WO2018066439A1 - 遮炎性編物 - Google Patents

遮炎性編物 Download PDF

Info

Publication number
WO2018066439A1
WO2018066439A1 PCT/JP2017/035048 JP2017035048W WO2018066439A1 WO 2018066439 A1 WO2018066439 A1 WO 2018066439A1 JP 2017035048 W JP2017035048 W JP 2017035048W WO 2018066439 A1 WO2018066439 A1 WO 2018066439A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
knitted fabric
flame
yarn
fibers
Prior art date
Application number
PCT/JP2017/035048
Other languages
English (en)
French (fr)
Other versions
WO2018066439A9 (ja
Inventor
原田大
土倉弘至
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/338,759 priority Critical patent/US20190233988A1/en
Priority to CA3038996A priority patent/CA3038996A1/en
Priority to JP2018516202A priority patent/JP7036007B2/ja
Priority to EP17858277.1A priority patent/EP3524721A4/en
Priority to BR112019006562A priority patent/BR112019006562A2/pt
Priority to RU2019112284A priority patent/RU2744425C2/ru
Priority to MX2019003777A priority patent/MX2019003777A/es
Priority to KR1020197008319A priority patent/KR20190056372A/ko
Priority to CN201780050895.1A priority patent/CN109642365B/zh
Publication of WO2018066439A1 publication Critical patent/WO2018066439A1/ja
Publication of WO2018066439A9 publication Critical patent/WO2018066439A9/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/045Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics

Definitions

  • the present invention relates to a flameproof knitted fabric.
  • halogen type or phosphorus type As the flame retardant, halogen type or phosphorus type is generally used, but in recent years, replacement of halogen type chemicals with phosphorus type chemicals has been advanced due to environmental regulations. However, some phosphorus drugs do not reach the flame retardant effect of conventional halogen drugs.
  • Patent Document 1 carbonized flame retardant polymer meta-aramid and flame-retardant polyester and modacrylic fiber
  • Patent Document 2 meta-aramid and PPS composite
  • Patent Document 3 flame-retardant treated with flame-resistant yarn A polyester composite
  • the conventional flame retardant performance is based on the LOI value specified in JIS and the flameproof standard specified in the Fire Service Act, both under conditions where the ignition source and heating time are standardized.
  • the performance was not sufficient to prevent the spread of fire when exposed to flame for a long time like an actual fire.
  • the thickness of the flame retardant material must be made sufficiently thick, or it must be combined with a non-flammable inorganic material, so that the texture is greatly impaired and flexibility is increased. In addition to being poor, there was a problem that workability on a curved surface was lowered.
  • Patent Document 1 Although the method described in Patent Document 1 is flexible and has a high LOI value and excellent flame retardancy, since meta-aramid rapidly shrinks and hardens due to temperature rise, local stress concentration occurs. The textile form cannot be maintained and the ability to block the flame for a long time is lacking.
  • Patent Document 2 discloses that compounding meta-aramid and PPS is excellent in chemical resistance and has a high LOI value.
  • this is a string-like evaluation and is a textile form for blocking flames for a long time. Is not described. Moreover, even if it uses such a technique as it is and it is a textile form, it cannot be said that it is enough in the performance which interrupts a flame for a long time.
  • Patent Document 3 discloses a woven fabric of flame-resistant yarn and flame-retardant polyester. However, since warp is a flame-retardant polyester, the fabric structure collapses due to prolonged flame contact, although it exhibits flame retardancy. End up lacking the ability to block the flame.
  • the present invention has been made in view of the problems of such a conventional flame-retardant fabric, and an object thereof is to provide a flameproof knitted fabric having high flameproofness.
  • the flameproof knitted fabric of the present invention has the following configuration in order to solve the above problems. That is, Non-melting fiber A having a high temperature shrinkage rate of 3% or less, and heat having a melting point lower than the ignition temperature of non-melting fiber A having a LOI value of 25 or more in accordance with JIS K 7201-2 (2007) A knitted fabric composed of plastic fibers B, wherein the breaking elongation of the yarn constituting the knitted fabric is greater than 5%, and the area ratio of the unmelted fibers A is 10% or more in the projected area in the complete structure of the knitted fabric The area ratio of the thermoplastic fiber B is 5% or more, and the thickness is 0.08 mm or more according to the JIS L 1096-A method (2010).
  • the flameproof knitted fabric of the present invention preferably contains fibers C other than the non-melted fibers A and thermoplastic fibers B in an area ratio of the projected area in the complete structure of the knitted fabric of 20% or less.
  • the non-molten fiber A is preferably selected from the group of flameproof fiber, meta-aramid fiber, glass fiber, and a mixture thereof.
  • the thermoplastic fiber B is composed of polyphenylene sulfide, flame retardant liquid crystal polyester, flame retardant poly (alkylene terephthalate), flame retardant poly (acrylonitrile butadiene styrene), flame retardant polysulfone, poly (Ether-ether-ketone), poly (ether-ketone-ketone), polyethersulfone, polyarylate, polyphenylsulfone, polyetherimide, polyamideimide, and a fiber made of a resin selected from a group thereof It is preferable.
  • the flameproof knitted fabric of the present invention has a high flameproofness by having the above-described configuration.
  • the high-temperature shrinkage rate is measured by measuring the original length L 0 after leaving the fiber as a raw material for the nonwoven fabric in a standard state (20 ° C., relative humidity 65%) for 12 hours and then applying a tension of 0.1 cN / dtex.
  • the fiber was exposed to a dry heat atmosphere at 290 ° C. for 30 minutes without applying a load, sufficiently cooled in a standard state (20 ° C., relative humidity 65%), and further subjected to 0% to the fiber.
  • the length L 1 is measured by applying a tension of .1 cN / dtex, and is a numerical value obtained from L 0 and L 1 by the following formula.
  • High temperature shrinkage [(L 0 ⁇ L 1 ) / L 0 ] ⁇ 100 (%)
  • the high temperature shrinkage rate of the non-molten fiber A is 3% or less.
  • the thermoplastic fibers melt, and the molten thermoplastic fibers spread in a thin film along the surface of the non-melted fibers (aggregate).
  • both fibers will eventually carbonize, but if the high temperature shrinkage rate of the non-molten fiber exceeds 3% or less, the vicinity of the flame contact portion that has become hot tends to shrink, and the flame is not in contact.
  • the high temperature shrinkage rate is low and the breaking elongation of the yarn constituting the knitted fabric is high, but the knitted fabric structure collapses even if it expands significantly due to heat even if it does not shrink, causing the flame to penetrate from that portion Therefore, the high temperature shrinkage rate is preferably ⁇ 5% or more. In particular, the high temperature shrinkage rate is preferably 0 to 2%.
  • the LOI value is a volume percentage of the minimum oxygen amount necessary for sustaining the combustion of a substance in a mixed gas of nitrogen and oxygen, and it can be said that the higher the LOI value, the more difficult it is to burn. Therefore, the LOI value based on JIS K7201-2 (2007) of the thermoplastic fiber B of the flameproof knitted fabric of the present invention is 25 or more. If the LOI value of the thermoplastic fiber B is less than 25, the thermoplastic fiber is easy to burn, it is difficult to extinguish even if the fire source is removed, and the spread of fire cannot be prevented. A higher LOI value is preferable, but the upper limit of the LOI value of a substance that can be actually obtained is about 65.
  • the ignition temperature is a spontaneous ignition temperature measured by a method based on JIS K7193 (2010).
  • the melting point is a value measured by a method based on JIS K7121 (2012). The value of the melting peak temperature when heated at 10 ° C./min.
  • the breaking elongation of the yarn refers to that measured by a method based on JIS L1095 (2010). Specifically, an initial load of 0.2 cN / dtex is applied, a tensile test is performed under the conditions of a gripping interval of 200 mm and a tensile speed of 100% strain / minute, and the elongation at the time when the yarn breaks is obtained. The test is conducted 50 times, and the average value of the ones excluding those broken at the grip is adopted.
  • the breaking elongation of the yarn constituting the flameproof fabric of the present invention is 5% or more. If the breaking elongation of the yarn is less than 5%, the knitted fabric is likely to break due to the thermal stress generated between the high temperature part that is in contact with the flame and the low temperature part that is not in contact with the flame. It cannot be done and it is impossible to apply tension.
  • the non-molten fiber A refers to a fiber that maintains its fiber shape without being liquefied when exposed to a flame, and preferably does not liquefy and ignite at a temperature of 700 ° C. What does not ignite is more preferable.
  • the non-melted fiber having the high temperature shrinkage rate in the range defined by the present invention include flameproofed fiber, meta-aramid fiber, and glass fiber.
  • the flame-resistant fiber is a fiber subjected to flame resistance treatment using a fiber selected from acrylonitrile-based, pitch-based, cellulose-based, phenol-based fiber and the like as a raw material. These may be used alone or in combination of two or more.
  • a flame resistant fiber that has a low high temperature shrinkage rate, and that progresses in carbonization due to an oxygen blocking effect by a film formed by the thermoplastic fiber B to be described later at the time of flame contact, and further improves the heat resistance at high temperatures, is preferable.
  • acrylonitrile-based flame-resistant fibers are more preferably used as fibers having a small specific gravity and being flexible and excellent in flame retardancy.
  • Such flame-resistant fibers are obtained by using acrylic fibers as precursors in high-temperature air. Obtained by heating and oxidation.
  • meta-aramid fibers are high in high-temperature shrinkage and do not satisfy the high-temperature shrinkage specified in the present invention. If it exists, it can be preferably used.
  • glass fiber has a small elongation at break and does not satisfy the range of elongation at break specified in the present invention, but it is used as a spun yarn or as a yarn constituting a woven fabric by being compounded with different materials. Any glass fiber within the elongation can be preferably used.
  • the non-melting fiber preferably used in the present invention is used in a method of combining non-melting fiber alone or with a different material, and may be in any form of filament or staple.
  • the fiber length is preferably in the range of 30 to 60 mm, and more preferably in the range of 38 to 51 mm. If the fiber length is in the range of 38 to 51 mm, it can be made into a spun yarn in a general spinning process, and can be easily mixed with a different material.
  • the thickness of the single fiber of the non-melt fiber is not particularly limited, but the single fiber fineness is preferably in the range of 0.1 to 10 dtex from the viewpoint of the passability in the spinning process.
  • the thermoplastic fiber B used in the present invention has a LOI value of 25 or more and a melting point lower than the ignition temperature of the unmelted fiber A. If the LOI value of the thermoplastic fiber B is less than 25, combustion in the air cannot be suppressed, and the polymer is not easily carbonized. When the melting point of the thermoplastic fiber B is equal to or higher than the ignition temperature of the non-molten fiber A, the melted polymer is emitted before forming a film between the surface of the non-molten fiber A and between the fibers, so a flame shielding effect cannot be expected. .
  • the melting point of the thermoplastic fiber B is preferably 200 ° C.
  • polyphenylene sulfide flame retardant liquid crystal polyester, flame retardant poly (alkylene terephthalate), flame retardant poly (acrylonitrile butadiene styrene), flame retardant polysulfone, poly (ether-ether-ketone), poly ( Ether-ketone-ketone), polyethersulfone, polyarylate, polyphenylsulfone, polyetherimide, polyamideimide and fibers composed of thermoplastic resins selected from the group thereof. These may be used alone or in combination of two or more.
  • polyphenylene sulfide fibers are most preferable from the viewpoint of the high LOI value, the melting point range, and the availability.
  • PPS fibers polyphenylene sulfide fibers
  • a polymer whose LOI value is not within the range defined by the present invention can be preferably used by treating with a flame retardant if the LOI value after treatment is within the range defined by the present invention.
  • the flame retardant is not particularly limited, but a phosphorus-based or sulfur-based flame retardant that generates phosphoric acid or sulfuric acid during thermal decomposition and develops a mechanism for dehydrating and carbonizing the polymer substrate is preferable.
  • thermoplastic fiber B used in the present invention is used by a method of combining the above thermoplastic resin alone or with a different material, and may be in any form of a filament or a staple.
  • the fiber length is preferably in the range of 30 to 60 mm, and more preferably in the range of 38 to 51 mm. If the fiber length is in the range of 38 to 51 mm, it can be made into a spun yarn in a general spinning process, and can be easily mixed with a different material.
  • the thickness of the single fiber of the thermoplastic fiber B is not particularly limited, but the single fiber fineness is preferably in the range of 0.1 to 10 dtex from the viewpoint of passing through the spinning process. .
  • the total fineness when used as a filament and the yarn count when used as a spun yarn are not particularly limited as long as they satisfy the provisions of the present invention, and may be appropriately selected in consideration of a desired thickness.
  • the PPS fiber preferably used in the present invention is a synthetic fiber made of a polymer having a polymer structural unit as a main structural unit of — (C 6 H 4 —S) —.
  • Typical examples of these PPS polymers include polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfide ketone, random copolymers thereof, block copolymers, and mixtures thereof.
  • polyphenylene sulfide containing a p-phenylene unit represented by — (C 6 H 4 —S) —, preferably 90 mol% or more, as the main structural unit of the polymer is desirable. From the viewpoint of mass, polyphenylene sulfide containing 80% by mass, more preferably 90% by mass or more of p-phenylene units is desirable.
  • the PPS fiber preferably used in the present invention is used by a method of combining PPS fiber alone or with a different material, and may be in any form of filament or staple.
  • the fiber length is preferably in the range of 30 to 60 mm, and more preferably in the range of 38 to 51 mm. If the fiber length is in the range of 38 to 51 mm, it can be made into a spun yarn in a general spinning process, and can be easily mixed with a different material.
  • the thickness of the single fiber of PPS is not particularly limited, but it is preferable that the single fiber fineness is in the range of 0.1 to 10 dtex from the viewpoint of passing through the spinning process.
  • the method for producing the PPS fiber used in the present invention is preferably a method in which the polymer having the phenylene sulfide structural unit described above is melted at a melting point or higher and spun from a spinneret to form a fiber.
  • the spun fiber is an unstretched PPS fiber as it is.
  • Most of the unstretched PPS fibers have an amorphous structure and a high elongation at break.
  • stretched yarns are commercially available in which the fiber is stretched and oriented following spinning to improve the strength and dimensional stability of the fiber.
