WO2018066546A1 - ポリマー組成物 - Google Patents

ポリマー組成物 Download PDF

Info

Publication number
WO2018066546A1
WO2018066546A1 PCT/JP2017/035935 JP2017035935W WO2018066546A1 WO 2018066546 A1 WO2018066546 A1 WO 2018066546A1 JP 2017035935 W JP2017035935 W JP 2017035935W WO 2018066546 A1 WO2018066546 A1 WO 2018066546A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
polymer
integer
represented
Prior art date
Application number
PCT/JP2017/035935
Other languages
English (en)
French (fr)
Inventor
正通 西原
世演 馮
リアーナ クリスティアーニ
一成 佐々木
章一 近藤
高大 忰山
太一 中澤
隆正 菊池
Original Assignee
日産化学工業株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社, 国立大学法人九州大学 filed Critical 日産化学工業株式会社
Priority to KR1020197009738A priority Critical patent/KR102385168B1/ko
Priority to CN201780058516.3A priority patent/CN109790383B/zh
Priority to US16/339,211 priority patent/US11098161B2/en
Priority to EP17858384.5A priority patent/EP3517575B1/en
Priority to JP2018543912A priority patent/JP7012309B2/ja
Publication of WO2018066546A1 publication Critical patent/WO2018066546A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2636Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a composition comprising two or more different polymers.
  • Non-Patent Document 1 reports a charge transfer complex using tetrathiafulvalene / p-chloranil and its derivatives.
  • Non-Patent Documents 2 and 3 report a charge transfer complex of polyimide as a polymer and dihydroxynaphthalene as a low molecular compound.
  • Non-Patent Document 1 Since the raw material of the charge transfer complex of Non-Patent Document 1 is a low-molecular compound, there may be a problem in stability when the complex is used as a material. When the charge transfer complexes of Non-Patent Documents 2 and 3 are used as materials, there may be problems with leakage of low-molecular compounds as raw materials and material stability. Therefore, a more stable material that can be used as a material has been desired.
  • an object of the present invention is to provide a composition containing two or more different polymers in which phase separation in the micrometer order is suppressed.
  • compositions of an electron-donating polymer having a rigid structure and an electron-withdrawing polymer having a flexible structure, and an electron-donating polymer having a flexible structure and a rigid can form a charge transfer complex with the electron-donating polymer and the electron-withdrawing polymer, and as a result, can suppress phase separation on the order of micrometers. I found it. It has not been reported so far to form a charge transfer complex between the main chains of two or more different polymers. The present invention based on this finding is as follows.
  • a composition comprising an electron donating polymer (D) and an electron withdrawing polymer (A),
  • the electron donating polymer (D) has the formula (1):
  • X 1 is a divalent group containing a naphthalene ring
  • Y 1 is a divalent group containing a C 3-10 alkylene group which may have a substituent or a divalent group containing a benzene ring which may have a substituent
  • * Indicates a binding position.
  • X 2 is a tetravalent group containing a naphthalene ring, When Y 1 is a divalent group containing an optionally substituted C 3-10 alkylene group, Y 2 is a divalent group containing an optionally substituted benzene ring. Group, When Y 1 is a divalent group containing an optionally substituted benzene ring, Y 2 is a divalent group containing an optionally substituted C 3-10 alkylene group. Is a group, and * indicates a bonding position. ] The composition which has the structure represented by these. [2] The composition according to [1], wherein at least one of Y 1 and Y 2 has a sulfo group.
  • Y 1 is a divalent group containing an optionally substituted C 3-10 alkylene group, and Y 2 contains an optionally substituted benzene ring
  • X 1 has the formula (3) or formula (4):
  • R 1 represents a hydrogen atom or a sulfo group, and * represents a bonding position.
  • n2 to n11 are each independently an integer of 0 to 4
  • R 2 to R 11 are each independently a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, nitro group, a formyl group, a cyano group, a sulfo group
  • W 1 optionally substituted by a phenyl group, thienyl group which may be substituted with W 1 or W 1 at which may be substituted furyl group
  • W 1 represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, a cyano group Or a sulfo group, when n2
  • the electron donating polymer (D) is represented by formula (12) or formula (13):
  • m1 and m2 are each independently an integer of 0 to 4, and * indicates a bonding position.
  • the electron donating polymer (D1) is represented by the formula (15):
  • R 1a and R 1b are each independently a hydrogen atom or a sulfo group
  • m1 and m2 are each independently an integer of 0 to 4, and * indicates a bonding position.
  • n2, R 2 and * are as defined above.
  • Z 1 to Z 6 are each independently a single bond, a C 1-2 alkylene group which may be substituted with a halogen atom, a C 3-10 alkylene group or a sulfonyl group.
  • the electron withdrawing polymer (A) is represented by the formula (17a):
  • L 2a represents formula (8) to formula (11):
  • n2 to n11 are each independently an integer of 0 to 4
  • R 2 to R 11 are each independently a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, nitro group, a formyl group, a cyano group, a sulfo group
  • W 1 optionally substituted by a phenyl group, thienyl group which may be substituted with W 1 or W 1 at which may be substituted furyl group
  • W 1 represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, a cyano group Or a sulfo group, when n2
  • the electron withdrawing polymer (A1a) has the formula (23):
  • L 2b represents the formula (8b) to the formula (11b):
  • R 2b ⁇ R 11b are each independently optionally C 1-10 alkyl group optionally substituted by a halogen atom, a substituted C 1-10 optionally alkoxy group with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, a cyano group, a phenyl group which may be substituted with W 1b, thienyl group which may be substituted with W 1b or W 1b with an optionally substituted furyl group, W 1b is a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, or cyano Group, When n2b to n11b are integers of
  • composition according to [14] including an electron-withdrawing polymer (A1b) having a structural unit represented by: [16] Ratio of the number of structural units represented by formula (23) to the number of structural units represented by formula (17b) (number of structural units represented by formula (23) / formula (17b) The composition according to [15] above, wherein the number of structural units represented is 0.1 / 99.9 to 99.9 / 0.1.
  • the electron withdrawing polymer (A) is represented by the formula (17):
  • L 2 represents the formula (18) to the formula (22), the formula (31), and the formula (32):
  • n12 is an integer of 1 to 4
  • R 12 is a fluorine atom or a trifluoromethyl group, and when n12 is an integer of 2 to 4, the plurality of R 12 may be the same or different from each other
  • n13 to n16 are each independently an integer of 0 to 4
  • R 13 is a nitro group, a sulfo group, or a trifluoromethyl group, and when n13 is an integer of 2 to 4, the plurality of R 13 may be the same or different from each other
  • R 14 is a chlorine atom or a sulfo group, and when n 14 is an integer of 2 to 4, the plurality of R 14 may be the same or different from each other
  • R 15 is a chlorine atom or a sulfo group, and when n15 is an integer of 2 to 4, the plurality of R 15 may be the same or
  • composition according to any one of [1] to [12], comprising an electron-withdrawing polymer (A1) having a structural unit represented by: [18] L 2 is of the formula (18)
  • composition according to [17] is a divalent group represented by any one of the - formula (22).
  • the electron withdrawing polymer (A1) is represented by the formula (23):
  • the electron withdrawing polymer (A1) is represented by the formula (23):
  • composition according to the above [17], comprising an electron-withdrawing polymer (A3) having a structural unit represented by: [22] Ratio of the number of structural units represented by formula (23) to the number of structural units represented by formula (25) (number of structural units represented by formula (23) / in formula (25) [21] The composition according to [21], wherein the number of structural units represented is from 0.1 / 99.9 to 99.9 / 0.1.
  • the electron withdrawing polymer (A1) is represented by the formula (23):
  • n12 is an integer of 1 to 4, R 12 is a fluorine atom or a trifluoromethyl group, and when n 12 is an integer of 2 to 4, the plurality of R 12 may be the same or different from each other, and * indicates a bonding position.
  • the electron withdrawing polymer (A1) is represented by the formula (23):
  • n13 to n16 are each independently an integer of 0 to 4, R 13 is a nitro group, a sulfo group, or a trifluoromethyl group, and when n13 is an integer of 2 to 4, the plurality of R 13 may be the same or different from each other, R 14 is a chlorine atom or a sulfo group, and when n 14 is an integer of 2 to 4, the plurality of R 14 may be the same or different from each other, R 15 is a chlorine atom or a sulfo group, and when n15 is an integer of 2 to 4, the plurality of R 15 may be the same or different from each other, R 16 is a nitro group, a sulfo group or a trifluoromethyl group, and when n 16 is an integer of 2 to 4, the plurality of R 16 may be the same or different from each other, and * represents the bonding position Show.
  • composition according to the above [17], comprising an electron withdrawing polymer (A5) having a structural unit represented by: [26] Ratio of the number of structural units represented by formula (23) to the number of structural units represented by formula (27) (number of structural units represented by formula (23) / in formula (27) [21] The composition according to [21], wherein the number of structural units represented is from 0.1 / 99.9 to 99.9 / 0.1.
  • the electron withdrawing polymer (A1) is represented by the formula (23):
  • n23 and n24 are each independently an integer of 0 to 4, R 23 is a C 1-3 alkyl group or sulfo group optionally substituted with a halogen atom, and when n23 is an integer of 2 to 4, the plurality of R 23 may be the same or different from each other , R 24 is a C 1-3 alkyl group or a sulfo group optionally substituted with a halogen atom, and when n24 is an integer of 2 to 4, the plurality of R 24 may be the same or different from each other , And * indicate binding positions.
  • composition according to [17] above comprising an electron-withdrawing polymer (A6) having a structural unit represented by: [28] Ratio of the number of structural units represented by formula (23) to the number of structural units represented by formula (33) (number of structural units represented by formula (23) / formula (33) [27]
  • the composition according to [27] above, wherein the number of structural units represented is 0.1 / 99.9 to 99.9 / 0.1.
  • the electron withdrawing polymer (A1) is represented by the formula (23):
  • n25 and n26 are each independently an integer of 0 to 4, R 25 is a C 1-3 alkyl group or a sulfo group optionally substituted with a halogen atom, and when n25 is an integer of 2 to 4, the plurality of R 25 may be the same or different from each other , R 26 is substituted with a halogen atom is also good C 1-3 alkyl group or a sulfo group, if n26 is an integer of 2 to 4, a plurality of R 26 are each, it may be the same or different , And * indicate binding positions.
  • composition according to [17] above comprising an electron-withdrawing polymer (A7) having a structural unit represented by: [30] Ratio of the number of structural units represented by formula (23) to the number of structural units represented by formula (34) (number of structural units represented by formula (23) / formula (34) [29] The composition according to [29] above, wherein the number of structural units represented is 0.1 / 99.9 to 99.9 / 0.1.
  • An electrolyte membrane for a fuel cell comprising the composition according to any one of [1] to [38].
  • a catalyst layer for a fuel cell comprising the composition according to any one of [1] to [38].
  • the electron withdrawing polymer (A1) is represented by the formula (23):
  • m3 and m4 each independently represent an integer of 0 to 3, and * represents a bonding position.
  • An electrolyte membrane for a fuel cell comprising the composition according to any one of [41] to [43].
  • a fuel cell catalyst layer comprising the composition according to any one of [41] to [43].
  • composition of the present invention suppresses polymer phase separation. As a result, it is expected that the strength and the like of the film obtained from the composition of the present invention will be improved.
  • FIG. 3 is a 1 H NMR chart of an electron donating polymer (D3a-1) obtained in Synthesis Example 3.
  • FIG. 2 is a chemical formula showing the position of proton corresponding to the 1 H NMR chart and peak of the electron withdrawing polymer (A2-1) obtained in Synthesis Example 4.
  • 19 is a 19 F NMR chart of the electron withdrawing polymer (A2-1) obtained in Synthesis Example 4.
  • FIG. 2 is a chemical formula showing the position of proton corresponding to the 1 H NMR chart and peak of the electron withdrawing polymer (A3-1) obtained in Synthesis Example 6.
  • 19 is a 19 F NMR chart of the electron withdrawing polymer (A3-1) obtained in Synthesis Example 6.
  • FIG. 2 is a chemical formula showing the position of proton corresponding to the 1 H NMR chart and peak of the electron withdrawing polymer (A4-1) obtained in Synthesis Example 7.
  • 1 is a 1 H NMR chart of an electron donating polymer (D4-2) obtained in Synthesis Example 10.
  • 1 is a 1 H NMR chart of an electron donating polymer (D3b-1) obtained in Synthesis Example 13.
  • FIG. 3 is a graph showing absorption spectra of an electron-withdrawing polymer (A2-1) film and a composition (I) film measured in Test Example 1 by ultraviolet-visible spectroscopy (UV-vis).
  • FIG. 3 is a graph showing absorption spectra by ultraviolet-visible spectroscopy (UV-vis) of an electron-withdrawing polymer (A2-1) film and a composition (II) film measured in Test Example 1.
  • FIG. 6 is a graph showing absorption spectra by ultraviolet-visible spectroscopy (UV-vis) of the film of the electron withdrawing polymer (A2-1) and the films of the compositions (III) to (VI) measured in Test Example 1. is there.
  • Each absorption spectrum is the spectrum of the film of the electron withdrawing polymer (A2-1) and the films of the compositions (III) to (VI) in order from the bottom.
  • 6 is a diagram showing elemental mapping of fluorine by EDX of a film of composition (I) measured in Test Example 5.
  • FIG. 6 is a diagram showing elemental mapping of fluorine by EDX of a film of composition (II) measured in Test Example 5.
  • FIG. FIG. 3 is a graph showing absorption spectra by ultraviolet-visible spectroscopy (UV-vis) of an electron-withdrawing polymer (A6-1) film and a composition (IX) film measured in Test Example 1.
  • FIG. 3 is a graph showing absorption spectra of an electron-withdrawing polymer (A7-1) film and a composition (X) film measured in Test Example 1 by ultraviolet-visible spectroscopy (UV-vis).
  • the composition of the present invention comprises an electron donating polymer (D) having a structure represented by the following formula (1) and an electron withdrawing polymer (A) having a structure represented by the following formula (2). It is characterized by that.
  • the electron donating polymer (D) only one kind may be used, or two or more kinds may be used in combination.
  • the electron withdrawing polymer (A) may be used alone or in combination of two or more.
  • each of the structures (1), X 1 and Y 1 may be one kind or two or more kinds.
  • each of the structures (2), X 2 and Y 2 may be only one kind or two or more kinds.
  • electron donating means a property of a molecule or ion that can easily give an electron to another molecule or ion.
  • the —O—X 1 —O— moiety is an electron donating moiety.
  • Y 1 is preferably a moiety bonded to the oxygen atom described in Formula (1), preferably * -CQ 1 Q 2- * (wherein Q 1 and Q 2 are each independently , A hydrogen atom, a C 1-10 alkyl group optionally substituted with a halogen atom, a C 1-10 alkoxy group optionally substituted with a halogen atom, a halogen atom, or a sulfo group, and * is a bond A divalent group represented by formula (1-1):
  • J 1 represents a C 1-10 alkyl group optionally substituted with a halogen atom, a C 1-10 alkoxy group optionally substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, a cyano group a sulfo group
  • W 2 optionally substituted by a phenyl group, W 2 thienyl group optionally substituted with or W 2 may furyl group optionally substituted by, W 2 represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, a cyano group Or a sulfo group, If p1 is an integer of 2 to 4, a plurality of J 1 are
  • electron withdrawing means the property of a molecule or ion that can easily receive electrons from other molecules or ions.
  • the imide structure portion is a portion having an electron accepting property.
  • Y 2 is a moiety bonded to the nitrogen atom described in Formula (2).
  • * —CQ 3 Q 4 — * (where Q 3 and Q 4 are each independently a hydrogen atom , which may be substituted with a halogen atom a C 1-10 alkyl group, optionally C 1-10 alkoxy group optionally substituted by a halogen atom, a halogen atom or a sulfo group, and * shows the binding position Or a divalent group represented by formula (2-1):
  • J 2 represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, a cyano group a sulfo group, W a phenyl group which may be substituted with 3, W thienyl group optionally substituted by 3 or W 3 may furyl group optionally substituted by, W 3 represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, a cyano group Or a sulfo group,
  • p2 is an integer of 2 to 4
  • the plurality of J 2 When p2 is an integer of 2 to
  • Y 1 in Formula (1) is a divalent group containing a C 3-10 alkylene group which may have a substituent
  • the electron-donating polymer (D) has a flexible structure
  • Y 2 in the formula (2) is a divalent group containing a benzene ring which may have a substituent
  • the electron withdrawing polymer (A) has a rigid structure.
  • Y 1 in the formula (1) is a divalent group containing a benzene ring which may have a substituent
  • the electron-donating polymer (D) has a rigid structure
  • Y 2 in (2) is a divalent group containing a C 3-10 alkylene group which may have a substituent
  • the electron withdrawing polymer (A) has a flexible structure.
  • a combination of the rigid electron donating polymer (D) and the flexible electron withdrawing polymer (A) can also form a charge transfer complex between these polymers.
  • charge transfer complex means an intermolecular compound formed between two neutral molecules by charge transfer force.
  • the fact that the electron donating polymer (D) and the electron withdrawing polymer (A) in the composition of the present invention form a charge transfer complex is described in Nature, 375 (6529), 303-305 1995 (1995) and Polym.
  • the UV-vis absorption spectrum of the composition can be confirmed by having a peak or shoulder near 530 nm.
  • the membrane produced from the composition of the present invention containing the electron withdrawing polymer (A) and the electron donating polymer (D) can improve its mechanical strength while maintaining proton conductivity. Therefore, the composition of the present invention is useful as an electrolyte material for fuel cells.
  • this film has the advantage that its manufacture is simple and the physical properties can be easily adjusted. Therefore, the composition of the present invention can contribute to cost reduction and high durability of the fuel cell.
  • membrane which is hardly water-soluble can be manufactured from the composition of this invention.
  • the composition of the present invention contains two or more different polymers (ie, an electron withdrawing polymer (A) and an electron donating polymer (D)). Therefore, the composition of the present invention that can be produced by mixing a polymer having sufficient proton conductivity and another polymer that is mechanically flexible can be expected as an electrolyte material for a fuel cell with higher performance.
  • the electrolyte material include an electrolyte material and an electrolyte membrane used for the catalyst layer.
  • the composition of the present invention contains a different electron donating polymer (D) in addition to the electron withdrawing polymer (A) having the structure (2). Therefore, the physical properties of the film obtained from the composition of the present invention can be adjusted by adjusting the kind and amount of the electron donating polymer (D) to be used. It should also be noted that a film can be easily produced from the composition of the present invention.
  • X 1 in the formula (1) is a divalent group containing a naphthalene ring.
  • X 1 is preferably the following formula (3) or formula (4):
  • X 2 in the formula (2) is a tetravalent group containing a naphthalene ring.
  • X 2 is preferably the following formula (5), formula (6-1) or formula (6-2):
  • Y 1 is a divalent group containing a C 3-10 alkylene group which may have a substituent or a divalent group containing a benzene ring which may have a substituent.
  • Y 2 is a divalent group containing an optionally substituted benzene ring. It is a group.
  • Y 1 is a divalent group containing a benzene ring which may have a substituent
  • Y 2 contains a C 3-10 alkylene group which may have a substituent. Is a valent group.
  • At least one of the electron donating polymer (D) and the electron withdrawing polymer (A) it is preferable that at least one of Y 1 and Y 2 has a sulfo group.
  • Y 1 or Y 2 is a divalent group containing a good C 3-10 alkylene group which may have a substituent.
  • the C 1-2 alkylene group is a methylene group or an ethylene group.
  • examples of the C 3-10 alkylene group include trimethylene group, 1-methylethylene group, tetramethylene group, 1-methyltrimethylene group, 1,1-dimethylethylene group, pentamethylene group, 1-methylethylene group, Methyltetramethylene group, 2-methyltetramethylene group, 1,1-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-ethyltrimethylene group, hexamethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1,1-dimethyltetramethylene group, 1,2-dimethyltetramethylene group, 2,2-dimethyltetramethylene group, 1- Ethyltetramethylene group, 1,1,2-trimethyltrimethylene group, 1,2,2-trimethyltrimethylene group, Examples include 1-ethyl-1
  • Either Y 1 or Y 2 is preferably formula (7):
  • R 1 in Formula (7) is a hydrogen atom or a sulfo group, preferably a hydrogen atom.
  • either Y 1 or Y 2 is a divalent group containing a benzene ring which may have a substituent.
  • Either Y 1 or Y 2 is preferably represented by formula (8) to formula (11):
  • a divalent group represented by any one of the above that is, any of divalent group (8) to divalent group (11)).
  • each of Y 1 and Y 2 may be only one type or two or more types.
  • n2 to n11 are each independently an integer of 0 to 4.
  • n2 is 0 means that the substituent R 2 does not exist.
  • the plurality of R 2 may be the same or different from each other. The same applies to p1 and p2, n3 to n11 described above, and n12 described later.
  • R 2 to R 11 are each independently a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, nitro group, a formyl group, a cyano group, a sulfo group, W 1 optionally substituted by a phenyl group, thienyl group which may be substituted with W 1 or W 1 at which may be substituted furyl group,.
  • examples of the C 1-10 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, A neopentyl group, a tert-pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group can be mentioned.
  • examples of the C 1-10 alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, Examples include a pentyloxy group, a neopentyloxy group, a tert-pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group, and a decyloxy group.
  • examples of the halogen atom include fluorine, chlorine, bromine and iodine.
  • W 1 represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, a cyano group Or a sulfo group.
  • Z 1 to Z 6 are each independently a single bond, a C 1-2 alkylene group which may be substituted with a halogen atom, a C 3-10 alkylene group, a sulfonyl group, a carbonyl group, * -CONH- *, * —NHCO— *, * —C (R 21 ) (R 22 ) — *, or an oxy group.
  • R 21 and R 22 are each independently a C 1-3 alkyl group optionally substituted with a halogen atom, or R 21 and R 22 are bonded to each other, together with the carbon atom to which they are bonded, C 3-6 hydrocarbon rings are formed.
  • examples of the C 1-3 alkyl group include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • examples of the C 3-6 hydrocarbon ring include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, and a cyclohexane ring.
  • the divalent group (8) is preferably a divalent group represented by the following formula (8-1) (wherein n2, R 2 and * are as defined above):
  • Z 1 to Z 6 are each independently preferably a single bond, a C 1-2 alkylene group optionally substituted with a halogen atom, a C 3-10 alkylene group, a sulfonyl group, a carbonyl group, * -CONH- * , * -NHCO- *, or an oxy group.
  • Y 1 is a divalent group containing an optionally substituted C 3-10 alkylene group
  • Y 2 is a divalent group containing an optionally substituted benzene ring.
  • Y 1 is a divalent group containing the structure (7)
  • Y 2 is any one of the divalent group (8) to the divalent group (11). More preferably, Y 1 is a divalent group containing the structure (7) wherein R 1 is a hydrogen atom, and Y 2 is a divalent group (8) to a divalent group (11 It is further preferred that any of the above. As described above, each of Y 1 and Y 2 may be only one type or two or more types.
  • the weight average molecular weight (Mw) of the electron donating polymer (D) is preferably 5,000 to 800,000, more preferably 8,000 to 500,000, and still more preferably 10,000 to 100,000. .
  • This Mw can be measured by gel permeation chromatography (GPC) using polystyrene as a standard, as described in Examples below.
  • the Mw of other polymers can be measured similarly.
  • the electron withdrawing polymer (A) has a weight average molecular weight (Mw) of preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, still more preferably 10,000 to 150,000. 000.
  • the amount of the electron donating polymer (D) in the composition of the present invention is preferably 1 to 10,000 parts by weight, more preferably 10 to 1, based on 100 parts by weight of the electron withdrawing polymer (A). 500 parts by weight, more preferably 20 to 900 parts by weight, and most preferably 50 to 500 parts by weight.
  • the electron donating polymer (D) can be synthesized by a known reaction using a commercially available product as a starting material.
  • Commercial products are available from, for example, Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd. Moreover, you may use the compound which introduce
  • 1,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene and 4,4′-dihydroxydiphenylsulfone that can be used as starting materials for the electron-donating polymer (D) are, for example, Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd. Etc.
  • the electron donating polymer (D) is preferably the formula (12) or the formula (13):
  • the electron donating polymer (D1) having a structural unit represented by the formula (1), more preferably the electron donating polymer (D1).
  • the electron donating polymer (D1) only one type may be used, or two or more types may be used in combination.
  • the structural unit (12) and the structural unit (13) in the electron donating polymer (D1) may be either one kind or two or more kinds.
  • L 1 in Formula (12) or Formula (13) is Formula (3), Formula (4), or Formula (14):
  • M1 and m2 in the formula (14) are each independently an integer of 0 to 4, preferably 0.
  • R 1a and R 1b in the formula (12) or the formula (13) are hydrogen atoms.
  • R 1a and R 1b are each independently a hydrogen atom or a sulfo group, preferably a hydrogen atom.
  • the weight average molecular weight (Mw) of the electron donating polymer (D1) is preferably 5,000 to 800,000, more preferably 8,000 to 500,000, and still more preferably 10,000 to 100,000.
  • the electron donating polymer (D1) is preferably represented by the formula (15):
  • the electron donating polymer (D2) having a structural unit represented by the formula (1), more preferably the electron donating polymer (D2).
  • the weight average molecular weight (Mw) of the electron donating polymer (D2) is preferably 5,000 to 800,000, more preferably 8,000 to 500,000, and still more preferably 10,000 to 100,000.
  • the electron donating polymer (D1) is preferably represented by the formula (16):
  • the electron donating polymer (D3) having a structural unit represented by the formula (1), more preferably the electron donating polymer (D3).
  • the structural unit (16) in the electron donating polymer (D3) may be one kind or two or more kinds.
  • R 1a and R 1b in formula (16) are each independently a hydrogen atom or a sulfo group, preferably a hydrogen atom.
  • M1 and m2 in the formula (16) are each independently an integer of 0 to 4, preferably 0.
  • the electron donating polymer (D3) is preferably represented by the formula (16a):
  • the weight average molecular weight (Mw) of the electron donating polymer (D3) (preferably the electron donating polymer (D3a)) is preferably 5,000 to 800,000, more preferably 8,000 to 500,000, still more preferably. Is 10,000 to 100,000.
  • the electron donating polymer (D1) can be synthesized by a known reaction using a commercially available product as a starting material.
  • Commercial products are available from, for example, Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd.
  • a divalent compound having an epoxy group for example, 2,6-bis (oxiran-2-ylmethoxy) naphthalene
  • a divalent compound having a hydroxy group for example,
  • An electron donating polymer (D1a) in which R 1a and R 1b are hydrogen atoms can be produced by reaction with 2,6-dihydroxynaphthalene and 4,4′-dihydroxydiphenylsulfone).
  • the amount of the divalent compound having an epoxy group in the reaction is preferably 0.8 to 1.2 mol, more preferably 0.9 to 1.1 mol with respect to 1 mol of the divalent compound having a hydroxy group. .
  • the reaction is usually performed in a solvent.
  • the solvent include ketone solvents such as cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone.
  • ketone solvents such as cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone.
  • cyclohexanone and acetone are used.
  • the amount of the solvent is preferably 0.5 to 50 L, more preferably 1 to 10 L with respect to 1 mol of the divalent compound having an epoxy group.
  • a catalyst may be used.
  • the catalyst include phosphines and imidazoles.
  • phosphines include triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine.
  • imidazoles include 2-methylimidazole. Of these, tris (2,6-dimethoxyphenyl) phosphine is preferable.
  • the amount thereof is preferably 0.0001 to 0.1 mmol, more preferably 0.001 to 0.015 mmol, relative to 1 mol of the divalent compound having an epoxy group.
  • the reaction temperature of the reaction is preferably 50 to 200 ° C, more preferably 100 to 180 ° C. When the reaction temperature is higher than the boiling point of the solvent, the reaction may be carried out in a sealed tube.
  • the reaction time is preferably 20 to 200 hours, more preferably 30 to 100 hours.
  • an electron donating polymer (D1a) in which R 1a and R 1b are hydrogen atoms can be obtained by known means such as precipitation, filtration and drying.
  • An electron-donating polymer (D1b) in which R 1a and R 1b are sulfo groups can be obtained by, for example, R 1a and R 1b according to the method described in Tetrahedron Vol. 51, No. 4, pp. 1177-1186, 1995. It can be synthesized by reacting an electron donating polymer (D1a) in which is a hydrogen atom with a pyridine-sulfur trioxide complex.
  • the pyridine-sulfur trioxide complex is commercially available from, for example, Tokyo Chemical Industry Co., Ltd.
  • the amount of the pyridine-sulfur trioxide complex is preferably 1 to 10 mol, more preferably 1.5 to 5 mol based on 1 mol of the hydroxy group in the electron donating polymer (D1a).
  • the reaction is usually performed in a solvent.
  • the solvent is not particularly limited as long as it does not inhibit the progress of the reaction.
  • chloroform, chlorobenzene, dichlorobenzene, diethyl ether, 1,2-dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, 1, 4-dioxane may be mentioned.
  • the reaction temperature of the reaction is preferably ⁇ 30 ° C. to 80 ° C., more preferably ⁇ 10 ° C. to 50 ° C., and the reaction time is preferably 1 to 24 hours, more preferably 6 to 18 hours.
  • an electron donating polymer (D1b) in which R 1a and R 1b are sulfo groups can be obtained by known means such as precipitation, filtration and drying.
  • the electron-withdrawing polymer (A) can be synthesized by a known reaction using a commercially available product as a starting material.
  • Commercial products are available from, for example, Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd.
  • reaction of tetracarboxylic dianhydride and diamine as described in the below-mentioned Example is mentioned, for example.
  • the electron withdrawing polymer (A) is preferably represented by the formula (17a):
  • L 2a in formula (17) is a divalent group represented by formula (8) to formula (11) (the groups and symbols in formula (8) to formula (11) are as described above). .)
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A1a) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the electron withdrawing polymer (A1a) is preferably represented by the formula (23):
  • the electron-withdrawing polymer (A1b) having a structural unit represented by the formula (A1b) is more preferable.
  • the electron-withdrawing polymer (A1b) only one type may be used, or two or more types may be used in combination.
  • the structural unit (23) and the structural unit (17b) in an electron withdrawing polymer (A1b) all may be only 1 type and 2 or more types may be sufficient as them.
  • the structural unit (23) in the electron withdrawing polymer (A1b) is preferably one kind.
  • the structural unit (17b) in the electron withdrawing polymer (A1b) is preferably one kind.
  • L 2b in the formula (17b) is a formula (8b) to a formula (11b):
  • n2b to n11b are each independently an integer of 0 to 4.
  • n2b to n11b are integers of 2 to 4, the plurality of R 2b to R 11b may be the same as or different from each other.
  • R 2b to R 11b each independently represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, nitro group, a formyl group, a cyano group, a phenyl group which may be substituted with W 1b, thienyl group which may be substituted with W 1b or W 1b with an optionally substituted furyl group.
  • W 1b is a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, or cyano It is a group.
  • Z 1b to Z 6b are each independently a single bond, a C 1-2 alkylene group optionally substituted with a halogen atom, a C 3-10 alkylene group, a sulfonyl group, a carbonyl group, * -CONH- *, * —NHCO— *, * —C (R 21b ) (R 22b ) — *, or an oxy group.
  • R 21b and R 22b are each independently a C 1-3 alkyl group optionally substituted with a halogen atom, or R 21b and R 22b are bonded to each other, together with the carbon atom to which they are bonded, C 3-6 hydrocarbon rings are formed.
  • divalent group (8b) to the divalent group (11b) are the same as the divalent group (8) to the divalent group (11) described above except that they do not have a sulfo group. .
  • the ratio of the number of structural units (23) (preferably the structural unit (23a)) to the number of structural units (17b) (number of structural units (23) / number of structural units (17b)) is preferably 0.00. It is 1 / 99.9 to 99.9 / 0.1, more preferably 1/99 to 99/1, and still more preferably 30/70 to 95/5.
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A1b) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the electron-withdrawing polymer (A) is preferably represented by the formula (17):
  • L 2 in the formula (17) represents the formula (18) to the formula (22), the formula (31), and the formula (32):
  • L 2 in the electron withdrawing polymer (A1) may be one kind or two or more kinds.
  • L 2 is preferably any one of a divalent group (18) to a divalent group (22).
  • M3 and m4 in formula (18) are each independently an integer of 0 to 3, preferably 0.
  • M5 to m7 in the formula (19) and the formula (20) are each independently an integer of 1 to 4, preferably 4.
  • N12 in the formula (21) is an integer of 1 to 4, preferably 1.
  • R 12 in Formula (21) is a fluorine atom or a trifluoromethyl group, and when n12 is an integer of 2 to 4, the plurality of R 12 may be the same or different from each other.
  • R 12 is preferably a fluorine atom.
  • N13 to n16 in the formula (22) are each independently an integer of 0 to 4, preferably 0.
  • R 13 in the formula (22) is a nitro group, a sulfo group or a trifluoromethyl group, and when n13 is an integer of 2 to 4, the plurality of R 13 may be the same or different from each other.
