WO2018066042A1 - 変換装置、機器及び制御方法 - Google Patents

変換装置、機器及び制御方法 Download PDF

Info

Publication number
WO2018066042A1
WO2018066042A1 PCT/JP2016/079350 JP2016079350W WO2018066042A1 WO 2018066042 A1 WO2018066042 A1 WO 2018066042A1 JP 2016079350 W JP2016079350 W JP 2016079350W WO 2018066042 A1 WO2018066042 A1 WO 2018066042A1
Authority
WO
WIPO (PCT)
Prior art keywords
duty ratio
value
conversion
correction
phases
Prior art date
Application number
PCT/JP2016/079350
Other languages
English (en)
French (fr)
Inventor
哲 橋野
小松 正明
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US16/338,755 priority Critical patent/US11349395B2/en
Priority to CN201680089806.XA priority patent/CN109792206B/zh
Priority to JP2018543498A priority patent/JPWO2018066042A1/ja
Priority to PCT/JP2016/079350 priority patent/WO2018066042A1/ja
Publication of WO2018066042A1 publication Critical patent/WO2018066042A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a conversion device, a device, and a control method.
  • Patent Document 1 describes a method and apparatus for balancing the load distribution of power-connected semiconductor modules connected in parallel in a converter that performs voltage conversion.
  • the turn-on and turn-off times of the switches of each module are during switching. are set so that a uniform current load is obtained in all modules.
  • the actual current value of each module is measured as an actual load value, and the average value of the measured actual current is set as a desired current value for each module. Based on the difference from the actual current value, the level of the gate signal to each switch is increased or decreased.
  • Patent Document 2 Patent Document 3
  • Patent Document 4 Patent Document 4
  • the level of the gate signal is increased or decreased based on the difference between the actual current value of each module and the average value of these actual currents. If it becomes 0, the converter comprised from the power semiconductor module connected in parallel will become unable to perform the voltage conversion which is an original function efficiently.
  • An object of the present invention is to provide a conversion device, a device, and a control method capable of reducing a phase current drift between a plurality of phases without affecting the efficiency of voltage conversion, which is an original function.
  • the present invention provides the following aspects.
  • the first aspect is A conversion unit capable of voltage conversion of power discharged from a power source (for example, a battery 105 in an embodiment described later) or power charged in the power source, and a sensor (for example, a current value of a phase current flowing through the conversion unit) , A phase current sensor 1151, 1152) in a later-described embodiment, and a conversion module in which the plurality of phases are electrically connected in parallel (for example, the VCU 111 in the later-described embodiment)
  • a control unit for example, ECUs 113 and 213 in the embodiments described later
  • the controller is A first determining unit that determines a common basic duty ratio for all of the plurality of phases in which the input or output of the conversion module becomes a target voltage or target current (for example, basic control units 121 and 221 in the embodiments described later) )
  • a second determination unit for example, equalization
  • the second aspect is A conversion device according to a first aspect,
  • the absolute value of the sum of the individual correction duty ratios for the plurality of conversion units is not more than a predetermined value.
  • the third aspect is A conversion device according to a second aspect, The sum of the individual correction duty ratios for the plurality of conversion units is zero.
  • the fourth aspect is A conversion device according to any one of the first to third aspects,
  • the second determining unit determines the correction duty ratio whose absolute value is within an upper limit value or lower limit value smaller than the basic duty ratio.
  • the fifth aspect is A conversion device according to a fourth aspect,
  • the absolute value of the upper limit value or the lower limit value is a value equal to or greater than the maximum value of the correction duty ratio determined from the difference between current values that can be normally output by all of the sensors included in the plurality of phases.
  • the sixth aspect is A conversion device according to a fourth aspect,
  • the absolute value of the upper limit value or the lower limit value is equal to or less than the minimum value of the correction duty ratio determined from the difference between current values that can be output when some of the sensors included in the plurality of phases are abnormal. Value.
  • the seventh aspect is A conversion device according to a fourth aspect,
  • the absolute value of the upper limit value or the lower limit value is equal to or greater than the maximum value of the correction duty ratio determined from the difference between current values that can be normally output by all of the sensors included in the plurality of phases, and the plurality Is a value equal to or less than the minimum value of the correction duty ratio determined from the difference between current values that can be output when a part of the sensor included in the phase is abnormal.
  • the eighth aspect is A conversion device according to a seventh aspect,
  • the absolute value of the upper limit value or the lower limit value is closer to the maximum value than the minimum value.
  • the ninth aspect is A conversion unit capable of voltage conversion of power discharged from a power source (for example, a battery 105 in an embodiment described later) or power charged in the power source, and a sensor (for example, a current value of a phase current flowing through the conversion unit)
  • a conversion module having two phases having phase current sensors 1151 and 1152 in an embodiment described later, and the two phases electrically connected in parallel (for example, VCU 111 in an embodiment described later) )
  • a control unit for example, ECUs 113 and 213 in the embodiments described later
  • the controller is A first determination unit that determines a common basic duty ratio for all of the plurality of phases in which the output of the conversion module is a target voltage or a target current (for example, basic control units 121 and 221 in embodiments described later);
  • a second determination unit (for example, equalization in an embodiment described later) that determines a correction duty ratio that corrects the basic duty ratio by including at
  • Control units 125 and 225 an upper limit limiting unit 227), A generation unit that generates the control signal based on the basic duty ratio and the correction duty ratio (for example, control signal generation units 127 and 229 in the embodiments described later), The second determination unit determines the correction duty ratio based on a difference between a plurality of phase currents flowing through the two conversion units,
  • the basic duty ratio is a conversion device that is equal to or greater than an absolute value of the correction duty ratio.
  • the tenth aspect is A device comprising the conversion device according to any one of the first to ninth aspects.
  • the eleventh aspect is A conversion unit capable of voltage conversion of power discharged from a power source (for example, a battery 105 in an embodiment described later) or power charged in the power source, and a sensor (for example, a current value of a phase current flowing through the conversion unit) , A phase current sensor 1151, 1152) in a later-described embodiment, and a conversion module in which the plurality of phases are electrically connected in parallel (for example, the VCU 111 in the later-described embodiment)
  • a control method for a conversion device comprising: control units (for example, ECUs 113 and 213 in embodiments described later) that respectively control a plurality of the conversion units according to a control signal generated based on a predetermined duty ratio, Determining a common basic duty ratio for all of the plurality of phases at which the output of the conversion module is a target voltage or target current; Based on the difference between the plurality of phase currents respectively flowing through the plurality of conversion units, the plurality of conversion units include at least one positive value and one
  • the twelfth aspect is A conversion unit capable of voltage conversion of power discharged from a power source (for example, a battery 105 in an embodiment described later) or power charged in the power source, and a sensor (for example, a current value of a phase current flowing through the conversion unit)
  • a conversion module having two phases having phase current sensors 1151 and 1152 in an embodiment described later, and the two phases electrically connected in parallel (for example, VCU 111 in an embodiment described later) )
  • a control method for a conversion device comprising: a control unit (for example, ECUs 113 and 213 in the embodiments described later) that respectively control the two conversion units by a control signal generated based on a predetermined duty ratio, Determining a common basic duty ratio for all of the two phases at which the output of the conversion module is a target voltage or target current; Individual correction based on a difference between two phase currents respectively flowing through the two conversion units, the positive value and the negative value being included for the two conversion units, and an absolute value being equal to or less
  • the correction duty ratio for balancing the phase current between the plurality of phases includes at least one positive value and one negative value.
  • the correction duty ratio of each phase cancels each other. For this reason, the drift of the phase current between a plurality of phases can be reduced in a state where the influence of the correction duty ratio on the control based on the basic duty ratio for voltage conversion is suppressed. That is, the deviation of the phase current between the plurality of phases can be reduced without the correction duty ratio affecting the efficiency of voltage conversion, which is the original function of the conversion module.
  • the correction duty ratios of the respective phases effectively cancel each other when the entire conversion module is viewed in one unit. For this reason, the drift of the phase current between a plurality of phases can be reduced in a state where the influence of the correction duty ratio on the control based on the basic duty ratio for voltage conversion is effectively suppressed.
  • the correction duty ratios of the respective phases cancel each other more effectively when the entire conversion module is viewed as one unit. For this reason, the drift of the phase current between a plurality of phases can be reduced in a state where the influence of the correction duty ratio on the control based on the basic duty ratio for voltage conversion is more effectively suppressed.
  • the absolute value of the correction duty ratio determined by the second determination unit is within an upper limit value or a lower limit value that is smaller than the basic duty ratio, it is caused by an error included in the detected value of the current sensor.
  • the control of the conversion module due to an excessive correction duty ratio can be suppressed.
  • the second determination unit sets the correction duty as an upper limit with a value equal to or greater than the maximum value of the correction duty ratio determined to reduce the drift of each phase that may occur in a normal state of all sensors. Determine the absolute value of the upper or lower ratio limit. For this reason, control of the conversion module based on the correction duty ratio determined by the second determination unit is performed to the maximum extent that no extreme drift occurs between the plurality of phases.
  • the second determination unit performs correction with an upper limit of a value equal to or less than the minimum value of the correction duty ratio determined in order to reduce the drift of each phase that may occur when some of the sensors are abnormal.
  • the upper limit value of the correction duty ratio determined by the second determination unit is the maximum value at which the normal phase current follows the abnormal value and does not become an overcurrent when the detected value of the failed sensor indicates the abnormal value. It is. Since the correction duty ratio determined by the second determination unit is less than or equal to the upper limit value, excessive control of the conversion module by the correction duty ratio is not performed even when the detected value of the failed sensor indicates an abnormal value. Normal phase current does not lead to overcurrent.
  • the second determination unit is equal to or greater than the maximum value of the correction duty ratio determined in order to reduce the drift of each phase that may occur in a state in which all the sensors are normal, and a part of The absolute value of the upper limit value or lower limit value of the correction duty ratio is determined with the upper limit being a value equal to or less than the minimum value of the correction duty ratio determined in order to reduce the drift of each phase that may occur in an abnormal state of the sensor. For this reason, even if the detection value of the failed sensor shows an abnormal value, excessive control of the conversion module by the correction duty ratio is not performed, and if all sensors are normal, extreme drift between multiple phases The conversion module is controlled to the maximum extent that does not occur.
  • the absolute value of the upper limit value or the lower limit value of the correction duty ratio determined by the second determination unit is determined in order to reduce the drift of each phase that may occur when all the sensors are in a normal state. Since the value is close to the maximum value of the correction duty ratio, even if all the sensors are normal, some countermeasures against errors contained in each detection value are taken, and extreme drift does not occur between multiple phases.
  • the conversion module can be controlled to the maximum extent.
  • the correction duty ratio for balancing the phase current between the two phases includes a positive value and a negative value
  • the conversion module including the two phases Looking at the whole in one unit, the correction duty ratio of each phase cancels out. For this reason, it is possible to reduce the deviation of the phase current between the two phases while suppressing the influence of the correction duty ratio on the control based on the basic duty ratio for voltage conversion. That is, the deviation of the phase current between the two phases can be reduced without affecting the efficiency of voltage conversion, which is the original function of the conversion module.
  • the correction duty ratio in the third embodiment is It is a figure which shows an example of a time-dependent change of each duty ratio of a control signal when restrict
  • A) is a figure which shows the state which the circulating current of the direct current
  • B) is a figure which shows the state in which the energy stored in the smoothing capacitor flows into the VCU side.
  • FIG. 1 is a block diagram showing a schematic configuration of an electric vehicle equipped with a conversion device according to an embodiment of the present invention.
  • a thick solid line indicates mechanical connection
  • a double dotted line indicates power wiring
  • a thin solid line arrow indicates a control signal
  • a thin dotted line arrow indicates data such as a detection value.
  • a 1MOT type electric vehicle shown in FIG. 1 includes a motor generator (MG) 101, a PDU (Power Drive Unit) 103, a battery (BAT) 105, a current sensor 107, voltage sensors 1091 and 1092, and a VCU (Voltage).
  • Control Unit 111 and ECU (Electronic Control Unit) 113 are provided.
  • phase current sensor which will be described later, included in the current sensor 107 and the VCU 111 is a so-called hall-type current sensor that does not have an electrical contact (node) with a circuit that is a current detection target.
  • Each current sensor has a core and a Hall element, and a Hall element, which is a magnetoelectric conversion element, converts a magnetic field proportional to an input current generated in a gap between the cores into a voltage.
  • the motor generator 101 is driven by electric power supplied from the battery 105, and generates power for the electric vehicle to travel. Torque generated by the motor generator 101 is transmitted to the drive wheels W via a gear box GB and a differential gear D including a shift stage or a fixed stage. Motor generator 101 operates as a generator when the electric vehicle decelerates and outputs braking force of the electric vehicle. Note that regenerative power generated by operating motor generator 101 as a generator is stored in battery 105.
  • the PDU 103 converts a DC voltage into a three-phase AC voltage and applies it to the motor generator 101. In addition, PDU 103 converts an AC voltage input during a regenerative operation of motor generator 101 into a DC voltage.
  • the battery 105 has a plurality of storage cells such as a lithium ion battery and a nickel metal hydride battery, and supplies high voltage power to the motor generator 101 via the VCU 111.
  • the battery 105 is not limited to a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • a capacitor or a capacitor that can charge and discharge a large amount of power in a short time, although the capacity that can be stored is small may be used as the battery 105.
  • the current sensor 107 detects an input current I1 to the VCU 111 that is also an output current of the battery 105.
  • the voltage sensor 1091 detects the input voltage V1 of the VCU 111, which is also the output voltage of the battery 105.
  • the voltage sensor 1092 detects the output voltage V2 of the VCU 111.
  • the VCU 111 has two conversion units capable of voltage conversion of the electric power discharged from the battery 105 or the electric power charged in the battery 105, connected in parallel to each other, and the output node and the input node are shared, so-called It is a polyphase converter.
  • the VCU 111 boosts the output voltage of the battery 105 while maintaining a direct current.
  • the VCU 111 steps down the electric power generated by the motor generator 101 and converted into direct current when the electric vehicle is decelerated.
  • the electric power stepped down by the VCU 111 is charged in the battery 105.
  • FIG. 2 is an electric circuit diagram showing a relationship among the battery 105, the VCU 111, the PDU 103, the motor generator 101, and the ECU 113.
