接続されている。
 第1駆動部13は、スイッチ部12の導通状態又は遮断状態を制御することで、電源装置7とモータ5とを電気的に接続又はその接続を遮断する。具体的には、第1駆動部13は、スイッチ部12を導通状態にすることを示す導通状態移行信号を制御部19から取得した場合には、コイル12aの他端をグランドに接続することで、駆動電源8からスイッチ部12に電流(入力信号)を流す。これより、スイッチ部12は、導通状態となる。したがって、電源装置7とインバータ11とが電気的に接続される。ここで、インバータ11とモータ5とは電気的に接続されている。したがって、スイッチ部12が導通状態となることで、電源装置7とモータ5とが電気的に接続される。
 一方、第1駆動部13は、スイッチ部12を遮断状態にすることを示す遮断状態移行信号を制御部19から取得した場合には、コイル12aの他端とグランドとの接続を解除する。これより、駆動電源8からスイッチ部12に電流が流れなくなるため、スイッチ部12は、遮断状態となる。これにより、電源装置7とインバータ11との電気的な接続が解除される。すなわち、スイッチ部12が遮断状態となることで、電源装置7とモータ5との電気的な接続が解除される。
 ここで、通常、開閉体制御装置4は、モータ5により電動でテールゲート2を開閉する電動モードである場合には、スイッチ部12を導通状態にする。また、開閉体制御装置4は、テールゲート2を手動で開閉可能とする手動モードである場合には、スイッチ部12を遮断状態にする。
 電圧制限部15は、電源装置7とモータ5との接続が遮断されている場合に、モータ5が外力により回転することで発生するモータ5の発電電圧を所定の電圧(以下、「閾値電圧」という。)Eに制限する。モータ5が外力により回転する場合とは、例えば、ユーザによりテールゲート2が開閉される等、テールゲート2の非電動移動によりモータ5が回転する場合である。例えば、電圧制限部15は、ツェナーダイオードである。電圧制限部15がツェナーダイオードである場合には、このツェナーダイオードは、アノードがグランドに接続され、カソードがスイッチ部12とインバータ11との間に接続される。ツェナーダイオードは、逆方向に電圧が印加されると、閾値電圧Eでツェナー降伏し、流れる電流値にかかわらず一定の電圧が得られるものである。したがって、スイッチ部12とインバータ11との間に印加される電圧が閾値電圧Eを超えた場合には、ツェナーダイオードはツェナー降伏する。ツェナーダイオードは、ツェナー降伏すると、カソードからアノードに向かって電流が流れる。以下の説明では、電圧制限部15がツェナーダイオードである場合について、説明する。
 電流検出部16は、モータ5に流れる電流を検出する検出部である。例えば、電流検出部16は、モータ5に流れる電流の経路上に設けられたシャント抵抗17の両端の電位差を検出する。電流検出部16は、シャント抵抗の両端の電位差に基づいて実際にモータ5に流れるモータ5に流れる電流値(「以下、モータ電流」という。)を検出する。電流検出部16は、検出したモータ電流を制御部19に出力する。
 具体的には、開閉体制御装置4は、電動モードである場合には、電源装置7からスイッチ部12を経由してモータ5に流れる電流をモータ電流として検出する。一方、開閉体制御装置4は、手動モードである場合において、電圧制限部15によりモータ5の発電電圧が閾値電圧Eに制限された場合には、モータ5から出力される発電電流をモータ電流として検出する。具体的には、開閉体制御装置4は、手動モードである場合において、電圧制限部15がツェナー降伏することで、カソードからアノードに流れる発電電流をモータ電流として検出する。なお、電流検出部16は、ホール素子や電流検出コイルなどを用い、電磁的な原理に基づいてモータ電流を検出してもよい。
 なお、電流検出部16において検出するモータ電流の向きは、電動モードと手動モードとは逆になる。したがって、電流検出部16のモータ電流の検出範囲は、図3に示すように、正のモータ電流と負のモータ電流とが検出可能に設定されるため、逆向きの電流の向きも検出可能になる。
 回転状態算出部18は、回転センサ6から供給される検出信号に基づいてモータ5の回転状態を算出する。第1の実施形態では、回転状態は回転数であるが、これに限定されず、回転速度でもよいし、角速度でもよい。回転状態算出部18は、算出した回転数を制御部19に出力する。
 制御部19は、テールゲート2を開閉することを示す開閉操作信号を外部から取得した場合には、第1駆動部13に導通状態移行信号を出力することで、スイッチ部12を導通状態とする。そして、制御部19は、テールゲート2を開動作又は閉動作させる第1駆動信号をインバータ11に出力することで、インバータ11をPWM(Pulse Width Modulation)制御する。例えば、制御部19は、モータ5を正回転させる場合には、スイッチング素子111とスイッチング素子114とをそれぞれ導通状態にするようにインバータ11をPWM制御することで、モータ5を正回転させ、テールゲート2を開動作させる。また、制御部19は、モータ5を逆回転させる場合には、スイッチング素子112とスイッチング素子113とをそれぞれ導通状態にするようにインバータ11をPWM制御することで、モータ5を逆回転させ、テールゲート2を閉動作させる。