  • R 14 in the formula (22) is a chlorine atom or a sulfo group, and when n14 is an integer of 2 to 4, the plurality of R 14 may be the same or different from each other.
  • R 15 in the formula (22) is a chlorine atom or a sulfo group, and when n15 is an integer of 2 to 4, the plurality of R 15 may be the same or different from each other.
  • R 16 in the formula (22) is a nitro group, a sulfo group or a trifluoromethyl group, and when n16 is an integer of 2 to 4, the plurality of R 16 may be the same or different from each other.
  • N23 and n24 in the formula (31) are each independently an integer of 0 to 4, preferably 0 or 1, and more preferably 0.
  • R 23 in formula (31) is a C 1-3 alkyl group or a sulfo group which may be substituted with a halogen atom, and when n23 is an integer of 2 to 4, a plurality of R 23 are It can be the same or different.
  • R 23 is preferably a C 1-3 alkyl group, more preferably a methyl group.
  • R 24 in formula (31) is a C 1-3 alkyl group or a sulfo group which may be substituted with a halogen atom, and when n24 is an integer of 2 to 4, a plurality of R 24 are It can be the same or different.
  • R 23 is preferably a C 1-3 alkyl group, more preferably a methyl group.
  • the divalent group (31) is preferably the formula (31a) or the formula (31b):
  • n23, n24, R 23, R 24 and * are as defined above.
  • n23, n24, R 23, R 24 and * are as defined above.
  • R 23, R 24 and * are as defined above.
  • R 24 and * are as defined above.
  • N25 and n26 in the formula (32) are each independently an integer of 0 to 4, preferably 0.
  • R 25 in formula (32) is a C 1-3 alkyl group or a sulfo group which may be substituted with a halogen atom, and when n25 is an integer of 2 to 4, a plurality of R 25 are It can be the same or different.
  • R 26 in formula (32) is a C 1-3 alkyl group or a sulfo group which may be substituted with a halogen atom, and when n 26 is an integer of 2 to 4, a plurality of R 26 are It can be the same or different.
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A1) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the electron withdrawing polymer (A1) is preferably represented by the formula (23):
  • the electron withdrawing polymer (A2) having a structural unit represented by the formula (A2) is more preferable.
  • the electron withdrawing polymer (A2) is preferably a random copolymer.
  • the structural unit (23) and the structural unit (24) in the electron withdrawing polymer (A2) either one kind or two or more kinds may be used.
  • the structural unit (24) is preferably represented by the formula (24a):
  • Ratio of the number of structural units (23) (preferably the structural unit (23a)) to the number of structural units (24) (preferably the structural unit (24a)) (number of structural units (23) / structural units (24) Is preferably 0.1 / 99.9 to 99.9 / 0.1, more preferably 1/99 to 99/1, and still more preferably 30/70 to 95/5.
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A2) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the electron withdrawing polymer (A1) is preferably the structural unit (23) and the formula (25):
  • the electron withdrawing polymer (A3) having a structural unit represented by the formula (A3) is more preferable.
  • the electron withdrawing polymer (A3) is preferably a random copolymer.
  • the structural unit (23) and the structural unit (25) in the electron withdrawing polymer (A3) either one kind or two kinds or more may be used.
  • the explanation of the structural unit (23) in the electron withdrawing polymer (A3) is the same as the explanation of the electron withdrawing polymer (A2).
  • m7 is an integer of 1 to 4, preferably 4. That is, the structural unit (25) is preferably represented by the formula (25a):
  • Ratio of the number of structural units (23) (preferably the structural unit (23a)) to the number of structural units (25) (preferably the structural unit (25a)) (number of structural units (23) / structural units (25)) Is preferably 0.1 / 99.9 to 99.9 / 0.1, more preferably 1/99 to 99/1, and still more preferably 30/70 to 95/5.
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A3) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the electron withdrawing polymer (A1) is preferably the structural unit (23) and the formula (26):
  • It comprises an electron withdrawing polymer (A4) having a structural unit represented by the formula (A4), and more preferably comprises an electron withdrawing polymer (A4).
  • the electron withdrawing polymer (A4) is preferably a random copolymer.
  • the structural unit (23) and the structural unit (26) in the electron withdrawing polymer (A4) only one type may be used, or two or more types may be used.
  • the explanation of the structural unit (23) in the electron withdrawing polymer (A4) is the same as the explanation of the electron withdrawing polymer (A2).
  • n12 and R 12 in the formula (26) is identical to that described in equation (21).
  • the structural unit (26) is preferably represented by the formula (26a):
  • Ratio of the number of structural units (23) (preferably the structural unit (23a)) to the number of structural units (26) (preferably the structural unit (26a)) (number of structural units (23) / structural units (26)) Is preferably 0.1 / 99.9 to 99.9 / 0.1, more preferably 1/99 to 99/1, and still more preferably 30/70 to 95/5.
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A4) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the electron withdrawing polymer (A1) is preferably the structural unit (23) and the formula (27):
  • the electron-withdrawing polymer (A5) having a structural unit represented by the formula (A5) is more preferable.
  • the electron withdrawing polymer (A5) is preferably a random copolymer.
  • the structural unit (23) and the structural unit (27) in the electron-withdrawing polymer (A5) only one type may be used, or two or more types may be used.
  • the explanation of the structural unit (23) in the electron withdrawing polymer (A5) is the same as the explanation of the electron withdrawing polymer (A2).
  • n13 to n16 and R 13 to R 16 in the formula (27) is the same as the explanation in the formula (22).
  • the structural unit (27) is preferably represented by the formula (27a):
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A5) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the electron withdrawing polymer (A1) is preferably the structural unit (23) and the formula (33):
  • It comprises an electron withdrawing polymer (A6) having a structural unit represented by the formula (A6), more preferably an electron withdrawing polymer (A6).
  • the electron withdrawing polymer (A6) is preferably a random copolymer.
  • the structural unit (23) and the structural unit (33) in the electron-withdrawing polymer (A6) may be either one kind or two or more kinds.
  • the explanation of the structural unit (23) in the electron withdrawing polymer (A6) is the same as the explanation of the electron withdrawing polymer (A2).
  • n23 and n24 and R 23 and R 24 in formula (33) is identical to that described in equation (31).
  • the structural unit (33) is preferably represented by the formula (33a) or the formula (33b):
  • the structural unit (33) is more preferably the formula (33a-1):
  • the number of the structural unit (23) (preferably the structural unit (23a)) and the structural unit (33) (preferably the structural unit (33a) or the structural unit (33b), more preferably the structural unit (33a), and still more preferably the structural unit
  • the ratio of the number of units (33a-1)) is preferably 0.1 / 99.9 to 99.9 / 0.1, The ratio is preferably 1/99 to 99/1, more preferably 30/70 to 95/5.
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A6) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the electron withdrawing polymer (A1) is preferably the structural unit (23) and the formula (34):
  • the electron-withdrawing polymer (A7) having a structural unit represented by the formula (A7) is more preferable.
  • the electron withdrawing polymer (A7) is preferably a random copolymer.
  • Each of the structural unit (23) and the structural unit (34) in the electron withdrawing polymer (A7) may be only one kind or two or more kinds.
  • the explanation of the structural unit (23) in the electron withdrawing polymer (A7) is the same as the explanation of the electron withdrawing polymer (A2).
  • n25 and n26 and R 25 and R 26 in formula (34) is identical to that described in equation (32).
  • the structural unit (34) is preferably represented by the formula (34a):
  • Ratio of the number of structural units (23) (preferably the structural unit (23a)) to the number of structural units (34) (preferably the structural unit (34a)) (number of structural units (23) / structural units (34)) Is preferably 0.1 / 99.9 to 99.9 / 0.1, more preferably 1/99 to 99/1, and still more preferably 30/70 to 95/5.
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A7) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the electron withdrawing polymer (A1) preferably includes the electron withdrawing polymer (A8) including the structural unit (23), and more preferably includes the electron withdrawing polymer (A8).
  • the structural unit (23) in the electron withdrawing polymer (A8) may be only one type or two or more types.
  • the explanation of the structural unit (23) in the electron withdrawing polymer (A8) is the same as the explanation of the electron withdrawing polymer (A2).
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A8) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the composition of the present invention comprises an electron donating polymer (D1) and an electron withdrawing polymer (A1).
  • the amount of the electron donating polymer (D1) in this embodiment is preferably 1 to 10,000 parts by weight, more preferably 10 to 1,500 parts by weight with respect to 100 parts by weight of the electron withdrawing polymer (A1). More preferably, it is 20 to 900 parts by weight.
  • the composition of the present invention comprises at least one selected from the group consisting of an electron donating polymer (D2) and an electron donating polymer (D3), and an electron withdrawing polymer (A2) to an electron withdrawing property. And at least one selected from the group consisting of polymers (A7).
  • at least one total amount selected from the group consisting of the electron donating polymer (D2) and the electron donating polymer (D3) is composed of the electron withdrawing polymer (A2) to the electron withdrawing polymer (A7). It is preferably 1 to 10,000 parts by weight, more preferably 10 to 1,500 parts by weight, still more preferably 20 to 900 parts by weight, and most preferably 50 parts by weight based on 100 parts by weight of at least one selected from the group. ⁇ 500 parts by weight.
  • the composition of the present invention comprises at least one selected from the group consisting of an electron donating polymer (D2) and an electron donating polymer (D3), and an electron withdrawing polymer (A2) to an electron withdrawing property. And at least one selected from the group consisting of polymers (A5).
  • at least one total amount selected from the group consisting of the electron donating polymer (D2) and the electron donating polymer (D3) is composed of the electron withdrawing polymer (A2) to the electron withdrawing polymer (A5). It is preferably 1 to 10,000 parts by weight, more preferably 10 to 1,500 parts by weight, still more preferably 20 to 900 parts by weight, and most preferably 50 parts by weight based on 100 parts by weight of at least one selected from the group. ⁇ 500 parts by weight.
  • the composition of the present invention comprises an electron donating polymer (D2) or an electron donating polymer (D3) and any one of the electron withdrawing polymer (A2) to the electron withdrawing polymer (A7).
  • D2 electron donating polymer
  • D3 electron withdrawing polymer
  • A4 electron withdrawing polymer
  • A5 electron withdrawing polymer
  • A6 electron withdrawing polymer
  • A7 electron An attractive polymer
  • the amount of the electron donating polymer (D2) or the electron donating polymer (D3) is 100 parts by weight of any one of the electron withdrawing polymer (A2) to the electron withdrawing polymer (A7).
  • the amount is preferably 1 to 10,000 parts by weight, more preferably 10 to 1,500 parts by weight, still more preferably 20 to 900 parts by weight, and most preferably 50 to 500 parts by weight.
  • the composition of the present invention comprises an electron donating polymer (D2) or an electron donating polymer (D3) and any one of the electron withdrawing polymer (A2) to the electron withdrawing polymer (A5).
  • D2 an electron withdrawing polymer
  • A3 an electron withdrawing polymer
  • A4 or an electron withdrawing polymer (A5)
  • the amount of the electron donating polymer (D2) or the electron donating polymer (D3) is 100 parts by weight of any one of the electron withdrawing polymer (A2) to the electron withdrawing polymer (A5).
  • the amount is preferably 1 to 10,000 parts by weight, more preferably 10 to 1,500 parts by weight, still more preferably 20 to 900 parts by weight, and most preferably 50 to 500 parts by weight.
  • the composition of the present invention comprises at least one selected from the group consisting of an electron donating polymer (D2) and an electron donating polymer (D3) and an electron withdrawing polymer (A8).
  • the total amount of at least one selected from the group consisting of the electron donating polymer (D2) and the electron donating polymer (D3) is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the electron withdrawing polymer (A8).
  • the amount is 10,000 parts by weight, more preferably 10 to 1,500 parts by weight, still more preferably 20 to 900 parts by weight, and most preferably 50 to 500 parts by weight.
  • the composition of the present invention comprises an electron donating polymer (D2) or an electron donating polymer (D3) and an electron withdrawing polymer (A8).
  • the amount of the electron donating polymer (D2) or the electron donating polymer (D3) in this embodiment is preferably 1 to 10,000 parts by weight, more preferably 100 parts by weight of the electron withdrawing polymer (A8).
  • the amount is 10 to 1,500 parts by weight, more preferably 20 to 900 parts by weight, and most preferably 50 to 500 parts by weight.
  • the number of the constituent units of the electron withdrawing polymer (A1) and the constituent units of the electron donating polymer (D1) improves the amount of charge transfer complex formed in the composition. Therefore, it is preferably 1/30 to 30/1, more preferably 1/2 to 2/1, still more preferably 10/11 to 11/10.
  • the electron withdrawing polymer (A1) (preferably the electron withdrawing polymers (A2) to (A5)) can be synthesized by a known reaction using a commercially available product as a starting material.
  • Commercial products are available from, for example, Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd.
  • a tetracarboxylic dianhydride for example, naphthalene-1,4,5,8-tetracarboxylic dianhydride
  • a diamine for example, 4,4′-diamino
  • the above-mentioned electron-withdrawing polymers are, for example, Macromolecules, 2002, 35, 9022-9028, Macromol. Chem. Phys. 2016, 217, 654-663, or Journal of Polymer Science: Part A: , 3901-3907 (2003), can be synthesized.
  • the amount of tetracarboxylic dianhydride in the reaction is preferably 0.98 to 1.02 mol, more preferably 0.99 to 1.01 mol, relative to 1 mol of diamine.
  • the method for producing the electron withdrawing polymer (A1) includes a dissolution step, a polymerization step, and a modification step as necessary.
  • the dissolution step is a step of heating a mixture of diamine (0.1 mM to 5M), tertiary amine (0.1 mM to 20M) and an organic solvent to dissolve the diamine in the organic solvent.
  • a tertiary amine is used to dissolve a diamine having an acidic group in an organic solvent.
  • the temperature for heating the mixture is not particularly limited, but the diamine can be easily and uniformly dissolved in the solvent by adjusting the temperature to about 20 to 160 ° C.
  • the tertiary amine is not particularly limited, and examples thereof include trimethylamine, triethylamine, tripropylamine, N-ethyl-N-methylbutylamine, tributylamine, N, N-dimethylbenzylamine, N, N-diethylbenzylamine, Examples include rebenzylamine and diazabicycloundecene. Of these, triethylamine is preferable. These tertiary amines may be used alone or in combination of two or more.
  • organic solvent those having a high boiling point and a high polarity are preferable.
  • m-cresol, dimethyl sulfoxide and N-methyl-2-pyrrolidinone are preferable.
  • These organic solvents may use only 1 type and may use 2 or more types together. In the present specification, “m-” represents meta, and “p-” represents para.
  • tetracarboxylic dianhydride (0.1 mM to 5 M) is added to the diamine solution obtained in the dissolution step, and the resulting mixture is heated in the presence of an organic acid (0.01 mM to 20 M). And polymerizing.
  • the organic acid acts as a catalyst for polymerization and ring closure reaction, and promotes the formation of polyamic acid and the formation of an imide ring by the ring closure.
  • the organic acid is preferably a compound having a high boiling point and high solubility in the organic solvent, and examples thereof include benzoic acid, methylbenzoic acid, dimethylbenzoic acid, and salicylic acid. Of these, benzoic acid is preferable.
  • the organic acid only needs to be present in the polymerization step, and may be added at the stage of the dissolution step.
  • the amount of the organic acid to be added is not particularly limited, but when benzoic acid is used as the organic acid, the amount is preferably about 1 to 6 moles per mole of tetracarboxylic dianhydride.
  • the temperature which heats a reaction mixture is at least 40 degreeC or more. When this temperature is preferably 100 to 190 ° C., more preferably 140 to 180 ° C., the polymerization reaction proceeds efficiently, and a polyimide which is a high molecular weight electron withdrawing polymer can be obtained.
  • the reforming process is a process for correcting structural defects in the polyimide obtained in the polymerization process.
  • a structural defect is a defect based on an unclosed portion (amic acid) in polyimide.
  • the reaction mixture after the polymerization step is heated at a temperature higher than the temperature of the polymerization step to perform a dehydration reaction and imidize the uncyclized portion. This temperature is preferably at least 150 ° C. or higher, and more preferably 190 to 220 ° C.
  • the ring closure reaction proceeds efficiently, and a polyimide having no structural defect can be obtained.
  • the electron withdrawing polymer (A1) can be obtained by known means such as precipitation, filtration, dialysis and drying.
  • the electron donating polymer (D) and the electron withdrawing polymer (A) preferably form a charge transfer complex.
  • the electron-donating polymer (D) and the electron-withdrawing polymer (A) are sufficiently mixed to form a film that is excellent in strength, chemical durability, and the like and is hardly water-soluble from the composition of the present invention. be able to.
  • Sufficient mixing preferably without phase separation on the order of micrometers
  • a membrane can be produced by preparing a solution of the composition of the present invention and then distilling off the solvent from this solution.
  • the solution of the composition may be prepared by adding the electron-donating polymer (D) and the electron-withdrawing polymer (A) sequentially or simultaneously in a solvent and heating appropriately.
  • a solution of the composition may be prepared by separately preparing a solution of the electron donating polymer (D) and a solution of the electron withdrawing polymer (A) and mixing the obtained solutions.
  • Examples of the solvent for preparing the solution of the composition include water, methanol, ethanol, trifluoroethanol, 1-propanol, 2-propanol, 2-methyl-2-butanol, ethylene glycol, benzyl alcohol, cyclohexane, and benzene. , Nitrobenzene, chloroform, carbon tetrachloride, diethyl ether, tetrahydrofuran, isoxazole, 1,4-dioxane, cyclopentyl methyl ether, acetone, acetonitrile, nitromethane, dimethyl sulfoxide, N, N-dimethylformamide, sulfolane, 1,3-propane Sultone is mentioned.
  • solvents may use only 1 type and may use 2 or more types together.
  • the total concentration of the electron-donating polymer (D) and the electron-withdrawing polymer (A) is preferably based on the whole solution. Is 0.1 to 100% by weight, more preferably 0.5 to 10% by weight.
  • the method for distilling off the solvent from the composition solution is not particularly limited, and the solvent may be distilled off by a known means (for example, heat drying, drying under reduced pressure, etc.).
  • the thickness of the film can be adjusted by the charged amount of the electron donating polymer (D) and the electron withdrawing polymer (A) and the area of the petri dish used when the solvent is distilled off.
  • the thickness of the film produced from the composition of the present invention is preferably 0.01 to 200 ⁇ m, more preferably 0.1 to 100 ⁇ m, still more preferably 0.3 to 60 ⁇ m.
  • the solvent distillation from the solution of the composition of the present invention may be performed in an air atmosphere or an inert gas (for example, nitrogen, argon) atmosphere. Moreover, this solvent distillation may be performed under a normal pressure, and may be performed under reduced pressure using a vacuum dryer or a vacuum pump.
  • an inert gas for example, nitrogen, argon
  • the temperature for distilling off the solvent from the solution of the composition of the present invention is preferably ⁇ 10 to 200 ° C., more preferably 40 to 160 ° C., and further preferably 50 to 130 ° C.
  • the solvent distillation may be performed at a constant temperature, or may be performed by changing the temperature in multiple steps.
  • the time for removing the solvent from the solution of the composition of the present invention is preferably 0.5 to 300 hours, more preferably 1 to 160 hours, and further preferably 2 to 150 hours.
  • Conditions for producing a film from the composition of the present invention for example, the type of the above-mentioned solvent, the concentration of the polymer in the solution, and the atmosphere, pressure, temperature and time for distilling off the solvent
  • the type of the above-mentioned solvent, the concentration of the polymer in the solution, and the atmosphere, pressure, temperature and time for distilling off the solvent can be appropriately selected.
  • the heat treatment is preferably performed in an inert gas (eg, nitrogen, argon) atmosphere.
  • the temperature of the heat treatment is preferably 40 to 200 ° C., more preferably 60 to 180 ° C., still more preferably 70 to 160 ° C., and the time is preferably 0.01 to 200 hours, more preferably 0.5 to 160 hours, more preferably 1 to 80 hours.
  • the film produced from the composition of the present invention (that is, the film containing the composition of the present invention) can be used for various applications.
  • Applications of the membrane containing the composition of the present invention include, for example, an electrolyte membrane of a fuel cell, an electrolyte coating membrane on an electrode catalyst in a catalyst layer, a gas permeation suppression membrane, and the like.
  • the electrolyte membrane of the fuel cell and the electrolyte coating membrane on the electrode catalyst are preferable, and the electrolyte membrane of the fuel cell is more preferable.
  • the thickness of the electrolyte membrane of the fuel cell containing the composition of the present invention is preferably 0.1 to 200 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 5 to 20 ⁇ m.
  • the thickness of the electrolyte coating film on the electrode catalyst in the catalyst layer of the fuel cell containing the composition of the present invention is preferably 1 to 100 nm, more preferably 2 to 50 nm, and still more preferably 5 to 30 n
  • GPC The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were measured by gel permeation chromatography (GPC) under analysis condition A and converted using a calibration curve of standard polystyrene.
  • ⁇ Analysis condition A> Column: Tosoh TSK guard column Super AW-H, Tosoh TSK gel super AW 3000, and Tosoh TSK gel super AW 5000 are connected in series in this order. did.
  • Detector differential refractive index detector RI-2031 and UV-visible detector UV-2075 manufactured by JASCO Eluent: Dimethyl sulfoxide in which 10 mmol / L sodium nitrate is dissolved
  • UV-vis Ultraviolet-visible spectroscopy (UV-vis) measurement of a polymer or polymer composition was carried out using an ultraviolet-visible near-infrared spectrophotometer V-650 manufactured by JASCO Corporation, an integrating sphere unit ISV-722 manufactured by JASCO Corporation, and A sample holder SSH-506 manufactured by JASCO was installed.
  • DSC differential scanning calorimetry
  • IEC milli equivalent (meq) / g (dry weight)
  • the theoretical ion exchange capacity (IEC) was calculated as the number of moles of sulfo groups contained in 1 g of polymer.
  • the ion exchange capacity of the polymer or polymer composition was calculated from the 1 H NMR spectrum by calculating the molar ratio of the sulfo group-containing monomer introduced into the polymer and the amount of the sulfo group introduced per polymer repeating unit. .
  • IEC was calculated by calculating the number of moles of sulfo group per gram of polymer and dividing by the unit molecular weight obtained from the composition ratio.
  • Proton conductivity For proton conductivity of a polymer or polymer composition membrane, Scribner's membrane resistance measurement system MTS740 is used to set temperature and humidification conditions, measure ionic conductivity in the direction of membrane thickness, and then conduct proton conductivity. Was calculated.
  • Tensile breaking strength, tensile modulus and tensile breaking elongation A polymer or a polymer composition using a tensile test measuring instrument FGS-TV (model FGP-5) manufactured by Nidec Sympo Co., Ltd. at room temperature, with a crosshead speed of 10 mm / min and a test piece size of 12 mm ⁇ 2 mm. After obtaining the stress-strain curve of the film, tensile fracture strength (MPa), tensile elastic modulus (Young's modulus) (GPa) and tensile fracture elongation (%) were calculated.
  • FGS-TV model FGP-5 manufactured by Nidec Sympo Co., Ltd. at room temperature
  • SEM-EDX Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) measurement of the film of the polymer composition was carried out by embedding the film in an epoxy resin (product name G-2) manufactured by GATAN. A cured product was prepared by heating at 100 ° C. for 1 hour, and a cross-section polisher made by JEOL Ltd. was used to cross-sectionalize the film, thereby preparing an observation sample. Next, using JSM-7800F manufactured by JEOL Ltd., the cross section of the observation sample was observed under the conditions of an acceleration voltage of 1 kV and a magnification of 3000 times. In the image obtained by this observation, element mapping of fluorine or the like was performed with an acceleration voltage of 7 kV using Oxford Instruments EDX.
  • Hydrogen gas permeability For the measurement of hydrogen gas permeability, a film cut into a circle having a diameter of 1 cm was fixed with a polyimide film tape (manufactured by Toray DuPont, product name “Kapton Tape”) and an alumina tape to prepare a test piece. Using the obtained test piece and a GTR-11A / 31A gas barrier test system manufactured by GTR Tech, the dry hydrogen permeation rate through the membrane was measured at room temperature. Furthermore, the differential pressure between the pressurized gas supply side and the evacuated gas permeation side is set to 200 kPa, and the volume of the recovered hydrogen gas is measured with a G3700T gas chromatograph equipped with a thermal conductivity detector manufactured by Yanako Technical Science. The hydrogen gas permeability of the membrane was calculated by the differential pressure method.
  • Fuel cell power generation test 1 A membrane electrode assembly (hereinafter abbreviated as “MEA”) was prepared from an electrolyte membrane, a catalyst ink, and a gas diffusion layer.
  • the catalyst ink is a platinum-supported carbon electrode catalyst (Tanaka Kikinzoku Kogyo Co., Ltd., platinum content: 46.2% by weight, product name “TEC10E50E”), ethanol (Wako Pure Chemical Industries, Ltd.), deionized water, and Nafion dispersion.
  • a solution product name “5% Nafion Dispersion Solution DE521 CS type” manufactured by Wako Pure Chemical Industries, Ltd.
  • As the gas diffusion layer hydrophobic carbon paper (product name “EC-TP1-060T” manufactured by Toray Industries, Inc.) was used.
  • the catalyst ink was applied to both surfaces of the electrolyte membrane using a spray coating device V8H manufactured by Nordson.
  • the solid content (weight) of the GDE composition (VIII) was 1.0026 mg on the cathode side and 1.0243 mg on the anode side.
  • the electrolyte membrane coated with the electrode catalyst is thermocompression bonded at 132 ° C. and 0.3 kN for 180 seconds to produce a catalyst coated membrane (hereinafter abbreviated as “CCM”).
  • CCM catalyst coated membrane
  • a gas diffusion layer was thermocompression bonded on both sides of the CCM at 132 ° C. and 0.6 kN for 20 seconds to produce an MEA.
  • the produced MEA was placed in a single cell (manufactured by FC Development Co., Ltd., JARI standard cell) having an electrode area of 1 cm 2 .
  • the impedance of the single cell was 0.6 V DC and 3 mV AC, and the solar interface SI 1287 electrochemical interface impedance
  • the cell resistance value and the open circuit voltage (hereinafter abbreviated as “OCV”) were measured using an analyzer with a four-terminal method.
  • the OCV is a potential when no voltage or current is applied to the single cell.
  • the performance of the power generation test was examined using an air gas flow at 80 ° C., 95% relative humidity, 100 mL / min hydrogen and atmospheric pressure. Before conducting the power generation test, cell aging for 4 hours was performed at 0.6V.
  • the voltage was controlled to measure the current density.
  • the cell resistance value was measured by a 4-terminal method using a SI-1287 electrochemical interface impedance analyzer manufactured by Solartron.
  • Fuel cell power generation test 2 The MEA was prepared from an electrolyte membrane, a catalyst ink, and a gas diffusion layer.
  • As the electrolyte membrane Nafion 212 (manufactured by DuPont, purchased from Toyo Corporation, film thickness: 50 ⁇ m) was used.
  • the catalyst ink is a platinum-supported carbon electrode catalyst (Tanaka Kikinzoku Kogyo Co., Ltd., platinum content: 46.2 wt%, product name “TEC10E50E”), dimethyl sulfoxide (Wako Pure Chemical Industries, Ltd.), deionized water, and
  • the composition (VIII) obtained in Example 8 that is, a composition containing an electron-donating polymer (D3a-1) and an electron-withdrawing polymer (A4-1) was prepared.
  • a gas diffusion layer (GDL 24 BCH) with a microporous layer (hereinafter referred to as “MPL”) manufactured by SIGRACET was used.
  • MPL is a coating layer mainly composed of a water repellent resin and a carbon material.
  • a syringe is used for the gas diffusion layer (GDL 24 BCH) with MPL placed on a hot plate adjusted to 140-150 ° C.
  • GDE gas diffusion electrode
  • GDE was thermocompression-bonded on both surfaces of the electrolyte membrane at 132 ° C. and 0.6 kN for 20 seconds to produce an MEA.
  • the voltage and current density were measured by the method described in Fuel Cell Power Generation Test 1.
  • Fuel cell power generation test 3 A power generation test was performed in the same manner as in the fuel cell power generation test 2 except that only the catalyst ink and the device to be applied were changed.
  • the catalyst ink is a platinum-supported carbon electrode catalyst (Tanaka Kikinzoku Kogyo Co., Ltd., platinum content: 46.2% by weight, product name “TEC10E50E”), dimethyl sulfoxide (Wako Pure Chemical Industries, Ltd.), ethanol (Wako Pure Chemical Industries, Ltd.)
  • TEC10E50E platinum-supported carbon electrode catalyst
  • TEC10E50E dimethyl sulfoxide
  • ethanol Wako Pure Chemical Industries, Ltd.
  • a composition (XI) obtained in Example 11 described later that is, a composition containing an electron-donating polymer (D3a-1) and an electron-withdrawing polymer (A4-1)).
  • Tamiya Airbrush System No.23 Spray Work HG Airbrush Wide Trigger Type 74523 was used as the instrument for applying the catalyst ink.
  • the solid content (weight) of the GDE composition (XI) was 2.4233 mg on the cathode side and 2.0954 mg on the anode side.
  • the obtained solution is hereinafter referred to as “Fenton test solution”.
  • the produced film was cut into 1 cm 2 sample pieces, and the weight of the sample pieces before immersion in the Fenton test solution was measured.
  • the sample piece was taken out from the Fenton test solution, and the surface of the sample piece taken out was wiped off with gauze and then immersed in the Fenton test solution.
  • Synthesis Example 1 Synthesis of 2,6-bis (oxiran-2-ylmethoxy) naphthalene After attaching a reflux condenser and a dropping funnel to the reaction vessel, 2,6-dihydroxynaphthalene (7.36 g, 46.0 mmol), acetone 55 mL and 10 mL of water were sequentially added to the reaction vessel. Epichlorohydrin (28.8 mL, 368.0 mmol) was then added while the reaction mixture was heated to 65 ° C. and stirred.
  • Synthesis Example 2 Synthesis of electron donating polymer (D2-1) After the inside of the reaction vessel was replaced with nitrogen, 2,6-bis (oxiran-2-ylmethoxy) naphthalene (1.246 g, 4.58 mmol), 2 , 6-dihydroxynaphthalene (0.733 g, 4.58 mmol), tris (2,6-dimethoxyphenyl) phosphine (16.2 mg, 36.6 ⁇ mol) and cyclohexanone (15 mL) were sequentially added to the reaction vessel. Next, the reaction mixture was stirred at 140 ° C. for 12 hours, dimethyl sulfoxide (10 mL) was added, and the mixture was further stirred at 160 ° C. for 40 hours. After completion of the reaction, the reaction mixture was added dropwise to chloroform to precipitate a precipitate, and then the precipitate was collected by filtration and dried under reduced pressure to obtain the formula (15):
  • FIG. 1 shows a chart of 1 H NMR (400 MHz, DMSO-d 6 ) of the electron donating polymer (D3a-1).
  • Synthesis Example 4 Synthesis of electron withdrawing polymer (A2-1) After the inside of the reaction vessel was replaced with nitrogen, 4,4′-diamino-2,2′-biphenyldisulfonic acid (4.14 g, 12.0 mmol) ), 4,4′-diaminooctafluorobiphenyl (0.44 g, 1.3 mmol), m-cresol (38 g), and triethylamine (3.38 g, 33.4 mmol) were sequentially added to the reaction vessel. The reaction mixture was then stirred at 140-145 ° C.
  • naphthalene-1,4,5,8-tetracarboxylic dianhydride (3.65 g, 13.6 mmol).
  • And benzoic acid (3.27 g, 26.8 mol) were added.
  • the reaction mixture was stirred at 170 to 175 ° C. for 27 hours to carry out the reaction.
  • the resulting precipitate was added to dimethyl sulfoxide, heated to 100 to 110 ° C. and dissolved to obtain a dimethyl sulfoxide solution.
  • Dimethyl sulfoxide was added to the precipitate and dissolved by heating to 100 to 110 ° C., and then the dimethyl sulfoxide solution was added dropwise to methanol to precipitate the precipitate, which was collected by filtration. After adding dimethyl sulfoxide to the precipitate and heating to 100 to 110 ° C.
  • the obtained dimethyl sulfoxide solution is mixed with a dialysis membrane (Spectra / Por 6, MWCO (Daltons) 1000 with a molecular weight cut off of 1,000). Then, dialysis was carried out for 4 days using a Spectra Spectrum Laboratory. After completion of dialysis, the solution is freeze-dried, and the structural unit represented by the formula (23a) and the structural unit represented by the formula (24a):
  • an electron-withdrawing polymer (A2-1) which is a random copolymer having a molecular weight, was obtained as a black-brown solid (5.4 g, yield 70%).
  • the number of structural units (23a) / number of structural units (24a) in the electron withdrawing polymer (A2-1) calculated from the charged amount of raw material is 9/1.
  • FIG. 2 shows a 1 H NMR (400 MHz, DMSO-d 6 ) chart of the electron withdrawing polymer (A2-1) and a chemical formula showing the position of the proton corresponding to the peak.
  • FIG. 3 shows a 19 F NMR (400 MHz, DMSO-d 6 ) chart of the electron withdrawing polymer (A2-1).
  • Synthesis Example 5 Synthesis of electron withdrawing polymer (A2-2) In the same manner as in Synthesis Example 4 except that the amount of raw materials charged was changed, the structural unit represented by formula (23a) and formula (24a) Units represented:
  • an electron-withdrawing polymer (A2-2) which is a random copolymer having a solid color, was obtained as a brown solid (7.0 g, yield 92%).
  • the number of structural units (23a) / number of structural units (24a) in the electron withdrawing polymer (A2-2) calculated from the charged amount of raw material is 61.7 / 38.3.
  • Synthesis Example 6 Electron withdrawing polymer (A3-1) After replacing the inside of the reaction vessel with nitrogen, 4,4′-diamino-2,2′-biphenyldisulfonic acid (4.15 g, 12.1 mmol), 2,3,5,6-tetrafluoro-1,4 -Phenylenediamine (0.240 g, 1.33 mmol), m-cresol (32 g), and triethylamine (3.41 g, 33.7 mmol) were added sequentially to the reaction vessel. The reaction mixture was then stirred at 140-145 ° C.