  • a plurality of PPS fibers such as “Torcon” (registered trademark) (manufactured by Toray Industries, Inc.) and “Procon” (registered trademark) (manufactured by Toyobo) are in circulation.
  • the unstretched PPS fiber and the stretched yarn can be used in combination within the range satisfying the scope of the present invention.
  • a fiber C other than the non-melted fiber A and the thermoplastic fiber B may be contained in order to further add a specific performance to the knitted fabric.
  • polyester fibers other than vinylon fibers and thermoplastic fibers B, nylon fibers, and the like may be used.
  • spandex fibers may be used to impart stretch properties.
  • spandex fibers examples include “Lycra” (registered trademark) of East Leoperontex Co., Ltd., “Roika” (registered trademark) of Asahi Kasei Corporation, “Creola” (registered trademark) of Hyosun Corporation, and the like.
  • the content of the fiber C is not particularly limited as long as the effects of the present invention are not impaired.
  • the area ratio of the fibers C other than the non-melting fiber A and the thermoplastic fiber B is It is preferably 20% or less, and more preferably 10% or less.
  • the thickness of the knitted fabric of the present invention is measured by a method according to JIS L 1096 (2010) and is 0.08 mm or more.
  • the thickness of the knitted fabric is preferably 0.3 mm or more. If the thickness of the knitted fabric is less than 0.08 mm, sufficient flame shielding performance cannot be obtained.
  • the density of the knitted fabric of the present invention is not particularly limited, but may be determined in consideration of the shape stability and stretchability of the knitted fabric and the target flame shielding properties.
  • a spun yarn or a filament yarn can be used as the form of the yarn used in the knitted fabric of the present invention.
  • each of the non-melt fiber A and the thermoplastic fiber B may be used as a spun yarn, or the non-melt fiber A and the thermoplastic fiber B may be blended at a predetermined ratio within the scope of the present invention.
  • the number of crimps of the fibers is preferably 7 pieces / 2.54 cm or more. However, if the number of crimps is too large, the fiber passes through the process of forming a sliver with a carding machine. Since the properties deteriorate, it is preferably less than 30 pieces / 2.54 cm.
  • the fiber length of the non-melted fiber and the fiber length of the molten fiber are preferably in the range of 30 to 60 mm, and more preferably in the range of 38 to 51 mm.
  • the blended yarn can be obtained, for example, by first uniformly mixing using a fiber opening device, then forming a sliver with a carding machine, drawing with a drawing machine, roving and spinning. A plurality of the spun yarns obtained may be twisted together.
  • a false twisted yarn of each of the non-molten fiber A and the thermoplastic fiber B, or a composite of the non-melt fiber A and the thermoplastic fiber B by a method such as air blending or composite false twist is used. be able to.
  • the knitted fabric of the present invention is a weft knitting machine such as a flat knitting machine, an old fashion knitting machine, a circular knitting machine, a computer jacquard knitting machine, a sock knitting machine, a cylinder knitting machine, or a tricot using the spun yarn or filament yarn obtained above. Knitting is performed using a warp knitting machine such as a knitting machine, a Russell knitting machine, an air jet loom, or a Miranese knitting machine. A draft yarn feeder for inserting the spandex yarn may be provided.
  • the knitted fabric structure may be selected according to the texture and design. In the weft knitting, there are tengu knitting, rubber knitting, pearl knitting, tuck knitting, floating knitting, lace knitting, and their changing structure. , Single Denby, Single Bandaique, Single Code, Berlin, Dougle Denby, Atlas, Code, Half Tricot, Satin, Sharkskin and their changing organization .
  • the yarn and knitting structure constituting the knitted fabric have an area ratio of the non-molten fiber A of 10% or more and an area ratio of the thermoplastic fiber B of 5% in the projected area in the complete structure of the knitted fabric. If the area ratio of the non-molten fiber A is less than 10%, the function as an aggregate becomes insufficient. The area ratio of the non-molten fiber A is preferably 15% or more. If the area ratio of the thermoplastic fiber B is less than 5%, the thermoplastic fiber does not spread sufficiently in the form of a film between the non-melted fibers of the aggregate. The area ratio of the thermoplastic fiber B is preferably 10% or more.
  • the complete structure of a knitted fabric refers to the minimum repeating unit constituting the knitted fabric.
  • Cotton yarn count constituting the knitted fabric as a N e the yarn cross-section is converted regarded as circular, when the density of the yarn ⁇ of (g / cm 3), the yarn diameter D (cm), the following Calculated by the formula.
  • the density ⁇ of the fiber was measured by a method according to ASTM D4018-11.
  • FIG. 2 is a conceptual diagram of a knitted fabric for explaining the complete structure of the knitted fabric and the projected area of each fiber.
  • the number 21 of horizontal loops per inch (2.54 cm) and the number 22 of loops in the vertical direction are W wales / inch (2.54 cm) and C course / inch, respectively, 1 inch (2. 54 cm)
  • W wales / inch (2.54 cm) and C course / inch, respectively 1 inch (2. 54 cm)
  • W wales / inch 2.54 cm
  • C course / inch 1 inch
  • the projected diameter of the yarn constituting the knitted fabric is D.
  • an area S occupied by the yarn on a plane of 1 inch (2.54 cm) square is calculated by the following equation.
  • L (cm) is a loop length of 23 and is a yarn length per loop.
  • n is the number of unwound loops. Is a length obtained by the following equation, where l is the yarn length when a tension of 0.1 cN / dtex is applied.
  • the yarn constituting the knitted fabric is composed of two types of fibers ⁇ and ⁇ , and the weight mixing ratios thereof are Wt ⁇ and Wt ⁇ , respectively. Therefore, the volume occupied by the fibers ⁇ and fibers ⁇ contained in the yarn constituting the knitted fabric V ⁇ and V ⁇ have the following relationship.
  • thermoplastic fiber B melts and coats the surface of the knitted fabric when the flameproof knitted fabric of the present invention is in contact with the flame, so in the present invention the knitted fabric is
  • the area ratio (S ⁇ / S ⁇ ) occupied by each fiber on the constituting yarn surface is considered to be equal to the volume ratio (V ⁇ / V ⁇ ) occupied by each fiber, and the projected area S of the yarn constituting the knitted fabric
  • the projected areas S ⁇ and S ⁇ of each fiber are calculated by multiplying the volume ratio occupied by each fiber.
  • the set temperature is good enough to obtain the effect of suppressing the high temperature shrinkage, and is preferably 160 to 240 ° C., more preferably 190 to 230 ° C.
  • Resin processing may be performed for the purpose of improving wear resistance or improving texture as long as the effect of the present invention is not impaired at the same time as heat setting or after heat setting.
  • resin processing can be performed by either pad dry curing, in which the fabric is immersed in a resin tank, then squeezed with a padder, dried, and fixed, or pad steam method, in which the resin is reacted and fixed in a steam tank. Can be selected.
  • the flameproof knitted fabric of the present invention thus obtained has excellent flameproofing properties and is effective in preventing the spread of fire, so it is used for clothing materials, wall materials, flooring materials, ceiling materials, covering materials, etc. that require flame retardancy.
  • it can be suitably used for fireproof protective clothing, and for preventing fire spread of urethane sheet materials such as automobiles and aircraft, and for preventing spread of bed mattresses.
  • LOI value The LOI value was measured according to JIS K7201-2 (2007).
  • the flame was ignited by a method according to A-1 method (45 ° micro burner method) of JIS L 1091 (Flame Product Flammability Test Method, 1999), and the flame shielding property was evaluated as follows. As shown in FIG. 1, a micro burner 1 having a flame length L of 45 mm is set up in a vertical direction, and a test body 2 is arranged at an angle of 45 degrees with respect to a horizontal plane. Flameproofness was evaluated in a test in which the combustor 4 was placed through a 2 mm spacer 3 and burned.
  • polyester fiber drawn yarn As the stretched polyester fiber, “Tetron” (registered trademark) manufactured by Toray Industries, Inc., which is a polyethylene terephthalate fiber having a single fiber fineness of 2.2 dtex (diameter: 14 ⁇ m), product number T9615 was cut into 51 mm and used.
  • the polyester fiber has a LOI value of 22 and a melting point of 256 ° C.
  • Example 1 (spinning) The drawn yarn of PPS fiber and the flameproof yarn were mixed by a fiber spreader, then further mixed by a blended cotton machine, and then passed through a carding machine to make a sliver.
  • the total draft was set to 8 times with a drawing machine and stretched to obtain a 280 selenium / 6 yards (18.14 g / 5.46 m) sliver.
  • the obtained spun yarn was knitted with a tengu using a 20G circular knitting machine.
  • the obtained knitted fabric had a number of wales of 29 wales / inch (2.54 cm), a number of courses of 28 courses / inch (2.54 cm), and a loop length of 0.39 cm / 1 loop.
  • Example 2 Weaving at 20 wal / inch (2.54 cm) and 20 course / inch (2.54 cm) using the spun yarn described in Example 1, refining under the same conditions as in Example 1, and then heat setting at 230 ° C. As a result, a knitted fabric with 21 wales / inch (2.54 cm) and 20 courses / inch (2.54 cm) was obtained. The thickness of the knitted fabric was 0.290 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 2.1 cN / dtex and the tensile elongation was 17%.
  • Example 3 In Example 1, it carried out on the same conditions except having made the mixture ratio of spun yarn PPS and flameproofing yarn into 80:20.
  • the obtained spun yarn had a tensile strength of 2.3 cN / dtex and a tensile elongation of 19%.
  • the yarn density of the knitted fabric after refining and heat setting was 31 wal / inch (2.54 cm) and 30 course / inch (2.54 cm).
  • the thickness of the knitted fabric was 0.324 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 2.0 cN / dtex and the tensile elongation was 16%. In the flame insulation evaluation of this knitted fabric, the combustion body did not ignite for 15 minutes and had sufficient flame insulation.
  • Example 4 In Example 1, it carried out on the same conditions except having changed the mixture ratio of PPS of a spun yarn and flameproofing yarn to 20:80.
  • the obtained spun yarn had a tensile strength of 2.2 cN / dtex and a tensile elongation of 15%.
  • the yarn density of the knitted fabric after refining and heat setting was 31 wal / inch (2.54 cm) and 30 course / inch (2.54 cm).
  • the thickness of the knitted fabric was 0.310 mm.
  • the tensile strength was 1.7 cN / dtex and the tensile elongation was 16%.
  • the combustion body did not ignite for 30 minutes and had sufficient flame shielding properties.
  • Example 5 In Example 1, in addition to PPS and flameproofed yarn, spun yarn of polyester fiber was further blended into the spun yarn, and the mixture ratio was 50:30:20. The spun yarn obtained had a tensile strength of 2.3 cN / dtex and a tensile elongation of 20%. The yarn density of the knitted fabric after refining and heat setting was 31 wal / inch (2.54 cm) and 31 course / inch (2.54 cm). The thickness of the knitted fabric was 0.321 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 2.2 cN / dtex and the tensile elongation was 18%. In the flame insulation evaluation of the main knitted fabric, the combustion body did not ignite for 25 minutes and had sufficient flame shielding properties.
  • Example 6 To the spun yarn used in Example 1, a spandex yarn “Lycra” (registered trademark) T-178C having a fineness of 30 denier (33.3 dtex) manufactured by East Leoperontex Co., Ltd. was inserted at a draft rate of 3.5. A knitted fabric having a weight mixing ratio of PPS55, flameproofed yarn 35, and spandex 10 was obtained. The yarn density of the fabric after heat setting was 34 wales / inch (2.54 cm) and 33 courses / inch (2.54 cm). The thickness of the knitted fabric was 0.412 mm.
  • Example 1 A knitted fabric of 20 wal / inch (2.54 cm) and 19 course / inch (2.54 cm) was knitted using the spun yarn of Example 3, and after refining under the same conditions as in Example 1, at 230 ° C. By performing heat setting, a knitted fabric of 21 wal / inch (2.54 cm) and 20 course / inch (2.54 cm) was obtained. The thickness of the knitted fabric was 0.287 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 2.1 cN / dtex and the tensile elongation was 17%.
  • Example 2 Using the spun yarn of Example 4, a knitted fabric of 19 wales / inch (2.54 cm) and 18 courses / inch (2.54 cm) was knitted, refined under the same conditions as in Example 1, and then at 230 ° C. By performing heat setting, knitted fabrics of 18 wal / inch (2.54 cm) and 17 course / inch (2.54 cm) were obtained. The thickness of the knitted fabric was 0.291 mm. When the high elongation of the decomposed yarn was measured, the tensile strength was 1.8 cN / dtex and the tensile elongation was 17%.
  • Example 3 In Example 1, in addition to PPS and flameproofed yarn, the spun yarn was further blended with a stretched polyester fiber yarn, and the mixture ratio was changed to 10:10:80. The resulting spun yarn had a tensile strength of 2.2 cN / dtex and a tensile elongation of 21%.
  • the yarn density of the knitted fabric after refining and heat setting was 31 wal / inch (2.54 cm) and 31 course / inch (2.54 cm).
  • the thickness of the knitted fabric was 0.319 mm.
  • the tensile strength was 2.1 cN / dtex and the tensile elongation was 18%.
  • the flame insulation was evaluated with the main knitted fabric, the area ratio of the flameproofing yarn was too small, and PPS could not form a film between the flameproofing yarns at the time of flame contact. After a second, the burning body ignited.
  • Table 1 below shows the area ratio of the non-melted fibers A of Examples 1 to 6 and Comparative Examples 1 to 3, the area ratio of the thermoplastic fibers B having a melting point lower than the ignition temperature of the non-melted fibers A, and other fibers C.
  • the area ratio, the thickness of the knitted fabric, and the evaluation results of flame shielding properties are collectively shown.
  • the present invention is effective for preventing the spread of fire and is suitable for use in clothing materials, wall materials, floor materials, ceiling materials, covering materials, etc. that are required to have flame retardancy. It is suitable for use in the prevention of fire spread of urethane sheet materials and bed mattresses of urethane sheets for automobiles and aircrafts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Knitting Of Fabric (AREA)
  • Woven Fabrics (AREA)