 一方、制御部19は、開閉操作信号を外部から取得しない場合には、第1駆動部13に遮断状態移行信号を出力することでスイッチ部12を遮断状態にするとともに、第1駆動信号及び第2駆動信号を出力しない。すなわち、制御部19は、インバータ11をPWM制御しない。
 また、制御部19は、スイッチ部12が遮断状態である場合において、電流検出部16により発電電流が検出されたことに応じてスイッチ部12を導通状態に制御することで、電源装置7とモータ5とを電気的に接続する。例えば、制御部19は、スイッチ部12が遮断状態である場合において、発電電流が検出された場合には、スイッチ部12を導通状態に制御する。これにより、制御部19は、モータ5の発電電圧(スイッチ部12及びインバータ11の接続点と、グランドと、の間の電圧)が電源装置7の電源電圧EBatt以上になることを抑制する。なお、この電源電圧EBattは、閾値電圧Eよりも低い値となる。したがって、例えば、外力によりモータ5が回転することで閾値電圧Eを超える発電電圧が発生する場合には、その発電電圧は、閾値電圧E以下に抑制され、所定の時間後に電源電圧EBattとなる。例えば、この所定の時間とは、電流検出部16により発電電流が検出されてからスイッチ部12が導通状態になるまでの時間である。この場合には、スイッチ部12が導通状態になると、発電電圧は電源電圧EBattとなるため、電圧制限部15によるツェナー降伏が停止される。すなわち、電圧制限部15がツェナー降伏することでカソードからアノードに発電電流が流れる時間が上記所定の時間に限られる。これにより、電圧制限部15において消費される消費電力が削減可能となるため、より低い容量値の電圧制限部15を用いることが可能となる。したがって、部品コストを削減できる。
 制御部19は、モータ5の回転が所定の回転数を下回った場合には、スイッチ部12を遮断状態に制御することで、電源装置7とモータ5との電気的な接続を遮断する。具体的には、制御部19は、発電電流が検出されたことに応じてスイッチ部12を導通状態に制御した場合において、回転状態算出部18により算出されたモータ5の回転数が所定の回転数未満になった場合には、第1駆動部13に遮断状態移行信号を出力することで、スイッチ部12を遮断状態に制御する。このように、制御部19は、発電電圧が開閉体制御装置4の内部部品に影響を及ぼさない程度に低い電圧になったことをモータ5の回転数に基づいて検出し、スイッチ部12を手動モードにおける通常の状態(遮断状態)に戻す。
 以下に、第1の実施形態に係る開閉体制御装置4の手動モードの処理について、図4~図6を用いて説明する。図4は、第1の実施形態に係る開閉体制御装置4の処理の流れを示す図である。図5は、第1の実施形態に係る電圧制限部15がツェナー降伏した場合における発電電流の流れを示す図である。図6は、第1の実施形態に係る手動モードの場合において、発電電流の流れを示す図である。
 制御部19は、テールゲート2が自動操作中に停止したときに第1駆動部13に遮断状態移行信号を出力することで、スイッチ部12を遮断状態にする。その後でユーザによりテールゲート2が手動で操作されると、モータ5による発電電圧が発生する。インバータ11は、モータ5の両端に接続されているため、インバータ11に発電電圧が印加されることになる。
 電圧制限部15(第1の実施形態ではツェナーダイオード)は、発電電圧が閾値電圧E以上になると、インバータ11に印加される発電電圧を閾値電圧Eに制限する。この場合に、電圧制限部15は、ツェナー降伏しているため、カソードからアノードに発電電流が流れる。したがって、図5に示すように、モータ5の他端から出力された発電電流は、還流ダイオード122、電圧制限部15、シャント抵抗17及び還流ダイオード123を順に通る経路P1を通り、モータ5の一端に戻る。
 図4に示すように、制御部19は、電流検出部16により発電電流が検出されたか否かを判定する(ステップS101)。制御部19は、電流検出部16により上記経路P1を通る発電電流が検出された場合には、第1駆動部13に導通状態移行信号を出力することで、スイッチ部12を導通状態にする(ステップS102)。これにより、図6に示すように、モータ5の他端から出力された発電電流は、還流ダイオード122、スイッチ部12、電源装置7、シャント抵抗17、及び還流ダイオード123を順に通る経路P2を通り、モータ5の一端に戻る。したがって、インバータ11に印加された発電電圧は、電源電圧EBatt以下に制限される。