  • naphthalene-1,4,5,8-tetracarboxylic dianhydride 3.65 g, 13.6 mmol.
  • benzoic acid 3.26 g, 26.7 mol
  • an electron-withdrawing polymer (A3-1) which is a random copolymer having a black solid, was obtained as a black-brown solid (4.2 g, yield 56%).
  • the number of structural units (23a) / number of structural units (25a) in the electron withdrawing polymer (A3-1) calculated from the charged amount of the raw material is 9/1.
  • FIG. 4 shows a 1 H NMR (400 MHz, DMSO-d 6 ) chart of the electron withdrawing polymer (A3-1) and a chemical formula showing the position of the proton corresponding to the peak.
  • FIG. 5 shows a 19 F NMR (400 MHz, DMSO-d 6 ) chart of the electron withdrawing polymer (A3-1).
  • naphthalene-1,4,5,8-tetracarboxylic dianhydride 3.65 g, 13.6 mmol.
  • benzoic acid 3.38 g, 27.7 mol were added and stirred at 170 to 175 ° C. for 22 hours to carry out the reaction.
  • an electron-withdrawing polymer (A4-1) which is a random copolymer having a solid content, was obtained as a black-brown solid (5.5 g, yield 74%).
  • the number of structural units (23a) / the number of structural units (26a) in the electron withdrawing polymer (A4-1) calculated from the charged amount of the raw material is 9/1.
  • FIG. 6 shows a 1 H NMR (400 MHz, DMSO-d 6 ) chart of the electron withdrawing polymer (A4-1) and a chemical formula showing the position of the proton corresponding to the peak.
  • Synthesis Example 8 Synthesis of electron-withdrawing polymers (A5-1) and (A5-2) In the same manner as described in Macromol. Chem. Phys. 2016, 217, 654-663, a compound represented by formula (23a) And the structural unit represented by the formula (27a):
  • the number of the structural units (23a) / the number of the structural units (27a) in the electron withdrawing polymers (A5-1) and (A5-2) calculated from the charged amounts of the raw materials is 9/1 and 61.7 / 38.3.
  • a Dean-Stark apparatus was attached to the reaction vessel, and the reaction mixture was stirred for 3 hours while being heated to reflux, thereby removing generated water out of the reaction mixture using azeotropy with a solvent.
  • the reaction vessel was heated to 170 ° C. while distilling off the solvent toluene from the reaction mixture, and then the temperature of the reaction vessel was kept at 170 ° C. for 24 hours.
  • the reaction mixture was cooled to 20-25 ° C., and then the reaction mixture was diluted with dimethylacetamide (15 mL), and water (300 mL) and sodium chloride (30 g) were added to the reaction mixture to precipitate the precipitate. Precipitated and collected by filtration.
  • Dimethyl sulfoxide was added to the resulting precipitate and dissolved to prepare a dimethyl sulfoxide solution.
  • the obtained dimethyl sulfoxide solution was dialyzed using a dialysis membrane (Spectra / Por 6, MWCO (Daltons) 1000, manufactured by Spectrum Laboratory) having a molecular weight cut-off of 1,000.
  • a dialysis membrane Spectra / Por 6, MWCO (Daltons) 1000, manufactured by Spectrum Laboratory
  • hydrochloric acid is added to the tube of the dialysis membrane to convert the sulfo form of the salt form in the polymer to the free acid form, and then to the dialysis solvent.
  • Dialysis was performed for 4 days until the pH of the solution became neutral. After completion of dialysis, the solution is freeze-dried, and the structural unit represented by the formula (28) and the structural unit represented by the formula (29):
  • the number of structural units (28) / number of structural units (29) in the electron donating polymer (D4-1) calculated from the charged amount of the raw material is 9/1.
  • Peak top molecular weight (Mp) 1.2 ⁇ 10,000 In the present specification, “peak top molecular weight” means “molecular weight of peak top of GPC chart”.
  • Synthesis Examples 10 to 12 Synthesis of electron donating polymers (D4-2) to (D4-4) A structure represented by the formula (28) in the same manner as in Synthesis Example 9 except that the amount of raw materials charged was changed. Units and structural units represented by formula (29):
  • Donating polymers (D4-2) to (D4-4) which are random copolymers having (electron donating polymer (D4-2): 1.8 g, yield 46%; electron donating polymer) (D4-3): 2.4 g, yield 46%; electron-donating polymer (D4-4): 2.9 g, yield 80%).
  • the number of the structural units (28) / the number of the structural units (29) in the electron donating polymers (D4-2) to (D4-4) calculated from the charged amounts of the raw materials is 8/2, 7 / 3 and 6/4.
  • FIG. 7 shows a chart of 1 H NMR (400 MHz, DMSO-d 6 ) of the electron donating polymer (D4-2).
  • FIG. 8 shows a chart of 1 H NMR (400 MHz, DMSO-d 6 ) of the electron donating polymer (D3b-1).
  • Synthesis Example 14 Synthesis of electron-withdrawing polymer (A6-1) After the inside of the reaction vessel was replaced with nitrogen, 4,4′-diamino-2,2′-biphenyldisulfonic acid (2.00 g, 5.81 mmol) ), 2,2-bis (aminophenyl) hexafluoropropane (0.216 g, 0.646 mmol), m-cresol (17 g), and triethylamine (1.64 g, 16.2 mmol) are sequentially added to the reaction vessel. It was. The reaction mixture was then stirred at 140-145 ° C.
  • naphthalene-1,4,5,8-tetracarboxylic dianhydride (1.77 g, 6.58 mmol)
  • benzoic acid (1.58 g, 12.9 mol) were added, and the mixture was stirred at 170 to 175 ° C. for 22 hours to carry out the reaction.
  • Dimethyl sulfoxide was added to the obtained precipitate, and the mixture was heated to 100 to 110 ° C. and dissolved to obtain a dimethyl sulfoxide solution.
  • Addition and dissolution of dimethyl sulfoxide to the resulting precipitate, dropwise addition of the dimethyl sulfoxide solution to the mixed solvent, and filtration of the deposited precipitate were performed again.
  • Dimethyl sulfoxide was added to the resulting precipitate and dissolved by heating to 100 to 110 ° C., and then the resulting dimethyl sulfoxide solution was mixed with a dialysis membrane (Spectra / Por 7, MWCO ( Dialyzed for 4 days using a Daltons® 3500 (manufactured by Spectrum Laboratory). After completion of dialysis, the solution is dried, and the structural unit represented by the formula (23a) and the structural unit represented by the formula (33a-1):
  • an electron-withdrawing polymer (A6-1) which is a random copolymer having a black solid, was obtained as a black-brown solid (2.9 g, yield 78%).
  • the number of structural units (23a) / number of structural units (33a-1) in the electron withdrawing polymer (A6-1) calculated from the charged amount of the raw material is 9/1.
  • Synthesis Example 15 Synthesis of electron withdrawing polymer (A7-1) After the inside of the reaction vessel was replaced with nitrogen, 4,4′-diamino-2,2′-biphenyldisulfonic acid (2.00 g, 5.81 mmol) ), 1,1-bis (4-aminophenyl) cyclohexane (0.172 g, 0.642 mmol), m-cresol (17 g), and triethylamine (1.64 g, 16.2 mmol) are sequentially added to the reaction vessel. It was. The reaction mixture was then stirred at 140-145 ° C.
  • naphthalene-1,4,5,8-tetracarboxylic dianhydride (1.77 g, 6.58 mmol)
  • benzoic acid (1.58 g, 12.9 mol) were added, and the mixture was stirred at 170 to 175 ° C. for 22 hours to carry out the reaction.
  • Dimethyl sulfoxide was added to the obtained precipitate and heated to 100 to 110 ° C. to dissolve.
  • Addition and dissolution of dimethyl sulfoxide to the resulting precipitate, dropwise addition of the dimethyl sulfoxide solution to the mixed solvent, and filtration of the deposited precipitate were performed again.
  • Dimethyl sulfoxide was added to the resulting precipitate and dissolved by heating to 100 to 110 ° C., and then the resulting dimethyl sulfoxide solution was mixed with a dialysis membrane (Spectra / Por 7, MWCO ( Dialyzed for 4 days using a Daltons® 3500 (manufactured by Spectrum Laboratory). After completion of dialysis, the solution is dried, and the structural unit represented by the formula (23a) and the structural unit represented by the formula (34a):
  • an electron-withdrawing polymer (A7-1) which is a random copolymer having a black solid, was obtained as a black-brown solid (2.8 g, yield 76%).
  • the number of structural units (23a) / the number of structural units (34a) in the electron withdrawing polymer (A7-1) calculated from the charged amount of raw material is 9/1.
  • Synthesis Example 16 Synthesis of electron withdrawing polymer (A8-1) After the inside of the reaction vessel was replaced with nitrogen, 4,4′-diamino-2,2′-biphenyldisulfonic acid (10.33 g, 30.0 mmol) ), M-cresol (75 mL), and triethylamine (7.59 g, 75.0 mmol) were sequentially added to the reaction vessel. Next, the reaction mixture was stirred at 140 to 145 ° C. to dissolve the solid, in which naphthalene-1,4,5,8-tetracarboxylic dianhydride (8.21 g, 30.6 mmol) was added.
  • Dimethyl sulfoxide was added to the obtained precipitate and heated to 100 to 110 ° C. to dissolve.
  • Addition and dissolution of dimethyl sulfoxide to the resulting precipitate, dropwise addition of the dimethyl sulfoxide solution to the mixed solvent, and filtration of the deposited precipitate were performed again.
  • Dimethyl sulfoxide was added to the resulting precipitate and dissolved by heating to 100 to 110 ° C., and then the resulting dimethyl sulfoxide solution was mixed with a dialysis membrane (Spectra / Por 7, MWCO ( Dialyzed for 4 days using a Daltons® 3500 (manufactured by Spectrum Laboratory). After completion of dialysis, the solution is dried, and the structural unit represented by the formula (23a):
  • An electron-withdrawing polymer (A8-1) consisting of was obtained as a black-brown solid (12.5 g, yield 70%).
  • Example 1 Production of film of composition (I) of electron donating polymer (D2-1) and electron withdrawing polymer (A2-1) Electron donating polymer (D2-1) was dissolved in dimethyl sulfoxide. A solution (3.26 g, polymer concentration: 3.3 wt%) prepared by dissolving the electron withdrawing polymer (A2-1) in dimethyl sulfoxide in the prepared solution (408.9 mg, polymer concentration: 10 wt%). ) was added.
  • the solution was filtered using a 5 ⁇ m syringe filter made of polytetrafluoroethylene (PTFE), and the obtained filtrate was added to a petri dish having a diameter of 4 cm, and the petri dish was brought to a temperature of 120 ° C. Placed on a set hot plate, dimethyl sulfoxide was distilled off.
  • the petri dish was placed in a vacuum dryer and dried under reduced pressure at 80 ° C. for 10 hours to form a film of the composition (I) of the electron donating polymer (D2-1) and the electron withdrawing polymer (A2-1). (Transparent brown, film thickness: 44 ⁇ m).
  • Example 2 Preparation of film of composition (II) of electron donating polymer (D2-1) and electron withdrawing polymer (A2-1) in dimethyl sulfoxide solution (polymer concentration of electron donating polymer (D2-1)) : 10 wt%) and the composition of Example 1 except that the ratio of the electron withdrawing polymer (A2-1) to the dimethyl sulfoxide solution (polymer concentration: 3.3 wt%) was changed.
  • a membrane of (II) was produced.
  • Table 1 shows the amounts of the electron-donating polymer (D2-1) and the electron-withdrawing polymer (A2-1) in the films of the compositions (I) and (II) obtained in Examples 1 and 2, and the film. Write the thickness.
  • “electron-donating polymer (D2-1)” and the like are abbreviated as “(D2-1)” and the like.
  • Table 1 shows the relationship between the naphthalene tetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A2-1) and the dioxynaphthalene part (d) of the electron donating polymer (D2-1) in the composition.
  • Table 1 shows the total of the naphthalenetetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A2-1) and the dioxynaphthalene part (d) of the electron donating polymer (D2-1) in the composition.
  • this mole fraction may be abbreviated as “mole fraction of (A2-1)”.
  • Reference Example 1 Production of an electron-withdrawing polymer (A2-1) -only film A solution prepared by dissolving an electron-withdrawing polymer (A2-1) (150 mg) in dimethyl sulfoxide (5 g) was prepared using a cotton plug. The solution was filtered using, the obtained filtrate was added to a petri dish having a diameter of 4 cm, the petri dish was placed on a hot plate at a temperature of 60 ° C., and dimethyl sulfoxide was distilled off. Next, the petri dish was placed in a vacuum dryer and dried under reduced pressure at 80 ° C. for 24 hours to obtain a film of an electron withdrawing polymer (A2-1) (light brown transparent, film thickness 24 ⁇ m).
  • Reference Example 2 Production of an electron-withdrawing polymer (A6-1) -only film A solution prepared by dissolving an electron-withdrawing polymer (A6-1) (151 mg) in dimethylsulfoxide (10 g) was prepared as polytetrafluoro The solution was filtered using a 5 ⁇ m syringe filter made of ethylene (PTFE), and 5.0 g of the obtained filtrate was added to a petri dish having a diameter of 4 cm, and the petri dish was placed on a hot plate at a temperature of 80 ° C. The sulfoxide was distilled off. Next, this petri dish was placed in a vacuum dryer and dried under reduced pressure at 80 ° C. for 12 hours to obtain a film of an electron withdrawing polymer (A6-1) (brown transparent, film thickness 70 ⁇ m).
  • A6-1 brown transparent, film thickness 70 ⁇ m
  • Reference Example 3 Production of a film containing only the electron withdrawing polymer (A7-1) A solution prepared by dissolving the electron withdrawing polymer (A7-1) (150 mg) in dimethyl sulfoxide (5 g) was prepared as polytetrafluoro The solution was filtered using a 5 ⁇ m syringe filter made of ethylene (PTFE), and 2.5 g of the obtained filtrate was added to a petri dish having a diameter of 4 cm, and the petri dish was placed on a hot plate at a temperature of 80 ° C. The sulfoxide was distilled off. Next, the petri dish was placed in a vacuum dryer and dried under reduced pressure at 80 ° C. for 12 hours to obtain a film of an electron withdrawing polymer (A7-1) (transparent brown, film thickness 48 ⁇ m).
  • a solution prepared by dissolving the electron withdrawing polymer (A7-1) (150 mg) in dimethyl sulfoxide (5 g) was prepared as polytetrafluoro The solution
  • Example 3 Production of film of composition (III) of electron donating polymer (D3a-1) and electron withdrawing polymer (A2-1) Electron donating polymer (D3a-1) was dissolved in dimethyl sulfoxide.
  • the prepared solution (185 mg, polymer concentration: 10% by weight) and a solution prepared by dissolving the electron withdrawing polymer (A2-1) in dimethyl sulfoxide (2.71 g, polymer concentration: 3% by weight) Sequentially added to a glass container. Next, after stirring the solution, the solution was filtered using a cotton plug, and the obtained filtrate was added to a petri dish having a diameter of 4 cm, and the petri dish was placed on a hot plate at a temperature of 60 ° C.
  • the petri dish was placed in a vacuum dryer and dried under reduced pressure at 60 ° C. for 24 hours to form a film of the composition (III) of the electron donating polymer (D3a-1) and the electron withdrawing polymer (A2-1) (Transparent brown, film thickness 13 ⁇ m).
  • Examples 4 to 6 Preparation of films of compositions (IV) to (VI) of electron donating polymer (D3a-1) and electron withdrawing polymer (A2-1) of electron donating polymer (D3a-1) Example 3 was repeated except that the ratio of the dimethyl sulfoxide solution (polymer concentration: 10% by weight) and the dimethyl sulfoxide solution (polymer concentration: 3% by weight) of the electron withdrawing polymer (A2-1) was changed. Thus, films of compositions (IV) to (VI) were produced.
  • Table 2 shows the amounts of the electron-donating polymer (D3a-1) and the electron-withdrawing polymer (A2-1) in the films of the compositions (III) to (VI) obtained in Examples 3 to 6 and the films. Write the thickness.
  • Table 2 shows the relationship between the naphthalenetetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A2-1) and the dioxynaphthalene part (d) of the electron donating polymer (D3a-1) in the composition.
  • Table 2 shows the total of the naphthalenetetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A2-1) and the dioxynaphthalene part (d) of the electron donating polymer (D3a-1) in the composition.
  • this mole fraction may be abbreviated as “mole fraction of (A2-1)”.
  • Example 7 Preparation of film of composition (VII) of electron donating polymer (D2-1) and electron withdrawing polymer (A3-1) Electron donating polymer (D2-1) was dissolved in dimethyl sulfoxide. The prepared solution (0.17 g, polymer concentration: 9.46 wt%) and a solution prepared by dissolving the electron withdrawing polymer (A3-1) in dimethyl sulfoxide (3.84 g, polymer concentration: 2.19). % By weight) were sequentially added to the glass container.
  • the solution was filtered using a 5 ⁇ m syringe filter made of polytetrafluoroethylene (PTFE), and the obtained filtrate was added to a petri dish having a diameter of 4 cm, and the petri dish was brought to a temperature of 120 ° C. Placed on a set hot plate, dimethyl sulfoxide was distilled off. Next, this petri dish was placed in a vacuum dryer and dried under reduced pressure at 110 ° C. for 10 hours to form a film of the composition (VII) of the electron donating polymer (D2-1) and the electron withdrawing polymer (A3-1). (Brown transparent, film thickness: 21.1 ⁇ m).
  • VII composition of the electron donating polymer
  • A3-1 electron withdrawing polymer
  • Example 8 Preparation of composition (VIII) containing electron donating polymer (D3a-1) and electron withdrawing polymer (A4-1) Electron donating polymer (D3a-1) (12.8 mg) and electron The attractive polymer (A4-1) (25.1 mg) was added to the sample bottle, and then dimethyl sulfoxide (5.50 g) and water (0.49 g) were sequentially added to the sample bottle. Next, the solution was stirred and heated at 80 to 90 ° C. to obtain a composition (VIII) containing an electron donating polymer (D3a-1) and an electron withdrawing polymer (A4-1).
  • Example 9 Preparation of film of composition (IX) of electron donating polymer (D3a-1) and electron withdrawing polymer (A6-1) Electron donating polymer (D3a-1) was dissolved in dimethyl sulfoxide. The prepared solution (0.697 g, polymer concentration: 10 wt%) and a solution prepared by dissolving the electron withdrawing polymer (A6-1) in dimethyl sulfoxide (5.00 g, polymer concentration: 1.5 wt%) ) Were sequentially added to the glass container.
  • the solution was filtered using a 5 ⁇ m syringe filter made of polytetrafluoroethylene (PTFE), and the obtained filtrate was added to a petri dish having a diameter of 4 cm, and the petri dish was brought to a temperature of 120 ° C. Placed on a set hot plate, dimethyl sulfoxide was distilled off.
  • the petri dish was placed in a vacuum dryer and dried under reduced pressure at 100 ° C. for 12 hours to form a film of the composition (IX) of the electron donating polymer (D3a-1) and the electron withdrawing polymer (A6-1). (Transparent brown, film thickness: 88 ⁇ m).
  • Example 10 Preparation of film of composition (X) of electron donating polymer (D3a-1) and electron withdrawing polymer (A7-1) Electron donating polymer (D3a-1) was dissolved in dimethyl sulfoxide. The prepared solution (0.698 g, polymer concentration: 10 wt%) and a solution prepared by dissolving the electron withdrawing polymer (A7-1) in dimethyl sulfoxide (2.46 g, polymer concentration: 3.1 wt%) ) Were sequentially added to the glass container.
  • the solution was filtered using a 5 ⁇ m syringe filter made of polytetrafluoroethylene (PTFE), and the obtained filtrate was added to a petri dish having a diameter of 4 cm, and the petri dish was brought to a temperature of 120 ° C. Placed on a set hot plate, dimethyl sulfoxide was distilled off.
  • the petri dish was placed in a vacuum dryer and dried under reduced pressure at 100 ° C. for 12 hours to form a film of the composition (X) of the electron donating polymer (D3a-1) and the electron withdrawing polymer (A7-1). (Transparent brown, film thickness: 47 ⁇ m).
  • Example 11 Preparation of composition (XI) comprising electron donating polymer (D3a-1) and electron withdrawing polymer (A4-1) Electron donating polymer (D3a-1) (12.8 mg) and dimethyl Sulfoxide (3 mL) was added sequentially to the sample bottle. The solution was then stirred and heated to 80-90 ° C. to make a solution. Next, an electron-withdrawing polymer (A4-1) (25.1 mg) was added to a dimethyl sulfoxide solution of the electron-donating polymer (D3a-1), ethanol (2 mL) was added, and an electron-donating polymer ( A composition (XI) containing D3a-1) and an electron withdrawing polymer (A4-1) was obtained.
  • Example 12 Production of heat-treated composition (XII) film
  • the film of the composition (IV) obtained in Example 4 was placed in a glass vacuum desiccator with a cock, and the inside of the desiccator was replaced with nitrogen gas. did.
  • this vacuum desiccator was allowed to stand in a constant temperature dryer set at 130 ° C. for 2 hours to obtain a film of the heat treatment composition (XII) (dark brown transparent, film thickness 18 ⁇ m).
  • Examples 13 and 14 Production of films of heat-treated compositions (XIII) and (XIV) Instead of the film of composition (IV) obtained in Example 4, the composition obtained in Example 5 or 6 ( Films of heat-treated compositions (XIII) and (XIV) were produced in the same manner as in Example 12 except that the film V) or (VI) was used.
  • Table 3 shows the heat treatment compositions obtained in Examples 12 to 14, the starting composition used for the heat treatment, the molar ratio of (A2-1) / (D3a-1), the molar fraction of (A2-1) and Describe the film thickness.
  • Reference Example 4 Production of heat-treated electron-withdrawing polymer (A2-1) film
  • the electron-withdrawing polymer obtained in Reference Example 1 A film of heat-treated electron withdrawing polymer (A2-1) was obtained in the same manner as in Example 12 except that the film of A2-1) was used (light brown transparent, film thickness of 24 ⁇ m).
  • Example 15 Preparation of film of composition (XV) of electron donating polymer (D2-1) and electron withdrawing polymer (A8-1) Electron donating polymer (D2-1) was dissolved in dimethyl sulfoxide.
  • a solution (2.81 g, polymer concentration: 3% by weight) prepared by dissolving the electron withdrawing polymer (A8-1) in dimethyl sulfoxide was prepared. added.
  • the solution was filtered using a cotton plug, and the obtained filtrate was added to a petri dish having a diameter of 4 cm, and the petri dish was placed on a hot plate at a temperature of 60 ° C. to distill off dimethyl sulfoxide.
  • the petri dish was placed in a vacuum dryer and dried under reduced pressure at 80 ° C. for 24 hours to form a film of the composition (XV) of the electron donating polymer (D2-1) and the electron withdrawing polymer (A8-1). (Transparent brown, film thickness: 11 ⁇ m).
  • Examples 16 and 17 Preparation of a film of the composition (XVI) and (XVII) of the electron donating polymer (D2-1) and the electron withdrawing polymer (A8-1) of the electron donating polymer (D2-1) Example 15 was repeated except that the ratio of the dimethyl sulfoxide solution (polymer concentration: 10% by weight) and the dimethyl sulfoxide solution (polymer concentration: 3% by weight) of the electron withdrawing polymer (A8-1) was changed. Films of compositions (XVI) and (XVII) were produced.
  • Table 4 shows amounts of the electron-donating polymer (D2-1) and the electron-withdrawing polymer (A8-1) in the films of the compositions (XV) to (XVII) obtained in Examples 15 to 17 and the films. Write the thickness.
  • Table 4 shows the relationship between the naphthalenetetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A8-1) and the dioxynaphthalene part (d) of the electron donating polymer (D2-1) in the composition.
  • Table 4 shows the total of the naphthalenetetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A8-1) and the dioxynaphthalene part (d) of the electron donating polymer (D2-1) in the composition.
  • this mole fraction may be abbreviated as “mole fraction of (A8-1)”.
  • Example 18 Production of heat-treated composition (XVIII) film
  • the film of the composition (XV) obtained in Example 15 was placed in a glass vacuum desiccator with a cock, and the inside of the desiccator was replaced with nitrogen gas. did.
  • this vacuum desiccator was allowed to stand in a constant temperature dryer set at 150 ° C. for 50 hours to obtain a film of the heat treatment composition (XVIII) (dark brown transparent, film thickness 11 ⁇ m).
  • Examples 19 and 20 Production of films of heat-treated compositions (XIX) and (XX) Compositions obtained in Example 16 or 17 (instead of films of composition (XV) obtained in Example 15 ( Films of heat-treated compositions (XIX) and (XX) were produced in the same manner as in Example 18 except that the film of XVI) or (XVII) was used.
  • Table 5 shows the heat treatment compositions obtained in Examples 18 to 20, the starting composition used for the heat treatment, the molar ratio of (A8-1) / (D2-1), the molar fraction of (A8-1) and Describe the film thickness.
  • Reference Example 5 Production of a film containing only the electron withdrawing polymer (A8-1) A solution prepared by dissolving the electron withdrawing polymer (A8-1) (79.3 mg) in dimethyl sulfoxide (2 mL) The solution was filtered using a stopper, and the obtained filtrate was added to a petri dish having a diameter of 4 cm. The petri dish was placed on a hot plate having a temperature of 60 ° C., and dimethyl sulfoxide was distilled off. Next, the petri dish was placed in a vacuum dryer and dried under reduced pressure at 80 ° C. for 24 hours to obtain a film of an electron withdrawing polymer (A8-1) (light brown transparent, film thickness 11 ⁇ m).
  • Example 21 Preparation of film of composition (XXI) of electron donating polymer (D3a-1) and electron withdrawing polymer (A8-1) Electron donating polymer (D3a-1) (35.8 mg) was converted to dimethyl A solution prepared by dissolving in sulfoxide (1 mL) and a solution prepared by dissolving electron-withdrawing polymer (A8-1) (78.9 mg) in dimethyl sulfoxide (1 mL) are sequentially added to a glass container. It was.
  • the solution was filtered using a cotton plug, and the obtained filtrate was added to a petri dish having a diameter of 4 cm, and the petri dish was placed on a hot plate at a temperature of 60 ° C. to distill off dimethyl sulfoxide. did.
  • the petri dish was placed in a vacuum dryer and dried under reduced pressure at 60 ° C. for 24 hours to form a film of the composition (XXI) of the electron donating polymer (D3a-1) and the electron withdrawing polymer (A8-1). (Transparent brown, film thickness 14 ⁇ m).
  • Example 22 Production of heat-treated composition (XXII) film
  • the composition (XXI) film obtained in Example 21 was placed in a glass-made vacuum desiccator with a cock, and the inside of the desiccator was replaced with nitrogen gas. did. Next, this vacuum desiccator was allowed to stand in a constant temperature dryer set at 130 ° C. for 2 hours to obtain a film of the heat treatment composition (XXII) (dark brown transparent, film thickness 14 ⁇ m).
  • Test Example 1 Confirmation of Charge Transfer Complex Compositions (I) to (VI), (IX) and (IX) obtained in Examples 1 to 6, 9 and 10 by ultraviolet-visible spectroscopy (UV-vis) The absorption spectrum of the film X) was measured. Further, the electron-withdrawing polymer (A2-1) film, the electron-withdrawing polymer (A6-1) film, and the electron-withdrawing polymer (A7-1) film obtained in Reference Examples 1 to 3 were used. Absorption spectrum was measured.
  • FIG. 9 shows absorption spectra of the electron-withdrawing polymer (A2-1) film and the composition (I) film.
  • FIG. 10 shows absorption spectra of the film of the electron withdrawing polymer (A2-1) and the film of the composition (II).
  • FIG. 11 shows absorption spectra of the electron-withdrawing polymer (A2-1) film and the compositions (III) to (VI).
  • FIG. 14 shows absorption spectra of the electron-withdrawing polymer (A6-1) film and the composition (IX) film.
  • FIG. 15 shows absorption spectra of the film of the electron withdrawing polymer (A7-1) and the film of the composition (X).
  • the absorption spectra of the films of the compositions (I) to (VI), (IX) and (X) had a shoulder near 530 nm. This shoulder is absorption by the charge transfer complex (see Nature, 375 (6529), 303-305 (1995) Polym. J. (2013), 45, 839-844). Therefore, from this result, it was confirmed that the films of the compositions (I) to (VI) formed a charge transfer complex. It has not been reported so far to form a charge transfer complex between the main chains of two or more different polymers.
  • Test Example 2 Measurement of tensile fracture strength, tensile elastic modulus and tensile fracture elongation (No. 1) Tensile fracture strength, tensile elastic modulus and film of the compositions (IV) to (VI) obtained in Examples 4 to 6 and the film of the electron withdrawing polymer (A2-1) obtained in Reference Example 1 Tensile fracture elongation was measured as described above. The results are shown in Table 6. As shown in Table 6, the tensile strength at break of the films of the compositions (IV) to (VI) was improved as compared with the film of the electron withdrawing polymer (A2-1).
  • Test Example 3 Measurement of tensile fracture strength, tensile elastic modulus and tensile fracture elongation (No. 2) The tensile fracture strength, tensile elastic modulus and tensile fracture elongation of the film of the composition (IV) obtained in Example 4 and the film of the heat-treated composition (XII) obtained in Example 12 were as described above. It was measured. The results are shown in Table 7. As shown in Table 7, the tensile fracture strength of the film of the composition (XII) was improved about twice as much as that of the film of the composition (IV) that was not heat-treated.
  • Test Example 4 Measurement of tensile fracture strength, tensile elastic modulus and tensile fracture elongation (No. 3) Tensile Fracture Strength, Tensile Modulus and Tensile Fracture of Heat Treated Composition (XXII) Film Obtained in Example 22 and Film of Electron Withdrawing Polymer (A8-1) Only Obtained in Reference Example 5 Elongation was measured as described above. The results are shown in Table 8. As shown in Table 8, the film of the heat treatment composition (XXII) has a tensile fracture strength of about 1.7 as compared with the film of only the electron withdrawing polymer (A8-1) obtained in Reference Example 5. Doubled.
  • Test Example 5 Measurement of SEM-EDX SEM-EDX of the films of the compositions (I) and (II) obtained in Examples 1 and 2 was measured as described above. The fluorine atoms contained in -1) were detected uniformly throughout the film. From this result, it was confirmed that the electron donating polymer (D2-1) and the electron withdrawing polymer (A2-1) were uniformly mixed and not phase-separated on the micrometer order.
  • the elemental mapping of fluorine by EDX of the film of the obtained composition (I) is shown in FIG. Moreover, the elemental mapping of the fluorine by EDX of the film
  • Test Example 7 Measurement of hydrogen gas permeability
  • the hydrogen gas permeability of the films (film thickness: 10 ⁇ m) of the compositions (IV) to (VI) produced in the same manner as in Examples 4 to 6 was measured as described above. did. Further, the hydrogen gas permeability of Nafion 212 membrane (Nafion is a registered trademark, manufactured by DuPont, purchased from Toyo Technica Co., Ltd., film thickness: 50 ⁇ m) was similarly measured. The results are shown in Table 10. As shown in Table 10, the membranes of the compositions (IV) to (VI) had lower hydrogen gas permeability than the commercially available Nafion 212 membrane. If a membrane of compositions (IV) to (VI) having a low hydrogen gas permeability is used as an electrolyte membrane of a fuel cell, fuel gas crossover can be suppressed, thereby improving the performance of the fuel cell. .
  • Test Example 8 Fuel cell power generation test 1 (No. 1) Using the membrane (film thickness: 13 ⁇ m) and Nafion 212 (manufactured by DuPont, purchased from Toyo Technica, film thickness: 50 ⁇ m) produced in the same manner as in Example 4 as an electrolyte membrane, a fuel cell The power generation test 1 was conducted as described above. The results are shown in Table 11. As shown in Table 11, the cell resistance value of the film of the composition (IV) was almost the same as that of the commercially available Nafion 212. Furthermore, the OCV of a single cell produced using the membrane of composition (IV) as the electrolyte membrane was 0.875V.
  • Table 12 shows the results of voltage and current density in power generation test 1 using the film of composition (IV).
  • Test Example 9 Fuel cell power generation test 1 (No. 2) Using the heat treatment composition (XX) film (film thickness: 14 ⁇ m) produced in the same manner as in Example 20 as the electrolyte film, the fuel cell power generation test 1 was performed as described above.
  • the cell resistance value of the film of the heat treatment composition (XX) was 0.65 ( ⁇ ).
  • membrane of heat processing composition (XX) as an electrolyte membrane was 0.847V.
  • Table 13 shows the results of voltage and current density in the power generation test 1.
  • Test Example 10 Fuel cell power generation test 2
  • the fuel cell power generation test 2 using the catalyst layer containing the composition (VIII) that is, the composition of the electron-donating polymer (D3a-1) and the electron-withdrawing polymer (A4-1)
  • VIII the composition of the electron-donating polymer (D3a-1) and the electron-withdrawing polymer (A4-1)
  • Table 14 shows the results of voltage and current density in power generation test 2. As shown in Table 14, it was confirmed that power generation was possible using the catalyst layer containing the composition (VIII).
  • Test Example 11 Fuel cell power generation test 3
  • the fuel cell power generation test 3 using the catalyst layer containing the composition (XI) that is, the composition of the electron-donating polymer (D3a-1) and the electron-withdrawing polymer (A4-1)
  • Table 15 shows the results of voltage and current density in power generation test 3. As shown in Table 15, it was confirmed that power generation was possible using the catalyst layer containing the composition (XI).
  • Test Example 12 Confirmation of Charge Transfer Complex By UV-Vis spectroscopy (UV-vis), a film of the electron withdrawing polymer (A2-1), a film of the compositions (III) to (VI), and heat-treated electrons Absorption spectra of the film of the attractive polymer (A2-1) and the films of the heat treatment compositions (XII) to (XIV) were measured.
  • Table 16 shows the molar fraction (%) of (A2-1) in the film of the electron withdrawing polymer (A2-1) used. Note that the molar fraction of (A2-1) in the electron-withdrawing polymer (A2-1) film and the heat-treated electron-withdrawing polymer (A2-1) film is 100%.
  • the absorbance at 530 nm derived from the charge transfer complex was maximum when the molar fraction of (A2-1) was 50% regardless of the presence or absence of heat treatment. From this result, the molar ratio of the dioxynaphthalene part (d) of the electron donating polymer (D3a-1) to the naphthalene tetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A2-1) was 1: 1. At some point, it was confirmed that the amount of charge transfer complex formation was maximized.
  • the absorbance at 530 nm of the film of the heat-treated composition was 2 to 3 times higher than the absorbance of the film of the composition that was not heat-treated. From this result, it was found that the portion in which the charge-transfer complex of the electron-donating polymer (D3a-1) and the electron-withdrawing polymer (A2-1) was not formed in the unheated composition It was confirmed to form a complex.
  • Test Example 13 Evaluation of chemical durability Film of heat-treated composition (XVIII) obtained in Example 18 (film thickness: 11 ⁇ m), electron-withdrawing polymer (A8-1) produced in the same manner as in Reference Example 5
  • the evaluation test of the chemical durability of the only film (film thickness: 12 ⁇ m) and the film of Nafion 212 (film thickness: 51 ⁇ m) was measured as described above. The results are shown in Table 17.
  • the heat treatment composition (XVIII) film showed chemical durability comparable to that of the Nafion 212 film.
  • the film of only the electron withdrawing polymer (A8-1) was dissolved in the Fenton test solution 15 minutes after the start of the chemical durability evaluation test, and the shape of the film could not be maintained. From the comparison of the film of the heat-treated composition (XVIII) and the film of the electron withdrawing polymer (A8-1) alone, the film of the composition (XVIII) has a Fenton test solution (ie, iron (II) sulfate and peroxide). It was confirmed that dissolution in an aqueous solution containing hydrogen was suppressed.
  • a Fenton test solution ie, iron (II) sulfate and peroxide
  • composition of the present invention is useful, for example, as an electrolyte material for a fuel cell (for example, an electrolyte material used for a catalyst layer, an electrolyte membrane, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)
  • Polyethers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Inert Electrodes (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、下記式(1)で表される構造を有する電子供与性ポリマー(D)、および下記式(2)で表される構造を有する電子求引性ポリマー(A)を含む組成物を提供する(下記式中の記号の定義は明細書に記載した通りである。)。

