WO2018066066A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2018066066A1
WO2018066066A1 PCT/JP2016/079499 JP2016079499W WO2018066066A1 WO 2018066066 A1 WO2018066066 A1 WO 2018066066A1 JP 2016079499 W JP2016079499 W JP 2016079499W WO 2018066066 A1 WO2018066066 A1 WO 2018066066A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
vortex generator
cycle apparatus
refrigeration cycle
blower
Prior art date
Application number
PCT/JP2016/079499
Other languages
English (en)
French (fr)
Inventor
佑太 小宮
石橋 晃
真哉 東井上
伊東 大輔
前田 剛志
中村 伸
良太 赤岩
暁 八柳
英治 飛原
超鋲 党
霽陽 李
Original Assignee
三菱電機株式会社
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 国立大学法人 東京大学 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/079499 priority Critical patent/WO2018066066A1/ja
Priority to JP2018543512A priority patent/JPWO2018066066A1/ja
Priority to EP16918265.6A priority patent/EP3524915B1/en
Publication of WO2018066066A1 publication Critical patent/WO2018066066A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/02Safety or protection arrangements; Arrangements for preventing malfunction in the form of screens or covers

Definitions

  • the present invention relates to a refrigeration cycle apparatus including a finless heat exchanger that does not use fins as a configuration.
  • Patent Document 1 discloses that “a plurality of flat heat exchange tube portions are oriented in the vertical direction and arranged in parallel in the left-right direction, and between the heat exchange tube portions, the corrugation is directed in the vertical direction.
  • a pair of corrugated fins bent in a shape are arranged so as to overlap each other, and between the corrugated fins, a drainage corrugated plate bent in a corrugated shape in the front-rear direction is disposed in an intervening state.
  • a multi-flow heat exchanger is disclosed.
  • Patent Document 2 discloses a finless heat exchanger having a plurality of heat exchange tubes for exchanging heat between the first fluid flowing inside and the second fluid flowing along the outer peripheral surface, and each heat exchange tube Are formed in a flat shape whose cross-sectional shape extends in the flow direction of the second fluid, and are arranged at intervals in a direction orthogonal to the flow direction of the second fluid, and are adjacent to each heat exchange tube The gap between the two is formed larger on the upstream side than the downstream side in the flow direction of the second fluid.
  • a finless heat exchanger is disclosed.
  • finless heat exchangers including those described in Patent Document 2 have the following problems because they do not use fins as a configuration.
  • the first is that since no fins are installed, it is difficult to secure a heat exchange area and the heat exchange performance deteriorates.
  • the finless heat exchanger as described in Patent Document 2 in order to produce a characteristic heat transfer tube (heat exchange tube), the cost and labor required for manufacturing increase.
  • the present invention has been made against the background of the above problems, and provides a refrigeration cycle apparatus including a finless heat exchanger that improves heat exchange performance without increasing the size of the heat exchanger. With the goal.
  • the refrigeration cycle apparatus is a finless heat exchanger, and includes a first heat exchanger having a plurality of heat transfer tubes extending in the direction of gravity, and a blower that supplies air to the first heat exchanger. And a vortex generator that is installed on the upstream side of the first heat exchanger and that uses the air supplied to the first heat exchanger by the blower as a vortex.
  • the vortex generator since the vortex generator is installed on the upstream side of the first heat exchanger, the air flowing into the first heat exchanger can be vortexed, and the first heat exchanger This will improve the heat exchange performance.
  • FIG. 5A It is explanatory drawing of the blade
  • FIG. 3 It is a perspective view which shows another structural example of the 1st heat exchanger and vortex generator with which the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention is provided. It is a disassembled perspective view which shows the further further structural example of the 1st heat exchanger with which the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention is equipped, and a vortex generator. It is a side view which shows another structural example of the 1st heat exchanger and vortex generator with which the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention is provided. It is a side view which shows the structural example of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention.
  • FIG. 1 It is the figure which added the velocity distribution of the airflow which flows in into a vortex generator in the refrigeration cycle apparatus shown in FIG. It is a side view which shows another structural example of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention. It is a top view which shows another structural example of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention. It is a side view which shows another structural example of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention shown in FIG. It is a top view which shows another structural example of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention. It is a side view which shows another structure of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention shown in FIG.
  • FIG. 1 is a circuit configuration diagram schematically showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100) according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 will be described based on FIG.
  • an air conditioner will be described as an example of the refrigeration cycle apparatus 100.
  • coolant at the time of heating operation is shown by a broken line arrow
  • cooling operation is shown by the solid line arrow
  • the flow of the air in the 1st heat exchanger 30 is shown by the white arrow. .
  • the refrigeration cycle apparatus 100 includes a compressor 10, a flow path switching device 20, a first heat exchanger 30, a throttling device 40, a second heat exchanger 50, a first blower 31, and a second blower 51. And a vortex generator 60. And the compressor 10, the 1st heat exchanger 30, the expansion apparatus 40, and the 2nd heat exchanger 50 are connected by the refrigerant
  • the compressor 10 compresses and discharges the refrigerant circulating in the refrigerant circuit.
  • the refrigerant compressed by the compressor 10 is discharged and sent to the first heat exchanger 30.
  • the compressor 10 can be composed of, for example, a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor, or the like.
  • the first heat exchanger 30 functions as an evaporator during heating operation and functions as a condenser during cooling operation.
  • the first heat exchanger 30 exchanges heat between the low-temperature and low-pressure refrigerant that has flowed out of the expansion device 40 and the air supplied by the first blower 31, and the low-temperature and low-pressure
  • the liquid refrigerant or two-phase refrigerant evaporates.
  • the first heat exchanger 30 functions as a condenser
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 and the air supplied by the first blower 31 exchange heat in the first heat exchanger 30. High-temperature and high-pressure gas refrigerant condenses.
  • the 1st heat exchanger 30 is provided with the heat exchanger tube (circular tube or flat tube) in which the refrigerant channel through which a refrigerant flows was formed.
  • the 1st heat exchanger 30 is not provided with the fin connected so as to be orthogonal to a heat exchanger tube. That is, the first heat exchanger 30 is a so-called finless heat exchanger. The configuration of the first heat exchanger 30 will be described in detail later.
  • the expansion device 40 expands and decompresses the refrigerant that has flowed out of the first heat exchanger 30 or the second heat exchanger 50.
  • the expansion device 40 may be constituted by an electric expansion valve that can adjust the flow rate of the refrigerant, for example.
  • an electric expansion valve that can adjust the flow rate of the refrigerant, for example.
  • the expansion device 40 not only an electric expansion valve but also a mechanical expansion valve employing a diaphragm for a pressure receiving portion, a capillary tube, or the like can be applied.
  • the second heat exchanger 50 functions as a condenser during heating operation, and functions as an evaporator during cooling operation.
  • the second heat exchanger 50 functions as a condenser
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 and the air supplied from the second blower 51 exchange heat, and the high-temperature and high-pressure The gas refrigerant condenses.
  • the second heat exchanger 50 functions as an evaporator, the second heat exchanger 50 exchanges heat between the low-temperature and low-pressure refrigerant flowing out of the expansion device 40 and the air supplied by the second blower 51, The low-temperature and low-pressure liquid refrigerant or two-phase refrigerant evaporates.
  • the second heat exchanger 50 may be constituted by a finless heat exchanger similarly to the first heat exchanger 30, or may be constituted by other types, for example, a fin-and-tube heat exchanger or the like. . What is necessary is just to determine the kind of 2nd heat exchanger 50 with the object which heat-exchanges.
  • the flow path switching device 20 is provided on the discharge side of the compressor 10 and switches the flow of the refrigerant between the heating operation and the cooling operation. That is, the flow path switching device 20 is switched so as to connect the compressor 10 and the first heat exchanger 30 during the cooling operation, and is connected so as to connect the compressor 10 and the second heat exchanger 50 during the heating operation. Can be switched.
  • the flow path switching device 20 may be constituted by a four-way valve, for example. However, a combination of a two-way valve or a three-way valve may be adopted as the flow path switching device 20.
  • the first blower 31 is attached to the first heat exchanger 30 and supplies air to the first heat exchanger 30.
  • the first blower 31 is rotated by the first blower motor 32 to supply air to the first heat exchanger 30.
  • the first blower 31 can use various types of fans such as a propeller fan, a cross flow fan, a sirocco fan, and a turbo fan.
  • the first blower 31 When the first blower 31 is configured with a propeller fan or a cross flow fan, the first blower 31 may be installed on the downstream side of the first heat exchanger 30. On the other hand, when the first blower 31 is configured by a sirocco fan or a turbofan, the first blower 31 may be installed on the upstream side of the first heat exchanger 30.
  • the first blower 31 corresponds to the “blower” of the present invention. The arrangement position of the first blower 31 will be specifically described in the fourth embodiment.
  • the second blower 51 is attached to the second heat exchanger 50 and supplies air to the second heat exchanger 50.
  • the second blower 51 supplies air to the second heat exchanger 50 by being rotated by the second blower motor 52.
  • the second blower 51 can use various types of fans such as a propeller fan, a cross flow fan, a sirocco fan, and a turbo fan, for example.
  • the 2nd heat exchanger 50 When the 2nd heat exchanger 50 is comprised with a finless heat exchanger similarly to the 1st heat exchanger 30, Comprising: When the 2nd air blower 51 is comprised with a propeller fan or a cross flow fan, the 2nd air blower 51 is made into It is good to install in the downstream of the 2nd heat exchanger 50. On the other hand, when the 2nd heat exchanger 50 is comprised with a finless heat exchanger similarly to the 1st heat exchanger 30, Comprising: When the 2nd air blower 51 is comprised with a sirocco fan or a turbo fan, the 2nd air blower 51 May be installed upstream of the second heat exchanger 50.
  • the vortex generator 60 is provided on the upstream side of the air flow of the first heat exchanger 30 and changes the air flow from laminar flow to vortex flow (turbulent flow).
  • the configuration of the vortex generator 60 will be described in detail later with the first heat exchanger 30.
  • a high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 10.
  • the refrigerant flows according to solid arrows.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the first heat exchanger 30 functioning as a condenser via the flow path switching device 20.
  • the first heat exchanger 30 heat exchange is performed between the flowing high-temperature and high-pressure gas refrigerant and the air supplied by the first blower 31, and the high-temperature and high-pressure gas refrigerant is condensed to a high-pressure liquid.
  • the high-pressure liquid refrigerant sent out from the first heat exchanger 30 becomes a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant by the expansion device 40.
  • the two-phase refrigerant flows into the second heat exchanger 50 that functions as an evaporator.
  • heat exchange is performed between the refrigerant flowing in the two-phase state and the air supplied by the second blower 51, and the liquid refrigerant of the two-phase refrigerant evaporates.
  • the low-pressure gas refrigerant sent out from the second heat exchanger 50 flows into the compressor 10 via the flow path switching device 20, is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 10 again. Thereafter, this cycle is repeated.
  • a high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 10.
  • the refrigerant flows according to the broken line arrows.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the second heat exchanger 50 functioning as a condenser via the flow path switching device 20.
  • the second heat exchanger 50 heat exchange is performed between the flowing high-temperature and high-pressure gas refrigerant and the air supplied by the second blower 51, and the high-temperature and high-pressure gas refrigerant is condensed to a high-pressure liquid.
  • the high-pressure liquid refrigerant sent out from the second heat exchanger 50 is converted into a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant by the expansion device 40.
  • the two-phase refrigerant flows into the first heat exchanger 30 that functions as an evaporator.
  • heat exchange is performed between the refrigerant
  • the low-pressure gas refrigerant sent out from the first heat exchanger 30 flows into the compressor 10 via the flow path switching device 20, is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 10 again. Thereafter, this cycle is repeated.
  • FIG. 2 is a perspective view illustrating a configuration example of the first heat exchanger 30 and the vortex generator 60 included in the refrigeration cycle apparatus 100.
  • FIG. 3 is a side view showing a configuration example of the first heat exchanger 30 and the vortex generator 60 included in the refrigeration cycle apparatus 100.
  • FIG. 4 is a channel cross-sectional view illustrating a configuration example of a channel of the flat tube 33 of the first heat exchanger 30 provided in the refrigeration cycle apparatus 100. The first heat exchanger 30 and the vortex generator 60 included in the refrigeration cycle apparatus 100 will be described in detail with reference to FIGS.
  • FIG. 2 the air flow is indicated by a white arrow
  • FIG. 3 the air flow is indicated by a solid arrow.
  • FIG. 3 schematically shows that a vortex is generated on the downstream side of the vortex generator 60.
  • An arrow X in FIG. 2 indicates a direction in which the flat tubes 33 are arranged.
  • the direction in which the flat tubes 33 are arranged is referred to as the X direction.
  • the arrow Y in FIGS. 2 and 3 indicates the air flow direction.
  • the air flow direction is referred to as a Y direction.
  • the arrow Z in FIGS. 2 and 3 indicates the longitudinal direction of the flat tube 33.
  • the longitudinal direction of the flat tube 33 is referred to as the Z direction.
  • the X direction, the Y direction, and the Z direction are used in the following drawings to indicate similar directions.
  • the first heat exchanger 30 includes a first header 34 formed with a fluid flow path through which a fluid (for example, a refrigerant) flows, a second header 35 formed with a fluid flow path through which the fluid flows, and a fluid flow path therein. And a plurality of flat tubes 33 formed with. That is, the 1st heat exchanger 30 is not provided with the fin as a structure.
  • a fluid for example, a refrigerant
  • first header 34 and the second header 35 are paired via a flat tube 33. That is, as shown in FIGS. 2 and 3, the flat tube 33 has one end (Z direction lower side) of both ends connected to the first header 34, and the other end (Z direction upper side) of both ends is the second header 35. It is connected to the.
  • the first header 34 is a long member extending in the X direction, and a fluid flow path through which a fluid flows is formed. One end of a flat tube 33 is connected to the first header 34.
  • the first header 34 is used as an inflow side header into which a fluid supplied from the compressor 10 or the expansion device 40 or the like flows.
  • the first header 34 is arranged to be parallel to the horizontal direction. Note that the first header 34 may be used as the outflow side header.
  • the second header 35 is used as an inflow side header.
  • the second header 35 is a long member extending in the X direction, and a fluid flow path through which a fluid flows is formed.
  • the other end of the flat tube 33 is connected to the second header 35.
  • the second header 35 is supplied with the fluid that has flowed through the first header 34 and the flat tube 33, and is used as an outflow header, for example.
  • the second header 35 is arranged in parallel with the horizontal direction.
  • the second header 35 may be used as an inflow side header.
  • the first header 34 is used as the outflow side header.
  • a plurality of flat tubes 33 are arranged so that fluids flow in the Z direction in parallel, and air supplied from the first blower 31 passes between adjacent flat tubes 33.
  • each of the flat tubes 33 extends along the direction of gravity and is arranged in parallel. That is, the 1st heat exchanger 30 is installed in the unit mounted so that each longitudinal direction of the flat tube 33 may become parallel to a gravitational direction.
  • the flat tube 33 is a flat heat transfer tube having a lateral width A2 larger than a longitudinal width A1.
  • the flat tube 33 is formed with a plurality of fluid flow paths 33a through which a fluid flows, for example, as shown in FIG.
  • the vertical width A1 is referred to as the short-axis direction of the cross section
  • the horizontal width A2 is referred to as the long-axis direction of the cross section.
  • the number of the flat tubes 33 and the length in the longitudinal direction are not particularly limited, and may be determined in accordance with the use, output, and the like of the refrigeration cycle apparatus 100 in which the first heat exchanger 30 is mounted.
  • the flat tube 33 is made of, for example, aluminum or aluminum alloy.
  • the first heat exchanger 30 may be configured using a circular tube (a heat transfer tube having a circular cross section). Also in this case, the circular pipe is arranged so that the fluid flows in the Z direction.