 図4に戻り、制御部19は、モータ5の回転が所定の回転数以下か否かを判定する(ステップS103)。制御部19は、モータ5の回転が所定の回転数以下であると判定した場合には、第1駆動部13に遮断状態移行信号を出力することで、スイッチ部12を遮断状態にする(ステップS104)。
 上述したように、第1の実施形態に係る開閉体制御装置4は、電源装置7とモータ5との接続が遮断されている場合に、モータ5が外力により回転することで発生するモータ5の発電電圧を所定の電圧(閾値電圧E)に制限する。そして、開閉体制御装置4は、発電電圧を所定の電圧(閾値電圧E)に制限している場合に、モータ5から出力される発電電流を検出したことに応じてスイッチ部12を導通状態に制御する。これにより、開閉体制御装置4は、テールゲート2の非電動移動を検出してからスイッチ部12が導通状態になるまでに時間遅れが生じる場合であっても、テールゲート2の非電動移動により発生する過電圧を抑制することができる。
 また、電圧制限部15を設けず、スイッチ部12を導通状態にさせることで発電電圧を制限する従来の方法では、スイッチ部12を導通状態にすることで電源装置7の電源電圧EBatt以上の発電に対して手動操作荷重が重くなる。そのため、従来の方法では、手動操作速度が速くない手動操作(図7に示すV1maxからV2maxまでの間の手動操作速度の手動操作)までも抑制してしまう可能性がある。第1の実施形態の開閉体制御装置4は、電源電圧EBattよりも高い閾値電圧Eで発電電圧を制限した後、発電電流を検出した場合にはスイッチ部12を導通状態にする。これにより、図7に示すように、開閉体制御装置4は、従来と比較して、手動操作荷重が重くならない範囲を広く設定することができるため、手動操作速度が速くない手動操作(図7に示すV1maxからV2maxまでの間の手動操作速度の手動操作)を抑制することを防止することができる。また、上述の開閉体制御装置4は、発電電流を検出した場合にはスイッチ部12を導通状態にすることで、ツェナー降伏を停止させ電圧制限部15に発電電流が流れないように制御する。これにより、電圧制限部15の消費電力を低減することができるため、より低い容量値の電圧制限部15を用いることができる。
 また、上述の実施形態において、制御部19は、スイッチ部12が遮断状態である場合において、発電電流が検出された場合には、スイッチ部12を導通状態に制御する例について説明したが、これに限定されない。例えば、図8に示すように、制御部19は、スイッチ部12が遮断状態である場合において、所定の電流値(規定電流)以上の発電電流が所定の時間(規定時間)継続して検出された否かを判定し(ステップS201)、規定電流以上の発電電流が規定時間継続して検出された場合には、スイッチ部12を導通状態に制御してもよい(ステップS202)。なお、この規定電流及び規定時間は、例えば、予め設定されるものであって、電圧制限部15の消費電力や温度特性に応じて設定されてもよい。このように、制御部19は、規定電流以上の発電電流が規定時間継続して検出された場合には、スイッチ部12を導通状態に制御することで、電圧制限部15に発電電流が流れることを防止する。これにより、制御部19は、テールゲート2の非電動移動により発生する過電圧を電源電圧EBatt以下に抑制し、且つ電圧制限部15に長時間規定値以上の発電電流が流れることで電圧制限部15の温度が上昇し、熱暴走することを防止することができる。
 また、上述の実施形態において、制御部19は、スイッチ部12が遮断状態である場合において、発電電流が検出された場合には、スイッチ部12を導通状態に制御する例について説明したが、これに限定されない。例えば、図9に示すように、制御部19は、スイッチ部12が遮断状態である場合において、発電電圧が電圧制限部15により所定の電圧(閾値電圧E)に制限されてから電流検出部16により検出された発電電流の積算値が所定値以上であるか否を判定する(ステップS301)。そして、制御部19は、その積算値が所定値以上であると判定した場合には、スイッチ部12を導通状態に制御してもよい(ステップS302)。なお、この所定値は、例えば、予め設定されるものであって、電圧制限部15の消費電力や温度特性に応じて設定されてもよい。このように、制御部19は、発電電流の積算値が所定値以上である場合には、スイッチ部12を導通状態に制御することで、電圧制限部15に発電電流が流れることを防止する。これにより、制御部19は、テールゲート2の非電動移動により発生する過電圧を電源電圧EBatt以下に抑制し、且つ電圧制限部15に所定値以上の発電電流が流れることで電圧制限部15の温度が上昇し、熱暴走することを防止することができる。
(第2の実施形態)
 図10は、第2の実施形態に係る開閉体制御装置4Aが搭載された車両1の例を示す斜視図である。図11は、第2の実施形態に係る開閉体制御装置4Aの概略構成の一例を示す図である。