Description

ポリマー組成物
 本発明は、異なる2種以上のポリマーを含む組成物に関する。
 電荷移動錯体を形成する材料は多く報告されている。例えば、非特許文献1には、テトラチアフルバレン・p-クロラニルおよびその誘導体を用いた電荷移動錯体が報告されている。一方、電荷移動錯体を形成する高分子材料は、例えば、非特許文献2および3には、ポリマーであるポリイミドと、低分子化合物であるジヒドロキシナフタレンとの電荷移動錯体が報告されている。
 非特許文献1の電荷移動錯体は、その原料が低分子化合物であるため、該錯体を材料として利用する場合、安定性に問題がでる場合がある。非特許文献2および3の電荷移動錯体を材料として利用する場合、その原料の低分子化合物の漏れ出し、および材料の安定性に問題がでる場合がある。そこで、材料として利用できる、より安定な材料が望まれていた。
Phys. Rev. B 43 (1991) 8224 Polymer Journal (2013) 45, 839-844 JOURNAL OF POLYMER SCIENCE, PART A POLYMER CHEMISTRY 2014, 52, 2991-2997
 異なる2種以上のポリマーを充分に混合させることは難しい。そのため、異なる2種以上のポリマーを含む組成物では、マイクロメートルオーダーでの相分離を抑制することは困難であった。このような相分離したポリマー組成物から得られる材料や膜では、充分な機能や強度が得られないことがあった。本発明はこのような事情に着目してなされたものであって、その目的は、マイクロメートルオーダーでの相分離が抑制された異なる2種以上のポリマーを含む組成物を提供することにある。
 本発明者らが鋭意検討を重ねた結果、剛直な構造を有する電子供与性ポリマーと柔軟な構造を有する電子求引性ポリマーとの組成物、および柔軟な構造を有する電子供与性ポリマーと剛直な構造を有する電子求引性ポリマーとの組成物は、電子供与性ポリマーと電子求引性ポリマーとで電荷移動錯体を形成し得、その結果、マイクロメートルオーダーでの相分離を抑制し得ることを見出した。なお、異なる2種以上のポリマーの主鎖の間で電荷移動錯体を形成することは、これまで報告されていない。この知見に基づく本発明は、以下の通りである。
 [1] 電子供与性ポリマー(D)および電子求引性ポリマー(A)を含む組成物であり、
 電子供与性ポリマー(D)が、式(1):
Figure JPOXMLDOC01-appb-C000032
[式中、Xは、ナフタレン環を含有する2価の基であり、
 Yは、置換基を有していてもよいC3-10アルキレン基を含有する2価の基または置換基を有していてもよいベンゼン環を含有する2価の基であり、および
 *は、結合位置を示す。]
で表される構造を有し、
 電子求引性ポリマー(A)が、式(2):
Figure JPOXMLDOC01-appb-C000033
[式中、Xは、ナフタレン環を含有する4価の基であり、
 Yが置換基を有していてもよいC3-10アルキレン基を含有する2価の基である場合、Yは、置換基を有していてもよいベンゼン環を含有する2価の基であり、
 Yが置換基を有していてもよいベンゼン環を含有する2価の基である場合、Yは、置換基を有していてもよいC3-10アルキレン基を含有する2価の基であり、および
 *は、結合位置を示す。]
で表される構造を有する組成物。
 [2] YおよびYの少なくとも一方が、スルホ基を有する前記[1]に記載の組成物。
 [3] Yが、置換基を有していてもよいC3-10アルキレン基を含有する2価の基であり、およびYが、置換基を有していてもよいベンゼン環を含有する2価の基である前記[1]または[2]に記載の組成物。
 [4] Xが、式(3)または式(4):
Figure JPOXMLDOC01-appb-C000034
[式中、*は、結合位置を示す。]
で表される2価の基である前記[1]~[3]のいずれか一つに記載の組成物。
 [5] Xが、式(5)、式(6-1)または式(6-2):
Figure JPOXMLDOC01-appb-C000035
[式中、*は、結合位置を示す。]
で表される4価の基である前記[1]~[4]のいずれか一つに記載の組成物。
 [6] YまたはYが、式(7):
Figure JPOXMLDOC01-appb-C000036
[式中、Rは、水素原子またはスルホ基であり、および
 *は、結合位置を示す。]
で表される構造を含有する2価の基である前記[1]~[5]のいずれか一つに記載の組成物。
 [7] YまたはYが、式(8)~式(11):
Figure JPOXMLDOC01-appb-C000037
[式中、n2~n11は、それぞれ独立に、0~4の整数であり、
 R~R11は、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、Wで置換されていてもよいフェニル基、Wで置換されていてもよいチエニル基、またはWで置換されていてもよいフリル基であり、
 Wは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基であり、
 n2~n11が2~4の整数である場合、複数のR~R11は、互いに、同じまたは異なるものでもよく、
 Z~Zは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R21)(R22)-*、またはオキシ基であり、
 R21およびR22は、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR21およびR22は互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する、および
 *は、結合位置を示す。]
のいずれかで表される2価の基である前記[1]~[6]のいずれか一つに記載の組成物。
 [8] 電子供与性ポリマー(D)が、式(12)または式(13):
Figure JPOXMLDOC01-appb-C000038
[式中、Lは、式(3)、式(4)または式(14):
Figure JPOXMLDOC01-appb-C000039
{式中、m1およびm2は、それぞれ独立に、0~4の整数であり、および
 *は、結合位置を示す。}
で表される2価の基であり、
 Lが式(3)または式(4)で表される2価の基である場合、R1aおよびR1bは、水素原子であり、
 Lが式(14)で表される2価の基である場合、R1aおよびR1bは、それぞれ独立に、水素原子またはスルホ基であり、および
 *は、結合位置を示す。]
で表される構成単位を有する電子供与性ポリマー(D1)を含む前記[1]~[7]のいずれか一つに記載の組成物。
 [9] 電子供与性ポリマー(D1)が、式(15):
Figure JPOXMLDOC01-appb-C000040
[式中、*は、結合位置を示す。]
で表される構成単位を有する電子供与性ポリマー(D2)を含む前記[8]に記載の組成物。
 [10] 電子供与性ポリマー(D1)が、式(16):
Figure JPOXMLDOC01-appb-C000041
[式中、R1aおよびR1bは、それぞれ独立に、水素原子またはスルホ基であり、
 m1およびm2は、それぞれ独立に、0~4の整数であり、および
 *は、結合位置を示す。]
で表される構成単位を有する電子供与性ポリマー(D3)を含む前記[8]に記載の組成物。
 [11] R1aおよびR1bが水素原子である前記[8]または[10]に記載の組成物。
 [12] m1およびm2が0である前記[8]、[10]または[11]に記載の組成物。
 [13] 式(8)で表される2価の基が、式(8-1):
Figure JPOXMLDOC01-appb-C000042
[式中、n2、Rおよび*は、前記の通りである。]
で表される2価の基であり、Z~Zが、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、またはオキシ基である前記[7]~[12]のいずれか一つに記載の組成物。
 [14] 電子求引性ポリマー(A)が、式(17a):
Figure JPOXMLDOC01-appb-C000043
[式中、L2aは、式(8)~式(11):
Figure JPOXMLDOC01-appb-C000044
{式中、n2~n11は、それぞれ独立に、0~4の整数であり、
 R~R11は、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、Wで置換されていてもよいフェニル基、Wで置換されていてもよいチエニル基、またはWで置換されていてもよいフリル基であり、
 Wは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基であり、
 n2~n11が2~4の整数である場合、複数のR~R11は、互いに、同じまたは異なるものでもよく、
 Z~Zは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R21)(R22)-*、またはオキシ基であり、
 R21およびR22は、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR21およびR22は互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する、および
 *は、結合位置を示す。}
のいずれかで表される2価の基であり、および
 *は、結合位置を示す。]
で表される構成単位を有する電子求引性ポリマー(A1a)を含む前記[1]~[13]のいずれか一つに記載の組成物。
 [15] 電子求引性ポリマー(A1a)が、式(23):
Figure JPOXMLDOC01-appb-C000045
[式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
 *は、結合位置を示す。]
で表される構成単位、および式(17b):
Figure JPOXMLDOC01-appb-C000046
[式中、L2bは、式(8b)~式(11b):
Figure JPOXMLDOC01-appb-C000047
{式中、n2b~n11bは、それぞれ独立に、0~4の整数であり、
 R2b~R11bは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、W1bで置換されていてもよいフェニル基、W1bで置換されていてもよいチエニル基、またはW1bで置換されていてもよいフリル基であり、
 W1bは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、またはシアノ基であり、
 n2b~n11bが2~4の整数である場合、複数のR2b~R11bは、互いに、同じまたは異なるものでもよく、
 Z1b~Z6bは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R21b)(R22b)-*、またはオキシ基であり、
 R21bおよびR22bは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR21bおよびR22bは互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する、および
 *は、結合位置を示す。}
のいずれかで表される2価の基であり、および
 *は、結合位置を示す。]
で表される構成単位を有する電子求引性ポリマー(A1b)を含む前記[14]に記載の組成物。
 [16] 式(23)で表される構成単位の数と式(17b)で表される構成単位の数との比(式(23)で表される構成単位の数/式(17b)で表される構成単位の数)が、0.1/99.9~99.9/0.1である前記[15]に記載の組成物。
 [17] 電子求引性ポリマー(A)が、式(17):
Figure JPOXMLDOC01-appb-C000048
[式中、Lは、式(18)~式(22)、式(31)および式(32):
Figure JPOXMLDOC01-appb-C000049
{式中、m3およびm4は、それぞれ独立に、0~3の整数であり、
 m5~m7は、それぞれ独立に、1~4の整数であり、
 n12は、1~4の整数であり、
 R12は、フッ素原子またはトリフルオロメチル基であり、n12が2~4の整数である場合、複数のR12は、互いに、同じまたは異なるものでもよく、
 n13~n16は、それぞれ独立に、0~4の整数であり、
 R13は、ニトロ基、スルホ基またはトリフルオロメチル基であり、n13が2~4の整数である場合、複数のR13は、互いに、同じまたは異なるものでもよく、
 R14は、塩素原子またはスルホ基であり、n14が2~4の整数である場合、複数のR14は、互いに、同じまたは異なるものでもよく、
 R15は、塩素原子またはスルホ基であり、n15が2~4の整数である場合、複数のR15は、互いに、同じまたは異なるものでもよく、
 R16は、ニトロ基、スルホ基またはトリフルオロメチル基であり、n16が2~4の整数である場合、複数のR16は、互いに、同じまたは異なるものでもよく、
 n23およびn24は、それぞれ独立に、0~4の整数であり、
 R23は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n23が2~4の整数である場合、複数のR23は、互いに、同じまたは異なるものでもよく、
 R24は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n24が2~4の整数である場合、複数のR24は、互いに、同じまたは異なるものでもよく、
 n25およびn26は、それぞれ独立に、0~4の整数であり、
 R25は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n25が2~4の整数である場合、複数のR25は、互いに、同じまたは異なるものでもよく、
 R26は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n26が2~4の整数である場合、複数のR26は、互いに、同じまたは異なるものでもよく、および
 *は、結合位置を示す。}
のいずれかで表される2価の基であり、および
 *は、結合位置を示す。]
で表される構成単位を有する電子求引性ポリマー(A1)を含む前記[1]~[12]のいずれか一つに記載の組成物。
 [18] Lが、式(18)~式(22)のいずれかで表される2価の基である前記[17]に記載の組成物。
 [19] 電子求引性ポリマー(A1)が、式(23):
Figure JPOXMLDOC01-appb-C000050
[式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
 *は、結合位置を示す。]
で表される構成単位、および式(24):
Figure JPOXMLDOC01-appb-C000051
[式中、
 m5およびm6は、それぞれ独立に、1~4の整数であり、および
 *は、結合位置を示す。]
で表される構成単位を有する電子求引性ポリマー(A2)を含む前記[17]に記載の組成物。
 [20] 式(23)で表される構成単位の数と式(24)で表される構成単位の数との比(式(23)で表される構成単位の数/式(24)で表される構成単位の数)が、0.1/99.9~99.9/0.1である前記[19]に記載の組成物。
 [21] 電子求引性ポリマー(A1)が、式(23):
Figure JPOXMLDOC01-appb-C000052
[式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
 *は、結合位置を示す。]
で表される構成単位、および式(25):
Figure JPOXMLDOC01-appb-C000053
[式中、m7は、1~4の整数であり、および
 *は、結合位置を示す。]
で表される構成単位を有する電子求引性ポリマー(A3)を含む前記[17]に記載の組成物。
 [22] 式(23)で表される構成単位の数と式(25)で表される構成単位の数との比(式(23)で表される構成単位の数/式(25)で表される構成単位の数)が、0.1/99.9~99.9/0.1である前記[21]に記載の組成物。
 [23] 電子求引性ポリマー(A1)が、式(23):
Figure JPOXMLDOC01-appb-C000054
[式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
 *は、結合位置を示す。]
で表される構成単位、および式(26):
Figure JPOXMLDOC01-appb-C000055
[式中、n12は、1~4の整数であり、
 R12は、フッ素原子またはトリフルオロメチル基であり、n12が2~4の整数である場合、複数のR12は、互いに、同じまたは異なるものでもよく、および
 *は、結合位置を示す。]
で表される構成単位を有する電子求引性ポリマー(A4)を含む前記[17]に記載の組成物。
 [24] 式(23)で表される構成単位の数と式(26)で表される構成単位の数との比(式(23)で表される構成単位の数/式(26)で表される構成単位の数)が、0.1/99.9~99.9/0.1である前記[23]に記載の組成物。
 [25] 電子求引性ポリマー(A1)が、式(23):
Figure JPOXMLDOC01-appb-C000056
[式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
 *は、結合位置を示す。]
で表される構成単位、および式(27):
Figure JPOXMLDOC01-appb-C000057
[式中、n13~n16は、それぞれ独立に、0~4の整数であり、
 R13は、ニトロ基、スルホ基またはトリフルオロメチル基であり、n13が2~4の整数である場合、複数のR13は、互いに、同じまたは異なるものでもよく、
 R14は、塩素原子またはスルホ基であり、n14が2~4の整数である場合、複数のR14は、互いに、同じまたは異なるものでもよく、
 R15は、塩素原子またはスルホ基であり、n15が2~4の整数である場合、複数のR15は、互いに、同じまたは異なるものでもよく、
 R16は、ニトロ基、スルホ基またはトリフルオロメチル基であり、n16が2~4の整数である場合、複数のR16は、互いに、同じまたは異なるものでもよく、および
 *は、結合位置を示す。]
で表される構成単位を有する電子求引性ポリマー(A5)を含む前記[17]に記載の組成物。
 [26] 式(23)で表される構成単位の数と式(27)で表される構成単位の数との比(式(23)で表される構成単位の数/式(27)で表される構成単位の数)が、0.1/99.9~99.9/0.1である前記[21]に記載の組成物。
 [27] 電子求引性ポリマー(A1)が、式(23):
Figure JPOXMLDOC01-appb-C000058
[式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
 *は、結合位置を示す。]
で表される構成単位、および式(33):
Figure JPOXMLDOC01-appb-C000059
[式中、n23およびn24は、それぞれ独立に、0~4の整数であり、
 R23は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n23が2~4の整数である場合、複数のR23は、互いに、同じまたは異なるものでもよく、
 R24は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n24が2~4の整数である場合、複数のR24は、互いに、同じまたは異なるものでもよく、および
 *は、結合位置を示す。]
で表される構成単位を有する電子求引性ポリマー(A6)を含む前記[17]に記載の組成物。
 [28] 式(23)で表される構成単位の数と式(33)で表される構成単位の数との比(式(23)で表される構成単位の数/式(33)で表される構成単位の数)が、0.1/99.9~99.9/0.1である前記[27]に記載の組成物。
 [29] 電子求引性ポリマー(A1)が、式(23):
Figure JPOXMLDOC01-appb-C000060
[式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
 *は、結合位置を示す。]
で表される構成単位、および式(34):
Figure JPOXMLDOC01-appb-C000061
[式中、n25およびn26は、それぞれ独立に、0~4の整数であり、
 R25は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n25が2~4の整数である場合、複数のR25は、互いに、同じまたは異なるものでもよく、
 R26は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n26が2~4の整数である場合、複数のR26は、互いに、同じまたは異なるものでもよく、および
 *は、結合位置を示す。]
で表される構成単位を有する電子求引性ポリマー(A7)を含む前記[17]に記載の組成物。
 [30] 式(23)で表される構成単位の数と式(34)で表される構成単位の数との比(式(23)で表される構成単位の数/式(34)で表される構成単位の数)が、0.1/99.9~99.9/0.1である前記[29]に記載の組成物。
 [31] m5およびm6が4である前記[17]~[20]のいずれか一つに記載の組成物。
 [32] m7が4である前記[17]、[18]、[21]または[22]に記載の組成物。
 [33] n12が1であり、およびR12がトリフルオロメチル基である前記[17]、[18]、[23]または[24]に記載の組成物。
 [34] n13~n16が0である前記[17]、[18]、[25]または[26]に記載の組成物。
 [35] n23およびn24が0である前記[17]、[27]または[28]に記載の組成物。
 [36] n25およびn26が0である前記[17]、[29]または[30]に記載の組成物。
 [37] m3およびm4が0である前記[17]~[36]のいずれか一つに記載の組成物。
 [38] 電子供与性ポリマー(D)および電子求引性ポリマー(A)が、電荷移動錯体を形成している前記[1]~[37]のいずれか一つに記載の組成物。
 [39] 前記[1]~[38]のいずれか一つに記載の組成物を含む燃料電池の電解質膜。
 [40] 前記[1]~[38]のいずれか一つに記載の組成物を含む燃料電池の触媒層。
 [41] 電子求引性ポリマー(A1)が、式(23):
Figure JPOXMLDOC01-appb-C000062
[式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
 *は、結合位置を示す。]
で表される構成単位からなる電子求引性ポリマー(A8)を含む前記[17]に記載の組成物。
 [42] m3およびm4が0である前記[41]に記載の組成物。
 [43] 電子供与性ポリマー(D)および電子求引性ポリマー(A)が、電荷移動錯体を形成している前記[41]または[42]に記載の組成物。
 [44] 前記[41]~[43]のいずれか一つに記載の組成物を含む燃料電池の電解質膜。
 [45] 前記[41]~[43]のいずれか一つに記載の組成物を含む燃料電池の触媒層。
 本発明の組成物は、ポリマーの相分離が抑制される。その結果、本発明の組成物から得られる膜等は、その強度が向上することが期待される。
合成例3で得られた電子供与性ポリマー(D3a-1)のH NMRのチャートである。 合成例4で得られた電子求引性ポリマー(A2-1)のH NMRのチャートおよびピークに対応するプロトンの位置を示す化学式である。 合成例4で得られた電子求引性ポリマー(A2-1)の19F NMRのチャートである。 合成例6で得られた電子求引性ポリマー(A3-1)のH NMRのチャートおよびピークに対応するプロトンの位置を示す化学式である。 合成例6で得られた電子求引性ポリマー(A3-1)の19F NMRのチャートである。 合成例7で得られた電子求引性ポリマー(A4-1)のH NMRのチャートおよびピークに対応するプロトンの位置を示す化学式である。 合成例10で得られた電子供与性ポリマー(D4-2)のH NMRのチャートである。 合成例13で得られた電子供与性ポリマー(D3b-1)のH NMRのチャートである。 試験例1で測定された、電子求引性ポリマー(A2-1)の膜および組成物(I)の膜の紫外-可視分光法(UV-vis)による吸収スペクトルを示す図である。 試験例1で測定された、電子求引性ポリマー(A2-1)の膜および組成物(II)の膜の紫外-可視分光法(UV-vis)による吸収スペクトルを示す図である。 試験例1で測定された、電子求引性ポリマー(A2-1)の膜および組成物(III)~(VI)の膜の紫外-可視分光法(UV-vis)による吸収スペクトルを示す図である。なお、各吸収スペクトルは、下から順に、電子求引性ポリマー(A2-1)の膜および組成物(III)~(VI)の膜のスペクトルである。 試験例5で測定された、組成物(I)の膜のEDXによるフッ素の元素マッピングを示す図である。 試験例5で測定された、組成物(II)の膜のEDXによるフッ素の元素マッピングを示す図である。 試験例1で測定された、電子求引性ポリマー(A6-1)の膜および組成物(IX)の膜の紫外-可視分光法(UV-vis)による吸収スペクトルを示す図である。 試験例1で測定された、電子求引性ポリマー(A7-1)の膜および組成物(X)の膜の紫外-可視分光法(UV-vis)による吸収スペクトルを示す図である。 熱処理していないポリマーまたは組成物の膜の(A2-1)のモル分率および熱処理ポリマーまたは熱処理組成物の膜の(A2-1)のモル分率と、試験例12で測定された吸収スペクトルの530nmでの標準化した吸光度との関係を示すグラフである。
 本発明の組成物は、下記式(1)で表される構造を有する電子供与性ポリマー(D)、および下記式(2)で表される構造を有する電子求引性ポリマー(A)を含むことを特徴とする。電子供与性ポリマー(D)は、1種のみを使用してもよく、2種以上を併用してもよい。同様に、電子求引性ポリマー(A)は、1種のみを使用してもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000063
 以下では「(1)で表される構造」を「構造(1)」と略称することがある。他の式で表される構造、構成単位および基も同様に略称することがある。また、式中の*は、結合位置を示す。他の式に記載の*も、同様に、結合位置を示す。電子供与性ポリマー(D)中において構造(1)、XおよびYは、いずれも、1種のみでもよく、2種以上でもよい。電子求引性ポリマー(A)中において構造(2)、XおよびYは、いずれも、1種のみでもよく、2種以上でもよい。
 ここで、「電子供与性」とは、他の分子またはイオンに電子を容易に与え得る分子またはイオンの性質を意味する。構造(1)を有する電子供与性ポリマー(D)は、-O-X-O-の部分が電子供与性を有する部分である。
 耐久性の観点から、Yは、式(1)に記載の酸素原子と結合する部分として、好ましくは、*-CQ-*(式中、QおよびQは、それぞれ独立に、水素原子、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ハロゲン原子、またはスルホ基であり、および*は、結合位置を示す。)で表される2価の基、または式(1-1):
Figure JPOXMLDOC01-appb-C000064
[式中、p1は、0~4の整数であり、
 Jは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、Wで置換されていてもよいフェニル基、Wで置換されていてもよいチエニル基、またはWで置換されていてもよいフリル基であり、
 Wは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基であり、
 p1が2~4の整数である場合、複数のJは、互いに、同じまたは異なるものでもよく、および
 *は、結合位置を示す。]
で表される2価の基を含む。なお、ハロゲン原子、C1-10アルキル基等の説明は後述する。
 また、「電子求引性」とは、他の分子またはイオンから電子を容易に受け取り得る分子またはイオンの性質を意味する。構造(2)を有する電子求引性ポリマー(A)は、イミド構造部分が電子受容性を有する部分である。
 耐久性の観点から、Yは、式(2)に記載の窒素原子と結合する部分として、*-CQ-*(式中、QおよびQは、それぞれ独立に、水素原子、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ハロゲン原子、またはスルホ基であり、および*は、結合位置を示す。)で表される2価の基、または式(2-1):
Figure JPOXMLDOC01-appb-C000065
[式中、p2は、0~4の整数であり、
 Jは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、Wで置換されていてもよいフェニル基、Wで置換されていてもよいチエニル基、またはWで置換されていてもよいフリル基であり、
 Wは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基であり、
 p2が2~4の整数である場合、複数のJは、互いに、同じまたは異なるものでもよく、および
 *は、結合位置を示す。]
で表される2価の基を含む。なお、ハロゲン原子、C1-10アルキル基等の説明は後述する。
 式(1)中のYが、置換基を有していてもよいC3-10アルキレン基を含有する2価の基であり、電子供与性ポリマー(D)が柔軟な構造を有する場合、式(2)中のYは、置換基を有していてもよいベンゼン環を含有する2価の基であり、電子求引性ポリマー(A)は剛直な構造を有する。このように柔軟な電子供与性ポリマー(D)と剛直な電子求引性ポリマー(A)とを組み合わせることによって、これらポリマー間で電荷移動錯体を形成し得る。
 逆に、式(1)中のYが、置換基を有していてもよいベンゼン環を含有する2価の基であり、電子供与性ポリマー(D)が剛直な構造を有する場合、式(2)中のYは、置換基を有していてもよいC3-10アルキレン基を含有する2価の基であり、電子求引性ポリマー(A)は柔軟な構造を有する。このように剛直な電子供与性ポリマー(D)と柔軟な電子求引性ポリマー(A)とを組み合わせることによっても、これらポリマー間で電荷移動錯体を形成し得る。
 ここで、「電荷移動錯体」とは、電荷移動力によって2種の中性分子の間にできる分子間化合物を意味する。本発明の組成物中の電子供与性ポリマー(D)および電子求引性ポリマー(A)が電荷移動錯体を形成していることは、Nature, 375(6529), 303-305 (1995) および Polym. J. (2013), 45, 839-844に記載のように、組成物のUV-vis吸収スペクトルが530nm付近のピークまたはショルダーを有することで確認することができる。
 電子求引性ポリマー(A)および電子供与性ポリマー(D)を含む本発明の組成物から製造される膜は、プロトン伝導性を維持しながら、その機械強度を向上させることができる。そのため本発明の組成物は、燃料電池用の電解質材料として有用である。また、この膜は、その製造が簡単であり、物性の調整が容易であるという利点を有する。そのため、本発明の組成物は、燃料電池の低価格化および高耐久化に貢献し得る。また、本発明の組成物から、難水溶性である膜を製造し得る。
 また、本発明の組成物は、2種以上の異なるポリマー(即ち、電子求引性ポリマー(A)および電子供与性ポリマー(D))を含む。そのため、十分なプロトン伝導性を持たせたポリマーと、機械的に柔軟な別のポリマーとを混合して製造し得る本発明の組成物は、より性能の高い燃料電池用の電解質材料として期待できる。電解質材料としては、例えば、触媒層に用いる電解質材料、電解質膜等が挙げられる。
 構造(2)のようなイミド構造を有するポリマーは、合成後、その化学的安定性のために、その物性を化学反応等で改良することは通常困難である。これに対して、本発明の組成物は、構造(2)を有する電子求引性ポリマー(A)に加えて、これと異なる電子供与性ポリマー(D)を含む。そのため、使用する電子供与性ポリマー(D)の種類および量等を調整することによって、本発明の組成物から得られる膜の物性を調整することが可能である。さらに特筆すべきは、本発明の組成物から膜を容易に製造することができる。
 次に、式(1)等に含まれるX等について順に説明する。
 式(1)中のXは、ナフタレン環を含有する2価の基である。Xは、好ましくは下記の式(3)または式(4):
Figure JPOXMLDOC01-appb-C000066
で表される2価の基であり、より好ましくは2価の基(3)である。
 式(2)中のXは、ナフタレン環を含有する4価の基である。Xは、好ましくは下記の式(5)、式(6-1)または式(6-2):
Figure JPOXMLDOC01-appb-C000067
で表される4価の基であり、より好ましくは4価の基(5)である。
 Yは、置換基を有していてもよいC3-10アルキレン基を含有する2価の基または置換基を有していてもよいベンゼン環を含有する2価の基である。Yが置換基を有していてもよいC3-10アルキレン基を含有する2価の基である場合、Yは、置換基を有していてもよいベンゼン環を含有する2価の基である。また、Yが置換基を有していてもよいベンゼン環を含有する2価の基である場合、Yは、置換基を有していてもよいC3-10アルキレン基を含有する2価の基である。
 前記電子供与性ポリマー(D)および前記電子求引性ポリマー(A)の少なくとも一方にプロトン伝導性を付与するために、YおよびYの少なくとも一方が、スルホ基を有することが好ましい。
 上述したようにYまたはYのいずれかは、置換基を有していてもよいC3-10アルキレン基を含有する2価の基である。
 本明細書中、C1-2アルキレン基とは、メチレン基またはエチレン基である。
 本明細書中、C3-10アルキレン基としては、例えば、トリメチレン基、1-メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、1,1-ジメチルエチレン基、ペンタメチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1,1-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1-エチルトリメチレン基、ヘキサメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1,1-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1-エチルテトラメチレン基、1,1,2-トリメチルトリメチレン基、1,2,2-トリメチルトリメチレン基、1-エチル-1-メチルトリメチレン基、1-エチル-2-メチルトリメチレン基が挙げられる。
 YまたはYのいずれかは、好ましくは式(7):
Figure JPOXMLDOC01-appb-C000068
で表される構造を含有する2価の基である。式(7)中のRは、水素原子またはスルホ基であり、好ましくは水素原子である。
 上述したようにYまたはYのいずれかは、置換基を有していてもよいベンゼン環を含有する2価の基である。YまたはYのいずれかは、好ましくは式(8)~式(11):
Figure JPOXMLDOC01-appb-C000069
のいずれかで表される2価の基(即ち、2価の基(8)~2価の基(11)のいずれか)である。なお、上述したように、YおよびYは、いずれも、1種のみでもよく、2種以上でもよい。
 n2~n11は、それぞれ独立に、0~4の整数である。ここでn2が0であるとは、置換基Rが存在しないことを意味する。また、n2が2~4の整数である場合、複数のRは、互いに、同じまたは異なるものでもよい。上述のp1およびp2、n3~n11、並びに後述のn12等でも同様である。
 R~R11は、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、Wで置換されていてもよいフェニル基、Wで置換されていてもよいチエニル基、またはWで置換されていてもよいフリル基である。
 本明細書中、C1-10アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられる。
 本明細書中、C1-10アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert-ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基が挙げられる。