  • the vortex generator 60 passes the air supplied from the first blower 31 and changes the laminar air flow before passing into a vortex flow (turbulent flow) after passing through. That is, as shown in FIG. 3, a vortex is generated in the air flow after passing through the vortex generator 60.
  • the vortex generator 60 is made of resin or metal.
  • the flow of air in the first heat exchanger 30 will be described.
  • the air is supplied to the first heat exchanger 30 as the first blower 31 rotates. This air passes through the vortex generator 60 before flowing into the first heat exchanger 30.
  • the vortex generator 60 In the vortex generator 60, the laminar air flow is disturbed, and the laminar air flow is changed to a vortex flow. Since the vortex air flow has a high heat transport and diffusion effect, the heat transfer performance in the first heat exchanger 30 can be improved compared to the laminar flow. That is, heat exchange in the first heat exchanger 30 can be promoted by the vortex effect.
  • the first heat exchanger 30 and the vortex generator 60 may be unitized and installed in, for example, a heat source side unit (outdoor unit) of the refrigeration cycle apparatus 100, or may be installed separately as separate units. You may make it do.
  • FIG. 5A is a front view showing a configuration example of the vortex generator 60 included in the refrigeration cycle apparatus 100.
  • FIG. 5B is an explanatory diagram of the blade structure 600 of the vortex generator 60 shown in FIG. 5A.
  • FIG. 5C is an explanatory diagram of the blade body 602 of the blade structure 600 of the vortex generator 60 shown in FIG. 5B.
  • the vortex generator 60 is disposed, for example, on the upstream side of the air flow of the first heat exchanger 30 and at a position facing the first heat exchanger 30. As shown in FIG. 5A, the vortex generator 60 is provided so as to intersect the plurality of blade bodies 602, the first support body 601 to which the blade bodies 602 are fixed, and the first support body 601. 2 support body 603.
  • the first support 601 is provided in parallel with the Z direction.
  • the 1st support body 601 is arrange
  • the first support 601 is a plate-like member.
  • a plurality of blade bodies 602 are fixed to the first support body 601 so as to be aligned in the Z direction. For example, ten blade bodies 602 are fixed to the first support body 601 shown on the rightmost side of the sheet of FIG. 5A so as to be aligned in the Z direction.
  • the vortex generator 60 may have a mode in which one blade body 602 is fixed to one first support body 601.
  • one first support 601 parallel to the Z direction is divided into ten parts.
  • the number of divisions is not limited to 10, and can be set as appropriate.
  • five blades 602 may be fixed to one first support 601 as two divisions.
  • the vortex generator 60 includes two second supports 603.
  • the second support 603 is provided in parallel with the X direction.
  • One second support 603 is fixed to the upper end of the first support 601.
  • the other second support 603 is fixed to the lower end of the first support 601.
  • the second support 603 is a plate-like member.
  • the second support 603 has a function of supporting the plurality of first supports 601 and maintaining the shape of the vortex generator 60.
  • positioned in the position facing the vortex generator 60 is comprised linearly.
  • the plurality of flat tubes 33 are arranged so as to be arranged in a predetermined arrangement direction.
  • the arrangement direction is a direction parallel to the X direction.
  • a plurality of blade bodies 602 are arranged so as to line up in the axial direction of the flat tubes 33, and a plurality of blade bodies 602 are arranged so as to line up in the arrangement direction of the flat tubes 33.
  • the axial direction is a direction parallel to the Z direction.
  • FIG. 5B shows a perspective view of the blade structure 600, (b) shows a top view of the blade structure 600, and (c) seen from the second support portion 601B side of the blade structure 600. A side view is shown, (d) has shown the front view of the blade
  • FIG. 5C shows a top view of the blade body 602, and (b) shows a side view of the blade body 602 viewed from the second support portion 601B side.
  • an opening CL (second gap) through which air flows is formed between the first support body 601 and the plurality of blade bodies 602.
  • the blade body 602 includes one end P1 disposed on one side in the air flow direction and the other end P2 disposed on the other side in the air flow direction, and the air flow direction from the one end P1 to the other end P2.
  • the surface along is formed.
  • the surface along the air flow direction corresponds to a first surface S1 and a second surface S2 to be described later. Note that the air flow direction does not necessarily coincide with the Y direction.
  • the vortex generator 60 includes a plurality of blade structures 600.
  • the blade structure 600 includes a first support portion 601A and a second support portion 601B, and a first blade 602A and a second blade 602B.
  • the first support part 601A and the second support part 601B are included in the first support body 601.
  • the first support portion 601 ⁇ / b> A and the second support portion 601 ⁇ / b> B are a unit of components of the first support body 601.
  • a plurality of first support portions 601A and second support portions 601B constitute a first support body 601.
  • the second support portion 601B is provided with a predetermined first interval between the first support portion 601A.
  • the second support portion 601B is opposed to the first support portion 601A.
  • the blade body 602 includes a first blade 602A formed of a plate-shaped member and a second blade 602B formed of a plate-shaped member and paired with the first blade 602A.
  • the first blade 602A is disposed between the first support portion 601A and the second support portion 601B.
  • the second blade 602B is disposed between the first support portion 601A and the second support portion 601B.
  • the second blade 602B is a blade that makes a pair with the first blade 602A.
  • the first blade 602A includes a first end E1 corresponding to the one end P1, a second end E2 corresponding to the other end P2, a third end E3 connected to the first support 601A, an air 1st surface S1 corresponding to the surface along a distribution direction, and 1st opposite surface S10 formed in the other side of 1st surface S1 are included.
  • the second blade 602B includes a fourth end E4 corresponding to the one end P1, a fifth end E5 corresponding to the other end P2, and a sixth end E6 connected to the second support 601B.
  • the second surface S2 corresponding to the surface along the air flow direction, and the second opposite surface S20 formed on the opposite side of the second surface S2.
  • the direction from the first end E1 to the second end E2 of the first surface S1 is the first direction Dr1
  • the direction from the fourth end E4 to the fifth end E5 of the second surface S2 is the first direction Dr1.
  • Two directions Dr2. At this time, the first surface S1 and the second surface S2 are formed so that the first direction Dr1 and the second direction Dr2 intersect.
  • FIG. 5B (c) and FIG. 5C (b) when the blade body 602 is viewed from the side, the blade body 602 is disposed so that the first blade 602A and the second blade 602B intersect. ing.
  • the first direction Dr1 and the second direction Dr2 correspond to the air flow direction of the blade body 602 described above.
  • the first blade 602A has a triangular shape. That is, the first surface S1 has a triangular shape that tapers from the first end E1 to the second end E2.
  • the second blade 602B is also triangular.
  • the second surface S2 has a triangular shape that tapers from the fifth end E5 to the fourth end E4. That is, the tapering direction is opposite between the first blade 602A and the second blade 602B.
  • FIG. 5D is an explanatory view illustrating an example of the dimensions of the first heat exchanger 30 and the dimensions of the flat tube 33 included in the refrigeration cycle apparatus 100.
  • 5D shows a front view of the first heat exchanger 30, and (b) shows a cross-sectional view of the flat tube 33.
  • FIG. 5D is an example to the last, and is not limited to the illustrated dimension.
  • the length from the first header 34 to the second header 35 is 200 (mm).
  • the width of the flat tube 33 in the short axis direction of the cross section is 0.6 (mm).
  • the width of the flat tube 33 in the longitudinal direction of the cross section is 17.8 (mm).
  • the length of the first header 34 in the longitudinal direction and the length of the second header 35 in the longitudinal direction are 200 (mm).
  • the pitch DP of the flat tube 33 is 2.5 (mm).
  • the pitch DP is a length from one surface of an arbitrary flat tube 33 to one surface of the flat tube 33 adjacent to the arbitrary flat tube 33.
  • FIG. 5E is an explanatory diagram for explaining the dimensions of the vortex generator 60 included in the refrigeration cycle apparatus 100 and the blade structure 600.
  • 5E shows a front view of the vortex generator 60
  • (b) shows a top view of the blade structure 600
  • (c) shows the blade structure 600 viewed from the second support portion 601B side. Shows a side view.
  • the dimension shown by FIG. 5E is an example to the last, and is not limited to the illustrated dimension.
  • the width of the vortex generator 60 in the Z direction is 200 (mm).
  • the width of the vortex generator 60 in the X direction is 200 (mm).
  • the dimension in the Y direction of the first support portion 601A is 5 (mm).
  • the width (thickness) in the X direction of the first support portion 601A is 0.6 (mm).
  • the dimension in the Y direction of the third end E3 of the first blade 602A is 3.5 (mm).
  • the width of the first end E1 of the first blade 602A is 1.8 (mm).
  • the dimension in the Y direction of the second support portion 601B is 5 (mm).
  • the width (thickness) in the X direction of the second support portion 601B is 0.6 (mm).
  • the dimension in the Y direction of the sixth end E6 of the second blade 602B is 3.5 (mm).
  • the width of the fourth end E4 of the second blade 602B is 1.8 (mm).
  • interval between 1st support part 601A and 2nd support part 601B is 1.9 (mm).
  • the vertex angle of the triangle of the first surface S1 of the first blade 602A is 27 degrees.
  • the vertex angle of the triangle of the second surface S2 of the second blade 602B is also 27 degrees.
  • the angle ⁇ 1 formed by the first surface S1 with respect to the Y direction is 135 degrees.
  • the angle ⁇ 2 formed by the second surface S2 with respect to the Y direction is 45 degrees. Therefore, the first surface S1 and the second surface S2 intersect so as to be orthogonal.
  • the first heat exchanger 30 includes a first flat tube 33A and a second flat tube 33B as a pair of adjacent flat tubes 33.
  • the second flat tube 33B is linear.
  • the second flat tube 33B is provided with a predetermined second interval between the second flat tube 33B and the first flat tube 33A.
  • the second flat tube 33B is provided in parallel with the first flat tube 33A.
  • the second flat tube 33B is provided to face the first flat tube 33A.
  • the blade body 602 of the vortex generator 60 is disposed so as to be accommodated between the first flat tube 33A and the second flat tube 33B.
  • the vortex flows evenly between the flat tubes 33, and the heat exchange performance can be improved. Therefore, pressure loss in the vortex generator 60 and the first heat exchanger 30 can be suppressed.
  • the first interval between the first support portion 601A and the second support portion 601B and the interval between the adjacent flat tubes 33 are both 1.9 (
  • the thickness of the first support portion 601A, the thickness of the second support portion 601B, and the width of the flat tube 33 in the cross-sectional minor axis direction are both equal to 0.6 (mm). Accordingly, the condition is that the first flat tube 33A is disposed on the extension in the Y direction of the first support portion 601A, and the second flat tube 33B is disposed on the extension in the Y direction of the second support portion 601B. If it is satisfied, the blade body 602 fits between the first flat tube 33A and the second flat tube 33B.
  • first flat tube 33A and the second flat tube 33B are disposed so as to be accommodated, in the first embodiment, a plurality of blade bodies arranged in the axial direction of the first flat tube 33A.
  • 602 is a blade group WG
  • a single blade group WG is disposed between the first flat tube 33A and the second flat tube 33B.
  • the single blade body group WG is not limited to a mode in which it is disposed between the first flat tube 33A and the second flat tube 33B.
  • a plurality of blade groups WG are arranged between the first flat tube 33A and the second flat tube 33B so as to be arranged in a direction from the first flat tube 33A toward the second flat tube 33B.
  • the blade group WG may be arranged in n rows between the first flat tube 33A and the second flat tube 33B.
  • n is a natural number.
  • the first flat tube 33A and the second flat tube 33B are arranged in front of the first support 601 of each blade body 602 at both ends in the X direction.
  • the first flat tube 33A is located in front of the Y direction.
  • the second flat tube 33B is located in front of the Y direction.
  • FIG. 5F is an explanatory diagram of Modification 1 of the vortex generator 60 included in the refrigeration cycle apparatus 100.
  • (a) shows the arrangement of the plurality of blade bodies 602 of the vortex generator 60 described so far
  • (b) shows the first modification of the vortex generator 60, and the blades described so far
  • An arrangement example of a body 602 (first blade body) and a blade body (second blade body 602SY) having a different shape from the blade body 602 is shown.
  • the first modification includes two types of blades. That is, the vortex generator 60 includes a blade body 602 (hereinafter, the blade body 602 is also referred to as a first blade body) and a second blade body 602SY having a symmetrical shape with the first blade body.
  • the second blade body 602SY passes through an intermediate position between the first support portion 601A and the second support portion 601B and is based on an imaginary plane parallel to the first support portion 601A.
  • the first blade 602A and the second blade 602B are symmetrically moved.
  • the first blade body and the second blade body 602SY are arranged in a staggered manner. Accordingly, it is possible to more efficiently generate turbulence in the laminar air flow and change the laminar air flow into a vortex.
  • FIG. 5G is an explanatory diagram of a second modification of the vortex generator 60 included in the refrigeration cycle apparatus 100.
  • the number of blades included in one blade body is one.
  • FIG. 5G shows a perspective view of a blade structure 600 according to Modification 2
  • (b) shows a top view of the blade structure 600 according to Modification 2
  • (c) shows in Modification 2.
  • wing structure 600 which concerns is shown,
  • (d) has shown the front view of the blade
  • FIG. 5G shows a perspective view of a blade structure 600 according to Modification 2
  • FIG. 5G shows a perspective view of a blade structure 600 according to Modification 2
  • (b) shows a top view of the blade structure 600 according to Modification 2
  • (c) shows in Modification 2.
  • wing structure 600 which concerns is shown,
  • (d) has shown the front view of the blade
  • one blade body 702 includes one blade made of a plate-like member. Specifically, the blade body 702 does not include a blade corresponding to the second blade 602B of the blade body 602. Since the blades of the blade body 702 have the same configuration as the first blade 602A, description thereof is omitted. Since the blades of the blade body 702 have the same configuration as the first blades 602A, for convenience of explanation, the blades of the blade body 702 are also indicated as first blades 602A in the drawings.
  • the blades of the blade body 702 are connected to the first end E1 corresponding to the one end P1, the second end E2 corresponding to the other end P2, and the first support 601A.
  • FIG. 5H is an explanatory diagram of Modification 3 of the vortex generator 60 included in the refrigeration cycle apparatus 100.
  • the shape of the blade included in the blade body is not a triangle but a quadrangle.
  • FIG. 5H shows a perspective view of a blade structure 600 according to Modification 3
  • (b) shows a top view of the blade structure 600 according to Modification 3
  • (c) shows in Modification 3.
  • wing structure 600 which concerns is shown,
  • (d) has shown the front view of the blade
  • FIG. 5H shows a perspective view of a blade structure 600 according to Modification 3
  • FIG. 5H shows a perspective view of a blade structure 600 according to Modification 3
  • (b) shows a top view of the blade structure 600 according to Modification 3
  • (c) shows in Modification 3.
  • wing structure 600 which concerns is shown,
  • (d) has shown the front view of the blade
  • the blade body 802 of Modification 3 includes a square-shaped first blade 802A and a square-shaped second blade 802B.
  • the first blade 802A and the second blade 802B are different from each other in a square shape, and the other configurations are the same as those of the first blade 602A and the second blade 602B, and thus the description thereof is omitted.
  • Modification 3 can also be combined with Modification 2. That is, the shape of the first blade 602A of the blade body 702 may be a square shape.
  • a refrigerant circuit is formed by the compressor 10, the first heat exchanger 30, the expansion device 40, and the second heat exchanger 50, and the first heat exchanger 30 Since the vortex generator 60 is installed on the upstream side, the heat exchange performance of the first heat exchanger 30 that is a finless heat exchanger can be improved. In addition, since the first heat exchanger 30 is not provided with fins, the heat exchange performance is improved by the amount of contact heat resistance between the heat transfer tubes and the fins and the resistance due to heat conduction of the fins themselves. .