 第2の実施形態に係る開閉体制御装置4Aの構成は、第1の実施形態と比較して、電圧検出部を備えている点で異なる。
 以下に、第2の実施形態に係る開閉体制御装置4Aについて、具体的に説明する。
 図11に示すように、開閉体制御装置4Aは、インバータ11、スイッチ部12、第1駆動部13、第2駆動部14、電圧制限部15、電流検出部16、シャント抵抗17、回転状態算出部18、電圧検出部20、及び制御部19Aを備える。
 電圧検出部20は、スイッチ12bの他端と、電圧制限部15(ツェナーダイオード)のカソードとの間の電圧、すなわち発電電圧を検出する検出部である。電圧検出部20は、検出した電圧を制御部19に出力する。
 制御部19Aは、第1の実施形態に係る制御部19と同様の機能を有する。
 また、制御部19は、スイッチ部12が遮断状態である場合において、電圧検出部20が検出した電圧値に応じてスイッチ部12を導通状態に制御することで、電源装置7とモータ5とを電気的に接続する。
 例えば、制御部19Aは、スイッチ部12が遮断状態である場合において、電圧検出部20が検出した発電電圧が所定の規定電圧以上である場合には、スイッチ部12を導通状態に制御する。この規定電圧とは、閾値電圧E相当の電圧である。これにより、制御部19は、モータ5の発電電圧が電源装置7の電源電圧EBatt以上になることを抑制する。なお、この電源電圧EBattは、閾値電圧Eよりも低い値となる。したがって、例えば、外力によりモータ5が回転することで閾値電圧Eを超える発電電圧が発生する場合には、その発電電圧は、閾値電圧E以下に抑制され、所定の時間後に電源電圧EBattとなる。例えば、この所定の時間とは、電圧検出部20により発電電圧が検出されてからスイッチ部12が導通状態になるまでの時間である。この場合には、スイッチ部12が導通状態になると、発電電圧は電源電圧EBattとなるため、電圧制限部15によるツェナー降伏が停止される。すなわち、電圧制限部15がツェナー降伏することでカソードからアノードに発電電流が流れる時間が上記所定の時間に限られる。これにより、電圧制限部15において消費される消費電力が削減可能となるため、より低い容量値の電圧制限部15を用いることが可能となる。したがって、部品コストを削減できる。
 制御部19は、モータ5の回転が所定の回転数を下回った場合には、スイッチ部12を遮断状態に制御することで、電源装置7とモータ5との電気的な接続を遮断する。具体的には、制御部19は、スイッチ部12を導通状態に制御した場合において、回転状態算出部18により算出されたモータ5の回転数が所定の回転数未満になった場合には、第1駆動部13に遮断状態移行信号を出力することで、スイッチ部12を遮断状態に制御する。このように、制御部19は、発電電圧が開閉体制御装置4の内部部品に影響を及ぼさない程度に低い電圧になったことをモータ5の回転数に基づいて検出し、スイッチ部12を手動モードにおける通常の状態(遮断状態)に戻す。
 以下に、第2の実施形態に係る開閉体制御装置4Aの手動モードの処理について、図12~図14を用いて説明する。図12は、第2の実施形態に係る開閉体制御装置4Aの処理の流れを示す図である。図13は、第2の実施形態に係る電圧制限部15がツェナー降伏した場合における発電電流の流れを示す図である。図14は、第2の実施形態に係る手動モードの場合において、スイッチ12bがONである状態の発電電流の流れを示す図である。
 制御部19Aは、テールゲート2が自動操作中に停止したときに第1駆動部13に遮断状態移行信号を出力することで、スイッチ部12を遮断状態にする。その後でユーザによりテールゲート2が手動で操作されると、モータ5による発電電圧が発生する。インバータ11は、モータ5の両端に接続されているため、インバータ11に発電電圧が印加されることになる。
 電圧制限部15(第2の実施形態ではツェナーダイオード)は、発電電圧が閾値電圧E以上になると、インバータ11に印加される発電電圧を閾値電圧Eに制限する。この場合に、電圧制限部15は、ツェナー降伏しているため、カソードからアノードに発電電流が流れる。したがって、図13に示すように、モータ5の他端から出力された発電電流は、還流ダイオード122、電圧制限部15、シャント抵抗17及び還流ダイオード123を順に通る経路P3を通り、モータ5の一端に戻る。
 図12に示すように、制御部19Aは、電圧検出部20により検出された発電電圧が規定電圧以上であるか否かを判定する(ステップS401)。
 制御部19Aは、電圧検出部20により検出された発電電圧が規定電圧以上である場合には、第1駆動部13に導通状態移行信号を出力することで、スイッチ部12を導通状態にする(ステップS402)。これにより、図14に示すように、モータ5の他端から出力された発電電流は、還流ダイオード122、スイッチ部12、電源装置7、シャント抵抗17、及び還流ダイオード123を順に通る経路P4を通り、モータ5の一端に戻る。したがって、インバータ11に印加された発電電圧は、電源電圧EBatt以下に制限される。