 本明細書中、ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素が挙げられる。
 Wは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基である。
 Z~Zは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R21)(R22)-*、またはオキシ基である。
 R21およびR22は、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR21およびR22は互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する。
 本明細書中、C1-3アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基が挙げられる。
 本明細書中、C3-6炭化水素環としては、例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環が挙げられる。
 2価の基(8)は、好ましくは下記式(8-1)で表される2価の基である(下記式中、n2、Rおよび*は、前記の通りである。):
Figure JPOXMLDOC01-appb-C000070
 Z~Zは、それぞれ独立に、好ましくは単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、またはオキシ基である。
 Yが、置換基を有していてもよいC3-10アルキレン基を含有する2価の基であり、およびYが、置換基を有していてもよいベンゼン環を含有する2価の基であることが好ましく、Yが、構造(7)を含有する2価の基であり、およびYが、2価の基(8)~2価の基(11)のいずれかであることがより好ましく、Yが、Rが水素原子である構造(7)を含有する2価の基であり、およびYが、2価の基(8)~2価の基(11)のいずれかであることがさらに好ましい。なお、上述したように、YおよびYは、いずれも、1種のみでもよく、2種以上でもよい。
 前記電子供与性ポリマー(D)の重量平均分子量(Mw)は、好ましくは5,000~800,000、より好ましくは8,000~500,000、さらに好ましくは10,000~100,000である。このMwは、後述の実施例に記載するように、ポリスチレンを標準とするゲル浸透クロマトグラフィー(GPC)によって測定することができる。他のポリマーのMwも同様に測定することができる。
 前記電子求引性ポリマー(A)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 本発明の組成物中の電子供与性ポリマー(D)の量は、電子求引性ポリマー(A)100重量部に対して、好ましくは1~10,000重量部、より好ましくは10~1,500重量部、さらに好ましくは20~900重量部、最も好ましくは50~500重量部である。
 前記電子供与性ポリマー(D)は、出発原料として市販品を使用する公知の反応によって合成することができる。市販品は、例えば、東京化成工業社、和光純薬工業社等から入手できる。また、市販品に公知の反応で置換基を導入した化合物を、出発原料として用いてもよい。
 電子供与性ポリマー(D)の出発原料であるエポキシ基を有する2価の化合物の合成について説明する。例えば、電子供与性ポリマー(D)の出発原料として使用し得る2,6-ビス(オキシラン-2-イルメトキシ)ナフタレンは、Journal of Organic Chemistry, 81(16), 7139-7147; 2016に記載の方法に準じて合成できる。また、ヒドロキシ基の位置が異なる2,7-ビス(オキシラン-2-イルメトキシ)ナフタレンの合成は、Applied Surface Science, 256(8), 2462-2467; 2010に記載がある。
 電子供与性ポリマー(D)の出発原料として使用し得る1,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、4,4’-ジヒドロキシジフェニルスルホンは、例えば、東京化成工業社、和光純薬工業社等から入手できる。
 前記電子供与性ポリマー(D)は、好ましくは式(12)または式(13):
Figure JPOXMLDOC01-appb-C000071
で表される構成単位を有する電子供与性ポリマー(D1)を含み、より好ましくは電子供与性ポリマー(D1)からなる。電子供与性ポリマー(D1)は、1種のみを使用してもよく、2種以上を併用してもよい。また、電子供与性ポリマー(D1)中の構成単位(12)および構成単位(13)は、いずれも、1種のみでもよく、2種以上でもよい。
 式(12)または式(13)中のLは、式(3)、式(4)または式(14):
Figure JPOXMLDOC01-appb-C000072
で表される2価の基であり、好ましくは2価の基(3)または2価の基(14)である。
 式(14)中のm1およびm2は、それぞれ独立に、0~4の整数であり、好ましくは0である。
 Lが2価の基(3)または2価の基(4)である場合、式(12)または式(13)中のR1aおよびR1bは、水素原子である。
 Lが2価の基(14)である場合、R1aおよびR1bは、それぞれ独立に、水素原子またはスルホ基であり、好ましくは水素原子である。
 電子供与性ポリマー(D1)の重量平均分子量(Mw)は、好ましくは5,000~800,000、より好ましくは8,000~500,000、さらに好ましくは10,000~100,000である。
 本発明の一態様において電子供与性ポリマー(D1)は、好ましくは式(15):
Figure JPOXMLDOC01-appb-C000073
で表される構成単位を有する電子供与性ポリマー(D2)を含み、より好ましくは電子供与性ポリマー(D2)からなる。
 電子供与性ポリマー(D2)の重量平均分子量(Mw)は、好ましくは5,000~800,000、より好ましくは8,000~500,000、さらに好ましくは10,000~100,000である。
 本発明の一態様において電子供与性ポリマー(D1)は、好ましくは式(16):
Figure JPOXMLDOC01-appb-C000074
で表される構成単位を有する電子供与性ポリマー(D3)を含み、より好ましくは電子供与性ポリマー(D3)からなる。電子供与性ポリマー(D3)中の構成単位(16)は、1種のみでもよく、2種以上でもよい。
 式(16)中のR1aおよびR1bは、それぞれ独立に、水素原子またはスルホ基であり、好ましくは水素原子である。
 式(16)中のm1およびm2は、それぞれ独立に、0~4の整数であり、好ましくは0である。
 電子供与性ポリマー(D3)は、好ましくは式(16a):
Figure JPOXMLDOC01-appb-C000075
で表される構成単位を有する電子供与性ポリマー(D3a)、または式(16b):
Figure JPOXMLDOC01-appb-C000076
で表される構成単位を有する電子供与性ポリマー(D3b)であり、より好ましくは電子供与性ポリマー(D3a)である。
 電子供与性ポリマー(D3)(好ましくは電子供与性ポリマー(D3a))の重量平均分子量(Mw)は、好ましくは5,000~800,000、より好ましくは8,000~500,000、さらに好ましくは10,000~100,000である。
 電子供与性ポリマー(D1)は、出発原料として市販品を使用する公知の反応によって合成することができる。市販品は、例えば、東京化成工業社、和光純薬工業社等から入手できる。例えば、後述の実施例に記載するような、エポキシ基を有する2価の化合物(例えば、2,6-ビス(オキシラン-2-イルメトキシ)ナフタレン)と、ヒドロキシ基を有する2価の化合物(例えば、2,6-ジヒドロキシナフタレン、4,4’-ジヒドロキシジフェニルスルホン)との反応によって、R1aおよびR1bが水素原子である電子供与性ポリマー(D1a)を製造することができる。また、市販品に公知の反応で置換基を導入した化合物を、出発原料として用いてもよい。
 前記反応におけるエポキシ基を有する2価の化合物の量は、ヒドロキシ基を有する2価の化合物1molに対して、好ましくは0.8~1.2mol、より好ましくは0.9~1.1molである。
 前記反応は、通常、溶媒中で行われる。溶媒としては、ケトン系溶媒が挙げられ、例えば、シクロヘキサノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等が挙げられる。好ましくは、シクロヘキサノン、アセトンが挙げられる。溶媒の量は、エポキシ基を有する2価の化合物1molに対して、好ましくは0.5~50L、より好ましくは1~10Lである。
 前記反応には、触媒を使用してもよい。触媒としては、例えば、ホスフィン類、イミダゾール類が挙げられる。ホスフィン類としては、例えば、トリフェニルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン等が挙げられる。イミダゾール類としては、例えば、2-メチルイミダゾール等が挙げられる。これらの中で、トリス(2,6-ジメトキシフェニル)ホスフィンが好ましい。触媒を使用する場合、その量は、エポキシ基を有する2価の化合物1molに対して、好ましくは0.0001~0.1mmol、より好ましくは0.001~0.015mmolである。
 前記反応の反応温度は、好ましくは50~200℃、より好ましくは100~180℃である。反応温度が、溶媒沸点よりも高い場合は、封管にて反応を実施してもよい。反応時間は、好ましくは20~200時間、より好ましくは30~100時間である。
 前記反応後、沈殿、ろ取および乾燥等の公知の手段によって、R1aおよびR1bが水素原子である電子供与性ポリマー(D1a)を得ることができる。
 R1aおよびR1bがスルホ基である電子供与性ポリマー(D1b)は、例えば、Tetrahedron Vol.51, No.4, pp.1177-1186, 1995に記載の方法に準じて、R1aおよびR1bが水素原子である電子供与性ポリマー(D1a)とピリジン-三酸化硫黄コンプレックスとを反応させることで、合成することができる。
 ピリジン-三酸化硫黄コンプレックスは、例えば、東京化成工業社から市販されている。ピリジン-三酸化硫黄コンプレックスの量は、電子供与性ポリマー(D1a)中のヒドロキシ基1molに対して、好ましくは1~10mol、より好ましくは1.5~5molである。
 前記反応は、通常、溶媒中で行われる。溶媒としては、反応の進行を阻害しないものであれば特に制限はないが、例えば、クロロホルム、クロロベンゼン、ジクロロベンゼン、ジエチルエーテル、1,2-ジメトキシエタン、N,N-ジメチルホルムアミド、テトラヒドロフラン、1,4-ジオキサンが挙げられる。
 前記反応の反応温度は、好ましくは-30℃~80℃、より好ましくは-10℃~50℃であり、反応時間は、好ましくは1~24時間、より好ましくは6~18時間である。
 前記反応後、沈殿、ろ取および乾燥等の公知の手段によって、R1aおよびR1bが、スルホ基である電子供与性ポリマー(D1b)を得ることができる。
 前記電子求引性ポリマー(A)は、出発原料として市販品を使用する公知の反応によって合成することができる。市販品は、例えば、東京化成工業社、和光純薬工業社等から入手できる。公知の反応としては、例えば、後述の実施例に記載するような、テトラカルボン酸二無水物とジアミンとの反応が挙げられる。また、市販品に公知の反応で置換基を導入した化合物を、出発原料として用いてもよい。
 本発明の一態様において、前記電子求引性ポリマー(A)は、好ましくは式(17a):
Figure JPOXMLDOC01-appb-C000077
のいずれかで表される構成単位を有する電子求引性ポリマー(A1a)を含み、より好ましくは電子求引性ポリマー(A1a)からなる。電子求引性ポリマー(A1a)は、1種のみを使用してもよく、2種以上を併用してもよい。また、電子求引性ポリマー(A1a)中の構成単位(17a)は、1種のみでもよく、2種以上でもよい。電子求引性ポリマー(A1a)中の構成単位(17a)は、好ましくは2種である。
 式(17)中のL2aは、前記式(8)~式(11)で表される2価の基である(式(8)~式(11)中の基および記号は、前記の通りである。)。
 電子求引性ポリマー(A1a)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 本発明の一態様において電子求引性ポリマー(A1a)は、好ましくは式(23):
Figure JPOXMLDOC01-appb-C000078
で表される構成単位、および式(17b):
Figure JPOXMLDOC01-appb-C000079
で表される構成単位を有する電子求引性ポリマー(A1b)を含み、より好ましくは電子求引性ポリマー(A1b)からなる。電子求引性ポリマー(A1b)は、1種のみを使用してもよく、2種以上を併用してもよい。また、電子求引性ポリマー(A1b)中の構成単位(23)および構成単位(17b)は、いずれも、1種のみでもよく、2種以上でもよい。電子求引性ポリマー(A1b)中の構成単位(23)は、好ましくは1種である。電子求引性ポリマー(A1b)中の構成単位(17b)は、好ましくは1種である。
 式(17b)中のL2bは、式(8b)~式(11b):
Figure JPOXMLDOC01-appb-C000080
で表される2価の基である。
 n2b~n11bは、それぞれ独立に、0~4の整数である。n2b~n11bが2~4の整数である場合、複数のR2b~R11bは、互いに、同じまたは異なるものでもよい。
 R2b~R11bは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、W1bで置換されていてもよいフェニル基、W1bで置換されていてもよいチエニル基、またはW1bで置換されていてもよいフリル基である。
 W1bは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、またはシアノ基である。
 Z1b~Z6bは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R21b)(R22b)-*、またはオキシ基である。
 R21bおよびR22bは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR21bおよびR22bは互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する。
 ここで、2価の基(8b)~2価の基(11b)は、スルホ基を有さないこと以外、上述した2価の基(8)~2価の基(11)と同じである。
 式(23)におけるm3およびm4の説明は、式(18)における説明と同じである。構成単位(23)は、好ましくは式(23a):
Figure JPOXMLDOC01-appb-C000081
で表される構成単位である。
 構成単位(23)(好ましくは構成単位(23a))の数と構成単位(17b)の数との比(構成単位(23)の数/構成単位(17b)の数)は、好ましくは0.1/99.9~99.9/0.1、より好ましくは1/99~99/1、さらに好ましくは30/70~95/5である。
 電子求引性ポリマー(A1b)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 本発明の一態様において、前記電子求引性ポリマー(A)は、好ましくは式(17):
Figure JPOXMLDOC01-appb-C000082
のいずれかで表される構成単位を有する電子求引性ポリマー(A1)を含み、より好ましくは電子求引性ポリマー(A1)からなる。電子求引性ポリマー(A1)は、1種のみを使用してもよく、2種以上を併用してもよい。また、電子求引性ポリマー(A1)中の構成単位(17)は、1種のみでもよく、2種以上でもよい。電子求引性ポリマー(A1)中の構成単位(17)は、好ましくは2種である。
 式(17)中のLは、式(18)~式(22)、式(31)および式(32):
Figure JPOXMLDOC01-appb-C000083
のいずれかで表される2価の基である。電子求引性ポリマー(A1)中のLは、1種のみでもよく、2種以上でもよい。Lは、好ましくは2価の基(18)~2価の基(22)のいずれかである。
 式(18)中のm3およびm4は、それぞれ独立に、0~3の整数であり、好ましくは0である。
 式(19)および式(20)中のm5~m7は、それぞれ独立に、1~4の整数であり、好ましくは4である。
 式(21)中のn12は、1~4の整数であり、好ましくは1である。
 式(21)中のR12は、フッ素原子またはトリフルオロメチル基であり、n12が2~4の整数である場合、複数のR12は、互いに、同じまたは異なるものでもよい。R12は、好ましくはフッ素原子である。
 式(22)中のn13~n16は、それぞれ独立に、0~4の整数であり、好ましくは0である。
 式(22)中のR13は、ニトロ基、スルホ基またはトリフルオロメチル基であり、n13が2~4の整数である場合、複数のR13は、互いに、同じまたは異なるものでもよい。
 式(22)中のR14は、塩素原子またはスルホ基であり、n14が2~4の整数である場合、複数のR14は、互いに、同じまたは異なるものでもよい。
 式(22)中のR15は、塩素原子またはスルホ基であり、n15が2~4の整数である場合、複数のR15は、互いに、同じまたは異なるものでもよい。
 式(22)中のR16は、ニトロ基、スルホ基またはトリフルオロメチル基であり、n16が2~4の整数である場合、複数のR16は、互いに、同じまたは異なるものでもよい。
 式(31)中のn23およびn24は、それぞれ独立に、0~4の整数であり、好ましくは0または1であり、より好ましくは0である。
 式(31)中のR23は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n23が2~4の整数である場合、複数のR23は、互いに、同じまたは異なるものでもよい。R23は、好ましくはC1-3アルキル基であり、より好ましくはメチル基である。
 式(31)中のR24は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n24が2~4の整数である場合、複数のR24は、互いに、同じまたは異なるものでもよい。R23は、好ましくはC1-3アルキル基であり、より好ましくはメチル基である。
 2価の基(31)は、好ましくは式(31a)または式(31b):
Figure JPOXMLDOC01-appb-C000084
[式中、n23、n24、R23、R24および*は、前記の通りである。]
で表される2価の基であり、より好ましくは2価の基(31a)である。
 式(32)中のn25およびn26は、それぞれ独立に、0~4の整数であり、好ましくは0である。
 式(32)中のR25は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n25が2~4の整数である場合、複数のR25は、互いに、同じまたは異なるものでもよい。
 式(32)中のR26は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n26が2~4の整数である場合、複数のR26は、互いに、同じまたは異なるものでもよい。
 電子求引性ポリマー(A1)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 本発明の一態様において電子求引性ポリマー(A1)は、好ましくは式(23):
Figure JPOXMLDOC01-appb-C000085
で表される構成単位、および式(24):
Figure JPOXMLDOC01-appb-C000086
で表される構成単位を有する電子求引性ポリマー(A2)を含み、より好ましくは電子求引性ポリマー(A2)からなる。電子求引性ポリマー(A2)は、好ましくはランダム共重合体である。電子求引性ポリマー(A2)中の構成単位(23)および構成単位(24)は、いずれも、1種のみでもよく、2種以上でもよい。
 式(23)におけるm3およびm4の説明は、式(18)における説明と同じである。構成単位(23)は、好ましくは式(23a):
Figure JPOXMLDOC01-appb-C000087
で表される構成単位である。
 式(24)中のm5およびm6は、それぞれ独立に、1~4の整数であり、好ましくは4である。構成単位(24)は、好ましくは式(24a):
Figure JPOXMLDOC01-appb-C000088
で表される構成単位である。
 構成単位(23)(好ましくは構成単位(23a))の数と構成単位(24)(好ましくは構成単位(24a))の数との比(構成単位(23)の数/構成単位(24)の数)は、好ましくは0.1/99.9~99.9/0.1、より好ましくは1/99~99/1、さらに好ましくは30/70~95/5である。
 電子求引性ポリマー(A2)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 本発明の一態様において電子求引性ポリマー(A1)は、好ましくは前記構成単位(23)および式(25):
Figure JPOXMLDOC01-appb-C000089
で表される構成単位を有する電子求引性ポリマー(A3)を含み、より好ましくは電子求引性ポリマー(A3)からなる。電子求引性ポリマー(A3)は、好ましくはランダム共重合体である。電子求引性ポリマー(A3)中の構成単位(23)および構成単位(25)は、いずれも、1種のみでもよく、2種以上でもよい。
 電子求引性ポリマー(A3)中の構成単位(23)の説明は、前記電子求引性ポリマー(A2)の説明と同じである。
 式(25)中、m7は、1~4の整数であり、好ましくは4である。即ち、構成単位(25)は、好ましくは式(25a):
Figure JPOXMLDOC01-appb-C000090
で表される構成単位である。
 構成単位(23)(好ましくは構成単位(23a))の数と構成単位(25)(好ましくは構成単位(25a))の数との比(構成単位(23)の数/構成単位(25)の数)は、好ましくは0.1/99.9~99.9/0.1、より好ましくは1/99~99/1、さらに好ましくは30/70~95/5である。
 電子求引性ポリマー(A3)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 本発明の一態様において電子求引性ポリマー(A1)は、好ましくは前記構成単位(23)および式(26):
Figure JPOXMLDOC01-appb-C000091
で表される構成単位を有する電子求引性ポリマー(A4)を含み、より好ましくは電子求引性ポリマー(A4)からなる。電子求引性ポリマー(A4)は、好ましくはランダム共重合体である。電子求引性ポリマー(A4)中の構成単位(23)および構成単位(26)は、いずれも、1種のみでもよく、2種以上でもよい。
 電子求引性ポリマー(A4)中の構成単位(23)の説明は、前記電子求引性ポリマー(A2)の説明と同じである。
 式(26)におけるn12およびR12の説明は、式(21)における説明と同じである。構成単位(26)は、好ましくは式(26a):
Figure JPOXMLDOC01-appb-C000092
で表される構成単位である。
 構成単位(23)(好ましくは構成単位(23a))の数と構成単位(26)(好ましくは構成単位(26a))の数との比(構成単位(23)の数/構成単位(26)の数)は、好ましくは0.1/99.9~99.9/0.1、より好ましくは1/99~99/1、さらに好ましくは30/70~95/5である。
 電子求引性ポリマー(A4)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 本発明の一態様において電子求引性ポリマー(A1)は、好ましくは前記構成単位(23)および式(27):
Figure JPOXMLDOC01-appb-C000093
で表される構成単位を有する電子求引性ポリマー(A5)を含み、より好ましくは電子求引性ポリマー(A5)からなる。電子求引性ポリマー(A5)は、好ましくはランダム共重合体である。電子求引性ポリマー(A5)中の構成単位(23)および構成単位(27)は、いずれも、1種のみでもよく、2種以上でもよい。
 電子求引性ポリマー(A5)中の構成単位(23)の説明は、前記電子求引性ポリマー(A2)の説明と同じである。
 式(27)におけるn13~n16およびR13~R16の説明は、式(22)における説明と同じである。構成単位(27)は、好ましくは式(27a):
Figure JPOXMLDOC01-appb-C000094
で表される構成単位である。
 構成単位(23)(好ましくは構成単位(23a))の数と構成単位(27)(好ましくは構成単位(27a))の数との比(構成単位(23)の数/構成単位(27)の数)は、好ましくは0.1/99.9~99.9/0.1、より好ましくは1/99~99/1、さらに好ましくは30/70~95/5である。
 電子求引性ポリマー(A5)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 本発明の一態様において電子求引性ポリマー(A1)は、好ましくは前記構成単位(23)および式(33):
Figure JPOXMLDOC01-appb-C000095
で表される構成単位を有する電子求引性ポリマー(A6)を含み、より好ましくは電子求引性ポリマー(A6)からなる。電子求引性ポリマー(A6)は、好ましくはランダム共重合体である。電子求引性ポリマー(A6)中の構成単位(23)および構成単位(33)は、いずれも、1種のみでもよく、2種以上でもよい。
 電子求引性ポリマー(A6)中の構成単位(23)の説明は、前記電子求引性ポリマー(A2)の説明と同じである。
 式(33)におけるn23およびn24並びにR23およびR24の説明は、式(31)における説明と同じである。構成単位(33)は、好ましくは式(33a)または式(33b):
Figure JPOXMLDOC01-appb-C000096
で表される構成単位であり、より好ましくは構成単位(33a)である。構成単位(33)は、さらに好ましくは式(33a-1):
Figure JPOXMLDOC01-appb-C000097
で表される構成単位である。
 構成単位(23)(好ましくは構成単位(23a))の数と構成単位(33)(好ましくは構成単位(33a)または構成単位(33b)、より好ましくは構成単位(33a)、さらに好ましくは構成単位(33a-1))の数との比(構成単位(23)の数/構成単位(33)の数)は、好ましくは0.1/99.9~99.9/0.1、より好ましくは1/99~99/1、さらに好ましくは30/70~95/5である。
 電子求引性ポリマー(A6)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 本発明の一態様において電子求引性ポリマー(A1)は、好ましくは前記構成単位(23)および式(34):
Figure JPOXMLDOC01-appb-C000098
で表される構成単位を有する電子求引性ポリマー(A7)を含み、より好ましくは電子求引性ポリマー(A7)からなる。電子求引性ポリマー(A7)は、好ましくはランダム共重合体である。電子求引性ポリマー(A7)中の構成単位(23)および構成単位(34)は、いずれも、1種のみでもよく、2種以上でもよい。
 電子求引性ポリマー(A7)中の構成単位(23)の説明は、前記電子求引性ポリマー(A2)の説明と同じである。
 式(34)におけるn25およびn26並びにR25およびR26の説明は、式(32)における説明と同じである。構成単位(34)は、好ましくは式(34a):
Figure JPOXMLDOC01-appb-C000099
で表される構成単位である。
 構成単位(23)(好ましくは構成単位(23a))の数と構成単位(34)(好ましくは構成単位(34a))の数との比(構成単位(23)の数/構成単位(34)の数)は、好ましくは0.1/99.9~99.9/0.1、より好ましくは1/99~99/1、さらに好ましくは30/70~95/5である。
 電子求引性ポリマー(A7)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 本発明の一態様において電子求引性ポリマー(A1)は、好ましくは前記構成単位(23)からなる電子求引性ポリマー(A8)を含み、より好ましくは電子求引性ポリマー(A8)からなる。電子求引性ポリマー(A8)中の構成単位(23)は、1種のみでもよく、2種以上でもよい。電子求引性ポリマー(A8)中の構成単位(23)の説明は、前記電子求引性ポリマー(A2)の説明と同じである。
 電子求引性ポリマー(A8)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 好ましい態様において本発明の組成物は、電子供与性ポリマー(D1)と、電子求引性ポリマー(A1)とを含む。この態様における電子供与性ポリマー(D1)の量は、電子求引性ポリマー(A1)100重量部に対して、好ましくは1~10,000重量部、より好ましくは10~1,500重量部、さらに好ましくは20~900重量部である。
 好ましい別の態様において本発明の組成物は、電子供与性ポリマー(D2)および電子供与性ポリマー(D3)からなる群から選ばれる少なくとも一つと、電子求引性ポリマー(A2)~電子求引性ポリマー(A7)からなる群から選ばれる少なくとも一つとを含む。この態様における電子供与性ポリマー(D2)および電子供与性ポリマー(D3)からなる群から選ばれる少なくとも一つの合計量は、電子求引性ポリマー(A2)~電子求引性ポリマー(A7)からなる群から選ばれる少なくとも一つの合計量100重量部に対して、好ましくは1~10,000重量部、より好ましくは10~1,500重量部、さらに好ましくは20~900重量部、最も好ましくは50~500重量部である。
 好ましい別の態様において本発明の組成物は、電子供与性ポリマー(D2)および電子供与性ポリマー(D3)からなる群から選ばれる少なくとも一つと、電子求引性ポリマー(A2)~電子求引性ポリマー(A5)からなる群から選ばれる少なくとも一つとを含む。この態様における電子供与性ポリマー(D2)および電子供与性ポリマー(D3)からなる群から選ばれる少なくとも一つの合計量は、電子求引性ポリマー(A2)~電子求引性ポリマー(A5)からなる群から選ばれる少なくとも一つの合計量100重量部に対して、好ましくは1~10,000重量部、より好ましくは10~1,500重量部、さらに好ましくは20~900重量部、最も好ましくは50~500重量部である。
 好ましい別の態様において本発明の組成物は、電子供与性ポリマー(D2)または電子供与性ポリマー(D3)と、電子求引性ポリマー(A2)~電子求引性ポリマー(A7)のいずれか一つ(即ち、電子求引性ポリマー(A2)、電子求引性ポリマー(A3)、電子求引性ポリマー(A4)、電子求引性ポリマー(A5)、電子求引性ポリマー(A6)または電子求引性ポリマー(A7))を含む。この態様における電子供与性ポリマー(D2)または電子供与性ポリマー(D3)の量は、電子求引性ポリマー(A2)~電子求引性ポリマー(A7)のいずれか一つ100重量部に対して、好ましくは1~10,000重量部、より好ましくは10~1,500重量部、さらに好ましくは20~900重量部、最も好ましくは50~500重量部である。
 好ましい別の態様において本発明の組成物は、電子供与性ポリマー(D2)または電子供与性ポリマー(D3)と、電子求引性ポリマー(A2)~電子求引性ポリマー(A5)のいずれか一つ(即ち、電子求引性ポリマー(A2)、電子求引性ポリマー(A3)、電子求引性ポリマー(A4)または電子求引性ポリマー(A5))を含む。この態様における電子供与性ポリマー(D2)または電子供与性ポリマー(D3)の量は、電子求引性ポリマー(A2)~電子求引性ポリマー(A5)のいずれか一つ100重量部に対して、好ましくは1~10,000重量部、より好ましくは10~1,500重量部、さらに好ましくは20~900重量部、最も好ましくは50~500重量部である。
 好ましい別の態様において本発明の組成物は、電子供与性ポリマー(D2)および電子供与性ポリマー(D3)からなる群から選ばれる少なくとも一つと、電子求引性ポリマー(A8)とを含む。この態様における電子供与性ポリマー(D2)および電子供与性ポリマー(D3)からなる群から選ばれる少なくとも一つの合計量は、電子求引性ポリマー(A8)100重量部に対して、好ましくは1~10,000重量部、より好ましくは10~1,500重量部、さらに好ましくは20~900重量部、最も好ましくは50~500重量部である。
 好ましい別の態様において本発明の組成物は、電子供与性ポリマー(D2)または電子供与性ポリマー(D3)と、電子求引性ポリマー(A8)を含む。この態様における電子供与性ポリマー(D2)または電子供与性ポリマー(D3)の量は、電子求引性ポリマー(A8)100重量部に対して、好ましくは1~10,000重量部、より好ましくは10~1,500重量部、さらに好ましくは20~900重量部、最も好ましくは50~500重量部である。
 電子求引性ポリマー(A1)と電子供与性ポリマー(D1)とを含む本発明の組成物において、電子求引性ポリマー(A1)の構成単位の数と電子供与性ポリマー(D1)の構成単位の数との比(電子求引性ポリマー(A1)の構成単位の数/電子供与性ポリマー(D1)の構成単位の数)は、組成物中で形成される電荷移動錯体の量を向上させるために、好ましくは1/30~30/1、より好ましくは1/2~2/1、さらに好ましくは10/11~11/10である。
 電子求引性ポリマー(A1)(好ましくは電子求引性ポリマー(A2)~(A5))は、出発原料として市販品を使用する公知の反応によって合成することができる。市販品は、例えば、東京化成工業社、和光純薬工業社等から入手できる。例えば、後述の実施例に記載するような、テトラカルボン酸二無水物(例えば、ナフタレン-1,4,5,8-テトラカルボン酸二無水物)と、ジアミン(例えば、4,4’-ジアミノ-2,2’-ビフェニルジスルホン酸、4,4’-ジアミノオクタフルオロビフェニル、2,3,5,6-テトラフルオロ-1,4-フェニレンジアミン)との反応によって、電子求引性ポリマー(A1)を製造することができる。また、市販品に公知の反応で置換基を導入した化合物を、出発原料として用いてもよい。
 上述の電子求引性ポリマーは、例えば、Macromolecules, 2002, 35, 9022-9028、Macromol. Chem. Phys. 2016, 217, 654-663、またはJournal of Polymer Science: Part A: Polymer Chemistry, Vol. 41, 3901-3907 (2003)に記載の方法に準じて、合成することができる。
 前記反応におけるテトラカルボン酸二無水物の量は、ジアミン1molに対して、好ましくは0.98~1.02mol、より好ましくは0.99~1.01molである。
 電子求引性ポリマー(A1)の製造方法は、溶解工程、重合工程、および必要に応じて改質工程を含む。
 溶解工程は、ジアミン(0.1mM~5M)と、第三級アミン(0.1mM~20M)と、有機溶媒との混合物を加熱して、ジアミンを有機溶媒に溶解させる工程である。第三級アミンは、酸性基を有するジアミンを有機溶媒に溶解させるために用いる。混合物を加熱する温度としては特に限定しないが、20~160℃程度とすることでジアミンを容易に均一に溶媒中に溶解させることができる。
 第三級アミンとしては特に限定されず、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、N-エチル-N-メチルブチルアミン、トリブチルアミン、N,N-ジメチルベンジルアミン、N,N-ジエチルベンジルアミン、トリベンジルアミン、ジアザビシクロウンデセン等が挙げられる。なかでも、トリエチルアミンが好ましい。これら第三級アミンは、1種のみを用いてもよく、2種以上を併用してもよい。
 有機溶媒としては、高沸点および高極性を有するものが好ましく、例えば、フェノール、m-クレゾール、m-クロロフェノール、p-クロロフェノール、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリジノン、N-シクロヘキシル-2-ピロリジノン等が挙げられる。なかでも、m-クレゾール、ジメチルスルホキシドおよびN-メチル-2ピロリジノンが好ましい。これら有機溶媒は、1種のみを用いてもよく、2種以上を併用してもよい。
 なお、本明細書中、「m-」はメタを表し、「p-」はパラを表す。
 重合工程は、溶解工程で得られたジアミンの溶液にテトラカルボン酸二無水物(0.1mM~5M)を加え、得られた混合物を、有機酸(0.01mM~20M)の存在下で加熱して、重合させる工程である。有機酸は、重合および閉環反応の触媒として作用し、ポリアミック酸の生成およびこれの閉環によるイミド環形成を促進する。