  • each conversion unit included in the VCU 111 includes a reactor, and includes a pair of a diode and a switching element connected in parallel on the high side and the low side of the reactor, thereby forming a boost chopper circuit.
  • the VCU 111 includes phase current sensors 1151 and 1152 that detect respective current values of the phase currents IL1 and IL2 flowing through the two conversion units.
  • a smoothing capacitor C1 is provided on the input side of the VCU 111 in parallel with the two conversion units, and a smoothing capacitor C2 is provided on the output side of the VCU 111.
  • the two converters of the VCU 111 are electrically connected in parallel, and each converter performs voltage conversion by controlling on / off switching of the two switching elements consisting of a high side and a low side at a desired timing. Do.
  • the on / off switching operation of the switching element in the conversion unit is controlled by a control signal (PWM (Pulse Width Modulation) signal) having a predetermined pulse duty ratio generated by the ECU 113.
  • PWM Pulse Width Modulation
  • the on / off switching control for each conversion unit is interleave control in which the on / off switching phase is shifted by 180 degrees by a control signal from the ECU 113.
  • FIG. 3 is a diagram illustrating a positional relationship of the constituent elements of the two conversion units and the smoothing capacitors C1 and C2 included in the VCU 111 illustrated in FIG. 2 as viewed from the Z-axis direction.
  • a set of the conversion unit and the phase current sensor included in the VCU 111 is expressed as “phase”. Therefore, in this embodiment, as shown in FIG. 3, the combination of the conversion unit including the reactor L1 and the phase current sensor 1151 is “phase 1”, and the combination of the conversion unit including the reactor L2 and the phase current sensor 1152 is “phase 2”. ".
  • phase 1 and phase 2 are arranged in a line on the XY plane.
  • the iron core of the reactor L1 which comprises the phase 1 and the iron core of the reactor L2 which comprises the phase 2 are shared, and the winding direction with respect to the iron core of the coil of each reactor is mutually opposite. For this reason, the reactor L1 and the reactor L2 are magnetically coupled to each other.
  • the iron core Co shared by the reactor L1 and the reactor L2 is arranged on the XY plane over the phase 1 and the phase 2.
  • the XY plane may be a horizontal plane or a vertical plane.
  • FIG. 3 shows a point where the magnetic flux generated in each phase is canceled when the same current is passed through the mutually magnetically coupled reactors.
  • Current IL1 flowing through reactor L1 generates magnetic flux 1
  • current IL2 flowing through reactor L2 generates magnetic flux 2 by electromagnetic induction.
  • magnetic flux 1 and magnetic flux 2 are reversed and cancel each other. Therefore, the magnetic saturation in the reactor L1 and the reactor L2 can be suppressed.
  • the induced currents IL1 and IL2 of the reactors L1 and L2 of each phase are input to a node Node2 connected to a node connecting one end of the low-side switching element and one end of the high-side switching element.
  • the node Node1 at the other end of the low-side switching element is connected to the ground line.
  • the output current of each phase is output from the node Node3 at the other end of the high-side switching element.
  • phase 1 and phase 2 are arranged in a line on the XY plane.
  • the ECU 113 performs on / off switching control and control of the PDU 103 by control signals supplied to the two-phase switching elements constituting the VCU 111.
  • the control of the VCU 111 by the ECU 113 will be described in detail with reference to FIGS.
  • FIG. 6 is a block diagram showing an internal configuration of the ECU 113 according to the first embodiment.
  • the ECU 113 of the first embodiment includes a basic control unit 121, an uneven flow rate calculation unit 123, an equalization control unit 125, and a control signal generation unit 127.
  • the basic control unit 121 is a unit that controls the input or output of the VCU 111 to be a target value, and the uneven flow rate calculation unit 123 and the equalization control unit 125 flow through two conversion units that constitute the VCU 111.
  • the control signal generation unit 127 is a unit that generates a pulsed control signal corresponding to both of the two different purposes.
  • the basic control unit 121 Based on the input voltage V1 of the VCU 111 detected by the voltage sensor 1091, the output voltage V2 of the VCU 111 detected by the voltage sensor 1092, and the target voltage value, the basic control unit 121 uses the input voltage V1 or the output voltage V2 as the target voltage value. Therefore, the basic duty ratio D of the control signal for the switching element of each conversion unit constituting the VCU 111 is determined. Note that the basic control unit 121 applies the input current I1 to the VCU 111 detected by the current sensor 107 and the target current value based on the input current I1 to the target current value. The basic duty ratio D of the control signal may be determined.
  • the uneven flow rate calculation unit 123 calculates the difference (IL1-IL2) between the phase current IL1 and the phase current IL2 of each phase of the VCU 111 detected by the phase current sensors 1151 and 1152, and the difference between the difference and the equalization target value. Is calculated as an uneven flow rate.
  • the equalization control unit 125 determines a correction duty ratio ⁇ D to be added to or subtracted from the basic duty ratio D of the control signal for equalizing the phase currents IL1 and IL2 based on the uneven flow rate calculated by the uneven flow rate calculation unit 123. To do. In other words, the equalization control unit 125 individually determines a positive correction duty ratio “+ ⁇ D” and a negative correction duty ratio “ ⁇ D” that are equal in absolute value.
  • the control signal generator 127 generates two types of control signals S1 and S2 based on the basic duty ratio D determined by the basic controller 121 and the corrected duty ratio ⁇ D determined by the equalization controller 125.
  • FIG. 7 is a diagram illustrating an example of a temporal change of the control signals S1 and S2 generated by the control signal generation unit 127.
  • the control signal generation unit 127 generates a control signal S1 having a duty ratio of “D + ⁇ D” and a control signal S2 having a duty ratio of “D ⁇ D”.
  • one of the two types of control signals S1 and S2 generated by the control signal generation unit 127 is supplied to one switching element of two conversion units constituting the VCU 111, and the other The control signal is supplied to the switching element of the other conversion unit.
  • the VCU 111 Since the switching elements of the conversion units constituting the VCU 111 are controlled to be turned on and off by the control signals S1 and S2 described above, the VCU 111 controls the input or output to be a target value and the phase currents IL1 and IL2 Voltage conversion reflecting two types of control for equalization is performed. As a result, as shown in FIG. 8, when the VCU 111 boosts the input voltage V1 to the output voltage V2, the uneven flow rate expressed as the difference between the phase current IL1 and the phase current IL2 flowing through each converter is suppressed to a predetermined value or less. It is done.
  • the correction duty ratio for balancing the phase current between the two phases includes a positive value (+ ⁇ D) and a negative value ( ⁇ D) having the same absolute value, Since the sum of the correction duty ratios of these positive values and negative values is 0, the correction duty ratio ⁇ D of each phase effectively cancels when the entire VCU 111 including two phases is viewed in one unit. For this reason, it is possible to reduce the drift of the phase current between the two phases while suppressing the influence of the correction duty ratio ⁇ D on the control based on the basic duty ratio D for voltage conversion. In other words, the deviation of the phase current between the two phases can be reduced without the correction duty ratio ⁇ D affecting the efficiency of voltage conversion, which is the original function of the VCU 111.
  • the sum of the correction duty ratios of the positive value and the negative value is not limited to 0, and the absolute value of the sum may be equal to or less than a predetermined value. Even in this case, the correction duty ratio ⁇ D of each phase effectively cancels out, so that the correction duty ratio ⁇ D does not affect the efficiency of voltage conversion, which is the original function of the VCU 111, and the phase between the two phases. Current drift can be reduced.
  • FIG. 9 is a block diagram showing an internal configuration of the ECU 213 of the second embodiment.
  • the ECU 213 of the second embodiment includes a basic control unit 221, an uneven flow rate calculation unit 223, an equalization control unit 225, an upper limit value limiting unit 227, and a control signal generation unit 229.
  • the basic control unit 221 is a unit that controls the input or output of the VCU 111 to be a target value, and the uneven flow rate calculation unit 223, the equalization control unit 225, and the upper limit value limiting unit 227 constitute the VCU 111.
  • the control signal generation unit 229 is a unit that performs control for equalizing the phase currents flowing through the two conversion units, and the control signal generation unit 229 is a unit that generates a pulse-shaped control signal corresponding to both of the two different control purposes. is there.
  • the basic control unit 221 Based on the input voltage V1 of the VCU 111 detected by the voltage sensor 1091, the output voltage V2 of the VCU 111 detected by the voltage sensor 1092, and the target voltage value, the basic control unit 221 uses the input voltage V1 or the output voltage V2 as the target voltage value. Therefore, the basic duty ratio D of the control signal for the switching element of each conversion unit constituting the VCU 111 is determined. Note that the basic control unit 221 uses the input current I1 to the VCU 111 detected by the current sensor 107 and the target current value, so that the input current I1 becomes the target current value. The basic duty ratio D of the control signal may be determined.
  • the uneven flow rate calculation unit 223 calculates the difference (IL1-IL2) between the phase current IL1 and the phase current IL2 of each phase of the VCU 111 detected by the phase current sensors 1151 and 1152, and the difference between the difference and the equalization target value. Is calculated as an uneven flow rate.
  • the equalization control unit 225 determines a correction duty ratio ⁇ D to be added to or subtracted from the basic duty ratio D of the control signal for equalizing the phase currents IL1 and IL2 based on the uneven flow calculated by the uneven flow rate calculation unit 223. To do. That is, the equalization control unit 225 individually determines a positive correction duty ratio “+ ⁇ D” and a negative correction duty ratio “ ⁇ D” that are equal in absolute value.
  • the upper limit value limiting unit 227 The upper limit value ⁇ Dlim is output as the corrected duty ratio ⁇ D ′ after the upper limit processing. If the absolute value
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D preset in the upper limit value limiting unit 227 is greater than or equal to the maximum value ⁇ Dtha of the correction duty ratio ⁇ D determined by the equalization control unit 225 when the VCU 111 is operating normally, and the VCU 111 The value is equal to or less than the minimum value ⁇ Dthb of the correction duty ratio ⁇ D determined by the equalization control unit 225 when at least one of the phase current sensors having the abnormality is abnormal. That is, the upper limit ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D is set to a predetermined value within the upper limit setting range shown in FIG. The predetermined value is closer to the maximum value ⁇ Dtha than the minimum value ⁇ Dthb.
  • the control signal generation unit 229 has two types of control signals S1, S2 based on the basic duty ratio D determined by the basic control unit 221 and the corrected duty ratio ⁇ D ′ output by the upper limit value limiting unit 227, that is, the duty ratio is “D + ⁇ D.
  • a control signal S1 having “′” and a control signal S2 having a duty ratio “D ⁇ D ′” are generated.
  • one of the two types of control signals S1 and S2 generated by the control signal generation unit 229 is supplied to one switching element of the two conversion units constituting the VCU 111, and the other The control signal is supplied to the switching element of the other conversion unit.
  • the VCU 111 Since the switching elements of the conversion units constituting the VCU 111 are controlled to be turned on and off by the control signals S1 and S2 described above, the VCU 111 controls the input or output to be a target value and the phase currents IL1 and IL2 Voltage conversion reflecting two types of control for equalization is performed. As a result, when the VCU 111 boosts the input voltage V1 to the output voltage V2, the uneven flow rate expressed as the difference between the phase current IL1 and the phase current IL2 flowing through each converter is suppressed to a predetermined value or less.
  • the correction duty included in the duty ratio of the control signals S1 and S2 generated by the control signal generation unit 229 Since the absolute value of the ratio ⁇ D ′ is equal to or smaller than the upper limit value smaller than the basic duty ratio D, it is possible to suppress the control of the VCU 111 due to an excessive correction duty ratio ⁇ D caused by an error included in the detection value of the failed phase current sensor. .
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D preset in the upper limit value limiting unit 227 is determined in order to reduce the drift of each phase that may occur when all the phase current sensors of the VCU 111 are normal. Is equal to or greater than the maximum value ⁇ Dtha of the correction duty ratio ⁇ D. For this reason, if all the phase current sensors are normal, the control of the VCU 111 is maximally performed within a range in which extreme drift does not occur between a plurality of phases.
  • the upper limit value ⁇ Dlim is a value equal to or less than the minimum value ⁇ Dthb of the correction duty ratio ⁇ D determined to reduce the drift of each phase that may occur when some of the phase current sensors of the VCU 111 are abnormal.
  • the minimum value ⁇ Dthb is the maximum value at which the normal phase current follows the abnormal value and does not become an overcurrent when the detected value of the failed phase current sensor shows an abnormal value. For this reason, even when the detected value of the faulty phase current sensor indicates an abnormal value, the VCU 111 is not excessively controlled by the correction duty ratio ⁇ D, and the normal phase current does not reach an overcurrent.
  • the control signal generation unit 229 determines a correction duty ratio ⁇ D that is larger than the minimum value ⁇ Dthb, and the correction duty ratio ⁇ D and the basic duty ratio
  • the control signal S1 having a duty ratio of “D + ⁇ D” and the control signal S2 of “D ⁇ D” based on D, as shown in FIG.
  • a normal phase current follows an abnormal value that is a detection value of the current sensor, resulting in an overcurrent.
  • the upper limit value ⁇ Dlim is a value close to the maximum value ⁇ Dtha of the correction duty ratio ⁇ D determined in order to reduce the drift of each phase that may occur in a state in which all the phase current sensors are normal. Even if the current sensor is normal, it is possible to perform the control of the VCU 111 to the maximum extent within a range in which extreme drift does not occur between a plurality of phases while taking measures against errors included in each detection value to some extent.
  • FIG. 12 is a block diagram showing an internal configuration of the ECU 313 of the third embodiment.
  • the ECU 313 of the third embodiment includes a basic control unit 321, an uneven flow rate calculation unit 323, an equalization control unit 325, an upper limit limiting unit 327, and a control signal generation unit 329.
  • the basic control unit 321 is a unit that controls the input or output of the VCU 111 to be a target value, and the uneven flow rate calculation unit 323, the equalization control unit 325, and the upper limit value limiting unit 327 constitute the VCU 111.
  • the control signal generation unit 329 is a unit that performs control for equalizing the phase currents flowing through the two conversion units, and the control signal generation unit 329 is a unit that generates a pulse-like control signal corresponding to both of the two different control purposes. is there.
  • the basic control unit 321 Based on the input voltage V1 of the VCU 111 detected by the voltage sensor 1091, the output voltage V2 of the VCU 111 detected by the voltage sensor 1092, and the target voltage value, the basic control unit 321 has the target voltage value of the input voltage V1 or the output voltage V2. Therefore, the basic duty ratio D of the control signal for the switching element of each conversion unit constituting the VCU 111 is determined. Note that the basic control unit 321 is based on the input current I1 to the VCU 111 detected by the current sensor 107 and the target current value, so that the input current I1 becomes the target current value, with respect to the switching elements of the conversion units constituting the VCU 111. The basic duty ratio D of the control signal may be determined.
  • the uneven flow rate calculation unit 323 calculates the difference (IL1-IL2) between the phase current IL1 and the phase current IL2 of each phase of the VCU 111 detected by the phase current sensors 1151 and 1152, and the difference between the difference and the equalization target value. Is calculated as an uneven flow rate.
  • the equalization control unit 325 determines a correction duty ratio ⁇ D to be added to or subtracted from the basic duty ratio D of the control signal for equalizing the phase currents IL1 and IL2 based on the uneven flow calculated by the uneven flow calculation unit 323. To do. That is, the equalization control unit 325 individually determines a positive correction duty ratio “+ ⁇ D” and a negative correction duty ratio “ ⁇ D” that are equal in absolute value.
  • the upper limit value limiting unit 327 The upper limit value ⁇ Dlim is output as the corrected duty ratio ⁇ D ′ after the upper limit process. If the absolute value
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D preset in the upper limit value limiting unit 327 is set based on the basic duty ratio D determined by the basic control unit 321.
