WO2018062816A1 - 폴리에스테르 다층필름 및 이의 제조방법 - Google Patents

폴리에스테르 다층필름 및 이의 제조방법 Download PDF

Info

Publication number
WO2018062816A1
WO2018062816A1 PCT/KR2017/010641 KR2017010641W WO2018062816A1 WO 2018062816 A1 WO2018062816 A1 WO 2018062816A1 KR 2017010641 W KR2017010641 W KR 2017010641W WO 2018062816 A1 WO2018062816 A1 WO 2018062816A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
equation
multilayer film
polyester
length
Prior art date
Application number
PCT/KR2017/010641
Other languages
English (en)
French (fr)
Inventor
조현
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN201780059748.0A priority Critical patent/CN109789683B/zh
Publication of WO2018062816A1 publication Critical patent/WO2018062816A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties

Definitions

  • the present invention relates to an optical polyester multilayer film having high transparency and excellent surface properties, and a method for manufacturing the same, having a low shrinkage rate, and having a small difference in shrinkage between a center portion and a side portion of a wide film having a total width of 5000 mm or more.
  • the present invention relates to a polyester multilayer film and a method of manufacturing the same, which improve the bowing phenomenon and reduce the baggy phenomenon generated in a post-treatment process such as prism coating and diffusion coating.
  • An optical film is a film used as an optical member for display, and is used as an optical material for LCD BLU, or as an optical member for protecting a surface of various displays such as LCD, PDP, and touch panel.
  • a film having a thickness of 125 ⁇ m or less is used rather than using a single 250 ⁇ m film.
  • the heat resistance is excellent.
  • such a film for lamination has a problem that curling occurs or the lamination is not good when the film is laminated with different physical properties such as shrinkage, orientation properties and thickness.
  • the present invention has a small shrinkage difference between the center portion and the edge portion based on the entire width of the film, so that the shrinkage ratio is uniform, and the thickness is uniform, so that curling does not occur when the film is laminated, and is exhausted during post-process coating such as prism coating and diffusion coating. It is an object to provide a polyester multilayer film that does not occur baggy).
  • the present invention includes a core layer and a skin layer in which at least one layer is laminated on both surfaces of the core layer, wherein the intrinsic viscosity of the polyester resin forming the skin layer is 0.6 to 0.7,
  • the shrinkage difference according to Equation 2 is 0.1 or less
  • Equation 1 S 45 is a shrinkage rate in the 45 degree direction with respect to the film machine direction, and S 135 is a shrinkage rate in the 135 degree direction with respect to the film machine direction.
  • the present invention a) a first polyester resin composition for a core layer comprising a polyester resin, a second polyester resin composition for a skin layer comprising a polyester resin having an intrinsic viscosity of 0.6 ⁇ 0.7 dl / g and inorganic particles Co-extrusion to melt extrusion to stack three or more layers;
  • It relates to a method for producing a polyester multilayer film comprising a.
  • the polyester multilayer film according to the present invention is made of a film of master roll having a total film width of 5000 mm or more, and slitting to a wide width of 1500 mm or more, so that the shrinkage difference between the center part and the edge part in the width direction is small, and thus the center part when laminating the film in a later step Since both and and edge portions can be used, the production yield is improved, the film does not curl after lamination, and the exhaust phenomenon can be significantly reduced.
  • a multilayer film can be provided.
  • polyester multilayer film according to the present invention is suitable for use as an optical film such as a tablet or a mobile phone, less heat deformation during the post-process can be used suitably for fields and thin displays and the like that requires a post-process.
  • A the full width of the film, a 1 , a 2: edge portion, b: center portion
  • Figure 3 shows the direction when measuring the shrinkage of the present invention.
  • One aspect of the present invention includes a core layer and a skin layer in which at least one or more layers are laminated on both surfaces of the core layer, and the intrinsic viscosity of the polyester resin forming the skin layer is 0.6 to 0.7,
  • the shrinkage difference according to Equation 2 is 0.1 or less
  • Boeing rate of the edge portion according to the following formula 3 is a polyester multilayer film 0.3% or less.
  • Equation 1 S 45 is a shrinkage rate in the 45 degree direction with respect to the film machine direction, and S 135 is a shrinkage rate in the 135 degree direction with respect to the film machine direction.
  • the polyester multilayer film may have a deformation length at 95 ° C. measured by a thermomechanical analyzer (TMA) satisfying Equation 4 below.
  • TMA thermomechanical analyzer
  • the length change the length at the point of 95 °C minus the initial length, the length change in the machine direction and the length change in the width direction are each 40 ⁇ m or less.
  • the polyester multi-layer film may be the difference in the bowing rate of the edge portion and the central portion satisfy the following formula 5.
  • the polyester multilayer film may be one in which the intrinsic viscosity of the polyester resin satisfies the following formula 6.
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the core layer.
  • the polyester multilayer film may have a center line average roughness Ra of 10 to 25 nm and a 10 point average roughness Rz of 100 to 400 nm.
  • the total thickness of the polyester multilayer film is 25 to 125 ⁇ m
  • the core layer may be 70 to 90% by weight of the entire film
  • the skin layer may be 10 to 30% by weight.
  • the skin layer may be one containing the inorganic particles in 10 ⁇ 100 ppm.
  • the haze of the polyester multilayer film may be 0.5 to 2.5%.
  • the inorganic particles may be one having an average particle diameter of 0.5 ⁇ 5 ⁇ m.
  • the total relaxation rate is 2 to 7%
  • the relaxation rate of the first zone may be 1.0 to 1.5%.
  • the elongation in the machine direction and the width direction during biaxial stretching may be 2 to 6 times.
  • the intrinsic viscosity of the polyester resin may satisfy the following formula 6.
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the core layer.
  • the core layer may be 70 to 90% by weight of the entire film, the skin layer may be 10 to 30% by weight.
  • the inorganic particles may have an average particle diameter of 0.5 to 5 ⁇ m, 10 to 100 ppm contained.
  • an aspect of the present invention is a polyester multilayer film including three or more layers including a core layer and a skin layer in which at least one layer is laminated on one or both surfaces of the core layer. More specifically, an aspect of the present invention may be one or more skin layers laminated on both surfaces of the core layer and the core layer.
  • the total thickness of the polyester multi-layer film may be 25 to 125 ⁇ m, more preferably 38 to 100 ⁇ m, may be suitably used for the display, which is a trend to be made of a thin film in the above range, but is not limited thereto. .
  • the core layer is 70 to 90% by weight of the entire film
  • the skin layer is 10 to 30% by weight of the film is excellent in interfacial stability during coextrusion, easy film formation, low haze, low surface roughness and shrinkage film It is preferable because it can be prepared, but is not limited thereto.
  • the core layer may be made of a polyester resin, more specifically, polyethylene terephthalate resin alone.
  • the polyethylene terephthalate resin to be used has an intrinsic viscosity of 0.6 to 0.7 kPa / g, which is preferable because it has excellent heat resistance and does not cause interfacial instability during coextrusion, but is not limited thereto.
  • the skin layer laminated on one or both surfaces of the core layer may be laminated in one or two or more layers, and may be laminated by coextrusion.
  • the skin layer includes a polyester resin and an inorganic particle having an intrinsic viscosity of 0.6 to 0.7 dl / g, and the multilayer film is stably laminated with the core layer without interfacial instability in a range where the intrinsic viscosity satisfies the above range. It can manufacture and it is easy to process.
  • the intrinsic viscosity of the polyester resin used in the core layer and the skin layer satisfies the following formula (6).
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the core layer.
  • Equation 6 since the interface is unstable and breakage occurs in the case of Equation 6, since film formation may be difficult due to coextrusion by a feed block, it is preferable in the above range but is not limited thereto.
  • the skin layer may include inorganic particles, and the type of inorganic particles may be used without limitation as long as the inorganic particles are used in the related art. Specifically, for example, silica, zeolite, kaolin and titanium dioxide may be used, but is not limited thereto. Moreover, these can be used individually or in mixture of 2 or more types. These inorganic particles come out to the surface of the film through the stretching process to improve the slip properties and winding properties of the film.
  • the size and content of the inorganic particles may be used in a range satisfying a centerline average roughness Ra of 10 to 25 nm and a 10 point average roughness Rz of 100 to 400 nm. As an example for satisfying the range, the inorganic particles may have an average particle diameter of 0.5 to 5 ⁇ m and a content of particles in the skin layer of 10 to 100 ppm.
  • the coating stability required by the user may be satisfied during the post-processing process, and the transparency of the entire film may be satisfied, such as optical and touch panels. It may be suitable for use in the display of, but is not limited thereto.
  • the average particle size of the particle is more than 5 ⁇ m, even if the particle content is less than 10ppm, the transparency of the film is much lowered, scratches may occur during the coating process.
  • the center line average roughness Ra is more than 25 nm and the 10-point average roughness Rz is more than 400 nm, it may affect the optical properties of the final product, such as transfer of surface projections, and if the average particle diameter is less than 0.5 ⁇ m Even if it exceeds 100 ppm, it is not easy to inspect the quality during the coating process due to its low transparency.
  • the center line average roughness Ra is less than 6 nm and the 10-point average roughness Rz is less than 80 nm, the smoothness is excellent, but the coating processability and product handling property are excellent. Deterioration may cause scratches or blocking in the coating process, resulting in uneven coating.
  • the edges a 1 and a 2 are defined as the edges a 1 and a 2 from the both ends based on the full width A of the film. (b), after 60 minutes of holding at 95 ° C., the shrinkage ratio between the edges and the central portion satisfies the following formula 1, and the shrinkage difference according to the following formula 2 is 0.1 or less,
  • Equation 1 S 45 is a shrinkage rate in the 45 degree direction with respect to the film machine direction, and S 135 is a shrinkage rate in the 135 degree direction with respect to the film machine direction.
  • the film width (A) is 6000mm, when in both the trimming edge by 100mm slitting edge of the product (a 1) is 1800mm, a central portion (b) is 1800mm, an edge (a 2) are It may be 1800mm.