 有機酸としては、高沸点であり、かつ上記有機溶媒への溶解性が高い化合物が好ましく、例えば、安息香酸、メチル安息香酸、ジメチル安息香酸、サリチル酸等が挙げられる。なかでも、安息香酸が好ましい。有機酸は、重合工程で存在すればよく、上記溶解工程の段階で添加してもよい。有機酸を添加する量としては特に限定しないが、有機酸として安息香酸を使用する場合、その量は、テトラカルボン酸二無水物1モルに対して、1~6モル程度が好ましい。また、反応混合物を加熱する温度は、少なくとも40℃以上である。この温度を、好ましくは100~190℃、より好ましくは140~180℃とすることで、効率よく重合反応が進行し、高分子量の電子求引性ポリマーであるポリイミドを得ることができる。
 改質工程は、重合工程で得られたポリイミド中の構造欠陥を是正する工程である。構造欠陥とは、ポリイミド中の未閉環部分(アミック酸)に基づく欠陥である。改質工程では、重合工程後の反応混合物を、重合工程の温度よりもさらに高い温度で加熱することで、脱水反応を行い、未閉環部分をイミド化させる。この温度は、少なくとも150℃以上が好ましく、190~220℃がさらに好ましい。この改質工程で、閉環反応が効率よく進行し、構造欠陥のないポリイミドを得ることができる。
 前記工程後、沈殿、ろ取、透析および乾燥等の公知の手段によって、電子求引性ポリマー(A1)を得ることができる。
 本発明の組成物において、電子供与性ポリマー(D)および電子求引性ポリマー(A)が電荷移動錯体を形成していることが好ましい。その結果、電子供与性ポリマー(D)および電子求引性ポリマー(A)が充分に混合し、本発明の組成物から強度および化学耐久性等に優れ、且つ難水溶性である膜を形成することができる。充分な混合(好ましくはマイクロメートルオーダーでの相分離がないこと)は、例えば、フッ素元素のSEM-EDXマッピングで確かめることができる。
 本発明の組成物の溶液を調製し、次いでこの溶液から溶媒を留去することによって、膜を製造することができる。本発明の組成物の溶液の調製方法に特に限定はない。例えば、溶媒中に、電子供与性ポリマー(D)および電子求引性ポリマー(A)を順次または同時に添加し、適宜加熱することによって、組成物の溶液を調製してもよい。また、電子供与性ポリマー(D)の溶液および電子求引性ポリマー(A)の溶液を別々に調製し、得られた溶液を混合することによって、組成物の溶液を調製してもよい。
 組成物の溶液を調製するための溶媒としては、例えば、水、メタノール、エタノール、トリフルオロエタノール、1-プロパノール、2-プロパノール、2-メチル-2-ブタノール、エチレングリコール、ベンジルアルコール、シクロヘキサン、ベンゼン、ニトロベンゼン、クロロホルム、四塩化炭素、ジエチルエーテル、テトラヒドロフラン、イソオキサゾール、1,4-ジオキサン、シクロペンチルメチルエーテル、アセトン、アセトニトリル、ニトロメタン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、スルホラン、1,3-プロパンスルトンが挙げられる。これらの溶媒は、1種のみを使用してもよく、2種以上を併用してもよい。これらの中でも、メタノール、エタノール、1-プロパノール、2-プロパノール、エチレングリコール、ベンジルアルコール、シクロヘキサン、ベンゼン、ニトロベンゼン、クロロホルム、四塩化炭素、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル、アセトン、アセトニトリル、ニトロメタン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、スルホラン、1,3-プロパンスルトンが好ましく、メタノール、エタノール、1-プロパノール、2-プロパノール、エチレングリコール、ジメチルスルホキシドがより好ましく、ジメチルスルホキシドがさらに好ましい。
 電子供与性ポリマー(D)および電子求引性ポリマー(A)を含む溶液中、電子供与性ポリマー(D)および電子求引性ポリマー(A)の合計の濃度は、溶液全体を基準に、好ましくは0.1~100重量%、より好ましくは0.5~10重量%である。
 組成物の溶液から溶媒を留去する方法に特に限定はなく、公知の手段(例えば加熱乾燥、減圧乾燥等)で溶媒を留去すればよい。膜の厚さは、電子供与性ポリマー(D)および電子求引性ポリマー(A)の仕込み量と、溶媒を留去する際に使用するシャーレの面積で調整が可能である。本発明の組成物から製造される膜の厚さは、好ましくは0.01~200μm、より好ましくは0.1~100μm、さらに好ましくは0.3~60μmである。
 本発明の組成物の溶液からの溶媒留去は、大気雰囲気で行ってもよく、不活性ガス(例えば、窒素、アルゴン)雰囲気で行ってもよい。また、この溶媒留去は、常圧下で行ってもよく、真空乾燥機または減圧ポンプなどを用いて減圧下で行ってもよい。
 本発明の組成物の溶液からの溶媒留去の温度は、好ましくは-10~200℃、より好ましくは40~160℃、さらに好ましくは50~130℃である。溶媒留去は、一定の温度で行ってもよく、温度を多段階的に変更して行ってもよい。
 本発明の組成物の溶液からの溶媒留去の時間は、好ましくは0.5~300時間、より好ましくは1~160時間、さらに好ましくは2~150時間である。
 本発明の組成物から膜を製造する際の条件(例えば、上述の溶媒の種類、溶液中のポリマーの濃度、並びに溶媒留去の雰囲気、圧力、温度および時間)は、適宜選択することができる。
 上述のようにして得られた本発明の組成物の膜を、熱処理することが好ましい。この熱処理によって、膜中の電荷移動錯体の形成量を増加させることができる。熱処理は、不活性ガス(例えば、窒素、アルゴン)雰囲気下で行うことが好ましい。熱処理の温度は、好ましくは40~200℃、より好ましくは60~180℃、さらに好ましくは70~160℃であり、その時間は、好ましくは0.01~200時間、より好ましくは0.5~160時間、さらに好ましくは1~80時間である。
 本発明の組成物から製造される膜(即ち、本発明の組成物を含む膜)は、様々な用途に使用することができる。本発明の組成物を含む膜の用途としては、例えば、燃料電池の電解質膜、触媒層中の電極触媒上の電解質被覆膜、ガス透過抑制膜等が挙げられる。これらの中で、燃料電池の電解質膜、および電極触媒上の電解質被覆膜が好ましく、燃料電池の電解質膜がより好ましい。本発明の組成物を含む燃料電池の電解質膜の厚さは、好ましくは0.1~200μm、より好ましくは2~50μm、さらに好ましくは5~20μmである。本発明の組成物を含む燃料電池の触媒層中の電極触媒上の電解質被覆膜の厚さは、好ましくは1~100nm、より好ましくは2~50nm、さらに好ましくは5~30nmである。
 以下に、本発明の合成例および実施例を、より具体的に説明するが、本発明はこれらに限定されるものではない。合成例および実施例で用いた分析装置およびその条件は以下のとおりである。
NMR:
 ポリマーのプロトン核磁気共鳴(H NMR)の化学シフトの値は、Bruker社製AV-400(400MHz)またはBruker社製AVANCE III(500MHz)を用いて重ジメチルスルホキシド(DMSO-d)溶媒中で測定し、化学シフトはテトラメチルシランを内部標準(0.0ppm)としたときのδ値(ppm)で示した。NMRスペクトルの記載において、「s」はシングレット、「brs」はブロードシングレット、「d」はダブレット、「t」はトリプレット、「dd」はダブルダブレット、「m」はマルチプレット、「br」はブロード、「J」はカップリング定数、「Hz」はヘルツを意味する。
 ポリマーのフッ素核磁気共鳴(19F NMR)の化学シフトの値は、Agilent社製INOVA 400(376MHz)を用いて重ジメチルスルホキシド(DMSO-d)溶媒中で測定し、化学シフトはトリフルオロ酢酸を外部標準(-79ppm)としたときのδ値(ppm)で示した。ベースラインの補間は、アキマ補間を用いた。
 「DMSO-d」は重ジメチルスルホキシドを意味する。
GPC:
 ポリマーの重量平均分子量(Mw)および数平均分子量(Mn)は、ゲル浸透クロマトグラフィー(GPC)で、分析条件Aにて測定し、標準ポリスチレンの較正曲線を用いて換算した。
<分析条件A>
 カラム:東ソー社製ガードカラム(Tosoh TSK guard column Super AW-H)、東ソー社製カラム(Tosoh TSK gel super AW 3000)およびカラム(Tosoh TSK gel super AW 5000)を、この順に直列に連結して使用した。
 カラム温度:40℃
 検出器:日本分光社製の示差屈折率検出器RI-2031および紫外可視検出器UV-2075
 溶離液:10mmol/Lの硝酸ナトリウムを溶解させたジメチルスルホキシド
UV-vis:
 ポリマーまたはポリマー組成物の紫外-可視分光法(UV-vis)の測定は、日本分光社製の紫外可視近赤外分光光度計V-650に、日本分光社製の積分球ユニットISV-722および日本分光社製のサンプルホルダーSSH-506を搭載して行った。
DSC:
 ポリマーまたはポリマー組成物の示差走査熱量(DSC)の測定は、分析条件Bにて行った。
<分析条件B>
 使用機器:NETZSCH社製の熱分析装置NETZSCH STA 449 F3 Jupiter
 窒素下
 降温速度:10℃/分
IEC[ミリ当量(meq)/g(乾燥重量)]:
 理論イオン交換容量(IEC)は、ポリマー1gあたりに含まれるスルホ基のモル数mmolとして算出した。
 ポリマーまたはポリマー組成物のイオン交換容量は、H NMRスペクトルから、ポリマー内に導入されたスルホ基含有モノマーのモル比を算出し、ポリマーの繰り返し単位あたりで導入されたスルホ基の量を算出した。ポリマー1gあたりのスルホ基のモル数を算出し、組成比から得られるユニット分子量で割ることで、IECを算出した。
プロトン伝導性:
 ポリマーまたはポリマー組成物の膜のプロトン伝導性については、Scribner社の膜抵抗測定システムMTS740を用いて、温度と加湿条件を設定し、膜厚み方向でのイオン伝導度を測定し、それからプロトン伝導性を算出した。
引張り破壊強度、引張り弾性率および引張り破壊伸び:
 日本電産シンポ社製の引張試験計測機器FGS-TV(型式FGP-5)を、室温で、クロスヘッド速度10mm/min、試験片サイズ12mm×2mmの条件で使用して、ポリマーまたはポリマー組成物の膜の応力ひずみ曲線を得た後、引張り破壊強度(MPa)、引張り弾性率(ヤング率)(GPa)および引張り破壊伸び(%)を算出した。
SEM-EDX:
 ポリマー組成物の膜の走査型電子顕微鏡-エネルギー分散型X線分光法(SEM-EDX)の測定は、膜をGATAN社製のエポキシ樹脂(品名G-2)中に包埋させ、次いでこれらを100℃にて1時間で加熱して硬化物を調製し、日本電子社製のクロスセクションポリッシャを用いて、得られた硬化物から膜の断面出しを行い、観察サンプルを調製した。次に日本電子社製のJSM-7800Fを用いて、加速電圧1kV、倍率3000倍の条件で前記観察サンプルの断面を観察した。この観察で得られた像において、Oxford Instruments社製EDXを用いて加速電圧7kVで、フッ素等の元素マッピングを行った。
水素ガス透過性:
 水素ガスの透過性の測定は、直径1cmの円に切り取った膜を、ポリイミドフィルムテープ(東レデュポン社製、品名「カプトンテープ」)およびアルミナテープで固定して、試験片を作製した。得られた試験片およびGTRテック社製のGTR-11A/31Aガスバリア試験システムを用いて、膜を通る乾燥水素透過速度を室温で測定した。さらに加圧したガス供給側と真空にしたガス透過側との差圧を200kPaに設定して、回収した水素ガスの体積をヤナコテクニクカルサイエンス製の熱伝導率検出器を備えたG3700Tガスクロマトグラフで測定し、差圧法にて、膜の水素ガス透過性を算出した。
燃料電池の発電試験1:
 膜電極接合体(Membrane Electrode Assembly、以下「MEA」と略称する)は、電解質膜、触媒インクおよびガス拡散層より作製した。
 触媒インクは、白金担持カーボンの電極触媒(田中貴金属工業社製、白金含有量:46.2重量%、品名「TEC10E50E」)、エタノール(和光純薬工業社製)、脱イオン水、およびナフィオン分散溶液(和光純薬工業社製、品名「5% Nafion Dispersion Solution DE521 CS type」)を用いて調製した。
 ガス拡散層は、疎水性カーボンペーパー(東レ社製、品名「EC-TP1-060T」)を用いた。
 エスエムテー社製のホモジナイザーUH-600で超音波を触媒インクに30分間照射した後、ノードソン社製のスプレー塗布装置V8Hを用いて、触媒インクを電解質膜の両面に塗布した。塗布条件は、一面分の電解質膜1cmあたりの白金量を0.3mgとし、ナフィオン割合(=100×ナフィオン固形分(重量)/(Pt/C電極触媒+ナフィオン固形分)(重量))を28重量%とした。GDEの組成物(VIII)の固形分(重量)は、カソード側が1.0026mg、アノード側が1.0243mgであった。
 次に、電極触媒を塗布した電解質膜を、132℃、0.3kNで180秒間の条件で熱圧着して、触媒被覆膜(Catalyst Coated Membrane、以下「CCM」と略称する)を作製し、続いてCCMの両面にガス拡散層を、132℃、0.6kNで20秒間の条件で熱圧着して、MEAを作製した。作製したMEAを、1cmの電極面積を有する単セル(エフシー開発社製、JARI標準セル)に配置した。
 アメテック社製のポテンショガルバノスタットVersaSTAT 4を用いて、分極曲線および出力密度を測定し、単セルのインピーダンスは、直流を0.6V、交流を3mVとし、ソーラトロン社製のSI 1287電気化学的インターフェースインピーダンスアナライザーを用いて4端子法にて測定し、セル抵抗値および開回路電圧(以下「OCV」と略称する)を測定した。なお、OCVは、単セルに電圧または電流を印加していない状態の電位である。発電試験の性能は、80℃、相対湿度95%、100mL/分の水素および大気圧の空気ガス流を用いて調べた。発電試験を行う前に、4時間のセルエージングを0.6Vで行った。アメテック社製のポテンショガルバノスタットVersaSTAT 4を用いて、電圧を制御して電流密度を測定した。また、ソーラトロン社製のSI 1287電気化学的インターフェースインピーダンスアナライザーを用いる4端子法にて、セル抵抗値を測定した。
燃料電池の発電試験2:
 MEAは、電解質膜、触媒インクおよびガス拡散層より作製した。
 電解質膜は、ナフィオン212(デュポン社製、東陽テクニカ社より購入、膜厚:50μm)を用いた。
 触媒インクは、白金担持カーボンの電極触媒(田中貴金属工業社製、白金含有量:46.2重量%、品名「TEC10E50E」)、ジメチルスルホキシド(和光純薬工業社製)、脱イオン水、および後述の実施例8で得られた組成物(VIII)(即ち、電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A4-1)を含む組成物)を用いて調製した。
 ガス拡散層は、SIGRACET社製のマイクロポーラス層(Micro Porous Layer、以下「MPL」と略称する)付のガス拡散層(GDL 24 BCH)を用いた。このMPLは、撥水性樹脂とカーボン材料とを主成分とするコーティング層である。
 エスエムテー社製のホモジナイザーUH-600で超音波を触媒インクに30分間照射した後、140~150℃に調節したホットプレート上に置いたMPL付のガス拡散層(GDL 24 BCH)に、スポイトを使用して触媒インクを塗布して、ガス拡散電極(Gas Diffusion Electrode、以下「GDE」と略称する)を作製した。塗布条件は、一面分の電解質膜1cmあたりの白金量を0.3mgとし、組成物(VIII)の割合(=100×組成物(VIII)の固形分(重量)/(Pt/C電極触媒+組成物(VIII)の固形分)(重量))を28重量%とした。
 次に、電解質膜の両面にGDEを、132℃、0.6kNで20秒間の条件で熱圧着して、MEAを作製した。
 燃料電池の発電試験1に記載の方法で、電圧および電流密度を測定した。
燃料電池の発電試験3:
 触媒インクと塗布する器具のみを変更したこと以外は燃料電池の発電試験2と同様の方法で、発電試験を行った。触媒インクは、白金担持カーボンの電極触媒(田中貴金属工業社製、白金含有量:46.2重量%、品名「TEC10E50E」)、ジメチルスルホキシド(和光純薬工業社製)、エタノール(和光純薬工業社製)、および後述の実施例11で得られた組成物(XI)(即ち、電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A4-1)を含む組成物)を用いて調製した。触媒インクを塗布する器具は、タミヤ社製のエアーブラシシステム No.23 スプレーワーク HG エアーブラシワイド トリガータイプ 74523を用いた。GDEの組成物(XI)の固形分(重量)は、カソード側が2.4233mg、アノード側が2.0954mgであった。
化学耐久性の評価:
 製造した膜およびナフィオン212(デュポン社製、東陽テクニカ社より購入、膜厚:51μm)を用いて、それらの化学耐久性を以下のようにして評価した。まず、硫酸鉄(II)七水和物を超純水に溶解した(得られた水溶液中の硫酸鉄(II)の濃度:20ppm(重量基準))。得られた硫酸鉄(II)水溶液を過酸化水素水溶液に添加した(得られた水溶液中の硫酸鉄(II)の濃度2ppm(重量基準)、過酸化水素(H)の濃度:3重量%)。得られた溶液を、以下「フェントン試験液」と称する。製造した膜を1cmの試料片に切り出し、フェントン試験液への浸漬前の試料片の重量を測定した。次いで試料片を、80℃のフェントン試験液中で1時間保持させた後、試料片をフェントン試験液から取り出し、取り出した試料片の表面をガーゼでふき取った後、フェントン試験液への浸漬後の試料片の重量を測定した。測定したフェントン試験液への浸漬前後の試料片の重量から、残存率(重量%)(=100×浸漬後の試料片の重量/浸漬前の試料片の重量)を算出し、試験片(=膜)の化学耐久性を評価した。
合成例1:2,6-ビス(オキシラン-2-イルメトキシ)ナフタレンの合成
 還流冷却器と滴下漏斗を反応容器に装着した後、2,6-ジヒドロキシナフタレン(7.36g、46.0mmol)、アセトン55mLおよび水10mLを、順次、反応容器に加えた。次に反応混合物を65℃に加熱して撹拌しながら、エピクロルヒドリン(28.8mL、368.0mmol)を加えた。この反応混合物に、アセトン20mLおよび水45mLの混合溶媒に溶かした水酸化カリウム(5.16g、91.9mmol)を滴下漏斗で2時間かけて滴下した後、12時間撹拌して反応を行った。反応終了後、溶媒からの沈殿物をろ取し、その沈殿物を水で洗浄して、目的化合物を白色固体として得た(6.7g、収率54%)。
合成例2:電子供与性ポリマー(D2-1)の合成
 反応容器の内部を窒素で置換した後、2,6-ビス(オキシラン-2-イルメトキシ)ナフタレン(1.246g、4.58mmol)、2,6-ジヒドロキシナフタレン(0.733g、4.58mmol)、トリス(2,6-ジメトキシフェニル)ホスフィン(16.2mg、36.6μmol)およびシクロヘキサノン(15mL)を、順次、反応容器に加えた。次に反応混合物を140℃にて12時間撹拌した後、ジメチルスルホキシド(10mL)を加えて、160℃でさらに40時間撹拌した。反応終了後、反応混合物をクロロホルムに滴下して、沈殿物を析出させた後、沈殿物をろ取し、減圧乾燥して、式(15):
Figure JPOXMLDOC01-appb-C000100
で表される構成単位を有する電子供与性ポリマー(D2-1)を茶褐色の固体として得た(1.86g、収率94%)。
NMR:
H NMR(400MHz, DMSO-d)δ:8.23-7.56(m, 30H), 3.49(brs, 2H), 1.38-1.24(m, 6H).
GPC:
 重量平均分子量(Mw)=1.7×10,000
 数平均分子量(Mn)=5.0×1,000
 分子量分布(Mw/Mn)=3.4
合成例3:電子供与性ポリマー(D3a-1)の合成
 反応容器の内部を窒素で置換した後、2,6-ビス(オキシラン-2-イルメトキシ)ナフタレン(1.246g、4.58mmol)、4,4’-ジヒドロキシジフェニルスルホン(1.150g、4.58mmol)、トリス(2,6-ジメトキシフェニル)ホスフィン(16.2mg、36.6μmol)およびシクロヘキサノン(15mL)を、順次、反応容器に加えた。次に反応混合物を120℃にて96時間撹拌して、反応を行った。反応終了後、反応混合物をメタノールに滴下して、沈殿物を析出させた後、沈殿物をろ取し、減圧乾燥して、式(16a):
Figure JPOXMLDOC01-appb-C000101
で表される構成単位を有する電子供与性ポリマー(D3a-1)を茶褐色の固体として得た(1.72g、収率72%)。
 図1に、電子供与性ポリマー(D3a-1)の1H NMR(400MHz, DMSO-d)のチャート示す。
GPC:
 重量平均分子量(Mw)=7.9×1,000
 数平均分子量(Mn)=1.1×1,000
 分子量分布(Mw/Mn)=7.2
合成例4:電子求引性ポリマー(A2-1)の合成
 反応容器の内部を窒素で置換した後、4,4’-ジアミノ-2,2’-ビフェニルジスルホン酸(4.14g、12.0mmol)、4,4’-ジアミノオクタフルオロビフェニル(0.44g、1.3mmol)、m-クレゾール(38g)、およびトリエチルアミン(3.38g、33.4mmol)を、順次、反応容器に加えた。次に反応混合物を140~145℃で撹拌して、固形物を溶解させた後、その中にナフタレン-1,4,5,8-テトラカルボン酸二無水物(3.65g、13.6mmol)、および安息香酸(3.27g、26.8mol)を加えた。次に反応混合物を、170~175℃にて27時間撹拌して、反応を行った。反応終了後、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に反応混合物を滴下して、沈殿物を析出させた後、沈殿物をろ取して、得られた沈殿物を、ジメチルスルホキシドに添加し、100~110℃に加熱して、溶解させて、ジメチルスルホキシド溶液を得た。
 次に得られたジメチルスルホキシド溶液を、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に滴下して、沈殿物を析出させ、ろ取した。沈殿物にジメチルスルホキシドを添加し、100~110℃に加熱して溶解させた後、ジメチルスルホキシド溶液を、メタノールに滴下して、沈殿物を析出させ、ろ取した。沈殿物にジメチルスルホキシドを添加し、100~110℃に加熱して溶解させた後、得られたジメチルスルホキシド溶液を、分画分子量1,000の透析膜(Spectra/Por 6, MWCO(Daltons) 1000, スペクトラムラボラトリー社製)を用いて4日間透析した。透析終了後、溶液を凍結乾燥して、式(23a)で表される構成単位および式(24a)で表される構成単位:
Figure JPOXMLDOC01-appb-C000102
を有するランダム共重合体である電子求引性ポリマー(A2-1)を黒茶色の固体として得た(5.4g、収率70%)。原料の仕込み量から算出される電子求引性ポリマー(A2-1)中の構成単位(23a)の数/構成単位(24a)の数は、9/1である。
NMR:
H NMR(400MHz, DMSO-d)δ:8.81(brs), 8.06(s), 7.78(brs), 7.43(brs).
 図2に、電子求引性ポリマー(A2-1)のH NMR(400MHz, DMSO-d)のチャートおよびピークに対応するプロトンの位置を示す化学式を示す。また、図3に、電子求引性ポリマー(A2-1)の19F NMR(400MHz, DMSO-d)のチャートを示す。
GPC:
 重量平均分子量(Mw)=7.5×10,000
 数平均分子量(Mn)=1.6×10,000
 分子量分布(Mw/Mn)=4.7
IEC:
 理論イオン交換容量(IEC)=3.13(meq/g)
プロトン伝導性:
 温度70℃、相対湿度92%にて15.1(mS/cm)
合成例5:電子求引性ポリマー(A2-2)の合成
 原料の仕込み量を変更したこと以外は合成例4と同様にして、式(23a)で表される構成単位および式(24a)で表される構成単位:
Figure JPOXMLDOC01-appb-C000103
を有するランダム共重合体である電子求引性ポリマー(A2-2)を茶褐色の固体として得た(7.0g、収率92%)。原料の仕込み量から算出される電子求引性ポリマー(A2-2)中の構成単位(23a)の数/構成単位(24a)の数は、61.7/38.3である。
IEC:
 理論イオン交換容量(IEC)=2.16(meq/g)
合成例6:電子求引性ポリマー(A3-1)
 反応容器の内部を窒素で置換した後、4,4’-ジアミノ-2,2’-ビフェニルジスルホン酸(4.15g、12.1mmol)、2,3,5,6-テトラフルオロ-1,4-フェニレンジアミン(0.240g、1.33mmol)、m-クレゾール(32g)、およびトリエチルアミン(3.41g、33.7mmol)を、順次、反応容器に加えた。次に反応混合物を140~145℃で撹拌して、固形物を溶解させた後、その中にナフタレン-1,4,5,8-テトラカルボン酸二無水物(3.65g、13.6mmol)、および安息香酸(3.26g、26.7mol)を加え、170~175℃にて22時間撹拌して、反応を行った。
 反応終了後、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に反応混合物を滴下して、沈殿物を析出させ、ろ取した後、沈殿物を得た。この沈殿物にジメチルスルホキシドを加え、100~110℃に加熱して、溶解させて、ジメチルスルホキシド溶液を得た。次にメタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))にジメチルスルホキシド溶液を滴下して、沈殿物を析出させ、ろ取した後、沈殿物を得た。この操作を2回繰り返し、得られた沈殿物を減圧乾燥して、式(23a)で表される構成単位および式(25a)で表される構成単位:
Figure JPOXMLDOC01-appb-C000104
を有するランダム共重合体である電子求引性ポリマー(A3-1)を黒茶色の固体として得た(4.2g、収率56%)。原料の仕込み量から算出される電子求引性ポリマー(A3-1)中の構成単位(23a)の数/構成単位(25a)の数は、9/1である。
NMR:
H NMR(400MHz, DMSO-d)δ:8.81(brs), 8.06(s), 7.77(brs), 7.44(brs).
 図4に、電子求引性ポリマー(A3-1)のH NMR(400MHz, DMSO-d)のチャートおよびピークに対応するプロトンの位置を示す化学式を示す。また、図5に、電子求引性ポリマー(A3-1)の19F NMR(400MHz, DMSO-d)のチャートを示す。
GPC:
 重量平均分子量(Mw)=7.5×10,000
 数平均分子量(Mn)=1.6×10,000
 分子量分布(Mw/Mn)=4.7
IEC:
 理論イオン交換容量(IEC)=3.21(meq/g)
プロトン伝導性:
 温度70℃、相対湿度92%にて40.0(mS/cm)
合成例7:電子求引性ポリマー(A4-1)の合成
 反応容器の内部を窒素で置換した後、4,4’-ジアミノ-2,2’-ビフェニルジスルホン酸(4.15g、12.1mmol)、2,3,5,6-テトラフルオロ-1,4-フェニレンジアミン(0.230g、1.31mmol)、m-クレゾール(31g)、およびトリエチルアミン(3.41g、33.7mmol)を、順次、反応容器に加えた。次に反応混合物を140~145℃で撹拌して、固形物を溶解させた後、その中にナフタレン-1,4,5,8-テトラカルボン酸二無水物(3.65g、13.6mmol)、および安息香酸(3.38g、27.7mol)を加え、170~175℃にて22時間撹拌して、反応を行った。
 反応終了後、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に反応混合物を滴下して、沈殿物を析出させ、ろ取した後、沈殿物を得た。この沈殿物にジメチルスルホキシドを加え、100~110℃に加熱して、溶解させた。次にメタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))にジメチルスルホキシド溶液を滴下して、沈殿物を析出させ、ろ取した後、沈殿物を得た。この操作を2回繰り返し、得られた沈殿物を減圧乾燥して、式(23a)で表される構成単位および式(26a)で表される構成単位:
Figure JPOXMLDOC01-appb-C000105
を有するランダム共重合体である電子求引性ポリマー(A4-1)を黒茶色の固体として得た(5.5g、収率74%)。原料の仕込み量から算出される電子求引性ポリマー(A4-1)中の構成単位(23a)の数/構成単位(26a)の数は、9/1である。
NMR:
H NMR(400MHz, DMSO-d)δ:9.10―8.40(m), 8.05(s), 7.79(brs), 7.45(brs).
 図6に、電子求引性ポリマー(A4-1)のH NMR(400MHz, DMSO-d)のチャートおよびピークに対応するプロトンの位置を示す化学式を示す。
GPC:
 重量平均分子量(Mw)=8.4×10,000
 数平均分子量(Mn)=2.7×10,000
 分子量分布(Mw/Mn)=3.1
IEC:
 理論イオン交換容量(IEC)=3.22(meq/g)
合成例8:電子求引性ポリマー(A5-1)および(A5-2)の合成
 Macromol. Chem. Phys. 2016, 217, 654-663に記載の方法と同様にして、式(23a)で表される構成単位および式(27a)で表される構成単位:
Figure JPOXMLDOC01-appb-C000106
を有するランダム共重合体である電子求引性ポリマー(A5-1)および(A5-2)を得た(電子求引性ポリマー(A5-1):7.8g、収率91%;電子求引性ポリマー(A5-2):8.3g、収率92%)。原料の仕込み量から算出される電子求引性ポリマー(A5-1)および(A5-2)中の構成単位(23a)の数/構成単位(27a)の数は、それぞれ順に、9/1および61.7/38.3である。
合成例9:電子供与性ポリマー(D4-1)の合成
 反応容器の内部を窒素で置換した後、2,6-ジヒドロキシナフタレン(1.246g、10.00mmol)、ジフェニルスルホン-4,4’-ジクロロ-3,3’-ジスルホン酸二ナトリウム(3.439g、7.00mmol)、4,4’-ジクロロジフェニルスルホン(0.223g、0.78mmol)、炭酸カリウム(1.290g、9.34mmol)、ヨウ化カリウム(1.033g、6.22mmol)およびトルエン(25mL)を順次、反応容器に加えた。次に反応容器にディーン・スターク装置を取り付け、反応混合物を3時間、加熱還流しながら撹拌することで、生成する水を溶媒との共沸を利用して反応混合物の系外に除去した。次に、溶媒のトルエンを反応混合物から留去しながら、170℃まで反応容器を加熱した後、反応容器の温度を170℃に24時間保った。反応終了後、反応混合物を20~25℃に冷却した後、ジメチルアセトアミド(15mL)で反応混合物を希釈し、その反応混合物にさらに水(300mL)および塩化ナトリウム(30g)を加えて、沈殿物を析出させ、ろ取した。得られた沈殿物にジメチルスルホキシドを加え、溶解させて、ジメチルスルホキシド溶液を調製した。次に、得られたジメチルスルホキシド溶液を、分画分子量1,000の透析膜(Spectra/Por 6, MWCO(Daltons) 1000, スペクトラムラボラトリー社製)を用いて、透析した。この透析では、ジメチルスルホキシド溶媒で、副生成物を取り除き、次に、塩酸を透析膜のチューブに加えることで、ポリマー中の塩形態のスルホ基を遊離酸の形態に変換させ、次いで透析の溶媒のpHが中性になるまでの4日間、透析した。透析終了後、溶液を凍結乾燥して、式(28)で表される構成単位および式(29)で表される構成単位:
Figure JPOXMLDOC01-appb-C000107
を有するランダム共重合体である電子供与性ポリマー(D4-1)を茶褐色の固体として得た(2.7g、収率67%)。原料の仕込み量から算出される電子供与性ポリマー(D4-1)中の構成単位(28)の数/構成単位(29)の数は、9/1である。
GPC:
 ピークトップ分子量(Mp)=1.2×10,000
 本明細書中、「ピークトップ分子量」とは、「GPCチャートのピークトップの分子量」を意味する。
IEC:
 イオン交換容量(IEC)=3.04(meq/g)
合成例10~12:電子供与性ポリマー(D4-2)~(D4-4)の合成
 原料の仕込み量を変更したこと以外は合成例9と同様にして、式(28)で表される構成単位および式(29)で表される構成単位:
Figure JPOXMLDOC01-appb-C000108
を有するランダム共重合体である電子供与性ポリマー(D4-2)~(D4-4)を得た(電子供与性ポリマー(D4-2):1.8g、収率46%;電子供与性ポリマー(D4-3):2.4g、収率46%;電子供与性ポリマー(D4-4):2.9g、収率80%)。原料の仕込み量から算出される電子供与性ポリマー(D4-2)~(D4-4)中の構成単位(28)の数/構成単位(29)の数は、それぞれ順に、8/2、7/3および6/4である。
 図7に、電子供与性ポリマー(D4-2)のH NMR(400MHz, DMSO-d)のチャートを示す。
(1)電子供与性ポリマー(D4-2)
GPC:
 ピークトップ分子量(Mp)=32.0×10,000
IEC:
 イオン交換容量(IEC)=2.75(meq/g)
プロトン伝導性:
 温度120℃、相対湿度95%にて545(mS/cm)
(2)電子供与性ポリマー(D4-3)
GPC:
 ピークトップ分子量(Mp)=18.0×10,000
IEC:
 イオン交換容量(IEC)=2.47(meq/g)
プロトン伝導性:
 温度120℃、相対湿度95%にて384(mS/cm)
(3)電子供与性ポリマー(D4-4)
GPC:
 ピークトップ分子量(Mp)=3.3×10,000
IEC:
 イオン交換容量(IEC)=2.25(meq/g)
プロトン伝導性:
 温度120℃、相対湿度95%にて193(mS/cm)
合成例13:電子供与性ポリマー(D3b-1)の合成
 反応容器の内部を窒素で置換した後、合成例3で得られた電子供与性ポリマー(D3a-1)(212mg、0.410mmol)、ピリジン-三酸化硫黄コンプレックス(65.0g、0.410mmol)およびジメチルホルムアミド(0.7ml)を、順次、反応容器に加えた。次に反応混合物を20~25℃で12時間撹拌して、反応を行った。反応終了後、反応混合物をクロロホルムに滴下し、沈殿物を水に再溶解させ、分画分子量1,000の透析膜(Spectra/Por 6, MWCO(Daltons) 1000, スペクトラムラボラトリー社製)と水を用いて透析を行った。透析後の水溶液を減圧乾固して、式(16b):
Figure JPOXMLDOC01-appb-C000109
で表される構成単位を有する電子供与性ポリマー(D3b-1)を赤橙色の固体として得た(225mg、収率81%)。
 図8に、電子供与性ポリマー(D3b-1)のH NMR(400MHz, DMSO-d)のチャートを示す。
合成例14:電子求引性ポリマー(A6-1)の合成
 反応容器の内部を窒素で置換した後、4,4’-ジアミノ-2,2’-ビフェニルジスルホン酸(2.00g、5.81mmol)、2,2-ビス(アミノフェニル)ヘキサフルオロプロパン(0.216g、0.646mmol)、m-クレゾール(17g)、およびトリエチルアミン(1.64g、16.2mmol)を、順次、反応容器に加えた。次に反応混合物を140~145℃で撹拌して、固形物を溶解させた後、その中にナフタレン-1,4,5,8-テトラカルボン酸二無水物(1.77g、6.58mmol)、および安息香酸(1.58g、12.9mol)を加え、170~175℃にて22時間撹拌して、反応を行った。反応終了後、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に反応混合物を滴下して、沈殿物を析出させた後、沈殿物をろ取した。
 得られた沈殿物にジメチルスルホキシドを加え、100~110℃に加熱して、溶解させて、ジメチルスルホキシド溶液を得た。次に、得られたジメチルスルホキシド溶液を、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に滴下して、沈殿物を析出させ、ろ取した。得られた沈殿物へのジメチルスルホキシドの添加および溶解、ジメチルスルホキシド溶液の前記混合溶媒への滴下、並びに析出した沈殿物のろ取の操作を再度行った。
