WO2018062031A1 - Optical film and method for manufacturing same - Google Patents

Optical film and method for manufacturing same Download PDF

Info

Publication number
WO2018062031A1
WO2018062031A1 PCT/JP2017/034272 JP2017034272W WO2018062031A1 WO 2018062031 A1 WO2018062031 A1 WO 2018062031A1 JP 2017034272 W JP2017034272 W JP 2017034272W WO 2018062031 A1 WO2018062031 A1 WO 2018062031A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
face
measured
atomic ratio
photoelectron spectroscopy
Prior art date
Application number
PCT/JP2017/034272
Other languages
French (fr)
Japanese (ja)
Inventor
池内 淳一
幸二朗 西
幸治 植田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020187009226A priority Critical patent/KR20180045891A/en
Priority to CN201780059879.9A priority patent/CN109790308B/en
Priority to KR1020197009369A priority patent/KR20190049786A/en
Publication of WO2018062031A1 publication Critical patent/WO2018062031A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an optical film, a manufacturing method thereof, and a flexible device.
  • glass has been used as a base material for various display members such as solar cells and displays, and as a material for transparent members such as front plates.
  • glass has drawbacks such as being easily broken and heavy.
  • the display has not been made of a sufficient material to meet the recent demands for thinner and lighter displays and more flexible displays. Therefore, various films (optical films) have been studied as transparent members for flexible devices that replace glass.
  • Patent Document 1 discloses a polyimide film that is formed using a polyimide resin composition and is excellent in transparency, flexibility, folding resistance, and the like.
  • the optical film When used for curved displays, foldable devices, rollable displays, etc., the optical film is stored in a deformed state such as a rolled state (rolled state) or a bent state. May be.
  • the conventional polyimide film has a problem that cracks are likely to occur at the end when stored in a high temperature and high humidity environment in a deformed state such as a rolled state or a bent state.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an optical film in which cracks are unlikely to occur at the end even when stored in a high temperature and high humidity environment in a deformed state. And Another object of the present invention is to provide a method for producing the optical film, a front plate for a flexible device using the optical film, and a flexible device.
  • the present invention provides an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, wherein the fluorine atom measured by X-ray photoelectron spectroscopy at the end face of the optical film is provided.
  • the atomic ratio (F / C) to carbon atoms is higher than the atomic ratio (F / C) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy in a cross section obtained by cutting 1 mm inside from the end face of the optical film.
  • the atomic ratio (F / C) at the end face is larger than the atomic ratio (F / C) in a cross section cut 1 mm inside from the end face, whereby the optical film is wound in a roll shape.
  • a high-temperature and high-humidity for example, 85 ° C., 85% RH
  • the occurrence of cracks from the end face can be suppressed.
  • thermal expansion and hygroscopic expansion cause complex stresses around the edges, causing cracks.
  • the complicated stress can be suppressed in a film having a relatively large number of fluorine atoms on the end face as compared with the inside of the film.
  • the optical film has an atomic ratio (F E / C E ) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film, and a cross section obtained by cutting 1 mm inside from the end face of the optical film.
  • the present invention is also an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, the atomic ratio of the fluorine atom to the oxygen atom (F) measured by X-ray photoelectron spectroscopy at the end face of the optical film.
  • / O provides an optical film having a larger atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy in a cross section cut 1 mm inside from the end face of the optical film.
  • the atomic ratio (F / O) at the end face is larger than the atomic ratio (F / O) in a cross section cut 1 mm inside from the end face, whereby the optical film is wound in a roll shape.
  • a high-temperature and high-humidity for example, 85 ° C., 85% RH
  • the occurrence of cracks from the end face can be suppressed.
  • thermal expansion and hygroscopic expansion cause complex stresses around the edges, causing cracks.
  • the complicated stress can be suppressed in a film having a relatively large number of fluorine atoms on the end face as compared with the inside of the film.
  • the optical film has an atomic ratio (F E / O E ) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film, and a cross section obtained by cutting 1 mm inside from the end face of the optical film.
  • the optical film may further contain silica particles.
  • the present invention is also a method for producing an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, which is measured by X-ray photoelectron spectroscopy at the end face of the optical film by oxidizing the end face.
  • the atomic ratio (F / C) of the fluorine atom to the carbon atom is determined by measuring the atomic ratio of the fluorine atom to the carbon atom (F / C) measured by X-ray photoelectron spectroscopy in a cross section cut 1 mm inside from the end face of the optical film.
  • the manufacturing method of an optical film which has the process made larger than C) is provided.
  • the present invention is also a method for producing an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, wherein the end face of the optical film is formed by cutting the film original by laser irradiation.
  • the atomic ratio (F / C) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film is measured by X-ray photoelectron spectroscopy at a cross section taken 1 mm inside from the end face of the optical film.
  • a method for producing an optical film which comprises a step of making the atomic ratio (F / C) of fluorine atoms to carbon atoms measured by the method larger.
  • the present invention is also a method for producing an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, which is measured by X-ray photoelectron spectroscopy at the end face of the optical film by oxidizing the end face.
  • the atomic ratio (F / O) of fluorine atoms to oxygen atoms is determined by measuring the atomic ratio of fluorine atoms to oxygen atoms (F / O) measured by X-ray photoelectron spectroscopy in a cross section cut 1 mm inside from the end face of the optical film.
  • the manufacturing method of an optical film which has the process made larger than O) is provided.
  • the present invention is also a method for producing an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, wherein the end face of the optical film is formed by cutting the film original by laser irradiation.
  • the atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film is measured by X-ray photoelectron spectroscopy at a cross section taken 1 mm inside from the end face of the optical film.
  • a method for producing an optical film which comprises a step of making the atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by the method larger.
  • the present invention also provides a front plate for a flexible device having the optical film of the present invention.
  • the present invention further provides a flexible device having a flexible functional layer and the optical film of the present invention.
  • occur
  • its manufacturing method the front plate for flexible devices using the said optical film, and flexible A device can be provided. Can be obtained.
  • FIG. 1 is a perspective view showing an example of an optical film according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an example of a flexible display according to an embodiment of the present invention.
  • the optical film of this embodiment contains a polyimide polymer containing a fluorine atom in the molecule, and satisfies one or both of the following conditions (1) and (2).
  • Condition (1) The atomic ratio (F / C) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film is X in a cross section obtained by cutting 1 mm inside from the end face of the optical film. It is larger than the atomic ratio (F / C) of the fluorine atom to the carbon atom measured by line photoelectron spectroscopy.
  • the atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film is X in a cross section cut 1 mm inside from the end face of the optical film. It is larger than the atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by linear photoelectron spectroscopy.
  • FIG. 1 is a perspective view showing an example of an optical film according to this embodiment.
  • the optical film 10 shown in FIG. 1 has a rectangular (rectangular) planar shape, and has end faces E1 and E2 of two sides (two long sides parallel to each other forming a rectangle) facing each other in the short direction. And end faces E3 and E4 of two sides (two short sides parallel to each other forming a rectangle) facing each other in the longitudinal direction.
  • the optical film 10 has X in each of the end faces E1 to E4 and the cross sections C1 to C4 when the cut surfaces cut by 1 mm from the end faces E1, E2, E3, and E4 are cross sections C1, C2, C3, and C4, respectively.
  • the atomic ratio of fluorine atoms to carbon atoms measured by XPS at the end face is F E / C E
  • the atomic ratio of fluorine atoms to carbon atoms measured by XPS in the cross section is F C / CC
  • at the end face the atomic ratio of oxygen atoms of fluorine atom, measured by XPS and F E / O E, the atomic ratio of oxygen atoms of fluorine atom, measured by XPS in the cross section and F C / O C.
  • optical film 10 satisfies the condition above, namely, F E / C E is greater than F C / C C at the end face, and / or, by F E / O E is greater than F C / O C Even when the optical film 10 is deformed and stored in a high-temperature and high-humidity environment, generation of cracks from the end face can be suppressed. From the viewpoint of suppressing the occurrence of cracks from all end faces, the optical film 10 preferably satisfies both the above conditions (I) and (II).
  • F E / C E is larger than F C / C C and / or F E / O E is F
  • An end face larger than C 1 / O 2 C can be a face where deformation such as bending occurs when the optical film is bent (for example, during storage or use).
  • end faces on two sides facing each other in the short direction for example, in FIG. 1
  • the end faces E1 and E2 are deformed by bending.
  • fluorine atoms are present at a higher concentration than the inside of the film, at least on the end surfaces of the two sides facing each other in the lateral direction of the optical film.
  • the end of the portion where the film is deformed inside the display has F E / C E larger than F C / C C and / or F E / O E by has a F C / O C greater end face than can be deteriorated due to crack from the end portion is suppressed to obtain a higher reliability.
  • F E / C E is greater than F C / C C
  • F E / O E is F C / O C
  • the end on the side bent by folding is such that F E / C E is greater than F C / C C and / or F E / O E is greater than F C / O C If the end face is too large, the effect of the present invention tends to be easily obtained.
  • the edge with curvature by rounding is such that F E / C E is greater than F C / C C and / or F E / O E is F C / O If the end face is larger than C, the effect of the present invention tends to be easily obtained.
  • the XPS measurement of the end face and the cross section of the optical film can be performed under the following conditions. Moreover, XPS measurement can be performed by irradiating X-rays from the direction perpendicular to the end face or cross section of the optical film and detecting photoelectrons from the 45 ° direction.
  • the atomic ratio (F / C) of fluorine atoms to carbon atoms and / or the atomic ratio of fluorine atoms to oxygen atoms (F / O) measured by XPS can be determined from the areas of the C1s, O1s and F1s peaks in the XPS spectrum. Can be sought.
  • the cutting of the optical film at the time of forming the cross section for performing XPS measurement is performed by a method in which the atomic composition of the cut surface does not change and the cut surface is not distorted.
  • the cutting can be performed using, for example, a razor.
  • the value of (F E / C E ) / (F C / C C ) needs to be a value greater than 1, but 1.1. Is preferably 10 to 10, more preferably 1.5 to 8, and still more preferably 2 to 5.
  • this value is 1.1 or more, the fluorine atom concentration at the film end face is sufficiently higher than the fluorine atom concentration at the film cross section (inside the film), and the occurrence of cracks from the end face is more sufficiently suppressed. There is a tendency to be able to.
  • the value of F E / C E at the end face where the value of (F E / C E ) / (F C / C C ) is greater than 1 is preferably 0.03 or more, and 0.04 More preferably, it is more preferably 0.05 or more.
  • the value of F E / C E of the end surface is 0.03 or more, there is a tendency that it is possible to more sufficiently suppress the occurrence of cracks from the end surface.
  • An end face having a value of (F E / C E ) / (F C / C C ) greater than 1 can be formed by laser cutting.
  • the value of (F E / C E ) / (F C / C C ) tends to be larger than 1, and the generation of cracks from the end face can be more sufficiently suppressed.
  • the value of (F E / O E ) / (F C / O C ) needs to be greater than 1, but 1 It is preferably 1 to 10, more preferably 1.3 to 8, and still more preferably 1.5 to 5.
  • this value is 1.1 or more, the fluorine atom concentration at the film end face is sufficiently higher than the fluorine atom concentration at the film cross section (inside the film), and the occurrence of cracks from the end face is more sufficiently suppressed. There is a tendency to be able to.
  • the value of F E / O E at the end face where the value of (F E / O E ) / (F C / O C ) is greater than 1 is preferably 0.2 or more.
  • the value of F E / O E of the end face is 0.2 or more, there is a tendency that it is possible to more sufficiently suppress the occurrence of cracks from the end surface.
  • the end face having a value of (F E / O E ) / (F C / O C ) greater than 1 can be formed by laser cutting.
  • the value of (F E / O E ) / (F C / O C ) tends to be larger than 1, and the occurrence of cracks from the end face can be more sufficiently suppressed.
  • the refractive index of the optical film 10 is usually 1.45 to 1.70, preferably 1.50 to 1.66.
  • the thickness of the optical film 10 is appropriately adjusted according to the type of the flexible device and the like, but is usually 10 to 500 ⁇ m, preferably 15 to 200 ⁇ m, and more preferably 20 to 100 ⁇ m.
  • the optical film 10 is usually transparent.
  • the optical film 10 has a total light transmittance based on JIS K 7105: 1981 of usually 85% or more, preferably 90% or more.
  • the optical film 10 can have a haze based on JIS K 7105: 1981 of 1 or less, or 0.9 or less.
  • the refractive index, total light transmittance, and Haze are values measured in the thickness direction of the optical film.
  • the size of the optical film 10 can be appropriately adjusted according to the size of the flexible device used.
  • the planar shape of the optical film 10 is usually a rectangle or a square, but may be another rectangle such as a trapezoid or a parallelogram.
  • the planar shape of the optical film 10 may be a quadrangle with rounded corners.
  • the optical film contains a transparent resin such as a polyimide polymer containing fluorine atoms in the molecule.
  • a polyimide is a polymer containing a repeating structural unit containing an imide group
  • a polyamide is a polymer containing a repeating structural unit containing an amide group.
  • the polyimide-based polymer refers to a polymer containing a polyimide and a repeating structural unit containing both an imide group and an amide group.
  • the polyimide polymer according to the present embodiment can be produced using a tetracarboxylic acid compound and a diamine compound described later as main raw materials, and has a repeating structural unit represented by the formula (10).
  • G is a tetravalent organic group
  • A is a divalent organic group.
  • the structure represented by two or more types of Formula (10) from which G and / or A differ may be included.
  • the polyimide polymer according to the present embodiment includes a structure represented by any one of formulas (11) to (13) as long as various physical properties of the resulting polyimide polymer film are not impaired. Also good.
  • G and G 1 are tetravalent organic groups, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and are represented by formula (20), formula (21), formula ( 22), the formula (23), the formula (24), the formula (25), the formula (26), the formula (27), the group represented by the formula (28) or the formula (29), and a tetravalent carbon number of 6 or less.
  • the chain hydrocarbon group is exemplified.
  • Z is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, —C (CF 3 ) 2 —, —Ar—, —SO 2 —, —CO—, —O—Ar—O—, —Ar—O—Ar—, —Ar—CH 2 —Ar—, —Ar— C (CH 3 ) 2 —Ar— or —Ar—SO 2 —Ar— is represented.
  • Ar represents an arylene group having 6 to 20 carbon atoms which may be substituted with a fluorine atom, and specific examples thereof include a phenylene group.
  • G and G 1 are preferably any group selected from the groups represented by formulas (20) to (27) because the yellowness of the resulting film can be easily suppressed.
  • G 2 is a trivalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and has the formula (20), formula (21), formula (22) Any one of the bonds of the group represented by formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) or formula (29) is a hydrogen atom And a trivalent chain hydrocarbon group having 6 or less carbon atoms are exemplified.
  • G 3 is a divalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and is represented by formula (20), formula (21), formula (22) Among the bonds of the group represented by formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) or formula (29), Examples thereof include a group replaced with a hydrogen atom and a chain hydrocarbon group having 6 or less carbon atoms.
  • Each of A and A 1 to A 3 is a divalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • 31 a group represented by formula (32), formula (33), formula (34), formula (35), formula (36), formula (37) or formula (38); they are a methyl group, a fluoro group And a group substituted with a chloro group or a trifluoromethyl group, and a chain hydrocarbon group having 6 or less carbon atoms.
  • Z 1, Z 2 and Z 3 are each independently a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3 )-, -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2 -or -CO-.
  • Z 1 and Z 3 are —O— and Z 2 is —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —SO 2 —. is there.
  • Z 1 and Z 2 , and Z 2 and Z 3 are each preferably in the meta position or the para position with respect to each ring.
  • the optical film may contain polyamide.
  • the polyamide according to this embodiment is a polymer mainly composed of repeating structural units represented by the formula (13). Preferred examples and specific examples are the same as G 3 and A 3 in the polyimide polymer. G 3 and / or A 3 may contain structures represented by two or more types of formula (13).
  • the polyimide polymer is obtained, for example, by polycondensation of a diamine and a tetracarboxylic acid compound (tetracarboxylic dianhydride or the like), and is described in, for example, JP-A-2006-199945 or JP-A-2008-163107. It can be synthesized according to the method.