  • the baud rate of the center portion and the edge portion is 3 as the edge portions (a 1 , a 2 ) and the center portion (b) of the master roll of the film as shown in FIG. 1 with respect to the width direction A of the film.
  • the length of the left side in a state in which the same load is applied to the left and right sides of the film released by unwinding a predetermined length as shown in FIG. Equation 3 was calculated by measuring the lengths of the and right sides.
  • the average length of the left side and the right side means a value obtained by dividing the sum of the length of the left side and the length of the right side by two.
  • the present invention can prevent the occurrence of curl or baggy phenomenon when laminating with the optical film due to the small difference in physical properties between the edge and the center by satisfying the above properties at the same time.
  • the exhaust phenomenon refers to a phenomenon in which one side of the film is struck during the coating process such as prism coating, so that it is convex as if it is a backpack.
  • the difference in shrinkage in the 45 degree and 135 degree directions with respect to the film machine direction is 0.15 or less, more specifically 0.01 to 0.15.
  • Shrinkage can occur in the process and twist curls can occur in the 45 and 135 degrees.
  • the bowing of the edge portion is badly generated, and the difference in physical properties between the central portion and the edge portion may occur.
  • the difference in the widthwise shrinkage of the edge portion and the widthwise shrinkage ratio of the central portion may be 0.1 or less, more specifically 0 to 0.1, when exceeding 0.1, the bowing of the edge occurs badly and curling occurs when lamination occurs. And exhaust phenomenon may occur. In addition, the bowing of the edge portion is badly generated, and the difference in physical properties between the central portion and the edge portion may occur.
  • the boeing rate according to Equation 3 is 0.3% or less, more specifically 0 to 0.3%, and in particular, it is possible to prevent curling and exhaust phenomenon in the range that satisfies the physical properties of the bowing rate of the edge of 0.3% or less. In addition, it is possible to further reduce the phenomenon that the curling occurs and the exhaust phenomenon in the range that the bowing rate of the edge and the central portion satisfies 0.3% or less. More preferably, a film having a smaller bowing rate variation is produced in a range in which the difference in bowing ratio between the edge portion and the central portion satisfies the following formula 5, and more preferably in the range of 0 to 0.2.
  • thermomechanical analyzer TMA
  • the dimension change at the 95 °C point (dimension change) satisfying the following equation 4 It may be.
  • the length change the length at the point of 95 °C minus the initial length, the length change in the machine direction and the length change in the width direction are each 40 ⁇ m or less.
  • Equation 4 it may be more specifically 0.01 ⁇ 1.5, it was confirmed that the bowing phenomenon is improved in the above range, if the excess exceeds 1.5 is large deformation of the film in the post-processing process to achieve the product properties It can be difficult.
  • it may be suitable for use as an optical film such as a prism film in a range that satisfies all the properties of the formula 1 to formula 3.
  • the production of a polyester multilayer film comprising a core layer and a skin layer is not limited, but may be obtained by extrusion-melting after extrusion melting in at least two melt extruders, and by biaxial stretching. More specifically, extrusion of polyester in one extruder and simultaneous extrusion of polyester and additives such as inorganic particles such as silica, kaolin, zeolite and titanium dioxide in another extruder and then each melt in the feed block After coextrusion, casting, cooling, biaxial stretching in sequence, and heat treatment and relaxation, the physical properties of the film can be controlled by controlling the stretching, heat treatment, and relaxation of such films.
  • step a) is a step of preparing a polyester sheet by co-extrusion of a polyester resin constituting the core layer and the skin layer, followed by quenching and solidifying with a casting drum, wherein the skin layer includes inorganic particles
  • any inorganic particle used in the art may be used without limitation.
  • silica, zeolite, kaolin and titanium dioxide may be used, but is not limited thereto.
  • the intrinsic viscosity of the polyester resin used in the core layer is 0.6 ⁇ 0.7 dl / g, it is preferable that the intrinsic viscosity of the polyester resin used in the skin layer is 0.6 ⁇ 0.7 dl / g, more preferably It is possible to co-extrude without satisfactory breakage.
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the core layer.
  • the size and content of the inorganic particles are preferably used in a range satisfying the range of the centerline average roughness Ra of 10 to 25 nm and the ten-point average roughness Rz of 100 to 400 nm.
  • the inorganic particles may have an average particle diameter of 0.5 to 5 ⁇ m and a content of particles in the skin layer of 10 to 100 ppm.
  • the coating stability required by the user can be satisfied during the post-processing process, and the transparency of the entire film is excellent. Suitable for use in the display of, but is not limited to.
  • step b) is a step of manufacturing the film by stretching the coextruded sheet, which may be uniaxial or biaxial stretching, and more specifically, biaxial stretching may be performed, and the stretching in the width direction after the mechanical direction stretching is performed. It may be to be produced by multi-stage stretching or simultaneous stretching at the same time stretching in the machine direction and the width direction.
  • the drawing may be 2.8 to 3.7 times, and the drawing may be 2 to 6 times, more preferably 3 to 5.5 times, and more preferably 3.4 to 4.3 times.
  • the stretching ratio in the machine direction is 2 times to 4 times
  • the mechanical strength of the film may be reduced, but stretching in the width direction may be stably performed, but is not limited thereto.
  • the mechanical strength of the film is not reduced in the range of 2 to 6 times, and the breakage of the film may be prevented, but is not limited thereto.
  • the step c) is a process of performing the heat setting and relaxation
  • the heat setting temperature may be carried out at 210 °C or less, more specifically 200 ⁇ 210 °C, give a relaxation rate gradient in the width direction when relaxing as described above
  • the difference between the relaxation rate of the first zone and the last zone is 0.1 to 0.5%, and is characterized by producing a film that satisfies all the desired physical properties by heat treatment while relaxing at a temperature of 210 °C or less.
  • the relaxation rate can be calculated as follows.
  • Relaxation rate (%) (maximum width length of film before relaxation section-minimum width length of film in relaxation section) / maximum width length of film before relaxation section ⁇ 100
  • the total relaxation rate may be 2 to 7%, and the relaxation ratio of the first zone may be 1.0 to 1.5%.
  • the temperature and the relaxation rate is controlled in the above range.
  • the temperature is higher than 210 ° C, the shrinkage in the machine direction is lowered, but the contraction in the width direction is increased, and the boeing becomes severe. Problems may arise.
  • the relaxation rate difference between the first zone and the last zone giving the relaxation rate is less than 0.1, it is difficult to control the shrinkage ratio in the width direction, and if the relaxation rate is increased to control the shrinkage rate, the film may be struck inside the tenter. . In addition, if it exceeds 0.5, the bowing phenomenon occurs more severely, and the contraction rate difference between the edge and the central portion may increase.
  • C represents the concentration of the sample.
  • Specimens of the film formed were measured according to JIS K 715 using a HAZE METER (model name: Nipon denshoku, Model NDH 5000).
  • Center line average roughness Ra and 10-point average roughness Rz were measured using a two-dimensional contact surface roughness measuring instrument (SE3300, Kosaka).
  • Shrinkage (%) (measured length before heat treatment-measured length after heat treatment) / measured length before heat treatment ⁇ 100
  • the specimen of the film was cut into 16 mm in the machine direction and 4.5 mm in the width direction, and then thermal deformation length (Dimension change) was measured using TMA (TA, TMA Q400).
  • Length change length at 95 ° C-initial length.
  • the film was divided into 3 parts by slitting 2000mm width rolls from both ends of the master roll having a total width of 6000mm.
  • the length of the left side and the length of the right side were measured under the same load, and the bowing rate was calculated according to the following equation.
  • PET Polyethylene terephthalate
  • PET polyethylene terephthalate
  • the film was coextruded into a three-layer film in which the skin layer / core layer / skin layer was laminated, and cast on a cooling roll to prepare an unstretched sheet.
  • the core layer was 80% by weight of the total film weight
  • the skin layer was 20% by weight of the total film weight.
  • Stretching was performed three times in the machine direction and 3.4 times in the width direction, followed by heat treatment at 210 ° C., and totally relaxed 3.5% in four zones as shown in Table 1, 1.2% in the first zone and 1.0% in the second zone. And a relaxation rate gradient of 0.9% in the third zone and 0.8% in the fourth zone to produce a film having a total thickness of 75 ⁇ m.
  • a film was manufactured in the same manner as in Example 1, except that the relaxation rate in the width direction was changed as in Table 1 below.
  • a film was prepared in the same manner as in Example 1 except for changing the inherent viscosity of the skin layer raw material and varying the relaxation rate in the width direction as shown in Table 1 below.
  • a film was prepared in the same manner as in Example 1 except for changing the weight of the skin layer as shown in Table 1 below.
  • a film was prepared in the same manner as in Example 1 except for changing the particle content and the particle size of the skin layer as shown in Table 1 below.
  • Example 2 The same process as in Example 1, but the heat treatment and the width direction at 200 °C as shown in Table 1 below to relax in only one zone to obtain a film of 75 ⁇ m.
  • the film was prepared as in Example 1, except that the relaxation rate in the width direction was changed as shown in Table 1.
  • Example 1 The same procedure as in Example 1 was performed except that the intrinsic viscosity of the skin layer was changed and the relaxation rate was changed as in Table 1.
  • Example 2 The same procedure as in Example 1 was carried out by varying the weight and relaxation rate of the skin layer as shown in Table 1 below.
  • Example 1 The same process as in Example 1 was carried out by performing a heat treatment at 220 °C as shown in Table 1.
  • Example 1 80% 20% 0.64 2.5 70 210 1.2 1.0 0.9 0.8 0 3.5
  • Example 2 80% 20% 0.64 2.5 70 210 1.5 1.4 1.3 1.2 1.1 6.5
  • Example 3 80% 20% 0.64 2.5 70 210 1.0 0.5 0.5 0 0 2.0
  • Example 4 80% 20% 0.70 2.5 70 210 1.0 1.0 0.8 0.7 0 3.5
  • Example 5 80% 20% 0.60 2.5 70 210 1.0 0.9 0.8 0.8 0 3.5
  • Example 6 70% 30% 0.64 2.5 70 210 1.2 1.0 0.9 0.8 0 3.5
  • Example 7 90% 10% 0.64 2.5 70 210 1.2 1.0 0.9 0.8 0 3.5
  • Example 8 80% 20% 0.64 2.5 20 210 1.2 1.0 0.9 0.8 0 3.5
  • Example 9 80% 20% 0.64 2.5 20 210 1.2 1.0 0.9 0.8 0 3.5
  • Example 9 80% 20% 0.64 2.5 20 210 1.2 1.0 0.9 0.8 0 3.5
  • Example 9 80% 20% 0.64 2.5