 得られた沈殿物にジメチルスルホキシドを添加し、100~110℃に加熱して溶解させた後、得られたジメチルスルホキシド溶液を、分画分子量3,500の透析膜(Spectra/Por 7, MWCO(Daltons) 3500, スペクトラムラボラトリー社製)を用いて4日間透析した。透析終了後、溶液を乾燥して、式(23a)で表される構成単位および式(33a-1)で表される構成単位:
Figure JPOXMLDOC01-appb-C000110
を有するランダム共重合体である電子求引性ポリマー(A6-1)を黒茶色の固体として得た(2.9g、収率78%)。原料の仕込み量から算出される電子求引性ポリマー(A6-1)中の構成単位(23a)の数/構成単位(33a-1)の数は、9/1である。
NMR:
H NMR(500MHz, DMSO-d)δ:8.80―8.76(m), 8.04(s), 7.79-7.73(m), 7.41(brs).
GPC:
 重量平均分子量(Mw)=11×10,000
 数平均分子量(Mn)=2.8×10,000
 分子量分布(Mw/Mn)=3.9
合成例15:電子求引性ポリマー(A7-1)の合成
 反応容器の内部を窒素で置換した後、4,4’-ジアミノ-2,2’-ビフェニルジスルホン酸(2.00g、5.81mmol)、1,1-ビス(4-アミノフェニル)シクロヘキサン(0.172g、0.642mmol)、m-クレゾール(17g)、およびトリエチルアミン(1.64g、16.2mmol)を、順次、反応容器に加えた。次に反応混合物を140~145℃で撹拌して、固形物を溶解させた後、その中にナフタレン-1,4,5,8-テトラカルボン酸二無水物(1.77g、6.58mmol)、および安息香酸(1.58g、12.9mol)を加え、170~175℃にて22時間撹拌して、反応を行った。反応終了後、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に反応混合物を滴下して、沈殿物を析出させ、沈殿物をろ取した。
 得られた沈殿物にジメチルスルホキシドを加え、100~110℃に加熱して、溶解させた。次に、得られたジメチルスルホキシド溶液を、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に滴下して、沈殿物を析出させ、ろ取した。得られた沈殿物へのジメチルスルホキシドの添加および溶解、ジメチルスルホキシド溶液の前記混合溶媒への滴下、並びに析出した沈殿物のろ取の操作を再度行った。
 得られた沈殿物にジメチルスルホキシドを添加し、100~110℃に加熱して溶解させた後、得られたジメチルスルホキシド溶液を、分画分子量3,500の透析膜(Spectra/Por 7, MWCO(Daltons) 3500, スペクトラムラボラトリー社製)を用いて4日間透析した。透析終了後、溶液を乾燥して、式(23a)で表される構成単位および式(34a)で表される構成単位:
Figure JPOXMLDOC01-appb-C000111
を有するランダム共重合体である電子求引性ポリマー(A7-1)を黒茶色の固体として得た(2.8g、収率76%)。原料の仕込み量から算出される電子求引性ポリマー(A7-1)中の構成単位(23a)の数/構成単位(34a)の数は、9/1である。
NMR:
H NMR(500MHz, DMSO-d)δ:8.99―8.75(m), 8.05(s), 7.78-7.60(m), 7.44(brs), 1.62-1.54(m).
GPC:
 重量平均分子量(Mw)=8.4×10,000
 数平均分子量(Mn)=2.2×10,000
 分子量分布(Mw/Mn)=3.8
合成例16:電子求引性ポリマー(A8-1)の合成
 反応容器の内部を窒素で置換した後、4,4’-ジアミノ-2,2’-ビフェニルジスルホン酸(10.33g、30.0mmol)、m-クレゾール(75mL)、およびトリエチルアミン(7.59g、75.0mmol)を、順次、反応容器に加えた。次に反応混合物を140~145℃で撹拌して、固形物を溶解させた後、その中にナフタレン-1,4,5,8-テトラカルボン酸二無水物(8.21g、30.6mmol)、および安息香酸(7.33g、60.0mmol)を加え、180~185℃にて20時間撹拌して、さらに190~195℃にて5時間撹拌して反応を行った。反応終了後、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に反応混合物を滴下して、沈殿物を析出させ、沈殿物をろ取した。
 得られた沈殿物にジメチルスルホキシドを加え、100~110℃に加熱して、溶解させた。次に、得られたジメチルスルホキシド溶液を、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に滴下して、沈殿物を析出させ、ろ取した。得られた沈殿物へのジメチルスルホキシドの添加および溶解、ジメチルスルホキシド溶液の前記混合溶媒への滴下、並びに析出した沈殿物のろ取の操作を再度行った。
 得られた沈殿物にジメチルスルホキシドを添加し、100~110℃に加熱して溶解させた後、得られたジメチルスルホキシド溶液を、分画分子量3,500の透析膜(Spectra/Por 7, MWCO(Daltons) 3500, スペクトラムラボラトリー社製)を用いて4日間透析した。透析終了後、溶液を乾燥して、式(23a)で表される構成単位:
Figure JPOXMLDOC01-appb-C000112
からなる電子求引性ポリマー(A8-1)を黒茶色の固体として得た(12.5g、収率70%)。
NMR:
H NMR(500MHz, DMSO-d)δ:9.09-8.51(br), 8.04(s), 7.76(brs), 7.62-7.25(m).
GPC:
 重量平均分子量(Mw)=13×10,000
 数平均分子量(Mn)=5.9×1,000
 分子量分布(Mw/Mn)=21
実施例1:電子供与性ポリマー(D2-1)および電子求引性ポリマー(A2-1)の組成物(I)の膜の製造
 電子供与性ポリマー(D2-1)をジメチルスルホキシドに溶解させて調製した溶液(408.9mg、ポリマー濃度:10重量%)に、電子求引性ポリマー(A2-1)をジメチルスルホキシドに溶解させて調製した溶液(3.26g、ポリマー濃度:3.3重量%)を加えた。次に溶液を撹拌した後、ポリテトラフルオロエチレン(PTFE)製の5μmのシリンジフィルターを用いて該溶液をろ過し、得られたろ液を、直径4cmのシャーレに加え、該シャーレを温度120℃に設定したホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、80℃で10時間減圧乾燥して、電子供与性ポリマー(D2-1)および電子求引性ポリマー(A2-1)の組成物(I)の膜を得た(茶色透明、膜厚:44μm)。
実施例2:電子供与性ポリマー(D2-1)および電子求引性ポリマー(A2-1)の組成物(II)の膜の製造
 電子供与性ポリマー(D2-1)のジメチルスルホキシド溶液(ポリマー濃度:10重量%)と、電子求引性ポリマー(A2-1)のジメチルスルホキシド溶液(ポリマー濃度:3.3重量%)との比率を変更したこと以外は実施例1と同様にして、組成物(II)の膜を製造した。
 表1に、実施例1および2で得られた組成物(I)および(II)の膜中の電子供与性ポリマー(D2-1)および電子求引性ポリマー(A2-1)の量および膜厚を記載する。なお、本明細書中の表および図では、「電子供与性ポリマー(D2-1)」等を「(D2-1)」等と略称する。
 また、表1に、組成物中の電子求引性ポリマー(A2-1)のナフタレンテトラカルボン酸ジイミド部分(a)と電子供与性ポリマー(D2-1)のジオキシナフタレン部分(d)とのモル比(=ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル)/ジオキシナフタレン部分(d)の数(モル))を記載する。なお、本明細書では、このモル比を「(A2-1)/(D2-1)のモル比」と略称することがある。
 また、表1に、組成物中の電子求引性ポリマー(A2-1)のナフタレンテトラカルボン酸ジイミド部分(a)および電子供与性ポリマー(D2-1)のジオキシナフタレン部分(d)の合計に対するナフタレンテトラカルボン酸ジイミド部分(a)のモル分率(%)(=[(ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル))/{(ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル))+(ジオキシナフタレン部分(d)の数(モル))}]×100)を記載する。なお、本明細書および図面では、このモル分率を「(A2-1)のモル分率」と略称することがある。
Figure JPOXMLDOC01-appb-T000113
参考例1:電子求引性ポリマー(A2-1)のみの膜の製造
 電子求引性ポリマー(A2-1)(150mg)をジメチルスルホキシド(5g)に溶解させて調製した溶液を、綿栓を用いて該溶液をろ過し、得られたろ液を直径4cmのシャーレに加え、該シャーレを温度60℃にしたホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、80℃で24時間減圧乾燥して、電子求引性ポリマー(A2-1)の膜を得た(薄茶色透明、膜厚24μm)。
参考例2:電子求引性ポリマー(A6-1)のみの膜の製造
 電子求引性ポリマー(A6-1)(151mg)をジメチルスルホキシド(10g)に溶解させて調製した溶液を、ポリテトラフルオロエチレン(PTFE)製の5μmのシリンジフィルターを用いて該溶液をろ過し、得られたろ液を、直径4cmのシャーレに5.0g加え、該シャーレを温度80℃にしたホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、80℃で12時間減圧乾燥して、電子求引性ポリマー(A6-1)の膜を得た(茶色透明、膜厚70μm)。
参考例3:電子求引性ポリマー(A7-1)のみの膜の製造
 電子求引性ポリマー(A7-1)(150mg)をジメチルスルホキシド(5g)に溶解させて調製した溶液を、ポリテトラフルオロエチレン(PTFE)製の5μmのシリンジフィルターを用いて該溶液をろ過し、得られたろ液を、直径4cmのシャーレに2.5g加え、該シャーレを温度80℃にしたホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、80℃で12時間減圧乾燥して、電子求引性ポリマー(A7-1)の膜を得た(茶色透明、膜厚48μm)。
実施例3:電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A2-1)の組成物(III)の膜の製造
 電子供与性ポリマー(D3a-1)をジメチルスルホキシドに溶解させて調製した溶液(185mg、ポリマー濃度:10重量%)と、電子求引性ポリマー(A2-1)をジメチルスルホキシドに溶解させて調製した溶液(2.71g、ポリマー濃度:3重量%)とを、順次、ガラス容器に加えた。次に溶液を撹拌した後、綿栓を用いて該溶液をろ過し、得られたろ液を直径4cmのシャーレに加え、該シャーレを温度60℃にしたホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、60℃で24時間減圧乾燥して、電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A2-1)の組成物(III)の膜を得た(茶色透明、膜厚13μm)。
実施例4~6:電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A2-1)の組成物(IV)~(VI)の膜の製造
 電子供与性ポリマー(D3a-1)のジメチルスルホキシド溶液(ポリマー濃度:10重量%)と、電子求引性ポリマー(A2-1)のジメチルスルホキシド溶液(ポリマー濃度:3重量%)との比率を変更したこと以外は実施例3と同様にして、組成物(IV)~(VI)の膜を製造した。
電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A2-1)の組成物(IV)の膜のプロトン伝導性:
 温度80℃、相対湿度90%にて20.1(mS/cm)
電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A2-1)の組成物(V)の膜のプロトン伝導性:
 温度80℃、相対湿度90%にて4.1(mS/cm)
 表2に、実施例3~6で得られた組成物(III)~(VI)の膜中の電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A2-1)の量および膜厚を記載する。
 また、表2に、組成物中の電子求引性ポリマー(A2-1)のナフタレンテトラカルボン酸ジイミド部分(a)と電子供与性ポリマー(D3a-1)のジオキシナフタレン部分(d)とのモル比(=ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル)/ジオキシナフタレン部分(d)の数(モル))を記載する。なお、本明細書では、このモル比を「(A2-1)/(D3a-1)のモル比」と略称することがある。
 また、表2に、組成物中の電子求引性ポリマー(A2-1)のナフタレンテトラカルボン酸ジイミド部分(a)および電子供与性ポリマー(D3a-1)のジオキシナフタレン部分(d)の合計に対するナフタレンテトラカルボン酸ジイミド部分(a)のモル分率(%)(=[(ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル))/{(ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル))+(ジオキシナフタレン部分(d)の数(モル))}]×100)を記載する。なお、本明細書および図面では、このモル分率を「(A2-1)のモル分率」と略称することがある。
Figure JPOXMLDOC01-appb-T000114
実施例7:電子供与性ポリマー(D2-1)および電子求引性ポリマー(A3-1)の組成物(VII)の膜の製造
 電子供与性ポリマー(D2-1)をジメチルスルホキシドに溶解させて調製した溶液(0.17g、ポリマー濃度:9.46重量%)と、電子求引性ポリマー(A3-1)をジメチルスルホキシドに溶解させて調製した溶液(3.84g、ポリマー濃度:2.19重量%)とを、順次、ガラス容器に加えた。次に溶液を撹拌した後、ポリテトラフルオロエチレン(PTFE)製の5μmのシリンジフィルターを用いて該溶液をろ過し、得られたろ液を、直径4cmのシャーレに加え、該シャーレを温度120℃に設定したホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、110℃で10時間減圧乾燥して、電子供与性ポリマー(D2-1)および電子求引性ポリマー(A3-1)の組成物(VII)の膜を得た(茶色透明、膜厚:21.1μm)。
実施例8:電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A4-1)を含む組成物(VIII)の製造
 電子供与性ポリマー(D3a-1)(12.8mg)と、電子求引性ポリマー(A4-1)(25.1mg)をサンプル瓶に加えた後、ジメチルスルホキシド(5.50g)と水(0.49g)、順次、サンプル瓶に加えた。次に溶液を撹拌し、80~90℃で加熱して、電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A4-1)を含む組成物(VIII)を得た。
実施例9:電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A6-1)の組成物(IX)の膜の製造
 電子供与性ポリマー(D3a-1)をジメチルスルホキシドに溶解させて調製した溶液(0.697g、ポリマー濃度:10重量%)と、電子求引性ポリマー(A6-1)をジメチルスルホキシドに溶解させて調製した溶液(5.00g、ポリマー濃度:1.5重量%)とを、順次、ガラス容器に加えた。次に溶液を撹拌した後、ポリテトラフルオロエチレン(PTFE)製の5μmのシリンジフィルターを用いて該溶液をろ過し、得られたろ液を、直径4cmのシャーレに加え、該シャーレを温度120℃に設定したホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、100℃で12時間減圧乾燥して、電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A6-1)の組成物(IX)の膜を得た(茶色透明、膜厚:88μm)。
電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A6-1)の組成物(IX)の膜のプロトン伝導性:
 温度90℃、相対湿度80%にて2.5(mS/cm)
実施例10:電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A7-1)の組成物(X)の膜の製造
 電子供与性ポリマー(D3a-1)をジメチルスルホキシドに溶解させて調製した溶液(0.698g、ポリマー濃度:10重量%)と、電子求引性ポリマー(A7-1)をジメチルスルホキシドに溶解させて調製した溶液(2.46g、ポリマー濃度:3.1重量%)とを、順次、ガラス容器に加えた。次に溶液を撹拌した後、ポリテトラフルオロエチレン(PTFE)製の5μmのシリンジフィルターを用いて該溶液をろ過し、得られたろ液を、直径4cmのシャーレに加え、該シャーレを温度120℃に設定したホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、100℃で12時間減圧乾燥して、電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A7-1)の組成物(X)の膜を得た(茶色透明、膜厚:47μm)。
電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A7-1)の組成物(X)の膜のプロトン伝導性:
 温度90℃、相対湿度80%にて14(mS/cm)
実施例11:電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A4-1)を含む組成物(XI)の製造
 電子供与性ポリマー(D3a-1)(12.8mg)と、ジメチルスルホキシド(3mL)とを、順次、サンプル瓶に加えた。次に溶液を撹拌し、80~90℃で加熱して溶液にした。次に、電子供与性ポリマー(D3a-1)のジメチルスルホキシド溶液に、電子求引性ポリマー(A4-1)(25.1mg)を加えた後、エタノール(2mL)を加え、電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A4-1)を含む組成物(XI)を得た。
実施例12:熱処理組成物(XII)の膜の製造
 実施例4で得られた組成物(IV)の膜を、ガラス製のコック付真空デシケーター中に入れた後、デシケーター内を窒素ガスに置換した。次に、この真空デシケーターを130℃に設定した定温乾燥器に2時間静置することによって、熱処理組成物(XII)の膜を得た(濃茶色透明、膜厚18μm)。
実施例13および14:熱処理組成物(XIII)および(XIV)の膜の製造
 実施例4で得られた組成物(IV)の膜に代えて、実施例5または6で得られた組成物(V)または(VI)の膜を使用したこと以外は実施例12と同様にして、熱処理組成物(XIII)および(XIV)の膜を製造した。
 表3に、実施例12~14で得られた熱処理組成物、熱処理に使用した出発組成物、(A2-1)/(D3a-1)のモル比、(A2-1)のモル分率および膜厚を記載する。
Figure JPOXMLDOC01-appb-T000115
参考例4:熱処理電子求引性ポリマー(A2-1)の膜の製造
 実施例4で得られた組成物(IV)の膜に代えて、参考例1で得られた電子求引性ポリマー(A2-1)の膜を使用したこと以外は実施例12と同様にして、熱処理電子求引性ポリマー(A2-1)の膜を得た(薄茶色透明、膜厚24μm)。
実施例15:電子供与性ポリマー(D2-1)および電子求引性ポリマー(A8-1)の組成物(XV)の膜の製造
 電子供与性ポリマー(D2-1)をジメチルスルホキシドに溶解させて調製した溶液(158.0mg、ポリマー濃度:10重量%)に、電子求引性ポリマー(A8-1)をジメチルスルホキシドに溶解させて調製した溶液(2.81g、ポリマー濃度:3重量%)を加えた。次に溶液を撹拌した後、綿栓を用いて該溶液をろ過し、得られたろ液を直径4cmのシャーレに加え、該シャーレを温度60℃にしたホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、80℃で24時間減圧乾燥して、電子供与性ポリマー(D2-1)および電子求引性ポリマー(A8-1)の組成物(XV)の膜を得た(茶色透明、膜厚:11μm)。
組成物(XV)の膜
 理論イオン交換容量(IEC)=2.92(meq/g)
実施例16および17:電子供与性ポリマー(D2-1)および電子求引性ポリマー(A8-1)の組成物(XVI)および(XVII)の膜の製造
 電子供与性ポリマー(D2-1)のジメチルスルホキシド溶液(ポリマー濃度:10重量%)と、電子求引性ポリマー(A8-1)のジメチルスルホキシド溶液(ポリマー濃度:3重量%)との比率を変更したこと以外は実施例15と同様にして、組成物(XVI)および(XVII)の膜を製造した。
組成物(XVI)の膜
 理論イオン交換容量(IEC)=3.34(meq/g)
組成物(XVII)の膜
 理論イオン交換容量(IEC)=3.41(meq/g)
 表4に、実施例15~17で得られた組成物(XV)~(XVII)の膜中の電子供与性ポリマー(D2-1)および電子求引性ポリマー(A8-1)の量および膜厚を記載する。
 また、表4に、組成物中の電子求引性ポリマー(A8-1)のナフタレンテトラカルボン酸ジイミド部分(a)と電子供与性ポリマー(D2-1)のジオキシナフタレン部分(d)とのモル比(=ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル)/ジオキシナフタレン部分(d)の数(モル))を記載する。なお、本明細書では、このモル比を「(A8-1)/(D2-1)のモル比」と略称することがある。
 また、表4に、組成物中の電子求引性ポリマー(A8-1)のナフタレンテトラカルボン酸ジイミド部分(a)および電子供与性ポリマー(D2-1)のジオキシナフタレン部分(d)の合計に対するナフタレンテトラカルボン酸ジイミド部分(a)のモル分率(%)(=[(ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル))/{(ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル))+(ジオキシナフタレン部分(d)の数(モル))}]×100)を記載する。なお、本明細書では、このモル分率を「(A8-1)のモル分率」と略称することがある。
Figure JPOXMLDOC01-appb-T000116
実施例18:熱処理組成物(XVIII)の膜の製造
 実施例15で得られた組成物(XV)の膜を、ガラス製のコック付真空デシケーター中に入れた後、デシケーター内を窒素ガスに置換した。次に、この真空デシケーターを150℃に設定した定温乾燥器に50時間静置することによって、熱処理組成物(XVIII)の膜を得た(濃茶色透明、膜厚11μm)。
実施例19および20:熱処理組成物(XIX)および(XX)の膜の製造
 実施例15で得られた組成物(XV)の膜に代えて、実施例16または17で得られた組成物(XVI)または(XVII)の膜を使用したこと以外は実施例18と同様にして、熱処理組成物(XIX)および(XX)の膜を製造した。
組成物(XIX)の膜のプロトン伝導性:
 温度59℃、相対湿度91%にて9.0(mS/cm)
組成物(XX)の膜のプロトン伝導性:
 温度79℃、相対湿度90%にて32(mS/cm)
 表5に、実施例18~20で得られた熱処理組成物、熱処理に使用した出発組成物、(A8-1)/(D2-1)のモル比、(A8-1)のモル分率および膜厚を記載する。
Figure JPOXMLDOC01-appb-T000117
参考例5:電子求引性ポリマー(A8-1)のみの膜の製造
 電子求引性ポリマー(A8-1)(79.3mg)をジメチルスルホキシド(2mL)に溶解させて調製した溶液を、綿栓を用いて該溶液をろ過し、得られたろ液を直径4cmのシャーレに加え、該シャーレを温度60℃にしたホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、80℃で24時間減圧乾燥して、電子求引性ポリマー(A8-1)の膜を得た(薄茶色透明、膜厚11μm)。
実施例21:電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A8-1)の組成物(XXI)の膜の製造
 電子供与性ポリマー(D3a-1)(35.8mg)をジメチルスルホキシド(1mL)に溶解させて調製した溶液と、電子求引性ポリマー(A8-1)(78.9mg)をジメチルスルホキシド(1mL)に溶解させて調製した溶液とを、順次、ガラス容器に加えた。次に溶液を撹拌した後、綿栓を用いて該溶液をろ過し、得られたろ液を直径4cmのシャーレに加え、該シャーレを温度60℃にしたホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、60℃で24時間減圧乾燥して、電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A8-1)の組成物(XXI)の膜を得た(茶色透明、膜厚14μm)。
実施例22:熱処理組成物(XXII)の膜の製造
 実施例21で得られた組成物(XXI)の膜を、ガラス製のコック付真空デシケーター中に入れた後、デシケーター内を窒素ガスに置換した。次に、この真空デシケーターを130℃に設定した定温乾燥器に2時間静置することによって、熱処理組成物(XXII)の膜を得た(濃茶色透明、膜厚14μm)。
試験例1:電荷移動錯体の確認
 紫外-可視分光法(UV-vis)にて、実施例1~6、9および10で得られた組成物(I)~(VI)、(IX)および(X)の膜の吸収スペクトルを測定した。また、参考例1~3で得られた電子求引性ポリマー(A2-1)の膜、電子求引性ポリマー(A6-1)の膜および電子求引性ポリマー(A7-1)の膜の吸収スペクトルを測定した。
 電子求引性ポリマー(A2-1)の膜および組成物(I)の膜の吸収スペクトルを図9に示す。また、電子求引性ポリマー(A2-1)の膜および組成物(II)の膜の吸収スペクトルを図10に示す。また、電子求引性ポリマー(A2-1)の膜および組成物(III)~(VI)の膜の吸収スペクトルを図11に示す。また、電子求引性ポリマー(A6-1)の膜および組成物(IX)の膜の吸収スペクトルを図14に示す。また、電子求引性ポリマー(A7-1)の膜および組成物(X)の膜の吸収スペクトルを図15に示す。
 図9~図11、図14および15に示されるように、組成物(I)~(VI)、(IX)および(X)の膜の吸収スペクトルは、530nm付近のショルダーを有していた。このショルダーは、電荷移動錯体による吸収である(Nature, 375(6529), 303-305 (1995) および Polym. J. (2013), 45, 839-844 参照)。従って、この結果から、組成物(I)~(VI)の膜は、電荷移動錯体を形成していることが確認された。なお、異なる2種以上のポリマーの主鎖の間で電荷移動錯体を形成することは、これまで報告されていない。
試験例2:引張り破壊強度、引張り弾性率および引張り破壊伸びの測定(No.1)
 実施例4~6で得られた組成物(IV)~(VI)の膜、および参考例1で得られた電子求引性ポリマー(A2-1)の膜の引張り破壊強度、引張り弾性率および引張り破壊伸びを、上述のようにして測定した。結果を表6に示す。表6に示されるように、電子求引性ポリマー(A2-1)の膜に比べて、組成物(IV)~(VI)の膜は、引張り破壊強度が向上した。
Figure JPOXMLDOC01-appb-T000118
試験例3:引張り破壊強度、引張り弾性率および引張り破壊伸びの測定(No.2)
 実施例4で得られた組成物(IV)の膜、および実施例12で得られた熱処理組成物(XII)の膜の引張り破壊強度、引張り弾性率および引張り破壊伸びを、上述のようにして測定した。結果を表7に示す。表7に示されるように、熱処理していない組成物(IV)の膜に比べて、組成物(XII)の膜は、引張り破壊強度が約2倍向上した。
Figure JPOXMLDOC01-appb-T000119
試験例4:引張り破壊強度、引張り弾性率および引張り破壊伸びの測定(No.3)
 実施例22で得られた熱処理組成物(XXII)の膜、および参考例5で得られた電子求引性ポリマー(A8-1)のみの膜の膜の引張り破壊強度、引張り弾性率および引張り破壊伸びを、上述のようにして測定した。結果を表8に示す。表8に示されるように、参考例5で得られた電子求引性ポリマー(A8-1)のみの膜に比べて、熱処理組成物(XXII)の膜は、引張り破壊強度が約1.7倍向上した。
Figure JPOXMLDOC01-appb-T000120
試験例5:SEM-EDXの測定
 実施例1および2で得られた組成物(I)および(II)の膜のSEM-EDXを上述のようにして測定したところ、電子求引性ポリマー(A2-1)に含まれるフッ素原子が膜全体に均一に検出された。この結果より、電子供与性ポリマー(D2-1)と電子求引性ポリマー(A2-1)が均一に混合し、マイクロメートルオーダーで相分離していないことが確認できた。得られた組成物(I)の膜のEDXによるフッ素の元素マッピングを図12に示す。また、得られた組成物(II)の膜のEDXによるフッ素の元素マッピングを図13に示す。
試験例6:吸水率の測定
 実施例3~6で得られた組成物(III)~(VI)の膜から、試験片1cm×1cm(約1~4mg)を切り出し、それらを80℃で24時間乾燥した後、試験片の乾燥重量Wdを測定した。次いで試験片を、室温で24時間、水に浸漬した。試験片を水から取り出し、手早く表面に付着した水をペーパーでふき取り、試験片の水浸漬後の重量Wsを測定した。これらWdおよびWs、並びに次式:
吸水率(%)=100×(Ws-Wd)/Wd
から吸水率(%)を算出した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000121
試験例7:水素ガス透過性の測定
 実施例4~6と同様にして製造した組成物(IV)~(VI)の膜(膜厚:10μm)の水素ガス透過性を上述のようにして測定した。また、ナフィオン212の膜(ナフィオンは登録商標、デュポン社製、東陽テクニカ社より購入、膜厚:50μm)の水素ガス透過性を同様に測定した。結果を表10に示す。表10に示されるように、組成物(IV)~(VI)の膜は、市販のナフィオン212の膜に比べて水素ガス透過性が低かった。水素ガス透過性が低い組成物(IV)~(VI)の膜を燃料電池の電解質膜として使用すれば、燃料ガスのクロスオーバーを抑制することができ、それによって燃料電池の性能向上が期待できる。
Figure JPOXMLDOC01-appb-T000122
試験例8:燃料電池の発電試験1(No.1)
 実施例4と同様にして製造した組成物(IV)の膜(膜厚:13μm)およびナフィオン212(デュポン社製、東陽テクニカ社より購入、膜厚:50μm)を電解質膜として用いて、燃料電池の発電試験1を上述のようにして行った。結果を表11に示す。表11に示されるように、組成物(IV)の膜のセル抵抗値は、市販のナフィオン212とほぼ同等の値を示した。さらに組成物(IV)の膜を電解質膜として作製した単セルのOCVは0.875Vであった。
Figure JPOXMLDOC01-appb-T000123
 また、組成物(IV)の膜を用いた発電試験1での電圧および電流密度の結果を表12に示す。
Figure JPOXMLDOC01-appb-T000124
試験例9:燃料電池の発電試験1(No.2)
 実施例20と同様にして製造した熱処理組成物(XX)の膜(膜厚:14μm)を電解質膜として用いて、燃料電池の発電試験1を上述のようにして行った。熱処理組成物(XX)の膜のセル抵抗値は、0.65(Ω)であった。さらに熱処理組成物(XX)の膜を電解質膜として作製した単セルのOCVは0.847Vであった。この発電試験1での電圧および電流密度の結果を表13に示す。
Figure JPOXMLDOC01-appb-T000125
試験例10:燃料電池の発電試験2
 組成物(VIII)(即ち、電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A4-1)の組成物)を含む触媒層を用いた燃料電池の発電試験2を上述のようにして行った。この発電試験2での電圧および電流密度の結果を表14に示す。表14に示されるように、組成物(VIII)を含む触媒層を用いて発電できることが確認された。
Figure JPOXMLDOC01-appb-T000126
試験例11:燃料電池の発電試験3
 組成物(XI)(即ち、電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A4-1)の組成物)を含む触媒層を用いた燃料電池の発電試験3を上述のようにして行った。この発電試験3での電圧および電流密度の結果を表15に示す。表15に示されるように、組成物(XI)を含む触媒層を用いて発電できることが確認された。
Figure JPOXMLDOC01-appb-T000127
試験例12:電荷移動錯体の確認
 紫外-可視分光法(UV-vis)にて、電子求引性ポリマー(A2-1)の膜および組成物(III)~(VI)の膜、並びに熱処理電子求引性ポリマー(A2-1)の膜、および熱処理組成物(XII)~(XIV)の膜の吸収スペクトルを測定した。使用した電子求引性ポリマー(A2-1)の膜等における(A2-1)のモル分率(%)を表16に示す。なお、電子求引性ポリマー(A2-1)の膜および熱処理電子求引性ポリマー(A2-1)の膜における(A2-1)のモル分率は100%である。
Figure JPOXMLDOC01-appb-T000128
 熱処理していないポリマーまたは組成物の膜の(A2-1)のモル分率および熱処理ポリマーまたは熱処理組成物の膜の(A2-1)のモル分率と、測定された吸収スペクトルの530nmでの標準化した吸光度との関係を示すグラフを図16に示す。
 図16に示すように、熱処理の有無に関わらず、(A2-1)のモル分率が50%の時に、電荷移動錯体に由来する530nmでの吸光度が最大であった。この結果から、電子供与性ポリマー(D3a-1)のジオキシナフタレン部分(d)と電子求引性ポリマー(A2-1)のナフタレンテトラカルボン酸ジイミド部分(a)のモル比が1:1であるときに、電荷移動錯体の形成量が最大になることが確認された。
 さらに、熱処理組成物の膜の530nmでの吸光度は、熱処理していない組成物の膜の吸光度と比較して2~3倍高かった。この結果から、熱処理していない組成物中において電子供与性ポリマー(D3a-1)および電子求引性ポリマー(A2-1)の電荷移動錯体を形成していなかった部分が、熱処理によって、電荷移動錯体を形成することが確認された。
試験例13:化学耐久性の評価
 実施例18で得られた熱処理組成物(XVIII)の膜(膜厚:11μm)、参考例5と同様にして製造した電子求引性ポリマー(A8-1)のみの膜(膜厚:12μm)、およびナフィオン212の膜(膜厚:51μm)の化学耐久性の評価試験を上述のようにして測定した。結果を表17に示す。この試験において、熱処理組成物(XVIII)の膜は、ナフィオン212の膜と同程度の化学耐久性を示した。
 電子求引性ポリマー(A8-1)のみの膜は、化学耐久性の評価試験の開始から15分でフェントン試験液中に溶けて、膜の形状を維持できなかった。熱処理組成物(XVIII)の膜と電子求引性ポリマー(A8-1)のみの膜との対比から、組成物(XVIII)の膜は、フェントン試験液(即ち、硫酸鉄(II)および過酸化水素を含有する水溶液)への溶解が抑制されていることを確認できた。
Figure JPOXMLDOC01-appb-T000129
 本発明の組成物は、例えば、燃料電池用の電解質材料(例えば、触媒層に用いる電解質材料、電解質膜等)として有用である。
 本願は、日本で出願された特願2016-196739号、特願2017-019056号および特願2017-096077号を基礎としており、それらの内容は本願明細書に全て包含される。