  • examples of commercially available polyimide products include Neoprim produced by Mitsubishi Gas Chemical Co., Ltd. and KPI-MX300F produced by Kawamura Sangyo Co., Ltd.
  • tetracarboxylic acid compounds used for the synthesis of polyimide polymers include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydrides. Can be mentioned.
  • a tetracarboxylic acid compound may be used independently and may use 2 or more types together.
  • the tetracarboxylic acid compound may be a dianhydride or a tetracarboxylic acid compound analog such as an acid chloride compound.
  • aromatic tetracarboxylic dianhydride examples include 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3, 3'-benzophenonetetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-Diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane Dianhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride, 4,
  • Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydrides.
  • the cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • acyclic aliphatic tetracarboxylic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride and the like. These may be used alone or in combination of two or more.
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene are used from the viewpoint of high transparency and low colorability.
  • -2,3,5,6-tetracarboxylic dianhydride and 4,4 '-(hexafluoroisopropylidene) diphthalic dianhydride are preferred.
  • the polyimide polymer according to the present embodiment is within a range that does not impair various physical properties of the obtained polyimide polymer film. Further, tricarboxylic acid and dicarboxylic acid and anhydrides and derivatives thereof may be further reacted.
  • tricarboxylic acid compounds include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more of them may be used in combination. Specific examples include 1,2,4-benzenetricarboxylic acid anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic acid anhydride and benzoic acid are a single bond, —CH 2 Examples thereof include compounds linked by —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, or a phenylene group.
  • dicarboxylic acid compound examples include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination.
  • Specific examples include dicarboxylic acid compounds of terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; And a compound in which two benzoic acids are linked by a single bond, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, or a phenylene group.
  • the diamine used for the synthesis of the polyimide polymer may be an aliphatic diamine, an aromatic diamine or a mixture thereof.
  • the “aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be included in a part of the structure.
  • the aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Among these, a benzene ring is preferable.
  • the “aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be included in a part of the structure.
  • aliphatic diamine examples include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornane diamine, 4,4′- Examples include cycloaliphatic diamines such as diaminodicyclohexylmethane, and these can be used alone or in combination of two or more.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
  • Aromatic diamine having one aromatic ring 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3 ′ -Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis ( 4-Aminophenoxy) benzene, 4,4'-diaminodiph Nylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-
  • diamines it is preferable to use one or more selected from the group consisting of aromatic diamines having a biphenyl structure from the viewpoint of high transparency and low colorability.
  • aromatic diamines having a biphenyl structure from the viewpoint of high transparency and low colorability.
  • One selected from the group consisting of 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl) benzidine, 4,4'-bis (4-aminophenoxy) biphenyl, and 4,4'-diaminodiphenyl ether It is more preferable to use the above, and it is even more preferable that 2,2′-bis (trifluoromethyl) benzidine is included.
  • Polyimide polymers and polyamides which are polymers containing at least one repeating structural unit represented by any one of formulas (10) to (13), include diamines, tetracarboxylic acid compounds (acid chloride compounds, tetracarboxylic acids).
  • Tetracarboxylic acid compound analogs such as acid dianhydrides
  • tricarboxylic acid compounds acid chloride compounds
  • tricarboxylic acid compound analogs such as tricarboxylic acid anhydrides
  • dicarboxylic acid compounds dicarboxylic acid compound analogs such as acid chloride compounds
  • a condensation polymer which is a polycondensation product with at least one compound included in the group consisting of
  • a dicarboxylic acid compound including analogs such as an acid chloride compound
  • the repeating structural unit represented by the formula (11) is usually derived from diamines and tetracarboxylic acid compounds.
  • the repeating structural unit represented by the formula (12) is usually derived from a diamine and a tricarboxylic acid compound.
  • the repeating structural unit represented by the formula (13) is usually derived from a diamine and a dicarboxylic acid compound. Specific examples of the diamine and the tetracarboxylic acid compound are as described above.
  • the standard polystyrene equivalent weight average molecular weight of the polyimide polymer and the polyamide according to this embodiment is usually 10,000 to 500,000, preferably 50,000 to 500,000, and more preferably 100,000. ⁇ 400,000.
  • the weight average molecular weight of the polyimide polymer is too large, the viscosity of the varnish will increase. , Workability tends to decrease.
  • the polyimide polymer and polyamide tend to improve the elastic modulus when formed into a film, reduce the YI value, and improve transparency.
  • the elastic modulus of the film is high, generation of scratches and wrinkles tends to be suppressed.
  • the polyimide-based polymer containing a fluorine atom in the molecule is the value of (F E / C E ) / (F C / C C ) and / or (F E / O E ) / (F C By having an end face having a value of / O C ) greater than 1, even when stored in a high temperature and high humidity environment in a deformed state, occurrence of cracks from the end portion can be sufficiently suppressed.
  • the fluorine-containing substituent include a fluoro group and a trifluoromethyl group.
  • the polyimide polymer containing a fluorine atom in the molecule is fluorine-substituted at least one of G, G 1 to G 3 , A, A 1 to A 3 and Ar in the molecular structure of the polyimide polymer. It has a group.
  • the content of fluorine atoms in the polyimide-based polymer containing fluorine atoms in the molecule is preferably 1% by mass or more and 40% by mass or less, more preferably 5% by mass or more and 40% by mass based on the mass of the polyimide-based polymer. It is below mass%.
  • the fluorine atom content is 1% by mass or more, there is a tendency that the elastic modulus when formed into a film is further improved, the YI value is further reduced, and the transparency is further improved.
  • the fluorine atom content is 40% by mass or less, cost and reactivity during synthesis tend to be advantageous.
  • the content of the polyimide-based polymer is usually 30% by mass or more, preferably 40% by mass or more, and more preferably 50% by mass based on the total mass of the optical film. % Or more.
  • the content of the polyimide polymer is 30% by mass or more, the flex resistance of the film tends to be advantageous.
  • the optical film according to the present embodiment may further contain an inorganic material such as inorganic particles in addition to the polyimide polymer.
  • the inorganic material include silica particles and silicon compounds such as quaternary alkoxysilanes such as tetraethyl orthosilicate (TEOS), and silica particles are preferable from the viewpoint of varnish stability.
  • TEOS tetraethyl orthosilicate
  • the average primary particle diameter of the silica particles is preferably 10 to 100 nm, more preferably 20 to 80 nm.
  • the average primary particle diameter of the silica particles is 100 nm or less, the transparency tends to be improved.
  • the average primary particle diameter of the silica particles is 10 nm or more, the cohesive force of the silica particles is weakened, and thus the handling tends to be easy.
  • the silica fine particles according to the present embodiment may be a silica sol in which silica particles are dispersed in an organic solvent or the like, or a silica fine particle powder produced by a vapor phase method may be used. Preferably there is.
  • the (average) primary particle diameter of the silica particles in the optical film can be determined by observation with a transmission electron microscope (TEM).
  • the particle size distribution of the silica particles before forming the optical film can be determined by a commercially available laser diffraction particle size distribution meter.
  • the content of the inorganic material is usually 0% by mass or more and 70% by mass or less, preferably 0% by mass or more and 60% by mass or less, based on the total mass of the optical film. More preferably, it is 0 mass% or more and 50 mass% or less.
  • the optical film tends to have both transparency and mechanical strength.
  • the optical film according to the present embodiment may further contain additives in addition to the components described above.
  • additives include pH adjusters, silica dispersants, ultraviolet absorbers, antioxidants, mold release agents, stabilizers, coloring agents such as bluing agents, flame retardants, lubricants, and leveling agents.
  • the content of components other than the resin component and the inorganic material is preferably 0% by mass or more and 20% by mass or less, more preferably more than 0% by mass and 10% by mass or less, based on the total mass of the optical film.
  • the varnish used for the production of the optical film according to the present embodiment is, for example, a reaction solution of a polyimide polymer, a solvent obtained by selecting and reacting from the tetracarboxylic acid compound, the diamine, and the other raw materials, and It can prepare by mixing and stirring the said additive used as needed.
  • a reaction solution such as a polyimide polymer
  • a solution such as a purchased polyimide polymer or a solution such as a purchased solid polyimide polymer may be used.
  • the solvent contained in the varnish only needs to dissolve the polyimide polymer.
  • the solvent include amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone, and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane.
  • a carbonate solvent such as a solvent based on ethylene carbonate or propylene carbonate can be used.
  • amide solvents or lactone solvents are preferable.
  • a coating film is formed by applying the above varnish on a resin substrate, a stainless steel belt, or a glass substrate by a known roll-to-roll or batch method, and the coating film is dried. By peeling from the film, a film containing a polyimide polymer is obtained. The film may be further dried after peeling.
  • the coating film is dried by evaporating the solvent at a temperature of 50 to 350 ° C. Drying may be performed under air, under an inert atmosphere, or under reduced pressure.
  • the resin substrate examples include PET, PEN, polyimide, polyamideimide and the like. Among these, a resin excellent in heat resistance is preferable. In particular, a PET substrate is preferable from the viewpoints of adhesion to the film and cost.
  • E is an atomic ratio (F C / C C ) of fluorine atoms to carbon atoms and / or an atomic ratio of fluorine atoms to oxygen atoms (measured by XPS) with respect to a cross section cut inside 1 mm from the end face by a razor Processing is performed so as to be larger than F E / O E ).
  • the present invention also includes a method for oxidizing the end face of an optical film containing a polyimide polymer and a method for irradiating a laser.
  • the laser that can be used for laser irradiation is not particularly limited, and any laser can be used.
  • Specific examples of usable lasers include gas lasers such as CO 2 lasers and excimer lasers; solid state lasers such as YAG lasers; and semiconductor lasers.
  • a suitable laser that can be used for laser irradiation is a CO 2 laser. Specifically, by cutting the polyimide-based polymer film raw material into a desired size with a CO 2 laser, cracks are unlikely to occur at the edges even when stored in a high temperature and high humidity environment in a deformed state. A film containing a polyimide polymer can be easily obtained. End face oxidation may be performed by laser irradiation.
  • the laser is preferably a CO 2 laser, and more preferably a wavelength of 10 ⁇ m or less. It is preferable for the output to be a condition capable of cutting the film because the amount of fluorine at the end can be increased simultaneously with the cutting.
  • the output is preferably 10 W or more, and more preferably 12 W or more.
  • the laser processing speed is preferably 50 mm / sec or more, and more preferably 100 mm / sec or more.
  • the end portion may be irradiated with a laser a plurality of times.
  • the obtained optical film When the obtained optical film is used for, for example, a display having a curved surface, a foldable device, a display that can be rolled, etc., it is deformed such as a rolled state (rolled state) or a bent state. May be stored in a damaged state. At this time, the end surface of the optical film is in a deformed state.
  • the deformed optical film may be placed in a high temperature and high humidity environment during storage.
  • the conventional optical film When stored in a high temperature and high humidity environment with the optical film deformed in this way, the conventional optical film has a problem that cracks are likely to occur at the end, but according to the optical film of the present embodiment, F E / C E is higher than the F C / C C at the end face, and / or, by F E / O E is higher than the F C / O C, possible to suppress the occurrence of cracks in the end Can do.
  • Such an optical film can be suitably used as a front plate of a flexible device.
  • the flexible device which concerns on this embodiment has a flexible functional layer and said optical film which overlaps with a flexible functional layer and functions as a front plate. That is, the front plate of the flexible device is disposed on the viewing side on the flexible functional layer. This front plate has a function of protecting the flexible functional layer.
  • Examples of flexible devices include image display devices (flexible displays, electronic paper, etc.), solar cells, and the like.
  • image display devices flexible displays, electronic paper, etc.
  • solar cells and the like.
  • a display functional layer and a solar cell functional layer are flexible functional layers.
  • FIG. 1 An example of a flexible display is shown in FIG.
  • This flexible display 100 is called front plate 110 / polarizing plate protective film 120B / polarizer 120A / polarizing plate protective film 120B / touch sensor film 130 / organic EL element layer 140 / TFT substrate 150 in this order from the surface side (viewing side). It has a configuration.
  • a layer other than the front plate 110 in the flexible display 100 is the flexible functional layer 190.
  • the polarizing plate protective film 120 ⁇ / b> B / polarizer 120 ⁇ / b> A / polarizing plate protective film 120 ⁇ / b> B constitutes the polarizing plate 120.
  • a hard coat layer, an adhesive layer, an adhesive layer, a retardation layer, and the like may be included between the surface of each layer and each interlayer.
  • the optical film 10 described above can be used as the front plate 110.
  • Such a flexible display can be used as an image display unit of a tablet PC, a smartphone, a portable game machine, or the like.
  • the optical film 10 is used as the front plate 110. Since the optical film 10 is suppressed from generating cracks from the end face, the reliability can be improved.
  • the laminated body which added various functional layers, such as an ultraviolet absorption layer, a hard-coat layer, an adhesion layer, a hue adjustment layer, and a refractive index adjustment layer, to the surface of this optical film.
  • various functional layers such as an ultraviolet absorption layer, a hard-coat layer, an adhesion layer, a hue adjustment layer, and a refractive index adjustment layer, to the surface of this optical film.
  • Example 1 “Neoprim C6A20” ( ⁇ -butyrolactone solvent, 22 mass%) manufactured by Mitsubishi Gas Chemical Company, which is a polyimide polymer, a solution in which silica particles having a solid content concentration of 30 mass% are dispersed in ⁇ -butyrolactone, an alkoxysilane having an amino group A dimethylacetamide solution and water were mixed and stirred for 30 minutes.
  • the mass ratio of silica and polyimide is 30:70
  • the amount of alkoxysilane having an amino group is 1.67 parts by mass with respect to 100 parts by mass of silica and polyimide
  • water is 100 parts by mass of silica and polyimide. It was 10 mass parts with respect to this.
  • the obtained mixed solution was applied to a glass substrate and heated at 50 ° C. for 30 minutes and at 140 ° C. for 10 minutes to dry the solvent. Thereafter, the film was peeled off from the glass substrate, a metal frame was attached, and the film was heated at 210 ° C. for 1 hour to obtain a transparent polyimide film original fabric having a thickness of 50 ⁇ m.
  • the refractive index of the original film was 1.57.
  • Example 1 A polyimide-based polymer film original fabric was obtained in the same manner as in Example 1. A rectangular (5 cm ⁇ 5 cm) region was cut out from the obtained film original with a shear blade to obtain an optical film.
  • XPS measurement About the edge part of the optical film obtained by the Example and the comparative example, the X-ray photoelectron spectroscopy (XPS) measurement was performed in the following steps 1 and 2.
  • the XPS measurement conditions are as follows. Equipment: Quantera SXM (manufactured by ULVAC PHI) X-ray: AlK ⁇ ray (1486.6 eV) X-ray spot diameter: 50 ⁇ m Neutralization conditions: neutralization electron (1 eV), low-speed Ar ion (10 eV)
  • Step 1 Attaching the optical film to a metal block, fixing the film end face upward, irradiating the film end face with X-rays from above (vertical direction), detecting photoelectrons from the 45 ° direction, and evaluating the film end face did.
  • F / C was calculated from the area of the C1s and F1s peaks of the obtained XPS spectrum.
  • F / C was calculated by measuring three points spaced at regular intervals on the end face of one side of the film, and the average value thereof was taken as F / C of the end face. Similarly, F / O was determined.
  • Step 2 Next, the part 1 mm away from the film end face was cut with a razor (PERSONNA, Single Edge, stainless steel, 3-Facet .009 ”/. 23 mm). Steps for cutting with a razor The XPS measurement was performed under the same conditions as 1, and the F / C of the film cross section (inside the film) was obtained.
  • a razor PERSONNA, Single Edge, stainless steel, 3-Facet .009 ”/. 23 mm.
  • the XPS measurement was first performed on two opposite end portions (referred to as a first end portion and a second end portion, respectively) of the optical films obtained in Examples and Comparative Examples. The results are shown in Table 1. In addition, about the optical film obtained by the Example and the comparative example, it was an XPS measurement result equivalent to a 1st end part and a 2nd end part about 4 sides.