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

본 발명은 투명도가 높고, 우수한 표면특성을 갖는 광학용 폴리에스테르 다층필름 및 이의 제조방법에 관한 것으로, 수축율이 낮으며, 필름의 전체 폭이 5000mm이상인 광폭의 필름에서 중앙부와 변부의 수축율 차이가 적어 보잉현상 및 후처리 공정에서 발생하는 배기(baggy)현상을 감소시킨 폴리에스테르 다층필름 및 이의 제조방법에 관한 것이다.

Description

폴리에스테르 다층필름 및 이의 제조방법
본 발명은 투명도가 높고, 우수한 표면특성을 갖는 광학용 폴리에스테르 다층필름 및 이의 제조방법에 관한 것으로, 수축율이 낮으며, 필름의 전체 폭이 5000mm이상인 광폭의 필름에서 중앙부와 변부의 수축율 차이가 적어 보잉현상을 개선하고, 프리즘 코팅 및 확산 코팅 등의 후처리 공정에서 발생하는 배기(baggy)현상을 감소시킨 폴리에스테르 다층필름 및 이의 제조방법에 관한 것이다.
광학필름은 디스플레이용 광학부재로 사용되는 필름으로 LCD BLU의 광학 소재로 사용되거나, LCD, PDP, 터치 패널(Touch Panel) 등 각종 디스플레이의 표면 보호용 광학 부재로 사용되고 있다.
이러한 광학필름, 특히 터치패널이나 휴대폰 등의 용도에 적합하기 위해서는 적절한 투명성, 낮은 수축율, 우수한 표면특성을 나타내게 하는 것이 필름의 품질을 높이는 중요한 요소이다.
또한, 프리즘 코팅 및 확산 코팅 등의 후처리 공정을 거쳐 디스플레이 제품에 적용을 하며, 최근 디스플레이 제품이 대면적화됨에 따라 내열성을 개선하기 위해서 250um의 필름을 1장 사용하는 것보다 125㎛이하의 필름을 2장 또는 3장을 합지하여 사용하게 되면 내열성이 우수하다. 하지만 이러한 합지용 필름은 수축률, 배향특성 및 두께 등의 물성이 서로 다른 필름을 합지하는 경우 필름에 컬이 발생하거나 합지가 잘 되지 않는 문제가 있다.
이에 따라 필름의 전체 폭이 5000mm이상인 필름 마스터롤의 경우, 연신 및 이완 과정에서 발생하는 폭방향의 보잉현상에 의해 필름의 변부와 중앙부의 수축률에 차이가 발생한다. 이러한 보잉현상을 개선하기 위하여 열고정존에서 미세하게 연신하는 방법이 제안되어 있지만 열고정존에서 연신을 하는 경우, 연신이 불균일하여 폭방향 물성의 균일성이 떨어지거나 고온에서 연신이 되므로 결정화가 발생하여 파단이 발생하는 등 조업성이 떨어지는 문제가 있다. 또한 통상 폭방향으로 이완을 할 때 2개의 존 또는 1개의 존에서 이완을 주어서 수축률을 제어하는데 이러한 이완법은 보잉을 더 발생하게 하는 문제를 일으키게 된다.
또한, 상기와 같이 광폭의 필름을 디스플레이에 적용하기 위해서 합지하는 경우, 동일한 물성을 갖는 필름끼리 적층하기 위해서 중앙부만을 사용하거나 변부끼리 합지하여 사용하고 있다.
중앙부만을 사용하는 경우는 변부를 잘라서 버려야하므로 제품의 수율이 저하되는 문제가 있으며, 변부끼리 합지하여 사용하는 경우는 각각 변부의 물성이 서로 달라 배향각을 측정하여 합지해야 하는 등의 별도의 검사공정이 필요하므로 관리 및 생산성에 어려움이 있으며, 생산수율 또한 떨어지는 문제가 있다.
본 발명은 필름 전체 폭을 기준으로 중앙부와 변부의 수축율 차이가 적어 수축율이 균일하고, 두께가 균일하여 합지 시 필름에 컬이 발생하지 않으며, 프리즘 코팅 및 확산 코팅 등의 후공정 코팅과정에서 배기(baggy)현상이 발생하지 않는 폴리에스테르 다층필름을 제공하는데 목적이 있다.
또한, 투명도가 높아 후 공정에서 코팅 공정 시 이물 등의 품질 검사가 용이하며, 우수한 표면특성을 갖고 있어 코팅공정성이 양호하고, 또한 수축율이 낮아 후공정 과정에서 수축이 발생하지 않는 폴리에스테르 다층필름을 제공하는데 목적이 있다.
상기 목적을 달성하기 위하여 연구한 결과, 이완 시 길이방향으로 3 ~ 5개의 구역(zone)으로 다단이완을 하며, 이완율 구배를 주어 이완을 하며 특정 조건으로 이완 및 열고정을 수행함으로써 목적을 달성할 수 있음을 발견하여 본 발명을 완성하였다.
본 발명은 코어층과, 상기 코어층의 양면에 각각 적어도 1층 이상이 적층된 스킨층을 포함하며, 상기 스킨층을 이루는 폴리에스테르수지의 고유점도가 0.6 내지 0.7이고,
필름의 전폭을 기준으로 양 끝단으로부터 1/3인 지점까지를 변부로 하고, 변부를 제외한 부분을 중앙부로 할 때, 95℃에서 60분 유지 후, 변부 및 중앙부의 수축률이 하기 식 1을 만족하고, 하기 식 2에 따른 수축율 차이가 0.1 이하이며,
하기 식 3에 따른 변부의 보잉률이 0.3% 이하인 폴리에스테르 다층필름에 관한 것이다.
[식 1]
|S45 - S135| ≤ 0.15
상기 식 1에서, S45는 필름 기계방향에 대해 45도 방향의 수축율이고, S135는 필름 기계방향에 대해 135도 방향의 수축율이다.
[식 2]
|변부의 폭방향 수축률 - 중앙부의 폭방향 수축률| ≤ 0.10
[식 3]
보잉률 =
Figure PCTKR2017010641-appb-I000001
× 100
또한, 본 발명은 a) 폴리에스테르수지를 포함하는 코어층용 제 1 폴리에스테르 수지 조성물과, 고유점도가 0.6 ~ 0.7㎗/g인 폴리에스테르수지와 무기입자를 포함하는 스킨층용 제 2 폴리에스테르 수지 조성물을 용융 압출하여 3층 이상 적층되도록 공압출하는 단계;
b) 공압출된 시트를 이축 연신하여 필름을 제조하는 단계; 및
c) 연신된 필름을 이완시키면서 열처리하는 단계로, 기계방향에 대해 3 ~ 5개의 구역(zone)으로 나누어 폭방향의 이완율 구배를 부여하고, 이완률을 주는 첫 번째 구역과 마지막 구역의 이완율 차이가 0.1 ~ 0.5%가 되도록 하면서 210℃ 이하의 온도에서 이완시키면서 열처리 하는 단계;
를 포함하는 폴리에스테르 다층필름의 제조방법에 관한 것이다.
본 발명에 따른 폴리에스테르 다층필름은 전체 필름 폭이 5000mm이상인 마스터롤의 필름으로 제조되고 1500mm이상의 광폭으로 슬리팅되어 제품화되어도 폭방향에 대해 중앙부와 변부의 수축율 차이가 적어 후공정에서 필름 합지 시 중앙부와 변부를 모두 사용할 수 있으므로 생산 수율이 향상되며, 합지 후에 필름의 컬이 발생하지 않고, 배기 현상을 현저히 줄일 수 있다.
또한, 투명도가 높아 후 공정에서 코팅 공정 시 이물 등의 품질 검사가 용이하며, 우수한 표면특성을 갖고 있어 코팅공정성이 양호하고, 또한 수축율이 낮아 후공정 과정에서 수축이 발생하지 않아 변형이 적은 폴리에스테르 다층필름을 제공할 수 있다.
또한, 본 발명에 따른 폴리에스테르 다층필름은 타블렛이나 휴대폰 등 광학용 필름으로 사용하기에 적합하며, 후공정 시 열변형이 적어 후 공정이 필요한 분야 및 박형 디스플레이 등에 적합하게 사용할 수 있다.
도 1은 본 발명의 필름에서 변부와 중앙부를 나타내는 일 양태이다.
A : 필름의 전폭, a1, a2 : 변부, b : 중앙부
도 2는 본 발명의 보잉률을 측정하는 방법을 도시한 것이다.
도 3은 본 발명의 수축율 측정 시 방향을 나타낸 것이다.
이하 첨부된 도면들을 포함한 구체예 또는 실시예를 통해 본 발명을 더욱 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
본 발명의 일 양태는 코어층과, 상기 코어층의 양면에 각각 적어도 1층 이상이 적층된 스킨층을 포함하며, 상기 스킨층을 이루는 폴리에스테르수지의 고유점도가 0.6 내지 0.7이고,
필름의 전폭을 기준으로 양 끝단으로부터 1/3인 지점까지를 변부로 하고, 변부를 제외한 부분을 중앙부로 할 때, 95℃에서 60분 유지 후, 변부 및 중앙부의 수축률이 하기 식 1을 만족하고, 하기 식 2에 따른 수축율 차이가 0.1 이하이며,
하기 식 3에 따른 변부의 보잉률이 0.3% 이하인 폴리에스테르 다층필름이다.
[식 1]
|S45 - S135| ≤ 0.15
상기 식 1에서, S45는 필름 기계방향에 대해 45도 방향의 수축율이고, S135는 필름 기계방향에 대해 135도 방향의 수축율이다.
[식 2]
|변부의 폭방향 수축률 - 중앙부의 폭방향 수축률| ≤ 0.1
[식 3]
보잉률 =
Figure PCTKR2017010641-appb-I000002
× 100
본 발명의 일 양태에서, 상기 폴리에스테르 다층필름은 열기계분석기(TMA)에서 측정된 95℃에서의 변형 길이가 하기 식 4를 만족하는 것일 수 있다.
[식 4]
기계방향의 길이변화/폭방향의 길이변화 ≤ 1.5
상기 식 4에서, 길이변화 = 95℃ 지점에서의 길이 - 초기길이를 의미하며, 기계방향의 길이변화 및 폭방향의 길이변화는 각각 40 ㎛이하이다.
본 발명의 일 양태에서, 상기 폴리에스테르 다층필름은 변부 및 중앙부의 보잉률 차이가 하기 식 5를 만족하는 것일 수 있다.
[식 5]
변부의 보잉률 - 중앙부의 보잉률 ≤ 0.2
본 발명의 일 양태에서, 상기 폴리에스테르 다층필름은 상기 폴리에스테르수지의 고유점도가 하기 식 6을 만족하는 것일 수 있다.
[식 6]
0 ≤ |Ns - Nc| < 0.1
상기 식 6에서 Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 코어층을 이루는 폴리에스테르 수지의 고유점도다.
본 발명의 일 양태에서, 상기 폴리에스테르 다층필름은 중심선 평균 거칠기 Ra가 10 ~ 25nm이고, 10점 평균 거칠기 Rz가 100 ~ 400nm인 것일 수 있다.
본 발명의 일 양태에서, 상기 폴리에스테르 다층필름의 총 두께가 25 ~ 125 ㎛이고, 코어층이 전체 필름의 70 ~ 90 중량%이고, 스킨층이 10 ~ 30 중량%인 것일 수 있다.
본 발명의 일 양태에서, 상기 스킨층은 무기입자를 10 ~ 100 ppm으로 포함하는 것일 수 있다.
본 발명의 일 양태에서, 상기 폴리에스테르 다층필름의 헤이즈가 0.5 ~ 2.5%인 것일 수 있다.
본 발명의 일 양태에서, 상기 무기입자는 평균입경이 0.5 ~ 5 ㎛인 것일 수 있다.
본 발명의 폴리에스테르 다층필름의 제조방법의 일 양태는
a) 폴리에스테르수지를 포함하는 코어층용 제 1 폴리에스테르 수지 조성물과, 고유점도가 0.6 ~ 0.7㎗/g인 폴리에스테르수지와 무기입자를 포함하는 스킨층용 제 2 폴리에스테르 수지 조성물을 용융 압출하여 3층 이상 적층되도록 공압출하는 단계;
b) 공압출된 시트를 이축 연신하여 필름을 제조하는 단계; 및