  • FIG. 13 is a diagram illustrating a relationship between the basic duty ratio D and the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D set in the upper limit value limiting unit 327 of the third embodiment.
  • the value of the basic duty ratio D has a relationship of 0 ⁇ D1 ⁇ D2 ⁇ D3 ⁇ D4 ⁇ 100.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D is a maximum value at which the duty ratio of one of the two conversion units in the VCU 111 does not become 0% (stop state) or 100% (direct connection state) due to the correction duty ratio ⁇ D.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D in this embodiment is 0% when the basic duty ratio D is in the range of 0 to D1 (%) and in the range of D4 to 100 (%).
  • the basic duty ratio D is in the range of D1 to D2 (%), the smaller the basic duty ratio D is, the closer the value is to 0%.
  • the basic duty ratio D is in the range of D3 to D4 (%)
  • the basic duty ratio is set.
  • the larger D is, the closer to 0% is set, and the basic duty ratio D is set to a value smaller than the preset basic duty ratio D in the range of D2 to D3 (%).
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D set in the range where the basic duty ratio D is D2 to D3 (%) is within the upper limit value setting range shown in FIG. 10 described in the second embodiment.
  • the equalization control unit 325 is a predetermined value that is equal to or greater than the maximum value ⁇ Dtha of the correction duty ratio ⁇ D determined by the equalization control unit 325 when the VCU 111 is in a normal operation and at least one of the phase current sensors of the VCU 111 is abnormal. Is a value equal to or less than the minimum value ⁇ Dthb of the correction duty ratio ⁇ D determined.
  • the predetermined value is closer to the maximum value ⁇ Dtha than the minimum value ⁇ Dthb.
  • the control signal generation unit 329 has two types of control signals S1 and S2 based on the basic duty ratio D determined by the basic control unit 321 and the corrected duty ratio ⁇ D ′ output by the upper limit value limiting unit 327, that is, the duty ratio is “D + ⁇ D.
  • a control signal S1 having “′” and a control signal S2 having a duty ratio “D ⁇ D ′” are generated.
  • One of the two types of control signals S1 and S2 generated by the control signal generation unit 329 is supplied to one switching element of the two conversion units constituting the VCU 111, and the other control signal is switched to the other conversion unit. Supplied to the element.
  • FIG. 14 shows an example in which the duty ratio of the control signals S1 and S2 changes with time when the basic duty ratio D approaches 100% and (a) the absolute value of the correction duty ratio ⁇ D is not limited to the upper limit value ⁇ Dlim.
  • B It is a figure which shows an example of a time-dependent change of each duty ratio of control signals S1, S2 when the absolute value of correction
  • amendment duty ratio (DELTA) D is restrict
  • the conversion unit to which the control signal S1 is supplied is in a directly connected state.
  • a DC component circulating current circulating inside the VCU 111 is generated during the discharge period of the reactor L2 of the other converter as shown in FIG.
  • most of the energy stored in the smoothing capacitor C2 flows to the conversion unit side in the directly connected state.
  • the energy stored in the smoothing capacitor C2 flows to the VCU 111 side.
  • the basic control unit 321 controls the phase. There is a possibility that the current may reach an overcurrent.
  • the duty ratios of the control signals S1 and S2 reach 100% at the same time as shown in FIG.
  • the timing is later than the timing at which the duty ratio “D + ⁇ D” of the control signal S1 reaches 100% in (a).
  • FIG. 16 shows an example of a change with time of each duty ratio of the control signals S1, S2 when the basic duty ratio D approaches 0% and (a) the absolute value of the correction duty ratio ⁇ D is not limited to the upper limit value ⁇ Dlim.
  • B It is a figure which shows an example of a time-dependent change of each duty ratio of control signals S1, S2 when the absolute value of correction
  • the duty ratio “D ⁇ D” of the control signal S2 is 0 first because of the correction duty ratio ⁇ D. Reach%.
  • the conversion unit to which the control signal S2 is supplied is stopped.
  • one converter constituting the VCU 111 is in a stopped state, a DC component circulating current that circulates inside the VCU 111 is generated during the discharge period of the reactor L1 of the other converter as shown in FIG. As a result, most of the energy stored in the smoothing capacitor C2 flows to the converter portion in the stopped state. Further, during the charging period of the reactor L1, as shown in FIG.
  • the energy stored in the smoothing capacitor C2 flows to the VCU 111 side.
  • the basic control unit 321 controls the phase. There is a possibility that the current may reach an overcurrent.
  • the duty ratios of the control signals S1 and S2 reach 0% at the same time as shown in FIG.
  • the timing is later than the timing at which the duty ratio “D ⁇ D” of the control signal S2 reaches 0% in (a).
  • the VCU 111 Since the switching elements of the conversion units constituting the VCU 111 are controlled to be turned on and off by the control signals S1 and S2 described above, the VCU 111 controls the input or output to be a target value and the phase currents IL1 and IL2 Voltage conversion reflecting two types of control for equalization is performed. As a result, when the VCU 111 boosts the input voltage V1 to the output voltage V2, the uneven flow rate expressed as the difference between the phase current IL1 and the phase current IL2 flowing through each converter is suppressed to a predetermined value or less.
  • the control signals S1 and S2 for controlling the two conversion units of the VCU 111 are generated based on the basic duty ratio D and the correction duty ratio ⁇ D ′, and the two phase currents.
  • an upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D is set.
  • the correction duty ratio ⁇ D ′ is suppressed to an appropriate amount with respect to the basic duty ratio D so that any one of the conversion units does not enter a stopped state or a direct connection state, so that the control of the VCU 111 can be stabilized. That is, the correction duty ratio ⁇ D ′ that is equal to or less than the upper limit value ⁇ Dlim does not affect the stability of voltage conversion, which is the original function of the VCU 111, and the drift between the two phase currents can be reduced.
  • the control signal S1, S2 is generated based only on the basic duty ratio D. That is, when the basic duty ratio D is 0% or near 0% or near 100% or 100%, the upper limit value ⁇ Dlim of the correction duty ratio is set to 0, so that only one of the two conversion units is stopped by the correction duty ratio. It can prevent that it will be in a state or a direct connection state.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D is closer to 0 when the basic duty ratio D is in the range of D1 to D2 (%) and closer to the value D1 that is near 0%.
  • the basic duty ratio D is set to a value closer to 0 as the value D4 approaches 100%. While performing control for balancing, it is possible to prevent only one of the two converters from being stopped or directly connected by the correction duty ratio.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D is set to a predetermined value, so that control for balancing the phase current between the two phases is performed. Can be performed reliably.
  • FIG. 18 is a block diagram showing an internal configuration of the ECU 413 according to the fourth embodiment.
  • the ECU 413 of the fourth embodiment includes a basic control unit 421, an uneven flow rate calculation unit 423, an equalization control unit 425, an upper limit value limiting unit 427, and a control signal generation unit 429.
  • the basic control unit 421 is a unit that controls the input or output of the VCU 111 as a target value, and the uneven flow rate calculation unit 423, the equalization control unit 425, and the upper limit value limiting unit 427 constitute the VCU 111.
  • the control signal generating unit 429 is a unit that performs control for equalizing the phase currents flowing through the two conversion units, and the control signal generation unit 429 is a unit that generates a pulse-like control signal corresponding to both of the two controls having different purposes. is there.
  • the basic control unit 421 Based on the input voltage V1 of the VCU 111 detected by the voltage sensor 1091, the output voltage V2 of the VCU 111 detected by the voltage sensor 1092, and the target voltage value, the basic control unit 421 has the target voltage value as the input voltage V1 or the output voltage V2. Therefore, the basic duty ratio D of the control signal for the switching element of each conversion unit constituting the VCU 111 is determined. Note that the basic control unit 421 is based on the input current I1 to the VCU 111 detected by the current sensor 107 and the target current value, so that the input current I1 becomes the target current value, with respect to the switching elements of the conversion units constituting the VCU 111. The basic duty ratio D of the control signal may be determined.
  • the uneven flow rate calculation unit 423 calculates a difference (IL1-IL2) between the phase current IL1 and the phase current IL2 of each phase of the VCU 111 detected by the phase current sensors 1151 and 1152, and the difference between the difference and the equalization target value. Is calculated as an uneven flow rate.
  • the equalization control unit 425 determines a correction duty ratio ⁇ D to be added to or subtracted from the basic duty ratio D of the control signal for equalizing the phase currents IL1 and IL2 based on the uneven flow calculated by the uneven flow rate calculation unit 423. To do. That is, the equalization control unit 425 individually determines a positive correction duty ratio “+ ⁇ D” and a negative correction duty ratio “ ⁇ D” that are equal in absolute value.
  • the upper limit value limiting unit 427 The upper limit value ⁇ Dlim is output as the corrected duty ratio ⁇ D ′ after the upper limit process, and if the absolute value
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D preset in the upper limit value limiting unit 427 is the sum of the phase current IL1 and the phase current IL2 of each phase of the VCU 111 detected by the phase current sensors 1151 and 1152 (IL1 + IL2). That is, it is set based on the magnitude of the total current flowing through the VCU 111. Note that the sum (IL1 + IL2) of the phase current IL1 and the phase current IL2 is equal to the input current I1 to the VCU 111. For this reason, the upper limit ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D may be set based on the input current I1 detected by the current sensor 107 or the magnitude of the target current. The upper limit value ⁇ Dlim may be set based on the output current of the VCU 111 or the magnitude of the target current.
  • FIG. 19 is a diagram showing the relationship between the basic duty ratio D and the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D set in the upper limit value limiting unit 427 of the fourth embodiment.
  • the value of the input current I1 has a relationship of 0 ⁇ Ia ⁇ Ib.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D is a maximum value at which the duty ratio of one of the two conversion units in the VCU 111 does not become 0% (stop state) or 100% (direct connection state) due to the correction duty ratio ⁇ D. As shown in FIG.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D in this embodiment is set to 0% when the input current I1 is in the range of 0 to Ia, and in the range of the input current I1 is from Ia to Ib.
  • the input current I1 is set to a value closer to 0% as the input current I1 is smaller.
  • the input current I1 is set to a value smaller than a preset basic duty ratio D when the input current I1 is greater than or equal to Ib.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D set in the range where the input current I1 is equal to or larger than Ib is a predetermined value within the upper limit value setting range shown in FIG.
  • Correction duty determined by the equalization control unit 425 when the VCU 111 is operating normally or more than the maximum value ⁇ Dtha of the correction duty ratio ⁇ D determined by the equalization control unit 425 and when at least one of the phase current sensors of the VCU 111 is abnormal The value is equal to or less than the minimum value ⁇ Dthb of the ratio ⁇ D.
  • the predetermined value is closer to the maximum value ⁇ Dtha than the minimum value ⁇ Dthb.
  • the range (0 to Ia) of the input current I1 in which the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D is set to 0% is a so-called low current region.
  • the control for equalizing the phase current in the low current region is performed based on the correction duty ratio ⁇ D, the current waveform zero-crosses in at least one of the phase currents flowing through the two conversion units as shown in FIG. To be discontinuous. Since the conversion part through which such a phase current flows becomes a discontinuous mode, control stability is impaired.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D is set to 0%, Control based only on the duty ratio D is performed.
  • the value Ia that is the maximum value of the input current I1 in the low current region shown in FIG. 19 is determined by the basic duty ratio D in the VCU 111 even if the error included in the detected values of the phase current sensors 1151 and 1152 of the VCU 111 is taken into account.
  • One of the two conversion units is the smallest value that does not enter a stopped state. For example, if the duty ratio corresponding to the error that can be included in each detection value of the phase current sensors 1151 and 1152 is De, the duty ratio corresponding to the error that can be included in the input current I1 is “2De”. In this case, the actual input current I1 when the VCU 111 is controlled with a basic duty ratio slightly larger than the duty ratio 2De is set as the input current Ia.
  • the control signal generation unit 429 has two types of control signals S1 and S2 based on the basic duty ratio D determined by the basic control unit 421 and the corrected duty ratio ⁇ D ′ output from the upper limit value limiting unit 427, that is, the duty ratio is “D + ⁇ D.
  • a control signal S1 having “′” and a control signal S2 having a duty ratio “D ⁇ D ′” are generated.
  • One of the two types of control signals S1 and S2 generated by the control signal generation unit 429 is supplied to one switching element of the two conversion units constituting the VCU 111, and the other control signal is switched to the other conversion unit. Supplied to the element.
  • the VCU 111 Since the switching elements of the conversion units constituting the VCU 111 are controlled to be turned on and off by the control signals S1 and S2 described above, the VCU 111 controls the input or output to be a target value and the phase currents IL1 and IL2 Voltage conversion reflecting two types of control for equalization is performed. As a result, when the VCU 111 boosts the input voltage V1 to the output voltage V2, the uneven flow rate expressed as the difference between the phase current IL1 and the phase current IL2 flowing through each converter is suppressed to a predetermined value or less.
  • the control signals S1 and S2 for controlling the two conversion units of the VCU 111 having the phase current sensors 1151 and 1152 including errors in the detected values are the basic duty ratio D and the correction.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D for balancing the phase current between the two phases is the sum of the phase currents IL1 and IL2 flowing through the respective converters or the input current I1 of the VCU 111 Alternatively, it is set based on the magnitude of the target current.
  • the correction duty ratio ⁇ D ′ can be suppressed to an appropriate amount with respect to the magnitude of the current so that either one of the converters is not stopped, so that the circulating current does not flow and the control of the VCU 111 is stabilized. it can. That is, the correction duty ratio ⁇ D ′ that is equal to or less than the upper limit value ⁇ Dlim does not affect the stability of voltage conversion, which is the original function of the VCU 111, and the drift between the two phase currents can be reduced.
  • the control signals S1 and S2 are generated based only on the basic duty ratio D. Can be stabilized. That is, the correction duty ratio does not affect the stability of voltage conversion, which is the original function of the conversion module.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D is set to 0%.
  • the correction duty ratio ⁇ D ′ can prevent part of the two conversion units from entering the discontinuous mode.
  • phase current sensors 1151 and 1152 even if there is an unavoidable error in the phase current sensors 1151 and 1152, at least one of the conversion units is not stopped by the control based on the basic duty ratio D, so that the stability of voltage conversion in the VCU 111 can be ensured.
  • the correction duty is controlled while performing control to balance the phase current between the two phases.
  • the ratio ⁇ D ′ can also prevent part of the two conversion units from entering the discontinuous mode.
  • the upper limit value ⁇ Dlim of the absolute value of the correction duty ratio ⁇ D is within the upper limit setting range. Therefore, the control for balancing the phase current between the two phases can be reliably performed.
  • the electric vehicle described above is a 1MOT type EV (Electrical Vehicle), but even an EV equipped with a plurality of motor generators is an HEV (Hybrid Electrical Vehicle) equipped with an internal combustion engine together with at least one motor generator. Or PHEV (Plug-in Hybrid Electrical Vehicle).
  • HEV Hybrid Electrical Vehicle
  • PHEV Plug-in Hybrid Electrical Vehicle
  • the conversion device is suitable for a power supply capable of outputting a large current, and is particularly preferably applied to a computer that has been noticeably increasing in current.
  • the VCU 111 of this embodiment is a step-up voltage converter that boosts the voltage of the battery 105, but is a step-down voltage converter that steps down the voltage of the battery 105, or a step-up / step-down type that can perform step-up / step-down in both directions.
  • a voltage converter may be used.
  • Motor generator 103 PDU 111 VCU 105 Battery 107 Current sensor 1151, 1152 Phase current sensor 1091, 1092 Voltage sensor 113, 213, 313, 413 ECU 121, 221, 321, 421 Basic control unit 123, 223, 323, 423 Uneven flow rate calculation unit 125, 225, 325, 425 Equalization control unit 127, 229, 329, 429 Control signal generation unit 227, 327, 427 Upper limit value Limiting part C1, C2 Smoothing capacitor L1, L2 Reactor Co Iron core