 図12に戻り、制御部19Aは、モータ5の回転が所定の回転数以下か否かを判定する(ステップS403)。制御部19Aは、モータ5の回転が所定の回転数以下であると判定した場合には、第1駆動部13に遮断状態移行信号を出力することで、スイッチ部12を遮断状態にする(ステップS404)。
 上述したように、第2の実施形態に係る開閉体制御装置4Aは、電源装置7とモータ5との接続が遮断されている場合に、モータ5が外力により回転することで発生するモータ5の発電電圧を所定の電圧(閾値電圧E)に制限する。そして、開閉体制御装置4Aは、発電電圧を所定の電圧(閾値電圧E)に制限している場合に、モータ5から出力される発電電圧を検出したことに応じてスイッチ部12を導通状態に制御する。これにより、テールゲート2の非電動移動を検出してからスイッチ部12が導通状態になるまでに時間遅れが生じる場合であっても、テールゲート2の非電動移動により発生する過電圧を抑制することができる。
 また、第2の実施形態に係る開閉体制御装置4Aは、仕様等により電流検出部16を設けられない場合や電流検出部16にて発電電流が流れる方向が検出できない場合において、電圧検出部20の検出結果に応じてスイッチ部12を導通状態に制御することができる。
 また、上述の第2の実施形態において、制御部19Aは、発電電圧が規定電圧以上である場合に、スイッチ部12を導通状態に制御する例について説明したが、これに限定されない。例えば、制御部19Aは、スイッチ部12が遮断状態である場合において、ステップS401において、発電電圧が規定電圧以上である時間が所定の時間(規定時間)継続した場合にスイッチ部12を導通状態に制御してもよい。この場合には、ステップS401において、制御部19Aは、発電電圧が規定電圧以上である時間が所定の時間(規定時間)継続したか否かを判定することになる。これにより、制御部19Aは、テールゲート2の非電動移動により発生する過電圧を電源電圧EBatt以下に抑制し、且つ電圧制限部15に長時間規定値以上の発電電流が流れることで電圧制限部15の温度が上昇し、熱暴走することを防止することができる。
 また、上述の第2の実施形態において、電流検出部16が不用である場合には、開閉体制御装置4Aの構成から電流検出部16を省略してもよい。その場合には、制御部19Aにおいて電流検出部16の検出結果に関連する機能を省略してもよい。
 次に、第1の実施形態に係る開閉体制御装置4の変形例について、説明する。ただし、以下に示す変形例は、第2の実施形態に係る開閉体制御装置4Aにも適用できる。
 以下に示す変形例は、ステップS103において、モータ5の回転が所定の回転数以下ではないと判定した場合における開閉体制御装置4Aの動作の変形例である。
(変形例1)
 制御部19は、ステップS103において、モータ5の回転が所定の回転数以下ではないと判定した場合には、モータ5の回転方向に基づいて、発電電流が流れている方向(発電電流方向)が正又は負のいずれかであるかを判定する。そして、制御部19は、判定した発電電流方向から、スイッチング素子111~114のうち、発電電流が流れている二つのスイッチング素子を選択する。そして、制御部19は、その選択した二つのスイッチング素子をオン状態に制御する。例えば、図5において、制御部19は、ステップS103において、モータ5の回転が所定の回転数以下ではないと判定している場合には、スイッチング素子112及びスイッチング素子113をオン状態に制御する。
 これにより、スイッチ部12が導通状態において、制御部19は、経路P1を流れる発電電流により還流ダイオード122,123が発熱して故障してしまうことを抑制することができる。
 制御部19は、選択した二つのスイッチング素子を常にオン状態に制御している場合に、モータ5の回転が所定の回転数以下と判定した場合には、第1駆動部13に遮断状態移行信号を出力することで、スイッチ部12を遮断状態にする(ステップS104)。そして、制御部19は、選択した二つのスイッチング素子を常にオン状態にする制御を停止する。
 なお、変形例1において、制御部19は、選択した二つのスイッチング素子を常にオン状態に制御しなくてもよい。例えば、制御部19は、選択した二つのスイッチング素子を交互にオン状態に制御してもよい。これにより、制御部19は、ステップS104において、スイッチ部12を遮断状態にするタイミングが遅くても、モータ5が駆動することを確実に防止することができる。
(変形例2)