Abstract

高温収縮率が3%以下の非溶融繊維Aと、JIS K 7201-2(2007年)に準拠するLOI値が25以上でありかつ融点が非溶融繊維Aの発火温度よりも低い融点を有する熱可塑性繊維Bから成る編物あって、該編物を構成する糸の破断伸度が5%よりも大きく、かつ、編物の完全組織における投影面積において、前記非溶融繊維Aの面積率が10%以上かつ前記熱可塑性繊維Bの面積率が5%以上かつJIS L 1096-A法(2010年)に準拠する厚さが0.08mm以上であることを特徴とする遮炎性編物。 高い遮炎性を備えた遮炎性編物を提供する。

Description

遮炎性編物
 本発明は、遮炎性編物に関する。
 従来より、難燃性が求められる用途では、ポリエステル、ナイロン、セルロース系繊維に難燃効果のある薬剤を原糸段階で練りこむ方法や後加工で付与する方法が採用されてきた。
 難燃剤としては、ハロゲン系やリン系が一般的に用いられるが、近年では、環境規制により、ハロゲン系薬剤からリン系薬剤への置き換えが進んでいる。しかし、リン系薬剤では、従来のハロゲン系薬剤の難燃効果に及ばないものがある。
 そこで、より高い難燃性を付与する方法として、高い難燃性を有したポリマーを複合する方法がある。例えば、炭化型難燃ポリマーのメタアラミドと難燃処理したポリエステルおよびモダクリル繊維の複合体(特許文献1)や、メタアラミドとPPSの複合体(特許文献2)、あるいは、耐炎化糸と難燃処理したポリエステルの複合体(特許文献3)などが知られている。
特開平11-293542号公報 特開平01-272836号公報 特開2005-334525号公報
 しかしながら、従来の難燃性能は、JISに規定されたLOI値や、消防法に定められた防炎規格によるものであって、いずれも着火源や加熱時間が規格化された条件下での性能であり、実際の火災のように長時間炎に晒された際の延焼防止に際して、十分とはいえなかった。長時間の延焼防止効果を付与するためには、難燃素材の厚みを十分に厚くしたり、あるいは不燃性の無機材料との複合化を余儀なくされ、そのために風合いが大きく損なわれ、柔軟性が乏しくなるほか、曲面上への施工性が低下するといった問題点を有していた。
 特許文献1記載の方法では、柔軟性があり、さらにLOI値も高く難燃性に優れているものの、メタアラミドは温度上昇によって急激に収縮・硬化してしまうため、局所的に応力集中が発生してテキスタイル形態を保つことができず、長時間炎を遮断する性能に欠ける。
 また、特許文献2では、メタアラミドとPPSを複合することで耐薬品性に優れ、LOI値も高いことが開示されているが、糸状での評価であり、長時間炎を遮断するためのテキスタイル形態について、記載されていない。また、かかる技術をそのまま用いてテキスタイル形態としても長時間炎を遮断する性能において十分とはいえない。
 さらに、特許文献3では、耐炎化糸と難燃ポリエステルの織物が開示されているが、経糸は難燃ポリエステルであるため、難燃性は示すものの、長時間の接炎によって織物構造が崩壊してしまい、炎を遮断する性能に欠ける。
 本発明は、このような従来の難燃性布帛の有する課題に鑑みてなされたものであって、高い遮炎性を備えた遮炎性編物を提供することを目的とする。
 本発明の遮炎性編物は上記課題を解決するために、次の構成を有する。すなわち、
 高温収縮率が3%以下の非溶融繊維Aと、JIS K 7201-2(2007年)に準拠するLOI値が25以上でありかつ融点が非溶融繊維Aの発火温度よりも低い融点を有する熱可塑性繊維Bから成る編物であって、該編物を構成する糸の破断伸度が5%よりも大きく、かつ、編物の完全組織における投影面積において、前記非溶融繊維Aの面積率が10%以上かつ前記熱可塑性繊維Bの面積率が5%以上かつJIS L 1096-A法(2010年)に準拠する厚さが0.08mm以上である遮炎性編物、である。
 本発明の遮炎性編物は、前記非溶融繊維Aおよび熱可塑性繊維B以外の繊維Cを編物の完全組織における投影面積の面積率で20%以下含有することが好ましい。
 本発明の遮炎性編物は、前記非溶融繊維Aが、耐炎化繊維、メタアラミド系繊維、ガラス繊維およびこれらの混合物の群から選択されることが好ましい。
 本発明の遮炎性編物は、前記熱可塑性繊維Bが、ポリフェニレンサルファイド、難燃性液晶ポリエステル、難燃性ポリ(アルキレンテレフタレート)、難燃性ポリ(アクリロニトリルブタジエンスチレン)、難燃性ポリスルホン、ポリ(エーテル-エーテル-ケトン)、ポリ(エーテル-ケトン-ケトン)、ポリエーテルスルホン、ポリアリレート、ポリフェニルスルホン、ポリエーテルイミド、ポリアミドイミドおよびこれらの混合物の群から選択される樹脂からなる繊維であることが好ましい。
 本発明の遮炎性編物は、上記の構成を備えることにより、高い遮炎性を備えている。
遮炎性を評価するための燃焼試験を説明するための図である。 編物の完全組織およびそれぞれの繊維の投影面積を説明するための天竺編組織の概念図である。
 本発明について説明する。
 《高温収縮率》
 本発明において高温収縮率とは、不織布の原料となる繊維を標準状態(20℃、相対湿度65%)中で12時間放置後、0.1cN/dtexの張力を与えて原長Lを測定し、その繊維に対して荷重を付加せずに290℃の乾熱雰囲気に30分間暴露し、標準状態(20℃、相対湿度65%)中で十分冷却したうえで、さらに繊維に対して0.1cN/dtexの張力を与えて長さLを測定し、LおよびLから以下の式で求められる数値である。
 高温収縮率=〔(L-L)/L〕×100(%) 
 本発明の遮炎性編物において、非溶融繊維Aの高温収縮率は3%以下である。 炎が近づき熱が加わると熱可塑性繊維が溶融し、溶融した熱可塑性繊維が非溶融繊維(骨材)の表面に沿って薄膜状に広がる。さらに温度が上がると、やがて、両繊維は炭化するが、非溶融繊維の高温収縮率が3%以下を超えると、高温となった接炎部近辺は収縮しやすく、また、炎の接していない低温部と高温度部の間で生じた熱応力による編物の破断が生じやすいので、長時間炎を遮断することができない。この点で、高温収縮率は低く、編物を構成する糸の破断伸度は高い方が好ましいが、縮まずとも熱によって大幅に膨張しても編物構造が崩れ、その部分から炎が貫通する原因となるので、高温収縮率は-5%以上であることが好ましい。なかでも高温収縮率が0~2%であることが好ましい。
 《LOI値》
 LOI値は、窒素と酸素の混合気体において、物質の燃焼を持続させるのに必要な最小酸素量の容積百分率であり、LOI値が高いほど燃え難いと言える。そこで、本発明の遮炎性編物の熱可塑性繊維BのJIS K7201-2(2007年)に準拠するLOI値は25以上である。熱可塑性繊維BのLOI値が25に満たないと、熱可塑性繊維は燃えやすく、火源を離しても消火しにくく、延焼を防ぐことができない。LOI値は高い方が好ましいが、現実に入手可能な物質のLOI値の上限は65程度である。
 《発火温度》
 発火温度は、JIS K7193(2010年)に準拠した方法で測定した自然発火温度である。
 《融点》
 融点は、JIS K7121(2012年)に準拠した方法で測定した値である。10℃/分で加熱した際の融解ピーク温度の値をいう。
 《糸の破断伸度》
 糸の破断伸度は、JIS L1095(2010年)に準拠した方法で測定したものをいう。具体的には、0.2cN/dtexの初荷重を加えて、つかみ間隔200mm、引張速度100%歪/分の条件で引張試験をおこない、糸が破断した時点の伸度とする。50回試験をおこない、掴み部分で破断したものを除いたものの平均値を採用する。
 本発明の遮炎性織物を構成する糸の破断伸度は5%以上である。糸の破断伸度が5%に満たないと、接炎している高温部と炎の接していない低温部との間で生じた熱応力による編物の破断が生じやすいので、長時間炎を遮断することができず、張力をかけて施工することは不可能である。
 《非溶融繊維A》
 本発明において、非溶融繊維Aとは炎にさらされた際に液化せずに繊維形状を保つ繊維をいい、700℃の温度で液化および発火しないものが好ましく、800℃以上の温度で液化および発火しないものがさらに好ましい。上記高温収縮率が本発明で規定する範囲にある非溶融繊維として、例えば、耐炎化繊維、メタアラミド系繊維およびガラス繊維を挙げることができる。耐炎化繊維は、アクリロニトリル系、ピッチ系、セルロース系、フェノール系繊維等から選択される繊維を原料として耐炎化処理を行った繊維である。これらは単独で使用しても2種類以上を同時に使用してもよい。なかでも、高温収縮率が低くかつ、後述する熱可塑性繊維Bが接炎時に形成する皮膜による酸素遮断効果によって、炭素化が進行し、高温下での耐熱性がさらに向上する耐炎化繊維が好ましく、各種の耐炎化繊維の中で比重が小さく柔軟で難燃性に優れる繊維としてアクリロニトリル系耐炎化繊維がより好ましく用いられ、かかる耐炎化繊維は前駆体としてのアクリル系繊維を高温の空気中で加熱、酸化することによって得られる。市販品としては、後記する実施例および比較例で使用した、Zoltek社製耐炎化繊維“PYRON”(登録商標)の他、東邦テナックス(株)“パイロメックス”(Pyromex)(登録商標)等が挙げられる。また、一般にメタアラミド系繊維は高温収縮率が高く、本発明で規定する高温収縮率を満たさないが、高温収縮率を抑制処理することにより本発明の高温収縮率の範囲内としたメタアラミド系繊維であれば、好ましく使用することができる。さらに、一般にガラス繊維は破断伸度が小さく、本発明で規定する破断伸度の範囲を満たさないが、紡績糸として用いたり、異素材と複合することで織物を構成する糸として本発明の破断伸度内としたガラス繊維であれば、好ましく用いることができる。
 また本発明で好ましく用いられる非溶融繊維は、非溶融繊維単独あるいは異素材と複合する方法で用いられ、フィラメント、ステープルのいずれの形態であってもよい。ステープルを紡績して用いる場合には、繊維長は30~60mmの範囲内にあることが好ましく、38~51mmの範囲内にあることがより好ましい。繊維長が38~51mmの範囲内であれば、一般的な紡績工程で紡績糸とすることが可能であり、異素材と混紡することが容易である。また、非溶融繊維の単繊維の太さについても、特に限定されるものではないが、紡績工程の通過性の点から、単繊維繊度は0.1~10dtexの範囲内にあるものが好ましい。
 《熱可塑性繊維B》
 本発明で用いる熱可塑性繊維Bは、前記LOI値が25以上であり、かつ融点が非溶融繊維Aの発火温度よりも低い融点を有する。熱可塑性繊維BのLOI値が25に満たないと、空気中での燃焼を抑制できず、ポリマーが炭化しにくい。熱可塑性繊維Bの融点が非溶融繊維Aの発火温度以上であると、溶融したポリマーが非溶融繊維Aの表面および繊維間で皮膜を形成する前に発してしまうので、遮炎効果は期待できない。熱可塑性繊維Bの融点は、非溶融繊維Aの発火温度よりも200℃以上低いことが好ましく、300℃以上低いことがさらに好ましい。具体例としては例えば、ポリフェニレンサルファイド、難燃性液晶ポリエステル、難燃性ポリ(アルキレンテレフタレート)、難燃性ポリ(アクリロニトリルブタジエンスチレン)、難燃性ポリスルホン、ポリ(エーテル-エーテル-ケトン)、ポリ(エーテル-ケトン-ケトン)、ポリエーテルスルホン、ポリアリレート、ポリフェニルスルホン、ポリエーテルイミド、ポリアミドイミドおよびこれらの混合物の群から選択される熱可塑性樹脂で構成される繊維を挙げることができる。これらは単独で使用しても、2種類以上を同時に使用してもよい。これらの中で、LOI値の高さおよび融点の範囲および入手の容易さの点から、最も好ましいのはポリフェニレンサルファイド繊維(以下、PPS繊維ともいう)である。また、LOI値が本発明で規定する範囲にないポリマーであっても、難燃剤で処理することによって、処理後のLOI値が本発明で規定する範囲内であれば好ましく用いることができる。難燃剤は特に制限されるものではないが、熱分解時にリン酸あるいは硫酸を生成し、ポリマー基材を脱水炭化させる機構を発現するリン系や硫黄系の難燃剤が好ましい。