  • the dew condensation water flows down along the flat tubes 33 arranged in parallel to the direction of gravity. Therefore, in the refrigeration cycle apparatus 100, drainage is improved. Since the drainage is improved, for example, even when the refrigeration cycle apparatus 100 is performing the defrosting operation, it is possible to prevent the ice from being stacked on the lower portion of the first heat exchanger 30.
  • the refrigeration cycle apparatus 100 examples include a water heater, a refrigerator, an air-conditioning hot water supply complex machine, etc., and in any case, the heat exchange performance in the first heat exchanger 30 can be improved.
  • coolant used for the refrigerating-cycle apparatus 100 is not specifically limited, R410A, R32, refrigerant
  • coolant was shown as a fluid exchanged with the 2nd heat exchanger 50, it is not limited to this. In other words, the fluid to be heat exchanged in the second heat exchanger 50 varies depending on the form of the second heat exchanger 50.
  • the refrigeration cycle apparatus 100 can be used for any refrigerating machine oil, such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorine oil, regardless of whether or not the oil dissolves in the refrigerant. .
  • the refrigerating cycle apparatus 100 demonstrated the structure which can provide the flow-path switching apparatus 20 and can switch the flow of a refrigerant
  • the refrigeration cycle apparatus 100 may be configured as a dedicated heating machine that functions only.
  • the 1st heat exchanger 30 but the 2nd heat exchanger 50 may be comprised with a finless heat exchanger, and you may make it install the vortex generator 60 in the upstream of the 2nd heat exchanger 50.
  • FIG. FIG. 6 is a side view showing a configuration example of the first heat exchanger 30 and the vortex generator 60 included in the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 schematically shows the temperatures of the first heat exchanger 30 and the vortex generator 60 when the first heat exchanger 30 included in the refrigeration cycle apparatus according to Embodiment 2 of the present invention is used as an evaporator.
  • FIG. Based on FIG.6 and FIG.7, the 1st heat exchanger 30 and the vortex generator 60 with which the refrigerating cycle apparatus which concerns on Embodiment 2 of this invention is provided are demonstrated concretely.
  • the air flow is indicated by white arrows.
  • the basic configuration of the refrigeration cycle apparatus according to Embodiment 2 of the present invention is the same as that of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. Further, the second embodiment will be described with a focus on differences from the first embodiment, and the same parts as those of the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the vortex generator 60 is the first heat exchanger.
  • the state is shown as an example in which it is installed upstream of 30 and is installed with a first gap 41 at a distance x. That is, the vortex generator 60 is installed in non-contact with the first heat exchanger 30.
  • 6 and 7 represents the thickness of the vortex generator 60 (distance in the Y direction of the vortex generator 60), and L2 represents the distance in the longitudinal direction of the cross section of the flat tube 33 (Y direction of the flat tube 33). Distance).
  • a first gap 41 having a distance x is provided between the first heat exchanger 30 and the vortex generator 60, and the first heat exchanger 30 and the vortex generator 60 are disposed to evaporate the first heat exchanger 30.
  • the temperature at each position in the flat tube 33 and the vortex generator 60 of the first heat exchanger 30 is as shown in FIG.
  • the temperature of the refrigerant flowing through the flat tube 33 (including the first header 34 and the second header 35) is lower than the outside air temperature. Moreover, since the air supplied to the 1st heat exchanger 30 by the 1st air blower 31 is cooled by the flat tube 33, temperature becomes low, so that it goes downstream. However, the surface temperature of the flat tube 33 is approximately the same as the temperature of the refrigerant flowing inside the flat tube 33. And the temperature of a refrigerant
  • coolant hardly changes in the flow direction (Y direction) of the air supplied by the 1st air blower 31.
  • the surface temperature of the flat tube 33 is constant in the flow direction (Y direction) of the air supplied by the first blower 31 (straight line C in FIG. 7).
  • the surface temperature of the vortex generator 60 becomes a temperature close to the surface temperature of the flat tube 33 at the contact surface temperature with the flat tube 33, and the air flow Changes in the upstream direction due to heat conduction.
  • dew condensation water This causes a portion where the surface temperature of the flat tube 33 is lower than the dew point temperature of air. If it does so, although the 1st heat exchanger 30 is comprised with the finless heat exchanger, a water droplet (dew) will adhere to the surface of the flat tube 33. FIG. In addition, the water droplet adhering to the surface of the flat tube 33 is called dew condensation water.
  • the temperature of the refrigerant flowing through the flat tube 33 (including the first header 34 and the second header 35) is lower than the outside air temperature. Thereby, the surface temperature of the flat tube 33 becomes lower than the dew point temperature of air. If it does so, although the 1st heat exchanger 30 is comprised with the finless heat exchanger, a water droplet (dew) will adhere to the surface of the flat tube 33.
  • the water droplet adhering to the surface of the flat tube 33 is called dew condensation water.
  • the temperature of the refrigerant flowing through the flat tube 33 is lower than the outside air temperature and 0 ° C. or less, the condensed water adhering to the surface of the flat tube 33 is frozen and frost is generated. If dew condensation or frost formation occurs, the air flow in the first heat exchanger 30 is inhibited. When the air flow is inhibited, the heat exchange performance of the first heat exchanger 30 is degraded.
  • the vortex generator 60 is installed upstream of the first heat exchanger 30.
  • the temperature of the vortex generator 60 is reduced by the heat conduction. It will be close to the temperature. That is, the temperature of the vortex generator 60 is lowered by the refrigerant flowing through the flat tube 33, and rises upstream in the air flow direction due to heat conduction, as shown by a straight line D indicated by a two-dot chain line in FIG. Become. If it does so, dew condensation and frost will arise not only in the 1st heat exchanger 30 but in the vortex generator 60, and possibility that the flow of the air in the vortex generator 60 may be inhibited occurs.
  • the first heat exchanger 30 and the vortex generator 60 are not in contact with each other, and the temperature of the flat tube 33 of the first heat exchanger 30 is The heat is prevented from being transmitted to the vortex generator 60. That is, since the first gap 41 is formed, the vortex generator 60 is hardly cooled by the refrigerant flowing through the flat tube 33. For this reason, the temperature of the vortex generator 60 becomes a temperature close to the outside air temperature as shown by a straight line E shown by a solid line in FIG. 7, and it is difficult for dew formation and frost formation to occur.
  • the vortex generated by the vortex generator 60 can be continuously and stably supplied to the first heat exchanger 30 over a longer period of time.
  • the heat exchange performance can be further improved.
  • the distance x is set as a value in consideration of the particle size of dew and frost that are assumed to be generated on the surface of the flat tube 33 or the vortex generator 60.
  • the distance x is preferably 1 mm or more and 5 mm or less. This is because if the distance x is too large, the eddy current does not reach the first heat exchanger 30, and if the distance x is too small, the condensed water generated in the first heat exchanger 30 adheres to the vortex generator 60. This is because there is a possibility that it will end up.
  • the first heat exchanger 30 and the vortex generator 60 may be separated from each other by a distance x on an installation surface (such as an installation surface 81 shown in FIG. 6) of a unit on which the first heat exchanger 30 and the vortex generator 60 are mounted. It is good to install apart.
  • the distance x may be secured in the frame.
  • the frame body may be formed of a material having a lower thermal conductivity than the flat tube 33 and the vortex generator 60 of the first heat exchanger 30, such as a resin.
  • a spacer for example, a protrusion, a protrusion, or the like
  • a spacer that is a separate part from the first heat exchanger 30 and the vortex generator 60 is provided on at least one facing side of the first heat exchanger 30 and the vortex generator 60.
  • the distance x may be secured. That is, the first gap 41 is formed between the first heat exchanger 30 and the vortex generator 60 by sandwiching the spacer between the first heat exchanger 30 and the vortex generator 60.
  • the spacer may be formed of a material having a lower thermal conductivity than the flat tube 33 and the vortex generator 60 of the first heat exchanger 30, such as a resin. Further, the number, size, material, and the like of the spacer are not particularly limited as parts different from the first heat exchanger 30 and the vortex generator 60. Further, a circumferential spacer may be provided on at least one facing side of the first heat exchanger 30 and the vortex generator 60 to ensure the distance x.
  • the spacer x is sandwiched between the first heat exchanger 30 and the vortex generator 60 to form the first gap 41, thereby facilitating the management of the distance x of the first gap 41. That is, it is possible to prevent the size of the first gap 41 from deviating from the set value due to installation errors of the first heat exchanger 30 and the vortex generator 60. Then, by accurately setting the distance x of the first gap 41 between the first heat exchanger 30 and the vortex generator 60, the vortex generator 60 causes the air flow disturbed to a desired state to be generated in the first heat exchanger. 30 and the heat exchange performance of the first heat exchanger 30 can be further improved.
  • the spacer by forming the spacer with a material having a lower thermal conductivity than the first heat exchanger 30 and the vortex generator 60, when the first heat exchanger 30 is used as an evaporator, vortex is generated via the spacer. It can suppress that the apparatus 60 is cooled. For this reason, even if the 1st heat exchanger 30 and the vortex generator 60 are thermally connected via the spacer, it is difficult to generate frost in the vortex generator 60. Therefore, in the second embodiment, the air flow generated by the vortex generator 60 can be continuously and stably supplied to the first heat exchanger 30 for a longer period of time, so the first heat exchange The heat exchange performance of the vessel 30 can be further improved.
  • the spacer may be an integrally molded product with the vortex generator 60.
  • a part of the end of the vortex generator 60 on the first heat exchanger 30 side may protrude toward the first heat exchanger 30 and the protruding portion may be used as a spacer.
  • the spacer may be an integrally molded product with the first heat exchanger 30. That is, a part of the end of the first heat exchanger 30 on the vortex generating device 60 side may protrude toward the vortex generating device 60, and the protruding portion may be used as a spacer.
  • the spacer is configured in this way, the distance x of the first gap 41 between the first heat exchanger 30 and the vortex generator 60 can be set accurately. Therefore, the airflow disturbed to a desired state by the vortex generator 60 can be supplied to the first heat exchanger 30, and the heat exchange performance of the first heat exchanger 30 can be further improved.
  • the spacer is configured by the vortex generator 60 or a part of the first heat exchanger 30, the first heat exchanger 30 and the vortex generator 60 are in contact with each other in the spacer portion. Therefore, it is difficult to cool the vortex generator 60. That is, frost formation is difficult to occur in the vortex generator 60.
  • FIG. 8 is a perspective view showing a configuration example of the first heat exchanger 30 and the vortex generator 60 included in the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • FIG. 9 is a side view showing a configuration example of the first heat exchanger 30 and the vortex generator 60 included in the refrigeration cycle apparatus according to Embodiment 3 of the present invention. Based on FIG.8 and FIG.9, an example of the 1st heat exchanger 30 with which the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention is equipped, and the vortex generator 60 are demonstrated concretely.
  • FIG. 8 the air flow is indicated by a white arrow
  • FIG. 9 the air flow is indicated by a solid arrow.
  • FIG. 9 schematically shows that a vortex is generated on the downstream side of the vortex generator 60.
  • the basic configuration of the refrigeration cycle apparatus according to Embodiment 3 of the present invention is the same as that of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments are denoted by the same reference numerals and the description thereof will be omitted.
  • the vortex generator 60 is described as an example in which the vortex generator 60 is installed on the upstream side of the first heat exchanger 30 and installed with the first gap 41 (distance x) therebetween.
  • one first heat exchanger 30 and one vortex generator 60 are set as one set, and the sets are arranged in a plurality of rows in the air flow direction. That is, the vortex generator 60 is installed on the upstream side of the first heat exchanger 30 in each combination of the first heat exchanger 30 and the vortex generator 60.
  • one set including the first heat exchanger 30 and the vortex generator 60 is illustrated as a heat exchanging unit from the windward side as a heat exchanging unit 80A and a heat exchanging unit 80B. Then, the first heat exchanger 30 and the vortex generator 60 constituting the heat exchange unit 80A are replaced with the first heat exchanger 30A, the vortex generator 60A and the first heat exchanger constituting the heat exchange unit 80B. 30 and the vortex generator 60 are illustrated as a first heat exchanger 30B and a vortex generator 60B.
  • the heat exchange unit 80A and the heat exchange unit 80B are collectively referred to as a heat exchange unit 80.
  • the flow of air in the heat exchange unit 80 will be described.
  • air is supplied to the heat exchange unit 80.
  • the air is first supplied to the heat exchange unit 80A.
  • the air supplied by the first blower 31 passes through the vortex generator 60A before flowing into the first heat exchanger 30A.
  • the vortex generator 60A the laminar air flow is changed to a turbulent flow.
  • the air flow changed into a vortex flow is supplied to the heat exchange unit 80B after passing through the first heat exchanger 30A.
  • the air passing through the heat exchanging portion 80A is rectified when passing through the first heat exchanger 30A, and the vortex is reduced or eliminated.
  • the vortex generator 60B is installed on the upstream side of the first heat exchanger 30B, and the air flowing from the heat exchange unit 80A is vortexed by the vortex generator 60B. .
  • the heat exchange performance by the vortex generator 60 can be promoted in the whole heat exchange unit 80. That is, even when the heat exchange unit 80 has a multi-row configuration of the heat exchange unit in which the first heat exchanger 30 and the vortex generator 60 are combined, the vortex generator 60 is installed in all sets. It is possible to obtain the effect of heat exchange performance.
  • FIG. 10 is a perspective view showing still another configuration example of the first heat exchanger 30 and the vortex generator 60 included in the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • FIG. 11 is an exploded perspective view showing still another configuration example of the first heat exchanger 30 and the vortex generator 60 included in the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • FIG. 12 is a side view showing still another configuration example of the first heat exchanger 30 and the vortex generator 60 included in the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • a further example of the first heat exchanger 30 and the vortex generator 60 included in the refrigeration cycle apparatus according to Embodiment 3 of the present invention will be specifically described with reference to FIGS.
  • FIGS. 8 and 9 show an example in which the heat exchange unit 80 has a two-row configuration of heat exchange units.
  • the heat exchange unit 80 has a configuration of three or more rows of heat exchange units. The case is shown as an example.
  • one set including the first heat exchanger 30 and the vortex generator 60 is used as a heat exchange unit, and the heat exchange unit 80A, the heat exchange unit 80B,... Show.
  • the 1st heat exchanger 30 and the vortex generator 60 which comprise the heat exchange part 80N are shown in figure as the 1st heat exchanger 30N and the vortex generator 60N. That is, any number of heat exchange units may be provided between the heat exchange unit 80B and the heat exchange unit 80N.
  • the vortex generator 60 is upstream of the first heat exchanger 30 in each case. Therefore, the heat exchange performance by the vortex generator 60 can be promoted in the entire heat exchange unit 80.
  • the countermeasure for the dew condensation and frost formation of the vortex generator 60 is performed by providing the distance x shown in the second embodiment between the first heat exchanger 30 and the vortex generator 60. That is, the first heat exchanger 30 and the vortex generator 60 in all the heat exchange units constituting the heat exchange unit 80 are brought into non-contact, and the temperature of the flat tube 33 of the first heat exchanger 30 is reduced by heat conduction. It is prevented from being transmitted to the vortex generator 60.
  • all the distances x may be the same value, and the distance x may be made larger (or smaller) as it is installed downstream. That is, the values of the distance x may be all matched, all may be different, or some may be matched.
  • the vortex generator 60 may not necessarily be installed upstream of all the first heat exchangers 30 of the heat exchange unit, and at least upstream of the first heat exchangers 30 of the two heat exchange units from the upstream side. The vortex generator 60 should just be installed in the side.