Claims (45)

  1.  電子供与性ポリマー(D)および電子求引性ポリマー(A)を含む組成物であり、
     電子供与性ポリマー(D)が、式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Xは、ナフタレン環を含有する2価の基であり、
     Yは、置換基を有していてもよいC3-10アルキレン基を含有する2価の基または置換基を有していてもよいベンゼン環を含有する2価の基であり、および
     *は、結合位置を示す。]
    で表される構造を有し、
     電子求引性ポリマー(A)が、式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Xは、ナフタレン環を含有する4価の基であり、
     Yが置換基を有していてもよいC3-10アルキレン基を含有する2価の基である場合、Yは、置換基を有していてもよいベンゼン環を含有する2価の基であり、
     Yが置換基を有していてもよいベンゼン環を含有する2価の基である場合、Yは、置換基を有していてもよいC3-10アルキレン基を含有する2価の基であり、および
     *は、結合位置を示す。]
    で表される構造を有する組成物。
  2.  YおよびYの少なくとも一方が、スルホ基を有する請求項1に記載の組成物。
  3.  Yが、置換基を有していてもよいC3-10アルキレン基を含有する2価の基であり、およびYが、置換基を有していてもよいベンゼン環を含有する2価の基である請求項1または2に記載の組成物。
  4.  Xが、式(3)または式(4):
    Figure JPOXMLDOC01-appb-C000003
    [式中、*は、結合位置を示す。]
    で表される2価の基である請求項1~3のいずれか一項に記載の組成物。
  5.  Xが、式(5)、式(6-1)または式(6-2):
    Figure JPOXMLDOC01-appb-C000004
    [式中、*は、結合位置を示す。]
    で表される4価の基である請求項1~4のいずれか一項に記載の組成物。
  6.  YまたはYが、式(7):
    Figure JPOXMLDOC01-appb-C000005
    [式中、Rは、水素原子またはスルホ基であり、および
     *は、結合位置を示す。]
    で表される構造を含有する2価の基である請求項1~5のいずれか一項に記載の組成物。
  7.  YまたはYが、式(8)~式(11):
    Figure JPOXMLDOC01-appb-C000006
    [式中、n2~n11は、それぞれ独立に、0~4の整数であり、
     R~R11は、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、Wで置換されていてもよいフェニル基、Wで置換されていてもよいチエニル基、またはWで置換されていてもよいフリル基であり、
     Wは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基であり、
     n2~n11が2~4の整数である場合、複数のR~R11は、互いに、同じまたは異なるものでもよく、
     Z~Zは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R21)(R22)-*、またはオキシ基であり、
     R21およびR22は、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR21およびR22は互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する、および
     *は、結合位置を示す。]
    のいずれかで表される2価の基である請求項1~6のいずれか一項に記載の組成物。
  8.  電子供与性ポリマー(D)が、式(12)または式(13):
    Figure JPOXMLDOC01-appb-C000007
    [式中、Lは、式(3)、式(4)または式(14):
    Figure JPOXMLDOC01-appb-C000008
    {式中、m1およびm2は、それぞれ独立に、0~4の整数であり、および
     *は、結合位置を示す。}
    で表される2価の基であり、
     Lが式(3)または式(4)で表される2価の基である場合、R1aおよびR1bは、水素原子であり、
     Lが式(14)で表される2価の基である場合、R1aおよびR1bは、それぞれ独立に、水素原子またはスルホ基であり、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子供与性ポリマー(D1)を含む請求項1~7のいずれか一項に記載の組成物。
  9.  電子供与性ポリマー(D1)が、式(15):
    Figure JPOXMLDOC01-appb-C000009
    [式中、*は、結合位置を示す。]
    で表される構成単位を有する電子供与性ポリマー(D2)を含む請求項8に記載の組成物。
  10.  電子供与性ポリマー(D1)が、式(16):
    Figure JPOXMLDOC01-appb-C000010
    [式中、R1aおよびR1bは、それぞれ独立に、水素原子またはスルホ基であり、
     m1およびm2は、それぞれ独立に、0~4の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子供与性ポリマー(D3)を含む請求項8に記載の組成物。
  11.  R1aおよびR1bが水素原子である請求項8または10に記載の組成物。
  12.  m1およびm2が0である請求項8、10または11に記載の組成物。
  13.  式(8)で表される2価の基が、式(8-1):
    Figure JPOXMLDOC01-appb-C000011
    [式中、n2、Rおよび*は、前記の通りである。]
    で表される2価の基であり、Z~Zが、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、またはオキシ基である請求項7~12のいずれか一項に記載の組成物。
  14.  電子求引性ポリマー(A)が、式(17a):
    Figure JPOXMLDOC01-appb-C000012
    [式中、L2aは、式(8)~式(11):
    Figure JPOXMLDOC01-appb-C000013
    {式中、n2~n11は、それぞれ独立に、0~4の整数であり、
     R~R11は、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、Wで置換されていてもよいフェニル基、Wで置換されていてもよいチエニル基、またはWで置換されていてもよいフリル基であり、
     Wは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基であり、
     n2~n11が2~4の整数である場合、複数のR~R11は、互いに、同じまたは異なるものでもよく、
     Z~Zは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R21)(R22)-*、またはオキシ基であり、
     R21およびR22は、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR21およびR22は互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する、および
     *は、結合位置を示す。}
    のいずれかで表される2価の基であり、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子求引性ポリマー(A1a)を含む請求項1~13のいずれか一項に記載の組成物。
  15.  電子求引性ポリマー(A1a)が、式(23):
    Figure JPOXMLDOC01-appb-C000014
    [式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位、および式(17b):
    Figure JPOXMLDOC01-appb-C000015
    [式中、L2bは、式(8b)~式(11b):
    Figure JPOXMLDOC01-appb-C000016
    {式中、n2b~n11bは、それぞれ独立に、0~4の整数であり、
     R2b~R11bは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、W1bで置換されていてもよいフェニル基、W1bで置換されていてもよいチエニル基、またはW1bで置換されていてもよいフリル基であり、
     W1bは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、またはシアノ基であり、
     n2b~n11bが2~4の整数である場合、複数のR2b~R11bは、互いに、同じまたは異なるものでもよく、
     Z1b~Z6bは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R21b)(R22b)-*、またはオキシ基であり、
     R21bおよびR22bは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR21bおよびR22bは互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する、および
     *は、結合位置を示す。}
    のいずれかで表される2価の基であり、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子求引性ポリマー(A1b)を含む請求項14に記載の組成物。
  16.  式(23)で表される構成単位の数と式(17b)で表される構成単位の数との比(式(23)で表される構成単位の数/式(17b)で表される構成単位の数)が、0.1/99.9~99.9/0.1である請求項15に記載の組成物。
  17.  電子求引性ポリマー(A)が、式(17):
    Figure JPOXMLDOC01-appb-C000017
    [式中、Lは、式(18)~式(22)、式(31)および式(32):
    Figure JPOXMLDOC01-appb-C000018
    {式中、m3およびm4は、それぞれ独立に、0~3の整数であり、
     m5~m7は、それぞれ独立に、1~4の整数であり、
     n12は、1~4の整数であり、
     R12は、フッ素原子またはトリフルオロメチル基であり、n12が2~4の整数である場合、複数のR12は、互いに、同じまたは異なるものでもよく、
     n13~n16は、それぞれ独立に、0~4の整数であり、
     R13は、ニトロ基、スルホ基またはトリフルオロメチル基であり、n13が2~4の整数である場合、複数のR13は、互いに、同じまたは異なるものでもよく、
     R14は、塩素原子またはスルホ基であり、n14が2~4の整数である場合、複数のR14は、互いに、同じまたは異なるものでもよく、
     R15は、塩素原子またはスルホ基であり、n15が2~4の整数である場合、複数のR15は、互いに、同じまたは異なるものでもよく、
     R16は、ニトロ基、スルホ基またはトリフルオロメチル基であり、n16が2~4の整数である場合、複数のR16は、互いに、同じまたは異なるものでもよく、
     n23およびn24は、それぞれ独立に、0~4の整数であり、
     R23は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n23が2~4の整数である場合、複数のR23は、互いに、同じまたは異なるものでもよく、
     R24は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n24が2~4の整数である場合、複数のR24は、互いに、同じまたは異なるものでもよく、
     n25およびn26は、それぞれ独立に、0~4の整数であり、
     R25は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n25が2~4の整数である場合、複数のR25は、互いに、同じまたは異なるものでもよく、
     R26は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n26が2~4の整数である場合、複数のR26は、互いに、同じまたは異なるものでもよく、および
     *は、結合位置を示す。}
    のいずれかで表される2価の基であり、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子求引性ポリマー(A1)を含む請求項1~12のいずれか一項に記載の組成物。
  18.  Lが、式(18)~式(22)のいずれかで表される2価の基である請求項17に記載の組成物。
  19.  電子求引性ポリマー(A1)が、式(23):
    [式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位、および式(24):
    Figure JPOXMLDOC01-appb-C000020
    [式中、
     m5およびm6は、それぞれ独立に、1~4の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子求引性ポリマー(A2)を含む請求項17に記載の組成物。
  20.  式(23)で表される構成単位の数と式(24)で表される構成単位の数との比(式(23)で表される構成単位の数/式(24)で表される構成単位の数)が、0.1/99.9~99.9/0.1である請求項19に記載の組成物。
  21.  電子求引性ポリマー(A1)が、式(23):
    Figure JPOXMLDOC01-appb-C000021
    [式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位、および式(25):
    Figure JPOXMLDOC01-appb-C000022
    [式中、m7は、1~4の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子求引性ポリマー(A3)を含む請求項17に記載の組成物。
  22.  式(23)で表される構成単位の数と式(25)で表される構成単位の数との比(式(23)で表される構成単位の数/式(25)で表される構成単位の数)が、0.1/99.9~99.9/0.1である請求項21に記載の組成物。
  23.  電子求引性ポリマー(A1)が、式(23):
    Figure JPOXMLDOC01-appb-C000023
    [式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位、および式(26):
    Figure JPOXMLDOC01-appb-C000024
    [式中、n12は、1~4の整数であり、
     R12は、フッ素原子またはトリフルオロメチル基であり、n12が2~4の整数である場合、複数のR12は、互いに、同じまたは異なるものでもよく、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子求引性ポリマー(A4)を含む請求項17に記載の組成物。
  24.  式(23)で表される構成単位の数と式(26)で表される構成単位の数との比(式(23)で表される構成単位の数/式(26)で表される構成単位の数)が、0.1/99.9~99.9/0.1である請求項23に記載の組成物。
  25.  電子求引性ポリマー(A1)が、式(23):
    Figure JPOXMLDOC01-appb-C000025
    [式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位、および式(27):
    Figure JPOXMLDOC01-appb-C000026
    [式中、n13~n16は、それぞれ独立に、0~4の整数であり、
     R13は、ニトロ基、スルホ基またはトリフルオロメチル基であり、n13が2~4の整数である場合、複数のR13は、互いに、同じまたは異なるものでもよく、
     R14は、塩素原子またはスルホ基であり、n14が2~4の整数である場合、複数のR14は、互いに、同じまたは異なるものでもよく、
     R15は、塩素原子またはスルホ基であり、n15が2~4の整数である場合、複数のR15は、互いに、同じまたは異なるものでもよく、
     R16は、ニトロ基、スルホ基またはトリフルオロメチル基であり、n16が2~4の整数である場合、複数のR16は、互いに、同じまたは異なるものでもよく、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子求引性ポリマー(A5)を含む請求項17に記載の組成物。
  26.  式(23)で表される構成単位の数と式(27)で表される構成単位の数との比(式(23)で表される構成単位の数/式(27)で表される構成単位の数)が、0.1/99.9~99.9/0.1である請求項21に記載の組成物。
  27.  電子求引性ポリマー(A1)が、式(23):
    Figure JPOXMLDOC01-appb-C000027
    [式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位、および式(33):
    Figure JPOXMLDOC01-appb-C000028
    [式中、n23およびn24は、それぞれ独立に、0~4の整数であり、
     R23は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n23が2~4の整数である場合、複数のR23は、互いに、同じまたは異なるものでもよく、
     R24は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n24が2~4の整数である場合、複数のR24は、互いに、同じまたは異なるものでもよく、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子求引性ポリマー(A6)を含む請求項17に記載の組成物。
  28.  式(23)で表される構成単位の数と式(33)で表される構成単位の数との比(式(23)で表される構成単位の数/式(33)で表される構成単位の数)が、0.1/99.9~99.9/0.1である請求項27に記載の組成物。
  29.  電子求引性ポリマー(A1)が、式(23):
    Figure JPOXMLDOC01-appb-C000029
    [式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位、および式(34):
    Figure JPOXMLDOC01-appb-C000030
    [式中、n25およびn26は、それぞれ独立に、0~4の整数であり、
     R25は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n25が2~4の整数である場合、複数のR25は、互いに、同じまたは異なるものでもよく、
     R26は、ハロゲン原子で置換されていてもよいC1-3アルキル基またはスルホ基であり、n26が2~4の整数である場合、複数のR26は、互いに、同じまたは異なるものでもよく、および
     *は、結合位置を示す。]
    で表される構成単位を有する電子求引性ポリマー(A7)を含む請求項17に記載の組成物。
  30.  式(23)で表される構成単位の数と式(34)で表される構成単位の数との比(式(23)で表される構成単位の数/式(34)で表される構成単位の数)が、0.1/99.9~99.9/0.1である請求項29に記載の組成物。
  31.  m5およびm6が4である請求項17~20のいずれか一項に記載の組成物。
  32.  m7が4である請求項17、18、21または22に記載の組成物。
  33.  n12が1であり、およびR12がトリフルオロメチル基である請求項17、18、23または24に記載の組成物。
  34.  n13~n16が0である請求項17、18、25または26に記載の組成物。
  35.  n23およびn24が0である請求項17、27または28に記載の組成物。
  36.  n25およびn26が0である請求項17、29または30に記載の組成物。
  37.  m3およびm4が0である請求項17~36のいずれか一項に記載の組成物。
  38.  電子供与性ポリマー(D)および電子求引性ポリマー(A)が、電荷移動錯体を形成している請求項1~37のいずれか一項に記載の組成物。
  39.  請求項1~38のいずれか一項に記載の組成物を含む燃料電池の電解質膜。
  40.  請求項1~38のいずれか一項に記載の組成物を含む燃料電池の触媒層。
  41.  電子求引性ポリマー(A1)が、式(23):
    Figure JPOXMLDOC01-appb-C000031
    [式中、m3およびm4は、それぞれ独立に、0~3の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位からなる電子求引性ポリマー(A8)を含む請求項17に記載の組成物。
  42.  m3およびm4が0である請求項41に記載の組成物。
  43.  電子供与性ポリマー(D)および電子求引性ポリマー(A)が、電荷移動錯体を形成している請求項41または42に記載の組成物。
  44.  請求項41~43のいずれか一項に記載の組成物を含む燃料電池の電解質膜。
  45.  請求項41~43のいずれか一項に記載の組成物を含む燃料電池の触媒層。
PCT/JP2017/035935 2016-10-04 2017-10-03 ポリマー組成物 WO2018066546A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197009738A KR102385168B1 (ko) 2016-10-04 2017-10-03 폴리머 조성물
CN201780058516.3A CN109790383B (zh) 2016-10-04 2017-10-03 聚合物组合物
US16/339,211 US11098161B2 (en) 2016-10-04 2017-10-03 Polymer composition
EP17858384.5A EP3517575B1 (en) 2016-10-04 2017-10-03 Polymer composition
JP2018543912A JP7012309B2 (ja) 2016-10-04 2017-10-03 ポリマー組成物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-196739 2016-10-04
JP2016196739 2016-10-04
JP2017019056 2017-02-03
JP2017-019056 2017-02-03
JP2017096077 2017-05-12
JP2017-096077 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018066546A1 true WO2018066546A1 (ja) 2018-04-12

Family

ID=61831814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035935 WO2018066546A1 (ja) 2016-10-04 2017-10-03 ポリマー組成物

Country Status (7)

Country Link
US (1) US11098161B2 (ja)
EP (1) EP3517575B1 (ja)
JP (1) JP7012309B2 (ja)
KR (1) KR102385168B1 (ja)
CN (1) CN109790383B (ja)
TW (1) TWI744389B (ja)
WO (1) WO2018066546A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156204A1 (ja) * 2018-02-09 2019-08-15 日産化学株式会社 ポリマー組成物
JP2020111662A (ja) * 2019-01-10 2020-07-27 日産化学株式会社 ポリマー組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108118A1 (ja) * 2006-03-23 2007-09-27 Fujitsu Limited 電解質組成物、固体電解質膜および固体高分子型燃料電池
JP2007302717A (ja) * 2006-05-08 2007-11-22 Fujitsu Ltd スルホン化芳香族ポリイミド、電解質膜及び燃料電池用固体電解質、並びに燃料電池
JP2011068872A (ja) * 2009-08-26 2011-04-07 Tokyo Metropolitan Univ リン酸ドープ電解質膜およびその製造方法並びにそれを含む燃料電池
JP2011231281A (ja) * 2010-04-30 2011-11-17 Tokyo Metropolitan Univ ポリイミド樹脂およびその利用
JP2015518649A (ja) * 2012-03-22 2015-07-02 レイナジー テック インコーポレイテッド ポリマーブレンドおよび関連光電子デバイス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741442B2 (en) 2005-04-15 2014-06-03 General Electric Company Modified electrodes using functional organic materials and electronic devices therefrom
KR101642786B1 (ko) * 2009-11-26 2016-07-26 제이에스알 가부시끼가이샤 유기 반도체 배향용 조성물, 유기 반도체 배향막, 유기 반도체 소자 및 그 제조 방법
CN103459494A (zh) * 2011-03-28 2013-12-18 住友化学株式会社 组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108118A1 (ja) * 2006-03-23 2007-09-27 Fujitsu Limited 電解質組成物、固体電解質膜および固体高分子型燃料電池
JP2007302717A (ja) * 2006-05-08 2007-11-22 Fujitsu Ltd スルホン化芳香族ポリイミド、電解質膜及び燃料電池用固体電解質、並びに燃料電池
JP2011068872A (ja) * 2009-08-26 2011-04-07 Tokyo Metropolitan Univ リン酸ドープ電解質膜およびその製造方法並びにそれを含む燃料電池
JP2011231281A (ja) * 2010-04-30 2011-11-17 Tokyo Metropolitan Univ ポリイミド樹脂およびその利用
JP2015518649A (ja) * 2012-03-22 2015-07-02 レイナジー テック インコーポレイテッド ポリマーブレンドおよび関連光電子デバイス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAMICHI NISHIHARA ET AL.: "Experimental and theoretical study of charge-transfer complex hybrid polyimide membranes", JOURNAL OF POLYMER SCIENCE, vol. 52, 2014, pages 293 - 298, XP055497616 *
See also references of EP3517575A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156204A1 (ja) * 2018-02-09 2019-08-15 日産化学株式会社 ポリマー組成物
JPWO2019156204A1 (ja) * 2018-02-09 2021-01-28 日産化学株式会社 ポリマー組成物
JP7220872B2 (ja) 2018-02-09 2023-02-13 日産化学株式会社 ポリマー組成物
US11866551B2 (en) 2018-02-09 2024-01-09 Nissan Chemical Corporation Polymer composition
JP2020111662A (ja) * 2019-01-10 2020-07-27 日産化学株式会社 ポリマー組成物
JP7190695B2 (ja) 2019-01-10 2022-12-16 日産化学株式会社 ポリマー組成物

Also Published As

Publication number Publication date
EP3517575B1 (en) 2021-03-03
JPWO2018066546A1 (ja) 2019-07-25
JP7012309B2 (ja) 2022-01-28
EP3517575A1 (en) 2019-07-31
KR102385168B1 (ko) 2022-04-11
KR20190065274A (ko) 2019-06-11
TWI744389B (zh) 2021-11-01
US11098161B2 (en) 2021-08-24
US20200040137A1 (en) 2020-02-06
CN109790383A (zh) 2019-05-21
TW201827523A (zh) 2018-08-01
EP3517575A4 (en) 2019-08-07
CN109790383B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
Bu et al. 1, 2, 4-Triazole functionalized poly (arylene ether ketone) for high temperature proton exchange membrane with enhanced oxidative stability
Liu et al. A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability
Shang et al. Synthesis and characterization of sulfonated fluorene-containing poly (arylene ether ketone) for proton exchange membrane
Chuang et al. Synthesis and properties of a new fluorine‐containing polybenzimidazole for high‐temperature fuel‐cell applications
Gao et al. Novel cardo poly (arylene ether sulfone) s with pendant sulfonated aliphatic side chains for proton exchange membranes
Yin et al. Sulfonated polyimides with flexible aliphatic side chains for polymer electrolyte fuel cells
Bai et al. New poly (ethylene oxide) soft segment-containing sulfonated polyimide copolymers for high temperature proton-exchange membrane fuel cells
Liu et al. Sulfonated naphthalenic polyimides containing ether and ketone linkages as polymer electrolyte membranes
Li et al. Synthesis and properties of sulfonated polyimide–polybenzimidazole copolymers as proton exchange membranes
Ghorai et al. Chemically stable sulfonated polytriazoles containing trifluoromethyl and phosphine oxide moieties for proton exchange membranes
Tian et al. Cross-Linked anion-exchange membranes with dipole-containing cross-linkers based on poly (terphenyl isatin piperidinium) copolymers
Zhang et al. Synthesis and characterization of sulfonated poly (aryl ether sulfone) containing pendent quaternary ammonium groups for proton exchange membranes
Zhou et al. Tetra-alkylsulfonate functionalized poly (aryl ether) membranes with nanosized hydrophilic channels for efficient proton conduction
Shang et al. Fluorene-containing sulfonated poly (arylene ether 1, 3, 4-oxadiazole) as proton-exchange membrane for PEM fuel cell application
Li et al. Novel polyamide proton exchange membranes with bi-functional sulfonimide bridges for fuel cell applications
Mistri et al. Structure–property correlation of semifluorinated 6-membered co-SPIs for proton exchange membrane
Umsarika et al. Proton exchange membrane based on sulfonated poly (aromatic imide-co-aliphatic imide) for direct methanol fuel cell
WO2018066546A1 (ja) ポリマー組成物
Li et al. Rigid–Flexible Hybrid Proton‐Exchange Membranes with Improved Water‐Retention Properties and High Stability for Fuel Cells
WO2005054339A1 (ja) ポリイミド樹脂、ポリイミド樹脂の製造方法、並びにポリイミド樹脂を含む電解質膜、触媒層、膜/電極接合体及びデバイス
Singh et al. Synthesis and characterization of highly proton conducting sulfonated polytriazoles
Muthuraja et al. Potential membranes derived from poly (aryl hexafluoro sulfone benzimidazole) and poly (aryl hexafluoro ethoxy benzimidazole) for high-temperature PEM fuel cells
JP7220872B2 (ja) ポリマー組成物
Zhang et al. Synthesis of sulfonated poly (arylene-co-naphthalimide) s as novel polymers for proton exchange membranes
JP7190695B2 (ja) ポリマー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543912

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197009738

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017858384

Country of ref document: EP

Effective date: 20190425