 また本発明で用いられる熱可塑性繊維Bは、上記熱可塑性樹脂単独あるいは異素材と複合する方法で用いられ、フィラメント、ステープルのいずれの形態であってもよい。ステープルを紡績して用いる場合には、繊維長は30~60mmの範囲内にあることが好ましく、38~51mmの範囲内にあることがより好ましい。繊維長が38~51mmの範囲内であれば、一般的な紡績工程で紡績糸とすることが可能であり、異素材と混紡することが容易である。また、熱可塑性繊維Bの単繊維の太さについても、特に限定されるものではないが、紡績工程の通過性の点から、単繊維繊度は0.1~10dtexの範囲内にあるものが好ましい。
 フィラメントとして用いる場合の総繊度、紡績糸とする場合の番手としては特に制限はなく、本発明の規定を満たす範囲であればよく、所望の厚さを考慮して適宜選択すればよい。
 本発明で好ましく用いられるPPS繊維は、ポリマー構成単位が-(C-S)-を主な構造単位とする重合体からなる合成繊維である。これらPPS重合体の代表例としては、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体およびそれらの混合物などが挙げられる。特に好ましいPPS重合体としては、ポリマーの主要構造単位として、-(C-S)-で表されるp-フェニレン単位を、好ましくは90モル%以上含有するポリフェニレンスルフィドが望ましい。質量の観点からは、p-フェニレン単位を80質量%、さらには90質量%以上含有するポリフェニレンスルフィドが望ましい。
 また本発明で好ましく用いられるPPS繊維は、PPS繊維単独あるいは異素材と複合する方法で用いられ、フィラメント、ステープルのいずれの形態であってもよい。ステープルを紡績して用いる場合には、繊維長は30~60mmの範囲内にあることが好ましく、38~51mmの範囲内にあることがより好ましい。繊維長が38~51mmの範囲内であれば、一般的な紡績工程で紡績糸とすることが可能であり、異素材と混紡することが容易である。また、PPSの単繊維の太さについても、特に限定されるものではないが、紡績工程の通過性の点から、単繊維繊度は0.1~10dtexの範囲内にあるものが好ましい。
 本発明で用いられるPPS繊維の製造方法は、上述のフェニレンサルファイド構造単位を有するポリマーをその融点以上で溶融し、紡糸口金から紡出することにより繊維状にする方法が好ましい。紡出された繊維は、そのままでは未延伸のPPS繊維である。未延伸のPPS繊維は、その大部分が非晶構造であり、破断伸度は高い。一方、このような繊維は熱による寸法安定性が乏しいので、紡出に続いて熱延伸して配向させ、繊維の強力と熱寸法安定性を向上させた延伸糸が市販されている。PPS繊維としては、“トルコン”(登録商標)(東レ(株)製)、“プロコン”(登録商標)(東洋紡(株)製)など、複数のものが流通している。
 本発明においては、本発明の範囲を満たす範囲で上記未延伸のPPS繊維と延伸糸を併用することができる。なお、PPS繊維の代わりに本発明の範囲を満たす繊維の延伸糸と未延伸糸を併用することでももちろん構わない。
 《非溶融繊維Aおよび熱可塑性繊維B以外の繊維C》
 非溶融繊維Aおよび熱可塑性繊維B以外の繊維Cを、編物に特定の性能をさらに付加するために含有させてもよい。例えば、編物の吸湿性や吸水性を向上させるために、ビニロン繊維、熱可塑性繊維B以外のポリエステル繊維、ナイロン繊維等を用いてもよい。また、ストレッチ性を付与するために、スパンデックス繊維を用いてもよい。スパンデックス繊維の例としては、東レオペロンテックス(株)の“ライクラ”(登録商標)、旭化成株式会社の“ロイカ“(登録商標)、ヒョスンコーポレーションの“クレオラ“(登録商標)等が挙げられる。繊維Cの含有量は本発明の効果を損なわない限り特に制限はないが、遮炎性編物の完全組織における投影面積において、前記非溶融繊維Aおよび熱可塑性繊維B以外の繊維Cの面積率が20%以下であるのが好ましく、10%以下であるのがより好ましい。
 本発明の編物の厚さはJIS L 1096(2010年)に準拠する方法で測定したもので、0.08mm以上である。編物の厚さは0.3mm以上であることが好ましい。編物の厚さが0.08mmに満たないと、十分な遮炎性能を得ることができない。
 本発明の編物の密度は、特に制限はないが、編物の形態安定性やストレッチ性と、目標とする遮炎性を考慮して決定すればよい。
 本発明の編物に用いる糸の形態として、紡績糸、フィラメント糸のいずれも用いることができる。
 紡績糸の場合には、非溶融繊維Aおよび熱可塑性繊維Bそれぞれを紡績糸としても良いし、本発明の範囲内で非溶融繊維Aおよび熱可塑性繊維Bを所定の割合で混紡しても良い。繊維同士の絡合性を十分得るためには、繊維のけん縮数は7個/2.54cm以上であることが好ましいが、けん縮数が多すぎると梳綿機によってスライバーとする工程の通過性が悪くなるため、30個/2.54cm未満であることが好ましい。非溶融繊維Aおよび熱可塑性繊維Bを混紡する場合には、いずれも同じ長さの短繊維を用いることが、より均一な紡績糸を得ることができるので好ましい。なお同じ長さは厳密に同じでなくてもよく、非溶融繊維Aの長さに対し±5%程度の差異があってもよい。かかる観点から、非溶融繊維の繊維長も、溶融繊維の繊維長も繊維長は30~60mmの範囲内にあることが好ましく、38~51mmの範囲内にあることがより好ましい。混紡糸は、例えば、まず開繊装置を用いて均一に混合し、次いで、梳綿機によってスライバーとし、練条機で延伸し、粗紡、精紡する工程を経ることで得られる。得られた紡績糸を複数本撚合わせても良い。
 フィラメントの場合には、非溶融繊維Aおよび熱可塑性繊維Bのそれぞれの仮撚り加工糸、あるいはエア混繊や複合仮撚りなどの方法により非溶融繊維Aおよび熱可塑性繊維Bを複合したものを用いることができる。
 本発明の編物は、上記で得られた紡績糸あるいはフィラメント糸を用いて、横編機、古ファッション編機、丸編機、コンピュータージャガード編機、ソックス編機、筒編み機といった緯編み機や、トリコット編機、ラッセル編機エアージェット織機、ミラニーズ編機とった経編み機を使用して編成する。スパンデックス糸を挿入するためのドラフト給糸装置を備えていてもよい。編物組織は、風合いや意匠性に合わせて選択すればよく、緯編では、天竺編、ゴム編、パール編、タック編、浮き編、レース編やそれらの変化組織などが挙げられ、経編では、シングル・デンビー編、シングル・バンダイク編、シングル・コード編、ベルリン編、ダグル・デンビー編、アトラス編、コード編、ハーフ・トリコット編、サテン編、シャークスキン編やそれらの変化組織などが挙げられる。
 《面積率》
 編物を構成する糸および編み構造は、編物の完全組織における投影面積において、前記非溶融繊維Aの面積率が10%以上かつ前記熱可塑性繊維Bの面積率が5%である。非溶融繊維Aの面積率が10%に満たないと、骨材としての機能が不十分となる。非溶融繊維Aの面積率は15%以上であるのが好ましい。熱可塑性繊維Bの面積率が5%に満たないと、骨材の非溶融繊維の間に熱可塑性繊維が膜状に十分広がらなくなる。熱可塑性繊維Bの面積率は10%以上であるのが好ましい。
  以下、面積率の算出法について説明する。
 ここで、編物の完全組織とは、その編物を構成する最小の繰返し単位のことをいう。編物を構成する糸の綿番手をNとし、糸の断面が円形であるとみなして換算すると、糸の密度がρ(g/cm)のとき、糸の直径D(cm)は、次式で算出される。繊維の密度ρは、ASTM D4018-11に準拠する方法で測定した。
 D=0.08673/{(N×ρ)1/2
  ここで、織物を構成する糸が2種類の繊維αと繊維βの複合体である場合には、糸の密度ρ´は、それぞれの繊維の密度をραおよびρβ、重量混率をWtαおよびWtβとしたとき、次式で算出される。
 ρ´=(ρα×Wtα)+(ρβ×Wtβ
 ただし、Wtα+Wtβ=1である。
 例えば、天竺編組織の場合には、図2で表現される。図2は編物の完全組織およびそれぞれの繊維の投影面積を説明するための天竺編組織の概念図である。1インチ(2.54cm)あたりのヨコ方向のループの数21および同タテ方向のループの数22をそれぞれWウェール/インチ(2.54cm)、Cコース/インチとしたとき、1インチ(2.54cm)四方の平面に合計W×C個のループが存在する。1ループあたりの糸の交点は4個存在する。
 編物を構成する糸の断面を円形と仮定し、編成による糸の変形はないと仮定すると、編物を構成する糸の投影直径はDとなる。糸の直径をDとすると、1インチ(2.54cm)四方の平面を糸が占める面積Sは、次式で算出される。
 S={(D×L-4×D)×W}×C
 ここで、L(cm)はループ長23で、1つのループあたりの糸長であり、編地から任意の長さの編みループをほどいたときの、ほどいたループの個数をn、ほどいた糸に0.1cN/dtexの張力をかけたときの糸長をlとしたときに次式で求められる長さである。
 L=(l/n)
 編物を構成する糸は2種類の繊維αと繊維βから成っており、それぞれの重量混率がWtα、Wtβであるので、編物を構成する糸中に含まれる繊維αと繊維βが占める体積VαとVβには次の関係が成り立つ。
 (ρα×Vα):(ρβ×Vβ)=Wtα:Wtβ
つまり、
 (Vα/Vβ)=(ρβ×Wtα)/(ρα×Wtβ
 ここで、2種類の繊維が複合されている形態に関わらず、本発明の遮炎性編物に接炎した際に熱可塑性繊維Bは溶融して編物表面を被覆するため、本発明では編物を構成する糸表面をそれぞれの繊維が占める面積比(Sα/Sβ)はそれぞれの繊維が占める体積の比(Vα/Vβ)と等しいとみなし、編物を構成する糸の投影面積Sに、それぞれの繊維が占める体積比を乗じることで、各繊維の投影面積SαおよびSβを算出するものとする。
 Sは、1インチ(2.54cm)四方の平面中で糸が占める投影面積であるから、繊維αおよび繊維βが占める面積比率PαおよびPβは、それぞれ、次式、次次式で算出される。
 Pα(%)={Sα/(2.54×2.54)}×100
 Pβ(%)={Sβ/(2.54×2.54)}×100
 編物を構成する糸に含まれる繊維が3種類以上の場合および異なる素材の挿入糸が存在する場合もそれぞれの繊維の重量混率から以上と同様の手順で計算することができる。その他の編み構造の場合も同様の考え方で計算することができる。なおダブル編みなどの多層構造の場合には、炎があたる面の投影面積で算出する。
 編成後、通常の方法で精練を実施後、テンターを用いて所定の幅および密度に熱セットしてもよいし、生機のまま使用してもよい。セット温度は高温収縮率を抑制する効果が得られる温度がよく、好ましくは160~240℃、より好ましくは190~230℃である。
