WO2019156204A1 - ポリマー組成物 - Google Patents

ポリマー組成物 Download PDF

Info

Publication number
WO2019156204A1
WO2019156204A1 PCT/JP2019/004564 JP2019004564W WO2019156204A1 WO 2019156204 A1 WO2019156204 A1 WO 2019156204A1 JP 2019004564 W JP2019004564 W JP 2019004564W WO 2019156204 A1 WO2019156204 A1 WO 2019156204A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
polymer
halogen atom
composition
Prior art date
Application number
PCT/JP2019/004564
Other languages
English (en)
French (fr)
Inventor
正通 西原
世演 馮
ビョンチャン ホァン
リアーナ クリスティアーニ
一成 佐々木
章一 近藤
太一 中澤
隆正 菊池
Original Assignee
日産化学株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社, 国立大学法人九州大学 filed Critical 日産化学株式会社
Priority to JP2019571163A priority Critical patent/JP7220872B2/ja
Priority to US16/967,180 priority patent/US11866551B2/en
Priority to CN201980011698.8A priority patent/CN111684014B/zh
Publication of WO2019156204A1 publication Critical patent/WO2019156204A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/338Polymers modified by chemical after-treatment with inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones

Definitions

  • the present invention relates to a composition comprising an electron donating polymer and an electron withdrawing polymer.
  • Non-Patent Document 1 reports a charge transfer complex using tetrathiafulvalene / p-chloranil and its derivatives.
  • Non-Patent Documents 2 and 3 report a charge transfer complex of polyimide as a polymer and dihydroxynaphthalene as a low molecular compound.
  • Non-Patent Document 4 reports a charge transfer complex of an electron withdrawing polymer and an electron donating polymer.
  • Non-Patent Document 4 if a charge transfer complex can be formed, phase separation of the electron donating polymer and the electron withdrawing polymer is suppressed, and a material (polymer composition) having improved strength can be obtained. Expected to be obtained.
  • the present invention has been made paying attention to such circumstances, and an object thereof is to provide a composition of an electron donating polymer and an electron withdrawing polymer in which the amount of charge transfer complex formed is large.
  • a composition comprising an electron donating polymer (D) and an electron withdrawing polymer (A),
  • the electron donating polymer (D) has the formula (1a): * -X 1a -O-Y 1a -O- * (1a) [ Wherein , X 1a represents the formula (2a) or the formula (2b):
  • X 2a is a group represented by the formulas (5a) to (5c):
  • n1 is an integer of 1 to 4
  • n2 to n10 are each independently an integer of 0 to 4
  • R 1a to R 10a each independently represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, nitro group, a formyl group, a cyano group, a sulfo group, a phenyl group which may be substituted with W 1a, thienyl group which may be substituted with W 1a or W 1a with an optionally substituted furyl group
  • W 1a is a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, a
  • X 1a is a divalent group represented by the formula (2a).
  • the electron donating polymer (D) is further represented by the formula (1b): * —O—X 1b —O—Y 1b — * (1b) [ Wherein , X 1b represents the formula (2a) or the formula (2b):
  • a divalent group represented by: Y 1b is the formula (3b):
  • R 1a to R 10a each independently represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a halogen atom, nitro group, a formyl group, a cyano group, a sulfo group, a phenyl group which may be substituted with W 1a, thienyl group which may be substituted with W 1a or W 1a with an optionally substituted furyl group, And W 1a is a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a halogen atom, a nitro group, a formyl group, a cyano group or a sulfo group
  • a composition of an electron donating polymer and an electron withdrawing polymer in which a large amount of charge transfer complex is formed can be obtained.
  • FIG. 3 is a 1 H NMR chart of an electron donating polymer (d-1) obtained in Synthesis Example 2.
  • FIG. 2 is a 1 H NMR chart of an electron donating polymer (D-1) obtained in Synthesis Example 3.
  • FIG. 2 is an absorption spectrum by UV-vis spectroscopy of a film of composition (I) (Example 1) and a film of heat-treated composition (IV) (Example 4) measured in Test Example 1.
  • FIG. . FIG. 6 is an absorption spectrum by UV-vis spectroscopy (UV-vis) of a film of the composition (VII) (Comparative Example 1) and a film of the heat-treated composition (XIII) (Comparative Example 7) measured in Test Example 2; .
  • the composition of the present invention contains an electron donating polymer (D) and an electron withdrawing polymer (A).
  • the electron donating polymer (D) only one kind may be used, or two or more kinds may be used in combination.
  • the electron withdrawing polymer (A) may be used alone or in combination of two or more.
  • electron donating means a property of a molecule or ion that can easily give an electron to another molecule or ion.
  • Electric withdrawing means the property of a molecule or ion that can easily accept electrons from other molecules or ions.
  • the electron donating polymer (D) in the composition of the present invention has the formula (1a): * -X 1a -O-Y 1a -O- * (1a) [ Wherein , X 1a represents the formula (2a) or the formula (2b):
  • X 1a in the electron donating polymer (D) may be either a divalent group (2a) or a divalent group (2b), or one of them.
  • X 1a is preferably a divalent group (2a).
  • the structural unit (1a) is preferably a structural unit represented by the following formula (1a-1).
  • the electron donating polymer (D) is further represented by the formula (1b): * —O—X 1b —O—Y 1b — * (1b) [ Wherein , X 1b represents the formula (2a) or the formula (2b):
  • a divalent group represented by: Y 1b is the formula (3b):
  • X 1b in the electron donating polymer (D) may be either a divalent group (2a) or a divalent group (2b), or one of them.
  • X 1b is preferably a divalent group (2a).
  • the structural unit (1b) is preferably a structural unit represented by the following formula (1b-1).
  • the electron donating polymer (D) is preferably a copolymer including both the structural unit (1a) and the structural unit (1b), and more preferably a random copolymer.
  • the amount of the structural unit (1a) in the copolymer is preferably 80 to 99 moles, more preferably 95 to 98 moles, per 100 moles of the total of the structural units (1a) and (1b).
  • the amount of the structural unit (1a) can be calculated from the value of the chemical shift and the integrated intensity of proton nuclear magnetic resonance ( 1 H NMR) of the polymer.
  • the weight average molecular weight (Mw) of the electron donating polymer (D) is preferably 5,000 to 800,000, more preferably 8,000 to 500,000, and still more preferably 10,000 to 100,000. This Mw can be measured by gel permeation chromatography (GPC) using polystyrene as a standard, as described in Examples below. The Mw of other polymers can be measured similarly.
  • the electron donating polymer (D) can be synthesized by a known reaction using a commercially available product as a starting material.
  • Commercial products are available from, for example, Tokyo Chemical Industry Co., Ltd., FUJIFILM Wako Pure Chemical Industries, Ltd.
  • a divalent compound having an epoxy group for example, 2,6-bis (oxiran-2-ylmethoxy) naphthalene
  • a divalent compound having a hydroxy group for example, 2,6-dihydroxynaphthalene
  • an electron donating polymer (d) having a divalent group (3b) having a hydroxy group a precursor of the electron donating polymer (D)
  • an electron donating polymer (D) having a divalent group (3a) having an oxo group can be produced.
  • the reaction of the divalent compound having an epoxy group and the divalent compound having a hydroxy group for producing the electron donating polymer (d) is usually performed in a solvent.
  • the solvent include ketone solvents such as cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone.
  • ketone solvents such as cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone.
  • cyclohexanone and acetone are used.
  • the amount of the solvent is preferably 0.5 to 50 L, more preferably 1 to 10 L with respect to 1 mol of the divalent compound having an epoxy group.
  • a catalyst may be used.
  • the catalyst include phosphines and imidazoles.
  • phosphines include triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine.
  • imidazoles include 2-methylimidazole. Of these, tris (2,6-dimethoxyphenyl) phosphine is preferable.
  • the amount thereof is preferably 0.0001 to 0.1 mmol, more preferably 0.001 to 0.015 mmol, relative to 1 mol of the divalent compound having an epoxy group.
  • the reaction temperature of the reaction is preferably 50 to 200 ° C, more preferably 100 to 180 ° C. When the reaction temperature is higher than the boiling point of the solvent, the reaction may be carried out in a sealed tube.
  • the reaction time is preferably 20 to 200 hours, more preferably 30 to 100 hours.
  • the electron donating polymer (d) can be obtained by a known means such as precipitation, filtration and drying.
  • the oxidation of the hydroxy group of the electron donating polymer (d) to the oxo group can be performed by using an addition compound of sulfur trioxide and a base.
  • the compound include pyridine-sulfur trioxide complex, triethylamine-sulfur trioxide complex, and the like. Both the pyridine-sulfur trioxide complex and the triethylamine-sulfur trioxide complex are commercially available from, for example, Tokyo Chemical Industry Co., Ltd.
  • the amount of the compound is preferably 0.5 to 10 mol, more preferably 1 to 3 mol based on 1 mol of the hydroxy group in the electron donating polymer (d).
  • Triethylamine is preferably used for the oxidation of the electron donating polymer (d) with the pyridine-sulfur trioxide complex.
  • the amount of triethylamine is preferably 2 to 10 mol, more preferably 4 to 8 mol, relative to 1 mol of the hydroxy group in the electron donating polymer (d).
  • the oxidation is usually performed in a solvent.
  • the solvent is not particularly limited as long as it does not inhibit the progress of the reaction.
  • dimethyl sulfoxide, dichloromethane, chloroform, chlorobenzene, dichlorobenzene, diethyl ether, 1,2-dimethoxyethane, 1,4-dioxane, etc. Is mentioned.
  • dimethyl sulfoxide and dichloromethane are preferable.
  • These solvents may be used alone or in combination of two or more.
  • the oxidation temperature is preferably ⁇ 30 ° C. to 80 ° C., more preferably ⁇ 10 ° C. to 50 ° C., and the time is preferably 1 to 24 hours, more preferably 6 to 18 hours.
  • the electron donating polymer (D) can be obtained by a known means such as precipitation, filtration and drying.
  • the electron withdrawing polymer (A) in the composition of the present invention has the formula (4a):
  • X 2a is a group represented by the formulas (5a) to (5c):
  • n1 is an integer of 1 to 4
  • n2 to n10 are each independently an integer of 0 to 4
  • R 1a to R 10a each independently represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, nitro group, a formyl group, a cyano group, a sulfo group, a phenyl group which may be substituted with W 1a, thienyl group which may be substituted with W 1a or W 1a with an optionally substituted furyl group
  • W 1a is a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group, a
  • the composition of the present invention has an ion exchange capacity due to the sulfo group in the electron withdrawing polymer (A).
  • the present invention by using the above-described electron donating polymer (D), it is possible to suppress a reduction in the ion exchange capacity of the composition even when heat treatment is performed.
  • n2 being 0 means that R 2a is not present.
  • n2 is an integer of 2 to 4
  • the plurality of R 2a may be the same or different from each other.
  • the definition of the group will be described in order.
  • examples of the halogen atom include fluorine, chlorine, bromine and iodine.
  • examples of the C 1-3 alkyl group include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • examples of the C 1-10 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, A neopentyl group, a tert-pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group can be mentioned.
  • examples of the C 1-10 alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, Examples include a pentyloxy group, a neopentyloxy group, a tert-pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, a nonyloxy group, and a decyloxy group.
  • the C 1-2 alkylene group is a methylene group or an ethylene group.
  • examples of the C 3-10 alkylene group include trimethylene group, 1-methylethylene group, tetramethylene group, 1-methyltrimethylene group, 1,1-dimethylethylene group, pentamethylene group, 1-methylethylene group, Methyltetramethylene group, 2-methyltetramethylene group, 1,1-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-ethyltrimethylene group, hexamethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1,1-dimethyltetramethylene group, 1,2-dimethyltetramethylene group, 2,2-dimethyltetramethylene group, 1- Ethyltetramethylene group, 1,1,2-trimethyltrimethylene group, 1,2,2-trimethyltrimethylene group, Examples include 1-ethyl-1
  • examples of the C 3-6 hydrocarbon ring include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, and a cyclohexane ring.
  • n2 and n3 are each independently an integer of 1-4, at least one sulfo group n2 pieces of R 2a, and at least one of n3 pieces of R 3a is A sulfo group is preferred.
  • n4 to n6 are each independently an integer of 1 to 4, at least one of n4 R 4a is a sulfo group, and at least one of n5 R 5a is sulfo It is preferable that at least one of n6 R 6a is a sulfo group.
  • n7 to n10 are each independently an integer of 1 to 4, at least one of n7 R 7a is a sulfo group, and at least one of n8 R 8a is sulfo It is preferable that at least one of n9 R 9a is a sulfo group, and at least one of n10 R 10a is a sulfo group.
  • R 1a to R 10a are each independently a C 1-10 alkyl group optionally substituted with a halogen atom, a C 1-10 alkoxy group optionally substituted with a halogen atom, a halogen atom, a nitro group, formyl group, a cyano group, a sulfo group, a phenyl group which may be substituted with W 1a, thienyl group which may be substituted with W 1a or W 1a with an optionally substituted furyl group, and W 1a Is a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a halogen atom, a nitro group, a formyl group, a cyano group or a sulfo group It is preferable.
  • X 2a is preferably a tetravalent group (5a).
  • Y 2a is preferably a divalent group (7a).
  • the structural unit (4a) is preferably represented by the formula (4a-1):
  • n1 and m2 are each independently an integer of 0 to 3, and * represents a bonding position. ] It is a structural unit represented by m1 and m2 are preferably both 0.
  • the electron withdrawing polymer (A) may be a polymer composed of one type of structural unit (4a) or a polymer composed of two or more types of structural units (4a).
  • the electron-withdrawing polymer (A) is composed of one or more structural units (4a) and one or more other structural units (that is, a structural unit different from the structural unit (4a)). It may be a polymer.
  • X 2b represents the formulas (5a) to (5c):
  • R 1b to R 10b each independently represents a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, nitro group, a formyl group, a cyano group, a phenyl group which may be substituted with W 1b, thienyl group which may be substituted with W 1b or W 1b with an optionally substituted furyl group, W 1b is a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a hydroxy group, a halogen atom, a nitro group, a formyl group or a cyano group
  • W 1b is a C 1-10 alkyl group which may be substituted with a halogen atom, a C 1-10 alkoxy
  • R 1b to R 10b are each independently a C 1-10 alkyl group optionally substituted with a halogen atom, a C 1-10 alkoxy group optionally substituted with a halogen atom, a halogen atom, a nitro group, formyl group, a cyano group, a W phenyl group which may be substituted by 1b, thienyl group which may be substituted with W 1b or an optionally substituted furyl group in W 1b, and W 1b is halogen It is preferably a C 1-10 alkyl group which may be substituted with an atom, a C 1-10 alkoxy group which may be substituted with a halogen atom, a halogen atom, a nitro group, a formyl group or a cyano group.
  • X 2b is preferably a tetravalent group (5a).
  • Y 2b is preferably represented by formula (10) to formula (15):
  • r1 to r3 are each independently an integer of 1 to 4, k1 is an integer of 1 to 4, R 1c is a fluorine atom or a trifluoromethyl group, and when k1 is an integer of 2 to 4, the plurality of R 1c may be the same or different from each other, k2 to k5 are each independently an integer of 0 to 4, R 2c is a nitro group or a trifluoromethyl group, and when k2 is an integer of 2 to 4, the plurality of R 2c may be the same or different from each other, R 3c and R 4c are both chlorine atoms, R 5c is a nitro group or a trifluoromethyl group, and when k5 is an integer of 2 to 4, the plurality of R 5c may be the same or different from each other; k6 and k7 are each independently an integer of 0 to 4, R 6c is a C 1-3 alkyl group that may be substituted with a halogen atom, and when k
  • Preferred examples of the structural unit (4b) include structural units represented by any of the following formulas (4b-1) to (4b-7) (the definition of the group in the formula is as described above). is there).