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

変換装置は、電圧変換が可能な変換部と、変換部を流れる相電流を検出するセンサとを有する相を複数有し、当該複数相が並列に接続された変換モジュールと、所定のデューティ比に基づく制御信号によって変換部を制御する制御部とを備える。制御部は、複数相に共通の基本デューティ比を決定する第1決定部と、変換部毎に、正の値と負の値を少なくとも1つずつ含み基本デューティ比を補正する補正デューティ比を決定する第2決定部と、基本デューティ比及び補正デューティ比に基づく制御信号を生成する生成部とを有する。第2決定部は、複数の変換部を流れる相電流の差分に基づき、補正デューティ比を決定する。基本デューティ比は補正デューティ比の絶対値以上である。

Description

変換装置、機器及び制御方法
 本発明は、変換装置、機器及び制御方法に関する。
 特許文献1には、電圧変換を行うコンバータにおける並列接続された電力用半導体モジュールの負荷分布をバランスするための方法及び装置が記載されており、各モジュールのスイッチのターンオン及びターンオフ時間は、スイッチング中に全てのモジュールに均一な電流負荷が得られるようにセットされる。具体的には、各モジュールの実際の電流値を実際の負荷値として測定し、測定された実際の電流の平均値を各モジュールに対する所望の電流値として設定し、各モジュールの所望の電流値と実際の電流値との差に基づき、各スイッチへのゲート信号のレベルを増減する。当該特許文献1に記載の技術は、特許文献2にも特許文献3にも特許文献4にも記載されている。
日本国特開平07-221619号公報 米国特許第6795009号明細書 米国特許第8598853号明細書 米国特許出願公開第2014/0055114号明細書
 特許文献1に記載の技術では、各モジュールの実際の電流値とこれら実際の電流の平均値との差分に基づきゲート信号のレベルが増減されるため、上記差分の値が大きくゲート信号のレベルが0になってしまうと、並列接続された電力用半導体モジュールから構成されるコンバータは、本来の機能である電圧変換を効率的に行えなくなってしまう。
 本発明の目的は、本来の機能である電圧変換の効率に影響を与えずに、複数の相間の相電流の偏流を低減可能な変換装置、機器及び制御方法を提供することである。
 本発明は以下の態様を提供するものである。
 第1態様は、
 電源(例えば、後述の実施形態でのバッテリ105)が放電する電力又は前記電源に充電する電力の電圧変換が可能な変換部と、前記変換部を流れる相電流の電流値を検出するセンサ(例えば、後述の実施形態での相電流センサ1151,1152)と、を有する相を複数有し、当該複数の相が電気的に並列に接続された変換モジュール(例えば、後述の実施形態でのVCU111)と、
 所定のデューティ比に基づき生成した制御信号によって複数の前記変換部をそれぞれ制御する制御部(例えば、後述の実施形態でのECU113,213)と、を備え、
 前記制御部は、
 前記変換モジュールの入力又は出力が目標電圧又は目標電流となる、前記複数の相の全てに対する共通の基本デューティ比を決定する第1決定部(例えば、後述の実施形態での基本制御部121,221)と、
 複数の前記変換部毎に、正の値と負の値を少なくとも1つずつ含み前記基本デューティ比を補正する補正デューティ比をそれぞれ決定する第2決定部(例えば、後述の実施形態での均等化制御部125,225、上限値制限部227)と、
 前記基本デューティ比及び前記補正デューティ比に基づく前記制御信号を生成する生成部(例えば、後述の実施形態での制御信号生成部127,229)と、を有し、
 前記第2決定部は、複数の前記変換部をそれぞれ流れる複数の相電流の差分に基づき、前記補正デューティ比を決定し、
 前記基本デューティ比は、前記補正デューティ比の絶対値以上である、変換装置である。
 第2態様は、
 第1態様の変換装置であって、
 複数の前記変換部に対する個別の前記補正デューティ比の総和の絶対値は、所定値以下である。
 第3態様は、
 第2態様の変換装置であって、
 複数の前記変換部に対する個別の前記補正デューティ比の総和は0である。
 第4態様は、
 第1~第3態様のいずれかの変換装置であって、
 前記第2決定部は、絶対値が前記基本デューティ比より小さい上限値又は下限値以内の前記補正デューティ比を決定する。
 第5態様は、
 第4態様の変換装置であって、
 前記上限値又は前記下限値の絶対値は、前記複数の相に含まれる前記センサの全てが正常に出力し得る電流値の差分から決定される前記補正デューティ比の最大値以上の値である。
 第6態様は、
 第4態様の変換装置であって、
 前記上限値又は前記下限値の絶対値は、前記複数の相に含まれる前記センサの一部が異常であるときに出力し得る電流値の差分から決定される前記補正デューティ比の最小値以下の値である。
 第7態様は、
 第4態様の変換装置であって、
 前記上限値又は前記下限値の絶対値は、前記複数の相に含まれる前記センサの全てが正常に出力し得る電流値の差分から決定される前記補正デューティ比の最大値以上、かつ、前記複数の相に含まれる前記センサの一部が異常であるときに出力し得る電流値の差分から決定される前記補正デューティ比の最小値以下の値である。
 第8態様は、
 第7態様の変換装置であって、
 前記上限値又は前記下限値の絶対値は、前記最小値よりも前記最大値に近い値である。
 第9態様は、
 電源(例えば、後述の実施形態でのバッテリ105)が放電する電力又は前記電源に充電する電力の電圧変換が可能な変換部と、前記変換部を流れる相電流の電流値を検出するセンサ(例えば、後述の実施形態での相電流センサ1151,1152)と、を有する相を2つ有し、当該2つの相が電気的に並列に接続された変換モジュール(例えば、後述の実施形態でのVCU111)と、
 所定のデューティ比に基づき生成した制御信号によって2つの前記変換部をそれぞれ制御する制御部(例えば、後述の実施形態でのECU113,213)と、を備え、
 前記制御部は、
 前記変換モジュールの出力が目標電圧又は目標電流となる、前記複数の相の全てに対する共通の基本デューティ比を決定する第1決定部(例えば、後述の実施形態での基本制御部121,221)と、
 2つの前記変換部毎に、正の値と負の値を少なくとも1つずつ含み前記基本デューティ比を補正する補正デューティ比をそれぞれ決定する第2決定部(例えば、後述の実施形態での均等化制御部125,225、上限値制限部227)と、
 前記基本デューティ比及び前記補正デューティ比に基づく前記制御信号を生成する生成部(例えば、後述の実施形態での制御信号生成部127,229)と、を有し、
 前記第2決定部は、2つの前記変換部をそれぞれ流れる複数の相電流の差分に基づき、前記補正デューティ比を決定し、
 前記基本デューティ比は、前記補正デューティ比の絶対値以上である、変換装置である。
 第10態様は、
 第1~第9態様のいずれかの変換装置を有する、機器である。
 第11態様は、
 電源(例えば、後述の実施形態でのバッテリ105)が放電する電力又は前記電源に充電する電力の電圧変換が可能な変換部と、前記変換部を流れる相電流の電流値を検出するセンサ(例えば、後述の実施形態での相電流センサ1151,1152)と、を有する相を複数有し、当該複数の相が電気的に並列に接続された変換モジュール(例えば、後述の実施形態でのVCU111)と、
 所定のデューティ比に基づき生成した制御信号によって複数の前記変換部をそれぞれ制御する制御部(例えば、後述の実施形態でのECU113,213)と、を備えた変換装置の制御方法であって、
 前記変換モジュールの出力が目標電圧又は目標電流となる、前記複数の相の全てに対する共通の基本デューティ比を決定し、
 複数の前記変換部をそれぞれ流れる複数の相電流の差分に基づき、複数の前記変換部に対して、正の値と負の値を少なくとも1つずつ含みかつ絶対値が前記基本デューティ比以下である、個別の補正デューティ比を決定し、
 前記基本デューティ比及び前記補正デューティ比に基づく前記制御信号を生成する、制御方法である。
 第12態様は、
 電源(例えば、後述の実施形態でのバッテリ105)が放電する電力又は前記電源に充電する電力の電圧変換が可能な変換部と、前記変換部を流れる相電流の電流値を検出するセンサ(例えば、後述の実施形態での相電流センサ1151,1152)と、を有する相を2つ有し、当該2つの相が電気的に並列に接続された変換モジュール(例えば、後述の実施形態でのVCU111)と、
 所定のデューティ比に基づき生成した制御信号によって2つの前記変換部をそれぞれ制御する制御部(例えば、後述の実施形態でのECU113,213)と、を備えた変換装置の制御方法であって、
 前記変換モジュールの出力が目標電圧又は目標電流となる、前記2つの相の全てに対する共通の基本デューティ比を決定し、
 2つの前記変換部をそれぞれ流れる2つの相電流の差分に基づき、2つの前記変換部に対して、正の値と負の値を含みかつ絶対値が前記基本デューティ比以下である、個別の補正デューティ比を決定し、
 前記基本デューティ比及び前記補正デューティ比に基づく前記制御信号を生成する、制御方法である。
 第1態様、第10態様及び第11態様によれば、複数の相間の相電流の均衡をとるための補正デューティ比は正の値と負の値を少なくとも1つずつ含むため、当該複数の相を含む変換モジュール全体をひとつの単位でみると、各相の補正デューティ比は打ち消し合う。このため、電圧変換のための基本デューティ比に基づく制御への補正デューティ比による影響を抑えた状態で、複数の相間の相電流の偏流を低減できる。すなわち、補正デューティ比が変換モジュールの本来の機能である電圧変換の効率に影響を与えずに、複数の相間の相電流の偏流を低減できる。
 第2態様によれば、補正デューティ比の総和の絶対値は、所定値以下であるため、変換モジュール全体をひとつの単位でみると、各相の補正デューティ比は効果的に打ち消し合う。このため、電圧変換のための基本デューティ比に基づく制御への補正デューティ比による影響を効果的に抑えた状態で、複数の相間の相電流の偏流を低減できる。
 第3態様によれば、補正デューティ比の総和が0であるため、変換モジュール全体をひとつの単位でみると、各相の補正デューティ比はより効果的に打ち消し合う。このため、電圧変換のための基本デューティ比に基づく制御への補正デューティ比による影響をより効果的に抑えた状態で、複数の相間の相電流の偏流を低減できる。
 第4態様によれば、第2決定部によって決定される補正デューティ比の絶対値は、基本デューティ比より小さい上限値又は下限値以内であるため、電流センサの検出値に含まれる誤差等に起因する過剰な補正デューティ比による変換モジュールの制御を抑制できる。
 第5態様によれば、第2決定部は、全てのセンサが正常な状態で生じ得る各相の偏流を低減するために決定される補正デューティ比の最大値以上の値を上限として、補正デューティ比の上限値又は下限値の絶対値を決定する。このため、第2決定部が決定した補正デューティ比による変換モジュールの制御は、複数の相間に極度な偏流が生じない範囲で最大限に行われる。
 第6態様によれば、第2決定部は、一部のセンサが異常な状態で生じ得る各相の偏流を低減するために決定される補正デューティ比の最小値以下の値を上限として、補正デューティ比の上限値又は下限値の絶対値を決定する。すなわち、第2決定部が決定する補正デューティ比の上限値は、故障したセンサの検出値が異常値を示す場合に、正常な相電流が当該異常値に追随して過電流とならない最大の値である。第2決定部によって決定される補正デューティ比は当該上限値以下であるため、故障したセンサの検出値が異常値を示す場合であっても、補正デューティ比による変換モジュールの過剰な制御は行われず、正常な相電流は過電流に至らない。
 第7態様によれば、第2決定部は、全てのセンサが正常な状態で生じ得る各相の偏流を低減するために決定される補正デューティ比の最大値以上であり、かつ、一部のセンサが異常な状態で生じ得る各相の偏流を低減するために決定される補正デューティ比の最小値以下の値を上限として、補正デューティ比の上限値又は下限値の絶対値を決定する。このため、故障したセンサの検出値が異常値を示す場合であっても、補正デューティ比による変換モジュールの過剰な制御は行われず、全てのセンサが正常であれば、複数の相間に極度な偏流が生じない範囲で変換モジュールの制御が最大限に行われる。
 第8態様によれば、第2決定部が決定する補正デューティ比の上限値又は下限値の絶対値は、全てのセンサが正常な状態で生じ得る各相の偏流を低減するために決定される補正デューティ比の最大値寄りの値であるため、全てのセンサが正常であっても各検出値に含まれる誤差への対策をある程度行いつつ、複数の相間に極度な偏流が生じない範囲での変換モジュールの制御を最大限に実施可能である。
 第9態様、第10態様及び第12態様によれば、2つの相間の相電流の均衡をとるための補正デューティ比は正の値と負の値を含むため、当該2つの相を含む変換モジュール全体をひとつの単位でみると、各相の補正デューティ比は打ち消し合う。このため、電圧変換のための基本デューティ比に基づく制御への補正デューティ比による影響を抑えた状態で、2つの相間の相電流の偏流を低減できる。すなわち、補正デューティ比が変換モジュールの本来の機能である電圧変換の効率に影響を与えずに、2つの相間の相電流の偏流を低減できる。