 熱セットと同時あるいは、熱セット後に別工程で本発明の効果を損なわない範囲で耐摩耗性改善や風合い改善の目的等で樹脂加工をおこなってもよい。樹脂加工は、用いる樹脂の種類に応じて、織物を樹脂槽に浸漬させたのちパッダーで絞り、乾燥、固着させるパッドドライキュア法と、蒸気槽中で樹脂を反応、固着させるパッドスチーム法のいずれかを選択することができる。
 かくして得られる本発明の遮炎性編物は遮炎性に優れ、火災の延焼防止効果に優れるので、難燃性が要求される衣料材、壁材、床材、天井材、被覆材などに使用するのに好適であって、特に、耐火防護服や、自動車や航空機などのウレタンシート材の延焼防止被覆材およびベッドマットレスの延焼防止で使用するのに好適に使用することができる。
 次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。本発明の技術的範囲を逸脱しない範囲において、様々な変形や修正が可能である。なお、本実施例で用いる各種特性の測定方法は、以下のとおりである。
 [目付]
 JIS L 1096(2010年)に準拠して測定し、1m当たりの質量(g/m)で表した。
 [厚さ]
 JIS L 1096(2010年)に準拠して、測定した。
 [LOI値]
 LOI値は、JIS K 7201-2(2007年)に準拠して、測定した。
  [遮炎性評価]
 JIS L 1091(繊維製品の燃焼性試験方法、1999年)のA-1法(45゜ミクロバーナ法)に準じた方法で着火し、以下のとおり遮炎性を評価した。図1に示すように、火炎長さLが45mmであるミクロバーナ1を垂直方向に立て、水平面に対して45度の角度で試験体2を配置し、試験体2に対して厚さthが2mmのスペーサー3を介して燃焼体4を配置して燃焼する試験で遮炎性を評価した。燃焼体4には含有水分率を均一とするために標準状態で24時間放置した、GEヘルスケア・ジャパン株式会社が販売する定性ろ紙グレード2(1002)を用い、ミクロバーナ1に着火してから燃焼体4が引火するまでの時間を秒単位で測定した。なお、接炎3分以内で燃焼体4に引火した場合は、「遮炎性無し」とし、不可とする。3分以上炎にさらされても燃焼体4に引火しない場合を「遮炎性能有り」とするが、遮炎時間は長ければ長いほどよく、3分以上20分未満を良、20分以上を優とした。
 次に、以下の実施例および比較例における用語について説明する。
 《PPS繊維の延伸糸》
 延伸されたPPS繊維として、単繊維繊度2.2dtex(直径14μm)、カット長51mmの東レ(株)製“トルコン”(登録商標)、品番S371を用いた。このPPS繊維のLOI値は34、融点は284℃である。
 《ポリエステル繊維の延伸糸》
 延伸されたポリエステル繊維として、単繊維繊度2.2dtex(直径14μm)のポリエチレンテレフタレート繊維である東レ(株)製“テトロン”(登録商標)、品番T9615を51mmにカットして用いた。このポリエステル繊維のLOI値は22、融点は256℃である。
 《耐炎化糸》
 1.7dtexのZoltek社製耐炎化繊維“PYRON”(登録商標)を51mmにカットしたものを用いた。“PYRON”(登録商標)の高温収縮率は1.6%であった。JIS K 7193(2010年)に準拠した方法で加熱したところ、800℃でも発火は認められず、発火温度は800℃以上である。
 [実施例1]
 (紡績)
 PPS繊維の延伸糸および耐炎化糸を開繊機によって混合し、次いで混打綿機によって更に混合し、次いで梳綿機に通じてスライバーとした。得られたスライバーの重量は、320ゲレン/6ヤード(1ゲレン=1/7000 ポンド)(20.74g/5.46m)であった。次いで練条機でトータルドラフトを8 倍に設定して延伸し、280ゲレン/6ヤード(18.14g/5.46m)のスライバーとした。次いで粗紡機で0.55T/2.54cm に加撚して7.9 倍に延伸し、230ゲレン/6ヤード(14.90g/5.46m)の粗糸を得た。次いで精紡機で16.4T/2.54cmに加撚してトータルドラフト32倍に延伸して加撚し、綿番手で40番の紡績糸を得た。紡績糸のPPS繊維の延伸糸と耐炎化糸の重量混率は、60対40であった。紡績糸の引張強度は2.2cN/dtex、引張伸度は20%であった。
 (編成)
 得られた紡績糸を、20G丸編み機を用いて、天竺編みで編成した。得られた編地のウェール数は29ウェール/インチ(2.54cm)、コース数は28コース/インチ(2.54cm)であり、ループ長は0.39cm/1ループであった。
 (精練・熱セット)
 界面活性剤を含む80℃の温水中で、20分間精練をおこなったのち、130℃のテンターで乾燥させ、さらに230℃のテンターで熱セットをおこなった。熱セット後の編物の糸密度は、31ウェール/インチ(2.54cm)、30コース/インチ(2.54cm)であった。また織物の厚さは0.312mmであった。分解糸の強伸度を測定したところ、引張強度は2.0cN/dtex、引張伸度は18%であった。
 (遮炎性評価)
 本編物の遮炎評価では30分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例2]
 実施例1に記載の紡績糸を用い、20ウェール/インチ(2.54cm)、20コース/インチ(2.54cm)で製織し、実施例1と同様の条件で精錬後、230℃の熱セットをおこなうことで、21ウェール/インチ(2.54cm)、20コース/インチ(2.54cm)での編物を得た。また、編物の厚さは0.290mmであった。分解糸の強伸度を測定したところ、引張強度は2.1cN/dtex、引張伸度は17%であった。
 本編物の遮炎評価では15分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例3]
 実施例1で、紡績糸のPPSと耐炎化糸の混率を80対20にした以外は同様の条件でおこなった。得られた紡績糸の引張強度は2.3cN/dtex、引張伸度は19%であった。精錬・熱セット後の編物の糸密度は、31ウェール/インチ(2.54cm)、30コース/インチ(2.54cm)であった。また編物の厚さは0.324mmであった。分解糸の強伸度を測定したところ、引張強度は2.0cN/dtex、引張伸度は16%であった。本編物の遮炎評価では15分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例4]
 実施例1で、紡績糸のPPSと耐炎化糸の混率を20対80にした以外は同様の条件でおこなった。得られた紡績糸の引張強度は2.2cN/dtex、引張伸度は15%であった。精錬・熱セット後の編物の糸密度は、31ウェール/インチ(2.54cm)、30コース/インチ(2.54cm)であった。また編物の厚さは0.310mmであった。分解糸の強伸度を測定したところ、引張強度は1.7cN/dtex、引張伸度は16%であった。本編物の遮炎評価では30分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例5]
 実施例1で、紡績糸にPPSと耐炎化糸以外にさらにポリエステル繊維の延伸糸を混紡し、混率を50対30対20にした以外は同様の条件でおこなった。得られた紡績糸の引張強度は2.3cN/dtex、引張伸度は20%であった。精錬・熱セット後の編物の糸密度は、31ウェール/インチ(2.54cm)、31コース/インチ(2.54cm)であった。また編物の厚さは0.321mmであった。分解糸の強伸度を測定したところ、引張強度は2.2cN/dtex、引張伸度は18%であった。本編物の遮炎評価では25分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [実施例6]
 実施例1で用いた紡績糸に、東レオペロンテックス(株)の繊度30デニール(33.3dtex)のスパンデックス糸“ライクラ”(登録商標)T-178Cをドラフト率3.5で挿入し、全体の重量混率がPPS55対耐炎化糸35対スパンデックス10である編地を得た。熱セット後の織物の糸密度は、34ウェール/インチ(2.54cm)、33コース/インチ(2.54cm)であった。また編物の厚さは0.412mmであった。分解糸の強伸度を測定したところ、引張強度は1.7cN/dtex、引張伸度は15%であった。本編物の遮炎評価では20分間、燃焼体に引火することが無く、十分な遮炎性を有していた。
 [比較例1]
 実施例3の紡績糸を用いて、20ウェール/インチ(2.54cm)、19コース/インチ(2.54cm)の編地を編成し、実施例1と同様の条件で精錬後、230℃で熱セットをおこなうことで、21ウェール/インチ(2.54cm)、20コース/インチ(2.54cm)の編物を得た。また、編物の厚さは0.287mmであった。分解糸の強伸度を測定したところ、引張強度は2.1cN/dtex、引張伸度は17%であった。本編物で遮炎評価をおこなったところ、耐炎化糸の面積比率が小さすぎ、接炎時にPPSが耐炎化糸間で被膜を形成することができずに炎が2分後に貫通し、燃焼体に引火した。
 [比較例2]
 実施例4の紡績糸を用いて、19ウェール/インチ(2.54cm)、18コース/インチ(2.54cm)の編地を編成し、実施例1と同様の条件で精錬後、230℃で熱セットをおこなうことで、18ウェール/インチ(2.54cm)、17コース/インチ(2.54cm)の編物を得た。また、編物の厚さは0.291mmであった。分解糸の強伸度を測定したところ、引張強度は1.8cN/dtex、引張伸度は17%であった。本編物で遮炎評価をおこなったところ、PPSの面積比率が小さすぎるため、耐炎化糸間に十分に被膜を形成することができず、接炎によって徐々に耐炎化糸が細くなり、接炎1分30秒後に燃焼体に引火した。
 [比較例3]
 実施例1で、紡績糸にPPSと耐炎化糸以外にさらにポリエステル繊維の延伸糸を混紡し、混率を10対10対80にした以外は同様の条件でおこなった。得られた紡績糸の引張強度は2.2cN/dtex、引張伸度は21%であった。精錬・熱セット後の編物の糸密度は、31ウェール/インチ(2.54cm)、31コース/インチ(2.54cm)であった。また編物の厚さは0.319mmであった。分解糸の強伸度を測定したところ、引張強度は2.1cN/dtex、引張伸度は18%であった。本編物で遮炎評価をおこなったところ、耐炎化糸の面積比率が小さすぎ、接炎時にPPSが耐炎化糸間で被膜を形成することができず、またポリエステル繊維に引火して接炎30秒後に燃焼体に引火した。
 下記の表1に実施例1~6および比較例1~3の非溶融繊維Aの面積率、前記非溶融繊維Aの発火温度よりも低い融点を有する熱可塑性繊維Bの面積率、その他繊維Cの面積率、編物の厚さおよび遮炎性評価結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 本発明は、火災の延焼防止に有効で、難燃性が要求される衣料材、壁材、床材、天井材、被覆材などに使用するのに好適であって、特に、耐火防護服や、自動車や航空機などのウレタンシート材の延焼防止被覆材およびベッドマットレスの延焼防止で使用するのに好適である。
 1 ミクロバーナ
 2 試験体
 3 スペーサー
 4 燃焼体
 21 1インチ(2.54cm)あたりのヨコ方向のループの数
 22 1インチ(2.54cm)あたりのタテ方向のループの数
 D 糸の直径
 23 ループ長