  • the amount of the structural unit (4a) in the electron withdrawing polymer (A) is preferably 80 to 100 moles per 100 moles of the structural unit (4a) and other structural units (for example, the structural unit (4b)). Is 90 to 100 mol.
  • the electron withdrawing polymer (A) is more preferably a polymer composed of one or more structural units (4a), more preferably a polymer composed of one structural unit (4a), and particularly preferably. Is a polymer composed of one type of structural unit (4a-1).
  • the weight average molecular weight (Mw) of the electron withdrawing polymer (A) is preferably 5,000 to 1,000,000, more preferably 8,000 to 900,000, and still more preferably 10,000 to 150,000. It is.
  • the electron withdrawing polymer (A) can be synthesized by a known reaction using a commercially available product as a starting material.
  • Commercial products are available from, for example, Tokyo Chemical Industry Co., Ltd., FUJIFILM Wako Pure Chemical Industries, Ltd.
  • a tetracarboxylic dianhydride for example, naphthalene-1,4,5,8-tetracarboxylic dianhydride
  • a diamine for example, 4,4′-diamino
  • the above-mentioned electron-withdrawing polymers are, for example, Macromolecules, 2002, 35, 9022-9028, Macromol. Chem. Phys. 2016, 217, 654-663, or Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 41. , 3901-3907 (2003), can be synthesized.
  • the amount of tetracarboxylic dianhydride in the reaction is preferably 0.98 to 1.02 mol, more preferably 0.99 to 1.01 mol, relative to 1 mol of diamine.
  • the method for producing the electron withdrawing polymer (A1) includes a dissolution step, a polymerization step, and a modification step as necessary.
  • the dissolution step is a step of heating a mixture of diamine (0.1 mM to 5M), tertiary amine (0.1 mM to 20M) and an organic solvent to dissolve the diamine in the organic solvent.
  • a tertiary amine is used to dissolve a diamine having an acidic group in an organic solvent.
  • the temperature for heating the mixture is not particularly limited, but the diamine can be easily and uniformly dissolved in the solvent by adjusting the temperature to about 20 to 160 ° C.
  • the tertiary amine is not particularly limited, and examples thereof include trimethylamine, triethylamine, tripropylamine, N-ethyl-N-methylbutylamine, tributylamine, N, N-dimethylbenzylamine, N, N-diethylbenzylamine, Examples include rebenzylamine and diazabicycloundecene. Of these, triethylamine is preferable. These tertiary amines may be used alone or in combination of two or more.
  • organic solvent those having a high boiling point and a high polarity are preferable.
  • m-cresol, dimethyl sulfoxide and N-methyl-2-pyrrolidinone are preferable.
  • These organic solvents may use only 1 type and may use 2 or more types together. In the present specification, “m-” represents “meta”, and “p-” represents “para”.
  • tetracarboxylic dianhydride (0.1 mM to 5 M) is added to the diamine solution obtained in the dissolution step, and the resulting mixture is heated in the presence of an organic acid (0.01 mM to 20 M). And polymerizing.
  • the organic acid acts as a catalyst for polymerization and ring closure reaction, and promotes the formation of polyamic acid and the formation of an imide ring by the ring closure.
  • the organic acid is preferably a compound having a high boiling point and high solubility in the organic solvent, and examples thereof include benzoic acid, methylbenzoic acid, dimethylbenzoic acid, and salicylic acid. Of these, benzoic acid is preferable.
  • the organic acid only needs to be present in the polymerization step, and may be added at the stage of the dissolution step.
  • the amount of the organic acid to be added is not particularly limited, but when benzoic acid is used as the organic acid, the amount is preferably about 1 to 6 moles per mole of tetracarboxylic dianhydride.
  • the temperature which heats a reaction mixture is at least 40 degreeC or more. When this temperature is preferably 100 to 190 ° C., more preferably 140 to 180 ° C., the polymerization reaction proceeds efficiently, and a polyimide which is a high molecular weight electron withdrawing polymer can be obtained.
  • the reforming process is a process for correcting structural defects in the polyimide obtained in the polymerization process.
  • a structural defect is a defect based on an unclosed portion (amic acid) in polyimide.
  • the reaction mixture after the polymerization step is heated at a temperature higher than the temperature of the polymerization step to perform a dehydration reaction and imidize the uncyclized portion. This temperature is preferably at least 150 ° C. or higher, and more preferably 190 to 220 ° C.
  • the ring closure reaction proceeds efficiently, and a polyimide having no structural defect can be obtained.
  • the electron withdrawing polymer (A) can be obtained by known means such as precipitation, filtration, dialysis and drying.
  • the amount of the electron donating polymer (D) in the composition of the present invention is preferably 1 to 10,000 parts by weight, more preferably 10 to 1, based on 100 parts by weight of the electron withdrawing polymer (A). 500 parts by weight, more preferably 20 to 900 parts by weight, and most preferably 50 to 500 parts by weight.
  • the electron donating polymer (D) and the electron withdrawing polymer (A) preferably form a charge transfer complex.
  • a composition in which the electron donating polymer (D) and the electron withdrawing polymer (A) are sufficiently mixed and phase separation is suppressed can be obtained.
  • charge transfer complex means an intermolecular compound formed between two neutral molecules by charge transfer force.
  • electron donating polymer (D) and the electron withdrawing polymer (A) form a charge transfer complex is described in Nature, 375 (6529), 303-305 (1995) and Polym. J. (2013), 45, 839-844, the UV-vis absorption spectrum of the composition can be confirmed by having a peak or shoulder near 530 nm.
  • the heat treatment is preferably performed in an inert gas (eg, nitrogen, argon) atmosphere.
  • the temperature of the heat treatment is preferably 40 to 200 ° C., more preferably 60 to 180 ° C., still more preferably 70 to 160 ° C., and the time is preferably 0.01 to 200 hours, more preferably 0.5 to 160 hours, more preferably 1 to 80 hours.
  • a membrane can be produced by preparing a solution of the composition of the present invention and then distilling off the solvent from this solution.
  • the solution of the composition may be prepared by adding the electron-donating polymer (D) and the electron-withdrawing polymer (A) sequentially or simultaneously in a solvent and heating appropriately.
  • a solution of the composition may be prepared by separately preparing a solution of the electron donating polymer (D) and a solution of the electron withdrawing polymer (A) and mixing the obtained solutions.
  • Examples of the solvent for preparing the solution of the composition include water, methanol, ethanol, trifluoroethanol, 1-propanol, 2-propanol, 2-methyl-2-butanol, ethylene glycol, benzyl alcohol, cyclohexane, and benzene. , Nitrobenzene, chloroform, carbon tetrachloride, diethyl ether, tetrahydrofuran, isoxazole, 1,4-dioxane, cyclopentyl methyl ether, acetone, acetonitrile, nitromethane, dimethyl sulfoxide, N, N-dimethylformamide, sulfolane, 1,3-propane Sultone is mentioned.
  • solvents may use only 1 type and may use 2 or more types together.
  • the total concentration of the electron-donating polymer (D) and the electron-withdrawing polymer (A) is preferably based on the whole solution. Is 0.1 to 90% by weight, more preferably 0.5 to 10% by weight.
  • the method for distilling off the solvent from the composition solution is not particularly limited, and the solvent may be distilled off by a known means (for example, heat drying, drying under reduced pressure, etc.).
  • the thickness of the film can be adjusted by the charged amount of the electron donating polymer (D) and the electron withdrawing polymer (A) and the area of the petri dish used when the solvent is distilled off.
  • the thickness of the film produced from the composition of the present invention is preferably 0.01 to 200 ⁇ m, more preferably 0.1 to 100 ⁇ m, still more preferably 0.3 to 60 ⁇ m.
  • the solvent distillation from the solution of the composition of the present invention may be performed in an air atmosphere or an inert gas (for example, nitrogen, argon) atmosphere. Moreover, this solvent distillation may be performed under a normal pressure, and may be performed under reduced pressure using a vacuum dryer or a vacuum pump.
  • an inert gas for example, nitrogen, argon
  • the temperature for distilling off the solvent is preferably ⁇ 10 to 200 ° C., more preferably 40 to 160 ° C., and further preferably 50 to 130 ° C.
  • the solvent distillation may be performed at a constant temperature, or may be performed by changing the temperature in multiple steps.
  • the time for distilling off the solvent is preferably 0.5 to 300 hours, more preferably 1 to 160 hours, and even more preferably 2 to 150 hours.
  • Conditions for producing a film from the composition of the present invention for example, the type of the above-mentioned solvent, the concentration of the polymer in the solution, and the atmosphere, pressure, temperature and time for distilling off the solvent
  • the type of the above-mentioned solvent, the concentration of the polymer in the solution, and the atmosphere, pressure, temperature and time for distilling off the solvent can be appropriately selected.
  • the heat treatment is preferably performed in an inert gas (eg, nitrogen, argon) atmosphere.
  • the temperature of the heat treatment is preferably 40 to 200 ° C., more preferably 60 to 180 ° C., still more preferably 70 to 160 ° C., and the time is preferably 0.01 to 200 hours, more preferably 0.5 to 160 hours, more preferably 1 to 80 hours.
  • the film produced from the composition of the present invention (that is, the film containing the composition of the present invention) can be used for various applications.
  • Applications of the membrane containing the composition of the present invention include, for example, an electrolyte membrane of a fuel cell, an electrolyte coating membrane on an electrode catalyst in a catalyst layer, a gas permeation suppression membrane, and the like.
  • the electrolyte membrane of the fuel cell and the electrolyte coating membrane on the electrode catalyst are preferable, and the electrolyte membrane of the fuel cell is more preferable.
  • the electrolyte coating film on the electrode catalyst is a film having a structure in which the polymer electrolyte used for forming the catalyst layer covers the electrode catalyst and the electrode.
  • the catalyst layer can be formed from, for example, a catalyst ink containing an electrode catalyst and a polymer electrolyte.
  • the thickness of the electrolyte membrane of the fuel cell containing the composition of the present invention is preferably 0.1 to 200 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 5 to 20 ⁇ m.
  • the thickness of the electrolyte coating film on the electrode catalyst in the catalyst layer of the fuel cell containing the composition of the present invention is preferably 1 to 100 nm, more preferably 2 to 50 nm, and still more preferably 5 to 30 nm.
  • 1 H NMR The chemical shift value of proton nuclear magnetic resonance ( 1 H NMR) of the polymer was determined in a deuterated dimethyl sulfoxide (DMSO-d 6 ) solvent using Bruker AV-400 (400 MHz) or Bruker AVANCE III (500 MHz). The chemical shift was represented by a ⁇ value (ppm) when tetramethylsilane was used as an internal standard (0.0 ppm).
  • ppm ⁇ value
  • J means coupling constant
  • Hz means hertz.
  • DMSO-d 6 means deuterated dimethyl sulfoxide.
  • GPC The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were measured by gel permeation chromatography (GPC) under analysis condition A and converted using a calibration curve of standard polystyrene.
  • ⁇ Analysis condition A> Column: Tosoh TSK guard column Super AW-H, Tosoh TSK gel super AW 3000 and Tosoh TSK gel super AW 5000 are connected in series in this order. did.
  • Detector differential refractive index detector RI-2031 and UV-visible detector UV-2075 manufactured by JASCO Eluent: Dimethyl sulfoxide in which 10 mmol / L sodium nitrate is dissolved
  • UV-vis Ultraviolet-visible spectroscopy (UV-vis) measurement of the composition was carried out by using an ultraviolet-visible near-infrared spectrophotometer V-650 manufactured by JASCO Corporation, an integrating sphere unit ISV-722 manufactured by JASCO Corporation, and JASCO Corporation. The sample holder SSH-506 made by the company was mounted.
  • Ion exchange capacity (mmol / g) The theoretical ion exchange capacity (theoretical IEC) was calculated as the amount (mmol) of sulfo group contained per polymer or composition (1 g).
  • the ion exchange capacity (IEC) by titration was calculated as follows. First, a polymer or composition film cut into a size of 1 ⁇ 1 cm 2 was immersed in 10 mL of an aqueous sodium chloride solution (concentration: 15% by weight) for 3 days, and then phenolphthalein and an aqueous sodium hydroxide solution as indicators. (Concentration: 0.001 mol / L) and titration until the pH of the sodium chloride aqueous solution reached 7.
  • a membrane electrode assembly (hereinafter abbreviated as “MEA”) was prepared from an electrolyte membrane, a gas diffusion layer (hereinafter abbreviated as “GDL”), and a catalyst ink.
  • GDL gas diffusion layer
  • a catalyst ink As the electrolyte membrane, a membrane of the composition of the present invention or Nafion 212 (registered trademark, manufactured by DuPont, purchased from Toyo Technica, Inc., film thickness: 50 ⁇ m) was used.
  • GDL a hydrophobic carbon paper (product name “EC-TP1-060T” manufactured by Toray Industries, Inc.) or a hydrophobic carbon paper with a microporous layer (product name “GDL 24 BCH” manufactured by SIGRACET) was used.
  • the catalyst ink is a platinum-supported carbon electrode catalyst (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., platinum content: 46.5% by weight, product name “TEC10E50E”), deionized water, ethanol (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and A Nafion dispersion solution (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., product name “5% Nafion Dispersion Solution DE521 CS type”) was prepared.
  • Electrocatalyst, deionized water, ethanol and Nafion dispersion solution were added in this order to a glass vial, and the resulting dispersion solution was used with an ultrasonic homogenizer Smurt NR-50M manufactured by Microtech Nichion. Then, an ultrasonic wave was set at an output of 40% and irradiated for 30 minutes to prepare a catalyst ink.
  • a membrane of the composition of the present invention was used.
  • hydrophobic carbon paper product name “EC-TP1-060T” manufactured by Toray Industries, Inc.
  • the catalyst ink was applied to both surfaces of the electrolyte membrane using a spray coating device V8H manufactured by Nordson so that the amount of platinum per 1 cm 2 of the coated surface was 0.3 mg, and dried to form a catalyst layer.
  • an electrolyte membrane with catalyst layers formed on both sides is thermocompression bonded at 132 ° C. and 0.3 kN for 180 seconds to produce a catalyst coated membrane (hereinafter abbreviated as “CCM”).
  • CCM catalyst coated membrane
  • GDL gas diffusion layer
  • the catalyst ink is a platinum-supported carbon electrode catalyst (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., platinum content: 46.5 wt%, product name “TEC10E50E”), deionized water, ethanol (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) Prepared using the composition of the present invention.
  • the composition of the present invention, the electrode catalyst, deionized water and ethanol were added in this order to a glass vial, and ultrasonic waves were applied under the same conditions as MEA preparation condition A to prepare a catalyst ink.
  • the electrolyte membrane Nafion 212 (registered trademark, manufactured by DuPont, purchased from Toyo Technica Co., Ltd., film thickness: 50 ⁇ m) was used.
  • GDL a hydrophobic carbon paper with a microporous layer (manufactured by SIGRACET, product name “GDL 24 BCH”) was used.
  • the catalyst ink was applied to both surfaces of the electrolyte membrane using a spray coating device V8H manufactured by Nordson so that the amount of platinum per 1 cm 2 of the coated surface was 0.3 mg, and dried to form a catalyst layer.
  • an electrolyte membrane with a catalyst layer formed on both sides is thermocompression bonded at 132 ° C.
  • MEA preparation condition B the composition of the present invention was used as the polymer electrolyte for preparing the catalyst ink instead of Nafion, and a catalyst layer containing the composition of the present invention was formed.
  • the ratio of the polymer electrolyte in the catalyst ink under the above-described MEA production conditions A and B will be described.
  • the ratio (% by weight) of the polymer electrolyte calculated from the following formula was set to 28% by weight.
  • Ratio of polymer electrolyte [Solid content of polymer electrolyte (weight) / [Electrocatalyst (weight) + Solid content of polymer electrolyte (weight)]] ⁇ 100
  • the amount of the electrode catalyst is set to 100.0 mg
  • the amount of Nafion dispersion solution is set to 837 ⁇ L
  • the amount of deionized water is set to 0.6 mL
  • the amount of ethanol is set to 5.1 mL. did.