Abstract

Provided is an optical film in which cracks are unlikely to form in end parts even if preserved in a high-temperature, high-humidity environment in a deformed state. This optical film comprises a polyimide polymer including an intramolecular fluorine atom, the atomic ratio (F/C) of fluorine atoms relative to carbon atoms at the end surfaces of the optical film as measured using X-ray photoelectron spectroscopy being greater than the atomic ratio (F/C) of fluorine atoms relative to carbon atoms in sections cut 1 mm inside from the end surfaces of the optical film as measured using X-ray photoelectron spectroscopy.

Description

光学フィルム及びその製造方法Optical film and manufacturing method thereof
 本発明は、光学フィルム及びその製造方法、並びにフレキシブルデバイスに関する。 The present invention relates to an optical film, a manufacturing method thereof, and a flexible device.
 従来、太陽電池やディスプレイ等の各種表示部材の基材及び前面板等の透明部材の材料として、ガラスが用いられてきた。しかしながら、ガラスは、割れやすい、重いといった欠点があった。また、近年のディスプレイの薄型化及び軽量化や、フレキシブル化の要求に対して、充分な材質を有していなかった。そのため、ガラスに代わるフレキシブルデバイスの透明部材として、各種フィルム(光学フィルム)が検討されている。 Conventionally, glass has been used as a base material for various display members such as solar cells and displays, and as a material for transparent members such as front plates. However, glass has drawbacks such as being easily broken and heavy. In addition, the display has not been made of a sufficient material to meet the recent demands for thinner and lighter displays and more flexible displays. Therefore, various films (optical films) have been studied as transparent members for flexible devices that replace glass.
 例えば、特許文献1には、ポリイミド樹脂組成物を用いて形成された、透明性、フレキシブル性及び耐折性等に優れたポリイミドフィルムが開示されている。 For example, Patent Document 1 discloses a polyimide film that is formed using a polyimide resin composition and is excellent in transparency, flexibility, folding resistance, and the like.
特開2009-215412号公報JP 2009-215412 A
 光学フィルムは、曲面を有するディスプレイや折りたたみ可能なデバイス、丸めることが可能なディスプレイ等に用いた場合、丸められた状態(ロール状に巻かれた状態)や屈曲した状態等の変形した状態で保管されることがある。しかしながら、従来のポリイミド系フィルムは、ロール状に巻いた状態や屈曲させた状態等の変形させた状態で高温高湿環境下に保管した場合、端部にクラックが発生しやすいという問題がある。 When used for curved displays, foldable devices, rollable displays, etc., the optical film is stored in a deformed state such as a rolled state (rolled state) or a bent state. May be. However, the conventional polyimide film has a problem that cracks are likely to occur at the end when stored in a high temperature and high humidity environment in a deformed state such as a rolled state or a bent state.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、変形させた状態で高温高湿環境下に保管しても端部にクラックが発生しにくい光学フィルムを提供することを目的とする。本発明はまた、上記光学フィルムの製造方法、並びに上記光学フィルムを用いたフレキシブルデバイス用前面板及びフレキシブルデバイスを提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an optical film in which cracks are unlikely to occur at the end even when stored in a high temperature and high humidity environment in a deformed state. And Another object of the present invention is to provide a method for producing the optical film, a front plate for a flexible device using the optical film, and a flexible device.
 上記目的を達成するために、本発明は、分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムであって、上記光学フィルムの端面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)が、上記光学フィルムの上記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)よりも大きい、光学フィルムを提供する。 In order to achieve the above object, the present invention provides an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, wherein the fluorine atom measured by X-ray photoelectron spectroscopy at the end face of the optical film is provided. The atomic ratio (F / C) to carbon atoms is higher than the atomic ratio (F / C) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy in a cross section obtained by cutting 1 mm inside from the end face of the optical film. Provide a large optical film.
 上記光学フィルムによれば、端面における上記原子比(F/C)が、当該端面から1mm内側を切断した断面における上記原子比(F/C)よりも大きいことにより、光学フィルムをロール状に巻いたり屈曲させたりすること等により上記端面を変形させた状態で高温高湿(例えば、85℃、85%RH)環境下に保管した場合でも、上記端面からのクラックの発生を抑制することができる。変形させた状態で高温高湿環境下に保管すると、巻いたり屈曲させたりすることによる変形に加え、熱膨脹、吸湿膨張で端部周辺に複雑な応力が発生するためにクラックが発生すると考えているが、端面のフッ素原子がフィルム内部よりも相対的に多いフィルムでは、その複雑な応力を抑制できると考えられる。 According to the optical film, the atomic ratio (F / C) at the end face is larger than the atomic ratio (F / C) in a cross section cut 1 mm inside from the end face, whereby the optical film is wound in a roll shape. Even when stored in a high-temperature and high-humidity (for example, 85 ° C., 85% RH) environment with the end face deformed by bending or bending, the occurrence of cracks from the end face can be suppressed. . When stored in a high-temperature and high-humidity environment in a deformed state, in addition to deformation caused by rolling or bending, thermal expansion and hygroscopic expansion cause complex stresses around the edges, causing cracks. However, it is considered that the complicated stress can be suppressed in a film having a relatively large number of fluorine atoms on the end face as compared with the inside of the film.
 上記光学フィルムは、上記光学フィルムの端面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)と、上記光学フィルムの上記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)との比(F/C)/(F/C)が1.1~10であってもよい。 The optical film has an atomic ratio (F E / C E ) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film, and a cross section obtained by cutting 1 mm inside from the end face of the optical film. The ratio (F E / C E ) / (F C / C C ) of the atomic ratio of fluorine atoms to carbon atoms (F C / C C ) measured by X-ray photoelectron spectroscopy in FIG. There may be.
 本発明はまた、分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムであって、上記光学フィルムの端面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)が、上記光学フィルムの上記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)よりも大きい、光学フィルムを提供する。 The present invention is also an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, the atomic ratio of the fluorine atom to the oxygen atom (F) measured by X-ray photoelectron spectroscopy at the end face of the optical film. / O) provides an optical film having a larger atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy in a cross section cut 1 mm inside from the end face of the optical film. .
 上記光学フィルムによれば、端面における上記原子比(F/O)が、当該端面から1mm内側を切断した断面における上記原子比(F/O)よりも大きいことにより、光学フィルムをロール状に巻いたり屈曲させたりすること等により上記端面を変形させた状態で高温高湿(例えば、85℃、85%RH)環境下に保管した場合でも、上記端面からのクラックの発生を抑制することができる。変形させた状態で高温高湿環境下に保管すると、巻いたり屈曲させたりすることによる変形に加え、熱膨脹、吸湿膨張で端部周辺に複雑な応力が発生するためにクラックが発生すると考えているが、端面のフッ素原子がフィルム内部よりも相対的に多いフィルムでは、その複雑な応力を抑制できると考えられる。 According to the optical film, the atomic ratio (F / O) at the end face is larger than the atomic ratio (F / O) in a cross section cut 1 mm inside from the end face, whereby the optical film is wound in a roll shape. Even when stored in a high-temperature and high-humidity (for example, 85 ° C., 85% RH) environment with the end face deformed by bending or bending, the occurrence of cracks from the end face can be suppressed. . When stored in a high-temperature and high-humidity environment in a deformed state, in addition to deformation caused by rolling or bending, thermal expansion and hygroscopic expansion cause complex stresses around the edges, causing cracks. However, it is considered that the complicated stress can be suppressed in a film having a relatively large number of fluorine atoms on the end face as compared with the inside of the film.
 上記光学フィルムは、上記光学フィルムの端面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)と、上記光学フィルムの上記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)との比(F/O)/(F/O)が1.1~10であってもよい。 The optical film has an atomic ratio (F E / O E ) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film, and a cross section obtained by cutting 1 mm inside from the end face of the optical film. The ratio (F E / O E ) / (F C / O C ) of the atomic ratio of fluorine atoms to oxygen atoms (F C / O C ) measured by X-ray photoelectron spectroscopy in FIG. There may be.
 上記光学フィルムは、シリカ粒子を更に含有していてもよい。 The optical film may further contain silica particles.
 本発明はまた、分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムの製造方法であって、端面を酸化することにより、上記光学フィルムの上記端面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)を、上記光学フィルムの上記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)よりも大きくする工程を有する、光学フィルムの製造方法を提供する。 The present invention is also a method for producing an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, which is measured by X-ray photoelectron spectroscopy at the end face of the optical film by oxidizing the end face. The atomic ratio (F / C) of the fluorine atom to the carbon atom is determined by measuring the atomic ratio of the fluorine atom to the carbon atom (F / C) measured by X-ray photoelectron spectroscopy in a cross section cut 1 mm inside from the end face of the optical film. The manufacturing method of an optical film which has the process made larger than C) is provided.
 上記製造方法により、変形させた状態で高温高湿環境下に保管しても端部にクラックが発生しにくい光学フィルムを製造することができる。 By the above manufacturing method, it is possible to manufacture an optical film in which cracks are hardly generated at the end portion even when stored in a high temperature and high humidity environment in a deformed state.
 本発明はまた、分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムの製造方法であって、上記光学フィルムの端面を、レーザー照射によりフィルム原反を切断することで形成することで、上記光学フィルムの上記端面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)を、上記光学フィルムの上記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)よりも大きくする工程を有する、光学フィルムの製造方法を提供する。 The present invention is also a method for producing an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, wherein the end face of the optical film is formed by cutting the film original by laser irradiation. The atomic ratio (F / C) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film is measured by X-ray photoelectron spectroscopy at a cross section taken 1 mm inside from the end face of the optical film. Provided is a method for producing an optical film, which comprises a step of making the atomic ratio (F / C) of fluorine atoms to carbon atoms measured by the method larger.
 上記製造方法により、変形させた状態で高温高湿環境下に保管しても端部にクラックが発生しにくい光学フィルムを製造することができる。 By the above manufacturing method, it is possible to manufacture an optical film in which cracks are hardly generated at the end portion even when stored in a high temperature and high humidity environment in a deformed state.
 本発明はまた、分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムの製造方法であって、端面を酸化することにより、上記光学フィルムの上記端面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)を、上記光学フィルムの上記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)よりも大きくする工程を有する、光学フィルムの製造方法を提供する。 The present invention is also a method for producing an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, which is measured by X-ray photoelectron spectroscopy at the end face of the optical film by oxidizing the end face. The atomic ratio (F / O) of fluorine atoms to oxygen atoms is determined by measuring the atomic ratio of fluorine atoms to oxygen atoms (F / O) measured by X-ray photoelectron spectroscopy in a cross section cut 1 mm inside from the end face of the optical film. The manufacturing method of an optical film which has the process made larger than O) is provided.
 上記製造方法により、変形させた状態で高温高湿環境下に保管しても端部にクラックが発生しにくい光学フィルムを製造することができる。 By the above manufacturing method, it is possible to manufacture an optical film in which cracks are hardly generated at the end portion even when stored in a high temperature and high humidity environment in a deformed state.
 本発明はまた、分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムの製造方法であって、上記光学フィルムの端面を、レーザー照射によりフィルム原反を切断することで形成することで、上記光学フィルムの上記端面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)を、上記光学フィルムの上記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)よりも大きくする工程を有する、光学フィルムの製造方法を提供する。 The present invention is also a method for producing an optical film containing a polyimide-based polymer containing a fluorine atom in the molecule, wherein the end face of the optical film is formed by cutting the film original by laser irradiation. The atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film is measured by X-ray photoelectron spectroscopy at a cross section taken 1 mm inside from the end face of the optical film. Provided is a method for producing an optical film, which comprises a step of making the atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by the method larger.
 上記製造方法により、変形させた状態で高温高湿環境下に保管しても端部にクラックが発生しにくい光学フィルムを製造することができる。 By the above manufacturing method, it is possible to manufacture an optical film in which cracks are hardly generated at the end portion even when stored in a high temperature and high humidity environment in a deformed state.
 本発明はまた、上記本発明の光学フィルムを有するフレキシブルデバイス用前面板を提供する。 The present invention also provides a front plate for a flexible device having the optical film of the present invention.
 本発明は更に、フレキシブル機能層と、上記本発明の光学フィルムと、を有するフレキシブルデバイスを提供する。 The present invention further provides a flexible device having a flexible functional layer and the optical film of the present invention.
 本発明によれば、変形させた状態で高温高湿環境下に保管しても端部にクラックが発生しにくい光学フィルム及びその製造方法、並びに上記光学フィルムを用いたフレキシブルデバイス用前面板及びフレキシブルデバイスを提供することができる。
 を得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, even if it stores in the high-temperature, high-humidity environment in the deformed state, the optical film which is hard to generate | occur | produce a crack at an edge part, its manufacturing method, the front plate for flexible devices using the said optical film, and flexible A device can be provided.
Can be obtained.
図1は、本発明の実施形態に係る光学フィルムの1例を示す斜視図である。FIG. 1 is a perspective view showing an example of an optical film according to an embodiment of the present invention. 図2は、本発明の実施形態に係るフレキシブルディスプレイの1例を示す斜視図である。FIG. 2 is a perspective view showing an example of a flexible display according to an embodiment of the present invention.
 以下、場合により図面を参照しつつ本発明の好適な実施形態について詳細に説明する。
なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as the case may be.
In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
 本実施形態の光学フィルムは、分子内にフッ素原子を含むポリイミド系高分子を含有するものであって、下記条件(1)又は(2)の一方又は両方を満たすものである。
条件(1):上記光学フィルムの端面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)が、上記光学フィルムの上記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)よりも大きい。
条件(2):上記光学フィルムの端面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)が、上記光学フィルムの上記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)よりも大きい。
The optical film of this embodiment contains a polyimide polymer containing a fluorine atom in the molecule, and satisfies one or both of the following conditions (1) and (2).
Condition (1): The atomic ratio (F / C) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film is X in a cross section obtained by cutting 1 mm inside from the end face of the optical film. It is larger than the atomic ratio (F / C) of the fluorine atom to the carbon atom measured by line photoelectron spectroscopy.