本発明に係る一実施形態の変換装置を搭載した電動車両の概略構成を示すブロック図である。 バッテリ、一実施形態のVCU、PDU、モータジェネレータ及びECUの関係を示す電気回路図である。 図2に示すVCUが有する2つの変換部(相)の各構成要素及び平滑コンデンサの、Z軸方向から見た位置関係を示す図である。 バッテリ、他の実施形態のVCU、PDU、モータジェネレータ及びECUの関係を示す電気回路図である。 図4に示すVCUが有する2つの変換部(相)の各構成要素及び平滑コンデンサの、Z軸方向から見た位置関係を示す図である。 第1実施形態のECUの内部構成を示すブロック図である。 制御信号生成部が生成する2種類の制御信号の経時変化の一例を示す図である。 VCUが入力電圧を出力電圧に昇圧する際に各変換部を流れる相電流と偏流量の経時変化の一例を示す図である。 第2実施形態のECUの内部構成を示すブロック図である。 上限値制限部に予め設定される補正デューティ比の上限値の設定幅を示す図である。 故障した相電流センサの検出値である異常値に正常な相電流が追随して過電流となる場合の経時変化を示す図である。 第3実施形態のECUの内部構成を示すブロック図である。 第3実施形態の上限値制限部に設定される、基本デューティ比と補正デューティ比の上限値との関係を示す図である。 基本デューティ比が100%に近づく場合の、(a)補正デューティ比が上限値に制限されない場合の制御信号の各デューティ比の経時変化の一例と、(b)第3実施形態において補正デューティ比が上限値に制限される場合の制御信号の各デューティ比の経時変化の一例を示す図である。 (A)はVCU内部を循環する直流成分の循環電流が発生する状態を示す図であり、(B)は平滑コンデンサに蓄えられたエネルギーがVCU側に流れる状態を示す図である。 基本デューティ比が0%に近づく場合の、(a)補正デューティ比が上限値に制限されない場合の制御信号の各デューティ比の経時変化の一例と、(b)第3実施形態において補正デューティ比が上限値に制限される場合の制御信号の各デューティ比の経時変化の一例を示す図である。 (A)はVCU内部を循環する直流成分の循環電流が発生する状態を示す図であり、(B)は平滑コンデンサに蓄えられたエネルギーがVCU側に流れる状態を示す図である。 第4実施形態のECUの内部構成を示すブロック図である。 第4実施形態の上限値制限部に設定される、基本デューティ比と補正デューティ比の上限値との関係を示す図である。 波形がゼロクロスして不連続となる相電流の一例を示す図である。
 以下、本発明の実施形態について、図面を参照して説明する。
(第1実施形態)
 図1は、本発明に係る一実施形態の変換装置を搭載した電動車両の概略構成を示すブロック図である。図1中の太い実線は機械連結を示し、二重点線は電力配線を示し、細い実線の矢印は制御信号を示し、細い点線の矢印は検出値等のデータを示す。図1に示す1MOT型の電動車両は、モータジェネレータ(MG)101と、PDU(Power Drive Unit)103と、バッテリ(BAT)105と、電流センサ107と、電圧センサ1091,1092と、VCU(Voltage Control Unit)111と、ECU(Electronic Control Unit)113とを備える。なお、電流センサ107及びVCU111が有する後述の相電流センサは、電流の検出対象である回路と電気的接点(ノード)を有さない、いわゆるホール型の電流センサである。各電流センサは、コア及びホール素子を有し、コアのギャップに発生する入力電流に比例した磁界を磁電変換素子であるホール素子が電圧に変換する。
 以下、電動車両が備える各構成要素について説明する。
 モータジェネレータ101は、バッテリ105から供給される電力によって駆動され、電動車両が走行するための動力を発生する。モータジェネレータ101で発生したトルクは、変速段又は固定段を含むギヤボックスGB及びデファレンシャル・ギアDを介して駆動輪Wに伝達される。また、モータジェネレータ101は、電動車両の減速時には発電機として動作して、電動車両の制動力を出力する。なお、モータジェネレータ101を発電機として動作させることで生じた回生電力は、バッテリ105に蓄えられる。
 PDU103は、直流電圧を三相交流電圧に変換してモータジェネレータ101に印加する。また、PDU103は、モータジェネレータ101の回生動作時に入力される交流電圧を直流電圧に変換する。
 バッテリ105は、リチウムイオン電池やニッケル水素電池等といった複数の蓄電セルを有し、VCU111を介してモータジェネレータ101に高電圧の電力を供給する。なお、バッテリ105は、リチウムイオン電池やニッケル水素電池といった二次電池に限定されない。例えば、蓄電可能容量は少ないものの、短時間に大量の電力を充放電可能なコンデンサやキャパシタをバッテリ105として用いても構わない。
 電流センサ107は、バッテリ105の出力電流でもあるVCU111への入力電流I1を検出する。電圧センサ1091は、バッテリ105の出力電圧でもあるVCU111の入力電圧V1を検出する。電圧センサ1092は、VCU111の出力電圧V2を検出する。
 VCU111は、バッテリ105が放電する電力又はバッテリ105に充電する電力の電圧変換が可能な変換部を2つ有し、これらを互いに並列に接続し、その出力ノードと入力ノードを共通化した、いわゆる多相コンバータである。VCU111は、バッテリ105の出力電圧を直流のまま昇圧する。また、VCU111は、電動車両の減速時にモータジェネレータ101が発電して直流に変換された電力を降圧する。VCU111によって降圧された電力は、バッテリ105に充電される。
 図2は、バッテリ105、VCU111、PDU103、モータジェネレータ101及びECU113の関係を示す電気回路図である。図2に示すように、VCU111が有する各変換部は、リアクトルを有し、当該リアクトルのハイサイドとローサイドに、並列接続されたダイオードとスイッチング素子の組をそれぞれ有し、昇圧チョッパ回路を構成する。また、VCU111は、2つの変換部を流れる相電流IL1,IL2の各電流値をそれぞれ検出する相電流センサ1151,1152を有する。なお、VCU111の入力側には、2つの変換部と並列に平滑コンデンサC1が設けられ、VCU111の出力側には平滑コンデンサC2が設けられる。
 VCU111が有する2つの変換部は電気的に並列に接続されており、各変換部は、ECU113がハイサイドとローサイドから成る2つのスイッチング素子を所望のタイミングでオンオフ切換制御することによって、電圧変換を行う。変換部におけるスイッチング素子のオンオフ切換動作は、ECU113が生成したパルス状の所定のデューティ比を有する制御信号(PWM(Pulse Width Modulation)信号)によって制御される。なお、各変換部に対するオンオフ切換制御は、ECU113からの制御信号によってオンオフ切換位相が180度ずれたインターリーブ制御である。
 図3は、図2に示したVCU111が有する2つの変換部の各構成要素及び平滑コンデンサC1,C2の、Z軸方向から見た位置関係を示す図である。以下の説明では、VCU111が有する変換部と相電流センサの組を「相」と表現する。したがって、本実施形態では、図3に示すように、リアクトルL1を含む変換部と相電流センサ1151の組を「相1」、リアクトルL2を含む変換部と相電流センサ1152の組を「相2」と表す。
 図3に示すように、本実施形態では、相1及び相2がXY平面上に一列に並んで配置されている。また、相1を構成するリアクトルL1の鉄芯と相2を構成するリアクトルL2の鉄芯が共用化され、各リアクトルのコイルの鉄芯に対する巻線方向は互いに逆である。このため、リアクトルL1とリアクトルL2は互いに磁気結合する。また、リアクトルL1とリアクトルL2とで共用化された鉄芯Coは、相1及び相2にわたってXY平面上に配置される。XY平面は、水平面であっても、鉛直面であっても良い。
 さらに図3においては、互いに磁気結合したリアクトルに同一の電流を流した場合、それぞれの相に生じる磁束が相殺される点を示している。リアクトルL1に流れる電流IL1は磁束1を、リアクトルL2に流れる電流IL2は磁束2をそれぞれ電磁誘導によって生じさせる。前述したようにリアクトルL1の鉄芯とリアクトルL2の鉄芯は共用化されているので、磁束1と磁束2は逆向きとなって互いに相殺する。したがって、リアクトルL1とリアクトルL2における磁気飽和を抑制できる。
 各相のリアクトルL1,L2の誘導電流IL1,IL2は、ローサイドのスイッチング素子の一端とハイサイドのスイッチング素子の一端を接続したノードにつながるノードNode2に入力される。ローサイドのスイッチング素子の他端のノードNode1は、グランド線に接続される。また、各相の出力電流は、ハイサイドのスイッチング素子の他端のノードNode3より出力される。
 なお、図4に示すように、相1,相2を構成する各リアクトルの鉄芯が独立した構成であっても良い。但し、この場合であっても、図5に示すように、相1及び相2がXY平面上に一列に並んで配置される。
 ECU113は、VCU111を構成する2つの相のスイッチング素子に供給する制御信号によるオンオフ切換制御、及び、PDU103の制御を行う。以下、ECU113によるVCU111の制御について、図6~図8を参照して詳細に説明する。
 図6は、第1実施形態のECU113の内部構成を示すブロック図である。図6に示すように、第1実施形態のECU113は、基本制御部121と、偏流量算出部123と、均等化制御部125と、制御信号生成部127とを有する。なお、基本制御部121は、VCU111の入力又は出力を目標値とするための制御を司る手段であり、偏流量算出部123と均等化制御部125は、VCU111を構成する2つの変換部を流れる相電流を均等化するための制御を司る手段であり、制御信号生成部127は、上記目的が異なる2つの制御の双方に応じたパルス状の制御信号を生成する手段である。
 以下、第1実施形態のECU113が有する各構成要素について説明する。
 基本制御部121は、電圧センサ1091が検出したVCU111の入力電圧V1、電圧センサ1092が検出したVCU111の出力電圧V2、及び目標電圧値に基づき、入力電圧V1又は出力電圧V2が目標電圧値となるための、VCU111を構成する各変換部のスイッチング素子に対する制御信号の基本デューティ比Dを決定する。なお、基本制御部121は、電流センサ107が検出したVCU111への入力電流I1及び目標電流値に基づき、入力電流I1が目標電流値となるための、VCU111を構成する各変換部のスイッチング素子に対する制御信号の基本デューティ比Dを決定しても良い。
 偏流量算出部123は、相電流センサ1151,1152がそれぞれ検出したVCU111の各相の相電流IL1と相電流IL2の差分(IL1-IL2)を算出し、当該差分と均等化目標値との差分を偏流量として算出する。なお、均等化目標値は、一方の相電流をバイアスするといった特別な理由がない限り、0(零)[A]である。したがって、偏流量算出部123は、「IL2-IL1(=0-(IL1-IL2))」を偏流量として算出する。
 均等化制御部125は、偏流量算出部123が算出した偏流量に基づき、相電流IL1,IL2を均等化するための、制御信号の基本デューティ比Dに加算又は減算する補正デューティ比ΔDを決定する。すなわち、均等化制御部125は、絶対値が等しい正の値の補正デューティ比「+ΔD」及び負の値の補正デューティ比「-ΔD」をそれぞれ個別に決定する。
 制御信号生成部127は、基本制御部121が決定した基本デューティ比D及び均等化制御部125が決定した補正デューティ比ΔDに基づく2種類の制御信号S1,S2を生成する。図7は、制御信号生成部127が生成する制御信号S1,S2の経時変化の一例を示す図である。図7に示すように、制御信号生成部127は、デューティ比が「D+ΔD」の制御信号S1と、デューティ比が「D-ΔD」の制御信号S2とを生成する。図2又は図4に示すように、制御信号生成部127によって生成された2種類の制御信号S1,S2の一方は、VCU111を構成する2つの変換部の一方のスイッチング素子に供給され、他方の制御信号は、他方の変換部のスイッチング素子に供給される。
 上記説明した制御信号S1,S2によって、VCU111を構成する各変換部のスイッチング素子がオンオフ切換制御されるため、VCU111は、入力又は出力を目標値とするための制御と、相電流IL1,IL2を均等化するための制御の2つの制御を反映した電圧変換を行う。その結果、図8に示すように、VCU111が入力電圧V1を出力電圧V2に昇圧する際に各変換部を流れる相電流IL1と相電流IL2の差分として表される偏流量が所定値以下に抑えられる。
 以上説明したように、本実施形態によれば、2つの相間の相電流の均衡をとるための補正デューティ比は絶対値が等しい正の値(+ΔD)と負の値(-ΔD)を含み、これら正の値と負の値の補正デューティ比の総和が0であるため、2つの相を含むVCU111全体をひとつの単位でみると、各相の補正デューティ比ΔDは効果的に打ち消し合う。このため、電圧変換のための基本デューティ比Dに基づく制御への補正デューティ比ΔDによる影響を抑えた状態で、2つの相間の相電流の偏流を低減できる。すなわち、補正デューティ比ΔDがVCU111の本来の機能である電圧変換の効率に影響を与えずに、2つの相間の相電流の偏流を低減できる。なお、上記正の値と負の値の補正デューティ比の総和は0に限らず、当該総和の絶対値が所定値以下であっても良い。この場合であっても、各相の補正デューティ比ΔDは効果的に打ち消し合うため、補正デューティ比ΔDがVCU111の本来の機能である電圧変換の効率に影響を与えずに、2つの相間の相電流の偏流を低減できる。
(第2実施形態)
 第2実施形態の電動車両が第1実施形態の電動車両と異なる点は、ECUの内部構成であり、この点以外は第1実施形態と同様である。このため、ECU以外の第1実施形態と同一又は同等部分についての説明は簡略化又は省略する。
 図9は、第2実施形態のECU213の内部構成を示すブロック図である。図9において、第1実施形態の図6と共通する構成要素には同じ参照符号が付されている。図9に示すように、第2実施形態のECU213は、基本制御部221と、偏流量算出部223と、均等化制御部225と、上限値制限部227と、制御信号生成部229とを有する。なお、基本制御部221は、VCU111の入力又は出力を目標値とするための制御を司る手段であり、偏流量算出部223と均等化制御部225と上限値制限部227は、VCU111を構成する2つの変換部を流れる相電流を均等化するための制御を司る手段であり、制御信号生成部229は、上記目的が異なる2つの制御の双方に応じたパルス状の制御信号を生成する手段である。
 以下、第2実施形態のECU213が有する各構成要素について説明する。
 基本制御部221は、電圧センサ1091が検出したVCU111の入力電圧V1、電圧センサ1092が検出したVCU111の出力電圧V2、及び目標電圧値に基づき、入力電圧V1又は出力電圧V2が目標電圧値となるための、VCU111を構成する各変換部のスイッチング素子に対する制御信号の基本デューティ比Dを決定する。なお、基本制御部221は、電流センサ107が検出したVCU111への入力電流I1及び目標電流値に基づき、入力電流I1が目標電流値となるための、VCU111を構成する各変換部のスイッチング素子に対する制御信号の基本デューティ比Dを決定しても良い。