  • the Nafion solid content in the Nafion dispersion solution (837 ⁇ L) was 38.9 mg.
  • the amount of the electrode catalyst is 100.0 mg
  • the amount of the composition of the present invention is 38.9 mg
  • the amount of deionized water is 0.6 mL
  • the amount of ethanol is Set to 5.1 mL.
  • the prepared MEA was placed in a single cell having an electrode area of 1 cm 2 (manufactured by FC Development Co., Ltd., JARI standard cell), and after 4 hours of cell aging was performed at 0.6 V, a fuel cell power generation test was performed.
  • the current density and voltage were measured using a fuel cell evaluation system (Toyo Technica, AutoPEM). Further, a cell resistance value and an open circuit voltage (hereinafter abbreviated as “OCV”) were measured using a SI 1287 electrochemical interface impedance analyzer manufactured by Solartron.
  • the OCV is a potential when no voltage or current is applied to the single cell.
  • the power generation test of the fuel cell was performed under the following test conditions A and B.
  • Cathode side Supply air at a flow rate of 100 mL / min
  • Synthesis Example 1 Synthesis of 2,6-bis (oxiran-2-ylmethoxy) naphthalene After attaching a reflux condenser and a dropping funnel to the reaction vessel, 2,6-dihydroxynaphthalene (7.36 g, 46.0 mmol), acetone 55 mL and 10 mL of water were sequentially added to the reaction vessel. Epichlorohydrin (28.8 mL, 368.0 mmol) was then added while the reaction mixture was heated to 65 ° C. and stirred.
  • Synthesis Example 2 Synthesis of electron donating polymer (d-1) After the inside of the reaction vessel was replaced with nitrogen, 2,6-bis (oxiran-2-ylmethoxy) naphthalene (1.246 g, 4.58 mmol), 2 , 6-dihydroxynaphthalene (0.733 g, 4.58 mmol), tris (2,6-dimethoxyphenyl) phosphine (16.2 mg, 36.6 ⁇ mol) and cyclohexanone (15 mL) were sequentially added to the reaction vessel. Next, the reaction mixture was stirred at 140 ° C. for 12 hours, dimethyl sulfoxide (10 mL) was added, and the mixture was further stirred at 160 ° C. for 40 hours. After completion of the reaction, the reaction mixture was added dropwise to chloroform to precipitate a precipitate, and then the precipitate was collected by filtration and dried under reduced pressure to obtain the formula (1b-1):
  • FIG. 1 shows a 1 H NMR chart of the electron donating polymer (d-1).
  • Synthesis Example 3 Synthesis of electron donating polymer (D-1) After the inside of the reaction vessel was replaced with nitrogen, pyridine-sulfur trioxide complex (0.46 g, 2.90 mmol) and dimethyl sulfoxide (3 mL) were sequentially added. To the reaction vessel. Next, the electron donating polymer (d-1) (0.313 g, 1.45 mmol) obtained in Synthesis Example 2 and triethylamine (1.21 mL, 8 mL) were added to a mixed solvent of dimethyl sulfoxide (3 mL) and dichloromethane (3 mL). .69 mmol) was added and the resulting reaction mixture was added to the reaction vessel. The reaction mixture was stirred at 20-25 ° C. for 3 hours while maintaining a nitrogen atmosphere.
  • the amount of the structural unit (1a-1) in this copolymer was 97 mol per 100 mol in total of the structural unit (1a-1) and the structural unit (1b-1).
  • FIG. 2 shows a 1 H NMR chart of the electron donating polymer (D-1).
  • Synthesis Example 4 Synthesis of electron-withdrawing polymer (A-1) After the inside of the reaction vessel was replaced with nitrogen, 4,4′-diamino-2,2′-biphenyldisulfonic acid (10.33 g, 30.0 mmol) ), M-cresol (75 mL), and triethylamine (7.59 g, 75.0 mmol) were sequentially added to the reaction vessel. Next, the reaction mixture was stirred at 140 to 145 ° C. to dissolve the solid, in which naphthalene-1,4,5,8-tetracarboxylic dianhydride (8.21 g, 30.6 mmol) was added.
  • Dimethyl sulfoxide is added to the resulting precipitate and heated to 100-110 ° C., and the resulting dimethyl sulfoxide solution is mixed with a dialysis membrane (Spectra / Por 7, MWCO (Daltons) 3500, Spectra) Dialysis was performed for 4 days using a laboratory company. After completion of dialysis, the solution is dried, and the structural unit represented by the formula (4a-11):
  • the electron withdrawing polymer (A-1) was obtained as a black-brown solid (12.5 g, yield 70%).
  • Ion exchange capacity by titration (IEC) 3.47 (mmol / g)
  • Synthesis Example 5 Synthesis of electron withdrawing polymer (A-2) After the inside of the reaction vessel was replaced with nitrogen, 4,4'-diamino-2,2'-biphenyldisulfonic acid (4.14 g, 12.0 mmol) ), 4,4′-diaminooctafluorobiphenyl (0.44 g, 1.3 mmol), m-cresol (38 g), and triethylamine (3.38 g, 33.4 mmol) were sequentially added to the reaction vessel. The reaction mixture was then stirred at 140-145 ° C.
  • naphthalene-1,4,5,8-tetracarboxylic dianhydride (3.65 g, 13.6 mmol).
  • And benzoic acid (3.27 g, 26.8 mmol) were added.
  • the reaction mixture was stirred at 170 to 175 ° C. for 27 hours to carry out the reaction.
  • the resulting precipitate was added to dimethyl sulfoxide, heated to 100 to 110 ° C. and dissolved to obtain a dimethyl sulfoxide solution.
  • Dimethyl sulfoxide was added to the precipitate and dissolved by heating to 100 to 110 ° C., and then the dimethyl sulfoxide solution was added dropwise to methanol to precipitate the precipitate, which was collected by filtration. After adding dimethyl sulfoxide to the precipitate and heating to 100 to 110 ° C.
  • the obtained dimethyl sulfoxide solution is mixed with a dialysis membrane (Spectra / Por 6, MWCO (Daltons) 1000 with a molecular weight cut off of 1,000) Then, dialysis was carried out for 4 days using a Spectra Spectrum Laboratory. After completion of dialysis, the solution is freeze-dried, and the structural unit represented by the formula (4a-11) and the structural unit represented by the formula (4b-11):
  • an electron-withdrawing polymer (A-2) which is a random copolymer having a solid content, was obtained as a black-brown solid (5.4 g, yield 70%).
  • the number of structural units (4a-11) / the number of structural units (4b-11) in the electron withdrawing polymer (A-2) calculated from the charged amount of the raw material is 9/1.
  • Example 1 Production of film of composition (I) of electron donating polymer (D-1) and electron withdrawing polymer (A-1) Electron donating polymer (D-1) (74.3 mg), electron The attractive polymer (A-1) (13.8 mg) and dimethyl sulfoxide (2 mL) were sequentially added to a glass container. Next, the polymer mixture was sonicated while being heated to 60 ° C. to 80 ° C. to prepare a solution. Next, the obtained solution was added to a petri dish having a diameter of 4 cm, the petri dish was placed on a hot plate at a temperature of 60 ° C., and dimethyl sulfoxide was distilled off.
  • the petri dish was placed in a vacuum dryer and dried under reduced pressure at 60 ° C. for 24 hours to form a film of the composition (I) of the electron donating polymer (D-1) and the electron withdrawing polymer (A-1). (Transparent light brown, film thickness: 11 ⁇ m).
  • Examples 2 and 3 Preparation of films of compositions (II) and (III) of electron donating polymer (D-1) and electron withdrawing polymer (A-1) with electron donating polymer (D-1) Films of compositions (II) and (III) were produced in the same manner as in Example 1 except that the ratio with the electron withdrawing polymer (A-1) was changed.
  • Table 1 shows the amounts of the electron donating polymer (D-1) and the electron withdrawing polymer (A-1) in the films of the compositions (I) to (III) obtained in Examples 1 to 3 and the films. Write the thickness.
  • Table 1 shows the relationship between the naphthalenetetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A-1) and the dioxynaphthalene part (d) of the electron donating polymer (D-1) in the composition.
  • Table 1 shows the sum of the naphthalenetetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A-1) and the dioxynaphthalene part (d) of the electron donating polymer (D-1) in the composition.
  • this mole fraction may be abbreviated as “mole fraction of (A-1)”.
  • Example 4 Manufacture of film of heat treatment composition (IV)
  • the film of composition (I) obtained in Example 1 was placed in a glass vacuum desiccator with a cock, and the inside of the desiccator was replaced with nitrogen gas. did. Next, this vacuum desiccator was dried under reduced pressure for 16 hours in a constant temperature drier set at 120 ° C. to obtain a film of the heat treatment composition (IV) (dark brown, film thickness 11 ⁇ m).
  • Film of heat treatment composition (IV): Ion exchange capacity by titration (IEC) 2.81 (mmol / g)
  • Examples 5 and 6 Production of films of heat-treated compositions (V) and (VI) Instead of the film of composition (I) obtained in Example 1, the composition obtained in Example 2 or 3 ( Films of heat-treated compositions (V) and (VI) were produced in the same manner as in Example 4 except that the film of II) or (III) was used.
  • Comparative Example 1 Production of film of composition (VII) of electron donating polymer (d-1) and electron withdrawing polymer (A-1) Electron donating polymer (d-1) (74.1 mg), electron The attractive polymer (A-1) (13.9 mg) and dimethyl sulfoxide (2 mL) were sequentially added to a glass container. Next, the polymer mixture was sonicated while being heated to 60 ° C. to 80 ° C. to prepare a solution. Next, the obtained solution was added to a petri dish having a diameter of 4 cm, the petri dish was placed on a hot plate at a temperature of 60 ° C., and dimethyl sulfoxide was distilled off.
  • the petri dish was placed in a vacuum dryer and dried under reduced pressure at 60 ° C. for 24 hours to form a film of the composition (VII) of the electron donating polymer (d-1) and the electron withdrawing polymer (A-1). (Yellow transparent, film thickness: 11 ⁇ m) was obtained.
  • Comparative Examples 2 and 3 Production of Films of Composition (VIII) and (IX) of Electron Donating Polymer (d-1) and Electron Withdrawing Polymer (A-1) Electron Donating Polymer (d-1) Films of compositions (VIII) and (IX) were produced in the same manner as in Comparative Example 1 except that the ratio with the electron withdrawing polymer (A-1) was changed.
  • Table 3 shows amounts of the electron donating polymer (d-1) and the electron withdrawing polymer (A-1) in the films of the compositions (VII) to (IX) obtained in Comparative Examples 1 to 3 and the films. Write the thickness.
  • Table 3 shows the relationship between the naphthalenetetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A-1) and the dioxynaphthalene part (d) of the electron donating polymer (d-1) in the composition.
  • Table 3 shows the total of the naphthalenetetracarboxylic acid diimide part (a) of the electron withdrawing polymer (A-1) and the dioxynaphthalene part (d) of the electron donating polymer (d-1) in the composition.
  • this mole fraction may be abbreviated as “mole fraction of (A-1)”.
  • Comparative Examples 5 and 6 Production of Films of Heat Treatment Compositions (XI) and (XII) Instead of the film of the composition (VII) obtained in Comparative Example 4, the composition obtained in Comparative Example 2 or 3 ( Films of heat-treated compositions (XI) and (XII) were produced in the same manner as Comparative Example 1 except that the film of (VIII) or (IX) was used.
  • Table 4 shows the heat treatment compositions obtained in Comparative Examples 4 to 6, the starting composition used for the heat treatment, and the reduction rate of the ion exchange capacity due to the heat treatment calculated by the above formula.
  • compositions (I) to (III) containing the electron donating polymer (D-1) Compared with the compositions (IV) to (VI) containing the polymer (d-1), the decrease in ion exchange capacity due to heat treatment is suppressed.
  • Comparative Example 7 Production of heat treatment composition (XIII) film
  • the composition (VII) film obtained in Comparative Example 1 was placed in a glass-made vacuum desiccator with a cock, and the inside of the desiccator was replaced with nitrogen gas. did.
  • this vacuum desiccator was dried under reduced pressure for 16 hours in a constant temperature drier set at 120 ° C. to obtain a film of the heat treatment composition (XIII) (dark brown, film thickness 17 ⁇ m).
  • Example 7 Preparation of composition (XIV) comprising electron donating polymer (D-1) and electron withdrawing polymer (A-2) Electron withdrawing polymer (A-2) (32.8 mg); Dimethylformamide (3 mL) was added sequentially to the sample bottle. The resulting mixture was then stirred and heated to 80-90 ° C. to get a solution. Next, the electron donating polymer (D-1) (6.11 mg) was added to the resulting dimethylformamide solution of the electron withdrawing polymer (A-2), and then water (0.5 mL) and ethanol were added. (2.5 mL) was added to obtain a composition (XIV) containing an electron donating polymer (D-1) and an electron withdrawing polymer (A-2).
  • Test Example 1 Confirmation of charge transfer complex 1 Absorption spectra of the film of the composition (I) obtained in Example 1 and the film of the heat-treated composition (IV) obtained in Example 4 were measured by ultraviolet-visible spectroscopy (UV-vis). These absorption spectra are shown in FIG.
  • the absorption spectra of the film of the composition (I) and the film of the heat treatment composition (IV) had a shoulder near 530 nm. This shoulder is absorption by the charge transfer complex (see Nature, 375 (6529), 303-305 (1995) Polym. J. (2013), 45, 839-844). Therefore, from this result, it was confirmed that the film
  • Test Example 2 Confirmation 2 of charge transfer complex Absorption spectra of the film of the composition (VII) obtained in Comparative Example 1 and the film of the heat-treated composition (XIII) obtained in Comparative Example 7 were measured by ultraviolet-visible spectroscopy (UV-vis). These absorption spectra are shown in FIG.
  • the absorption spectra of the film of the composition (VII) and the film of the heat-treated composition (XIII) have a shoulder near 530 nm and confirm that a charge transfer complex is formed. It was done.
  • the absorbance at 530 nm normalized by the film thickness was improved about twice in the film of the heat treatment composition (XIII) as compared with the film of the composition (VII).
  • Composition (VII) 0.023 (abs / ⁇ m)
  • Heat treatment composition (XIII) 0.054 (abs / ⁇ m)
  • the absorbance at 530 nm normalized by the film thickness is as high as that of the film (Example 1) of the composition (I) containing the electron donating polymer (D-1).
  • the film was improved by about 1.7 times over the film of the composition (VII) containing the donating polymer (d-1) (Comparative Example 1). From this result, it was confirmed that the use of the electron donating polymer (D-1) increases the amount of charge transfer complex formation before the heat treatment as compared with the case of using the electron donating polymer (d-1). It was done.
  • the absorbance at 530 nm normalized by the film thickness was improved about 3 times in the heat-treated composition (IV) (Example 4) as compared to the heat-treated composition (XIII) (Comparative Example 7). From this result, it was confirmed that the use of the electron donating polymer (D-1) increases the amount of charge transfer complex formation after the heat treatment compared to the case of using the electron donating polymer (d-1). It was done.
  • Test example 3 Fuel cell power generation test 1 Using a heat treatment composition (IV) film (film thickness: 14 ⁇ m) produced in the same manner as in Example 4 as an electrolyte film, a three-layer structure with GDL / CCM / GDL as described in MEA preparation condition A above An MEA having the following was produced. Using this MEA, a power generation test of a fuel cell was performed under test condition A. The OCV of the single cell in the power generation test 1 of the fuel cell was 0.910V. The cell resistance value of the film of the heat treatment composition (IV) was 0.17 ⁇ . Table 5 shows the results of voltage and current density in power generation test 1.
  • Test example 4 Fuel cell power generation test 2 A fuel cell power generation test was performed in the same manner as in Test Example 3 except that the above test condition A was changed to the above test condition B.
  • the cell resistance value of the film of the heat treatment composition (IV) was 1.38 ⁇ .
  • the results of voltage and current density in power generation test 2 are shown in Table 6.
  • Test Example 5 Fuel cell power generation test 3 An MEA having a three-layer structure of GDL / CCM / GDL was prepared using the catalyst ink containing the composition (XIV) as described in MEA preparation conditions B above.
  • the catalyst layer of the MEA contains the composition of the present invention (that is, the electron donating polymer (D-1) and the electron withdrawing polymer (A-2)).
  • a power generation test of a fuel cell was performed under test condition A.
  • Table 7 shows the results of voltage and current density in power generation test 3. As shown in Table 7, it was confirmed that power generation was possible using the catalyst layer containing the composition of the present invention.
  • the OCV of the single cell in the power generation test 3 of the fuel cell was 0.873V.
  • composition of the present invention is useful, for example, as an electrolyte material for a fuel cell (for example, a polymer electrolyte or an electrolyte membrane used for forming a catalyst layer).
  • a fuel cell for example, a polymer electrolyte or an electrolyte membrane used for forming a catalyst layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