Claims (4)

  1. 高温収縮率が3%以下の非溶融繊維Aと、JIS K 7201-2(2007年)に準拠するLOI値が25以上でありかつ融点が非溶融繊維Aの発火温度よりも低い融点を有する熱可塑性繊維Bから成る編物であって、該編物を構成する糸の破断伸度が5%よりも大きく、かつ、編物の完全組織における投影面積において、前記非溶融繊維Aの面積率が10%以上かつ前記熱可塑性繊維Bの面積率が5%以上かつJIS L 1096-A法(2010年)に準拠する厚さが0.08mm以上である遮炎性編物。
  2. 前記非溶融繊維Aおよび前記熱可塑性繊維B以外の繊維Cを編物の完全組織における投影面積の面積率で20%以下含有する請求項1に記載の遮炎性編物。
  3. 前記非溶融繊維Aが、耐炎化繊維、メタアラミド系繊維、ガラス繊維およびこれらの混合物の群から選択される請求項1または2に記載の遮炎性編物。
  4. 前記熱可塑性繊維Bが、ポリフェニレンサルファイド、難燃性液晶ポリエステル、難燃性ポリ(アルキレンテレフタレート)、難燃性ポリ(アクリロニトリルブタジエンスチレン)、難燃性ポリスルホン、ポリ(エーテル-エーテル-ケトン)、ポリ(エーテル-ケトン-ケトン)、ポリエーテルスルホン、ポリアリレート、ポリフェニルスルホン、ポリエーテルイミド、ポリアミドイミドおよびこれらの混合物の群から選択される樹脂からなる繊維である請求項1~3の何れかに記載の遮炎性編物。
PCT/JP2017/035048 2016-10-05 2017-09-27 遮炎性編物 WO2018066439A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/338,759 US20190233988A1 (en) 2016-10-05 2017-09-27 Flame-resistant knitted fabric
CA3038996A CA3038996A1 (en) 2016-10-05 2017-09-27 Flame-resistant knitted fabric
JP2018516202A JP7036007B2 (ja) 2016-10-05 2017-09-27 遮炎性編物
EP17858277.1A EP3524721A4 (en) 2016-10-05 2017-09-27 FLAME-RESISTANT KNITWEAR
BR112019006562A BR112019006562A2 (pt) 2016-10-05 2017-09-27 tecido de malha resistente à chama
RU2019112284A RU2744425C2 (ru) 2016-10-05 2017-09-27 Огнестойкий вязаный материал
MX2019003777A MX2019003777A (es) 2016-10-05 2017-09-27 Tela de punto resistente al fuego.
KR1020197008319A KR20190056372A (ko) 2016-10-05 2017-09-27 차염성 편물
CN201780050895.1A CN109642365B (zh) 2016-10-05 2017-09-27 阻火性针织物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-197072 2016-10-05
JP2016197072 2016-10-05

