WO2018061934A1 - 紫外光照射装置 - Google Patents

紫外光照射装置 Download PDF

Info

Publication number
WO2018061934A1
WO2018061934A1 PCT/JP2017/033911 JP2017033911W WO2018061934A1 WO 2018061934 A1 WO2018061934 A1 WO 2018061934A1 JP 2017033911 W JP2017033911 W JP 2017033911W WO 2018061934 A1 WO2018061934 A1 WO 2018061934A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
ultraviolet led
irradiation
unit
control unit
Prior art date
Application number
PCT/JP2017/033911
Other languages
English (en)
French (fr)
Inventor
洋明 望月
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Priority to CN201780059186.XA priority Critical patent/CN109791958A/zh
Priority to EP17855889.6A priority patent/EP3522238A1/en
Publication of WO2018061934A1 publication Critical patent/WO2018061934A1/ja
Priority to US16/364,855 priority patent/US20190216959A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • A23L3/28Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating with ultraviolet light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/12Controlling the intensity of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to an ultraviolet light irradiation apparatus.
  • Ultraviolet rays are widely used in the fields of resin curing by ultraviolet rays and sterilization or sterilization treatment in the medical and food fields.
  • an ultraviolet light source for resin curing there is one using an ultraviolet LED (Light Emitting Diode).
  • an ultraviolet LED Light Emitting Diode
  • a configuration in which a plurality of ultraviolet LEDs having different wavelength characteristics are combined so as to be compatible with a plurality of types of resins having different curing wavelengths is shown (for example, see Patent Document 1).
  • the present invention has been made in view of such problems, and one of exemplary purposes thereof is to provide an ultraviolet light irradiation apparatus capable of efficiently irradiating an irradiation target with ultraviolet light.
  • An ultraviolet light irradiation apparatus includes a light source unit including at least one ultraviolet LED, a driving unit that supplies a driving current to the ultraviolet LED, and a control unit that controls the operation of the driving unit.
  • the control unit calculates the drive current value of the ultraviolet LED based on the information indicating the spectral intensity characteristic of the ultraviolet LED and the information indicating the spectral action characteristic of the irradiation target to be irradiated by the light source unit. Supplies a drive current having a value calculated by the control unit to the ultraviolet LED.
  • the amount of action given to the irradiation target by light irradiation can be estimated based on the spectral intensity characteristic of the ultraviolet LED and the spectral action characteristic of the irradiation target, and the ultraviolet LED can be driven so that the amount of action is optimal.
  • production of excess can be prevented, and a desired effect can be acquired by irradiating an irradiation object with ultraviolet light efficiently.
  • the control unit calculates the driving current value of the ultraviolet LED so that the estimated action amount obtained by integrating the product of the spectral intensity characteristic of the ultraviolet LED and the spectral action characteristic of the irradiation target with respect to the wavelength satisfies a predetermined condition. Also good.
  • the control unit may calculate the driving current value of the ultraviolet LED based on information indicating the correlation between the emission intensity of the ultraviolet LED and the driving current value of the ultraviolet LED.
  • a measuring unit for measuring the emission intensity of the ultraviolet LED may be further provided.
  • the control unit may calculate the driving current value of the ultraviolet LED based on the correlation between the measurement result of the measuring unit and the driving current value of the ultraviolet LED.
  • An input unit that receives designation of a target value of the amount of action to be given to the irradiation target may be further provided.
  • the control unit may calculate a drive current value of the ultraviolet LED for realizing the target value.
  • the control unit may calculate a driving time value of the ultraviolet LED for realizing the target value, and the driving unit may supply a driving current to the ultraviolet LED over the driving time of the value calculated by the control unit.
  • the input unit may further accept the designation of the light irradiation time for the irradiation target, and the control unit may calculate the driving current value of the ultraviolet LED so as to satisfy both the target value of the action amount and the light irradiation time. .
  • the light source unit may include a plurality of ultraviolet LEDs having different spectral intensity characteristics.
  • the control unit calculates a plurality of drive current values corresponding to each of the plurality of ultraviolet LEDs based on information indicating the spectral intensity characteristics of the plurality of ultraviolet LEDs, and the drive unit calculates the plurality of drive current values calculated by the control unit.