本発明は電子供与性ポリマー(D)および電子求引性ポリマー(A)を含む組成物であり、電子供与性ポリマー(D)が、下記式(1a)で表される構成単位を有し、下記式(1a)中のY1aが下記式(3a)で表される2価の基であり、電子求引性ポリマー(A)が、下記式(4a)で表される構成単位を有する組成物を提供する(下記式中の記号の説明は明細書に記載した通りである)。

Description

ポリマー組成物
 本発明は、電子供与性ポリマーおよび電子求引性ポリマーを含む組成物に関する。
 電荷移動錯体を形成する材料は多く報告されている。例えば、非特許文献1には、テトラチアフルバレン・p-クロラニルおよびその誘導体を用いた電荷移動錯体が報告されている。一方、電荷移動錯体を形成する高分子材料は、例えば、非特許文献2および3には、ポリマーであるポリイミドと、低分子化合物であるジヒドロキシナフタレンとの電荷移動錯体が報告されている。また、非特許文献4には、電子求引性ポリマーおよび電子供与性ポリマーの電荷移動錯体が報告されている。
Phys. Rev. B 43 (1991) 8224 Polymer Journal (2013) 45, 839-844 JOURNAL OF POLYMER SCIENCE, PART A POLYMER CHEMISTRY 2014, 52, 2991-2997 JOURNAL OF MEMBRANE SCIENCE 2018, 548, 223-231
 非特許文献4で報告されているように、電荷移動錯体を形成することができれば、電子供与性ポリマーおよび電子求引性ポリマーの相分離が抑制され、強度が向上した材料(ポリマー組成物)が得られることが期待される。本発明はこのような事情に着目してなされたものであって、その目的は、電荷移動錯体の形成量が多い電子供与性ポリマーおよび電子求引性ポリマーの組成物を提供することにある。
 上記目的を達成し得る本発明は、以下の通りである。
 [1] 電子供与性ポリマー(D)および電子求引性ポリマー(A)を含む組成物であり、
 電子供与性ポリマー(D)が、式(1a):
*-X1a-O-Y1a-O-*   (1a)
[式中、X1aは、式(2a)または式(2b):
Figure JPOXMLDOC01-appb-C000009
[式中、*は、結合位置を示す。]
で表される2価の基であり、
 Y1aは、式(3a):
Figure JPOXMLDOC01-appb-C000010
[式中、*は、結合位置を示す。]
で表される2価の基であり、および
 *は、結合位置を示す。]
で表される構成単位を有し、
 電子求引性ポリマー(A)が、式(4a):
Figure JPOXMLDOC01-appb-C000011
[式中、X2aは、式(5a)~式(5c):
Figure JPOXMLDOC01-appb-C000012
[式中、*は、結合位置を示す。]
のいずれかで表される4価の基であり、
 Y2aは、式(6a)~式(9a):
Figure JPOXMLDOC01-appb-C000013
[式中、n1は、1~4の整数であり、
 n2~n10は、それぞれ独立に、0~4の整数であり、
 R1a~R10aは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、W1aで置換されていてもよいフェニル基、W1aで置換されていてもよいチエニル基、またはW1aで置換されていてもよいフリル基であり、
 W1aは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基であり、
 n1~n10が2~4の整数である場合、複数のR1a~R10aは、互いに、同じまたは異なるものでもよく、
 n1個のR1aの少なくとも一つは、スルホ基であり、
 n2個のR2aおよびn3個のR3aからなる群から選ばれる少なくとも一つは、スルホ基であり、
 n4個のR4a、n5個のR5aおよびn6個のR6aからなる群から選ばれる少なくとも一つは、スルホ基であり、
 n7個のR7a、n8個のR8a、n9個のR9aおよびn10個のR10aからなる群から選ばれる少なくとも一つは、スルホ基であり、
 Z1a~Z6aは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R11a)(R12a)-*、またはオキシ基であり、
 R11aおよびR12aは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR11aおよびR12aは互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する、および
 *は、結合位置を示す。]
のいずれかで表される2価の基であり、および
 *は、結合位置を示す。]
で表される構成単位を有する組成物。
 [2] X1aが、式(2a)で表される2価の基である前記[1]に記載の組成物。
 [3] 電子供与性ポリマー(D)が、さらに、式(1b):
*-O-X1b-O-Y1b-*   (1b)
[式中、X1bは、式(2a)または式(2b):
Figure JPOXMLDOC01-appb-C000014
[式中、*は、結合位置を示す。]
で表される2価の基であり、
 Y1bは、式(3b):
Figure JPOXMLDOC01-appb-C000015
[式中、*は、結合位置を示す。]
で表される2価の基であり、および
 *は、結合位置を示す。]
で表される構成単位を有する前記[1]または[2]に記載の組成物。
 [4] X1bが、式(2a)で表される2価の基である前記[3]に記載の組成物。
 [5] 式(1a)で表される構成単位の量が、式(1a)で表される構成単位および式(1b)で表される構成単位の合計100モルあたり、80~98モルである前記[3]または[4]に記載の組成物。
 [6] R1a~R10aが、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、W1aで置換されていてもよいフェニル基、W1aで置換されていてもよいチエニル基、またはW1aで置換されていてもよいフリル基であり、およびW1aが、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基である前記[1]~[5]のいずれか一つに記載の組成物。
 [7] X2aが、式(5a)で表される4価の基である前記[1]~[6]のいずれか一つに記載の組成物。
 [8] Y2aが、式(7a)で表される2価の基である前記[1]~[7]のいずれか一つに記載の組成物。
 [9] 式(4a)で表される構成単位が、式(4a-1):
Figure JPOXMLDOC01-appb-C000016
[式中、m1およびm2は、それぞれ独立に、0~3の整数であり、および
 *は、結合位置を示す。]
で表される構成単位である前記[1]~[5]のいずれか一つに記載の組成物。
 [10] 電子供与性ポリマー(D)および電子求引性ポリマー(A)が、電荷移動錯体を形成している前記[1]~[9]のいずれか一つに記載の組成物。
 本発明によれば、電荷移動錯体の形成量が多い電子供与性ポリマーおよび電子求引性ポリマーの組成物が得られる。
合成例2で得られた電子供与性ポリマー(d-1)のH NMRのチャートである。 合成例3で得られた電子供与性ポリマー(D-1)のH NMRのチャートである。 試験例1で測定された、組成物(I)の膜(実施例1)および熱処理組成物(IV)の膜(実施例4)の紫外-可視分光法(UV-vis)による吸収スペクトルである。 試験例2で測定された、組成物(VII)の膜(比較例1)および熱処理組成物(XIII)の膜(比較例7)の紫外-可視分光法(UV-vis)による吸収スペクトルである。
 以下、本発明について順に説明する。なお、以下の例示、好ましい記載等は、これらが互いに矛盾しない限り、組み合わせることができる。
 本発明の組成物は、電子供与性ポリマー(D)および電子求引性ポリマー(A)を含む。電子供与性ポリマー(D)は、1種のみを使用してもよく、2種以上を併用してもよい。同様に、電子求引性ポリマー(A)は、1種のみを使用してもよく、2種以上を併用してもよい。ここで、「電子供与性」とは、他の分子またはイオンに電子を容易に与え得る分子またはイオンの性質を意味する。また、「電子求引性」とは、他の分子またはイオンから電子を容易に受け取り得る分子またはイオンの性質を意味する。
 本発明の組成物中の電子供与性ポリマー(D)は、式(1a):
*-X1a-O-Y1a-O-*   (1a)
[式中、X1aは、式(2a)または式(2b):
Figure JPOXMLDOC01-appb-C000017
[式中、*は、結合位置を示す。]
で表される2価の基であり、
 Y1aは、式(3a):
Figure JPOXMLDOC01-appb-C000018
[式中、*は、結合位置を示す。]
で表される2価の基であり、および
 *は、結合位置を示す。]
で表される構成単位を有する。なお、以下では「式(1a)で表される構成単位」を「構成単位(1a)」と略称することがある。他の式で表される構成単位および基も同様に略称することがある。この構成単位(1a)中の-X1a-O-との構造が、ポリマー(D)に電子供与性を付与すると考えられる。
 電子供与性ポリマー(D)中のX1aは、2価の基(2a)および2価の基(2b)の両方でもよく、これらの片方でもよい。X1aは、好ましくは2価の基(2a)である。構成単位(1a)は、好ましくは、以下の式(1a-1)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000019
 電子供与性ポリマー(D)は、さらに、式(1b):
*-O-X1b-O-Y1b-*   (1b)
[式中、X1bは、式(2a)または式(2b):
Figure JPOXMLDOC01-appb-C000020
[式中、*は、結合位置を示す。]
で表される2価の基であり、
 Y1bは、式(3b):
Figure JPOXMLDOC01-appb-C000021
[式中、*は、結合位置を示す。]
で表される2価の基であり、および
 *は、結合位置を示す。]
で表される構成単位を有していてもよい。構成単位(1b)中の-X1b-O-の構造も、構成単位(1a)中の-X1a-O-の構造と同様に、ポリマー(D)に電子供与性を付与すると考えられる。
 電子供与性ポリマー(D)中のX1bは、2価の基(2a)および2価の基(2b)の両方でもよく、これらの片方でもよい。X1bは、好ましくは2価の基(2a)である。構成単位(1b)は、好ましくは、以下の式(1b-1)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000022
 電子供与性ポリマー(D)は、好ましくは構成単位(1a)および構成単位(1b)の両方を含む共重合体であり、より好ましくはランダム共重合体である。この共重合体中の構成単位(1a)の量は、構成単位(1a)および構成単位(1b)の合計100モルあたり、好ましくは80~99モル、より好ましくは95~98モルである。この構成単位(1a)の量は、ポリマーのプロトン核磁気共鳴(H NMR)の化学シフトの値および積分強度によって算出することができる。
 電子供与性ポリマー(D)の重量平均分子量(Mw)は、好ましくは5,000~800,000、より好ましくは8,000~500,000、さらに好ましくは10,000~100,000である。このMwは、後述の実施例に記載するように、ポリスチレンを標準とするゲル浸透クロマトグラフィー(GPC)によって測定することができる。他のポリマーのMwも同様に測定することができる。
 電子供与性ポリマー(D)は、出発原料として市販品を使用する公知の反応によって合成することができる。市販品は、例えば、東京化成工業社、富士フイルム和光純薬社等から入手できる。例えば、後述の合成例に記載するような、エポキシ基を有する2価の化合物(例えば、2,6-ビス(オキシラン-2-イルメトキシ)ナフタレン)と、ヒドロキシ基を有する2価の化合物(例えば、2,6-ジヒドロキシナフタレン)との反応によって、ヒドロキシ基を有する2価の基(3b)を有する電子供与性ポリマー(d)(電子供与性ポリマー(D)の前駆体)を製造し、これを酸化することによって、オキソ基を有する2価の基(3a)を有する電子供与性ポリマー(D)を製造することができる。
 電子供与性ポリマー(d)を製造するためのエポキシ基を有する2価の化合物とヒドロキシ基を有する2価の化合物との反応は、通常、溶媒中で行われる。溶媒としては、ケトン系溶媒が挙げられ、例えば、シクロヘキサノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等が挙げられる。好ましくは、シクロヘキサノン、アセトンが挙げられる。溶媒の量は、エポキシ基を有する2価の化合物1molに対して、好ましくは0.5~50L、より好ましくは1~10Lである。
 前記反応には、触媒を使用してもよい。触媒としては、例えば、ホスフィン類、イミダゾール類が挙げられる。ホスフィン類としては、例えば、トリフェニルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン等が挙げられる。イミダゾール類としては、例えば、2-メチルイミダゾール等が挙げられる。これらの中で、トリス(2,6-ジメトキシフェニル)ホスフィンが好ましい。触媒を使用する場合、その量は、エポキシ基を有する2価の化合物1molに対して、好ましくは0.0001~0.1mmol、より好ましくは0.001~0.015mmolである。
 前記反応の反応温度は、好ましくは50~200℃、より好ましくは100~180℃である。反応温度が、溶媒沸点よりも高い場合は、封管にて反応を実施してもよい。反応時間は、好ましくは20~200時間、より好ましくは30~100時間である。
 前記反応後、沈殿、ろ取および乾燥等の公知の手段によって、電子供与性ポリマー(d)を得ることができる。
 電子供与性ポリマー(d)のヒドロキシ基のオキソ基への酸化は、三酸化硫黄と塩基との付加化合物を使用することによって行うことができる。前記化合物としては、例えば、ピリジン-三酸化硫黄コンプレックス、トリエチルアミン-三酸化硫黄コンプレックス等が挙げられる。ピリジン-三酸化硫黄コンプレックスおよびトリエチルアミン-三酸化硫黄コンプレックスのいずれも、例えば、東京化成工業社から市販されている。前記化合物の量は、電子供与性ポリマー(d)中のヒドロキシ基1molに対して、好ましくは0.5~10mol、より好ましくは1~3molである。
 ピリジン-三酸化硫黄コンプレックスによる電子供与性ポリマー(d)の酸化には、トリエチルアミンを使用することが好ましい。トリエチルアミンの量は、電子供与性ポリマー(d)中のヒドロキシ基1molに対して、好ましくは2~10mol、より好ましくは4~8molである。
 前記酸化は、通常、溶媒中で行われる。溶媒としては、反応の進行を阻害しないものであれば特に制限はないが、例えば、ジメチルスルホキシド、ジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン、ジエチルエーテル、1,2-ジメトキシエタン、1,4-ジオキサン等が挙げられる。なかでも、ジメチルスルホキシド、ジクロロメタンが好ましい。これら溶媒は、1種のみを用いてもよく、2種以上を併用してもよい。
 前記酸化の温度は、好ましくは-30℃~80℃、より好ましくは-10℃~50℃であり、その時間は、好ましくは1~24時間、より好ましくは6~18時間である。
 前記酸化後、沈殿、ろ取および乾燥等の公知の手段によって、電子供与性ポリマー(D)を得ることができる。
 本発明の組成物中の電子求引性ポリマー(A)は、式(4a):
Figure JPOXMLDOC01-appb-C000023
[式中、X2aは、式(5a)~式(5c):
Figure JPOXMLDOC01-appb-C000024
[式中、*は、結合位置を示す。]
のいずれかで表される4価の基であり、
 Y2aは、式(6a)~式(9a):
Figure JPOXMLDOC01-appb-C000025
[式中、n1は、1~4の整数であり、
 n2~n10は、それぞれ独立に、0~4の整数であり、
 R1a~R10aは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、W1aで置換されていてもよいフェニル基、W1aで置換されていてもよいチエニル基、またはW1aで置換されていてもよいフリル基であり、
 W1aは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基であり、
 n1~n10が2~4の整数である場合、複数のR1a~R10aは、互いに、同じまたは異なるものでもよく、
 n1個のR1aの少なくとも一つは、スルホ基であり、
 n2個のR2aおよびn3個のR3aからなる群から選ばれる少なくとも一つは、スルホ基であり、
 n4個のR4a、n5個のR5aおよびn6個のR6aからなる群から選ばれる少なくとも一つは、スルホ基であり、
 n7個のR7a、n8個のR8a、n9個のR9aおよびn10個のR10aからなる群から選ばれる少なくとも一つは、スルホ基であり、
 Z1a~Z6aは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R11a)(R12a)-*、またはオキシ基であり、
 R11aおよびR12aは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR11aおよびR12aは互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する、および