  • Embodiment 4 As described above, as the first blower 31 for supplying air to the first heat exchanger 30 and the vortex generator 60, for example, various types of fans such as a propeller fan, a cross flow fan, a sirocco fan, and a turbo fan are used. Can be used. At this time, if a relatively rectified air flow is supplied to the vortex generator 60, a stable vortex can be generated by the vortex generator 60, and the heat exchange performance of the first heat exchanger 30 is improved. Therefore, in the fourth embodiment, a suitable arrangement example for the first heat exchanger 30 and the vortex generator 60 will be described for each type of the first blower 31. In the fourth embodiment, items not particularly described are the same as those in the first to third embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 13 is a side view showing a configuration example of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the white arrow shown in FIG. 13 has shown the flow direction of the air supplied by the 1st air blower 31.
  • FIG. 13 the refrigeration cycle apparatus according to Embodiment 4 of the present invention is illustrated as a refrigeration cycle apparatus 100A.
  • the 13 employs a propeller fan 31A as the first blower 31.
  • the refrigeration cycle apparatus 100A shown in FIG. The airflow on the blowout side of the propeller fan 31A advances while turning around the rotation axis of the propeller fan 31A.
  • the airflow on the suction side of the propeller fan 31A is rectified compared to the airflow on the blowing side.
  • the propeller fan 31A when the propeller fan 31A is employed as the first blower 31, it is preferable to dispose the propeller fan 31A on the downstream side of the first heat exchanger 30 in the flow direction of the air supplied by the propeller fan 31A.
  • a relatively rectified airflow can be supplied to the vortex generator 60, so that a stable vortex can be generated by the vortex generator 60, and the first heat exchanger 30 Heat exchange performance can be improved.
  • FIG. 14 is a diagram in which the velocity distribution of the airflow flowing into the vortex generator 60 is added in the refrigeration cycle apparatus 100A shown in FIG.
  • the propeller fan 31A downstream of the first heat exchanger 30 in the flow direction of the air supplied by the propeller fan 31A, a relatively rectified airflow can be supplied to the vortex generator 60.
  • the velocity of the airflow flowing into the vortex generator 60 varies depending on the region of the vortex generator 60.
  • the region through which the airflow sucked to the outer peripheral side of the propeller fan 31A passes is a region where the velocity of the airflow, that is, the wind speed, is slower than the region through which the airflow sucked into the center of the propeller fan 31A passes.
  • a vortex is hard to generate
  • the airflow that has passed through the region where the wind speed is low in the vortex generator 60 has a low degree of vortex generation
  • the region of the first heat exchanger 30 through which the airflow flows is the area of the first heat exchanger 30 through which the airflow with high wind speed flows. Compared to the area, the heat exchange performance is reduced.
  • more blade structures 600 may be provided in a part of the region in the vortex generator 60 than in a region where the wind speed is faster than that region.
  • FIG. 15 is a side view showing another configuration example of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the white arrow shown in FIG. 15 has shown the flow direction of the air supplied by the 1st air blower 31.
  • FIG. In FIG. 15, the refrigeration cycle apparatus according to Embodiment 4 of the present invention is illustrated as a refrigeration cycle apparatus 100B.
  • the refrigeration cycle apparatus 100B shown in FIG. 15 employs a cross flow fan 31B as the first blower 31.
  • the refrigeration cycle apparatus 100B shown in FIG. Specifically, the refrigeration cycle apparatus 100B shown in FIG. 15 includes a housing 90 in which an outlet 91 is formed. And the crossflow fan 31B is accommodated in the housing
  • By rotating the cross flow fan 31B arranged in this way air is sucked in from the upper part of the cross flow fan 31B, and air is blown out from the lower part of the cross flow fan 31B to the outlet 91. At this time, the airflow on the suction side of the cross flow fan 31B is relatively rectified.
  • the cross flow fan 31B when the cross flow fan 31B is employed as the first blower 31, it is preferable to dispose the cross flow fan 31B on the downstream side of the first heat exchanger 30 in the flow direction of the air supplied by the cross flow fan 31B. .
  • the cross flow fan 31B By arranging the cross flow fan 31B in this way, a relatively rectified airflow can be supplied to the vortex generator 60, so that a stable vortex can be generated by the vortex generator 60, and the first heat exchanger 30 can be generated.
  • the heat exchange performance of can be improved.
  • the velocity of the airflow flowing into the vortex generator 60 varies depending on the region of the vortex generator 60.
  • region where a wind speed is fast can be generated, and the heat exchange performance of the 1st heat exchanger 30 can be improved more.
  • FIG. 16 is a plan view showing another configuration example of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • FIG. 17 is a side view showing another configuration example of the refrigeration cycle apparatus according to Embodiment 4 of the present invention shown in FIG.
  • the white arrow shown in FIG.16 and FIG.17 has shown the flow direction of the air supplied by the 1st air blower 31.
  • FIG.16 and FIG.17 the casing 95 which accommodates the sirocco fan 31C is shown by the cross section.
  • the refrigeration cycle apparatus according to Embodiment 4 of the present invention is illustrated as a refrigeration cycle apparatus 100C.
  • the sirocco fan 31 ⁇ / b> C is housed in a casing 95, for example.
  • a suction port 93 is formed on the lower surface of the casing 95 at a position facing the rotation shaft of the sirocco fan 31C.
  • an air outlet 94 is formed on the side surface of the casing 95 so as to face the outer peripheral surface of the sirocco fan 31C.
  • the sirocco fan 31C when employed as the first blower 31, it is preferable to dispose the sirocco fan 31C upstream of the vortex generator 60 in the flow direction of the air supplied by the sirocco fan 31C.
  • a relatively rectified air flow can be supplied to the vortex generator 60, so that a stable vortex can be generated by the vortex generator 60, and the first heat exchanger 30 Heat exchange performance can be improved.
  • the velocity of the airflow flowing into the vortex generator 60 varies depending on the region of the vortex generator 60.
  • the refrigeration cycle apparatus 100C shown in FIGS. 16 and 17 it is preferable to provide more blade structures 600 in a part of the vortex generator 60 than in a region where the wind speed is faster than that region. .
  • region where a wind speed is fast can be generated, and the heat exchange performance of the 1st heat exchanger 30 can be improved more.
  • FIG. 18 is a plan view showing another configuration example of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • FIG. 19 is a side view showing another configuration of the refrigeration cycle apparatus according to Embodiment 4 of the present invention shown in FIG.
  • the white arrow shown in FIG.18 and FIG.19 has shown the flow direction of the air supplied by the 1st air blower 31.
  • FIG. 18 and 19, the refrigeration cycle apparatus according to Embodiment 4 of the present invention is illustrated as a refrigeration cycle apparatus 100D.
  • the refrigeration cycle apparatus 100D shown in FIGS. 18 and 19 employs a turbo fan 31D as the first blower 31.
  • the turbo fan 31D sucks air in the rotation axis direction of the turbo fan 31D as the turbo fan 31D rotates. Further, the turbo fan 31D blows air to the outer peripheral side of the turbo fan 31D. At this time, the airflow on the blowout side of the turbo fan 31D is relatively rectified.
  • the turbo fan 31D when the turbo fan 31D is employed as the first blower 31, it is preferable to dispose the turbo fan 31D upstream of the vortex generator 60 in the flow direction of the air supplied by the turbo fan 31D. For this reason, in the refrigeration cycle apparatus 100D shown in FIGS. 18 and 19, the vortex generator 60 is disposed so as to surround the outer peripheral side of the turbofan 31D. Moreover, the 1st heat exchanger 30 is arrange