c) 연신된 필름을 이완시키면서 열처리하는 단계로, 기계방향에 대해 3 ~ 5개의 구역(zone)으로 나누어 폭방향의 이완율 구배를 부여하고, 이완률을 주는 첫 번째 구역과 마지막 구역의 이완율 차이가 0.1 ~ 0.5%가 되도록 하면서 210℃ 이하의 온도에서 이완시키면서 열처리 하는 단계;
를 포함한다.
본 발명의 폴리에스테르 다층필름의 제조방법의 일 양태에서, 상기 c)단계에서, 총 이완율이 2 ~ 7%이고, 첫 번째 구역의 이완율이 1.0 ~ 1.5%인 것일 수 있다.
본 발명의 폴리에스테르 다층필름의 제조방법의 일 양태에서, 상기 b)단계에서, 이축연신 시 기계방향 및 폭방향의 연신율은 2 ~ 6배인 것일 수 있다.
본 발명의 폴리에스테르 다층필름의 제조방법의 일 양태에서, 상기 a)단계에서, 폴리에스테르수지의 고유점도가 하기 식 6을 만족하는 것일 수 있다.
[식 6]
0 ≤ |Ns - Nc| < 0.1
상기 식 6에서 Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 코어층을 이루는 폴리에스테르 수지의 고유점도다.
본 발명의 폴리에스테르 다층필름의 제조방법의 일 양태에서, 상기 a)단계에서, 코어층이 전체 필름의 70 ~ 90 중량%이고, 스킨층이 10 ~ 30 중량%인 것일 수 있다.
본 발명의 폴리에스테르 다층필름의 제조방법의 일 양태에서, 상기 a)단계에서, 상기 무기입자는 평균입경이 0.5 ~ 5 ㎛이고, 10 ~ 100 ppm으로 포함되는 것일 수 있다.
이하는 본 발명의 구성에 대하여 보다 구체적으로 설명한다.
구체적으로 본 발명의 일 양태는 코어층과, 상기 코어층의 일면 또는 양면에 적어도 1층 이상이 적층된 스킨층을 포함하여 3층 이상으로 이루어진 폴리에스테르 다층필름이다. 더욱 구체적으로 본 발명의 일 양태는 코어층과 상기 코어층의 양면에 1층 이상의 스킨층이 적층된 것일 수 있다.
상기 폴리에스테르 다층필름의 총 두께는 25 ~ 125 ㎛, 보다 바람직하게는 38 ~ 100 ㎛인 것일 수 있으며, 상기 범위에서 박막으로 제조되는 추세인 디스플레이용으로 적합하게 사용될 수 있으며, 이에 제한되는 것은 아니다.
또한, 코어층이 전체필름의 70 ~ 90 중량%이고, 스킨층이 10 ~ 30 중량%인 것이 공압출 시 계면안정화가 우수하여 제막이 용이하고, 헤이즈가 낮으며, 표면조도 및 수축이 적은 필름을 제조할 수 있으므로 바람직하며, 이에 제한되는 것은 아니다.
상기 코어층은 폴리에스테르 수지, 보다 구체적으로 폴리에틸렌테레프탈레이트 수지 단독으로 이루어지는 것일 수 있다. 이때 사용되는 폴리에틸렌테레프탈레이트 수지는 고유점도가 고유점도가 0.6 ~ 0.7㎗/g인 것을 사용하는 것이 내열성이 우수하고, 공압출 시 계면불안정이 발생하지 않으므로 바람직하며, 이에 제한되는 것은 아니다.
상기 코어층의 일면 또는 양면에 적층되는 스킨층은 1층 또는 2층 이상으로 적층될 수 있으며, 공압출에 의해 적층되는 것일 수 있다.
상기 스킨층은 고유점도가 0.6 ~ 0.7㎗/g인 폴리에스테르수지와 무기입자를 포함하며, 고유점도가 상기 범위를 만족하는 범위에서 계면불안정이 발생하지 않고 코어층과 안정하게 적층되어 다층필름을 제조할 수 있으며, 가공성이 용이하다.
더욱 좋게는 상기 코어층과 스킨층에 사용되는 폴리에스테르수지의 고유점도가 하기 식 6을 만족하는 것이 좋다.
[식 6]
0 ≤ |Ns - Nc| < 0.1
상기 식 6에서 Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 코어층을 이루는 폴리에스테르 수지의 고유점도다.
상기 식 6에서, 0.1 이상인 경우는 계면이 불안정하고 파단이 발생하므로 피드블럭에 의한 공압출에 의해 필름으로 제막이 어려울 수 있으므로, 상기 범위에서 바람직하나 이에 제한되는 것은 아니다.
상기 스킨층은 무기입자를 포함할 수 있으며, 무기입자의 종류는 통상적으로 해당 분야에서 사용되는 무기입자라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면 실리카, 제올라이트, 카올린 및 이산화티탄 등을 사용할 수 있으며, 이에 제한되는 것은 아니다. 또한 이들을 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 이러한 무기입자는 연신공정을 통해 필름의 표면으로 나와서 필름의 슬립성 및 권취성을 향상시킨다. 상기 무기입자의 크기 및 함량은 중심선 평균 거칠기 Ra가 10 ~ 25nm이고, 10점 평균 거칠기 Rz가 100 ~ 400nm인 범위를 만족하는 범위로 사용되는 것일 수 있다. 상기 범위를 만족하기 위한 일 예로 상기 무기입자는 평균입경이 0.5 ~ 5 ㎛이고, 스킨층 내 입자의 함량이 10 ~ 100 ppm인 것일 수 있다.
중심선평균 거칠기 Ra 및 10점 평균 거칠기 Rz가 상기 범위를 만족하는 범위에서 후공정 시 코팅성이 우수하여 사용자가 요구하는 코팅안정성을 만족할 수 있으며, 전체 필름의 투명도가 우수하여 광학용 및 터치패널 등의 디스플레이용으로 사용이 적합할 수 있으나, 이에 제한되는 것은 아니다.
입자 평균입경이 5㎛ 초과이면 입자함량이 10ppm 미만으로 함유되어도 필름의 투명성이 많이 떨어지며, 코팅 공정 시 스크래치가 발생할 수 있다. 중심선평균 거칠기 Ra가 25 nm 초과, 10점 평균거칠기 Rz가 400 nm를 초과인 경우 표면의 돌기가 전사되는 등 최종 제품의 광학특성에 영향을 줄 수 있으며, 평균입경이 0.5 ㎛ 미만인 경우는 입자 함량이 100 ppm을 초과하여 사용하여도 투명도가 낮아 코팅 공정 시 품질검사가 용이하지 않으며, 중심선평균 거칠기 Ra가 6nm미만, 10점 평균거칠기 Rz가 80nm미만인 경우 평활성은 우수하나 코팅공정성 및 제품 취급성이 악화되어서 코팅공정 시 스크래치가 발생하거나 블로킹이 발생되어서 코팅의 불균일을 초래할 수 있다.
본 발명의 일 양태는 도 1에 도시된 바와 같이, 필름의 전폭(A)을 기준으로 양 끝단으로부터 1/3인 지점까지를 변부(a1, a2)로 하고, 변부를 제외한 부분을 중앙부(b)로 할 때, 95℃에서 60분 유지 후, 변부 및 중앙부의 수축률이 하기 식 1을 만족하고, 하기 식 2에 따른 수축율 차이가 0.1 이하이며,
하기 식 3에 따른 변부의 보잉률이 0.3% 이하인 물성을 동시에 만족하는데 특징이 있다.
[식 1]
|S45 - S135| ≤ 0.15
상기 식 1에서, S45는 필름 기계방향에 대해 45도 방향의 수축율이고, S135는 필름 기계방향에 대해 135도 방향의 수축율이다.
[식 2]
|변부의 폭방향 수축률 - 중앙부의 폭방향 수축률| ≤ 0.1
[식 3]
보잉률 =
Figure PCTKR2017010641-appb-I000003
× 100
본 발명의 일 양태에서, 필름 전폭(A)이 6000mm인 경우, 양쪽으로 100mm씩 엣지 트리밍하여 슬리팅하면 제품의 변부(a1)은 1800mm, 중앙부(b)는 1800mm, 변부(a2)은 1800mm인 것일 수 있다.
또한, 본 발명의 일 양태에서 상기 중앙부와 변부의 보잉률은 도 1과 같은 필름의 마스터롤을 필름의 폭방향(A)에 대하여, 변부(a1, a2) 및 중앙부(b)로 3등분 하여 자른 후, 도 2와 같이 자른 롤을 일정 길이로 풀어서 풀어낸 필름의 좌측과 우측에 동일한 하중을 가한 상태에서, 더욱 구체적으로 1kg의 추를 이용하여 동일한 하중을 가한 상태에서, 좌측의 길이와 우측의 길이를 재어 식 3을 계산하였다.
상기 식 2에서 좌측과 우측의 평균길이는 좌측의 길이와 우측의 길이의 합을 2로 나눈 값을 의미한다.
본 발명은 상기 물성을 동시에 만족함으로써 변부와 중앙부 간의 물성 차가 적어 광학용 필름으로 합지 시 컬이나 배기(baggy) 현상이 발생하는 것을 방지할 수 있다. 상기 배기 현상이란 프리즘 코팅 등의 코팅공정 시 필름의 한쪽방향이 쳐지게 되어 마치 백팩의 모양처럼 볼록하게 되는 현상을 의미한다.
상기 식 1에서, 필름 기계방향에 대해 45도 방향 및 135도 방향의 수축율의 차이가 0.15 이하, 더욱 구체적으로 0.01 ~ 0.15인 것이 바람직하며, 0.15를 초과하는 경우는 후공정 시 고온의 공정을 거치는 과정에서 수축이 발생하여 45도와 135도 방향으로 트위스트 컬이 발생할 수 있다. 또한, 변부의 보잉이 심하게 발생하여 중앙부와 변부 간의 물성 차이가 심하게 발생할 수 있다.
상기 식 2에서, 변부의 폭방향 수축률과 중앙부의 폭방향 수축률 차이가 0.1이하, 더욱 구체적으로 0 ~ 0.1인 것일 수 있으며, 0.1을 초과하는 경우는 변부의 보잉이 심하게 발생하여 합지 시 컬이 발생하고, 배기 현상이 나타날 수 있다. 또한, 변부의 보잉이 심하게 발생하여 중앙부와 변부 간의 물성 차이가 심하게 발생할 수 있다.
상기 식 3에 따른 보잉률이 0.3%이하, 보다 구체적으로 0 ~ 0.3%인 것이 바람직하며, 특히, 변부의 보잉률이 0.3%이하인 물성을 만족하는 범위에서 합지 시 컬 및 배기현상을 방지할 수 있으며, 더욱 좋게는 변부 및 중앙부의 보잉률이 0.3%이하를 만족하는 범위에서 합지 시 컬이 발생하는 현상 및 배기현상을 더욱 감소시킬 수 있다. 더욱 좋게는 변부 및 중앙부의 보잉률 차이가 하기 식 5를 만족하는 범위, 더욱 좋게는 0 ~ 0.2인 범위에서 보잉률 편차가 적은 필름이 제조되므로 바람직하다.
[식 5]
변부의 보잉률 - 중앙부의 보잉률 ≤ 0.2
또한, 열기계분석기(TMA)를 이용하여 측정 시 40 ℃에서 3분간 유지 후, 5℃/min으로 180 ℃까지 승온 시, 95℃ 지점에서의 변형 길이(dimension change)가 하기 식 4를 만족하는 것일 수 있다.
[식 4]
기계방향의 길이변화/폭방향의 길이변화 ≤ 1.5
상기 식 4에서, 길이변화 = 95℃ 지점에서의 길이 - 초기길이를 의미하며, 기계방향의 길이변화 및 폭방향의 길이변화는 각각 40 ㎛이하이다.
상기 식 4에서, 더욱 구체적으로 0.01 ~ 1.5인 것일 수 있으며, 상기 범위에서 보잉 현상이 개선되는 것을 확인하였고, 1.5를 초과하는 경우는 후가공 공정에서의 필름의 변형이 커서 제품의 물성을 달성하기가 어려울 수 있다.
본 발명의 일 양태에서, 상기 식 1 내지 식 3의 물성들을 모두 만족하는 범위에서 프리즘 필름 등의 광학필름으로 사용하기에 적합할 수 있다.