 *は、結合位置を示す。]
のいずれかで表される2価の基であり、および
 *は、結合位置を示す。]
で表される構成単位を有する。構成単位(4a)中のイミド構造が、ポリマー(A)に電子求引性を付与すると考えられる。
 本発明の組成物は、電子求引性ポリマー(A)中のスルホ基に起因するイオン交換容量を有する。本発明では上述の電子供与性ポリマー(D)を使用することによって、熱処理しても、組成物のイオン交換容量の低減を抑制することができる。
 上記式において、n2が0であるとは、R2aが存在しないことを意味する。また、n2が2~4の整数である場合、複数のR2aは、互いに、同じまたは異なるものでもよい。他の基についても同様である。以下、基の定義について、順に説明する。
 本明細書中、ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素が挙げられる。
 本明細書中、C1-3アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基が挙げられる。
 本明細書中、C1-10アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられる。
 本明細書中、C1-10アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert-ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基が挙げられる。
 本明細書中、C1-2アルキレン基とは、メチレン基またはエチレン基である。
 本明細書中、C3-10アルキレン基としては、例えば、トリメチレン基、1-メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、1,1-ジメチルエチレン基、ペンタメチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1,1-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1-エチルトリメチレン基、ヘキサメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1,1-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1-エチルテトラメチレン基、1,1,2-トリメチルトリメチレン基、1,2,2-トリメチルトリメチレン基、1-エチル-1-メチルトリメチレン基、1-エチル-2-メチルトリメチレン基が挙げられる。
 本明細書中、C3-6炭化水素環としては、例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環が挙げられる。
 2価の基(7a)において、n2およびn3が、それぞれ独立に、1~4の整数であり、n2個のR2aの少なくとも一つがスルホ基であり、およびn3個のR3aの少なくとも一つがスルホ基であることが好ましい。
 2価の基(8a)において、n4~n6が、それぞれ独立に、1~4の整数であり、n4個のR4aの少なくとも一つがスルホ基であり、n5個のR5aの少なくとも一つがスルホ基であり、およびn6個のR6aの少なくとも一つがスルホ基であることが好ましい。
 2価の基(9a)において、n7~n10が、それぞれ独立に、1~4の整数であり、n7個のR7aの少なくとも一つがスルホ基であり、n8個のR8aの少なくとも一つがスルホ基であり、n9個のR9aの少なくとも一つがスルホ基であり、およびn10個のR10aの少なくとも一つがスルホ基であることが好ましい。
 R1a~R10aが、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、W1aで置換されていてもよいフェニル基、W1aで置換されていてもよいチエニル基、またはW1aで置換されていてもよいフリル基であり、およびW1aが、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基であることが好ましい。
 X2aは、好ましくは4価の基(5a)である。Y2aは、好ましくは2価の基(7a)である。構成単位(4a)は、好ましくは式(4a-1):
Figure JPOXMLDOC01-appb-C000026
[式中、m1およびm2は、それぞれ独立に、0~3の整数であり、および
 *は、結合位置を示す。]
で表される構成単位である。m1およびm2は、好ましくは、共に0である。
 電子求引性ポリマー(A)は、1種の構成単位(4a)からなるポリマーでもよく、2種以上の構成単位(4a)からなるポリマーでもよい。また、電子求引性ポリマー(A)は、1種またはそれ以上の構成単位(4a)と、1種またはそれ以上の他の構成単位(即ち、構成単位(4a)とは異なる構成単位)からなるポリマーでもよい。
 他の構成単位としては、例えば、式(4b):
Figure JPOXMLDOC01-appb-C000027
[式中、X2bは、式(5a)~式(5c):
Figure JPOXMLDOC01-appb-C000028
[式中、*は、結合位置を示す。]
のいずれかで表される4価の基であり、
 Y2bは、式(6b)~式(9b):
Figure JPOXMLDOC01-appb-C000029
[式中、p1~p10は、それぞれ独立に、0~4の整数であり、
 R1b~R10bは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、W1bで置換されていてもよいフェニル基、W1bで置換されていてもよいチエニル基、またはW1bで置換されていてもよいフリル基であり、
 W1bは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基またはシアノ基であり、
 p1~p10が2~4の整数である場合、複数のR1b~R10bは、互いに、同じまたは異なるものでもよく、
 Z1b~Z6bは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R11b)(R12b)-*、またはオキシ基であり、
 R11bおよびR12bは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR11bおよびR12bは互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する、および
 *は、結合位置を示す。]
のいずれかで表される2価の基であり、および
 *は、結合位置を示す。]
で表される構成単位が挙げられる。
 R1b~R10bが、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、W1bで置換されていてもよいフェニル基、W1bで置換されていてもよいチエニル基、またはW1bで置換されていてもよいフリル基であり、およびW1bが、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ハロゲン原子、ニトロ基、ホルミル基またはシアノ基であることが好ましい。
 X2bは、好ましくは4価の基(5a)である。Y2bは、好ましくは式(10)~式(15):
Figure JPOXMLDOC01-appb-C000030
[式中、r1~r3は、それぞれ独立に、1~4の整数であり、
 k1は、1~4の整数であり、
 R1cは、フッ素原子またはトリフルオロメチル基であり、k1が2~4の整数である場合、複数のR1cは、互いに、同じまたは異なるものでもよく、
 k2~k5は、それぞれ独立に、0~4の整数であり、
 R2cは、ニトロ基またはトリフルオロメチル基であり、k2が2~4の整数である場合、複数のR2cは、互いに、同じまたは異なるものでもよく、
 R3cおよびR4cは、共に塩素原子であり、
 R5cは、ニトロ基またはトリフルオロメチル基であり、k5が2~4の整数である場合、複数のR5cは、互いに、同じまたは異なるものでもよく、
 k6およびk7は、それぞれ独立に、0~4の整数であり、
 R6cは、ハロゲン原子で置換されていてもよいC1-3アルキル基であり、k6が2~4の整数である場合、複数のR6cは、互いに、同じまたは異なるものでもよく、
 R7cは、ハロゲン原子で置換されていてもよいC1-3アルキル基であり、k7が2~4の整数である場合、複数のR7cは、互いに、同じまたは異なるものでもよく、
 k8およびk9は、それぞれ独立に、0~4の整数であり、
 R8cは、ハロゲン原子で置換されていてもよいC1-3アルキル基であり、k8が2~4の整数である場合、複数のR8cは、互いに、同じまたは異なるものでもよく、
 R9cは、ハロゲン原子で置換されていてもよいC1-3アルキル基であり、k9が2~4の整数である場合、複数のR9cは、互いに、同じまたは異なるものでもよく、および
 *は、結合位置を示す。]
のいずれかで表される2価の基である。
 好ましい構成単位(4b)としては、例えば、以下の式(4b-1)~式(4b-7)のいずれかで表される構成単位が挙げられる(式中の基の定義は上述した通りである)。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 電子求引性ポリマー(A)中の構成単位(4a)の量は、構成単位(4a)および他の構成単位(例えば構成単位(4b))の合計100モルあたり、80~100モル、より好ましくは90~100モルである。電子求引性ポリマー(A)は、より好ましくは、1種またはそれ以上の構成単位(4a)からなるポリマーであり、さらに好ましくは1種の構成単位(4a)からなるポリマーであり、特に好ましくは1種の構成単位(4a-1)からなるポリマーである。
 電子求引性ポリマー(A)の重量平均分子量(Mw)は、好ましくは5,000~1,000,000、より好ましくは8,000~900,000、さらに好ましくは10,000~150,000である。
 電子求引性ポリマー(A)は、出発原料として市販品を使用する公知の反応によって合成することができる。市販品は、例えば、東京化成工業社、富士フイルム和光純薬社等から入手できる。例えば、後述の合成例に記載するような、テトラカルボン酸二無水物(例えば、ナフタレン-1,4,5,8-テトラカルボン酸二無水物)と、ジアミン(例えば、4,4’-ジアミノ-2,2’-ビフェニルジスルホン酸)との反応によって、電子求引性ポリマー(A)を製造することができる。また、市販品に公知の反応で置換基を導入した化合物を、出発原料として用いてもよい。
 上述の電子求引性ポリマーは、例えば、Macromolecules, 2002, 35, 9022-9028、Macromol. Chem. Phys. 2016, 217, 654-663、またはJournal of Polymer Science: Part A: Polymer Chemistry, Vol. 41, 3901-3907 (2003)に記載の方法に準じて、合成することができる。
 前記反応におけるテトラカルボン酸二無水物の量は、ジアミン1molに対して、好ましくは0.98~1.02mol、より好ましくは0.99~1.01molである。
 電子求引性ポリマー(A1)の製造方法は、溶解工程、重合工程、および必要に応じて改質工程を含む。
 溶解工程は、ジアミン(0.1mM~5M)と、第三級アミン(0.1mM~20M)と、有機溶媒との混合物を加熱して、ジアミンを有機溶媒に溶解させる工程である。第三級アミンは、酸性基を有するジアミンを有機溶媒に溶解させるために用いる。混合物を加熱する温度としては特に限定しないが、20~160℃程度とすることでジアミンを容易に均一に溶媒中に溶解させることができる。
 第三級アミンとしては特に限定されず、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、N-エチル-N-メチルブチルアミン、トリブチルアミン、N,N-ジメチルベンジルアミン、N,N-ジエチルベンジルアミン、トリベンジルアミン、ジアザビシクロウンデセン等が挙げられる。なかでも、トリエチルアミンが好ましい。これら第三級アミンは、1種のみを用いてもよく、2種以上を併用してもよい。
 有機溶媒としては、高沸点および高極性を有するものが好ましく、例えば、フェノール、m-クレゾール、m-クロロフェノール、p-クロロフェノール、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリジノン、N-シクロヘキシル-2-ピロリジノン等が挙げられる。なかでも、m-クレゾール、ジメチルスルホキシドおよびN-メチル-2ピロリジノンが好ましい。これら有機溶媒は、1種のみを用いてもよく、2種以上を併用してもよい。
 なお、本明細書中、「m-」は「メタ」を表し、「p-」は「パラ」を表す。
 重合工程は、溶解工程で得られたジアミンの溶液にテトラカルボン酸二無水物(0.1mM~5M)を加え、得られた混合物を、有機酸(0.01mM~20M)の存在下で加熱して、重合させる工程である。有機酸は、重合および閉環反応の触媒として作用し、ポリアミック酸の生成およびこれの閉環によるイミド環形成を促進する。
 有機酸としては、高沸点であり、かつ上記有機溶媒への溶解性が高い化合物が好ましく、例えば、安息香酸、メチル安息香酸、ジメチル安息香酸、サリチル酸等が挙げられる。なかでも、安息香酸が好ましい。有機酸は、重合工程で存在すればよく、上記溶解工程の段階で添加してもよい。有機酸を添加する量としては特に限定しないが、有機酸として安息香酸を使用する場合、その量は、テトラカルボン酸二無水物1モルに対して、1~6モル程度が好ましい。また、反応混合物を加熱する温度は、少なくとも40℃以上である。この温度を、好ましくは100~190℃、より好ましくは140~180℃とすることで、効率よく重合反応が進行し、高分子量の電子求引性ポリマーであるポリイミドを得ることができる。
 改質工程は、重合工程で得られたポリイミド中の構造欠陥を是正する工程である。構造欠陥とは、ポリイミド中の未閉環部分(アミック酸)に基づく欠陥である。改質工程では、重合工程後の反応混合物を、重合工程の温度よりもさらに高い温度で加熱することで、脱水反応を行い、未閉環部分をイミド化させる。この温度は、少なくとも150℃以上が好ましく、190~220℃がさらに好ましい。この改質工程で、閉環反応が効率よく進行し、構造欠陥のないポリイミドを得ることができる。
 前記工程後、沈殿、ろ取、透析および乾燥等の公知の手段によって、電子求引性ポリマー(A)を得ることができる。
 本発明の組成物中の電子供与性ポリマー(D)の量は、電子求引性ポリマー(A)100重量部に対して、好ましくは1~10,000重量部、より好ましくは10~1,500重量部、さらに好ましくは20~900重量部、最も好ましくは50~500重量部である。
 本発明の組成物において、電子供与性ポリマー(D)および電子求引性ポリマー(A)が電荷移動錯体を形成していることが好ましい。その結果、電子供与性ポリマー(D)および電子求引性ポリマー(A)が充分に混合し、相分離が抑制された組成物を得ることができる。
 ここで、「電荷移動錯体」とは、電荷移動力によって2種の中性分子の間にできる分子間化合物を意味する。電子供与性ポリマー(D)および電子求引性ポリマー(A)が電荷移動錯体を形成していることは、Nature, 375(6529), 303-305 (1995) および Polym. J. (2013), 45, 839-844に記載のように、組成物のUV-vis吸収スペクトルが530nm付近のピークまたはショルダーを有することで確認することができる。
 電荷移動錯体の形成量を増加させるために、本発明の組成物を、熱処理することが好ましい。熱処理は、不活性ガス(例えば、窒素、アルゴン)雰囲気下で行うことが好ましい。熱処理の温度は、好ましくは40~200℃、より好ましくは60~180℃、さらに好ましくは70~160℃であり、その時間は、好ましくは0.01~200時間、より好ましくは0.5~160時間、さらに好ましくは1~80時間である。
 本発明の組成物の溶液を調製し、次いでこの溶液から溶媒を留去することによって、膜を製造することができる。本発明の組成物の溶液の調製方法に特に限定はない。例えば、溶媒中に、電子供与性ポリマー(D)および電子求引性ポリマー(A)を順次または同時に添加し、適宜加熱することによって、組成物の溶液を調製してもよい。また、電子供与性ポリマー(D)の溶液および電子求引性ポリマー(A)の溶液を別々に調製し、得られた溶液を混合することによって、組成物の溶液を調製してもよい。
 組成物の溶液を調製するための溶媒としては、例えば、水、メタノール、エタノール、トリフルオロエタノール、1-プロパノール、2-プロパノール、2-メチル-2-ブタノール、エチレングリコール、ベンジルアルコール、シクロヘキサン、ベンゼン、ニトロベンゼン、クロロホルム、四塩化炭素、ジエチルエーテル、テトラヒドロフラン、イソオキサゾール、1,4-ジオキサン、シクロペンチルメチルエーテル、アセトン、アセトニトリル、ニトロメタン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、スルホラン、1,3-プロパンスルトンが挙げられる。これらの溶媒は、1種のみを使用してもよく、2種以上を併用してもよい。これらの中でも、メタノール、エタノール、1-プロパノール、2-プロパノール、エチレングリコール、ベンジルアルコール、シクロヘキサン、ベンゼン、ニトロベンゼン、クロロホルム、四塩化炭素、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル、アセトン、アセトニトリル、ニトロメタン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、スルホラン、1,3-プロパンスルトンが好ましく、メタノール、エタノール、1-プロパノール、2-プロパノール、エチレングリコール、ジメチルスルホキシドがより好ましく、ジメチルスルホキシドがさらに好ましい。