Condition (2): The atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film is X in a cross section cut 1 mm inside from the end face of the optical film. It is larger than the atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by linear photoelectron spectroscopy.
 図1は、本実施形態に係る光学フィルムの1例を示す斜視図である。図1に示した光学フィルム10は、矩形(長方形)の平面形状を有しており、短手方向において互いに対向する二辺(矩形を形成する互いに平行な2つの長辺)の端面E1及びE2、並びに、長手方向において互いに対向する二辺(矩形を形成する互いに平行な2つの短辺)の端面E3及びE4を有する。光学フィルム10は、端面E1,E2,E3及びE4から1mm内側を切断した切断面をそれぞれ断面C1,C2,C3及びC4とした場合、上記端面E1~E4及び上記断面C1~C4のそれぞれにおいてX線光電子分光法(XPS)で測定されるフッ素原子の炭素原子に対する原子比(F/C)が、端面の全体又は一部において、F/CがF/Cよりも大きい、及び/又は、上記端面E1~E4及び上記断面C1~C4のそれぞれにおいてX線光電子分光法(XPS)で測定されるフッ素原子の酸素原子に対する原子比(F/O)が、端面の全体又は一部において、F/OがF/Oよりも大きい。なお、端面においてXPSで測定されるフッ素原子の炭素原子に対する原子比をF/Cとし、断面においてXPSで測定されるフッ素原子の炭素原子に対する原子比をF/Cとし、端面においてXPSで測定されるフッ素原子の酸素原子に対する原子比をF/Oとし、断面においてXPSで測定されるフッ素原子の酸素原子に対する原子比をF/Oとする。四角形のディスプレイを有するフォールダブルデバイス向けの光学フィルムとしては、以下の(I)、(II)のいずれかの条件を満たすと好ましく、両方を満たすとさらに好ましい。
 (I)端面E1,E2において、F/CがF/Cよりも大きい、及び/又は、F/OがF/Oよりも大きい。
 (II)端面E3,E4において、F/CがF/Cよりも大きい、及び/又は、F/OがF/Oよりも大きい。
FIG. 1 is a perspective view showing an example of an optical film according to this embodiment. The optical film 10 shown in FIG. 1 has a rectangular (rectangular) planar shape, and has end faces E1 and E2 of two sides (two long sides parallel to each other forming a rectangle) facing each other in the short direction. And end faces E3 and E4 of two sides (two short sides parallel to each other forming a rectangle) facing each other in the longitudinal direction. The optical film 10 has X in each of the end faces E1 to E4 and the cross sections C1 to C4 when the cut surfaces cut by 1 mm from the end faces E1, E2, E3, and E4 are cross sections C1, C2, C3, and C4, respectively. ray photoelectron spectroscopy atomic ratio carbon atoms of fluorine atoms measured in (XPS) (F / C) , in whole or in part of the end surface, F E / C E is greater than F C / C C, and / Or the atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy (XPS) in each of the end faces E1 to E4 and the cross sections C1 to C4 is the whole or a part of the end face in, F E / O E is greater than F C / O C. Note that the atomic ratio of fluorine atoms to carbon atoms measured by XPS at the end face is F E / C E, and the atomic ratio of fluorine atoms to carbon atoms measured by XPS in the cross section is F C / CC, and at the end face the atomic ratio of oxygen atoms of fluorine atom, measured by XPS and F E / O E, the atomic ratio of oxygen atoms of fluorine atom, measured by XPS in the cross section and F C / O C. As an optical film for a foldable device having a quadrangular display, it is preferable to satisfy either of the following conditions (I) and (II), and more preferable to satisfy both.
In (I) the end faces E1, E2, F E / C E is greater than F C / C C, and / or, F E / O E is greater than F C / O C.
In (II) an end face E3, E4, F E / C E is greater than F C / C C, and / or, F E / O E is greater than F C / O C.
 光学フィルム10が上記の条件を満たすこと、すなわち、端面においてF/CがF/Cよりも大きい、及び/又は、F/OがF/Oよりも大きいことにより、光学フィルム10を変形させた状態で高温高湿環境下に保管しても、端面からのクラックの発生を抑制することができる。全ての端面からのクラックの発生を抑制できる観点から、光学フィルム10は上記(I)及び(II)の条件の両方を満たすことが好ましい。 It optical film 10 satisfies the condition above, namely, F E / C E is greater than F C / C C at the end face, and / or, by F E / O E is greater than F C / O C Even when the optical film 10 is deformed and stored in a high-temperature and high-humidity environment, generation of cracks from the end face can be suppressed. From the viewpoint of suppressing the occurrence of cracks from all end faces, the optical film 10 preferably satisfies both the above conditions (I) and (II).
 クラックは変形が生じている端面から発生しやすいため、かかるクラックを効率的に防ぐ観点から、F/CがF/Cよりも大きい、及び/又は、F/OがF/Oよりも大きい端面を、光学フィルムに屈曲が生じる場合(例えば保管時や使用時など)に屈曲等の変形が生じる面とすることができる。例えば、矩形の平面形状を有する光学フィルムを、光学フィルムの短手方向を軸として屈曲させて又はロール状に巻いて保管する場合、短手方向において互いに対向する二辺の端面(例えば図1に示した光学フィルム10の場合は端面E1及びE2)に屈曲による変形が生じる。このような場合には、少なくとも光学フィルムの短手方向において互いに対向する二辺の端面において、フッ素原子がフィルム内部よりも高濃度で存在していることが好ましい。 Since cracks are likely to occur from the end face where deformation occurs, from the viewpoint of efficiently preventing such cracks, F E / C E is larger than F C / C C and / or F E / O E is F An end face larger than C 1 / O 2 C can be a face where deformation such as bending occurs when the optical film is bent (for example, during storage or use). For example, when an optical film having a rectangular planar shape is stored by being bent around the short direction of the optical film or wound in a roll shape, end faces on two sides facing each other in the short direction (for example, in FIG. 1) In the case of the optical film 10 shown, the end faces E1 and E2) are deformed by bending. In such a case, it is preferable that fluorine atoms are present at a higher concentration than the inside of the film, at least on the end surfaces of the two sides facing each other in the lateral direction of the optical film.
 光学フィルムをフレキシブルディスプレイの部材として用いる場合、ディスプレイの内部でフィルムが変形する箇所の端部が、F/CがF/Cよりも大きい、及び/又は、F/OがF/Oよりも大きい端面となっていることによって、端部からのクラックによる劣化が抑制され、より高い信頼性を得ることができる。例えば、曲面を有するディスプレイの場合には、曲率を持つ端部が、F/CがF/Cよりも大きい、及び/又は、F/OがF/Oよりも大きい端面となっていると本発明の効果を得やすい傾向がある。また、折りたたみ可能なデバイスの場合、折りたたみによって曲げられる側の端部が、F/CがF/Cよりも大きい、及び/又は、F/OがF/Oよりも大きい端面となっていると本発明の効果を得やすい傾向がある。丸めることが可能なディスプレイの場合には、丸めることによって曲率を持つ端部が、F/CがF/Cよりも大きい、及び/又は、F/OがF/Oよりも大きい端面となっていると本発明の効果を得やすい傾向がある。 When the optical film is used as a member of a flexible display, the end of the portion where the film is deformed inside the display has F E / C E larger than F C / C C and / or F E / O E by has a F C / O C greater end face than can be deteriorated due to crack from the end portion is suppressed to obtain a higher reliability. For example, in the case of a display having a curved surface, an end portion having a curvature, F E / C E is greater than F C / C C, and / or, than F E / O E is F C / O C If the end face is large, the effect of the present invention tends to be easily obtained. Also, in the case of a foldable device, the end on the side bent by folding is such that F E / C E is greater than F C / C C and / or F E / O E is greater than F C / O C If the end face is too large, the effect of the present invention tends to be easily obtained. In the case of a display that can be rounded, the edge with curvature by rounding is such that F E / C E is greater than F C / C C and / or F E / O E is F C / O If the end face is larger than C, the effect of the present invention tends to be easily obtained.
 光学フィルムの端面及び断面のXPS測定は、以下の条件で行うことができる。また、XPS測定は、光学フィルムの端面又は断面に対して垂直方向からX線を照射し、45°方向から光電子を検出することで行うことができる。 The XPS measurement of the end face and the cross section of the optical film can be performed under the following conditions. Moreover, XPS measurement can be performed by irradiating X-rays from the direction perpendicular to the end face or cross section of the optical film and detecting photoelectrons from the 45 ° direction.
<XPS測定条件>
 装置:Quantera SXM(ULVAC PHI社製)
 X線:AlKα線(1486.6eV)
 X線スポット径:50μm
 中和条件:中和電子(1eV)、低速Arイオン(10eV)
<XPS measurement conditions>
Equipment: Quantera SXM (manufactured by ULVAC PHI)
X-ray: AlKα ray (1486.6 eV)
X-ray spot diameter: 50 μm
Neutralization conditions: neutralization electron (1 eV), low-speed Ar ion (10 eV)
 XPSで測定されるフッ素原子の炭素原子に対する原子比(F/C)、及び/又は、フッ素原子の酸素原子に対する原子比(F/O)は、XPSスペクトルのC1s、O1s及びF1sピークの面積から求めることができる。 The atomic ratio (F / C) of fluorine atoms to carbon atoms and / or the atomic ratio of fluorine atoms to oxygen atoms (F / O) measured by XPS can be determined from the areas of the C1s, O1s and F1s peaks in the XPS spectrum. Can be sought.
 XPS測定を行う断面(光学フィルム10における断面C1~C4)を形成する際の光学フィルムの切断は、切断面の原子組成が変化せず、切断面に歪みが生じない方法で行う。切断は、例えば、カミソリを用いて行うことができる。 The cutting of the optical film at the time of forming the cross section for performing XPS measurement (cross sections C1 to C4 in the optical film 10) is performed by a method in which the atomic composition of the cut surface does not change and the cut surface is not distorted. The cutting can be performed using, for example, a razor.
 本発明の一実施形態に係る光学フィルム10の端面において、(F/C)/(F/C)の値は、1より大きい値であることが必要であるが、1.1~10であることが好ましく、1.5~8であることがより好ましく、2~5であることが更に好ましい。この値が1.1以上であると、フィルム端面におけるフッ素原子の濃度がフィルム断面(フィルム内部)におけるフッ素原子の濃度よりも充分に高く、当該端面からのクラックの発生をより充分に抑制することができる傾向がある。 In the end face of the optical film 10 according to an embodiment of the present invention, the value of (F E / C E ) / (F C / C C ) needs to be a value greater than 1, but 1.1. Is preferably 10 to 10, more preferably 1.5 to 8, and still more preferably 2 to 5. When this value is 1.1 or more, the fluorine atom concentration at the film end face is sufficiently higher than the fluorine atom concentration at the film cross section (inside the film), and the occurrence of cracks from the end face is more sufficiently suppressed. There is a tendency to be able to.
 光学フィルム10において、(F/C)/(F/C)の値が1より大きい端面におけるF/Cの値は、0.03以上であることが好ましく、0.04以上であることがより好ましく、0.05以上であることが更に好ましい。端面のF/Cの値が0.03以上であると、当該端面からのクラックの発生をより充分に抑制することができる傾向がある。 In the optical film 10, the value of F E / C E at the end face where the value of (F E / C E ) / (F C / C C ) is greater than 1 is preferably 0.03 or more, and 0.04 More preferably, it is more preferably 0.05 or more. When the value of F E / C E of the end surface is 0.03 or more, there is a tendency that it is possible to more sufficiently suppress the occurrence of cracks from the end surface.
 (F/C)/(F/C)の値が1より大きい端面は、レーザー切断により形成することができる。上記方法で形成された端面は、(F/C)/(F/C)の値が1よりも大きくなりやすく、当該端面からのクラックの発生をより充分に抑制することができる傾向がある。 An end face having a value of (F E / C E ) / (F C / C C ) greater than 1 can be formed by laser cutting. In the end face formed by the above method, the value of (F E / C E ) / (F C / C C ) tends to be larger than 1, and the generation of cracks from the end face can be more sufficiently suppressed. Tend.
 本発明の他の一実施形態に係る光学フィルム10の端面において、(F/O)/(F/O)の値は、1より大きい値であることが必要であるが、1.1~10であることが好ましく、1.3~8であることがより好ましく、1.5~5であることが更に好ましい。この値が1.1以上であると、フィルム端面におけるフッ素原子の濃度がフィルム断面(フィルム内部)におけるフッ素原子の濃度よりも充分に高く、当該端面からのクラックの発生をより充分に抑制することができる傾向がある。 In the end face of the optical film 10 according to another embodiment of the present invention, the value of (F E / O E ) / (F C / O C ) needs to be greater than 1, but 1 It is preferably 1 to 10, more preferably 1.3 to 8, and still more preferably 1.5 to 5. When this value is 1.1 or more, the fluorine atom concentration at the film end face is sufficiently higher than the fluorine atom concentration at the film cross section (inside the film), and the occurrence of cracks from the end face is more sufficiently suppressed. There is a tendency to be able to.
 光学フィルム10において、(F/O)/(F/O)の値が1より大きい端面におけるF/Oの値は、0.2以上であることが好ましい。端面のF/Oの値が0.2以上であると、当該端面からのクラックの発生をより充分に抑制することができる傾向がある。 In the optical film 10, the value of F E / O E at the end face where the value of (F E / O E ) / (F C / O C ) is greater than 1 is preferably 0.2 or more. When the value of F E / O E of the end face is 0.2 or more, there is a tendency that it is possible to more sufficiently suppress the occurrence of cracks from the end surface.
 (F/O)/(F/O)の値が1より大きい端面は、レーザー切断により形成することができる。上記方法で形成された端面は、(F/O)/(F/O)の値が1よりも大きくなりやすく、当該端面からのクラックの発生をより充分に抑制することができる傾向がある。 The end face having a value of (F E / O E ) / (F C / O C ) greater than 1 can be formed by laser cutting. In the end face formed by the above method, the value of (F E / O E ) / (F C / O C ) tends to be larger than 1, and the occurrence of cracks from the end face can be more sufficiently suppressed. Tend.
 上記の光学フィルム10は、屈折率が通常、1.45~1.70であり、好ましくは1.50~1.66である。 The refractive index of the optical film 10 is usually 1.45 to 1.70, preferably 1.50 to 1.66.
 光学フィルム10の厚さは、フレキシブルデバイスの種類等に応じて適宜調整されるが、通常、10~500μmであり、15~200μmであることが好ましく、20~100μmであることがより好ましい。 The thickness of the optical film 10 is appropriately adjusted according to the type of the flexible device and the like, but is usually 10 to 500 μm, preferably 15 to 200 μm, and more preferably 20 to 100 μm.
 光学フィルム10は、通常、透明である。光学フィルム10は、JIS K 7105:1981に準拠した全光線透過率が、通常、85%以上であり、好ましくは90%以上である。 The optical film 10 is usually transparent. The optical film 10 has a total light transmittance based on JIS K 7105: 1981 of usually 85% or more, preferably 90% or more.
 光学フィルム10は、JIS K 7105:1981に準拠したHazeが1以下であることができ、0.9以下であることもできる。 The optical film 10 can have a haze based on JIS K 7105: 1981 of 1 or less, or 0.9 or less.
 なお、屈折率、全光線透過率、及び、Hazeは、光学フィルムの厚み方向において測定する値である。 Note that the refractive index, total light transmittance, and Haze are values measured in the thickness direction of the optical film.
 光学フィルム10の大きさは、使用されるフレキシブルデバイスの大きさに応じて適宜調節することができる。光学フィルム10の平面形状は、通常、矩形又は正方形であるが、台形、平行四辺形等の他の四角形であってもよい。また、光学フィルム10の平面形状は、角が丸められた四角形であってもよい。 The size of the optical film 10 can be appropriately adjusted according to the size of the flexible device used. The planar shape of the optical film 10 is usually a rectangle or a square, but may be another rectangle such as a trapezoid or a parallelogram. The planar shape of the optical film 10 may be a quadrangle with rounded corners.
 (フィルムの材質)
 (透明樹脂)
 上記光学フィルムは、分子内にフッ素原子を含むポリイミド系高分子などの透明樹脂を含む。
(Material of film)
(Transparent resin)
The optical film contains a transparent resin such as a polyimide polymer containing fluorine atoms in the molecule.
 (ポリイミド系高分子)
 本明細書において、ポリイミドとは、イミド基を含む繰返し構造単位を含有する重合体であり、ポリアミドとは、アミド基を含む繰返し構造単位を含有する重合体である。ポリイミド系高分子とは、ポリイミド並びにイミド基及びアミド基の両方を含む繰返し構造単位を含有する重合体を示す。
(Polyimide polymer)
In this specification, a polyimide is a polymer containing a repeating structural unit containing an imide group, and a polyamide is a polymer containing a repeating structural unit containing an amide group. The polyimide-based polymer refers to a polymer containing a polyimide and a repeating structural unit containing both an imide group and an amide group.
 本実施形態に係るポリイミド系高分子は、後述するテトラカルボン酸化合物とジアミン化合物とを主な原料として製造することができ、式(10)で表される繰り返し構造単位を有する。ここで、Gは4価の有機基であり、Aは2価の有機基である。G及び/又はAが異なる、2種類以上の式(10)で表される構造を含んでいてもよい。 The polyimide polymer according to the present embodiment can be produced using a tetracarboxylic acid compound and a diamine compound described later as main raw materials, and has a repeating structural unit represented by the formula (10). Here, G is a tetravalent organic group, and A is a divalent organic group. The structure represented by two or more types of Formula (10) from which G and / or A differ may be included.
 また、本実施形態に係るポリイミド系高分子は、得られるポリイミド系高分子フィルムの各種物性を損なわない範囲で、式(11)~式(13)のいずれかで表される構造を含んでいてもよい。 In addition, the polyimide polymer according to the present embodiment includes a structure represented by any one of formulas (11) to (13) as long as various physical properties of the resulting polyimide polymer film are not impaired. Also good.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002

Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003

Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 G及びGは4価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基であり、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基並びに4価の炭素数6以下の鎖式炭化水素基が例示される。式中の*は結合手を表し、Zは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arはフッ素原子で置換されていてもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。G及びGは、得られるフィルムの黄色度を抑制しやすいことから、式(20)~式(27)で表される基から選ばれるいずれかの基であることが好ましい。 G and G 1 are tetravalent organic groups, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and are represented by formula (20), formula (21), formula ( 22), the formula (23), the formula (24), the formula (25), the formula (26), the formula (27), the group represented by the formula (28) or the formula (29), and a tetravalent carbon number of 6 or less. The chain hydrocarbon group is exemplified. In the formula * represents a bond, Z is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, —C (CF 3 ) 2 —, —Ar—, —SO 2 —, —CO—, —O—Ar—O—, —Ar—O—Ar—, —Ar—CH 2 —Ar—, —Ar— C (CH 3 ) 2 —Ar— or —Ar—SO 2 —Ar— is represented. Ar represents an arylene group having 6 to 20 carbon atoms which may be substituted with a fluorine atom, and specific examples thereof include a phenylene group. G and G 1 are preferably any group selected from the groups represented by formulas (20) to (27) because the yellowness of the resulting film can be easily suppressed.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 Gは3価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基であり、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基並びに3価の炭素数6以下の鎖式炭化水素基が例示される。 G 2 is a trivalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and has the formula (20), formula (21), formula (22) Any one of the bonds of the group represented by formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) or formula (29) is a hydrogen atom And a trivalent chain hydrocarbon group having 6 or less carbon atoms are exemplified.
 Gは2価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基であり、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)又は式(29)で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基及び炭素数6以下の鎖式炭化水素基が例示される。 G 3 is a divalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and is represented by formula (20), formula (21), formula (22) Among the bonds of the group represented by formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) or formula (29), Examples thereof include a group replaced with a hydrogen atom and a chain hydrocarbon group having 6 or less carbon atoms.
 A、A~Aはいずれも2価の有機基であり、好ましくは炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基であり、式(30)、式(31)、式(32)、式(33)、式(34)、式(35)、式(36)、式(37)もしくは式(38)で表される基;それらがメチル基、フルオロ基、クロロ基もしくはトリフルオロメチル基で置換された基並びに炭素数6以下の鎖式炭化水素基が例示される。式中の*は結合手を表し、Z、Z及びZは、それぞれ独立して、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-又は-CO-を表す。1つの例は、Z及びZが-O-であり、かつ、Zが-CH-、-C(CH-、-C(CF-又は-SO-である。ZとZ、及び、ZとZは、それぞれ、各環に対してメタ位又はパラ位であることが好ましい。 Each of A and A 1 to A 3 is a divalent organic group, preferably an organic group which may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. 31), a group represented by formula (32), formula (33), formula (34), formula (35), formula (36), formula (37) or formula (38); they are a methyl group, a fluoro group And a group substituted with a chloro group or a trifluoromethyl group, and a chain hydrocarbon group having 6 or less carbon atoms. In the formula * represents a bond, Z 1, Z 2 and Z 3 are each independently a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3 )-, -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2 -or -CO-. One example is when Z 1 and Z 3 are —O— and Z 2 is —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —SO 2 —. is there. Z 1 and Z 2 , and Z 2 and Z 3 are each preferably in the meta position or the para position with respect to each ring.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記光学フィルムは、ポリアミドを含んでいてもよい。本実施形態に係るポリアミドは、式(13)で表される繰り返し構造単位を主とする重合体である。好ましい例及び具体例は、ポリイミド系高分子におけるG及びAと同じである。G及び/又はAが異なる、2種類以上の式(13)で表される構造を含んでいてもよい。 The optical film may contain polyamide. The polyamide according to this embodiment is a polymer mainly composed of repeating structural units represented by the formula (13). Preferred examples and specific examples are the same as G 3 and A 3 in the polyimide polymer. G 3 and / or A 3 may contain structures represented by two or more types of formula (13).
 ポリイミド系高分子は、例えば、ジアミンとテトラカルボン酸化合物(テトラカルボン酸二無水物等)との重縮合によって得られ、例えば特開2006-199945号公報又は特開2008-163107号公報に記載されている方法にしたがって合成することができる。ポリイミドの市販品としては、三菱ガス化学(株)製ネオプリム、河村産業(株)製KPI-MX300Fなどを挙げることができる。 The polyimide polymer is obtained, for example, by polycondensation of a diamine and a tetracarboxylic acid compound (tetracarboxylic dianhydride or the like), and is described in, for example, JP-A-2006-199945 or JP-A-2008-163107. It can be synthesized according to the method. Examples of commercially available polyimide products include Neoprim produced by Mitsubishi Gas Chemical Co., Ltd. and KPI-MX300F produced by Kawamura Sangyo Co., Ltd.
 ポリイミド系高分子の合成に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を併用してもよい。テトラカルボン酸化合物は、二無水物の他、酸クロライド化合物等のテトラカルボン酸化合物類縁体であってもよい。 Examples of tetracarboxylic acid compounds used for the synthesis of polyimide polymers include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydrides and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydrides. Can be mentioned. A tetracarboxylic acid compound may be used independently and may use 2 or more types together. The tetracarboxylic acid compound may be a dianhydride or a tetracarboxylic acid compound analog such as an acid chloride compound.
 芳香族テトラカルボン酸二無水物の具体例としては、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物及び2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられ、好ましくは4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物及び4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Specific examples of the aromatic tetracarboxylic dianhydride include 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3, 3'-benzophenonetetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-Diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane Dianhydride, 2,2-bis (3,4-dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride, 1,2-bis (2,3 -The Ruboxyphenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,2-bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1 -Bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, 4,4 ' -(P-phenylenedioxy) diphthalic dianhydride, 4,4 '-(m-phenylenedioxy) diphthalic dianhydride and 2,3,6,7-naphthalenetetracarboxylic dianhydride Preferably 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 3, ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4- Dicarboxyphenoxyphenyl) propane dianhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride, 1,2-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1- Bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,2-bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane anhydrous Bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, 4,4 ′-(p-phenylenedioxy) diphthalic dianhydride and 4,4 ′-(m-phenylenedioxy) diphthalic dianhydride is mentioned. These can be used alone or in combination of two or more.
 脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル3,3’-4,4’-テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydrides. The cycloaliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride. 1, 2,3,4-cyclobutanetetracarboxylic dianhydride, cycloalkanetetracarboxylic dianhydride such as 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo [2.2 .2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl 3,3′-4,4′-tetracarboxylic dianhydride and their positional isomers . These can be used alone or in combination of two or more. Specific examples of the acyclic aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride and the like. These may be used alone or in combination of two or more.
 上記テトラカルボン酸二無水物の中でも、高透明性及び低着色性の観点から、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物が好ましい。 Among the above tetracarboxylic dianhydrides, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene are used from the viewpoint of high transparency and low colorability. -2,3,5,6-tetracarboxylic dianhydride and 4,4 '-(hexafluoroisopropylidene) diphthalic dianhydride are preferred.
 なお、本実施形態に係るポリイミド系高分子は、得られるポリイミド系高分子フィルムの各種物性を損なわない範囲で、上記のポリイミド合成に用いられるテトラカルボン酸の無水物に加えて、テトラカルボン酸、トリカルボン酸及びジカルボン酸並びにそれらの無水物及び誘導体を更に反応させたものであってもよい。 In addition, in addition to the tetracarboxylic acid anhydride used for the above-mentioned polyimide synthesis, the polyimide polymer according to the present embodiment is within a range that does not impair various physical properties of the obtained polyimide polymer film. Further, tricarboxylic acid and dicarboxylic acid and anhydrides and derivatives thereof may be further reacted.
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられ、2種以上を併用してもよい。
具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-CH-、-C(CH-、-C(CF-、-SO-もしくはフェニレン基で連結された化合物が挙げられる。
Examples of tricarboxylic acid compounds include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more of them may be used in combination.
Specific examples include 1,2,4-benzenetricarboxylic acid anhydride; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; phthalic acid anhydride and benzoic acid are a single bond, —CH 2 Examples thereof include compounds linked by —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, or a phenylene group.
 ジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロライド化合物、酸無水物等が挙げられ、2種以上を併用してもよい。具体例としては、テレフタル酸;イソフタル酸;ナフタレンジカルボン酸;4,4’-ビフェニルジカルボン酸;3,3’-ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物及び2つの安息香酸が単結合、-CH-、-C(CH-、-C(CF-、-SO-もしくはフェニレン基で連結された化合物が挙げられる。 Examples of the dicarboxylic acid compound include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and related acid chloride compounds, acid anhydrides, and the like, and two or more kinds may be used in combination. Specific examples include dicarboxylic acid compounds of terephthalic acid; isophthalic acid; naphthalenedicarboxylic acid; 4,4′-biphenyldicarboxylic acid; 3,3′-biphenyldicarboxylic acid; And a compound in which two benzoic acids are linked by a single bond, —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —SO 2 —, or a phenylene group.
 ポリイミド系高分子の合成に用いられるジアミンとしては、脂肪族ジアミン、芳香族ジアミン又はそれらの混合物でもよい。なお、本実施形態において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。 The diamine used for the synthesis of the polyimide polymer may be an aliphatic diamine, an aromatic diamine or a mixture thereof. In the present embodiment, the “aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group or other substituent may be included in a part of the structure. The aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Among these, a benzene ring is preferable. The “aliphatic diamine” refers to a diamine in which an amino group is directly bonded to an aliphatic group, and an aromatic ring or other substituent may be included in a part of the structure.
 脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン及び1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン、4,4’-ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the aliphatic diamine include acyclic aliphatic diamines such as hexamethylene diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornane diamine, 4,4′- Examples include cycloaliphatic diamines such as diaminodicyclohexylmethane, and these can be used alone or in combination of two or more.
 芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ジアミノジフェニルスルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene and 2,6-diaminonaphthalene. Aromatic diamine having one aromatic ring, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3 ′ -Diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis ( 4-Aminophenoxy) benzene, 4,4'-diaminodiph Nylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2, 2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2′-dimethylbenzidine, 2,2′-bis (trifluoromethyl) benzidine, 4,4′-bis (4-aminophenoxy) biphenyl 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino-3- Methylphenyl) fluorene, 9,9-bis (4-amino-3-chlorophenyl) fluorene, 9,9-bis (4 Such as an amino-3-fluorophenyl) fluorene, an aromatic diamine are exemplified having two or more aromatic rings, they may be used alone or in combination of two or more.
 上記ジアミンの中でも、高透明性及び低着色性の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましい。2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル及び4,4’-ジアミノジフェニルエーテルからなる群から選ばれる1種以上を用いることがさらに好ましく、2,2’-ビス(トリフルオロメチル)ベンジジンが含まれることがよりさらに好ましい。 Among the above diamines, it is preferable to use one or more selected from the group consisting of aromatic diamines having a biphenyl structure from the viewpoint of high transparency and low colorability. One selected from the group consisting of 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl) benzidine, 4,4'-bis (4-aminophenoxy) biphenyl, and 4,4'-diaminodiphenyl ether It is more preferable to use the above, and it is even more preferable that 2,2′-bis (trifluoromethyl) benzidine is included.