본 발명의 일 양태에서, 코어층과 스킨층을 포함하는 폴리에스테르 다층필름의 제조는 제한되지 않지만 적어도 두 개 이상의 용융압출기에서 압출 용융 후 캐스팅하고, 이축연신에 의하여 얻어질 수 있다. 보다 구체적으로 설명하면, 한 압출기에서 폴리에스테르를 압출시키고, 또 다른 압출기에서 폴리에스테르와 실리카, 카올린, 제올라이트 및 이산화티탄 등과 같은 무기입자 등의 첨가제를 동시에 용융 압출시킨 후 각각의 용융물이 피드블럭에서 만나 공압출되고 캐스팅하고, 냉각한 다음 순차적으로 이축연신하고 열처리와 이완을 하는데 이러한 필름의 연신, 열처리, 이완을 조절하여 필름의 물성을 제어할 수 있게 된다.
보다 구체적으로 본 발명의 폴리에스테르 다층필름의 제조방법의 일 양태는
a) 폴리에스테르수지를 포함하는 코어층용 제 1 폴리에스테르 수지 조성물과, 고유점도가 0.6 ~ 0.7㎗/g인 폴리에스테르수지와 무기입자를 포함하는 스킨층용 제 2 폴리에스테르 수지 조성물을 용융 압출하여 3층 이상 적층되도록 공압출하는 단계;
b) 공압출된 시트를 이축 연신하여 필름을 제조하는 단계; 및
c) 연신된 필름을 이완시키면서 열처리하는 단계로, 기계방향에 대해 3 ~ 5개의 구역(zone)으로 나누어 폭방향의 이완율 구배를 부여하고, 이완률을 주는 첫 번째 구역과 마지막 구역의 이완율 차이가 0.1 ~ 0.5%가 되도록 하면서 210℃ 이하의 온도에서 이완시키면서 열처리 하는 단계;
를 포함한다.
구체적으로, 상기 a)단계는 코어층과 스킨층을 이루는 폴리에스테르 수지를 공압출한 후, 캐스팅 드럼으로 급냉, 고화시켜 폴리에스테르 시트를 제조하는 단계로, 상기 스킨층은 무기입자를 포함하며, 통상적으로 해당 분야에서 사용되는 무기입자라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 실리카, 제올라이트, 카올린 및 이산화티탄 등을 사용할 수 있으며, 이에 제한되는 것은 아니다.
상기 코어층에 사용된 폴리에스테르 수지의 고유점도는 0.6 ~ 0.7㎗/g이고, 스킨층에 사용되는 폴리에스테르 수지의 고유점도는 0.6 ~ 0.7㎗/g인 것이 바람직하며, 더욱 좋게는 하기 식 6을 만족하는 것이 파단 등의 발생이 없이 공압출이 가능하다.
[식 6]
0 ≤ |Ns Nc| < 0.1
상기 식 6에서 Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 코어층을 이루는 폴리에스테르 수지의 고유점도다.
상기 무기입자의 크기 및 함량은 중심선평균 거칠기 Ra가 10 ~ 25 nm, 10점 평균거칠기 Rz가 100 ~ 400 nm인 범위를 만족하는 범위로 사용되는 것이 바람직하다. 상기 범위를 만족하기 위한 일 예로 상기 무기입자는 평균입경이 0.5 ~ 5 ㎛이고, 스킨층 내 입자의 함량이 10 ~ 100 ppm인 것일 수 있다. 중심선평균 거칠기 Ra 및 10점 평균거칠기 Rz가 상기 범위를 만족하는 범위에서 후공정 시 코팅성이 우수하여 사용자가 요구하는 코팅안정성을 만족할 수 있으며, 전체 필름의 투명도가 우수하여 광학용 및 터치패널 등의 디스플레이용으로 사용이 적합하나 이에 제한되는 것은 아니다.
다음으로 b)단계는 공압출된 시트를 연신하여 필름으로 제조하는 단계로, 일축 또는 이축연신한 것일 수 있으며, 더욱 구체적으로 이축연신을 실시하는 것일 수 있으며, 기계방향 연시 후 폭방향으로 연신을 하는 다단연신 또는 기계방향 및 폭방향으로 동시에 연신을 하는 동시연신으로 제조되는 것일 수 있다.
더욱 구체적으로 공압출하여 3층 이상의 층을 구성하고 캐스팅롤에서 냉각하고 이를 기계방향으로 연신 시 2 ~ 6배, 더욱 좋게는 2 ~ 3.7배. 더욱 좋게는 2.8 ~ 3.7배 연신하고, 그리고 폭방향으로 연신 시 2 ~ 6배, 더욱 좋게는 3 ~ 5.5배, 더욱 좋게는 3.4 ~ 4.3배를 연신하는 것일 수 있다. 기계방향의 연신비율이 2배 ~ 4배인 범위에서, 필름의 기계적 강도를 저하시키지 않으며, 폭방향의 연신을 안정적으로 수행할 수 있으나, 이에 제한되는 것은 아니다. 또한 폭방향으로는 2 ~ 6배인 범위에서 필름의 기계적 강도를 저하시키지 않으며, 필름의 파단이 발생하는 것을 방지할 수 있으나, 이에 제한되는 것은 아니다.
상기 c)단계는 열고정 및 이완을 수행하는 과정으로, 열고정 온도는 210℃ 이하, 더욱 구체적으로 200 ~ 210℃에서 수행되는 것일 수 있으며, 상기와 같이 이완 시 폭방향의 이완율 구배를 부여하고, 첫 번째 구역과 마지막 구역의 이완율 차이가 0.1 ~ 0.5%가 되도록 하며, 210℃ 이하의 온도에서 이완시키면서 열처리함으로써 목적으로 하는 물성을 모두 만족하는 필름을 제조하는데 특징이 있다.
상기 이완율은 다음과 같이 계산될 수 있다.
이완율(%) = (이완처리 구간 전 필름의 최대폭 길이 - 이완처리 구간 내 필름의 최소폭 길이)/이완처리 구간 전 필름의 최대폭 길이 × 100
또한, 본 발명의 일 양태에서 총 이완율이 2 ~ 7%이고, 첫 번째 구역의 이완율이 1.0 ~ 1.5%인 것일 수 있다.
상기 이완 및 열공정 시, 온도 및 이완율을 상기 범위로 조절하는데 특징이 있으며, 온도가 210℃ 초과인 경우는 기계방향의 수축률은 낮아지나 폭방향의 수축를이 높아지는 문제가 있으며 또한 보잉이 심해지는 문제가 발생할 수 있다.
또한, 이완률을 주는 첫 번째 구역과 마지막 구역의 이완율 차이가 0.1 미만인 경우는 폭방향의 수축률을 제어하기 어렵고 수축률을 제어하기 위해서 이완률을 높이는 경우 필름이 텐터내부에서 쳐지게 되는 문제가 생긴다. 또한 0.5를 초과하는 경우는 보잉 현상이 더 심하게 발생하며, 변부와 중앙부의 수축률 차이가 커질 수 있다.
이하 실시예 및 비교예를 바탕으로 본 발명을 더욱 상세히 설명한다. 다만 하기 실시예 및 비교예는 본 발명을 더욱 상세히 설명하기 위한 하나의 예시일 뿐, 본 발명이 하기 실시예 및 비교예에 의해 제한되는 것은 아니다.
1) 고유점도
페놀과 1,1,2,2-테트라클로로 에탄올을 6:4의 무게비로 혼합한 시약 100ml에 PET 펠렛 (샘플) 0.4g을 넣고 90분간 용해시킨 후, 우베로데 점도계에 옮겨 담아 30℃ 항온조에서 10분간 유지시키고, 점도계와 흡인 장치(aspirator)를 이용하여 용액의 낙하 초수를 구했다. 용매의 낙하 초수도 동일한 방법으로 구한 다음, 하기 수학식 1 및 2에 의해 R.V 값 및 I.V값을 계산하였다.
하기 수학식에서 C는 시료의 농도를 나타낸다.
[수학식 1]
R.V. = 시료의 낙하 초수/용매의 낙하 초수
[수학식 2]
Figure PCTKR2017010641-appb-I000004
2) 헤이즈
제막된 필름의 시편을 HAZE METER(모델명: Nipon denshoku, Model NDH 5000)를 이용하여 JIS K 715에 따라 측정하였다.
3) 표면조도
2차원 접촉식 표면조도측정기(Kosaka사, SE3300)를 사용하여 중심선평균 거칠기 Ra와 10점 평균거칠기 Rz를 측정하였다.
4) 수축률
필름을 200 × 200mm 크기로 자른 후 길이와 폭의 길이를 측정 후 95℃의 열풍오븐에서 60분 동안 열처리 후 변한 길이와 폭의 길이를 측정하여 다음과 같은 식으로 계산하였다. 이때 기계방향과 기계방향에서 45도 방향, 135도 방향 및 폭방향의 길이변화를 같이 측정하였다. 상기 기계방향에서 45도 방향, 135도 방향은 도 3에 도시한 바와 같다.
수축률(%)= (열처리 전 측정 길이 - 열처리후 측정 길이)/열처리 전 측정길이 × 100
5) 열기계분석기(TMA) 측정
필름의 시편을 기계방향으로 16mm, 폭방향으로 4.5mm으로 자른 후 TMA(TA사, TMA Q400)를 이용하여 열변형 길이(Dimension change)를 측정하였다.
측정방법은 40 ℃에서 isothermal로 3분간 유지 후, 5℃/min으로 180 ℃까지 승온 한 후, 95℃ 지점에서의 길이변화를 측정하였다. 길이변화 = 95℃ 지점에서의 길이 - 초기길이를 의미한다.
6) 보잉율(%)
필름의 총 폭이 6000mm인 마스터롤의 양 끝단으로부터 각각 2000mm폭의 롤을 슬리팅하여 3등분 하였으며, 변부 및 중앙부의 제품롤(마스터롤)을 도 2에 도시한 바와 같이 필름의 좌, 우에 1kg의 동일한 하중을 가한 상태에서 좌측의 길이와 우측의 길이를 측정하여 하기 식에 따라 보잉율을 계산하였다.
보잉률 =
Figure PCTKR2017010641-appb-I000005
× 100
[실시예 1]
코어층에는 고유점도가 0.65㎗/g인 폴리에틸렌테레프탈레이트(PET)를 사용하고, 스킨층에는 고유점도가 0.64㎗/g인 PET와, 평균입경이 2.5㎛인 실리카 입자를 70ppm 사용하여 각각 공압출하여 스킨층/코어층/스킨층이 적층된 3층 필름으로 공압출하고, 냉각롤에 캐스팅하여 미연신 시트를 제조하였다. 이때, 상기의 코어층은 전체필름중량의 80 중량%, 스킨층은 전체 필름중량의 20 중량%로 하였다. 기계방향으로 3배, 폭방향으로 3.4배로 순차적으로 연신하고, 210℃에서 열처리 하면서, 표 1과 같이 4개의 구역에서 총 3.5% 이완을 하였으며, 첫 번째 구역에서 1.2%, 두 번째 구역에서 1.0%, 세 번째 구역에서 0.9%, 네 번째 구역에서 0.8%로 이완율 구배를 부여하여, 전체두께 75㎛의 필름을 제조하였다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
[실시예 2, 3]
하기 표 1과 같이 폭방향의 이완율을 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 필름을 제조하였다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
[실시예 4, 5]
하기 표 1과 같이 스킨층 원료의 고유점도를 달리하고, 폭방향의 이완율을 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 필름을 제조하였다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
[실시예 6, 7]
하기 표 1과 같이 스킨층의 중량을 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 필름을 제조하였다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