 電子供与性ポリマー(D)および電子求引性ポリマー(A)を含む溶液中、電子供与性ポリマー(D)および電子求引性ポリマー(A)の合計の濃度は、溶液全体を基準に、好ましくは0.1~90重量%、より好ましくは0.5~10重量%である。
 組成物の溶液から溶媒を留去する方法に特に限定はなく、公知の手段(例えば加熱乾燥、減圧乾燥等)で溶媒を留去すればよい。膜の厚さは、電子供与性ポリマー(D)および電子求引性ポリマー(A)の仕込み量と、溶媒を留去する際に使用するシャーレの面積で調整が可能である。本発明の組成物から製造される膜の厚さは、好ましくは0.01~200μm、より好ましくは0.1~100μm、さらに好ましくは0.3~60μmである。
 本発明の組成物の溶液からの溶媒留去は、大気雰囲気で行ってもよく、不活性ガス(例えば、窒素、アルゴン)雰囲気で行ってもよい。また、この溶媒留去は、常圧下で行ってもよく、真空乾燥機または減圧ポンプなどを用いて減圧下で行ってもよい。
 溶媒留去の温度は、好ましくは-10~200℃、より好ましくは40~160℃、さらに好ましくは50~130℃である。溶媒留去は、一定の温度で行ってもよく、温度を多段階的に変更して行ってもよい。溶媒留去の時間は、好ましくは0.5~300時間、より好ましくは1~160時間、さらに好ましくは2~150時間である。
 本発明の組成物から膜を製造する際の条件(例えば、上述の溶媒の種類、溶液中のポリマーの濃度、並びに溶媒留去の雰囲気、圧力、温度および時間)は、適宜選択することができる。
 上述のようにして得られた本発明の組成物の膜を、熱処理することが好ましい。この熱処理によって、膜中の電荷移動錯体の形成量を増加させることができる。熱処理は、不活性ガス(例えば、窒素、アルゴン)雰囲気下で行うことが好ましい。熱処理の温度は、好ましくは40~200℃、より好ましくは60~180℃、さらに好ましくは70~160℃であり、その時間は、好ましくは0.01~200時間、より好ましくは0.5~160時間、さらに好ましくは1~80時間である。
 本発明の組成物から製造される膜(即ち、本発明の組成物を含む膜)は、様々な用途に使用することができる。本発明の組成物を含む膜の用途としては、例えば、燃料電池の電解質膜、触媒層中の電極触媒上の電解質被覆膜、ガス透過抑制膜等が挙げられる。これらの中で、燃料電池の電解質膜、および電極触媒上の電解質被覆膜が好ましく、燃料電池の電解質膜がより好ましい。電極触媒上の電解質被覆膜とは、触媒層の形成に用いる高分子電解質が、電極触媒および電極を被覆した構成の膜である。触媒層は、例えば、電極触媒および高分子電解質を含む触媒インクから形成することができる。
 本発明の組成物を含む燃料電池の電解質膜の厚さは、好ましくは0.1~200μm、より好ましくは2~50μm、さらに好ましくは5~20μmである。本発明の組成物を含む燃料電池の触媒層中の電極触媒上の電解質被覆膜の厚さは、好ましくは1~100nm、より好ましくは2~50nm、さらに好ましくは5~30nmである。
 以下に、本発明の合成例および実施例を、より具体的に説明するが、本発明はこれらに限定されるものではない。合成例および実施例で用いた分析装置およびその条件は以下のとおりである。
H NMR:
 ポリマーのプロトン核磁気共鳴(H NMR)の化学シフトの値は、Bruker社製AV-400(400MHz)またはBruker社製AVANCE III(500MHz)を用いて重ジメチルスルホキシド(DMSO-d)溶媒中で測定し、化学シフトはテトラメチルシランを内部標準(0.0ppm)としたときのδ値(ppm)で示した。NMRスペクトルの記載において、「s」はシングレット、「brs」はブロードシングレット、「d」はダブレット、「t」はトリプレット、「dd」はダブルダブレット、「m」はマルチプレット、「br」はブロード、「J」はカップリング定数、「Hz」はヘルツを意味する。
 「DMSO-d」は重ジメチルスルホキシドを意味する。
GPC:
 ポリマーの重量平均分子量(Mw)および数平均分子量(Mn)は、ゲル浸透クロマトグラフィー(GPC)で、分析条件Aにて測定し、標準ポリスチレンの較正曲線を用いて換算した。
<分析条件A>
 カラム:東ソー社製ガードカラム(Tosoh TSK guard column Super AW-H)、東ソー社製カラム(Tosoh TSK gel super AW 3000)およびカラム(Tosoh TSK gel super AW 5000)を、この順に直列に連結して使用した。
 カラム温度:40℃
 検出器:日本分光社製の示差屈折率検出器RI-2031および紫外可視検出器UV-2075
 溶離液:10mmol/Lの硝酸ナトリウムを溶解させたジメチルスルホキシド
UV-vis:
 組成物の紫外-可視分光法(UV-vis)の測定は、日本分光社製の紫外可視近赤外分光光度計V-650に、日本分光社製の積分球ユニットISV-722および日本分光社製のサンプルホルダーSSH-506を搭載して行った。
イオン交換容量(mmol/g):
 理論イオン交換容量(理論IEC)は、ポリマーまたは組成物(1g)あたりに含まれるスルホ基の量(mmol)として算出した。
 滴定によるイオン交換容量(IEC)は、次のようにして算出した。まず、1×1cmの大きさに切り出したポリマーまたは組成物の膜を、10mLの塩化ナトリウム水溶液(濃度:15重量%)に3日間浸漬した後、指示薬としてフェノールフタレインと、水酸化ナトリウム水溶液(濃度:0.001mol/L)とを用いて、前記塩化ナトリウム水溶液のpHが7になるまで滴定した。pHが7になるまでに用いた水酸化ナトリウム水溶液の量から下記式:
 滴定によるイオン交換容量(IEC)(mmol/g)
=〔pH7になるまでに用いた水酸化ナトリウム水溶液の量(L)〕×〔水酸化ナトリウム水溶液の濃度(mol/L)〕×〔1/1000〕/〔膜の乾燥重量(g)〕
によって、滴定によるイオン交換容量(IEC)を算出した。
燃料電池の発電試験:
 膜電極接合体(Membrane Electrode Assembly、以下「MEA」と略称する)は、電解質膜、ガス拡散層(Gas Diffusion Layer、以下「GDL」と略称する)および触媒インクより作製した。電解質膜は、本発明の組成物の膜またはナフィオン212(登録商標、デュポン社製、東陽テクニカ社より購入、膜厚:50μm)を用いた。GDLは、疎水性カーボンペーパー(東レ社製、品名「EC-TP1-060T」)またはマイクロポーラス層付き疎水性カーボンペーパー(SIGRACET社製、品名「GDL 24 BCH」)を用いた。
<MEA作製条件A>
 触媒インクは、白金担持カーボンである電極触媒(田中貴金属工業社製、白金含有量:46.5重量%、品名「TEC10E50E」)、脱イオン水、エタノール(富士フイルム和光純薬社製)、およびナフィオン分散溶液(富士フイルム和光純薬社製、品名「5% Nafion Dispersion Solution DE521 CS type」)を用いて調製した。ガラス製のバイアル瓶に、電極触媒、脱イオン水、エタノールおよびナフィオン分散溶液を、この順序で加えて、得られた分散溶液を、マイクロテック・ニチオン社製の超音波ホモジナイザーSmurt NR-50Mを用いて超音波を出力40%に設定して30分間照射することで、触媒インクを調製した。電解質膜は、本発明の組成物の膜を用いた。GDLは、疎水性カーボンペーパー(東レ社製、品名「EC-TP1-060T」)を用いた。塗布した面1cmあたりの白金量が0.3mgとなるように、ノードソン社製のスプレー塗布装置V8Hを用いて電解質膜の両面に触媒インクを塗布し、乾燥して、触媒層を形成した。次に、両面に触媒層を形成した電解質膜を、132℃、0.3kNで180秒間の条件で熱圧着して、触媒被覆膜(Catalyst Coated Membrane、以下「CCM」と略称する)を作製し、得られたCCMの両面にガス拡散層(GDL)を、132℃、0.6kNで20秒間の条件で熱圧着して、GDL/CCM/GDLとの3層構造を有するMEAを作製した。
<MEA作製条件B>
 触媒インクは、白金担持カーボンである電極触媒(田中貴金属工業社製、白金含有量:46.5重量%、品名「TEC10E50E」)、脱イオン水、エタノール(富士フイルム和光純薬社製)、および本発明の組成物を用いて調製した。ガラス製のバイアル瓶に、本発明の組成物、電極触媒、脱イオン水およびエタノールを、この順序で加え、MEA作製条件Aと同様の条件で超音波を照射して、触媒インクを調製した。電解質膜は、ナフィオン212(登録商標、デュポン社製、東陽テクニカ社より購入、膜厚:50μm)を用いた。GDLは、マイクロポーラス層付き疎水性カーボンペーパー(SIGRACET社製、品名「GDL 24 BCH」)を用いた。塗布した面1cmあたりの白金量が0.3mgとなるように、ノードソン社製のスプレー塗布装置V8Hを用いて電解質膜の両面に触媒インクを塗布し、乾燥して、触媒層を形成した。次に、両面に触媒層を形成した電解質膜を、132℃、0.3kNで180秒間の条件で熱圧着して、触媒被覆膜(CCM)を作製し、得られたCCMの両面にガス拡散層(GDL)を、132℃、0.6kNで20秒間の条件で熱圧着して、GDL/CCM/GDLとの3層構造を有するMEAを作製した。なお、MEA作製条件Bでは、触媒インクを調製するための高分子電解質としてナフィオンではなく、本発明の組成物を使用し、本発明の組成物を含む触媒層を形成した。
 上述のMEA作製条件AおよびBにおける触媒インク中の高分子電解質の割合について説明する。触媒インクの調製では、下記式から算出される高分子電解質の割合(重量%)を28重量%となるようにした。
 高分子電解質の割合(重量%)
=[高分子電解質の固形分(重量)/〔電極触媒(重量)+高分子電解質の固形分(重量)〕]×100
 具体的には、高分子電解質がナフィオンである場合、電極触媒の量を100.0mg、ナフィオン分散溶液の量を837μL、脱イオン水の量を0.6mL、エタノールの量を5.1mLと設定した。ナフィオン分散溶液(837μL)中のナフィオン固形分は38.9mgであった。また、高分子電解質が本発明の組成物である場合、電極触媒の量を100.0mg、本発明の組成物の量を38.9mg、脱イオン水の量を0.6mL、エタノールの量を5.1mLと設定した。
 作製したMEAを、1cmの電極面積を有する単セル(エフシー開発社製、JARI標準セル)に配置して、4時間のセルエージングを0.6Vで行った後、燃料電池の発電試験を、燃料電池評価システム(東陽テクニカ社製、AutoPEM)を用いて行い電流密度と電圧とを測定した。また、ソーラトロン社製のSI 1287電気化学的インターフェースインピーダンスアナライザーを用いて、セル抵抗値および開回路電圧(以下「OCV」と略称する。)を測定した。なお、OCVは、単セルに電圧または電流を印加していない状態の電位である。
 燃料電池の発電試験は、以下の試験条件AおよびBで行った。
<試験条件A>
温度:80℃
相対湿度:95%
燃料供給:
 アノード側:100mL/分の流量で水素を供給
 カソード側:100mL/分の流量で空気を供給
<試験条件B>
温度:110℃
相対湿度:31%、
燃料供給:
 アノード側:100mL/分の流量で水素を供給
 カソード側:100mL/分の流量で空気を供給
合成例1:2,6-ビス(オキシラン-2-イルメトキシ)ナフタレンの合成
 還流冷却器と滴下漏斗を反応容器に装着した後、2,6-ジヒドロキシナフタレン(7.36g、46.0mmol)、アセトン55mLおよび水10mLを、順次、反応容器に加えた。次に反応混合物を65℃に加熱して撹拌しながら、エピクロルヒドリン(28.8mL、368.0mmol)を加えた。この反応混合物に、アセトン20mLおよび水45mLの混合溶媒に溶かした水酸化カリウム(5.16g、91.9mmol)を滴下漏斗で2時間かけて滴下した後、12時間撹拌して反応を行った。反応終了後、溶媒からの沈殿物をろ取し、その沈殿物を水で洗浄して、目的化合物を白色固体として得た(6.7g、収率54%)。
合成例2:電子供与性ポリマー(d-1)の合成
 反応容器の内部を窒素で置換した後、2,6-ビス(オキシラン-2-イルメトキシ)ナフタレン(1.246g、4.58mmol)、2,6-ジヒドロキシナフタレン(0.733g、4.58mmol)、トリス(2,6-ジメトキシフェニル)ホスフィン(16.2mg、36.6μmol)およびシクロヘキサノン(15mL)を、順次、反応容器に加えた。次に反応混合物を140℃にて12時間撹拌した後、ジメチルスルホキシド(10mL)を加えて、160℃でさらに40時間撹拌した。反応終了後、反応混合物をクロロホルムに滴下して、沈殿物を析出させた後、沈殿物をろ取し、減圧乾燥して、式(1b-1):
Figure JPOXMLDOC01-appb-C000038
で表される構成単位を有する電子供与性ポリマー(d-1)を茶褐色の固体として得た(1.86g、収率94%)。
NMR:
H NMR(400MHz DMSO-d)δ:7.87-7.54(m, 2H),7.47-7.02(m, 4H), 5.54-5.41(m, 2H), 4.48-3.99(m, 4H).
 図1に電子供与性ポリマー(d-1)のH NMRのチャートを示す。
GPC:
 重量平均分子量(Mw)=1.7×10,000
 数平均分子量(Mn)=5.0×1,000
 分子量分布(Mw/Mn)=3.4
合成例3:電子供与性ポリマー(D-1)の合成
 反応容器の内部を窒素で置換した後、ピリジン-三酸化硫黄コンプレックス(0.46g、2.90mmol)およびジメチルスルホキシド(3mL)を、順次、反応容器に加えた。次にジメチルスルホキシド(3mL)およびジクロロメタン(3mL)の混合溶媒に、合成例2で得られた電子供与性ポリマー(d-1)(0.313g、1.45mmol)およびトリエチルアミン(1.21mL、8.69mmol)を加え、得られた反応混合物を反応容器に加えた。窒素雰囲気を維持して、反応混合物を20~25℃で3時間撹拌した。
 次いで反応混合物を水に添加し、析出した沈殿物を回収し、回収した沈殿物を水で洗浄した。その沈殿物をジメチルスルホキシドに再溶解させ、分画分子量1,000の透析膜(Spectra/Por 6, MWCO(Daltons) 1000, スペクトラムラボラトリー社製)およびジメチルスルホキシドを用いて透析を行った。透析後、ジメチルスルホキシド溶液に水を添加し、析出した沈殿物を回収し、回収した沈殿物中の溶媒を留去することによって、式(1a-1)で表される構成単位および式(1b-1)で表される構成単位:
Figure JPOXMLDOC01-appb-C000039
を有するランダム共重合体である電子供与性ポリマー(D-1)を淡黄色の固体として得た(0.313g、収率97%)。この共重合体中の構成単位(1a-1)の量は、構成単位(1a-1)および構成単位(1b-1)の合計100モルあたり、97モルであった。
NMR:
H NMR(400MHz DMSO-d)δ:7.91-7.50(m, 2H),7.48-7.03(m, 4H), 5.16(brs, 4H).
 図2に、電子供与性ポリマー(D-1)のH NMRのチャートを示す。
合成例4:電子求引性ポリマー(A-1)の合成
 反応容器の内部を窒素で置換した後、4,4’-ジアミノ-2,2’-ビフェニルジスルホン酸(10.33g、30.0mmol)、m-クレゾール(75mL)、およびトリエチルアミン(7.59g、75.0mmol)を、順次、反応容器に加えた。次に反応混合物を140~145℃で撹拌して、固形物を溶解させた後、その中にナフタレン-1,4,5,8-テトラカルボン酸二無水物(8.21g、30.6mmol)、および安息香酸(7.33g、60.0mmol)を加え、180~185℃にて20時間撹拌して、さらに190~195℃にて5時間撹拌して反応を行った。反応終了後、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に反応混合物を滴下して、沈殿物を析出させ、沈殿物をろ取した。
 得られた沈殿物にジメチルスルホキシドを加え、100~110℃に加熱し、得られたジメチルスルホキシド溶液を、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に滴下して、沈殿物を析出させ、ろ取した。得られた沈殿物へのジメチルスルホキシドの添加、ジメチルスルホキシド溶液の調製、ジメチルスルホキシド溶液の前記混合溶媒への滴下、および析出した沈殿物のろ取の操作を再度行った。
 得られた沈殿物にジメチルスルホキシドを添加し、100~110℃に加熱し、得られたジメチルスルホキシド溶液を、分画分子量3,500の透析膜(Spectra/Por 7, MWCO(Daltons) 3500, スペクトラムラボラトリー社製)を用いて4日間透析した。透析終了後、溶液を乾燥して、式(4a-11)で表される構成単位:
Figure JPOXMLDOC01-appb-C000040
からなる電子求引性ポリマー(A-1)を黒茶色の固体として得た(12.5g、収率70%)。
NMR:
H NMR(500MHz, DMSO-d)δ:9.09-8.51(br), 8.04(s), 7.76(brs), 7.62-7.25(m).
GPC:
 重量平均分子量(Mw)=1.3×100,000
 数平均分子量(Mn)=5.9×1,000