 偏流量算出部223は、相電流センサ1151,1152がそれぞれ検出したVCU111の各相の相電流IL1と相電流IL2の差分(IL1-IL2)を算出し、当該差分と均等化目標値との差分を偏流量として算出する。なお、均等化目標値は、一方の相電流をバイアスするといった特別な理由がない限り、0(零)[A]である。したがって、偏流量算出部223は、「IL2-IL1(=0-(IL1-IL2))」を偏流量として算出する。
 均等化制御部225は、偏流量算出部223が算出した偏流量に基づき、相電流IL1,IL2を均等化するための、制御信号の基本デューティ比Dに加算又は減算する補正デューティ比ΔDを決定する。すなわち、均等化制御部225は、絶対値が等しい正の値の補正デューティ比「+ΔD」及び負の値の補正デューティ比「-ΔD」をそれぞれ個別に決定する。
 上限値制限部227は、均等化制御部225が決定した補正デューティ比ΔDの絶対値(|ΔD|)が、予め基本デューティ比Dより小さな値に設定された上限値ΔDlimを超える値であれば、当該上限値ΔDlimを上限処理後の補正デューティ比ΔD’として出力し、当該絶対値|ΔD|が上限値ΔDlim以下であれば、均等化制御部225が決定した補正デューティ比ΔDをそのまま補正デューティ比ΔD’として出力する。
 上限値制限部227に予め設定される補正デューティ比ΔDの絶対値の上限値ΔDlimは、VCU111が正常動作時に均等化制御部225が決定する補正デューティ比ΔDの最大値ΔDtha以上、かつ、VCU111が有する相電流センサの少なくとも1つが異常であるときに均等化制御部225が決定する補正デューティ比ΔDの最小値ΔDthb以下の値である。すなわち、補正デューティ比ΔDの絶対値の上限値ΔDlimは、図10に示す上限値設定幅内の所定値に設定される。なお、当該所定値は、上記最小値ΔDthbよりも上記最大値ΔDthaに近い値である。
 制御信号生成部229は、基本制御部221が決定した基本デューティ比D及び上限値制限部227が出力した補正デューティ比ΔD’に基づく2種類の制御信号S1,S2、すなわち、デューティ比が「D+ΔD’」の制御信号S1と、デューティ比が「D-ΔD’」の制御信号S2とを生成する。図2又は図4に示すように、制御信号生成部229によって生成された2種類の制御信号S1,S2の一方は、VCU111を構成する2つの変換部の一方のスイッチング素子に供給され、他方の制御信号は、他方の変換部のスイッチング素子に供給される。
 上記説明した制御信号S1,S2によって、VCU111を構成する各変換部のスイッチング素子がオンオフ切換制御されるため、VCU111は、入力又は出力を目標値とするための制御と、相電流IL1,IL2を均等化するための制御の2つの制御を反映した電圧変換を行う。その結果、VCU111が入力電圧V1を出力電圧V2に昇圧する際に各変換部を流れる相電流IL1と相電流IL2の差分として表される偏流量が所定値以下に抑えられる。
 以上説明したように、本実施形態によれば、VCU111が有する相電流センサの少なくとも1つが異常であっても、制御信号生成部229が生成する制御信号S1,S2のデューティ比に含まれる補正デューティ比ΔD’の絶対値は、基本デューティ比Dより小さい上限値以下であるため、故障した相電流センサの検出値に含まれる誤差等に起因する過剰な補正デューティ比ΔDによるVCU111の制御を抑制できる。
 また、上限値制限部227に予め設定される補正デューティ比ΔDの絶対値の上限値ΔDlimは、VCU111が有する全ての相電流センサが正常な状態で生じ得る各相の偏流を低減するために決定される補正デューティ比ΔDの最大値ΔDtha以上である。このため、全ての相電流センサが正常であれば、複数の相間に極度な偏流が生じない範囲でVCU111の制御が最大限に行われる。また、上記上限値ΔDlimは、VCU111が有する一部の相電流センサが異常な状態で生じ得る各相の偏流を低減するために決定される補正デューティ比ΔDの最小値ΔDthb以下の値である。すなわち、当該最小値ΔDthbは、故障した相電流センサの検出値が異常値を示す場合に、正常な相電流が当該異常値に追随して過電流とならない最大の値である。このため、故障した相電流センサの検出値が異常値を示す場合であっても、補正デューティ比ΔDによるVCU111の過剰な制御は行われず、正常な相電流は過電流に至らない。
 なお、VCU111が有する一部の相電流センサが異常であるため、制御信号生成部229が、上記最小値ΔDthbよりも大きな値の補正デューティ比ΔDを決定し、この補正デューティ比ΔDと基本デューティ比Dに基づく、デューティ比が「D+ΔD」の制御信号S1及び「D-ΔD」の制御信号S2によってVCU111の各変換部がオンオフ切換制御される場合には、図11に示すように、故障した相電流センサの検出値である異常値に正常な相電流が追随して過電流となる。
 また、上記上限値ΔDlimは、全ての相電流センサが正常な状態で生じ得る各相の偏流を低減するために決定される補正デューティ比ΔDの最大値ΔDtha寄りの値であるため、全ての相電流センサが正常であっても各検出値に含まれる誤差への対策をある程度行いつつ、複数の相間に極度な偏流が生じない範囲でのVCU111の制御を最大限に実施可能である。
(第3実施形態)
 第3実施形態の電動車両が第1実施形態の電動車両と異なる点は、ECUの内部構成であり、この点以外は第1実施形態と同様である。このため、ECU以外の第1実施形態と同一又は同等部分についての説明は簡略化又は省略する。
 図12は、第3実施形態のECU313の内部構成を示すブロック図である。図12において、第1実施形態の図6と共通する構成要素には同じ参照符号が付されている。図12に示すように、第3実施形態のECU313は、基本制御部321と、偏流量算出部323と、均等化制御部325と、上限値制限部327と、制御信号生成部329とを有する。なお、基本制御部321は、VCU111の入力又は出力を目標値とするための制御を司る手段であり、偏流量算出部323と均等化制御部325と上限値制限部327は、VCU111を構成する2つの変換部を流れる相電流を均等化するための制御を司る手段であり、制御信号生成部329は、上記目的が異なる2つの制御の双方に応じたパルス状の制御信号を生成する手段である。
 以下、第3実施形態のECU313が有する各構成要素について説明する。
 基本制御部321は、電圧センサ1091が検出したVCU111の入力電圧V1、電圧センサ1092が検出したVCU111の出力電圧V2、及び目標電圧値に基づき、入力電圧V1又は出力電圧V2が目標電圧値となるための、VCU111を構成する各変換部のスイッチング素子に対する制御信号の基本デューティ比Dを決定する。なお、基本制御部321は、電流センサ107が検出したVCU111への入力電流I1及び目標電流値に基づき、入力電流I1が目標電流値となるための、VCU111を構成する各変換部のスイッチング素子に対する制御信号の基本デューティ比Dを決定しても良い。
 偏流量算出部323は、相電流センサ1151,1152がそれぞれ検出したVCU111の各相の相電流IL1と相電流IL2の差分(IL1-IL2)を算出し、当該差分と均等化目標値との差分を偏流量として算出する。なお、均等化目標値は、一方の相電流をバイアスするといった特別な理由がない限り、0(零)[A]である。したがって、偏流量算出部323は、「IL2-IL1(=0-(IL1-IL2))」を偏流量として算出する。
 均等化制御部325は、偏流量算出部323が算出した偏流量に基づき、相電流IL1,IL2を均等化するための、制御信号の基本デューティ比Dに加算又は減算する補正デューティ比ΔDを決定する。すなわち、均等化制御部325は、絶対値が等しい正の値の補正デューティ比「+ΔD」及び負の値の補正デューティ比「-ΔD」をそれぞれ個別に決定する。
 上限値制限部327は、均等化制御部325が決定した補正デューティ比ΔDの絶対値(|ΔD|)が、予め基本デューティ比Dより小さな値に設定された上限値ΔDlimを超える値であれば、当該上限値ΔDlimを上限処理後の補正デューティ比ΔD’として出力し、当該絶対値|ΔD|が上限値ΔDlim以下であれば、均等化制御部325が決定した補正デューティ比ΔDをそのまま補正デューティ比ΔD’として出力する。
 上限値制限部327に予め設定される補正デューティ比ΔDの絶対値の上限値ΔDlimは、基本制御部321が決定した基本デューティ比Dに基づき設定されている。図13は、第3実施形態の上限値制限部327に設定される、基本デューティ比Dと補正デューティ比ΔDの絶対値の上限値ΔDlimとの関係を示す図である。なお、図13では、基本デューティ比Dの値として、0<D1<D2<D3<D4<100の関係を有する。基本デューティ比Dが0%であるとVCU111を構成する変換部の少なくとも1つは停止状態となり、基本デューティ比Dが100%であるとVCU111を構成する変換部の少なくとも1つは直結状態となる。
 補正デューティ比ΔDの絶対値の上限値ΔDlimは、補正デューティ比ΔDによってVCU111における2つの変換部の一方のデューティ比が0%(停止状態)又は100%(直結状態)とならない最大値である。図13に示すように、本実施形態における補正デューティ比ΔDの絶対値の上限値ΔDlimは、基本デューティ比Dが0~D1(%)の範囲及びD4~100(%)の範囲では0%に設定され、基本デューティ比DがD1~D2(%)の範囲では基本デューティ比Dが小さいほど0%に近い値に設定され、基本デューティ比DがD3~D4(%)の範囲では基本デューティ比Dが大きいほど0%に近い値に設定され、基本デューティ比DがD2~D3(%)の範囲では予め設定された基本デューティ比Dより小さな値に設定される。なお、基本デューティ比DがD2~D3(%)の範囲で設定される補正デューティ比ΔDの絶対値の上限値ΔDlimは、第2実施形態でも説明した図10に示した上限値設定幅内の所定値であり、VCU111が正常動作時に均等化制御部325が決定する補正デューティ比ΔDの最大値ΔDtha以上、かつ、VCU111が有する相電流センサの少なくとも1つが異常であるときに均等化制御部325が決定する補正デューティ比ΔDの最小値ΔDthb以下の値である。なお、当該所定値は、上記最小値ΔDthbよりも上記最大値ΔDthaに近い値である。
 制御信号生成部329は、基本制御部321が決定した基本デューティ比D及び上限値制限部327が出力した補正デューティ比ΔD’に基づく2種類の制御信号S1,S2、すなわち、デューティ比が「D+ΔD’」の制御信号S1と、デューティ比が「D-ΔD’」の制御信号S2とを生成する。制御信号生成部329によって生成された2種類の制御信号S1,S2の一方は、VCU111を構成する2つの変換部の一方のスイッチング素子に供給され、他方の制御信号は、他方の変換部のスイッチング素子に供給される。
 図14は、基本デューティ比Dが100%に近づく場合の、(a)補正デューティ比ΔDの絶対値が上限値ΔDlimに制限されない場合の制御信号S1,S2の各デューティ比の経時変化の一例と、(b)第3実施形態において補正デューティ比ΔDの絶対値が上限値ΔDlimに制限される場合の制御信号S1,S2の各デューティ比の経時変化の一例を示す図である。図14の(a)では基本デューティ比Dが100%に近づいても補正デューティ比ΔDは変わらないため、当該補正デューティ比ΔDのために制御信号S1のデューティ比「D+ΔD」が真っ先に100%に到達する。制御信号S1のデューティ比「D+ΔD」が100%に到達した状態では、制御信号S1が供給される変換部は直結状態となる。VCU111を構成する一方の変換部が直結状態になると、もう一方の変換部のリアクトルL2の放電期間には、図15(A)に示すように、VCU111内部を循環する直流成分の循環電流が発生し、平滑コンデンサC2に貯めるエネルギーのほとんどが直結状態の変換部側に流れてしまう。また、リアクトルL2の充電期間には、図15(B)に示すように、平滑コンデンサC2に蓄えられたエネルギーがVCU111側に流れてしまう。このように、VCU111における一方の変換部が直結状態になるとエネルギーが効率的に利用されず、この状態のままもう一方の変換部が電圧変換を続けると、基本制御部321による制御のために相電流が過電流に至る虞がある。
 これに対し、本実施形態における補正デューティ比の絶対値の上限値ΔDlimを適用すると、図14の(b)に示すように、制御信号S1,S2の各デューティ比は同時に100%に到達し、そのタイミングは(a)で制御信号S1のデューティ比「D+ΔD」が100%に到達するタイミングよりも遅い。
 基本デューティ比Dが0%に近づく場合も上記説明を適用できる。図16は、基本デューティ比Dが0%に近づく場合の、(a)補正デューティ比ΔDの絶対値が上限値ΔDlimに制限されない場合の制御信号S1,S2の各デューティ比の経時変化の一例と、(b)第3実施形態において補正デューティ比ΔDの絶対値が上限値ΔDlimに制限される場合の制御信号S1,S2の各デューティ比の経時変化の一例を示す図である。図16の(a)では基本デューティ比Dが0%に近づいても補正デューティ比ΔDは変わらないため、当該補正デューティ比ΔDのために制御信号S2のデューティ比「D-ΔD」が真っ先に0%に到達する。制御信号S2のデューティ比「D-ΔD」が0%に到達した状態では、制御信号S2が供給される変換部は停止状態となる。VCU111を構成する一方の変換部が停止状態になると、もう一方の変換部のリアクトルL1の放電期間には、図17(A)に示すように、VCU111内部を循環する直流成分の循環電流が発生し、平滑コンデンサC2に貯めるエネルギーのほとんどが停止状態の変換部側に流れてしまう。また、リアクトルL1の充電期間には、図17(B)に示すように、平滑コンデンサC2に蓄えられたエネルギーがVCU111側に流れてしまう。このように、VCU111における一方の変換部が停止状態になるとエネルギーが効率的に利用されず、この状態のままもう一方の変換部が電圧変換を続けると、基本制御部321による制御のために相電流が過電流に至る虞がある。