  • the turbo fan 31 ⁇ / b> D is employed as the first blower 31, the velocity of the airflow flowing into the vortex generator 60 varies depending on the region of the vortex generator 60. For this reason, also in the refrigeration cycle apparatus 100D shown in FIGS. 18 and 19, it is preferable to provide more blade structures 600 in a part of the vortex generator 60 than in a region where the wind speed is faster than that region. . Thereby, also in the area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

本発明に係る冷凍サイクル装置は、フィンレス熱交換器であり、重力方向に沿って伸びる複数の伝熱管を有している第1熱交換器と、第1熱交換器に空気を供給する送風機と、第1熱交換器の上流側に設置され、送風機によって第1熱交換器に供給される空気を渦流とする渦発生装置と、を備えたものである。

Description

冷凍サイクル装置
 本発明は、構成としてフィンを用いないフィンレス熱交換器を備えた冷凍サイクル装置に関するものである。
 例えば特許文献1には、「複数の偏平状熱交換管部が、上下方向に向けられて、左右方向に並列状態に配置されると共に、該熱交換管部間に、上下方向に向けてコルゲート状に屈曲された一対のコルゲートフィンが相互重ね合わせ状にされて配置され、かつ両コルゲートフィン間に、前後方向に向けてコルゲート状に屈曲された排水用コルゲート板が介在状態に配置されてなる」マルチフロー熱交換器が開示されている。
 扁平管の間にフィンを配置したマルチフロー熱交換器では、結露水の排出がフィンにより妨げられるため排水性能が悪い。そこで、特許文献1に記載のマルチフロー熱交換器では、排水用コルゲート板を介在状態に配置することで排水性能を改善するようにしている。しかしながら、フィン部分での排水阻害が根本的に改善されているとは言えない。
 そこで、例えば特許文献2に記載されているようなフィン部分での排水阻害を根本的に改善することができるフィンレスのマルチフロー熱交換器が提案されている。特許文献2には、「内側を流通する第1流体と外周面に沿って流通する第2流体とを熱交換させる複数の熱交換チューブを備えたフィンレス熱交換器であって、各熱交換チューブは、断面形状が第2流体の流通方向に延びる扁平状に形成され、第2流体の流通方向に対して直交する方向に互いに間隔をおいて配置され、各熱交換チューブと隣り合う熱交換チューブとの間の隙間は、第2流体の流通方向の下流側よりも上流側が大きく形成されている」フィンレス熱交換器が開示されている。
特開平5-60481号公報 特開2013-257095号公報
 しかしながら、特許文献2に記載のものを含めフィンレス熱交換器は、構成としてフィンを用いないため、以下のような課題がある。
 1つ目は、フィンを設置しないため、熱交換面積を確保し難く、熱交換性能が低下してしまうということである。
 2つ目は、熱交換性能を向上させるためには、熱交換器を大型化したり、伝熱管の本数を増加したりすることなどが必要になってしまうということである。
 3つ目は、熱交換器を大型化したり、伝熱管の本数を増加したりすることなどにより、製造に要する費用の増加、冷媒量増加による環境への影響、据え付け性悪化などの課題が伴って発生してしまうということである。
 特に、特許文献2に記載されているようなフィンレス熱交換器では、特徴のある伝熱管(熱交換チューブ)を作製するために、製造に要する費用及び手間が増大してしまう。
 本発明は、上記のような課題を背景としてなされたものであり、熱交換器を大型化することなく熱交換性能を向上させるようにしたフィンレス熱交換器を備えた冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、フィンレス熱交換器であり、重力方向に沿って伸びる複数の伝熱管を有している第1熱交換器と、前記第1熱交換器に空気を供給する送風機と、前記第1熱交換器の上流側に設置され、前記送風機によって前記第1熱交換器に供給される空気を渦流とする渦発生装置と、を備えたものである。
 本発明に係る冷凍サイクル装置によれば、渦発生装置を第1熱交換器の上流側に設置したので、第1熱交換器に流入する空気を渦流にすることができ、第1熱交換器の熱交換性能が向上することになる。
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成の一例を概略的に示す回路構成図である。 本発明の実施の形態1に係る冷凍サイクル装置が備える第1熱交換器及び渦発生装置の構成例を示す斜視図である。 本発明の実施の形態1に係る冷凍サイクル装置が備える第1熱交換器及び渦発生装置の構成例を示す側面図である。 本発明の実施の形態1に係る冷凍サイクル装置が備える第1熱交換器の扁平管の流路の構成例を示す流路断面図である。 本発明の実施の形態1に係る冷凍サイクル装置が備える渦発生装置の構成例を示す正面図である。 図5Aに示す渦発生装置の羽根構造体の説明図である。 図5Bに示す渦発生装置の羽根構造体の羽根体の説明図である。 本発明の実施の形態1に係る冷凍サイクル装置が備える第1熱交換器の寸法と扁平管の寸法の例を説明する説明図である。 本発明の実施の形態1に係る冷凍サイクル装置が備える渦発生装置の寸法と羽根構造体を説明する説明図である。 本発明の実施の形態1に係る冷凍サイクル装置が備える渦発生装置の変形例1の説明図である。 本発明の実施の形態1に係る冷凍サイクル装置が備える渦発生装置の変形例2の説明図である。 本発明の実施の形態1に係る冷凍サイクル装置が備える渦発生装置の変形例3の説明図である。 本発明の実施の形態2に係る冷凍サイクル装置が備える第1熱交換器及び渦発生装置の構成例を示す側面図である。 本発明の実施の形態2に係る冷凍サイクル装置が備える第1熱交換器を蒸発器として用いる際の、第1熱交換器及び渦発生装置の温度を概略的に示す図である。 本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器及び渦発生装置の構成例を示す斜視図である。 本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器及び渦発生装置の構成例を示す側面図である。 本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器及び渦発生装置の更に別の構成例を示す斜視図である。 本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器及び渦発生装置の他の更に構成例を示す分解斜視図である。 本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器及び渦発生装置の更に別の構成例を示す側面図である。 本発明の実施の形態4に係る冷凍サイクル装置の構成例を示す側面図である。 図13で示した冷凍サイクル装置において、渦発生装置に流入する気流の速度分布を追記した図である。 本発明の実施の形態4に係る冷凍サイクル装置の別の構成例を示す側面図である。 本発明の実施の形態4に係る冷凍サイクル装置の別の構成例を示す平面図である。 図16に示す本発明の実施の形態4に係る冷凍サイクル装置の別の構成例を示す側面図である。 本発明の実施の形態4に係る冷凍サイクル装置の別の構成例を示す平面図である。 図18に示す本発明の実施の形態4に係る冷凍サイクル装置の別の構成を示す側面図である。
 以下、図面を適宜参照しながら本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置(以下、冷凍サイクル装置100と称する)の冷媒回路構成の一例を概略的に示す回路構成図である。図1に基づいて、冷凍サイクル装置100について説明する。なお、図1では、冷凍サイクル装置100の一例として空気調和装置を例に説明するものとする。また、図1では、暖房運転時の冷媒の流れを破線矢印で示し、冷房運転時の冷媒の流れを実線矢印で示し、第1熱交換器30における空気の流れを白抜き矢印で示している。
 図1に示すように、冷凍サイクル装置100は、圧縮機10、流路切替装置20、第1熱交換器30、絞り装置40、第2熱交換器50、第1送風機31、第2送風機51、及び、渦発生装置60を備えている。そして、圧縮機10、第1熱交換器30、絞り装置40、及び、第2熱交換器50が、冷媒配管70によって接続され、冷媒回路が形成されている。
 圧縮機10は、冷媒回路を循環する冷媒を圧縮して吐出するものである。圧縮機10で圧縮された冷媒は、吐出されて第1熱交換器30へ送られる。圧縮機10は、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、往復圧縮機等で構成することができる。
 第1熱交換器30は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能するものである。第1熱交換器30が蒸発器として機能する場合、第1熱交換器30では絞り装置40から流出された低温低圧の冷媒と第1送風機31により供給される空気とが熱交換し、低温低圧の液冷媒または二相冷媒が蒸発する。一方、第1熱交換器30が凝縮器として機能する場合、第1熱交換器30では圧縮機10から吐出された高温高圧の冷媒と第1送風機31により供給される空気とが熱交換し、高温高圧のガス冷媒が凝縮する。
 第1熱交換器30は、冷媒が流れる冷媒流路が形成された伝熱管(円管または扁平管)を備えている。ただし、第1熱交換器30は、伝熱管に直交するように接続されるフィンが設けられていない。すなわち、第1熱交換器30は、いわゆるフィンレス熱交換器である。
 なお、第1熱交換器30の構成については、後段で詳細に説明するものとする。
 絞り装置40は、第1熱交換器30又は第2熱交換器50から流出した冷媒を膨張させて減圧するものである。絞り装置40は、例えば冷媒の流量を調整可能な電動膨張弁等で構成するとよい。なお、絞り装置40としては、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁、または、キャピラリーチューブ等を適用することも可能である。
 第2熱交換器50は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能するものである。第2熱交換器50が凝縮器として機能する場合、第2熱交換器50では圧縮機10から吐出された高温高圧の冷媒と第2送風機51により供給される空気とが熱交換し、高温高圧のガス冷媒が凝縮する。一方、第2熱交換器50が蒸発器として機能する場合、第2熱交換器50では絞り装置40から流出された低温低圧の冷媒と第2送風機51により供給される空気とが熱交換し、低温低圧の液冷媒または二相冷媒が蒸発する。
 第2熱交換器50は、第1熱交換器30と同様にフィンレス熱交換器で構成してもよいし、その他の形式、例えばフィン・アンド・チューブ型熱交換器等で構成してもよい。熱交換する対象によって、第2熱交換器50の種類を決定すればよい。
 流路切替装置20は、圧縮機10の吐出側に設けられ、暖房運転と冷房運転とにおいて冷媒の流れを切り替えるものである。つまり、流路切替装置20は、冷房運転時には圧縮機10と第1熱交換器30とを接続するように切り替えられ、暖房運転時には圧縮機10と第2熱交換器50とを接続するように切り替えられる。なお、流路切替装置20は、たとえば四方弁で構成するとよい。ただし、二方弁又は三方弁の組み合わせを流路切替装置20として採用してもよい。
 第1送風機31は、第1熱交換器30に付設され、第1熱交換器30に空気を供給する。第1送風機31は、第1送風機用モータ32により回転されることで、第1熱交換器30に空気を供給する。第1送風機31は、例えば、プロペラファン、クロスフローファン、シロッコファン及びターボファン等、種々の種類のファンを用いることができる。
 第1送風機31をプロペラファン又はクロスフローファンで構成する場合、第1送風機31を第1熱交換器30の下流側に設置するとよい。
 一方、第1送風機31をシロッコファン又はターボファンで構成する場合、第1送風機31を第1熱交換器30の上流側に設置するとよい。
 第1送風機31が、本発明の「送風機」に相当する。
 なお、第1送風機31の配置位置については、実施の形態4で具体的に説明する。
 第2送風機51は、第2熱交換器50に付設され、第2熱交換器50に空気を供給する。第2送風機51は、第2送風機用モータ52により回転されることで、第2熱交換器50に空気を供給する。第2送風機51は、例えば、プロペラファン、クロスフローファン、シロッコファン及びターボファン等、種々の種類のファンを用いることができる。
 第2熱交換器50が第1熱交換器30と同様にフィンレス熱交換器で構成される場合であって、第2送風機51をプロペラファン又はクロスフローファンで構成する場合、第2送風機51を第2熱交換器50の下流側に設置するとよい。
 一方、第2熱交換器50が第1熱交換器30と同様にフィンレス熱交換器で構成される場合であって、第2送風機51をシロッコファン又はターボファンで構成する場合、第2送風機51を第2熱交換器50の上流側に設置するとよい。
 渦発生装置60は、第1熱交換器30の空気の流れ上流側に設けられ、空気の流れを層流から渦流(乱流)に変化させるものである。
 なお、渦発生装置60の構成については、第1熱交換器30とともに後段で詳細に説明するものとする。
<冷凍サイクル装置100の動作>
 次に、冷凍サイクル装置100の動作について、冷媒の流れとともに説明する。ここでは、熱交換流体が空気であり、被熱交換流体が冷媒である場合を例に、冷凍サイクル装置100の動作について説明する。また、ここでは、第1熱交換器30が熱源側ユニットに搭載される熱源側熱交換器として用いられ、第2熱交換器50が利用側ユニットに搭載される利用側熱交換器として用いられる場合の冷凍サイクル装置100の動作を例に説明する。つまり、冷凍サイクル装置100が運転動作を開始すると、第2熱交換器50で生成された空調空気を空調対象空間に供給される。
 まず、冷凍サイクル装置100が実行する冷房運転について説明する。なお、冷房運転時の冷媒の流れは、図1の実線矢印で示している。
 図1に示すように、圧縮機10を駆動させることによって、圧縮機10から高温高圧のガス状態の冷媒が吐出する。以下、実線矢印にしたがって冷媒が流れる。圧縮機10から吐出した高温高圧のガス冷媒は、流路切替装置20を介して凝縮器として機能する第1熱交換器30に流れ込む。第1熱交換器30では、流れ込んだ高温高圧のガス冷媒と、第1送風機31によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。
 第1熱交換器30から送り出された高圧の液冷媒は、絞り装置40によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する第2熱交換器50に流れ込む。第2熱交換器50では、流れ込んだ二相状態の冷媒と、第2送風機51によって供給される空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒になる。第2熱交換器50から送り出された低圧のガス冷媒は、流路切替装置20を介して圧縮機10に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機10から吐出する。以下、このサイクルが繰り返される。
 次に、冷凍サイクル装置100が実行する暖房運転について説明する。なお、暖房運転時の冷媒の流れは、図1の破線矢印で示している。
 図1に示すように、圧縮機10を駆動させることによって、圧縮機10から高温高圧のガス状態の冷媒が吐出する。以下、破線矢印にしたがって冷媒が流れる。圧縮機10から吐出した高温高圧のガス冷媒は、流路切替装置20を介して凝縮器として機能する第2熱交換器50に流れ込む。第2熱交換器50では、流れ込んだ高温高圧のガス冷媒と、第2送風機51によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。
 第2熱交換器50から送り出された高圧の液冷媒は、絞り装置40によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する第1熱交換器30に流れ込む。第1熱交換器30では、流れ込んだ二相状態の冷媒と、第1送風機31によって供給される空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒になる。第1熱交換器30から送り出された低圧のガス冷媒は、流路切替装置20を介して圧縮機10に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機10から吐出する。以下、このサイクルが繰り返される。
<第1熱交換器30及び渦発生装置60>
 図2は、冷凍サイクル装置100が備える第1熱交換器30及び渦発生装置60の構成例を示す斜視図である。図3は、冷凍サイクル装置100が備える第1熱交換器30及び渦発生装置60の構成例を示す側面図である。図4は、冷凍サイクル装置100が備える第1熱交換器30の扁平管33の流路の構成例を示す流路断面図である。図2~図4に基づいて、冷凍サイクル装置100が備える第1熱交換器30及び渦発生装置60について詳細に説明する。
 なお、図2では、空気の流れを白抜き矢印で示し、図3では、空気の流れを実線矢印で示している。また、図3では、渦発生装置60の下流側で渦流が発生していることを模式的に示している。
 図2の矢印Xは、扁平管33が並ぶ方向を示している。以下、扁平管33が並ぶ方向をX方向と称するものとする。図2及び図3の矢印Yは、空気の流れ方向を示している。以下、空気の流れ方向をY方向と称するものとする。図2及び図3の矢印Zは、扁平管33の長手方向を示している。以下、扁平管33の長手方向をZ方向と称するものとする。X方向、Y方向、Z方向については、以下の図面においても同様の方向を示すものとして使用する。
 また、図2及び図3では、X方向及びY方向と、Z方向とが、直交しているものの一例として説明する。また、X方向とY方向とについても直交している場合を一例として説明する。さらに、X方向及びY方向が水平面に平行であり、Z方向が重力方向に平行になるように第1熱交換器30が冷凍サイクル装置100に搭載されている場合を一例として説明する。
 第1熱交換器30は、流体(例えば、冷媒)が流れる流体流路が形成された第1ヘッダー34と、流体が流れる流体流路が形成された第2ヘッダー35と、内部に流体流路が形成された複数の扁平管33と、を備えている。つまり、第1熱交換器30は、構成としてフィンを備えていない。
 なお、第1ヘッダー34と第2ヘッダー35とは、扁平管33を介して対をなしている。つまり、図2、3に示すように、扁平管33は、両端部の一端(Z方向下側)が第1ヘッダー34に接続され、両端部の他端(Z方向上側)が第2ヘッダー35に接続されている。
 第1ヘッダー34は、X方向に延びる長尺状の部材であり、内部に流体が流れる流体流路が形成されている。第1ヘッダー34には、扁平管33の一端が接続されている。第1ヘッダー34は、例えば、圧縮機10または絞り装置40などから供給されてきた流体が流入する流入側ヘッダーとして用いられる。第1ヘッダー34は、例えば、水平方向と平行になるように配置される。なお、第1ヘッダー34を流出側ヘッダーとして用いてもよい。この場合、第2ヘッダー35が流入側ヘッダーとして用いられる。
 第2ヘッダー35は、X方向に延びる長尺状の部材であり、内部に流体が流れる流体流路が形成されている。第2ヘッダー35には、扁平管33の他端が接続されている。第2ヘッダー35は、例えば、第1ヘッダー34及び扁平管33を流れてきた流体が供給されるものであり、流出側ヘッダーとして用いられる。第2ヘッダー35は、たとえば、水平方向と平行になるように配置される。なお、第2ヘッダー35を流入側ヘッダーとして用いてもよい。この場合、第1ヘッダー34が流出側ヘッダーとして用いられる。