 分子量分布(Mw/Mn)=21
イオン交換容量:
 理論イオン交換容量(理論IEC)=3.47(mmol/g)
 滴定によるイオン交換容量(IEC)=3.47(mmol/g)
合成例5:電子求引性ポリマー(A-2)の合成
 反応容器の内部を窒素で置換した後、4,4’-ジアミノ-2,2’-ビフェニルジスルホン酸(4.14g、12.0mmol)、4,4’-ジアミノオクタフルオロビフェニル(0.44g、1.3mmol)、m-クレゾール(38g)、およびトリエチルアミン(3.38g、33.4mmol)を、順次、反応容器に加えた。次に反応混合物を140~145℃で撹拌して、固形物を溶解させた後、その中にナフタレン-1,4,5,8-テトラカルボン酸二無水物(3.65g、13.6mmol)、および安息香酸(3.27g、26.8mmol)を加えた。次に反応混合物を、170~175℃にて27時間撹拌して、反応を行った。反応終了後、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に反応混合物を滴下して、沈殿物を析出させた後、沈殿物をろ取して、得られた沈殿物を、ジメチルスルホキシドに添加し、100~110℃に加熱して、溶解させて、ジメチルスルホキシド溶液を得た。
 得られたジメチルスルホキシド溶液を、メタノールおよび濃塩酸の混合溶媒(メタノール:濃塩酸=5:1(体積比))に滴下して、沈殿物を析出させ、ろ取した。沈殿物にジメチルスルホキシドを添加し、100~110℃に加熱して溶解させた後、ジメチルスルホキシド溶液を、メタノールに滴下して、沈殿物を析出させ、ろ取した。沈殿物にジメチルスルホキシドを添加し、100~110℃に加熱して溶解させた後、得られたジメチルスルホキシド溶液を、分画分子量1,000の透析膜(Spectra/Por 6, MWCO(Daltons) 1000, スペクトラムラボラトリー社製)を用いて4日間透析した。透析終了後、溶液を凍結乾燥して、式(4a-11)で表される構成単位および式(4b-11)で表される構成単位:
Figure JPOXMLDOC01-appb-C000041
を有するランダム共重合体である電子求引性ポリマー(A-2)を黒茶色の固体として得た(5.4g、収率70%)。原料の仕込み量から算出される電子求引性ポリマー(A-2)中の構成単位(4a-11)の数/構成単位(4b-11)の数は、9/1である。
H NMR(400MHz, DMSO-d
δ:8.81(brs), 8.06(s), 7.78(brs), 7.43(brs).
GPC:
 重量平均分子量(Mw)=7.5×10,000
 数平均分子量(Mn)=1.6×10,000
 分子量分布(Mw/Mn)=4.7
IEC:
 理論イオン交換容量(IEC)=3.13(meq/g)
実施例1:電子供与性ポリマー(D-1)および電子求引性ポリマー(A-1)の組成物(I)の膜の製造
 電子供与性ポリマー(D-1)(74.3mg)、電子求引性ポリマー(A-1)(13.8mg)およびジメチルスルホキシド(2mL)を順次、ガラス容器に加えた。次に、このポリマーの混合物を、60℃~80℃に加熱しながら超音波をかけ、溶液を作製した。次に得られた溶液を直径4cmのシャーレに加え、該シャーレを温度60℃にしたホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、60℃で24時間減圧乾燥して、電子供与性ポリマー(D-1)および電子求引性ポリマー(A-1)の組成物(I)の膜を得た(薄茶色透明、膜厚:11μm)。
組成物(I)の膜
 理論イオン交換容量(理論IEC)=2.94(mmol/g)
 滴定によるイオン交換容量(IEC)=2.90(mmol/g)
実施例2および3:電子供与性ポリマー(D-1)および電子求引性ポリマー(A-1)の組成物(II)および(III)の膜の製造
 電子供与性ポリマー(D-1)と、電子求引性ポリマー(A-1)との比率を変更したこと以外は実施例1と同様にして、組成物(II)および(III)の膜を製造した。
組成物(II)の膜
 理論イオン交換容量(理論IEC)=2.64(mmol/g)
 滴定によるイオン交換容量(IEC)=2.67(mmol/g)
組成物(III)の膜
 理論イオン交換容量(理論IEC)=2.34(mmol/g)
 滴定によるイオン交換容量(IEC)=2.31(mmol/g)
 表1に、実施例1~3で得られた組成物(I)~(III)の膜中の電子供与性ポリマー(D-1)および電子求引性ポリマー(A-1)の量および膜厚を記載する。
 また、表1に、組成物中の電子求引性ポリマー(A-1)のナフタレンテトラカルボン酸ジイミド部分(a)と電子供与性ポリマー(D-1)のジオキシナフタレン部分(d)とのモル比(=ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル)/ジオキシナフタレン部分(d)の数(モル))を記載する。なお、本明細書では、このモル比を「(A-1)/(D-1)のモル比」と略称することがある。
 また、表1に、組成物中の電子求引性ポリマー(A-1)のナフタレンテトラカルボン酸ジイミド部分(a)および電子供与性ポリマー(D-1)のジオキシナフタレン部分(d)の合計に対するナフタレンテトラカルボン酸ジイミド部分(a)のモル分率(%)(=[(ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル))/{(ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル))+(ジオキシナフタレン部分(d)の数(モル))}]×100)を記載する。なお、本明細書では、このモル分率を「(A-1)のモル分率」と略称することがある。
Figure JPOXMLDOC01-appb-T000042
実施例4:熱処理組成物(IV)の膜の製造
 実施例1で得られた組成物(I)の膜を、ガラス製のコック付真空デシケーター中に入れた後、デシケーター内を窒素ガスに置換した。次に、この真空デシケーターを120℃に設定した定温乾燥器中で16時間減圧乾燥することによって、熱処理組成物(IV)の膜を得た(濃茶色、膜厚11μm)。
熱処理組成物(IV)の膜:
 滴定によるイオン交換容量(IEC)=2.81(mmol/g)
実施例5および6:熱処理組成物(V)および(VI)の膜の製造
 実施例1で得られた組成物(I)の膜に代えて、実施例2または3で得られた組成物(II)または(III)の膜を使用したこと以外は実施例4と同様にして、熱処理組成物(V)および(VI)の膜を製造した。
熱処理組成物(V)の膜:
 滴定によるイオン交換容量(IEC)=2.40(mmol/g)
熱処理組成物(VI)の膜:
 滴定によるイオン交換容量(IEC)=2.21(mmol/g)
 表2に、実施例4~6で得られた熱処理組成物および熱処理に使用した出発組成物を記載する。
 また、熱処理に使用した出発組成物の滴定によるイオン交換容量(以下「IEC(1)」と記載する)、および得られた熱処理組成物の滴定によるイオン交換容量(以下「IEC(2)」と記載する)から下記式:
 熱処理によるイオン交換容量の減少率(%)
=100×{IEC(1)-IEC(2)}/IEC(1)
によって算出した、熱処理によるイオン交換容量の減少率(以下の表中では「IEC減少率」と記載する)も表2に記載する。
Figure JPOXMLDOC01-appb-T000043
比較例1:電子供与性ポリマー(d-1)および電子求引性ポリマー(A-1)の組成物(VII)の膜の製造
 電子供与性ポリマー(d-1)(74.1mg)、電子求引性ポリマー(A-1)(13.9mg)およびジメチルスルホキシド(2mL)を順次、ガラス容器に加えた。次に、このポリマーの混合物を、60℃~80℃に加熱しながら超音波をかけ、溶液を作製した。次に得られた溶液を直径4cmのシャーレに加え、該シャーレを温度60℃にしたホットプレート上に置き、ジメチルスルホキシドを留去した。次に、このシャーレを真空乾燥器に置き、60℃で24時間減圧乾燥して、電子供与性ポリマー(d-1)および電子求引性ポリマー(A-1)の組成物(VII)の膜を得た(黄色透明、膜厚:11μm)。
組成物(VII)の膜
 理論イオン交換容量(理論IEC)=2.92(mmol/g)
 滴定によるイオン交換容量(IEC)=2.90(mmol/g)
比較例2および3:電子供与性ポリマー(d-1)および電子求引性ポリマー(A-1)の組成物(VIII)および(IX)の膜の製造
 電子供与性ポリマー(d-1)と、電子求引性ポリマー(A-1)との比率を変更したこと以外は比較例1と同様にして、組成物(VIII)および(IX)の膜を製造した。
組成物(VIII)の膜
 理論イオン交換容量(理論IEC)=3.34(mmol/g)
 滴定によるイオン交換容量(IEC)=3.33(mmol/g)
組成物(IX)の膜
 理論イオン交換容量(理論IEC)=3.41(mmol/g)
 滴定によるイオン交換容量(IEC)=3.38(mmol/g)
 表3に、比較例1~3で得られた組成物(VII)~(IX)の膜中の電子供与性ポリマー(d-1)および電子求引性ポリマー(A-1)の量および膜厚を記載する。
 また、表3に、組成物中の電子求引性ポリマー(A-1)のナフタレンテトラカルボン酸ジイミド部分(a)と電子供与性ポリマー(d-1)のジオキシナフタレン部分(d)とのモル比(=ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル)/ジオキシナフタレン部分(d)の数(モル))を記載する。なお、本明細書では、このモル比を「(A-1)/(d-1)のモル比」と略称することがある。
 また、表3に、組成物中の電子求引性ポリマー(A-1)のナフタレンテトラカルボン酸ジイミド部分(a)および電子供与性ポリマー(d-1)のジオキシナフタレン部分(d)の合計に対するナフタレンテトラカルボン酸ジイミド部分(a)のモル分率(%)(=[(ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル))/{(ナフタレンテトラカルボン酸ジイミド部分(a)の数(モル))+(ジオキシナフタレン部分(d)の数(モル))}]×100)を記載する。なお、本明細書では、このモル分率を「(A-1)のモル分率」と略称することがある。
Figure JPOXMLDOC01-appb-T000044
比較例4:熱処理組成物(X)の膜の製造
 比較例1で得られた組成物(VII)の膜を、ガラス製のコック付真空デシケーター中に入れた後、デシケーター内を窒素ガスに置換した。次に、この真空デシケーターを150℃に設定した定温乾燥器中で50時間静置することによって、熱処理組成物(X)の膜を得た(濃茶色、膜厚11μm)。
組成物(X)の膜:
 滴定によるイオン交換容量(IEC)=1.65(mmol/g)
比較例5および6:熱処理組成物(XI)および(XII)の膜の製造
 比較例4で得られた組成物(VII)の膜に代えて、比較例2または3で得られた組成物(VIII)または(IX)の膜を使用したこと以外は比較例1と同様にして、熱処理組成物(XI)および(XII)の膜を製造した。
熱処理組成物(XI)の膜(濃茶色透明、膜厚14μm):
 滴定によるイオン交換容量(IEC)=2.22(mmol/g)
熱処理組成物(XII)の膜(濃茶色透明、膜厚14μm):
 滴定によるイオン交換容量(IEC)=2.51(mmol/g)
 表4に、比較例4~6で得られた熱処理組成物および熱処理に使用した出発組成物、並びに上記式によって算出した、熱処理によるイオン交換容量の減少率を記載する。
Figure JPOXMLDOC01-appb-T000045
 表2および4に示す熱処理によるイオン交換容量の減少率(IEC減少率)から示されるように、電子供与性ポリマー(D-1)を含む組成物(I)~(III)は、電子供与性ポリマー(d-1)を含む組成物(IV)~(VI)に比べて、熱処理によるイオン交換容量の減少が抑制されている。
比較例7:熱処理組成物(XIII)の膜の製造
 比較例1で得られた組成物(VII)の膜を、ガラス製のコック付真空デシケーター中に入れた後、デシケーター内を窒素ガスに置換した。次に、この真空デシケーターを120℃に設定した定温乾燥器中で16時間減圧乾燥することによって、熱処理組成物(XIII)の膜を得た(濃茶色、膜厚17μm)。
実施例7:電子供与性ポリマー(D-1)および電子求引性ポリマー(A-2)を含む組成物(XIV)の製造
 電子求引性ポリマー(A-2)(32.8mg)と、ジメチルホルムアミド(3mL)とを、順次、サンプル瓶に加えた。次に得られた混合物を撹拌し、80~90℃で加熱して溶液にした。次に、得られた電子求引性ポリマー(A-2)のジメチルホルムアミド溶液に、電子供与性ポリマー(D-1)(6.11mg)を加えた後、さらに水(0.5mL)およびエタノール(2.5mL)を加え、電子供与性ポリマー(D-1)および電子求引性ポリマー(A-2)を含む組成物(XIV)を得た。
試験例1:電荷移動錯体の確認1
 紫外-可視分光法(UV-vis)にて、実施例1で得られた組成物(I)の膜および実施例4で得られた熱処理組成物(IV)の膜の吸収スペクトルを測定した。これらの吸収スペクトルを図3に示す。
 図3に示されるように、組成物(I)の膜および熱処理組成物(IV)の膜の吸収スペクトルは、530nm付近のショルダーを有していた。このショルダーは、電荷移動錯体による吸収である(Nature, 375(6529), 303-305 (1995) および Polym. J. (2013), 45, 839-844 参照)。従って、この結果から、組成物(I)および熱処理組成物(IV)の膜は、電荷移動錯体を形成していることが確認された。
 膜厚で規格化した530nmの吸光度は、熱処理組成物(IV)の膜では組成物(I)の膜に対して約4倍向上した。この結果から、熱処理によって電荷移動錯体の形成量が増加することが確認された。
膜厚で規格化した530nmの吸光度の値(abs/μm):
 組成物(I)=0.039(abs/μm)
 熱処理組成物(IV)=0.166(abs/μm)
試験例2:電荷移動錯体の確認2
 紫外-可視分光法(UV-vis)にて、比較例1で得られた組成物(VII)の膜および比較例7で得られた熱処理組成物(XIII)の膜の吸収スペクトルを測定した。これらの吸収スペクトルを図4に示す。
 図4に示されるように、組成物(VII)の膜および熱処理組成物(XIII)の膜の吸収スペクトルは、530nm付近のショルダーを有しており、電荷移動錯体を形成していることが確認された。
 膜厚で規格化した530nmの吸光度は、熱処理組成物(XIII)の膜では、組成物(VII)の膜に対して約2倍向上した。
膜厚で規格化した530nmの吸光度の値(abs/μm):
 組成物(VII)=0.023(abs/μm)
 熱処理組成物(XIII)=0.054(abs/μm)
 試験例1および2の結果から示されるように、膜厚で規格化した530nmの吸光度は、電子供与性ポリマー(D-1)を含む組成物(I)の膜(実施例1)では、電子供与性ポリマー(d-1)を含む組成物(VII)の膜(比較例1)に対して約1.7倍向上した。この結果から、電子供与性ポリマー(D-1)を使用することによって、電子供与性ポリマー(d-1)を使用する場合よりも、熱処理前の電荷移動錯体の形成量が増大することが確認された。
 また、膜厚で規格化した530nmの吸光度は、熱処理組成物(IV)(実施例4)では熱処理組成物(XIII)(比較例7)に対して約3倍向上した。この結果から、電子供与性ポリマー(D-1)を使用することによって、電子供与性ポリマー(d-1)を使用する場合よりも、熱処理後の電荷移動錯体の形成量が増大することが確認された。
試験例3:燃料電池の発電試験1
 実施例4と同様にして製造した熱処理組成物(IV)の膜(膜厚:14μm)を電解質膜として用いて上述のMEA作製条件Aに記載したようにGDL/CCM/GDLとの3層構造を有するMEAを作製した。このMEAを用いて燃料電池の発電試験を試験条件Aにて行った。燃料電池の発電試験1での単セルのOCVは0.910Vであった。熱処理組成物(IV)の膜のセル抵抗値は、0.17Ωであった。発電試験1での電圧および電流密度の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000046
試験例4:燃料電池の発電試験2
 上述の試験条件Aを上述の試験条件Bに変えたこと以外は試験例3と同様にして、燃料電池の発電試験を行った。熱処理組成物(IV)の膜のセル抵抗値は、1.38Ωであった。発電試験2での電圧および電流密度の結果を表6に示す。
Figure JPOXMLDOC01-appb-T000047
試験例5:燃料電池の発電試験3
 組成物(XIV)を含む触媒インクを用いて上述のMEA作製条件Bに記載したようにGDL/CCM/GDLとの3層構造を有するMEAを作製した。このMEAの触媒層は、本発明の組成物(即ち、電子供与性ポリマー(D-1)および電子求引性ポリマー(A-2))を含む。このMEAを用いて燃料電池の発電試験を試験条件Aにて行った。発電試験3での電圧および電流密度の結果を表7に示す。表7に示されるように、本発明の組成物を含む触媒層を用いて発電できることが確認された。燃料電池の発電試験3での単セルのOCVは0.873Vであった。
Figure JPOXMLDOC01-appb-T000048
 本発明の組成物は、例えば、燃料電池の電解質材料(例えば、触媒層の形成に用いる高分子電解質、電解質膜等)として有用である。
 本願は、日本で出願された特願2018-022183号を基礎としており、その内容は本願明細書に全て包含される。