 制御部19は、ステップS103において、モータ5の回転が所定の回転数以下ではないと判定している場合には、インバータ11において、上アームのスイッチング素子111,112のオン状態に制御する。これにより、制御部19は、モータ5の両端を短絡させてモータ5に対して制動させる。これにより、制御部19は、モータ5による発電を抑制し、還流ダイオード122,123が発熱して故障してしまうことを抑制することができる。
 制御部19は、上アームのスイッチング素子111,112をオン状態に制御している場合に、モータ5の回転が所定の回転数以下と判定した場合には、第1駆動部13に遮断状態移行信号を出力することで、スイッチ部12を遮断状態にする(ステップS104)。そして、制御部19は、上アームのスイッチング素子111,112をオン状態にする制御を停止する。
 なお、変形例1において、制御部19は、上アームのスイッチング素子111,112を常にオン状態に制御しなくてもよい。例えば、制御部19は、上アームのスイッチング素子111,112を交互にオン状態に制御してもよい。これにより、制御部19は、上アームのスイッチング素子111,112を常にオン状態に制御する場合に比べて、モータ5に対して滑らかなブレーキを与えることができる。これにより、急にブレーキが重くなるのを抑制することができる。
 上述したように本実施形態に係る制御部は、モータ5の発電電力に応じてスイッチ部12を導通状態に制御することで、電源装置7とモータ5とを電気的に接続する。これにより、制御部は、テールゲート2の非電動移動により発生する過電圧を電源電圧EBatt以下に抑制し、且つ電圧制限部15に所定値以上の発電電流が流れることで電圧制限部15の温度が上昇し、熱暴走することを防止することができる。この上記発電電力は、発電電流及び発電電圧の少なくともいずれかを含む。
 上述した実施形態における制御部19,制御部19Aをコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 上記の開閉体制御装置によれば、開閉体の非電動移動により発生する過電圧を抑制することができる。
1 車両
2 テールゲート
3 開口部
4 開閉体制御装置
5 モータ(駆動源)
7 電源装置
11 インバータ
12 スイッチ部
13 第1駆動部
14 第2駆動部
15 電圧制限部
16 電流検出部
17 シャント抵抗
18 回転状態算出部
19 制御部

Claims (7)

  1.  電源装置からの電力を、車両の開口部を開閉する開閉体の駆動源に供給することで、前記開閉体を駆動する開閉体制御装置であって、
     前記電源装置と前記駆動源との間に設けられているスイッチ部と、
     前記スイッチ部の導通状態又は遮断状態を制御することで、前記電源装置と前記駆動源とを電気的に接続又は前記接続を遮断する制御部と、
     前記電源装置と前記駆動源との接続が遮断されている場合に、前記駆動源が外力により回転することで発生する当該駆動源の発電電圧を所定の電圧に制限する電圧制限部と、
     前記発電電圧が前記所定の電圧に制限されている場合に、前記駆動源から出力される発電電流を検出する電流検出部と、
     を備え、
     前記制御部は、前記発電電流が検出されたことに応じて前記スイッチ部を導通状態に制御することで、前記電源装置と前記駆動源とを電気的に接続する開閉体制御装置。
  2.  前記制御部は、駆動源の回転が所定の回転数を下回った場合には、前記スイッチ部を遮断状態に制御することで、前記電源装置と前記駆動源との電気的な接続を遮断する請求項1に記載の開閉体制御装置。
  3.  前記制御部は、前記発電電流が検出された場合には、前記スイッチ部を導通状態に制御する請求項1又は請求項2に記載の開閉体制御装置。
  4.  前記制御部は、所定の電流値以上の前記発電電流が所定の時間継続して検出された場合には、前記スイッチ部を導通状態に制御する請求項1又は請求項2に記載の開閉体制御装置。
  5.  前記制御部は、前記発電電圧が前記所定の電圧に制限されてから前記電流検出部により検出された発電電流の積算値が所定値以上である場合には、前記スイッチ部を導通状態に制御する請求項1又は請求項2に記載の開閉体制御装置。
  6.  電源装置からの電力を、車両の開口部を開閉する開閉体の駆動源に供給することで、前記開閉体を駆動する開閉体制御装置であって、
     前記電源装置と前記駆動源との間に設けられているスイッチ部と、
     前記スイッチ部の導通状態又は遮断状態を制御することで、前記電源装置と前記駆動源とを電気的に接続又は前記接続を遮断する制御部と、
     前記電源装置と前記駆動源との接続が遮断されている場合に、前記駆動源が外力により回転することで発生する当該駆動源の発電電圧を所定の電圧に制限する電圧制限部と、
     前記発電電圧を検出する電圧検出部と、
     を備え、
     前記制御部は、前記電圧検出部が検出した発電電圧に応じて前記スイッチ部を導通状態に制御することで、前記電源装置と前記駆動源とを電気的に接続する開閉体制御装置。