 式(10)~式(13)のいずれかで表される繰り返し構造単位を少なくとも1種含む重合体であるポリイミド系高分子及びポリアミドは、ジアミンと、テトラカルボン酸化合物(酸クロライド化合物、テトラカルボン酸二無水物等のテトラカルボン酸化合物類縁体)、トリカルボン酸化合物(酸クロライド化合物、トリカルボン酸無水物等のトリカルボン酸化合物類縁体)及びジカルボン酸化合物(酸クロライド化合物等のジカルボン酸化合物類縁体)からなる群に含まれる少なくとも1種類の化合物との重縮合生成物である縮合型高分子である。出発原料としては、これらに加えて、さらにジカルボン酸化合物(酸クロライド化合物等の類縁体を含む)を用いることもある。式(11)で表される繰り返し構造単位は、通常、ジアミン類及びテトラカルボン酸化合物から誘導される。式(12)で表される繰り返し構造単位は、通常、ジアミン及びトリカルボン酸化合物から誘導される。式(13)で表される繰り返し構造単位は、通常、ジアミン及びジカルボン酸化合物から誘導される。ジアミン及びテトラカルボン酸化合物の具体例は、上述のとおりである。 Polyimide polymers and polyamides, which are polymers containing at least one repeating structural unit represented by any one of formulas (10) to (13), include diamines, tetracarboxylic acid compounds (acid chloride compounds, tetracarboxylic acids). Tetracarboxylic acid compound analogs such as acid dianhydrides), tricarboxylic acid compounds (acid chloride compounds, tricarboxylic acid compound analogs such as tricarboxylic acid anhydrides) and dicarboxylic acid compounds (dicarboxylic acid compound analogs such as acid chloride compounds) A condensation polymer which is a polycondensation product with at least one compound included in the group consisting of In addition to these, a dicarboxylic acid compound (including analogs such as an acid chloride compound) may be used as a starting material. The repeating structural unit represented by the formula (11) is usually derived from diamines and tetracarboxylic acid compounds. The repeating structural unit represented by the formula (12) is usually derived from a diamine and a tricarboxylic acid compound. The repeating structural unit represented by the formula (13) is usually derived from a diamine and a dicarboxylic acid compound. Specific examples of the diamine and the tetracarboxylic acid compound are as described above.
 本実施形態に係るポリイミド系高分子及びポリアミドの標準ポリスチレン換算重量平均分子量は、通常、10,000~500,000であり、好ましくは50,000~500,000であり、さらに好ましくは100,000~400,000である。ポリイミド系高分子及びポリアミドの重量平均分子量が大きいほどフィルム化した際に高い耐屈曲性を発現しやすい傾向があるが、ポリイミド系高分子の重量平均分子量が大きすぎると、ワニスの粘度が高くなり、加工性が低下する傾向がある。 The standard polystyrene equivalent weight average molecular weight of the polyimide polymer and the polyamide according to this embodiment is usually 10,000 to 500,000, preferably 50,000 to 500,000, and more preferably 100,000. ~ 400,000. The higher the weight average molecular weight of the polyimide polymer and polyamide, the higher the tendency to exhibit high bending resistance when filmed. However, if the weight average molecular weight of the polyimide polymer is too large, the viscosity of the varnish will increase. , Workability tends to decrease.
 ポリイミド系高分子及びポリアミドは、含フッ素置換基を含むことにより、フィルム化した際の弾性率が向上するとともに、YI値が低減され、透明性も向上する傾向がある。
フィルムの弾性率が高いと、キズ及びシワ等の発生が抑制される傾向がある。また、分子内にフッ素原子を含むポリイミド系高分子は、上述した(F/C)/(F/C)の値、及び/又は、(F/O)/(F/O)の値が1より大きい端面を有することで、変形させた状態で高温高湿環境下に保管しても、当該端部からのクラックの発生を充分に抑制することができる。含フッ素置換基の具体例としては、フルオロ基及びトリフルオロメチル基が挙げられる。
By including a fluorine-containing substituent, the polyimide polymer and polyamide tend to improve the elastic modulus when formed into a film, reduce the YI value, and improve transparency.
When the elastic modulus of the film is high, generation of scratches and wrinkles tends to be suppressed. In addition, the polyimide-based polymer containing a fluorine atom in the molecule is the value of (F E / C E ) / (F C / C C ) and / or (F E / O E ) / (F C By having an end face having a value of / O C ) greater than 1, even when stored in a high temperature and high humidity environment in a deformed state, occurrence of cracks from the end portion can be sufficiently suppressed. Specific examples of the fluorine-containing substituent include a fluoro group and a trifluoromethyl group.
 (分子内にフッ素原子を含むポリイミド系高分子)
 分子内にフッ素原子を含むポリイミド系高分子は、ポリイミド系高分子の分子構造中のG、G~G、A、A~A及びArのうちの少なくとも一つに、フッ素置換された基を有する。分子内にフッ素原子を含むポリイミド系高分子におけるフッ素原子の含有量は、ポリイミド系高分子の質量を基準として、好ましくは1質量%以上40質量%以下であり、さらに好ましくは5質量%以上40質量%以下である。フッ素原子の含有量が1質量%以上であると、フィルム化した際の弾性率をより向上し、YI値をより低減し、透明性をより向上できる傾向がある。フッ素原子の含有量が40質量%以下であると、コストや合成時の反応性が有利になる傾向がある。
(Polyimide polymer containing fluorine atoms in the molecule)
The polyimide polymer containing a fluorine atom in the molecule is fluorine-substituted at least one of G, G 1 to G 3 , A, A 1 to A 3 and Ar in the molecular structure of the polyimide polymer. It has a group. The content of fluorine atoms in the polyimide-based polymer containing fluorine atoms in the molecule is preferably 1% by mass or more and 40% by mass or less, more preferably 5% by mass or more and 40% by mass based on the mass of the polyimide-based polymer. It is below mass%. When the fluorine atom content is 1% by mass or more, there is a tendency that the elastic modulus when formed into a film is further improved, the YI value is further reduced, and the transparency is further improved. When the fluorine atom content is 40% by mass or less, cost and reactivity during synthesis tend to be advantageous.
 本実施形態に係る光学フィルムにおいて、ポリイミド系高分子の含有量は、光学フィルムの全質量を基準として、通常、30質量%以上であり、好ましくは40質量%以上であり、さらに好ましくは50質量%以上である。ポリイミド系高分子の含有量が30質量%以上であると、フィルムの耐屈曲性が有利になる傾向がある。 In the optical film according to this embodiment, the content of the polyimide-based polymer is usually 30% by mass or more, preferably 40% by mass or more, and more preferably 50% by mass based on the total mass of the optical film. % Or more. When the content of the polyimide polymer is 30% by mass or more, the flex resistance of the film tends to be advantageous.
 (無機粒子)
 本実施形態に係る光学フィルムは、上記のポリイミド系高分子に加えて、無機粒子等の無機材料を更に含有していてもよい。
(Inorganic particles)
The optical film according to the present embodiment may further contain an inorganic material such as inorganic particles in addition to the polyimide polymer.
 無機材料として好ましくは、シリカ粒子、オルトケイ酸テトラエチル(TEOS)等の4級アルコキシシラン等のケイ素化合物が挙げられ、ワニス安定性の観点から、シリカ粒子が好ましい。 Preferred examples of the inorganic material include silica particles and silicon compounds such as quaternary alkoxysilanes such as tetraethyl orthosilicate (TEOS), and silica particles are preferable from the viewpoint of varnish stability.
 シリカ粒子の平均一次粒子径は、好ましくは10~100nm、さらに好ましくは20~80nmである。シリカ粒子の平均一次粒子径が100nm以下であると透明性が向上する傾向がある。シリカ粒子の平均一次粒子径が10nm以上であると、シリカ粒子の凝集力が弱まるために取り扱い易くなる傾向がある。 The average primary particle diameter of the silica particles is preferably 10 to 100 nm, more preferably 20 to 80 nm. When the average primary particle diameter of the silica particles is 100 nm or less, the transparency tends to be improved. When the average primary particle diameter of the silica particles is 10 nm or more, the cohesive force of the silica particles is weakened, and thus the handling tends to be easy.
 本実施形態に係るシリカ微粒子は、有機溶剤等にシリカ粒子を分散させたシリカゾルであっても、気相法で製造したシリカ微粒子粉末を用いてもよいが、ハンドリングが容易であることからシリカゾルであることが好ましい。 The silica fine particles according to the present embodiment may be a silica sol in which silica particles are dispersed in an organic solvent or the like, or a silica fine particle powder produced by a vapor phase method may be used. Preferably there is.
 光学フィルム中のシリカ粒子の(平均)一次粒子径は、透過型電子顕微鏡(TEM)による観察で求めることができる。光学フィルムを形成する前のシリカ粒子の粒度分布は、市販のレーザー回折式粒度分布計により求めることができる。 The (average) primary particle diameter of the silica particles in the optical film can be determined by observation with a transmission electron microscope (TEM). The particle size distribution of the silica particles before forming the optical film can be determined by a commercially available laser diffraction particle size distribution meter.
 本実施形態に係る光学フィルムにおいて、無機材料の含有量は、光学フィルムの全質量を基準として、通常、0質量%以上70質量%以下であり、好ましくは0質量%以上60質量%以下であり、さらに好ましくは0質量%以上50質量%以下である。無機材料(ケイ素材料)の含有量が上記の範囲内であると、光学フィルムの透明性及び機械的強度を両立させやすい傾向がある。 In the optical film according to this embodiment, the content of the inorganic material is usually 0% by mass or more and 70% by mass or less, preferably 0% by mass or more and 60% by mass or less, based on the total mass of the optical film. More preferably, it is 0 mass% or more and 50 mass% or less. When the content of the inorganic material (silicon material) is within the above range, the optical film tends to have both transparency and mechanical strength.
 本実施形態に係る光学フィルムは、以上説明した成分に加えて、更に添加剤を含有していてもよい。上記添加剤としては、例えば、pH調整剤、シリカ分散剤、紫外線吸収剤、酸化防止剤、離型剤、安定剤、ブルーイング剤等の着色剤、難燃剤、滑剤及びレベリング剤が挙げられる。 The optical film according to the present embodiment may further contain additives in addition to the components described above. Examples of the additives include pH adjusters, silica dispersants, ultraviolet absorbers, antioxidants, mold release agents, stabilizers, coloring agents such as bluing agents, flame retardants, lubricants, and leveling agents.
 樹脂成分及び無機材料以外の成分の含有量は、光学フィルムの全質量を基準として、好ましくは0質量%以上20質量%以下であり、さらに好ましくは0質量%超10質量%以下である。 The content of components other than the resin component and the inorganic material is preferably 0% by mass or more and 20% by mass or less, more preferably more than 0% by mass and 10% by mass or less, based on the total mass of the optical film.
 (光学フィルムの製造方法)
 次に、本実施形態の光学フィルムの製造方法の一例を説明する。
(Optical film manufacturing method)
Next, an example of the manufacturing method of the optical film of this embodiment is demonstrated.
 本実施形態に係る光学フィルムの作製に用いるワニスは、例えば、上記テトラカルボン酸化合物、上記ジアミン及び上記のその他の原料から選択して反応させて得られる、ポリイミド系高分子の反応液、溶媒並びに必要に応じて用いられる上記添加剤を混合、攪拌することにより調製することができる。ポリイミド系高分子等の反応液に変えて、購入したポリイミド系高分子等の溶液や、購入した固体のポリイミド系高分子等の溶液を用いてもよい。 The varnish used for the production of the optical film according to the present embodiment is, for example, a reaction solution of a polyimide polymer, a solvent obtained by selecting and reacting from the tetracarboxylic acid compound, the diamine, and the other raw materials, and It can prepare by mixing and stirring the said additive used as needed. Instead of a reaction solution such as a polyimide polymer, a solution such as a purchased polyimide polymer or a solution such as a purchased solid polyimide polymer may be used.
 上記ワニスに含まれる溶媒は、ポリイミド系高分子を溶解可能であればよい。溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド系溶媒、γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶媒、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒を用いることができる。これらの溶媒の中でも、アミド系溶剤又はラクトン系溶媒が好ましい。また、これら溶媒は単独で又は2種以上混合して用いてもよい。 The solvent contained in the varnish only needs to dissolve the polyimide polymer. Examples of the solvent include amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, lactone solvents such as γ-butyrolactone and γ-valerolactone, and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane. A carbonate solvent such as a solvent based on ethylene carbonate or propylene carbonate can be used. Among these solvents, amide solvents or lactone solvents are preferable. Moreover, you may use these solvents individually or in mixture of 2 or more types.
 次いで、公知のロール ツー ロールやバッチ方式により、樹脂基材、ステンテレス鋼ベルト、又はガラス基材上に、上記のワニスを塗布して塗膜を形成し、その塗膜を乾燥して、基材から剥離することによって、ポリイミド系高分子を含むフィルムを得る。剥離後に更にフィルムの乾燥を行ってもよい。 Next, a coating film is formed by applying the above varnish on a resin substrate, a stainless steel belt, or a glass substrate by a known roll-to-roll or batch method, and the coating film is dried. By peeling from the film, a film containing a polyimide polymer is obtained. The film may be further dried after peeling.
 塗膜の乾燥は、温度50~350℃にて溶媒を蒸発させることにより行う。乾燥は、大気下、不活性雰囲気下、あるいは減圧下で行ってもよい。 The coating film is dried by evaporating the solvent at a temperature of 50 to 350 ° C. Drying may be performed under air, under an inert atmosphere, or under reduced pressure.
 樹脂基材の例としては、PET、PEN、ポリイミド、ポリアミドイミドなどが挙げられる。中でも、耐熱性に優れた樹脂が好ましい。特に、PET基材がフィルムとの密着性及びコストの観点で好ましい。 Examples of the resin substrate include PET, PEN, polyimide, polyamideimide and the like. Among these, a resin excellent in heat resistance is preferable. In particular, a PET substrate is preferable from the viewpoints of adhesion to the film and cost.
 続いて、フィルムの端面に対し、当該端面についてXPSで測定されるフッ素原子の炭素原子に対する原子比(F/C)、及び/又は、フッ素原子の酸素原子に対する原子比(F/O)が、当該端面から1mm内側を剃刀で切断した断面についてXPSで測定されるフッ素原子の炭素原子に対する原子比(F/C)、及び/又は、フッ素原子の酸素原子に対する原子比(F/O)よりも大きくなるように処理を施す。 Subsequently, the atomic ratio of fluorine atoms to carbon atoms (F E / C E ) and / or the atomic ratio of fluorine atoms to oxygen atoms (F E / O) measured by XPS with respect to the end face of the film. E ) is an atomic ratio (F C / C C ) of fluorine atoms to carbon atoms and / or an atomic ratio of fluorine atoms to oxygen atoms (measured by XPS) with respect to a cross section cut inside 1 mm from the end face by a razor Processing is performed so as to be larger than F E / O E ).
 また、本発明はポリイミド系高分子を含む光学フィルムの端面を酸化する方法、レーザーを照射する方法を含む。これらの方法によって、変形された状態で高温高湿環境下に保管しても端部にクラックが発生しにくいポリイミド系高分子を含むフィルムを得ることができる。 The present invention also includes a method for oxidizing the end face of an optical film containing a polyimide polymer and a method for irradiating a laser. By these methods, it is possible to obtain a film containing a polyimide-based polymer in which cracks are unlikely to occur at the end even when stored in a high temperature and high humidity environment in a deformed state.