[실시예 8 ~ 11]
하기 표 1과 같이 스킨층의 입자함량 및 입자크기를 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 필름을 제조하였다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
[실시예 12 ~ 16]
하기 표 1과 같이 조건을 달리하여 실시예 1과 동일한 방법으로 필름을 제조하였다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
[비교예 1]
실시예 1과 동일하게 실시하되 200℃에서 열처리 및 폭방향을 하기의 표1과 같이 1존에서만 이완을 한 후 75㎛의 필름을 얻었다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
[비교예 2,3]
실시예 1과 같이 실시하되 표1과 같이 폭방향의 이완률만 달리하여 필름을 제조하였다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
[비교예 4,5]
실시예 1과 동일하게 실시하되 스킨층의 고유점도를 달리하고, 이완율을 달리하여 표1과 같이 하여 실시하였다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
[비교예 6]
실시예 1과 동일하게 실시하되 하기 표1과 같이 스킨층의 중량 및 이완율을 달리하여 실시하였다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
[비교예 7]
실시예 1과 동일하게 실시하되 하기 표1과 같이 열처리 온도를 220℃에서 수행하여 실시하였다.
제조된 필름의 물성을 측정하여 하기 표 2 및 표 3에 나타내었다.
구분 층조성 원료조성 제막조건
Skin층 조성 열처리온도(℃,1zone) 폭방향 이완률(%)
Core층 중량 Skin층 중량 고유점도 입자크기(㎛) 입자량(ppm) 1zone 2zone 3zone 4zone 5zone total
실시예1 80% 20% 0.64 2.5 70 210 1.2 1.0 0.9 0.8 0 3.5
실시예2 80% 20% 0.64 2.5 70 210 1.5 1.4 1.3 1.2 1.1 6.5
실시예3 80% 20% 0.64 2.5 70 210 1.0 0.5 0.5 0 0 2.0
실시예4 80% 20% 0.70 2.5 70 210 1.0 1.0 0.8 0.7 0 3.5
실시예5 80% 20% 0.60 2.5 70 210 1.0 0.9 0.8 0.8 0 3.5
실시예6 70% 30% 0.64 2.5 70 210 1.2 1.0 0.9 0.8 0 3.5
실시예7 90% 10% 0.64 2.5 70 210 1.2 1.0 0.9 0.8 0 3.5
실시예8 80% 20% 0.64 2.5 20 210 1.2 1.0 0.9 0.8 0 3.5
실시예9 80% 20% 0.64 2.5 90 210 1.2 1.0 0.9 0.8 0 3.5
실시예10 80% 20% 0.64 5 10 210 1.2 1.0 0.9 0.8 0 3.5
실시예11 80% 20% 0.64 0.5 100 210 1.2 1.0 0.9 0.8 0 3.5
실시예12 60% 40% 0.64 2.5 70 210 1.2 1.0 0.9 0.8 0 3.5
실시예13 80% 20% 0.64 2.5 10 210 1.2 1.0 0.9 0.8 0 3.5
실시예14 80% 20% 0.64 2.5 110 210 1.2 1.0 0.9 0.8 0 3.5
실시예15 80% 20% 0.64 5 15 210 1.2 1.0 0.9 0.8 0 3.5
실시예16 80% 20% 0.64 0.4 120 210 1.2 1.0 0.9 0.8 0 3.5
비교예1 80% 20% 0.64 2.5 70 210 3.5 0 0 0 0 3.5
비교예2 80% 20% 0.64 2.5 70 210 1.8 1.7 0 0 0 3.5
비교예3 80% 20% 0.64 2.5 70 210 1.5 2.0 0 0 0 3.5
비교예4 80% 20% 0.55 2.5 70 210 1.5 1.0 0.5 0.5 0 3.5
비교예5 80% 20% 0.85 2.5 70 210 1.5 1.0 0.5 0.5 0 3.5
비교예6 5% 95% 0.64 2.5 70 210 1.5 1.0 0.5 0.5 0 3.5
비교예7 80% 20% 0.64 2.5 70 220 1.2 1.0 0.9 0.8 0 3.5
*A/B/A로 공압출함. (Skin층 두께는 양 A층의 총량)
구분 표면조도 헤이즈 중앙부의 95℃열수축률(%) 식(1)값 변부의 95℃열수축률(%) 식(1)값 식(2)값
Ra(nm) Rz(nm) 기계방향 폭방향 45도 135도 기계방향 폭방향 45도 135도
실시예1 13 350 1 0.35 0.15 0.25 0.15 0.1 0.3 0.2 0.22 0.18 0.04 0.05
실시예2 12 335 1.1 0.3 0.1 0.2 0.1 0.1 0.28 0.12 0.2 0.14 0.06 0.02
실시예3 14 345 1.1 0.38 0.2 0.28 0.16 0.12 0.32 0.22 0.24 0.15 0.09 0.02
실시예4 12 330 1.1 0.36 0.14 0.25 0.15 0.1 0.31 0.2 0.23 0.14 0.09 0.06
실시예5 16 390 1.1 0.34 0.14 0.24 0.14 0.1 0.33 0.22 0.22 0.13 0.09 0.08
실시예6 12 340 1.8 0.35 0.15 0.25 0.15 0.1 0.31 0.2 0.22 0.18 0.04 0.05
실시예7 14 345 0.8 0.33 0.14 0.24 0.15 0.09 0.32 0.14 0.23 0.14 0.09 0
실시예8 10 308 0.6 0.35 0.15 0.25 0.15 0.1 0.3 0.2 0.22 0.18 0.04 0.05
실시예9 16 390 1.4 0.35 0.15 0.25 0.15 0.1 0.3 0.2 0.22 0.18 0.04 0.05
실시예10 13 330 1.8 0.35 0.16 0.24 0.14 0.1 0.33 0.21 0.22 0.16 0.06 0.05
실시예11 10 300 1.7 0.33 0.15 0.25 0.14 0.11 0.33 0.13 0.22 0.14 0.08 0.02
실시예12 12 340 3 0.35 0.13 0.25 0.15 0.1 0.3 0.2 0.22 0.18 0.04 0.07
실시예13 5 98 0.4 0.32 0.11 0.21 0.14 0.07 0.3 0.18 0.22 0.17 0.05 0.07
실시예14 28 440 3.6 0.34 0.14 0.24 0.16 0.08 0.3 0.2 0.22 0.18 0.04 0.06
실시예15 30 495 3.5 0.34 0.1 0.23 0.15 0.08 0.3 0.19 0.22 0.18 0.04 0.09
실시예16 12 420 3 0.33 0.1 0.21 0.14 0.07 0.31 0.19 0.22 0.17 0.05 0.09
비교예1 13 340 1 0.35 0.08 0.27 0.1 0.17 0.35 0.14 0.24 0.09 0.15 0.06
비교예2 12 340 1.1 0.35 0.25 0.3 0.12 0.18 0.3 0.14 0.28 0.1 0.18 0.11
비교예3 13 335 1.1 0.35 0.28 0.3 0.1 0.2 0.3 0.15 0.25 0.07 0.18 0.13
비교예4 계면 불안정 및 파단으로 조업불가
비교예5 계면 불안정 및 파단으로 조업불가
비교예6 지속 파단으로 조업불가
비교예7 13 350 1 0.3 0.2 0.35 0.1 0.25 0.32 0.2 0.34 0.08 0.26 0
  TMA측정법  변부 제품의 길이(m)  중앙부 제품의 길이(m)  식(5) 값
기계방향 변형길이(㎛) 폭방향 변형길이(㎛) 식(4)값 보잉율(%) 보잉율(%)
실시예1 14 12 1.17 10.10 10.08 0.20% 10.10 10.08 0.20% 0.00%
실시예2 13 11 1.18 10.10 10.07 0.30% 10.09 10.07 0.20% 0.10%
실시예3 13 11 1.18 10.10 10.08 0.20% 10.09 10.07 0.20% 0.00%
실시예4 14 12 1.17 10.09 10.07 0.20% 10.09 10.07 0.20% 0.00%
실시예5 13 12 1.08 10.00 9.98 0.20% 10.02 10.00 0.20% 0.00%
실시예6 14 11 1.27 10.05 10.03 0.20% 10.02 10.01 0.10% 0.10%
실시예7 13 12 1.08 10.06 10.03 0.30% 10.06 10.05 0.10% 0.20%
실시예8 12 11 1.09 10.10 10.07 0.30% 10.10 10.08 0.20% 0.10%
실시예9 12 11 1.09 10.10 10.08 0.20% 10.10 10.08 0.20% 0.00%
실시예10 13 11 1.18 10.10 10.08 0.20% 10.10 10.08 0.20% 0.00%
실시예11 14 12 1.17 10.09 10.07 0.20% 10.09 10.07 0.20% 0.00%
실시예12 14 12 1.17 10.06 10.03 0.30% 10.05 10.03 0.20% 0.10%
실시예13 14 11 1.27 10.01 9.98 0.30% 10.10 10.09 0.10% 0.20%
실시예14 16 12 1.33 10.02 10.00 0.20% 10.10 10.08 0.20% 0.00%
실시예15 15 11 1.36 10.10 10.07 0.30% 10.10 10.08 0.20% 0.10%
실시예16 15 11 1.36 10.08 10.05 0.30% 10.09 10.07 0.20% 0.10%
비교예1 14 8 1.75 10.10 10.05 0.50% 10.10 10.08 0.20% 0.30%
비교예2 14 16 0.88 10.09 10.03 0.60% 10.10 10.08 0.20% 0.40%
비교예3 14 17 0.82 10.10 10.04 0.60% 10.10 10.08 0.20% 0.40%
비교예4 계면 불안정 및 파단으로 조업불가
비교예5 계면 불안정 및 파단으로 조업불가
비교예6 지속 파단으로 조업불가
비교예7 12 15 0.8 10.01 9.95 0.60% 10.10 10.06 0.40% 0.30%