 これに対し、本実施形態における補正デューティ比の絶対値の上限値ΔDlimを適用すると、図16の(b)に示すように、制御信号S1,S2の各デューティ比は同時に0%に到達し、そのタイミングは(a)で制御信号S2のデューティ比「D-ΔD」が0%に到達するタイミングよりも遅い。
 上記説明した制御信号S1,S2によって、VCU111を構成する各変換部のスイッチング素子がオンオフ切換制御されるため、VCU111は、入力又は出力を目標値とするための制御と、相電流IL1,IL2を均等化するための制御の2つの制御を反映した電圧変換を行う。その結果、VCU111が入力電圧V1を出力電圧V2に昇圧する際に各変換部を流れる相電流IL1と相電流IL2の差分として表される偏流量が所定値以下に抑えられる。
 以上説明したように、本実施形態によれば、VCU111の2つの変換部をそれぞれ制御する制御信号S1,S2は基本デューティ比D及び補正デューティ比ΔD’に基づき生成されるとともに、2つの相電流の均衡をとるための補正デューティ比ΔDの絶対値の上限値ΔDlimが、基本デューティ比Dに基づいて設定される。この上限値ΔDlimの設定によって、いずれか一方の変換部が停止状態又は直結状態にならないよう、補正デューティ比ΔD’は基本デューティ比Dに対し適量に抑えられるため、VCU111の制御を安定化できる。すなわち、上限値ΔDlim以下の補正デューティ比ΔD’がVCU111の本来の機能である電圧変換の安定性に影響を与えずに、2つの相電流間の偏流を低減できる。
 また、均等化制御部325が決定した補正デューティ比ΔDによって2つの変換部の一方のデューティ比が100%(直結状態)又は0%(停止状態)になるおそれがあるならば、制御信号S1,S2は基本デューティ比Dのみに基づき生成される。すなわち、基本デューティ比Dが0%若しくは0%近傍又は100%若しくは100%近傍では、補正デューティ比の上限値ΔDlimが0に設定されるため、補正デューティ比によって2つの変換部の一方だけが停止状態又は直結状態になることを防止できる。
 また、補正デューティ比ΔDの絶対値の上限値ΔDlimは、基本デューティ比DがD1~D2(%)の範囲では、基本デューティ比Dが0%近傍である値D1に近いほど0に近い値に設定され、基本デューティ比DがD3~D4(%)の範囲では、基本デューティ比Dが100%近傍である値D4に近いほど0に近い値に設定されるため、2つの相間の相電流の均衡をとるための制御を行いつつ、補正デューティ比によって2つの変換部の一方だけが停止状態又は直結状態になることを防止できる。また、基本デューティ比DがD2~D3(%)の範囲では、補正デューティ比ΔDの絶対値の上限値ΔDlimが所定値に設定されるため、2つの相間の相電流の均衡をとるための制御を確実に行うことができる。
(第4実施形態)
 第4実施形態の電動車両が第1実施形態の電動車両と異なる点は、ECUの内部構成であり、この点以外は第1実施形態と同様である。このため、ECU以外の第1実施形態と同一又は同等部分についての説明は簡略化又は省略する。
 図18は、第4実施形態のECU413の内部構成を示すブロック図である。図18において、第1実施形態の図6と共通する構成要素には同じ参照符号が付されている。図18に示すように、第4実施形態のECU413は、基本制御部421と、偏流量算出部423と、均等化制御部425と、上限値制限部427と、制御信号生成部429とを有する。なお、基本制御部421は、VCU111の入力又は出力を目標値とするための制御を司る手段であり、偏流量算出部423と均等化制御部425と上限値制限部427は、VCU111を構成する2つの変換部を流れる相電流を均等化するための制御を司る手段であり、制御信号生成部429は、上記目的が異なる2つの制御の双方に応じたパルス状の制御信号を生成する手段である。
 以下、第4実施形態のECU413が有する各構成要素について説明する。
 基本制御部421は、電圧センサ1091が検出したVCU111の入力電圧V1、電圧センサ1092が検出したVCU111の出力電圧V2、及び目標電圧値に基づき、入力電圧V1又は出力電圧V2が目標電圧値となるための、VCU111を構成する各変換部のスイッチング素子に対する制御信号の基本デューティ比Dを決定する。なお、基本制御部421は、電流センサ107が検出したVCU111への入力電流I1及び目標電流値に基づき、入力電流I1が目標電流値となるための、VCU111を構成する各変換部のスイッチング素子に対する制御信号の基本デューティ比Dを決定しても良い。
 偏流量算出部423は、相電流センサ1151,1152がそれぞれ検出したVCU111の各相の相電流IL1と相電流IL2の差分(IL1-IL2)を算出し、当該差分と均等化目標値との差分を偏流量として算出する。なお、均等化目標値は、一方の相電流をバイアスするといった特別な理由がない限り、0(零)[A]である。したがって、偏流量算出部423は、「IL2-IL1(=0-(IL1-IL2))」を偏流量として算出する。
 均等化制御部425は、偏流量算出部423が算出した偏流量に基づき、相電流IL1,IL2を均等化するための、制御信号の基本デューティ比Dに加算又は減算する補正デューティ比ΔDを決定する。すなわち、均等化制御部425は、絶対値が等しい正の値の補正デューティ比「+ΔD」及び負の値の補正デューティ比「-ΔD」をそれぞれ個別に決定する。
 上限値制限部427は、均等化制御部425が決定した補正デューティ比ΔDの絶対値(|ΔD|)が、予め基本デューティ比Dより小さな値に設定された上限値ΔDlimを超える値であれば、当該上限値ΔDlimを上限処理後の補正デューティ比ΔD’として出力し、当該絶対値|ΔD|が上限値ΔDlim以下であれば、均等化制御部425が決定した補正デューティ比ΔDをそのまま補正デューティ比ΔD’として出力する。
 上限値制限部427に予め設定される補正デューティ比ΔDの絶対値の上限値ΔDlimは、相電流センサ1151,1152がそれぞれ検出したVCU111の各相の相電流IL1と相電流IL2の和(IL1+IL2)、すなわち、VCU111を流れる総電流の大きさに基づき設定されている。なお、相電流IL1と相電流IL2の和(IL1+IL2)は、VCU111への入力電流I1に等しい。このため、補正デューティ比ΔDの絶対値の上限値ΔDlimは、電流センサ107が検出した入力電流I1又はその目標電流の大きさに基づき設定されても良い。また、当該上限値ΔDlimは、VCU111の出力電流又はその目標電流の大きさに基づき設定されても良い。
 図19は、第4実施形態の上限値制限部427に設定される、基本デューティ比Dと補正デューティ比ΔDの絶対値の上限値ΔDlimとの関係を示す図である。図19では、入力電流I1の値として、0<Ia<Ibの関係を有する。補正デューティ比ΔDの絶対値の上限値ΔDlimは、補正デューティ比ΔDによってVCU111における2つの変換部の一方のデューティ比が0%(停止状態)又は100%(直結状態)とならない最大値である。図19に示すように、本実施形態における補正デューティ比ΔDの絶対値の上限値ΔDlimは、入力電流I1が0~Iaの範囲では0%に設定され、入力電流I1がIa~Ibの範囲では入力電流I1が小さいほど0%に近い値に設定され、入力電流I1がIb以上の範囲では予め設定された基本デューティ比Dより小さな値に設定される。なお、入力電流I1がIb以上の範囲で設定される補正デューティ比ΔDの絶対値の上限値ΔDlimは、第2実施形態でも説明した図10に示した上限値設定幅内の所定値であり、VCU111が正常動作時に均等化制御部425が決定する補正デューティ比ΔDの最大値ΔDtha以上、かつ、VCU111が有する相電流センサの少なくとも1つが異常であるときに均等化制御部425が決定する補正デューティ比ΔDの最小値ΔDthb以下の値である。なお、当該所定値は、上記最小値ΔDthbよりも上記最大値ΔDthaに近い値である。
 補正デューティ比ΔDの絶対値の上限値ΔDlimが0%に設定される入力電流I1の範囲(0~Ia)は、いわゆる低電流領域である。低電流領域において相電流を均等化するための制御を補正デューティ比ΔDに基づいて行うと、2つの変換部を流れる相電流の少なくとも一方において、図20に示すように、電流の波形がゼロクロスするように不連続になる。こういった相電流が流れる変換部は不連続モードとなるため、制御安定性が損なわれる。したがって、本実施形態では、VCU111を構成する変換部の少なくとも1つが不連続モードになるおそれがある低電流領域では、補正デューティ比ΔDの絶対値の上限値ΔDlimを0%に設定して、基本デューティ比Dのみに基づく制御を行う。
 図19に示す、低電流領域における入力電流I1の最大値である値Iaは、VCU111が有する相電流センサ1151,1152の検出値に含まれる誤差を考慮しても、基本デューティ比DによってVCU111における2つの変換部の一方が停止状態とならない最も小さな値である。例えば、相電流センサ1151,1152の各検出値に含まれ得る誤差に対応するデューティ比がDeであれば、入力電流I1に含まれ得る誤差に対応するデューティ比は「2De」である。この場合、入力電流Iaには、デューティ比2Deよりも若干大きな値の基本デューティ比でVCU111を制御した際の実際の入力電流I1が設定される。
 制御信号生成部429は、基本制御部421が決定した基本デューティ比D及び上限値制限部427が出力した補正デューティ比ΔD’に基づく2種類の制御信号S1,S2、すなわち、デューティ比が「D+ΔD’」の制御信号S1と、デューティ比が「D-ΔD’」の制御信号S2とを生成する。制御信号生成部429によって生成された2種類の制御信号S1,S2の一方は、VCU111を構成する2つの変換部の一方のスイッチング素子に供給され、他方の制御信号は、他方の変換部のスイッチング素子に供給される。
 上記説明した制御信号S1,S2によって、VCU111を構成する各変換部のスイッチング素子がオンオフ切換制御されるため、VCU111は、入力又は出力を目標値とするための制御と、相電流IL1,IL2を均等化するための制御の2つの制御を反映した電圧変換を行う。その結果、VCU111が入力電圧V1を出力電圧V2に昇圧する際に各変換部を流れる相電流IL1と相電流IL2の差分として表される偏流量が所定値以下に抑えられる。
 以上説明したように、本実施形態によれば、検出値に誤差を含む相電流センサ1151,1152を有したVCU111の2つの変換部をそれぞれ制御する制御信号S1,S2は基本デューティ比D及び補正デューティ比ΔD’に基づき、2つの相間の相電流の均衡をとるための補正デューティ比ΔDの絶対値の上限値ΔDlimが、各変換部を流れる相電流IL1,IL2の和又はVCU111の入力電流I1若しくはその目標電流の大きさに基づいて設定される。この上限値ΔDlimの設定によって、いずれか一方の変換部が停止状態にならないよう、補正デューティ比ΔD’は電流の大きさに対し適量に抑えられるため、循環電流が流れずVCU111の制御を安定化できる。すなわち、上限値ΔDlim以下の補正デューティ比ΔD’がVCU111の本来の機能である電圧変換の安定性に影響を与えずに、2つの相電流間の偏流を低減できる。
 また、補正デューティ比ΔDによって2つの変換部の少なくとも1つが不連続モードになるおそれがある低電流領域では、制御信号S1,S2は基本デューティ比Dのみに基づき生成されるため、VCU111の制御を安定化できる。すなわち、補正デューティ比が変換モジュールの本来の機能である電圧変換の安定性に影響を与えない。
 また、相電流IL1と相電流IL2の和、又はVCU111への入力電流I1若しくはその目標電流の大きさが小さいときは、補正デューティ比ΔDの絶対値の上限値ΔDlimが0%に設定されるため、補正デューティ比ΔD’によって2つの変換部の一部が不連続モードになることを防止できる。
 また、相電流センサ1151,1152に不可避な誤差があっても、基本デューティ比Dに基づく制御によって変換部の少なくとも1つが停止状態とならないため、VCU111における電圧変換の安定性を担保できる
 また、補正デューティ比ΔDの絶対値の上限値ΔDlimは、低電流領域に近いほど0に近い値に設定されるため、2つの相間の相電流の均衡をとるための制御を行いつつ、補正デューティ比ΔD’によって2つの変換部の一部が不連続モードになることも防止できる。
 また、相電流IL1と相電流IL2の和、又はVCU111への入力電流I1若しくはその目標電流の大きさが十分に大きい領域では、補正デューティ比ΔDの絶対値の上限値ΔDlimが上限値設定幅内の所定値に設定されるため、2つの相間の相電流の均衡をとるための制御を確実に行うことができる。
 なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、上述の第1~第4実施例はそれぞれ独立に説明したが、2つ以上の実施例を組み合わせた電動車両としても良い。
 また、上記説明した電動車両は、1MOT型のEV(Electrical Vehicle)であるが、複数のモータジェネレータを搭載したEVであっても、少なくとも1つのモータジェネレータと共に内燃機関を搭載したHEV(Hybrid Electrical Vehicle)又はPHEV(Plug-in Hybrid Electrical Vehicle)であっても良い。また、上記実施形態では、本発明に係る変換装置が電動車両に搭載された例について説明したが、輸送を目的としない電気機器に当該変換装置が設けられても良い。当該変換装置は大電流が出力可能な電源に対して好適であり、近年大電流化が著しいコンピュータへの適用が特に好ましい。
 本実施形態のVCU111は、バッテリ105の電圧を昇圧する昇圧型の電圧変換器であるが、バッテリ105の電圧を降圧する降圧型の電圧変換器、又は双方向に昇降圧が可能な昇降圧型の電圧変換器であっても良い。
101 モータジェネレータ
103 PDU
111 VCU
105 バッテリ
107 電流センサ
1151,1152 相電流センサ
1091,1092 電圧センサ
113,213,313,413 ECU
121,221,321,421 基本制御部
123,223,323,423 偏流量算出部
125,225,325,425 均等化制御部
127,229,329,429 制御信号生成部
227,327,427 上限値制限部
C1,C2 平滑コンデンサ
L1,L2 リアクトル
Co 鉄芯