 扁平管33は、複数が並列にZ方向に流体が流れるように配置され、隣り合う扁平管33の間を第1送風機31から供給される空気が通過するものである。具体的には、扁平管33のそれぞれは、重力方向に沿って伸び、並列に並んで配置される。つまり、第1熱交換器30は、扁平管33のそれぞれの長手方向が重力方向と平行となるように搭載されるユニットに設置される。
 また、図4に示すように、扁平管33は、縦幅A1よりも横幅A2を大きくした扁平形状の伝熱管である。そして、扁平管33には、例えば図4に示すように、流体が流れる流体流路33aが複数形成されている。
 なお、以下の説明において、縦幅A1を断面短軸方向と称し、横幅A2を断面長軸方向と称するものとする。
 なお、扁平管33の本数や長手方向の長さを特に限定するものではなく、第1熱交換器30が搭載される冷凍サイクル装置100の用途や出力等に対応して決定されればよい。
 また、扁平管33は、例えばアルミニウム製又はアルミニウム合金製である。
 さらに、ここでは、伝熱管の一例として扁平管33を例に説明するが、円管(断面円形状の伝熱管)を用いて第1熱交換器30を構成してもよい。この場合においても、Z方向に流体が流れるように円管を配置するものとする。
 渦発生装置60は、第1送風機31から供給される空気が通過するものであり、通過する前の層流の空気流れを、通過した後に渦流(乱流)に変化させるものである。つまり、図3に示すように、渦発生装置60を通過した後の空気流れには、渦流が発生した状態になっている。
 また、渦発生装置60は、樹脂製または金属製である。
 第1熱交換器30における空気の流れについて説明する。
 第1送風機31が回転することにより空気が第1熱交換器30に供給される。この空気は、第1熱交換器30に流入する前に渦発生装置60を通過することになる。渦発生装置60では、層流の空気流れに乱れを発生させて、層流の空気流れが渦流に変化する。渦流の空気流れは、熱輸送及び拡散効果が高いため、層流に比べて第1熱交換器30における伝熱性能を向上できる。つまり、第1熱交換器30における熱交換を、渦効果により促進することができることになる。
 したがって、第1熱交換器30の上流側に渦発生装置60を設置することにより、第1熱交換器30の風上で空気流れを渦流にでき、第1熱交換器30の扁平管33と空気との間の熱交換が促進され、熱交換性能が向上することになる。
 なお、第1熱交換器30と渦発生装置60とをユニット化して、冷凍サイクル装置100の例えば熱源側ユニット(室外ユニット)などに設置するようにしてもよいし、それぞれ別体として個別に設置するようにしてもよい。
<渦発生装置60>
 渦発生装置60について詳しく説明する。
 図5Aは、冷凍サイクル装置100が備える渦発生装置60の構成例を示す正面図である。図5Bは、図5Aに示す渦発生装置60の羽根構造体600の説明図である。図5Cは、図5Bに示す渦発生装置60の羽根構造体600の羽根体602の説明図である。
 渦発生装置60は、例えば、第1熱交換器30の空気流れ上流側であって、第1熱交換器30の対向位置に配置される。渦発生装置60は、図5Aに示すように、複数の羽根体602と、羽根体602が固定されている第1支持体601と、第1支持体601に交差するように設けられている第2支持体603とを備えている。
 第1支持体601は、Z方向に平行に設けられている。第1支持体601は、羽根体602を配置する間隔をあけて、X方向に並ぶように配置されている。第1支持体601は、板状部材である。第1支持体601には、Z方向に並ぶように、複数の羽根体602が固定されている。例えば、図5Aの紙面の一番右側に示された第1支持体601には、Z方向に並ぶように10個の羽根体602が固定されている。
 ここで、渦発生装置60は、1個の第1支持体601に、1個の羽根体602が固定されている態様であってもよい。つまり、図5Aに示す第1支持体601を例に説明すれば、Z方向に平行な1本の第1支持体601が、10分割されるということである。図5Aに示す渦発生装置では、10分割される第1支持体601が、X方向に21個並んでいるため、10×21=210の支持体が設けられていることになる。なお、分割数は10に限定されるものではなく、適宜、設定することができる。例えば、2分割として、1個の第1支持体601に5つの羽根体602が固定されていてもよい。
 渦発生装置60は、第2支持体603を2個備えている。第2支持体603は、X方向に平行に設けられている。一方の第2支持体603は、第1支持体601の上端部に固定されている。他方の第2支持体603は、第1支持体601の下端部に固定されている。第2支持体603は、板状部材である。第2支持体603は、複数の第1支持体601を支持し、渦発生装置60の形状を保つ機能を有している。
 本実施の形態1において、渦発生装置60の対向位置に配置されている第1熱交換器30の複数の扁平管33は、直線状に構成されている。そして、複数の扁平管33は、予め定められた配列方向に並ぶように配置されている。配列方向とは、X方向に平行な方向である。ここで、羽根体602は、扁平管33の軸方向に並ぶように複数配置され、かつ、扁平管33の配列方向に並ぶように複数配置されている。軸方向とは、Z方向に平行な方向である。
 このように、羽根体602が配置されていることにより、渦流が各扁平管33の間に均等に流入し、熱交換性能を向上させることができる。図5Aにおいては、羽根体602は、扁平管33の軸方向に10個配置され、かつ、扁平管33の配列方向に20個配置されている。このため、渦発生装置60は、10×20=200の羽根体602を備えている。
(羽根構造体600について)
 図5Bでは、(a)が羽根構造体600の斜視図を示し、(b)が羽根構造体600の上面図を示し、(c)が羽根構造体600の第2支持部601B側から見た側面図を示し、(d)が羽根構造体600の正面図を示している。
 また、図5Cでは、(a)が羽根体602の上面図を示し、(b)が羽根体602の第2支持部601B側から見た側面図を示している。
 渦発生装置60には、第1支持体601と複数の羽根体602との間に、空気が流通する開口部CL(第2隙間)が形成されている。羽根体602は、空気流通方向の一方側に配置される一端部P1と、空気流通方向の他方側に配置される他端部P2とを備え、一端部P1から他端部P2にかけて空気流通方向に沿う面が形成されている。ここで、空気流通方向に沿う面とは、後述する第1面S1及び第2面S2に対応する。なお、空気流通方向は、必ずしも、Y方向と一致しない。
 渦発生装置60は、複数の羽根構造体600を備えている。羽根構造体600は、第1支持部601A及び第2支持部601Bと、第1羽根602A及び第2羽根602Bとを備えている。
 第1支持部601A及び第2支持部601Bは、第1支持体601に含まれる構成である。第1支持部601A及び第2支持部601Bは、第1支持体601の構成要素の一単位である。複数の第1支持部601A及び第2支持部601Bによって、第1支持体601が構成される。第2支持部601Bは、第1支持部601Aとの間に予め定められた第1間隔をあけて設けられている。第2支持部601Bは、第1支持部601Aに対向している。
 羽根体602は、板状部材で構成された第1羽根602Aと、板状部材で構成され、第1羽根602Aと対をなす第2羽根602Bとを備えている。第1羽根602Aは、第1支持部601Aと第2支持部601Bとの間に配置されている。第2羽根602Bは、第1支持部601Aと第2支持部601Bとの間に配置されている。第2羽根602Bは、第1羽根602Aと対をなす羽根である。
 第1羽根602Aは、一端部P1に対応する第1端部E1と、他端部P2に対応する第2端部E2と、第1支持部601Aに接続された第3端部E3と、空気流通方向に沿う面に対応する第1面S1と、第1面S1の反対側に形成された第1反対面S10とを含む。
 また、第2羽根602Bは、一端部P1に対応する第4端部E4と、他端部P2に対応する第5端部E5と、第2支持部601Bに接続された第6端部E6と、空気流通方向に沿う面に対応する第2面S2と、第2面S2の反対側に形成された第2反対面S20とを含む。
 ここで、第1面S1の第1端部E1から第2端部E2に向かう方向を第1方向Dr1とし、第2面S2の第4端部E4から第5端部E5に向かう方向を第2方向Dr2とする。このとき、第1面S1及び第2面S2は、第1方向Dr1と第2方向Dr2とが交差するように形成されている。図5B(c)及び図5C(b)に示すように、羽根体602を側面側から見たときに、羽根体602は、第1羽根602Aと第2羽根602Bとが交差するように配置されている。なお、第1方向Dr1及び第2方向Dr2は、上述した羽根体602の空気流通方向に対応している。
 第1羽根602Aは三角形状である。つまり、第1面S1は、第1端部E1から第2端部E2にかけて先細る三角形状である。第2羽根602Bも三角形状である。第2面S2は、第5端部E5から第4端部E4にかけて先細る三角形状である。つまり、第1羽根602Aと第2羽根602Bとでは先細る方向が逆である。このように、三角形状となっていることにより、効率よく渦流を発生させ、渦発生装置60における圧力損失を抑制することができる。また、効率よく渦流を発生させることができるので、渦発生装置60の小型化しても、渦流の発生効果を確保しやすい。
<各種の構成の寸法等について>
 図5Dは、冷凍サイクル装置100が備える第1熱交換器30の寸法と扁平管33の寸法の例を説明する説明図である。図5Dでは、(a)が第1熱交換器30の正面図を示し、(b)が扁平管33の断面図を示している。なお、図5Dで示す寸法は、あくまでも一例であり、例示した寸法に限定されるものではない。
 第1ヘッダー34から第2ヘッダー35までの長さは、200(mm)である。
 扁平管33の断面短軸方向の幅は、0.6(mm)である。
 扁平管33の断面長軸方向の幅は、17.8(mm)である。
 第1ヘッダー34の長手方向の長さ及び第2ヘッダー35の長手方向の長さは、200(mm)である。
 扁平管33のピッチDPは2.5(mm)である。
 ここで、ピッチDPは、任意の扁平管33の一方面から、この任意の扁平管33に隣接する扁平管33の一方の面までの長さである。このため、ピッチDPは、扁平管33の断面短軸方向の幅を含む値である。したがって、ピッチDPから扁平管33の断面短軸方向の幅を引いた値は、隣接する扁平管33の間の間隔(第2間隔)に対応し、2.5-0.6=1.9(mm)である。
 図5Eは、冷凍サイクル装置100が備える渦発生装置60の寸法と羽根構造体600を説明する説明図である。図5Eでは、(a)が渦発生装置60の正面図を示し、(b)が羽根構造体600の上面視図を示し、(c)が羽根構造体600の第2支持部601B側から見た側面図を示している。なお、図5Eで示す寸法は、あくまでも一例であり、例示した寸法に限定されるものではない。
 渦発生装置60のZ方向の幅は、200(mm)である。
 渦発生装置60のX方向の幅は、200(mm)である。
 第1支持部601AのY方向の寸法は、5(mm)である。
 第1支持部601AのX方向の幅(厚み)は、0.6(mm)である。
 第1羽根602Aの第3端部E3のY方向の寸法は、3.5(mm)である。
 第1羽根602Aの第1端部E1の幅は、1.8(mm)である。
 第2支持部601BのY方向の寸法は、5(mm)である。
 第2支持部601BのX方向の幅(厚み)は、0.6(mm)である。
 第2羽根602Bの第6端部E6のY方向の寸法は、3.5(mm)である。
 第2羽根602Bの第4端部E4の幅は、1.8(mm)である。
 第1支持部601Aと第2支持部601Bとの間の第1間隔は、1.9(mm)である。
 第1羽根602Aの第1面S1の三角形の頂点角度は、27度である。
 図示は省略しているが、第2羽根602Bの第2面S2の三角形の頂点角度も、27度である。
 Y方向に対して第1面S1がなす角度θ1は、135度である。
 Y方向に対して第2面S2がなす角度θ2は、45度である。
 したがって、第1面S1と第2面S2とは直交するように交差している。
 第1熱交換器30は、隣接する1対の扁平管33として、第1扁平管33A及び第2扁平管33Bとを備えている。第2扁平管33Bは、直線状である。第2扁平管33Bは、第1扁平管33Aとの間に予め定められた第2間隔をあけて設けられている。第2扁平管33Bは、第1扁平管33Aと平行に設けられている。第2扁平管33Bは、第1扁平管33Aに対向して設けられている。
 ここで、渦発生装置60の羽根体602は、第1扁平管33Aと第2扁平管33Bとの間に収まるように配置されている。このように、羽根体602が配置されていることにより、渦流が各扁平管33の間に均等に流入し、熱交換性能を向上させることができる。したがって、渦発生装置60及び第1熱交換器30における圧力損失を抑制することができる。
 上記で寸法の説明をしたように、第1支持部601Aと第2支持部601Bとの間の第1間隔及び隣接する扁平管33の間の間隔(第2間隔)は、共に1.9(mm)で等しく、また、第1支持部601Aの厚み、第2支持部601Bの厚み及び扁平管33の断面短軸方向の幅は、共に0.6(mm)で等しい。したがって、第1支持部601AのY方向の延長上に第1扁平管33Aが配置され、且つ、第2支持部601BのY方向の延長上に第2扁平管33Bが配置される、という条件を満たしていれば、羽根体602は、第1扁平管33Aと第2扁平管33Bとの間に収まる。
 なお、第1扁平管33Aと第2扁平管33Bとの間に収まるように配置されていると説明したが、本実施の形態1では、第1扁平管33Aの軸方向に並ぶ複数の羽根体602を羽根体群WGとすると、単数の羽根体群WGが、第1扁平管33Aと第2扁平管33Bとの間に配置されている。
 なお、単数の羽根体群WGが、第1扁平管33Aと第2扁平管33Bとの間に配置されている態様に限定されるものではない。複数の羽根体群WGが、第1扁平管33Aから第2扁平管33Bに向かう方向に並ぶように、第1扁平管33Aと第2扁平管33Bとの間に配置されている態様であってもよい。言い換えると、羽根体群WGは、第1扁平管33Aと第2扁平管33Bとの間に、n列並ぶように配置されていてもよい。ここで、nは自然数である。nが2以上である場合には、X方向における両端の各羽根体602の第1支持体601の正面に、第1扁平管33A及び第2扁平管33Bが配置されている。つまり、X方向における一端に位置する羽根体602の第1支持部601Aは、Y方向の正面に第1扁平管33Aが位置している。また、X方向における他端に位置する羽根体602の第2支持部601Bは、Y方向の正面に第2扁平管33Bが位置している。
<渦発生装置60の変形例1>
 図5Fは、冷凍サイクル装置100が備える渦発生装置60の変形例1の説明図である。図5Fでは、(a)がこれまで説明した渦発生装置60の複数の羽根体602の配置を示し、(b)が渦発生装置60の変形例1を示しており、これまで説明してきた羽根体602(第1羽根体)と、この羽根体602とは形状が異なる羽根体(第2羽根体602SY)の配置例を示している。
 本変形例1では、2種類の形状の羽根体を含んでいる。つまり、渦発生装置60は、羽根体602(以下、羽根体602を第1羽根体とも称する)と、第1羽根体とは対称な形状を有する第2羽根体602SYとを含む。ここで、第2羽根体602SYは、第1支持部601Aと第2支持部601Bとの間の中間の位置を通り、第1支持部601Aに平行な仮想面を基準として、第1羽根体の第1羽根602A及び第2羽根602Bを対称移動させた形状となっている。
 変形例1では、第1羽根体及び第2羽根体602SYが千鳥状に配置されている。これにより、より効率的に、層流の空気流れに乱れを発生させ、層流の空気流れを渦流に変化させることができる。
<渦発生装置60の変形例2>
 図5Gは、冷凍サイクル装置100が備える渦発生装置60の変形例2の説明図である。変形例2では、1個の羽根体に含まれる羽根の数が1個である。
 図5Gでは、(a)が変形例2に係る羽根構造体600の斜視図を示し、(b)が変形例2に係る羽根構造体600の上面図を示し、(c)が変形例2に係る羽根構造体600の第2支持部601B側から見た側面図を示し、(d)が変形例2に係る羽根構造体600の正面図を示している。
 本変形例2において、1個の羽根体702は、板状部材で構成された羽根を1個備えている。具体的には、羽根体702は、羽根体602の第2羽根602Bに対応する羽根を備えていない。羽根体702の羽根は、第1羽根602Aと同じ構成であるため、説明は省略する。なお、羽根体702の羽根は第1羽根602Aと同じ構成であるため、説明の便宜上、図面中において、羽根体702の羽根も、第1羽根602Aと示している。
 羽根体702の羽根も、第1羽根602Aと同様に、一端部P1に対応する第1端部E1と、他端部P2に対応する第2端部E2と、第1支持部601Aに接続された第3端部E3と、空気流通方向に沿う面に対応する第1面S1と、第1面S1の反対側に形成された第1反対面S10とを含む。
<渦発生装置60の変形例3>
 図5Hは、冷凍サイクル装置100が備える渦発生装置60の変形例3の説明図である。変形例3では、羽根体が含む羽根の形状が三角形ではなく、四角形である。
 図5Hでは、(a)が変形例3に係る羽根構造体600の斜視図を示し、(b)が変形例3に係る羽根構造体600の上面図を示し、(c)が変形例3に係る羽根構造体600の第2支持部601B側から見た側面図を示し、(d)が変形例3に係る羽根構造体600の正面図を示している。
 図5Hに示すように、変形例3の羽根体802は、四角形状の第1羽根802Aと、四角形状の第2羽根802Bとを含む。第1羽根802A及び第2羽根802Bは、四角形状である点が異なり、その他の構成は、第1羽根602A及び第2羽根602Bと同様であるため、説明は省略する。変形例3は、変形例2と組み合わせることもできる。つまり、羽根体702の第1羽根602Aの形状を四角形状としてもよい。
 以上のように、冷凍サイクル装置100によれば、圧縮機10、第1熱交換器30、絞り装置40、および、第2熱交換器50により冷媒回路が形成され、第1熱交換器30の上流側に渦発生装置60を設置しているので、フィンレス熱交換器である第1熱交換器30の熱交換性能を向上させることができる。
 また、第1熱交換器30はフィンが設けられていないので、伝熱管とフィンとの間の接触熱抵抗、及び、フィン自体の熱伝導による抵抗がない分、熱交換性能が向上している。
 さらに、第1熱交換器30を蒸発器として機能させる場合には、結露水は重力方向に平行に配されている扁平管33に沿って流れ落ちることになる。したがって、冷凍サイクル装置100では、排水性が向上したものになる。排水性が向上しているため、たとえば冷凍サイクル装置100がデフロスト運転を実行している時も、第1熱交換器30の下部に氷が積層することを抑制することができる。
 なお、冷凍サイクル装置100のその他の例としては、給湯器や冷凍機、空調給湯複合機などがあり、いずれの場合も第1熱交換器30における熱交換性能を向上させることができる。
 また、冷凍サイクル装置100に使用する冷媒を特に限定するものではなく、R410A、R32、HFO1234yf等の冷媒を使用することができる。
 また、第2熱交換器50で熱交換させる流体としては空気および冷媒の例を示したが、これに限定するものではない。つまり、第2熱交換器50で熱交換させる流体は、第2熱交換器50の形態に応じて変化する。
 また、冷凍サイクル装置100については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒に油が溶ける、溶けないにかかわらず、どんな冷凍機油についても用いることができる。
 また、冷凍サイクル装置100は、流路切替装置20を設けて冷媒の流れを切り替え可能な構成を例に説明したが、流路切替装置20を設けず、第1熱交換器30が蒸発器としてのみ機能する暖房専用機として冷凍サイクル装置100を構成してもよい。
 さらに、第1熱交換器30だけでなく、第2熱交換器50をフィンレス熱交換器で構成し、第2熱交換器50の上流側に渦発生装置60を設置するようにしてもよい。
実施の形態2.