Claims (12)

  1. 코어층과, 상기 코어층의 양면에 각각 적어도 1층 이상이 적층된 스킨층을 포함하며, 상기 스킨층을 이루는 폴리에스테르수지의 고유점도가 0.6 내지 0.7이고,
    필름의 전폭을 기준으로 양 끝단으로부터 1/3인 지점까지를 변부로 하고, 변부를 제외한 부분을 중앙부로 할 때, 95℃에서 60분 유지 후, 변부 및 중앙부의 수축률이 하기 식 1을 만족하고, 하기 식 2에 따른 수축율 차이가 0.1 이하이며,
    하기 식 3에 따른 변부의 보잉률이 0.3% 이하인 폴리에스테르 다층필름.
    [식 1]
    |S45 - S135| ≤ 0.15
    상기 식 1에서, S45는 필름 기계방향에 대해 45도 방향의 수축율이고, S135는 필름 기계방향에 대해 135도 방향의 수축율이다.
    [식 2]
    |변부의 폭방향 수축률 - 중앙부의 폭방향 수축률| ≤ 0.1
    [식 3]
    보잉률 =
    Figure PCTKR2017010641-appb-I000006
    × 100
  2. 제 1항에 있어서,
    열기계분석기(TMA)에서 측정된 95℃에서의 변형 길이가 하기 식 4를 만족하는 것인 폴리에스테르 다층필름.
    [식 4]
    기계방향의 길이변화/폭방향의 길이변화 ≤ 1.5
    상기 식 4에서, 길이변화 = 95℃ 지점에서의 길이 - 초기길이를 의미하며, 기계방향의 길이변화 및 폭방향의 길이변화는 각각 40 ㎛이하이다.
  3. 제 1항에 있어서,
    변부 및 중앙부의 보잉률 차이가 하기 식 5를 만족하는 것인 폴리에스테르 다층필름.
    [식 5]
    변부의 보잉률 - 중앙부의 보잉률 ≤ 0.2
  4. 제 1항에 있어서,
    상기 폴리에스테르수지의 고유점도가 하기 식 6을 만족하는 폴리에스테르 다층필름.
    [식 6]
    0 ≤ |Ns - Nc| < 0.1
    상기 식 6에서 Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 코어층을 이루는 폴리에스테르 수지의 고유점도다.
  5. 제 1항에 있어서,
    중심선 평균 거칠기 Ra가 10 ~ 25nm이고, 10점 평균 거칠기 Rz가 100 ~ 400nm인 폴리에스테르 다층필름.
  6. 제 1항에 있어서,
    상기 폴리에스테르 다층필름의 총 두께가 25 ~ 125 ㎛이고,
    코어층이 전체 필름의 70 ~ 90 중량%이고, 스킨층이 10 ~ 30 중량%인 폴리에스테르 다층필름.
  7. 제 1항에 있어서,
    상기 스킨층은 무기입자를 10 ~ 100 ppm으로 포함하는 것인 폴리에스테르 다층필름.
  8. 제 1항에 있어서,
    상기 폴리에스테르 다층필름은 헤이즈가 0.5 ~ 2.5%인 폴리에스테르 다층필름.
  9. 제 7항에 있어서,
    상기 무기입자는 평균입경이 0.5 ~ 5 ㎛인 폴리에스테르 다층필름.
  10. a) 폴리에스테르수지를 포함하는 코어층용 제 1 폴리에스테르 수지 조성물과, 고유점도가 0.6 ~ 0.7㎗/g인 폴리에스테르수지와 무기입자를 포함하는 스킨층용 제 2 폴리에스테르 수지 조성물을 용융 압출하여 3층 이상 적층되도록 공압출하는 단계;
    b) 공압출된 시트를 이축 연신하여 필름을 제조하는 단계; 및
    c) 연신된 필름을 이완시키면서 열처리하는 단계로, 기계방향에 대해 3 ~ 5개의 구역(zone)으로 나누어 폭방향의 이완율 구배를 부여하고, 첫 번째 구역과 마지막 구역의 이완율 차이가 0.1 ~ 0.5%가 되도록 하면서 210℃ 이하의 온도에서 이완시키면서 열처리 하는 단계;
    를 포함하는 폴리에스테르 다층필름의 제조방법.
  11. 제 10항에 있어서,
    상기 c)단계에서, 총 이완율이 2 ~ 7%이고, 첫 번째 구역의 이완율이 1.0 ~ 1.5%인 것인 폴리에스테르 다층필름의 제조방법.
  12. 제 10항에 있어서,
    상기 b)단계에서, 이축연신 시 기계방향 및 폭방향의 연신율은 2 ~ 6배인 것인 폴리에스테르 다층필름의 제조방법.
PCT/KR2017/010641 2016-09-29 2017-09-26 폴리에스테르 다층필름 및 이의 제조방법 WO2018062816A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780059748.0A CN109789683B (zh) 2016-09-29 2017-09-26 聚酯多层薄膜及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160125265A KR102466413B1 (ko) 2016-09-29 2016-09-29 폴리에스테르 다층필름 및 이의 제조방법
KR10-2016-0125265 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062816A1 true WO2018062816A1 (ko) 2018-04-05