Claims (12)

  1.  電源が放電する電力又は前記電源に充電する電力の電圧変換が可能な変換部と、前記変換部を流れる相電流の電流値を検出するセンサと、を有する相を複数有し、当該複数の相が電気的に並列に接続された変換モジュールと、
     所定のデューティ比に基づき生成した制御信号によって複数の前記変換部をそれぞれ制御する制御部と、を備え、
     前記制御部は、
     前記変換モジュールの入力又は出力が目標電圧又は目標電流となる、前記複数の相の全てに対する共通の基本デューティ比を決定する第1決定部と、
     複数の前記変換部毎に、正の値と負の値を少なくとも1つずつ含み前記基本デューティ比を補正する補正デューティ比をそれぞれ決定する第2決定部と、
     前記基本デューティ比及び前記補正デューティ比に基づく前記制御信号を生成する生成部と、を有し、
     前記第2決定部は、複数の前記変換部をそれぞれ流れる複数の相電流の差分に基づき、前記補正デューティ比を決定し、
     前記基本デューティ比は、前記補正デューティ比の絶対値以上である、変換装置。
  2.  請求項1に記載の変換装置であって、
     複数の前記変換部に対する個別の前記補正デューティ比の総和の絶対値は、所定値以下である、変換装置。
  3.  請求項2に記載の変換装置であって、
     複数の前記変換部に対する個別の前記補正デューティ比の総和は0である、変換装置。
  4.  請求項1から3のいずれか1項に記載の変換装置であって、
     前記第2決定部は、絶対値が前記基本デューティ比より小さい上限値又は下限値以内の前記補正デューティ比を決定する、変換装置。
  5.  請求項4に記載の変換装置であって、
     前記上限値又は前記下限値の絶対値は、前記複数の相に含まれる前記センサの全てが正常に出力し得る電流値の差分から決定される前記補正デューティ比の最大値以上の値である、変換装置。
  6.  請求項4に記載の変換装置であって、
     前記上限値又は前記下限値の絶対値は、前記複数の相に含まれる前記センサの一部が異常であるときに出力し得る電流値の差分から決定される前記補正デューティ比の最小値以下の値である、変換装置。
  7.  請求項4に記載の変換装置であって、
     前記上限値又は前記下限値の絶対値は、前記複数の相に含まれる前記センサの全てが正常に出力し得る電流値の差分から決定される前記補正デューティ比の最大値以上、かつ、前記複数の相に含まれる前記センサの一部が異常であるときに出力し得る電流値の差分から決定される前記補正デューティ比の最小値以下の値である、変換装置。
  8.  請求項7に記載の変換装置であって、
     前記上限値又は前記下限値の絶対値は、前記最小値よりも前記最大値に近い値である、変換装置。
  9.  電源が放電する電力又は前記電源に充電する電力の電圧変換が可能な変換部と、前記変換部を流れる相電流の電流値を検出するセンサと、を有する相を2つ有し、当該2つの相が電気的に並列に接続された変換モジュールと、
     所定のデューティ比に基づき生成した制御信号によって2つの前記変換部をそれぞれ制御する制御部と、を備え、
     前記制御部は、
     前記変換モジュールの出力が目標電圧又は目標電流となる、前記複数の相の全てに対する共通の基本デューティ比を決定する第1決定部と、
     2つの前記変換部毎に、正の値と負の値を少なくとも1つずつ含み前記基本デューティ比を補正する補正デューティ比をそれぞれ決定する第2決定部と、
     前記基本デューティ比及び前記補正デューティ比に基づく前記制御信号を生成する生成部と、を有し、
     前記第2決定部は、2つの前記変換部をそれぞれ流れる複数の相電流の差分に基づき、前記補正デューティ比を決定し、
     前記基本デューティ比は、前記補正デューティ比の絶対値以上である、変換装置。
  10.  請求項1から9のいずれか1項に記載の変換装置を有する、機器。
  11.  電源が放電する電力又は前記電源に充電する電力の電圧変換が可能な変換部と、前記変換部を流れる相電流の電流値を検出するセンサと、を有する相を複数有し、当該複数の相が電気的に並列に接続された変換モジュールと、
     所定のデューティ比に基づき生成した制御信号によって複数の前記変換部をそれぞれ制御する制御部と、を備えた変換装置の制御方法であって、
     前記変換モジュールの出力が目標電圧又は目標電流となる、前記複数の相の全てに対する共通の基本デューティ比を決定し、
     複数の前記変換部をそれぞれ流れる複数の相電流の差分に基づき、複数の前記変換部に対して、正の値と負の値を少なくとも1つずつ含みかつ絶対値が前記基本デューティ比以下である、個別の補正デューティ比を決定し、
     前記基本デューティ比及び前記補正デューティ比に基づく前記制御信号を生成する、制御方法。
  12.  電源が放電する電力又は前記電源に充電する電力の電圧変換が可能な変換部と、前記変換部を流れる相電流の電流値を検出するセンサと、を有する相を2つ有し、当該2つの相が電気的に並列に接続された変換モジュールと、
     所定のデューティ比に基づき生成した制御信号によって2つの前記変換部をそれぞれ制御する制御部と、を備えた変換装置の制御方法であって、
     前記変換モジュールの出力が目標電圧又は目標電流となる、前記2つの相の全てに対する共通の基本デューティ比を決定し、
     2つの前記変換部をそれぞれ流れる2つの相電流の差分に基づき、2つの前記変換部に対して、正の値と負の値を含みかつ絶対値が前記基本デューティ比以下である、個別の補正デューティ比を決定し、
     前記基本デューティ比及び前記補正デューティ比に基づく前記制御信号を生成する、制御方法。
PCT/JP2016/079350 2016-10-03 2016-10-03 変換装置、機器及び制御方法 WO2018066042A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/338,755 US11349395B2 (en) 2016-10-03 2016-10-03 Conversion apparatus, device, and control method
CN201680089806.XA CN109792206B (zh) 2016-10-03 2016-10-03 转换装置、设备及控制方法
JP2018543498A JPWO2018066042A1 (ja) 2016-10-03 2016-10-03 変換装置、機器及び制御方法
PCT/JP2016/079350 WO2018066042A1 (ja) 2016-10-03 2016-10-03 変換装置、機器及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079350 WO2018066042A1 (ja) 2016-10-03 2016-10-03 変換装置、機器及び制御方法

Publications (1)

Publication Number Publication Date
WO2018066042A1 true WO2018066042A1 (ja) 2018-04-12

Family

ID=61830881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079350 WO2018066042A1 (ja) 2016-10-03 2016-10-03 変換装置、機器及び制御方法

Country Status (4)

Country Link
US (1) US11349395B2 (ja)
JP (1) JPWO2018066042A1 (ja)
CN (1) CN109792206B (ja)
WO (1) WO2018066042A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111917295A (zh) * 2019-05-08 2020-11-10 三菱电机株式会社 功率转换装置及功率转换控制装置
WO2020250442A1 (ja) * 2019-06-14 2020-12-17 三菱電機株式会社 電力変換装置
JP2021191030A (ja) * 2020-05-26 2021-12-13 三菱電機株式会社 電力変換装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367519B2 (ja) * 2019-12-24 2023-10-24 トヨタ自動車株式会社 多相コンバータの制御装置、多相コンバータシステム、及び電源システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258871A (ja) * 1985-09-06 1987-03-14 Toshiba Corp チヨツパ装置の制御方法
US20090257257A1 (en) * 2008-04-10 2009-10-15 Stmicroelectronics S.R.I. Control device for interleaved converters, a system of interleaved converters and related control method
WO2013038512A1 (ja) * 2011-09-14 2013-03-21 三菱電機株式会社 多重チョッパ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185546B1 (en) 1984-12-17 1992-03-04 Kabushiki Kaisha Toshiba Control device for chopper apparatus
ATE213573T1 (de) 1994-01-22 2002-03-15 Daimlerchrysler Rail Systems Verfahren und vorrichtung zur symmetrierung der belastung parallelgeschalteter leistungshalbleitermodule
US8008901B2 (en) 2006-02-28 2011-08-30 Infineon Technologies Austria Ag Regulated power supply with multiple regulators sharing the total current supplied to a load
US6795009B2 (en) 2002-09-09 2004-09-21 Primarion, Inc. System and method for current handling in a digitally-controlled power converter
US8476873B2 (en) * 2009-08-10 2013-07-02 Emerson Climate Technologies, Inc. System and method for current balancing
TWI450478B (zh) * 2010-08-30 2014-08-21 Upi Semiconductor Corp 電流平衡器
JP5502672B2 (ja) 2010-09-16 2014-05-28 株式会社豊田中央研究所 複数相コンバータ用リアクトル
KR101610469B1 (ko) 2014-05-15 2016-04-07 현대자동차주식회사 다상 인터리브 컨버터 및 이의 제어 방법
CN104009618B (zh) 2014-06-17 2017-03-29 四川科陆新能电气有限公司 同步驱动并联功率模块变流器的均流控制方法及控制器
JP6674749B2 (ja) * 2015-06-04 2020-04-01 ローム株式会社 デジタル制御電源回路、その制御回路およびそれを用いた電子機器
JP6277247B1 (ja) * 2016-10-03 2018-02-07 本田技研工業株式会社 変換装置、機器及び制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258871A (ja) * 1985-09-06 1987-03-14 Toshiba Corp チヨツパ装置の制御方法
US20090257257A1 (en) * 2008-04-10 2009-10-15 Stmicroelectronics S.R.I. Control device for interleaved converters, a system of interleaved converters and related control method
WO2013038512A1 (ja) * 2011-09-14 2013-03-21 三菱電機株式会社 多重チョッパ装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111917295A (zh) * 2019-05-08 2020-11-10 三菱电机株式会社 功率转换装置及功率转换控制装置
CN111917295B (zh) * 2019-05-08 2024-04-12 三菱电机株式会社 功率转换装置及功率转换控制装置
WO2020250442A1 (ja) * 2019-06-14 2020-12-17 三菱電機株式会社 電力変換装置
JPWO2020250442A1 (ja) * 2019-06-14 2020-12-17
JP2021191030A (ja) * 2020-05-26 2021-12-13 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
US20210281186A1 (en) 2021-09-09
CN109792206A (zh) 2019-05-21
US11349395B2 (en) 2022-05-31
CN109792206B (zh) 2020-12-29
JPWO2018066042A1 (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6277247B1 (ja) 変換装置、機器及び制御方法
CN108604862B (zh) 电源装置、设备及控制方法
JP6461838B2 (ja) 電源装置、機器及び制御方法
JP6277246B1 (ja) 変換装置、機器及び制御方法
WO2018066042A1 (ja) 変換装置、機器及び制御方法
CN108604863B (zh) 电源装置、设备及控制方法
KR20090073210A (ko) 전원시스템 및 그것을 구비한 차량, 전원시스템의 제어방법 및 그 제어방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록매체
JP7039513B2 (ja) 電源システム
CN109314461B (zh) 电源装置、设备及控制方法
JP2017153243A (ja) 電源装置、機器及び制御方法
JP6507305B2 (ja) 電源装置、機器及び制御方法
JP6738616B2 (ja) 電源装置、機器及び制御方法
JP6634311B2 (ja) 電源装置、機器及び制御方法
JP2011167011A (ja) Dcdcコンバータシステム
JP2011109849A (ja) 電源システムの制御装置およびそれを搭載する車両
CN113748593A (zh) Dc/dc转换器以及电力变换装置
JP6397871B2 (ja) 電源システム
JP5407553B2 (ja) モータ制御装置
JP2017153241A (ja) 電源装置、機器及び制御方法
JP6747181B2 (ja) 電源装置および自動車
JP2016215675A (ja) 電源装置
JP7318418B2 (ja) 電力変換器
JP5655449B2 (ja) 電力変換装置及び電源供給装置
WO2015198789A1 (ja) 交流負荷駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918243

Country of ref document: EP

Kind code of ref document: A1