  7.  複数のスイッチングを備え、前記電源装置から供給される直流電圧を交流電圧に変換して前記駆動源に印加するインバータを備え、
     前記制御部は、前記スイッチ部を導通状態に制御した後に、前記駆動源の回転が所定の回転数を下回らない場合には、前記複数のスイッチングのうち、前記駆動源の発電電流が流れている還流ダイオードを有するスイッチング素子をオン状態に制御する請求項1から請求項6のいずれか一項に記載の開閉体制御装置。
PCT/JP2017/035954 2016-10-06 2017-10-03 開閉体制御装置 WO2018066550A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/336,725 US10907395B2 (en) 2016-10-06 2017-10-03 Opening-closing body control device
JP2018543915A JP6734928B2 (ja) 2016-10-06 2017-10-03 開閉体制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016198224 2016-10-06
JP2016-198224 2016-10-06

Publications (1)

Publication Number Publication Date
WO2018066550A1 true WO2018066550A1 (ja) 2018-04-12

Family

ID=61831125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035954 WO2018066550A1 (ja) 2016-10-06 2017-10-03 開閉体制御装置

Country Status (3)

Country Link
US (1) US10907395B2 (ja)
JP (1) JP6734928B2 (ja)
WO (1) WO2018066550A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055285A (ja) * 2019-09-27 2021-04-08 アイシン精機株式会社 開閉体駆動装置およびその制御方法
JP2021055286A (ja) * 2019-09-27 2021-04-08 アイシン精機株式会社 開閉体駆動装置およびその制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102212B2 (ja) * 2018-04-27 2022-07-19 キヤノン株式会社 電子機器、電子機器の制御方法、及びプログラム
US11161555B2 (en) 2019-09-06 2021-11-02 Banks Morrison Innovations Llc Tailgate deactivation system
CN115142757B (zh) * 2022-06-23 2023-08-04 东方久乐汽车电子(上海)股份有限公司 一种电动尾门控制电路及保护电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232167A (ja) * 2002-02-05 2003-08-22 Chikura Kogyo Kk 自動ドアのブレーキ装置
WO2010083999A1 (de) * 2009-01-23 2010-07-29 Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt Antriebsanordnung zur motorischen verstellung eines verstellelements eines kraftfahrzeugs
JP2014531885A (ja) * 2011-09-05 2014-11-27 ブローゼ ファールツォイクタイレ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト ハルシュタットBrose Fahrzeugteile GmbH & Co. KG, Hallstadt 自動車の可動部品の電動移動を行うための駆動システム
JP2017057645A (ja) * 2015-09-17 2017-03-23 アイシン精機株式会社 車両用開閉体制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303410B2 (ja) * 2013-11-07 2018-04-04 富士電機株式会社 電力供給装置
JP6550884B2 (ja) * 2015-04-21 2019-07-31 株式会社デンソー モータ駆動装置