Family

ID=61760812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010641 WO2018062816A1 (ko) 2016-09-29 2017-09-26 폴리에스테르 다층필름 및 이의 제조방법

Country Status (4)

Country Link
KR (1) KR102466413B1 (ko)
CN (1) CN109789683B (ko)
TW (1) TWI707763B (ko)
WO (1) WO2018062816A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415828B1 (ko) * 2019-09-30 2022-06-30 코오롱인더스트리 주식회사 폴리에스테르 다층 필름 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990087622A (ko) * 1996-03-08 1999-12-27 스프레이그 로버트 월터 폴리에스테르 다층 필름
KR20090002410A (ko) * 2007-06-28 2009-01-09 주식회사 엘지화학 전극 효율을 개선시키는 음극 활물질
JP2014233901A (ja) * 2013-06-01 2014-12-15 三菱樹脂株式会社 光学用積層ポリエステルフィルムロール
KR20150037126A (ko) * 2013-09-30 2015-04-08 코오롱인더스트리 주식회사 폴리에스테르 다층필름
KR20160038539A (ko) * 2014-09-30 2016-04-07 코오롱인더스트리 주식회사 폴리에스테르 다층필름

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063001A1 (fr) * 1999-04-19 2000-10-26 Toray Industries, Inc. Film polyester a orientation biaxiale, procede de production dudit film et support d'enregistrement magnetique
CN110028687B (zh) * 2013-06-27 2022-03-18 可隆工业株式会社 聚酯膜及其制备方法
KR102186530B1 (ko) * 2013-06-28 2020-12-03 코오롱인더스트리 주식회사 폴리에스테르 필름 및 이의 제조방법
KR20150055429A (ko) * 2013-11-13 2015-05-21 코오롱인더스트리 주식회사 태양광모듈 백시트용 폴리에스테르필름 및 이의 제조방법
KR20150077746A (ko) * 2013-12-30 2015-07-08 코오롱인더스트리 주식회사 폴리에스테르 다층필름 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990087622A (ko) * 1996-03-08 1999-12-27 스프레이그 로버트 월터 폴리에스테르 다층 필름
KR20090002410A (ko) * 2007-06-28 2009-01-09 주식회사 엘지화학 전극 효율을 개선시키는 음극 활물질
JP2014233901A (ja) * 2013-06-01 2014-12-15 三菱樹脂株式会社 光学用積層ポリエステルフィルムロール
KR20150037126A (ko) * 2013-09-30 2015-04-08 코오롱인더스트리 주식회사 폴리에스테르 다층필름
KR20160038539A (ko) * 2014-09-30 2016-04-07 코오롱인더스트리 주식회사 폴리에스테르 다층필름

Also Published As

Publication number Publication date
KR102466413B9 (ko) 2023-05-11
KR102466413B1 (ko) 2022-11-11
KR20180035341A (ko) 2018-04-06
CN109789683A (zh) 2019-05-21
CN109789683B (zh) 2021-08-13
TW201813802A (zh) 2018-04-16
TWI707763B (zh) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2017209473A1 (ko) 편광자 보호 필름, 이를 포함하는 편광판, 및 이를 구비한 표시 장치
WO2020145451A1 (ko) 편광자 보호용 폴리에스테르 필름과 그 제조방법 및 이를 구비하는 편광판
WO2013180504A1 (ko) 수지 조성물, 이를 이용하여 형성된 광학 필름, 이를 포함하는 편광판 및 액정 표시 장치
WO2020138878A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2018062816A1 (ko) 폴리에스테르 다층필름 및 이의 제조방법
WO2018062623A1 (ko) 유해 물질 용출량이 저감된 식품용기
WO2014157848A1 (ko) 자외선 차단 기능이 우수한 광학 필름 및 이를 포함하는 편광판
WO2015156638A1 (ko) 폴리에스테르 필름, 이의 제조방법 및 이를 이용한 폴리에스테르 성형품, 이의 제조방법
WO2023018306A1 (ko) 투명시트 제조방법 및 투명시트
WO2015167235A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2021066418A1 (ko) 폴리에스테르 다층 필름 및 그 제조방법
WO2014204168A1 (ko) 다층 광학 필름, 그 제조방법 및 이를 포함하는 편광판
WO2011162499A2 (ko) 아크릴계 공중합체 및 이를 포함하는 광학필름
WO2022045764A1 (ko) 폴리에스테르 필름 및 이의 제조 방법
WO2023018029A1 (ko) 이축 연신 폴리에스테르 필름의 제조 방법
WO2016105142A1 (ko) 적층 폴리에스테르 필름 및 이의 제조방법
WO2024043754A1 (ko) 재생칩을 사용하여 제조된 재생 pet 필름
WO2017018570A1 (ko) 배향형 석출물을 포함하는 금속복합재료 및 이의 제조 방법
WO2023101191A1 (ko) 폴리에스테르계 필름 및 이의 제조 방법
WO2020130462A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2013100661A1 (ko) 중합체가 분산된 반사형 편광자
WO2023163327A1 (ko) 다층 배리어 필름 및 이를 포함하는 포장재료
WO2018080227A2 (ko) 보호필름, 편광판 및 이를 포함하는 표시장치
WO2023163328A1 (ko) 다층 배리어 필름 및 이를 포함하는 포장재료
WO2024122851A1 (ko) 투명성이 우수한 폴리에스테르 다층필름 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856702

Country of ref document: EP

Kind code of ref document: A1