 図6は、本発明の実施の形態2に係る冷凍サイクル装置が備える第1熱交換器30及び渦発生装置60の構成例を示す側面図である。図7は、本発明の実施の形態2に係る冷凍サイクル装置が備える第1熱交換器30を蒸発器として用いる際の、第1熱交換器30及び渦発生装置60の温度を概略的に示す図である。図6及び図7に基づいて、本発明の実施の形態2に係る冷凍サイクル装置が備える第1熱交換器30及び渦発生装置60について具体的に説明する。なお、図6及び図7では、空気の流れを白抜き矢印で示している。
 本発明の実施の形態2に係る冷凍サイクル装置の基本的な構成は、発明の実施の形態1に係る冷凍サイクル装置100と同様である。また、本実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
 実施の形態1では、渦発生装置60が第1熱交換器30の上流に設置されている場合を例に挙げて説明したが、実施の形態2では、渦発生装置60が第1熱交換器30の上流側に設置され、かつ、距離xの第1隙間41を隔てて設置された状態を例に示している。つまり、渦発生装置60は、第1熱交換器30と非接触で設置されている。なお、図6及び図7に示すL1は渦発生装置60の厚み(渦発生装置60のY方向の距離)を表し、L2は扁平管33の断面長軸方向の距離(扁平管33のY方向の距離)を表している。
 第1熱交換器30と渦発生装置60との間に距離xの第1隙間41を設け、第1熱交換器30及び渦発生装置60を配置することにより、第1熱交換器30を蒸発器として用いた際、第1熱交換器30の扁平管33及び渦発生装置60における各位置の温度は、図7のようになる。
 第1熱交換器30を蒸発器として使用する場合、扁平管33(第1ヘッダー34及び第2ヘッダー35も含む)を流れる冷媒の温度が外気温度よりも低くなる。また、第1送風機31によって第1熱交換器30に供給された空気は、扁平管33によって冷却されていくため、下流側に行くほど温度が低くなる。ただし、扁平管33の表面温度は、扁平管33の内部を流れる冷媒の温度と同程度である。そして、冷媒の温度は、第1送風機31によって供給される空気の流れ方向(Y方向)において変化はほとんどない。そのため、扁平管33の表面温度は、第1送風機31によって供給される空気の流れ方向(Y方向)において一定である(図7の直線C)。
 第1熱交換器30と渦発生装置60とが接触している場合、渦発生装置60の表面温度は、扁平管33との接触面温度で扁平管33の表面温度に近い温度となり、空気流れ上流方向に向かって熱伝導により変化する。
 これにより、扁平管33の表面温度が空気の露点温度よりも低くなる部分が生じる。そうすると、第1熱交換器30はフィンレス熱交換器で構成されているものの、扁平管33の表面に水滴(露)が付着することになる。なお、扁平管33の表面に付着した水滴を結露水と称する。
 第1熱交換器30を蒸発器として使用する場合、扁平管33(第1ヘッダー34及び第2ヘッダー35も含む)を流れる冷媒の温度が外気温度よりも低くなる。これにより、扁平管33の表面温度が空気の露点温度よりも低くなる。そうすると、第1熱交換器30はフィンレス熱交換器で構成されているものの、扁平管33の表面に水滴(露)が付着することになる。なお、扁平管33の表面に付着した水滴を結露水と称する。
 そして、扁平管33を流れる冷媒の温度が外気温度よりも低く、かつ0℃以下の場合、扁平管33の表面に付着した結露水が氷結して霜が発生する。着露、着霜が発生すると、第1熱交換器30における空気の流れを阻害することになる。空気の流れが阻害されると、第1熱交換器30の熱交換性能が低下してしまう。
 加えて、実施の形態2に係る冷凍サイクル装置では、第1熱交換器30の上流に渦発生装置60が設置されている。ここで、第1熱交換器30の扁平管33と、渦発生装置60と、が接触している場合、つまり距離x=0の場合、熱伝導により、渦発生装置60の温度が扁平管33の温度と近くなってしまう。つまり、渦発生装置60の温度は、扁平管33を流れる冷媒によって低下し、図7に二点鎖線で示す直線Dのように、熱伝導により空気の流れ方向の上流に向かって上昇する状態となる。そうすると、第1熱交換器30だけでなく、渦発生装置60にも、着露、着霜が生じ、渦発生装置60における空気の流れを阻害する可能性が生じる。
 そこで、図6に示すように、実施の形態2に係る冷凍サイクル装置では、第1熱交換器30と渦発生装置60とを非接触とし、第1熱交換器30の扁平管33の温度が熱伝導により渦発生装置60に伝わらないようにしている。つまり、第1隙間41が形成されているため、渦発生装置60は、扁平管33を流れる冷媒によってほとんど冷却されない。このため、渦発生装置60の温度は、図7に実線で示す直線Eのように、渦発生装置60は、外気温度に近い温度となり、着露、着霜が発生し難いものとなる。
 以上のように、第1熱交換器30を蒸発器として用いた際、第1隙間41により渦発生装置60に着霜が発生しづらい。したがって、実施の形態2では、渦発生装置60で発生させた渦流をより長期に渡って連続的に安定して第1熱交換器30に供給することができるので、第1熱交換器30の熱交換性能をさらに向上させることができる。
 距離xは、扁平管33または渦発生装置60の表面に発生することが想定される着露、着霜の粒径を考慮した値として設定する。例えば、距離xは、1mm以上5mm以下が好ましい。これは、距離xが大きすぎると、渦流が第1熱交換器30に到達せず、距離xが小さすぎると、第1熱交換器30で発生した結露水が渦発生装置60に付着してしまう可能性が生じるからである。
 第1熱交換器30及び渦発生装置60は、例えば、第1熱交換器30及び渦発生装置60を搭載するユニットの設置面(図6に示す設置面81等)において、両者を距離xを隔てて設置するとよい。
 また、第1熱交換器30及び渦発生装置60の枠体を共通として第1熱交換器30と渦発生装置60とをユニット化する場合、枠体において距離xを確保するようにしてもよい。この場合、枠体を、第1熱交換器30の扁平管33及び渦発生装置60よりも熱伝導率が低い材料、例えば樹脂等で形成するとよい。
 あるいは、第1熱交換器30及び渦発生装置60の少なくとも1つの対面側に、第1熱交換器30及び渦発生装置60とは別部品であるスペーサー(例えば、凸部、突起部等)を設け、距離xを確保するようにしてもよい。つまり、第1熱交換器30と渦発生装置60との間にスペーサーを挟み込むことにより、第1熱交換器30と渦発生装置60との間に第1隙間41を形成している。
 このスペーサーは、第1熱交換器30の扁平管33及び渦発生装置60よりも熱伝導率が低い材料、例えば樹脂等で形成するとよい。また、スペーサーは、第1熱交換器30及び渦発生装置60とは別部品としての個数、大きさ、材質等を特に限定するものではない。
 また、第1熱交換器30及び渦発生装置60の少なくとも1つの対面側に周状のスペーサーを設け、距離xを確保するようにしてもよい。
 第1熱交換器30と渦発生装置60との間にスペーサーを挟み込んで第1隙間41を形成することにより、第1隙間41の距離xの管理が容易となる。すなわち、第1熱交換器30及び渦発生装置60の設置誤差等によって第1隙間41の大きさが設定値からずれることを防止できる。そして、第1熱交換器30と渦発生装置60との間の第1隙間41の距離xを正確に設定することにより、渦発生装置60によって所望の状態に乱れた気流を第1熱交換器30に供給でき、第1熱交換器30の熱交換性能をより向上させることができる。
 また、スペーサーを第1熱交換器30及び渦発生装置60よりも熱伝導率が低い材料で形成することにより、第1熱交換器30を蒸発器として用いた際に、スペーサーを介して渦発生装置60が冷却されることを抑制できる。このため、スペーサーを介して第1熱交換器30と渦発生装置60とが熱的に接続されているとしても、渦発生装置60に着霜が発生しづらい。したがって、本実施の形態2では、渦発生装置60で渦を発生させた気流をより長期に渡って連続的に安定して第1熱交換器30に供給することができるので、第1熱交換器30の熱交換性能をさらに向上させることができる。
 なお、スペーサーを渦発生装置60との一体成形品にしてもよい。例えば、渦発生装置60の第1熱交換器30側の端部の一部を第1熱交換器30側に突出させ、該突出部分をスペーサーとしてもよい。また例えば、スペーサーを第1熱交換器30との一体成形品にしてもよい。つまり、第1熱交換器30の渦発生装置60側の端部の一部を渦発生装置60側に突出させ、該突出部分をスペーサーとしてもよい。
 このようにスペーサーを構成しても、第1熱交換器30と渦発生装置60との間の第1隙間41の距離xを正確に設定することができる。したがって、渦発生装置60によって所望の状態に乱れた気流を第1熱交換器30に供給でき、第1熱交換器30の熱交換性能をより向上させることができる。また、スペーサーを渦発生装置60又は第1熱交換器30の一部で構成した場合、スペーサー部分において第1熱交換器30と渦発生装置60とが接触することとなるが、接触範囲を数カ所に特定できるため、渦発生装置60が冷却されづらい。つまり、渦発生装置60に着霜が発生しづらい。
実施の形態3.
 図8は、本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器30及び渦発生装置60の構成例を示す斜視図である。図9は、本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器30及び渦発生装置60の構成例を示す側面図である。図8及び図9に基づいて、本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器30及び渦発生装置60の一例について具体的に説明する。
 なお、図8では、空気の流れを白抜き矢印で示し、図9では、空気の流れを実線矢印で示している。また、図9では、渦発生装置60の下流側で渦流が発生していることを模式的に示している。
 また、本発明の実施の形態3に係る冷凍サイクル装置の基本的な構成は、発明の実施の形態1に係る冷凍サイクル装置100と同様である。また、本実施の形態3では実施の形態1、2との相違点を中心に説明し、実施の形態1、2と同一部分には、同一符号を付して説明を省略するものとする。
 実施の形態2では、渦発生装置60が第1熱交換器30の上流側に設置され、かつ、第1隙間41(距離x)を隔てて設置された状態を例に挙げて説明したが、実施の形態3では、1つの第1熱交換器30と1つの渦発生装置60とを1つの組として、その組を空気の流れ方向に複数列並べて配置している。つまり、第1熱交換器30と渦発生装置60が組み合わされた組のそれぞれにおいて、渦発生装置60が第1熱交換器30の上流側に設置されるようになっている。
 図9では、第1熱交換器30と渦発生装置60とで構成される1つの組を熱交換部として、風上側から熱交換部80A、熱交換部80Bとして図示している。そして、熱交換部80Aを構成している第1熱交換器30及び渦発生装置60を、第1熱交換器30A及び渦発生装置60A、熱交換部80Bを構成している第1熱交換器30及び渦発生装置60を、第1熱交換器30B及び渦発生装置60Bとして図示している。
 なお、以下の説明において、熱交換部80A、及び、熱交換部80Bをまとめて熱交換ユニット80と称するものとする。
 熱交換ユニット80における空気の流れについて説明する。
 第1送風機31が回転することにより空気が熱交換ユニット80に供給される。この空気は、まず熱交換部80Aに供給される。熱交換部80Aでは、第1送風機31により供給された空気が、第1熱交換器30Aに流入する前に渦発生装置60Aを通過することになる。渦発生装置60Aでは、層流の空気流れを乱流に変化させる。
 渦流に変化した空気流れは、第1熱交換器30Aを通過した後、熱交換部80Bに供給される。熱交換部80Aを通過する空気は、第1熱交換器30Aを通過する際に、整流され、渦流が減少または消滅してしまう。このような場合、熱交換部80Bにおいては、渦発生装置60による熱交換性能が得られない可能性が生じる。そこで、熱交換部80Bにおいても、第1熱交換器30Bの上流側に渦発生装置60Bを設置し、熱交換部80Aから流れてきた空気を、渦発生装置60Bにより渦流とするようにしている。
 これを熱交換ユニット80の全体で実行することにより、熱交換ユニット80の全体で渦発生装置60による熱交換性能の促進を図ることができる。つまり、熱交換ユニット80を第1熱交換器30及び渦発生装置60が組み合わされた熱交換部の多列構成とした場合であっても、全部の組で渦発生装置60を設置したことによる熱交換性能の進効果を得ることが可能になる。
 図10は、本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器30及び渦発生装置60の更に別の構成例を示す斜視図である。図11は、本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器30及び渦発生装置60の他の更に構成例を示す分解斜視図である。図12は、本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器30及び渦発生装置60の更に別の構成例を示す側面図である。図10~図12に基づいて、本発明の実施の形態3に係る冷凍サイクル装置が備える第1熱交換器30及び渦発生装置60の更に別の一例について具体的に説明する。
 図8及び図9では、熱交換ユニット80を熱交換部の2列構成とした場合を例に示したが、図10~図12では、熱交換ユニット80を熱交換部の3列以上の構成とした場合を例に示している。
 図12では、第1熱交換器30と渦発生装置60とで構成される1つの組を熱交換部として、風上側から熱交換部80A、熱交換部80B・・・熱交換部80Nとして図示している。そして、熱交換部80Nを構成している第1熱交換器30及び渦発生装置60を、第1熱交換器30N及び渦発生装置60Nとして図示している。つまり、熱交換部80Bと熱交換部80Nとの間に、熱交換部を何組設けてもよい。
 図10及び図12に示すように、熱交換ユニット80を熱交換部の3列以上の多列構成とした場合であっても、それぞれにおいて渦発生装置60が第1熱交換器30の上流側に設置されているので、熱交換ユニット80の全体で渦発生装置60による熱交換性能の促進を図ることができる。
 ところで、渦発生装置60の着露、着霜の対策については、実施の形態2で示した距離xを第1熱交換器30と渦発生装置60との間に設けて実行する。つまり、熱交換ユニット80を構成している全部の熱交換部における第1熱交換器30と渦発生装置60とを非接触として、第1熱交換器30の扁平管33の温度が熱伝導により渦発生装置60に伝わらないようにする。
 ただし、全部の距離xを同じ値としてもよく、下流に設置されるものほど距離xを大きく(または小さく)してもよい。つまり、距離xの値は、全部を一致させてもよく、全部を異ならせてもよく、一部を一致させてもよい。
 また、必ずしも、熱交換ユニットの全部の第1熱交換器30の上流側に渦発生装置60を設置しなくてもよく、少なくとも上流側から2つの熱交換部の第1熱交換器30の上流側に渦発生装置60が設置されていればよい。
実施の形態4.