Publications (2)

Publication Number Publication Date
WO2018066439A1 true WO2018066439A1 (ja) 2018-04-12
WO2018066439A9 WO2018066439A9 (ja) 2019-01-31

Family

ID=61830924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035048 WO2018066439A1 (ja) 2016-10-05 2017-09-27 遮炎性編物

Country Status (11)

Country Link
US (1) US20190233988A1 (ja)
EP (1) EP3524721A4 (ja)
JP (1) JP7036007B2 (ja)
KR (1) KR20190056372A (ja)
CN (1) CN109642365B (ja)
BR (1) BR112019006562A2 (ja)
CA (1) CA3038996A1 (ja)
MX (1) MX2019003777A (ja)
RU (1) RU2744425C2 (ja)
TW (1) TW201823540A (ja)
WO (1) WO2018066439A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188197A1 (ja) * 2018-03-29 2019-10-03 東レ株式会社 織編物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168416B2 (en) 2018-05-02 2021-11-09 Fabdesigns, Inc. System and method for knitting shoe uppers
US11828009B2 (en) 2018-05-16 2023-11-28 Fabdesigns, Inc. System and method of unspooling a material into a textile machine
US11186930B2 (en) 2018-05-17 2021-11-30 Fabdesigns, Inc. System and method for knitting shoe uppers
US11401638B2 (en) 2018-05-22 2022-08-02 Fabdesigns, Inc. Method of knitting a warp structure on a flat knitting machine
US20210337882A1 (en) * 2020-04-30 2021-11-04 Bryan Ishiguro Seamless male garment
CN111979627B (zh) * 2020-05-12 2021-07-20 江苏百护纺织科技有限公司 具有阻燃性的纱线、面料、服装和阻燃工作服

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192341A (ja) * 1998-12-24 2000-07-11 Toray Ind Inc 紡績糸およびそれを用いてなる布帛
JP2007023412A (ja) * 2005-07-15 2007-02-01 Toray Ind Inc プレス機用編織物およびクリーニング資材用編織物
JP2008522056A (ja) * 2004-11-30 2008-06-26 プロペックス ジオソリューションズ コーポレイション 難燃性繊維混紡、防火遮熱布、および関連する方法
WO2012102090A1 (ja) * 2011-01-27 2012-08-02 日本毛織株式会社 防護服用布帛及びこれに使用する紡績糸
JP2014240532A (ja) * 2013-06-11 2014-12-25 帝人株式会社 伸縮性難燃布帛および繊維製品

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272836A (ja) 1988-04-25 1989-10-31 Teijin Ltd 複合糸条
US4996099A (en) * 1989-10-27 1991-02-26 Springs Industries, Inc. Fire-resistant fabric
JP4114995B2 (ja) 1998-04-14 2008-07-09 帝国繊維株式会社 防炎性布帛
WO2000018993A1 (en) * 1998-09-28 2000-04-06 E.I. Du Pont De Nemours And Company Flame resistant fabrics
AU2002216620A1 (en) * 2000-11-28 2002-06-11 General Electric Company Methods for molding and processing blends with thermoplastic resins
JP2005334525A (ja) 2004-05-31 2005-12-08 Atom Kosan Kk スティック型塵埃除去具及び軽量物品の吸着移送具
US10072365B2 (en) * 2007-07-17 2018-09-11 Invista North America S.A.R.L. Knit fabrics and base layer garments made therefrom with improved thermal protective properties
GB2452568B (en) * 2007-09-10 2010-09-01 Gore W L & Ass Gmbh Fabric and fabric laminate
EP2412850B1 (en) * 2009-03-26 2018-04-18 Kuraray Co., Ltd. Amorphous polyetherimide fiber and heat-resistant fabric
CN102378835B (zh) * 2009-04-24 2013-12-18 日本毛织株式会社 防火性布料及使用了该布料的防火服
CN101575759A (zh) * 2009-06-16 2009-11-11 四川省纺织科学研究院 聚苯硫醚机织物及其生产工艺
JP2012057276A (ja) * 2010-09-10 2012-03-22 Ichimura Sangyo Co Ltd 織編用糸とこれを用いた織編物並びに無機繊維補強樹脂成形品とその製造方法
KR101929080B1 (ko) * 2011-09-02 2018-12-13 인비스타 텍스타일스 (유.케이.) 리미티드 부분 방향족 폴리아미드 섬유 및 다른 방염성 섬유를 포함하는 방염성 얀 및 패브릭
US10053801B2 (en) * 2014-01-28 2018-08-21 Inman Mills Sheath and core yarn for thermoplastic composite
CN105200603A (zh) * 2014-06-27 2015-12-30 中原工学院 一种芳族聚酰胺纤维雪尼尔纱线
CN104674405B (zh) * 2015-01-14 2018-01-05 上海特安纶纤维有限公司 含砜基的共混型芳族聚酰胺纤维混合物及其制品
JP5972420B1 (ja) * 2015-03-18 2016-08-17 日本毛織株式会社 多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192341A (ja) * 1998-12-24 2000-07-11 Toray Ind Inc 紡績糸およびそれを用いてなる布帛
JP2008522056A (ja) * 2004-11-30 2008-06-26 プロペックス ジオソリューションズ コーポレイション 難燃性繊維混紡、防火遮熱布、および関連する方法
JP2007023412A (ja) * 2005-07-15 2007-02-01 Toray Ind Inc プレス機用編織物およびクリーニング資材用編織物
WO2012102090A1 (ja) * 2011-01-27 2012-08-02 日本毛織株式会社 防護服用布帛及びこれに使用する紡績糸
JP2014240532A (ja) * 2013-06-11 2014-12-25 帝人株式会社 伸縮性難燃布帛および繊維製品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3524721A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188197A1 (ja) * 2018-03-29 2019-10-03 東レ株式会社 織編物

Also Published As

Publication number Publication date
MX2019003777A (es) 2019-07-01
CN109642365A (zh) 2019-04-16
EP3524721A1 (en) 2019-08-14
KR20190056372A (ko) 2019-05-24
BR112019006562A2 (pt) 2019-07-02
WO2018066439A9 (ja) 2019-01-31
CN109642365B (zh) 2021-04-23
TW201823540A (zh) 2018-07-01
RU2019112284A (ru) 2020-11-06
EP3524721A4 (en) 2020-06-03
CA3038996A1 (en) 2018-04-12
US20190233988A1 (en) 2019-08-01
JPWO2018066439A1 (ja) 2019-08-22
RU2744425C2 (ru) 2021-03-09
RU2019112284A3 (ja) 2021-01-25
JP7036007B2 (ja) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2018066439A1 (ja) 遮炎性編物
WO2018066438A1 (ja) 遮炎性織物
JPWO2017006807A1 (ja) 遮炎性不織布
US11618240B2 (en) Nonwoven fabric sheet
TWI530597B (zh) A flame retardant fiber aggregate and a method for manufacturing the same, and a fiber product
KR101280553B1 (ko) 레이온 단섬유와 탄소섬유를 포함하는 준 불연 방적사 및 이를 사용한 원단
WO2019188197A1 (ja) 織編物
KR100821901B1 (ko) 중공 폴리에스테르 가연사 및 그의 제조방법
JP2007291570A (ja) 難燃性合成繊維、難燃繊維複合体およびそれを用いた炎遮断性バリア用不織布
JP2019173226A (ja) 織編物
JP2014001467A (ja) 難燃ポリエステル繊維の製造方法
US20210010175A1 (en) Nonwoven fabric
BR112014013510B1 (pt) Fio útil em proteção contra fogo, tecidos planos, vestimentas de proteção e método de produção de um fio fiado resistente ao fogo
WO2010010639A1 (ja) 難燃性合成繊維とその製造方法、難燃繊維複合体及び繊維製品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516202

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008319

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3038996

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019006562

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017858277

Country of ref document: EP

Effective date: 20190506

ENP Entry into the national phase

Ref document number: 112019006562

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190401