Claims (10)

  1.  電子供与性ポリマー(D)および電子求引性ポリマー(A)を含む組成物であり、
     電子供与性ポリマー(D)が、式(1a):
    *-X1a-O-Y1a-O-*   (1a)
    [式中、X1aは、式(2a)または式(2b):
    Figure JPOXMLDOC01-appb-C000001
    [式中、*は、結合位置を示す。]
    で表される2価の基であり、
     Y1aは、式(3a):
    Figure JPOXMLDOC01-appb-C000002
    [式中、*は、結合位置を示す。]
    で表される2価の基であり、および
     *は、結合位置を示す。]
    で表される構成単位を有し、
     電子求引性ポリマー(A)が、式(4a):
    Figure JPOXMLDOC01-appb-C000003
    [式中、X2aは、式(5a)~式(5c):
    Figure JPOXMLDOC01-appb-C000004
    [式中、*は、結合位置を示す。]
    のいずれかで表される4価の基であり、
     Y2aは、式(6a)~式(9a):
    Figure JPOXMLDOC01-appb-C000005
    [式中、n1は、1~4の整数であり、
     n2~n10は、それぞれ独立に、0~4の整数であり、
     R1a~R10aは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、W1aで置換されていてもよいフェニル基、W1aで置換されていてもよいチエニル基、またはW1aで置換されていてもよいフリル基であり、
     W1aは、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基であり、
     n1~n10が2~4の整数である場合、複数のR1a~R10aは、互いに、同じまたは異なるものでもよく、
     n1個のR1aの少なくとも一つは、スルホ基であり、
     n2個のR2aおよびn3個のR3aからなる群から選ばれる少なくとも一つは、スルホ基であり、
     n4個のR4a、n5個のR5aおよびn6個のR6aからなる群から選ばれる少なくとも一つは、スルホ基であり、
     n7個のR7a、n8個のR8a、n9個のR9aおよびn10個のR10aからなる群から選ばれる少なくとも一つは、スルホ基であり、
     Z1a~Z6aは、それぞれ独立に、単結合、ハロゲン原子で置換されていてもよいC1-2アルキレン基、C3-10アルキレン基、スルホニル基、カルボニル基、*-CONH-*、*-NHCO-*、*-C(R11a)(R12a)-*、またはオキシ基であり、
     R11aおよびR12aは、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-3アルキル基であるか、またはR11aおよびR12aは互いに結合して、それらが結合する炭素原子と共に、C3-6炭化水素環を形成する、および
     *は、結合位置を示す。]
    のいずれかで表される2価の基であり、および
     *は、結合位置を示す。]
    で表される構成単位を有する組成物。
  2.  X1aが、式(2a)で表される2価の基である請求項1に記載の組成物。
  3.  電子供与性ポリマー(D)が、さらに、式(1b):
    *-O-X1b-O-Y1b-*   (1b)
    [式中、X1bは、式(2a)または式(2b):
    Figure JPOXMLDOC01-appb-C000006
    [式中、*は、結合位置を示す。]
    で表される2価の基であり、
     Y1bは、式(3b):
    Figure JPOXMLDOC01-appb-C000007
    [式中、*は、結合位置を示す。]
    で表される2価の基であり、および
     *は、結合位置を示す。]
    で表される構成単位を有する請求項1または2に記載の組成物。
  4.  X1bが、式(2a)で表される2価の基である請求項3に記載の組成物。
  5.  式(1a)で表される構成単位の量が、式(1a)で表される構成単位および式(1b)で表される構成単位の合計100モルあたり、80~98モルである請求項3または4に記載の組成物。
  6.  R1a~R10aが、それぞれ独立に、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基、スルホ基、W1aで置換されていてもよいフェニル基、W1aで置換されていてもよいチエニル基、またはW1aで置換されていてもよいフリル基であり、およびW1aが、ハロゲン原子で置換されていてもよいC1-10アルキル基、ハロゲン原子で置換されていてもよいC1-10アルコキシ基、ハロゲン原子、ニトロ基、ホルミル基、シアノ基またはスルホ基である請求項1~5のいずれか一項に記載の組成物。
  7.  X2aが、式(5a)で表される4価の基である請求項1~6のいずれか一項に記載の組成物。
  8.  Y2aが、式(7a)で表される2価の基である請求項1~7のいずれか一項に記載の組成物。
  9.  式(4a)で表される構成単位が、式(4a-1):
    Figure JPOXMLDOC01-appb-C000008
    [式中、m1およびm2は、それぞれ独立に、0~3の整数であり、および
     *は、結合位置を示す。]
    で表される構成単位である請求項1~5のいずれか一項に記載の組成物。
  10.  電子供与性ポリマー(D)および電子求引性ポリマー(A)が、電荷移動錯体を形成している請求項1~9のいずれか一項に記載の組成物。
PCT/JP2019/004564 2018-02-09 2019-02-08 ポリマー組成物 WO2019156204A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019571163A JP7220872B2 (ja) 2018-02-09 2019-02-08 ポリマー組成物
US16/967,180 US11866551B2 (en) 2018-02-09 2019-02-08 Polymer composition
CN201980011698.8A CN111684014B (zh) 2018-02-09 2019-02-08 聚合物组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022183 2018-02-09
JP2018-022183 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019156204A1 true WO2019156204A1 (ja) 2019-08-15

Family

ID=67549461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004564 WO2019156204A1 (ja) 2018-02-09 2019-02-08 ポリマー組成物

Country Status (4)

Country Link
US (1) US11866551B2 (ja)
JP (1) JP7220872B2 (ja)
CN (1) CN111684014B (ja)
WO (1) WO2019156204A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111662A (ja) * 2019-01-10 2020-07-27 日産化学株式会社 ポリマー組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324126A (ja) * 1996-06-04 1997-12-16 Japan Vilene Co Ltd 導電体
JPH11119432A (ja) * 1997-10-13 1999-04-30 Toyo Ink Mfg Co Ltd 電子線硬化性組成物および硬化方法
WO2007108118A1 (ja) * 2006-03-23 2007-09-27 Fujitsu Limited 電解質組成物、固体電解質膜および固体高分子型燃料電池
JP2011068872A (ja) * 2009-08-26 2011-04-07 Tokyo Metropolitan Univ リン酸ドープ電解質膜およびその製造方法並びにそれを含む燃料電池
JP2015518649A (ja) * 2012-03-22 2015-07-02 レイナジー テック インコーポレイテッド ポリマーブレンドおよび関連光電子デバイス
WO2018066546A1 (ja) * 2016-10-04 2018-04-12 日産化学工業株式会社 ポリマー組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9313898B2 (en) * 2008-11-21 2016-04-12 Infineon Technologies Ag Low viscosity polymeric printing solutions and electronic components bearing polyimide based upon the low viscosity polymeric printing solutions
US8883958B2 (en) 2012-03-22 2014-11-11 Raynergy Tek Inc. Conjugated polymers and their use in optoelectronic devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324126A (ja) * 1996-06-04 1997-12-16 Japan Vilene Co Ltd 導電体
JPH11119432A (ja) * 1997-10-13 1999-04-30 Toyo Ink Mfg Co Ltd 電子線硬化性組成物および硬化方法
WO2007108118A1 (ja) * 2006-03-23 2007-09-27 Fujitsu Limited 電解質組成物、固体電解質膜および固体高分子型燃料電池
JP2011068872A (ja) * 2009-08-26 2011-04-07 Tokyo Metropolitan Univ リン酸ドープ電解質膜およびその製造方法並びにそれを含む燃料電池
JP2015518649A (ja) * 2012-03-22 2015-07-02 レイナジー テック インコーポレイテッド ポリマーブレンドおよび関連光電子デバイス
WO2018066546A1 (ja) * 2016-10-04 2018-04-12 日産化学工業株式会社 ポリマー組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHRISTIANI, LIANA ET AL.: "Development of Charge- Transfer Complex Hybrid Films as Polymer Electrolyte Membrane for High Temperature PEFC Operation", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 217, no. 5, 2016, pages 654 - 663, XP055629220, ISSN: 1022-1352, DOI: 10.1002/macp.201500320 *
FENG, SHIYAN ET AL.: "Development of polymer- polymer type charge-transfer blend membranes for fuel cell application", JOURNAL OF MEMBRANE SCIENCE, vol. 548, no. 2018, 14 November 2017 (2017-11-14), pages 223 - 231, XP055600902, doi:10.1016/j.memsci.2017.11.025 *
NISHIHARA, MASAMICHI ET AL.: "Experimental and Theoretical Study of Charge-Transfer Complex Hybrid Polyimide Membranes", JOURNAL OF POLYMER SCIENCE , PART B: POLYMER PHYSICS, vol. 52, 2014, pages 293 - 298, XP055497616, doi:10.1002/polb.23411 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111662A (ja) * 2019-01-10 2020-07-27 日産化学株式会社 ポリマー組成物
JP7190695B2 (ja) 2019-01-10 2022-12-16 日産化学株式会社 ポリマー組成物

Also Published As

Publication number Publication date
JP7220872B2 (ja) 2023-02-13
US11866551B2 (en) 2024-01-09
US20210047464A1 (en) 2021-02-18
CN111684014B (zh) 2022-12-06
JPWO2019156204A1 (ja) 2021-01-28
CN111684014A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
Yang et al. A stable anion exchange membrane based on imidazolium salt for alkaline fuel cell
Pu et al. Synthesis and characterization of fluorine‐containing polybenzimidazole for proton conducting membranes in fuel cells
Gao et al. Novel cardo poly (arylene ether sulfone) s with pendant sulfonated aliphatic side chains for proton exchange membranes
Zhai et al. Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application
Liu et al. Sulfonated naphthalenic polyimides containing ether and ketone linkages as polymer electrolyte membranes
JP2015092480A (ja) リン酸ドープ電解質膜およびその製造方法並びにそれを含む燃料電池
Zheng et al. Novel proton exchange membranes based on cardo poly (arylene ether sulfone/nitrile) s with perfluoroalkyl sulfonic acid moieties for passive direct methanol fuel cells
JP5427688B2 (ja) ポリイミド樹脂およびその利用
JP4210659B2 (ja) 側鎖末端にスルホン酸基を有するポリイミド及びこれを採用した高分子電解質と燃料電池
Jo et al. Synthesis of sulfonated aromatic poly (ether amide) s and their application to proton exchange membrane fuel cells
JP2017505836A (ja) ポリベンズイミダゾール(pbi)及びポリマーイオン性液体(pil)系ブレンド膜、並びにその調製プロセス
He et al. Crosslinked poly (arylene ether sulfone) block copolymers containing quinoxaline crosslinkage and pendant butanesulfonic acid groups as proton exchange membranes
Qi et al. Synthesis and properties of novel benzimidazole‐containing sulfonated polyethersulfones for fuel cell applications
JP7220872B2 (ja) ポリマー組成物
EP3517575B1 (en) Polymer composition
Li et al. Rigid–Flexible Hybrid Proton‐Exchange Membranes with Improved Water‐Retention Properties and High Stability for Fuel Cells
JP2010031231A (ja) 新規な芳香族化合物および含窒素芳香環を有するポリアリーレン系共重合体
Kirkebæk et al. Fuel Cell Electrolytes of Polybenzimidazole Membranes Cross‐linked with Bis (chloromethyl) Arenes
Sakaguchi et al. Isomeric effect of sulfonated poly (arylene ether) s comprising dihydroxynaphthalene on properties for polymer electrolyte membranes
JP7190695B2 (ja) ポリマー組成物
Álvarez‐Gallego et al. Synthesis and properties of novel polyimides bearing sulfonated benzimidazole pendant groups
Kim et al. Comparative effect of phthalazinone units in sulfonated poly (arylene ether ether ketone ketone) copolymers as proton exchange membrane materials
Jung et al. Synthesis and characterization of sulfonated copolyimides via thermal imidization for polymer electrolyte membrane application
WO2006048942A1 (ja) ニトリル型疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
Saito et al. Polyimide ionomer containing superacid groups

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750275

Country of ref document: EP

Kind code of ref document: A1