 レーザー照射に用いることができるレーザーとしては特に限定されず、任意のレーザーを用いることができる。使用可能なレーザーとして具体的には、COレーザー、エキシマレーザー等の気体レーザー;YAGレーザー等の固体レーザー;半導体レーザーなどが挙げられる。レーザー照射に用いることができる好適なレーザーはCOレーザーである。具体的には、ポリイミド系高分子フィルム原反を所望の大きさにCOレーザーで切断することにより、変形された状態で高温高湿環境下に保管しても端部にクラックが発生しにくいポリイミド系高分子を含むフィルムを容易に得ることができる。端面の酸化はレーザー照射によって行ってもよい。 The laser that can be used for laser irradiation is not particularly limited, and any laser can be used. Specific examples of usable lasers include gas lasers such as CO 2 lasers and excimer lasers; solid state lasers such as YAG lasers; and semiconductor lasers. A suitable laser that can be used for laser irradiation is a CO 2 laser. Specifically, by cutting the polyimide-based polymer film raw material into a desired size with a CO 2 laser, cracks are unlikely to occur at the edges even when stored in a high temperature and high humidity environment in a deformed state. A film containing a polyimide polymer can be easily obtained. End face oxidation may be performed by laser irradiation.
 レーザー照射は、フィルム端面の原子比(F/C)をフィルム内部の原子比(F/C)よりも容易に且つ充分に高くする、及び/又は、フィルム端面の原子比(F/O)をフィルム内部の原子比(F/O)よりも容易に且つ充分に高くする観点から、以下の条件で行うことが好ましい。すなわち、レーザーはCOレーザーが好ましく、10μm以下の波長であるとさらに好ましい。出力はフィルムを切断可能な条件であると、切断と同時に端部のフッ素量を増加することができるので、好ましい。出力は10W以上が好ましく、12W以上がさらに好ましい。レーザーによる加工速度は50mm/sec以上であることが好ましく、100mm/sec以上であるとさらに好ましい。端部に複数回レーザーを照射してもよい。 Laser irradiation makes the atomic ratio (F E / C E ) of the film end face easily and sufficiently higher than the atomic ratio (F C / C C ) inside the film and / or the atomic ratio (F From the viewpoint of easily and sufficiently making E / O E ) higher than the atomic ratio (F C / O C ) inside the film, it is preferable to carry out the following conditions. That is, the laser is preferably a CO 2 laser, and more preferably a wavelength of 10 μm or less. It is preferable for the output to be a condition capable of cutting the film because the amount of fluorine at the end can be increased simultaneously with the cutting. The output is preferably 10 W or more, and more preferably 12 W or more. The laser processing speed is preferably 50 mm / sec or more, and more preferably 100 mm / sec or more. The end portion may be irradiated with a laser a plurality of times.
 得られた光学フィルムは、例えば、曲面を有するディスプレイや折りたたみ可能なデバイス、丸めることが可能なディスプレイ等に用いる場合、丸められた状態(ロール状に巻かれた状態)や屈曲した状態等の変形した状態で保管されることがある。このとき、光学フィルムの端面は変形した状態となる。また、変形した状態の光学フィルムは、保管時には高温高湿環境下に置かれることがある。このように光学フィルムを変形させた状態で高温高湿環境下に保管した場合、従来の光学フィルムでは端部にクラックが発生しやすい問題があったが、本実施形態の光学フィルムによれば、端面においてF/CがF/Cよりも高い、及び/又は、F/OがF/Oよりも高いことで、端部にクラックが発生することを抑制することができる。 When the obtained optical film is used for, for example, a display having a curved surface, a foldable device, a display that can be rolled, etc., it is deformed such as a rolled state (rolled state) or a bent state. May be stored in a damaged state. At this time, the end surface of the optical film is in a deformed state. In addition, the deformed optical film may be placed in a high temperature and high humidity environment during storage. When stored in a high temperature and high humidity environment with the optical film deformed in this way, the conventional optical film has a problem that cracks are likely to occur at the end, but according to the optical film of the present embodiment, F E / C E is higher than the F C / C C at the end face, and / or, by F E / O E is higher than the F C / O C, possible to suppress the occurrence of cracks in the end Can do.
 (用途)
 このような光学フィルムは、フレキシブルデバイスの前面板として好適に使用することができる。本実施形態に係るフレキシブルデバイスは、フレキシブル機能層と、フレキシブル機能層に重ねられて前面板として機能する上記の光学フィルムとを有する。すなわち、フレキシブルデバイスの前面板は、フレキシブル機能層の上の視認側に配置される。この前面板は、フレキシブル機能層を保護する機能を有する。
(Use)
Such an optical film can be suitably used as a front plate of a flexible device. The flexible device which concerns on this embodiment has a flexible functional layer and said optical film which overlaps with a flexible functional layer and functions as a front plate. That is, the front plate of the flexible device is disposed on the viewing side on the flexible functional layer. This front plate has a function of protecting the flexible functional layer.
 フレキシブルデバイスの例としては、画像表示装置(フレキシブルディスプレイ、電子ペーパーなど)、太陽電池などが挙げられる。例えば、ディスプレイ機能層、太陽電池機能層がフレキシブル機能層となる。 Examples of flexible devices include image display devices (flexible displays, electronic paper, etc.), solar cells, and the like. For example, a display functional layer and a solar cell functional layer are flexible functional layers.
 フレキシブルディスプレイの1例を図2に示す。このフレキシブルディスプレイ100は、表面側(視認側)から順に、前面板110/偏光板保護フィルム120B/偏光子120A/偏光板保護フィルム120B/タッチセンサーフィルム130/有機EL素子層140/TFT基板150という構成を有する。フレキシブルディスプレイ100における前面板110以外の層がフレキシブル機能層190である。偏光板保護フィルム120B/偏光子120A/偏光板保護フィルム120Bは偏光板120を構成する。各層の表面及び各層間に、ハードコート層、粘着層、接着層、位相差層などを含んでもよい。前面板110として、上記の光学フィルム10を使用できる。かかるフレキシブルディスプレイは、タブレットPC、スマートフォン、携帯ゲーム機などの画像表示部として用いることができる。 An example of a flexible display is shown in FIG. This flexible display 100 is called front plate 110 / polarizing plate protective film 120B / polarizer 120A / polarizing plate protective film 120B / touch sensor film 130 / organic EL element layer 140 / TFT substrate 150 in this order from the surface side (viewing side). It has a configuration. A layer other than the front plate 110 in the flexible display 100 is the flexible functional layer 190. The polarizing plate protective film 120 </ b> B / polarizer 120 </ b> A / polarizing plate protective film 120 </ b> B constitutes the polarizing plate 120. A hard coat layer, an adhesive layer, an adhesive layer, a retardation layer, and the like may be included between the surface of each layer and each interlayer. The optical film 10 described above can be used as the front plate 110. Such a flexible display can be used as an image display unit of a tablet PC, a smartphone, a portable game machine, or the like.
 本実施形態にかかるフレキシブルデバイスによれば、前面板110として上記の光学フィルム10を用いている。光学フィルム10は端面からのクラックの発生が抑制されているため、信頼性の向上が可能となる。 According to the flexible device according to the present embodiment, the optical film 10 is used as the front plate 110. Since the optical film 10 is suppressed from generating cracks from the end face, the reliability can be improved.
 なお、この光学フィルムの表面に、紫外線吸収層、ハードコート層、粘着層、色相調整層、屈折率調整層などの種々の機能層を付加した積層体とすることもできる。 In addition, it can also be set as the laminated body which added various functional layers, such as an ultraviolet absorption layer, a hard-coat layer, an adhesion layer, a hue adjustment layer, and a refractive index adjustment layer, to the surface of this optical film.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1)
 ポリイミド系高分子である三菱ガス化学社製「ネオプリムC6A20」(γ-ブチロラクトン溶媒、22質量%)、γ-ブチロラクトンに固形分濃度30質量%のシリカ粒子を分散した溶液、アミノ基を有するアルコキシシランのジメチルアセトアミド溶液、及び、水を混合し、30分間攪拌した。ここで、シリカとポリイミドの質量比を30:70、アミノ基を有するアルコキシシランの量をシリカ及びポリイミドの合計100質量部に対して1.67質量部、水をシリカ及びポリイミドの合計100質量部に対して10質量部とした。
(Example 1)
“Neoprim C6A20” (γ-butyrolactone solvent, 22 mass%) manufactured by Mitsubishi Gas Chemical Company, which is a polyimide polymer, a solution in which silica particles having a solid content concentration of 30 mass% are dispersed in γ-butyrolactone, an alkoxysilane having an amino group A dimethylacetamide solution and water were mixed and stirred for 30 minutes. Here, the mass ratio of silica and polyimide is 30:70, the amount of alkoxysilane having an amino group is 1.67 parts by mass with respect to 100 parts by mass of silica and polyimide, and water is 100 parts by mass of silica and polyimide. It was 10 mass parts with respect to this.
 得られた混合溶液を、ガラス基板に塗布し、50℃で30分、140℃で10分加熱して溶媒を乾燥した。その後、フィルムをガラス基板から剥離し、金属枠を取り付けて210℃で1時間加熱することで厚み50μmの透明ポリイミド系フィルム原反を得た。フィルム原反の屈折率は1.57であった。 The obtained mixed solution was applied to a glass substrate and heated at 50 ° C. for 30 minutes and at 140 ° C. for 10 minutes to dry the solvent. Thereafter, the film was peeled off from the glass substrate, a metal frame was attached, and the film was heated at 210 ° C. for 1 hour to obtain a transparent polyimide film original fabric having a thickness of 50 μm. The refractive index of the original film was 1.57.
 COレーザー照射を以下の条件にて実施することにより、フィルムの切断と端部の改質を行った。
装置:キーエンス社製ML-Z9510T
波長:9.3μm
出力:80%
加工速度:150mm/秒
加工サイズ:5cm×5cm
The film was cut and the edge was modified by performing CO 2 laser irradiation under the following conditions.
Apparatus: ML-Z9510T manufactured by Keyence Corporation
Wavelength: 9.3 μm
Output: 80%
Processing speed: 150 mm / sec Processing size: 5 cm x 5 cm
(比較例1)
 実施例1と同様の方法でポリイミド系高分子フィルム原反を得た。得られたフィルム原反からシェアー刃で矩形(5cm×5cm)の領域を切り出して光学フィルムを得た。
(Comparative Example 1)
A polyimide-based polymer film original fabric was obtained in the same manner as in Example 1. A rectangular (5 cm × 5 cm) region was cut out from the obtained film original with a shear blade to obtain an optical film.
<XPS測定>
 実施例及び比較例で得られた光学フィルムの端部について、以下のステップ1及び2でX線光電子分光法(XPS)測定を行った。XPS測定条件は以下の通りである。
 装置:Quantera SXM(ULVAC PHI社製)
 X線:AlKα線(1486.6eV)
 X線スポット径:50μm
 中和条件:中和電子(1eV)、低速Arイオン(10eV)
<XPS measurement>
About the edge part of the optical film obtained by the Example and the comparative example, the X-ray photoelectron spectroscopy (XPS) measurement was performed in the following steps 1 and 2. The XPS measurement conditions are as follows.
Equipment: Quantera SXM (manufactured by ULVAC PHI)
X-ray: AlKα ray (1486.6 eV)
X-ray spot diameter: 50 μm
Neutralization conditions: neutralization electron (1 eV), low-speed Ar ion (10 eV)
(ステップ1)
 光学フィルムを金属ブロックに貼り付けて、フィルム端面が上を向いた状態に固定し、上方(垂直方向)からフィルム端面にX線を照射し、45°方向から光電子を検出してフィルム端面を評価した。得られたXPSスペクトルのC1s及びF1sピークの面積からF/Cを算出した。フィルムの一辺の端面について等間隔に離れた3点を測定してF/Cを算出し、それらの平均値を当該端面のF/Cとした。また、同様にして、F/Oを求めた。
(Step 1)
Attaching the optical film to a metal block, fixing the film end face upward, irradiating the film end face with X-rays from above (vertical direction), detecting photoelectrons from the 45 ° direction, and evaluating the film end face did. F / C was calculated from the area of the C1s and F1s peaks of the obtained XPS spectrum. F / C was calculated by measuring three points spaced at regular intervals on the end face of one side of the film, and the average value thereof was taken as F / C of the end face. Similarly, F / O was determined.
(ステップ2)
 次に、フィルム端面から内側に1mm離れた箇所を、カミソリ(PERSONNA社製、Single Edge、ステンレススチール、3-Facet .009”/.23mm)で押し切って切断した。カミソリでの切断面について、ステップ1と同じ条件でXPS測定し、フィルム断面(フィルム内部)のF/Cとした。また、同様にして、F/Oを求めた。
(Step 2)
Next, the part 1 mm away from the film end face was cut with a razor (PERSONNA, Single Edge, stainless steel, 3-Facet .009 ”/. 23 mm). Steps for cutting with a razor The XPS measurement was performed under the same conditions as 1, and the F / C of the film cross section (inside the film) was obtained.
 上記XPS測定は、まず、実施例及び比較例で得られた光学フィルムの対向する二辺の端部(それぞれ第一端部及び第二端部という)について行った。結果を表1に示す。なお、実施例及び比較例で得られた光学フィルムについては、4辺ともに第一端部及び第二端部と同等のXPS測定結果であった。 The XPS measurement was first performed on two opposite end portions (referred to as a first end portion and a second end portion, respectively) of the optical films obtained in Examples and Comparative Examples. The results are shown in Table 1. In addition, about the optical film obtained by the Example and the comparative example, it was an XPS measurement result equivalent to a 1st end part and a 2nd end part about 4 sides.
<耐クラック性の評価>
 実施例及び比較例で得られた5cm×5cmの光学フィルムを、5mm径のSUS棒に巻きつけ、85℃、85%RH環境下で15時間保管した。巻き付けは、第一端部、第二端部の二辺がSUS棒に垂直に巻き取られる方向に行った。保管後の光学フィルムの第一端部及び第二端部を観察し、発生したクラックを光学顕微鏡にて確認した。第一端部及び第二端部の幅5cmあたりの、100μmを超える長さのクラック数を数え、両端部のクラック数の平均値を求めた。結果を表1に示す。
<Evaluation of crack resistance>
The optical film of 5 cm × 5 cm obtained in Examples and Comparative Examples was wound around a 5 mm diameter SUS rod and stored in an environment of 85 ° C. and 85% RH for 15 hours. Winding was performed in a direction in which the two sides of the first end and the second end were wound perpendicularly to the SUS rod. The first end and the second end of the optical film after storage were observed, and the generated cracks were confirmed with an optical microscope. The number of cracks with a length exceeding 100 μm per 5 cm width at the first end and the second end was counted, and the average number of cracks at both ends was determined. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示した結果から、実施例1のフィルム端面は酸素原子が増加していて酸化されていることがわかる。また、表1に示した結果から明らかなように、フィルム内部よりも端面の方がF/Cの値が大きい実施例1の光学フィルムによれば、変形させた状態で高温高湿環境下に保管しても端部にクラックが発生しにくいことが確認された。また、フィルム内部よりも端面の方がF/Oの値が大きい実施例1の光学フィルムによれば、変形させた状態で高温高湿環境下に保管しても端部にクラックが発生しにくいことが確認された。 From the results shown in Table 1, it can be seen that the end face of the film of Example 1 is oxidized with increased oxygen atoms. Further, as is clear from the results shown in Table 1, according to the optical film of Example 1 having a larger F / C value at the end face than inside the film, the film was placed in a high temperature and high humidity environment in a deformed state. It was confirmed that cracks were hardly generated at the ends even when stored. Moreover, according to the optical film of Example 1 whose end face has a larger F / O value than the inside of the film, even when stored in a high temperature and high humidity environment in a deformed state, cracks are unlikely to occur at the end. It was confirmed.
 10…光学フィルム、100…フレキシブルディスプレイ。 10 ... Optical film, 100 ... Flexible display.