 上述したように、第1熱交換器30及び渦発生装置60に空気を供給する第1送風機31としては、例えば、プロペラファン、クロスフローファン、シロッコファン及びターボファン等、種々の種類のファンを用いることができる。この際、比較的整流された気流を渦発生装置60に供給した方が、渦発生装置60で安定した渦を発生させることができ、第1熱交換器30の熱交換性能が向上する。そこで、本実施の形態4では、第1送風機31の種類毎に、第1熱交換器30及び渦発生装置60に対する好適な配置例について説明する。なお、本実施の形態4において、特に記述しない項目については実施の形態1~3と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図13は、本発明の実施の形態4に係る冷凍サイクル装置の構成例を示す側面図である。なお、図13に示す白抜き矢印は、第1送風機31によって供給される空気の流れ方向を示している。また、図13では、本発明の実施の形態4に係る冷凍サイクル装置を冷凍サイクル装置100Aとして図示している。
 図13に示す冷凍サイクル装置100Aは、第1送風機31としてプロペラファン31Aを採用している。プロペラファン31Aの吹き出し側の気流は、プロペラファン31Aの回転軸を中心に旋回しながら進んでいく。一方、プロペラファン31Aの吸い込み側の気流は、吹き出し側の気流と比べ、整流されたものとなる。
 このため、第1送風機31としてプロペラファン31Aを採用する場合、プロペラファン31Aが供給する空気の流れ方向において、第1熱交換器30の下流側にプロペラファン31Aを配置することが好ましい。このようにプロペラファン31Aを配置することにより、比較的整流された気流を渦発生装置60に供給できるため、渦発生装置60で安定した渦を発生させることができ、第1熱交換器30の熱交換性能を向上させることができる。
 図14は、図13で示した冷凍サイクル装置100Aにおいて、渦発生装置60に流入する気流の速度分布を追記した図である。プロペラファン31Aが供給する空気の流れ方向において、第1熱交換器30の下流側にプロペラファン31Aを配置することにより、比較的整流された気流を渦発生装置60に供給することができる。しかしながら、渦発生装置60に流入する気流は、渦発生装置60の領域毎に速度が異なってくる。
 詳しくは、渦発生装置60においてプロペラファン31Aの外周側に吸引される気流が通る領域は、プロペラファン31Aの中心部に吸引される気流が通る領域と比べ、気流の速度つまり風速が遅い領域となる。そして、風速が遅い領域は、該領域よりも風速が速い領域と比べ、渦が発生しづらい。つまり、渦発生装置60における風速が遅い領域を通過した気流は渦の発生度合いが少なく、該気流が流れる第1熱交換器30の領域は、風速が速い気流が流れる第1熱交換器30の領域と比べ、熱交換性能が低下してしまう。
 そこで、図14示すように、渦発生装置60における一部の領域に、該領域よりも風速の速い領域と比べて、羽根構造体600を多く設けてもよい。このように構成することにより、渦発生装置60における風速が遅い領域においても、風速が速い領域と同等の渦を発生させることができ、第1熱交換器30の熱交換性能をより向上させることができる。
 図15は、本発明の実施の形態4に係る冷凍サイクル装置の別の構成例を示す側面図である。なお、図15に示す白抜き矢印は、第1送風機31によって供給される空気の流れ方向を示している。また、図15では、本発明の実施の形態4に係る冷凍サイクル装置を冷凍サイクル装置100Bとして図示している。
 図15に示す冷凍サイクル装置100Bは、第1送風機31としてクロスフローファン31Bを採用している。詳しくは、図15に示す冷凍サイクル装置100Bは、吹出口91が形成された筐体90を備えている。そして、クロスフローファン31Bは、吹出口91の上方を覆うように、筐体90内に収容されている。このように配置されたクロスフローファン31Bが回転することにより、クロスフローファン31Bの上方部分から空気が吸い込まれ、クロスフローファン31Bの下方部分から吹出口91に空気が吹き出される。この際、クロスフローファン31Bの吸い込み側の気流は、比較的整流されたものとなる。
 このため、第1送風機31としてクロスフローファン31Bを採用する場合、クロスフローファン31Bが供給する空気の流れ方向において、第1熱交換器30の下流側にクロスフローファン31Bを配置することが好ましい。このようにクロスフローファン31Bを配置することにより、比較的整流された気流を渦発生装置60に供給できるため、渦発生装置60で安定した渦を発生させることができ、第1熱交換器30の熱交換性能を向上させることができる。
 ここで、第1送風機31としてクロスフローファン31Bを採用する場合においても、渦発生装置60に流入する気流は、渦発生装置60の領域毎に速度が異なってくる。このため、図15に示す冷凍サイクル装置100Bにおいても、渦発生装置60における一部の領域に、該領域よりも風速の速い領域と比べて、羽根構造体600を多く設けることが好ましい。これにより、渦発生装置60における風速が遅い領域においても、風速が速い領域と同等の渦を発生させることができ、第1熱交換器30の熱交換性能をより向上させることができる。
 図16は、本発明の実施の形態4に係る冷凍サイクル装置の別の構成例を示す平面図である。また、図17は、図16に示す本発明の実施の形態4に係る冷凍サイクル装置の別の構成例を示す側面図である。なお、図16及び図17に示す白抜き矢印は、第1送風機31によって供給される空気の流れ方向を示している。また、図16及び図17では、シロッコファン31Cを収納しているケーシング95を断面で示している。さらに、図16及び図17では、本発明の実施の形態4に係る冷凍サイクル装置を冷凍サイクル装置100Cとして図示している。
 図16及び図17に示す冷凍サイクル装置100Cは、第1送風機31としてシロッコファン31Cを採用している。詳しくは、図16及び図17に示すように、シロッコファン31Cは、例えばケーシング95に収納されている。このケーシング95の下面には、シロッコファン31Cの回転軸と対向する位置に、吸込口93が形成されている。また、ケーシング95の側面には、シロッコファン31Cの外周面と対向して、吹出口94が形成されている。シロッコファン31Cが回転することにより、吸込口93からケーシング95内に空気が吸い込まれ、吹出口94からケーシング95外へ空気が吹き出される。この際、シロッコファン31Cの吹き出し側の気流は、比較的整流されたものとなる。
 このため、第1送風機31としてシロッコファン31Cを採用する場合、シロッコファン31Cが供給する空気の流れ方向において、渦発生装置60の上流側にシロッコファン31Cを配置することが好ましい。このようにシロッコファン31Cを配置することにより、比較的整流された気流を渦発生装置60に供給できるため、渦発生装置60で安定した渦を発生させることができ、第1熱交換器30の熱交換性能を向上させることができる。
 ここで、第1送風機31としてシロッコファン31Cを採用する場合においても、渦発生装置60に流入する気流は、渦発生装置60の領域毎に速度が異なってくる。このため、図16及び図17に示す冷凍サイクル装置100Cにおいても、渦発生装置60における一部の領域に、該領域よりも風速の速い領域と比べて、羽根構造体600を多く設けることが好ましい。これにより、渦発生装置60における風速が遅い領域においても、風速が速い領域と同等の渦を発生させることができ、第1熱交換器30の熱交換性能をより向上させることができる。
 図18は、本発明の実施の形態4に係る冷凍サイクル装置の別の構成例を示す平面図である。また、図19は、図18に示す本発明の実施の形態4に係る冷凍サイクル装置の別の構成を示す側面図である。なお、図18及び図19に示す白抜き矢印は、第1送風機31によって供給される空気の流れ方向を示している。また、図18及び図19では、本発明の実施の形態4に係る冷凍サイクル装置を冷凍サイクル装置100Dとして図示している。
 図18及び図19に示す冷凍サイクル装置100Dは、第1送風機31としてターボファン31Dを採用している。ターボファン31Dは、該ターボファン31Dが回転することにより、該ターボファン31Dの回転軸方向に空気を吸い込む。また、ターボファン31Dは、該ターボファン31Dの外周側に空気を吹き出す。この際、ターボファン31Dの吹き出し側の気流は、比較的整流されたものとなる。
 このため、第1送風機31としてターボファン31Dを採用する場合、ターボファン31Dが供給する空気の流れ方向において、渦発生装置60の上流側にターボファン31Dを配置することが好ましい。このため、図18及び図19に示す冷凍サイクル装置100Dにおいては、ターボファン31Dの外周側を囲むように、渦発生装置60が配置されている。また、この渦発生装置60の外周側を囲むように、第1熱交換器30が配置されている。このようにターボファン31Dを配置することにより、比較的整流された気流を渦発生装置60に供給できるため、渦発生装置60で安定した渦を発生させることができ、第1熱交換器30の熱交換性能を向上させることができる。
 ここで、第1送風機31としてターボファン31Dを採用する場合においても、渦発生装置60に流入する気流は、渦発生装置60の領域毎に速度が異なってくる。このため、図18及び図19に示す冷凍サイクル装置100Dにおいても、渦発生装置60における一部の領域に、該領域よりも風速の速い領域と比べて、羽根構造体600を多く設けることが好ましい。これにより、渦発生装置60における風速が遅い領域においても、風速が速い領域と同等の渦を発生させることができ、第1熱交換器30の熱交換性能をより向上させることができる。
 10 圧縮機、20 流路切替装置、30 第1熱交換器、30A 第1熱交換器、30B 第1熱交換器、30N 第1熱交換器、31 第1送風機、31A プロペラファン、31B クロスフローファン、31C シロッコファン、31D ターボファン、32 第1送風機用モータ、33 扁平管、33A 第1扁平管、33B 第2扁平管、33a 流体流路、34 第1ヘッダー、35 第2ヘッダー、40 絞り装置、41 第1隙間、50 第2熱交換器、51 第2送風機、52 第2送風機用モータ、60 渦発生装置、60A 渦発生装置、60B 渦発生装置、60N 渦発生装置、70 冷媒配管、80 熱交換ユニット、80A 熱交換部、80B 熱交換部、80N 熱交換部、81 設置面、90 筐体、91 吹出口、93 吸込口、94 吹出口、95 ケーシング、100 冷凍サイクル装置、100A 冷凍サイクル装置、100B 冷凍サイクル装置、100C 冷凍サイクル装置、100D 冷凍サイクル装置、600 羽根構造体、601 第1支持体、601A 第1支持部、601B 第2支持部、602 羽根体、602A 第1羽根、602B 第2羽根、602SY 第2羽根体、603 第2支持体、702 羽根体、802 羽根体、802A 第1羽根、802B 第2羽根、A1 扁平管の縦幅、A2 扁平管の横幅、CL 開口部(第2隙間)、DP ピッチ、Dr1 第1方向、Dr2 第2方向、E1 第1端部、E2 第2端部、E3 第3端部、E4 第4端部、E5 第5端部、E6 第6端部、L1 渦発生装置の厚み、L2 扁平管の断面長軸方向の距離、P1 一端部、P2 他端部、S1 第1面、S10 第1反対面、S2 第2面、S20 第2反対面、WG 羽根体群。

Claims (10)

  1.  フィンレス熱交換器であり、重力方向に沿って伸びる複数の伝熱管を有している第1熱交換器と、
     前記第1熱交換器に空気を供給する送風機と、
     前記第1熱交換器の上流側に設置され、前記送風機によって前記第1熱交換器に供給される空気を渦流とする渦発生装置と、を備えた
     冷凍サイクル装置。
  2.  前記渦発生装置は、
     前記第1熱交換器と第1隙間を空けて設置されている
     請求項1に記載の冷凍サイクル装置。
  3.  前記第1隙間は、
     1mm以上5mm以下の範囲で設定される
     請求項2に記載の冷凍サイクル装置。
  4.  前記第1熱交換器と前記渦発生装置とを1つの組とした熱交換部を、空気の流れ方向に複数列並べた
     請求項1~3のいずれか一項に記載の冷凍サイクル装置。
  5.  前記伝熱管は、
     断面が扁平形状の扁平管であり、
     前記扁平管は、
     前記扁平形状の断面長軸方向が空気の流れと平行に配置されている
     請求項1~4のいずれか一項に記載の冷凍サイクル装置。
  6.  前記渦発生装置は、
     支持体と、
     前記支持体に設けられた羽根体と、を有し、
     前記支持体と前記羽根体との間には、前記送風機により前記第1熱交換器に供給される空気が流通する第2隙間が形成されている
     請求項1~5のいずれか一項に記載の冷凍サイクル装置。
  7.  前記送風機を、前記第1熱交換器の上流側または下流側に設置した
     請求項1~6のいずれか一項に記載の冷凍サイクル装置。
  8.  前記送風機がプロペラファン又はクロスフローファンで構成されている場合、
     前記送風機は、
     前記第1熱交換器の下流側に設置される
     請求項7に記載の冷凍サイクル装置。
  9.  前記送風機がシロッコファン又はターボファンで構成されている場合、
     前記送風機は、
     前記第1熱交換器の上流側に設置される
     請求項7に記載の冷凍サイクル装置。
  10.  圧縮機、前記第1熱交換器、絞り装置、第2熱交換器を冷媒配管で接続した冷媒回路を有し、
     前記第1熱交換器は、
     蒸発器として利用される
     請求項1~9のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2016/079499 2016-10-04 2016-10-04 冷凍サイクル装置 WO2018066066A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/079499 WO2018066066A1 (ja) 2016-10-04 2016-10-04 冷凍サイクル装置
JP2018543512A JPWO2018066066A1 (ja) 2016-10-04 2016-10-04 冷凍サイクル装置
EP16918265.6A EP3524915B1 (en) 2016-10-04 2016-10-04 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079499 WO2018066066A1 (ja) 2016-10-04 2016-10-04 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2018066066A1 true WO2018066066A1 (ja) 2018-04-12

Family

ID=61831194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079499 WO2018066066A1 (ja) 2016-10-04 2016-10-04 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3524915B1 (ja)
JP (1) JPWO2018066066A1 (ja)
WO (1) WO2018066066A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021130910A1 (ja) 2019-12-25 2021-07-01 三菱電機株式会社 熱交換器ユニット及び冷凍サイクル装置
US20220053673A1 (en) * 2017-06-30 2022-02-17 General Electric Company Heat dissipation system and an associated method thereof
WO2023105703A1 (ja) * 2021-12-09 2023-06-15 三菱電機株式会社 除湿装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139356U (ja) * 1978-03-22 1979-09-27
JPS5556366U (ja) * 1978-10-12 1980-04-16
JPS57134698A (en) * 1981-02-13 1982-08-19 Toshiba Corp Heat exchanging device
JPS58165570U (ja) * 1982-04-28 1983-11-04 株式会社日立製作所 クロスフイン形熱交換器
JPS58167824U (ja) * 1982-04-30 1983-11-09 三洋電機株式会社 熱交換ユニツト
JPS6336887U (ja) * 1986-08-27 1988-03-09
JP2002115934A (ja) * 2000-10-06 2002-04-19 Denso Corp 蒸発器および冷凍機
JP2007040611A (ja) * 2005-08-03 2007-02-15 Denso Corp 蒸気圧縮式冷凍サイクル装置
JP2009079795A (ja) * 2007-09-25 2009-04-16 Calsonic Kansei Corp 熱交換器
JP2013019596A (ja) * 2011-07-11 2013-01-31 Mitsubishi Electric Corp 熱交換器、室内機、および室外機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105788U (ja) * 1979-01-11 1980-07-24
JP3256056B2 (ja) * 1993-11-05 2002-02-12 株式会社日立製作所 空気調和機のスペーサ及び空気調和機
JP3358371B2 (ja) * 1995-03-13 2002-12-16 三菱電機株式会社 熱交換器
JP2001141383A (ja) * 1999-11-18 2001-05-25 Sharp Corp 熱交換器
JP4100257B2 (ja) * 2003-05-29 2008-06-11 株式会社デンソー 空調用熱交換器および車両用空調装置
JP2014194294A (ja) * 2013-03-28 2014-10-09 Inaba Denki Sangyo Co Ltd 熱交換器とそれを用いた空調装置及び熱交換器製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139356U (ja) * 1978-03-22 1979-09-27
JPS5556366U (ja) * 1978-10-12 1980-04-16
JPS57134698A (en) * 1981-02-13 1982-08-19 Toshiba Corp Heat exchanging device
JPS58165570U (ja) * 1982-04-28 1983-11-04 株式会社日立製作所 クロスフイン形熱交換器
JPS58167824U (ja) * 1982-04-30 1983-11-09 三洋電機株式会社 熱交換ユニツト
JPS6336887U (ja) * 1986-08-27 1988-03-09
JP2002115934A (ja) * 2000-10-06 2002-04-19 Denso Corp 蒸発器および冷凍機
JP2007040611A (ja) * 2005-08-03 2007-02-15 Denso Corp 蒸気圧縮式冷凍サイクル装置
JP2009079795A (ja) * 2007-09-25 2009-04-16 Calsonic Kansei Corp 熱交換器
JP2013019596A (ja) * 2011-07-11 2013-01-31 Mitsubishi Electric Corp 熱交換器、室内機、および室外機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053673A1 (en) * 2017-06-30 2022-02-17 General Electric Company Heat dissipation system and an associated method thereof
US11997839B2 (en) * 2017-06-30 2024-05-28 Ge Grid Solutions Llc Heat dissipation system and an associated method thereof
WO2021130910A1 (ja) 2019-12-25 2021-07-01 三菱電機株式会社 熱交換器ユニット及び冷凍サイクル装置
WO2023105703A1 (ja) * 2021-12-09 2023-06-15 三菱電機株式会社 除湿装置

Also Published As

Publication number Publication date
EP3524915A1 (en) 2019-08-14
JPWO2018066066A1 (ja) 2019-06-24
EP3524915B1 (en) 2021-12-15
EP3524915A4 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2013160957A1 (ja) 熱交換器、室内機及び冷凍サイクル装置
JP2011112303A (ja) 空調室外機
JP6223596B2 (ja) 空気調和装置の室内機
WO2013084397A1 (ja) 空気調和機
WO2018066066A1 (ja) 冷凍サイクル装置
JP2012026615A (ja) 室外機及びこの室外機を備えた冷凍サイクル装置
JP6466047B1 (ja) 熱交換器及び空気調和装置
WO2018066067A1 (ja) 渦発生装置及び冷凍サイクル装置
EP3524917B1 (en) Refrigeration cycle device
WO2016071945A1 (ja) 空気調和装置の室内機
JP2011064338A (ja) 空気調和機
JP6302361B2 (ja) 空気調和機
JP6230852B2 (ja) 空気調和機及び空気調和機用熱交換器
JP6316458B2 (ja) 空気調和装置
CN107923675B (zh) 空调装置的室外机
JP2017116122A (ja) 熱交換装置
JP6486718B2 (ja) 熱交換器
JP2015169358A (ja) 熱交換器
JP2014047959A (ja) 熱交換器及びそれを搭載した冷凍サイクル装置
WO2020012548A1 (ja) 熱交換器、熱交換器ユニット及び冷凍サイクル装置
JP7112168B2 (ja) 熱交換器及び冷凍サイクル装置
JP2020106267A (ja) 冷凍サイクル装置
WO2020012524A1 (ja) 熱交換器ユニット及び冷凍サイクル装置
WO2013183090A1 (ja) 空気調和装置の室外ユニット及びそれを備えた空気調和装置
JPWO2016002015A1 (ja) 空気調和機の室内ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016918265

Country of ref document: EP

Effective date: 20190506