JP6489031B2 (ja) * 2016-01-27 2019-03-27 株式会社デンソー モータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232167A (ja) * 2002-02-05 2003-08-22 Chikura Kogyo Kk 自動ドアのブレーキ装置
WO2010083999A1 (de) * 2009-01-23 2010-07-29 Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt Antriebsanordnung zur motorischen verstellung eines verstellelements eines kraftfahrzeugs
JP2014531885A (ja) * 2011-09-05 2014-11-27 ブローゼ ファールツォイクタイレ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト ハルシュタットBrose Fahrzeugteile GmbH & Co. KG, Hallstadt 自動車の可動部品の電動移動を行うための駆動システム
JP2017057645A (ja) * 2015-09-17 2017-03-23 アイシン精機株式会社 車両用開閉体制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055285A (ja) * 2019-09-27 2021-04-08 アイシン精機株式会社 開閉体駆動装置およびその制御方法
JP2021055286A (ja) * 2019-09-27 2021-04-08 アイシン精機株式会社 開閉体駆動装置およびその制御方法
JP7272219B2 (ja) 2019-09-27 2023-05-12 株式会社アイシン 開閉体駆動装置およびその制御方法
JP7272220B2 (ja) 2019-09-27 2023-05-12 株式会社アイシン 開閉体駆動装置およびその制御方法

Also Published As

Publication number Publication date
JPWO2018066550A1 (ja) 2019-04-18
US10907395B2 (en) 2021-02-02
JP6734928B2 (ja) 2020-08-05
US20190226263A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2018066550A1 (ja) 開閉体制御装置
JP5866034B2 (ja) 電動機駆動装置
JP5743934B2 (ja) インバータ装置及びパワーステアリング装置
CN105553210B (zh) 无刷电机和电机控制设备
JP5579495B2 (ja) モータ駆動装置
JP6169203B1 (ja) 電動機制御装置および電動機制御方法
JP6285477B2 (ja) ダイナミックブレーキ回路保護機能を有するモータ駆動装置
JP2013183462A (ja) 電動機駆動装置
WO2009125683A1 (ja) モータ制御装置及びその制御方法
JP5660997B2 (ja) 電動機制御装置
JP2008118834A (ja) サージ低減回路およびサージ低減回路を備えたインバータ装置
US20170085208A1 (en) Vehicular opening/closing body control device
JP7074074B2 (ja) モータ駆動装置、および電動パワーステアリング装置
JP2015122883A (ja) モータ駆動装置
JP6680227B2 (ja) 回転電機の制御装置
JP2019213367A (ja) ブラシレスdcモータの制御方法及び制御装置
JP6392464B2 (ja) 車両用駆動装置、車両用駆動システム、および、車両用駆動装置の制御方法
JP6230677B1 (ja) 回転電機の制御装置および制御方法
JP5804984B2 (ja) モータ駆動装置
JP2018160972A (ja) モータ駆動回路の制御装置及びモータ駆動回路の診断方法
JP5660996B2 (ja) 電動機制御装置
JP4369500B2 (ja) 回転電機装置
JP6715046B2 (ja) 交流発電機のブレーキ装置
JP7041582B2 (ja) 交流発電機の短絡ブレーキ回路
WO2019163320A1 (ja) 電動工具の制御回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858388

Country of ref document: EP

Kind code of ref document: A1