Claims (11)

  1.  分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムであって、
     前記光学フィルムの端面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)が、前記光学フィルムの前記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)よりも大きい、光学フィルム。
    An optical film containing a polyimide polymer containing a fluorine atom in the molecule,
    The atomic ratio (F / C) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film was measured by X-ray photoelectron spectroscopy in a cross section cut 1 mm inside from the end face of the optical film. An optical film having a larger atomic ratio (F / C) of fluorine atoms to carbon atoms to be measured.
  2.  前記光学フィルムの端面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)と、前記光学フィルムの前記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)との比(F/C)/(F/C)が1.1~10である、請求項1に記載の光学フィルム。 The atomic ratio (F E / C E ) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film, and X-ray photoelectron spectroscopy at a cross section cut 1 mm inside from the end face of the optical film The ratio (F E / C E ) / (F C / C C ) to the atomic ratio (F C / C C ) of fluorine atoms to carbon atoms measured by the method is 1.1 to 10. The optical film described in 1.
  3.  分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムであって、
     前記光学フィルムの端面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)が、前記光学フィルムの前記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)よりも大きい、光学フィルム。
    An optical film containing a polyimide polymer containing a fluorine atom in the molecule,
    The atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film is determined by X-ray photoelectron spectroscopy in a cross section cut 1 mm inside from the end face of the optical film. An optical film having a larger atomic ratio (F / O) of fluorine atoms to oxygen atoms to be measured.
  4.  前記光学フィルムの端面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)と、前記光学フィルムの前記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)との比(F/O)/(F/O)が1.1~10である、請求項3に記載の光学フィルム。 The atomic ratio (F E / O E ) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film, and X-ray photoelectron spectroscopy at a cross section taken 1 mm inside from the end face of the optical film The ratio (F E / O E ) / (F C / O C ) to the atomic ratio of fluorine atoms to oxygen atoms (F C / O C ) measured by the method is 1.1 to 10. The optical film described in 1.
  5.  シリカ粒子を更に含有する、請求項1~4のいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 4, further comprising silica particles.
  6.  分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムの製造方法であって、
     端面を酸化することにより、前記光学フィルムの前記端面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)を、前記光学フィルムの前記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)よりも大きくする工程を有する、光学フィルムの製造方法。
    A method for producing an optical film containing a polyimide polymer containing a fluorine atom in a molecule,
    By oxidizing the end face, the atomic ratio (F / C) of fluorine atoms to carbon atoms measured by X-ray photoelectron spectroscopy on the end face of the optical film was cut 1 mm inside from the end face of the optical film. The manufacturing method of an optical film which has the process made larger than the atomic ratio (F / C) of the fluorine atom with respect to the carbon atom measured by a X-ray photoelectron spectroscopy in a cross section.
  7.  分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムの製造方法であって、
     前記光学フィルムの端面を、レーザー照射によりフィルム原反を切断することで形成することで、前記光学フィルムの前記端面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)を、前記光学フィルムの前記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の炭素原子に対する原子比(F/C)よりも大きくする工程を有する、光学フィルムの製造方法。
    A method for producing an optical film containing a polyimide polymer containing a fluorine atom in a molecule,
    By forming the end face of the optical film by cutting the film original by laser irradiation, the atomic ratio (F / F) of fluorine atoms measured by X-ray photoelectron spectroscopy on the end face of the optical film is measured. An optical film having a step of making C) larger than an atomic ratio (F / C) of a fluorine atom to a carbon atom measured by X-ray photoelectron spectroscopy in a cross section obtained by cutting 1 mm inside from the end face of the optical film Manufacturing method.
  8.  分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムの製造方法であって、
     端面を酸化することにより、前記光学フィルムの前記端面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)を、前記光学フィルムの前記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)よりも大きくする工程を有する、光学フィルムの製造方法。
    A method for producing an optical film containing a polyimide polymer containing a fluorine atom in a molecule,
    By oxidizing the end face, the atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film was cut 1 mm inside from the end face of the optical film. The manufacturing method of an optical film which has a process made larger than the atomic ratio (F / O) with respect to the oxygen atom of the fluorine atom measured by a X-ray photoelectron spectroscopy in a cross section.
  9.  分子内にフッ素原子を含むポリイミド系高分子を含有する光学フィルムの製造方法であって、
     前記光学フィルムの端面を、レーザー照射によりフィルム原反を切断することで形成することで、前記光学フィルムの前記端面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)を、前記光学フィルムの前記端面から1mm内側を切断した断面においてX線光電子分光法で測定されるフッ素原子の酸素原子に対する原子比(F/O)よりも大きくする工程を有する、光学フィルムの製造方法。
    A method for producing an optical film containing a polyimide polymer containing a fluorine atom in a molecule,
    By forming the end face of the optical film by cutting the film original by laser irradiation, the atomic ratio (F / F) of fluorine atoms measured by X-ray photoelectron spectroscopy at the end face of the optical film is measured. An optical film having a step of making O) larger than an atomic ratio (F / O) of fluorine atoms to oxygen atoms measured by X-ray photoelectron spectroscopy in a cross section cut 1 mm inside from the end face of the optical film Manufacturing method.
  10.  請求項1~5のいずれか一項に記載の光学フィルムを備えるフレキシブルデバイス用前面板。 A front plate for a flexible device comprising the optical film according to any one of claims 1 to 5.
  11.  フレキシブル機能層と、請求項1~5のいずれか一項に記載の光学フィルムと、を有するフレキシブルデバイス。 A flexible device having a flexible functional layer and the optical film according to any one of claims 1 to 5.
PCT/JP2017/034272 2016-09-30 2017-09-22 Optical film and method for manufacturing same WO2018062031A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187009226A KR20180045891A (en) 2016-09-30 2017-09-22 Optical film and manufacturing method thereof
CN201780059879.9A CN109790308B (en) 2016-09-30 2017-09-22 Optical film and method for producing same
KR1020197009369A KR20190049786A (en) 2016-09-30 2017-09-22 Optical film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016194174 2016-09-30
JP2016-194174 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062031A1 true WO2018062031A1 (en) 2018-04-05

Family

ID=61760462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034272 WO2018062031A1 (en) 2016-09-30 2017-09-22 Optical film and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP7021887B2 (en)
KR (2) KR20180045891A (en)
CN (1) CN109790308B (en)
TW (1) TWI757346B (en)
WO (1) WO2018062031A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408062A (en) * 2018-04-27 2019-11-05 住友化学株式会社 Optical film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037675A (en) * 2018-08-29 2020-03-12 住友化学株式会社 Optical film
EP3923263A4 (en) 2019-02-08 2022-11-09 Toyobo Co., Ltd. Foldable display and portable terminal device
US11926720B2 (en) 2019-05-28 2024-03-12 Toyobo Co., Ltd. Polyester film and application therefor
EP3978554A4 (en) 2019-05-28 2023-06-21 Toyobo Co., Ltd. Polyester film, laminated film, and use thereof
WO2020241278A1 (en) 2019-05-28 2020-12-03 東洋紡株式会社 Multilayer film and use of same
CN113874767A (en) * 2019-05-30 2021-12-31 东洋纺株式会社 Folding display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080163A (en) * 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> Fluorinated polyimide and precursor thereof
JP2006154447A (en) * 2004-11-30 2006-06-15 Nitto Denko Corp Manufacturing method of film-like optical waveguide
JP2008051964A (en) * 2006-08-23 2008-03-06 Nitto Denko Corp Method for cutting optical film, and the optical film
JP2008284572A (en) * 2007-05-16 2008-11-27 Nitto Denko Corp Laser beam machining method and article machined by laser beam
JP2010083092A (en) * 2008-10-02 2010-04-15 Toray Ind Inc Resin film roll and process for producing the same
JP2015042423A (en) * 2014-12-02 2015-03-05 住友化学株式会社 Cutting machine, slitter with the same and method for cutting film

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725879A (en) * 1993-03-12 1995-01-27 Asahi Chem Ind Co Ltd New fluorine-containing carboxilic acid anhydride and its derivative
JP2001049014A (en) 1999-08-10 2001-02-20 Sharp Corp Method for processing organic polymer film and structure processed by using the film
JP2002020513A (en) 2000-07-06 2002-01-23 Toray Ind Inc Method for etching
JP4784009B2 (en) 2001-07-11 2011-09-28 住友金属鉱山株式会社 Processing method of polyimide resin film
KR100802151B1 (en) * 2003-03-06 2008-02-11 니폰 쇼쿠바이 컴파니 리미티드 Method and apparatus for production of fluorine-containing polyimide film
TWI388876B (en) * 2003-12-26 2013-03-11 Fujifilm Corp Antireflection film, polarizing plate, method for producing them, liquid crystal display element, liquid crystal display device, and image display device
JP4544913B2 (en) 2004-03-24 2010-09-15 富士フイルム株式会社 Surface graft formation method, conductive film formation method, metal pattern formation method, multilayer wiring board formation method, surface graft material, and conductive material
EP1605012A1 (en) 2004-06-10 2005-12-14 SOLVAY (Société Anonyme) Fluoropolymer tape, article comprising a fluoropolymer tape and process for manufacturing a fluoropolymer tape
WO2007108432A1 (en) 2006-03-20 2007-09-27 Mitsui Chemicals, Inc. Optical film and method for producing same
JP4957592B2 (en) 2008-03-10 2012-06-20 新日本理化株式会社 Polyimide resin composition and molded body thereof
WO2012050072A1 (en) 2010-10-13 2012-04-19 東洋紡績株式会社 Polyimide film, method for manufacturing same, and method for manufacturing layered product
KR101708503B1 (en) * 2010-10-27 2017-02-20 동우 화인켐 주식회사 Laser Cutting Apparatus for Cutting Film and Method for Cutting the Film
EP2660042B1 (en) 2010-12-27 2015-04-29 Konica Minolta, Inc. Method for manufacturing gas-barrier film, gas-barrier film, and electronic device
EP2690124B1 (en) 2012-07-27 2015-09-16 Samsung Electronics Co., Ltd Composition Comprising Polyimide Block Copolymer And Inorganic Particles, Method Of Preparing The Same, Article Including The Same, And Display Device Including The Article
KR102107962B1 (en) * 2012-11-28 2020-05-07 에이지씨 가부시키가이샤 Negative photosensitive resin composition, cured resin film, partition wall and optical element
KR20150045076A (en) * 2013-10-18 2015-04-28 주식회사 엘지화학 A Cutting Method of Plastic Film for Flexible Display and Plastic Film for Flexible Display Manufactured by The Same
JP6298321B2 (en) * 2014-02-25 2018-03-20 株式会社カネカ Film with transparent conductive layer
KR20170009833A (en) 2014-05-20 2017-01-25 닛폰고세이가가쿠고교 가부시키가이샤 Resin sheet, resin sheet with adhesive layer, and use of same
JP6482977B2 (en) * 2014-11-10 2019-03-13 住友化学株式会社 Laminated film for flexible device, optical member, display member, front plate, and method for producing laminated film for flexible device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080163A (en) * 1998-09-04 2000-03-21 Nippon Telegr & Teleph Corp <Ntt> Fluorinated polyimide and precursor thereof
JP2006154447A (en) * 2004-11-30 2006-06-15 Nitto Denko Corp Manufacturing method of film-like optical waveguide
JP2008051964A (en) * 2006-08-23 2008-03-06 Nitto Denko Corp Method for cutting optical film, and the optical film
JP2008284572A (en) * 2007-05-16 2008-11-27 Nitto Denko Corp Laser beam machining method and article machined by laser beam
JP2010083092A (en) * 2008-10-02 2010-04-15 Toray Ind Inc Resin film roll and process for producing the same
JP2015042423A (en) * 2014-12-02 2015-03-05 住友化学株式会社 Cutting machine, slitter with the same and method for cutting film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408062A (en) * 2018-04-27 2019-11-05 住友化学株式会社 Optical film

Also Published As

Publication number Publication date
KR20180045891A (en) 2018-05-04
JP7021887B2 (en) 2022-02-17
JP2018059070A (en) 2018-04-12
TWI757346B (en) 2022-03-11
KR20190049786A (en) 2019-05-09
CN109790308B (en) 2022-05-06
CN109790308A (en) 2019-05-21
TW201817780A (en) 2018-05-16

Similar Documents

Publication Publication Date Title
WO2018062031A1 (en) Optical film and method for manufacturing same
JP6170224B1 (en) Method for producing transparent resin film, and method for producing laminate having transparent resin film
JP7134598B2 (en) Optical film, flexible device member provided with the same, and resin composition
WO2018062042A1 (en) Optical film, laminated film utilizing same, and method of manufacturing optical film
KR102221744B1 (en) An optical film and an optical element using the optical film
KR102021996B1 (en) Optical film and manufacturing method of the optical film
JP2020006682A (en) Laminate
CN110154474B (en) Film roll
JP6494844B1 (en) Manufacturing method of resin film and resin film with few micro scratches
JP6494845B1 (en) Manufacturing method of resin film
WO2021049556A1 (en) Metal-clad laminate for flexible electronic devices, and flexible electronic device using same
JP7183377B1 (en) polyimide resin
JP2019151093A (en) Method for producing resin film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187009226

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855985

Country of ref document: EP

Kind code of ref document: A1