  • Each of the value drive currents may be supplied to a corresponding ultraviolet LED.
  • FIG. 1 is a diagram schematically showing a functional configuration of an ultraviolet light irradiation apparatus 10 according to an embodiment.
  • the ultraviolet light irradiation apparatus 10 includes a light source unit 20, a drive unit 30, a measurement unit 40, a display operation unit 50, and a control unit 60.
  • the ultraviolet light irradiation apparatus 10 is used for a sterilization process or a resin curing process by ultraviolet irradiation.
  • the ultraviolet light irradiation device 10 can be used by being incorporated in a fluid sterilization device for irradiating a fluid such as water with ultraviolet light and continuously sterilizing the fluid.
  • the light source unit 20 includes a plurality of LEDs 21, 22, 23, and 24. At least one of the plurality of LEDs 21 to 24 is configured to output deep ultraviolet light having a center wavelength or peak wavelength in the range of about 250 nm to 350 nm. As such an ultraviolet LED, for example, an LED using aluminum gallium nitride (AlGaN) is known. At least one of the plurality of LEDs 21 to 24 may be configured to output ultraviolet light or blue light whose center wavelength or peak wavelength is in the range of about 350 nm to 450 nm. As such an ultraviolet light or blue light LED, for example, one using gallium nitride (GaN) is known.
  • AlGaN aluminum gallium nitride
  • the light source unit 20 may include an LED that outputs visible light or infrared light having a wavelength longer than 450 nm. Although the case where four LEDs are included is illustrated in the present embodiment, the number of LEDs included in the light source unit 20 is not limited.
  • the light source unit 20 may include a plurality of LEDs having substantially the same wavelength characteristics.
  • FIG. 2 is a graph schematically showing the spectral intensity characteristics of the plurality of LEDs 21-24.
  • the plurality of LEDs 21 to 24 have different wavelength characteristics.
  • the first LED 21 has a first intensity distribution P 1 ( ⁇ ) in which the center wavelength or peak wavelength is the first wavelength ⁇ 1 .
  • the second LED 22 has a second intensity distribution P 2 ( ⁇ ) in which the center wavelength or peak wavelength is the second wavelength ⁇ 2 .
  • the third LED 23 has a third intensity distribution P 3 ( ⁇ ) in which the center wavelength or peak wavelength is the third wavelength ⁇ 3 .
  • the fourth LED 24 has a fourth intensity distribution P 4 ( ⁇ ) in which the center wavelength or peak wavelength is the fourth wavelength ⁇ 4 .
  • the wavelength characteristics of the plurality of ultraviolet LEDs 21 to 24 are configured such that the center wavelength or peak wavelength of each of the ultraviolet LEDs 21 to 24 satisfies ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 . Further, the wavelength characteristics are selected so that the intensity distributions of LEDs having adjacent central wavelengths or peak wavelengths overlap each other.
  • the ultraviolet light irradiation device 10 is configured to output ultraviolet light having a continuous spectrum at least in the wavelength range from the first wavelength ⁇ 1 to the fourth wavelength ⁇ 4 .
  • the wavelength characteristics may be selected so that the intensity distributions of the LEDs having the center wavelength or peak wavelength adjacent to each other do not overlap. In this case, it is configured not to output ultraviolet light in a certain limited wavelength range.
  • the wavelength characteristics of the plurality of LEDs 21 to 24 are preferably selected according to the application of the ultraviolet light irradiation device 10.
  • the ultraviolet light irradiation device 10 when used for the purpose of sterilization treatment, it is preferable to include an LED that outputs ultraviolet light having a wavelength range of about 260 to 270 nm, which has a high sterilization effect.
  • an LED that outputs ultraviolet light in a wavelength range of about 300 to 350 nm or a wavelength range of about 350 to 400 nm is included depending on the curing wavelength of the resin. It is preferable.
  • the drive unit 30 is configured to supply a drive current to the plurality of LEDs 21 to 24 included in the light source unit 20.
  • the drive unit 30 includes, for example, a constant current circuit that supplies a constant current to the plurality of LEDs 21 to 24.
  • the drive unit 30 is configured to supply drive currents having different values to the plurality of LEDs 21 to 24 based on commands from the control unit 60.
  • the drive unit 30 can independently control the light emission intensities of the plurality of LEDs 21 to 24.
  • the measuring unit 40 measures the output intensity of the light source unit 20 and transmits the measurement result to the control unit 60.
  • the measurement unit 40 includes a power meter capable of measuring light intensity. By providing the measurement unit 40, the output of the light source unit 20 can be monitored, and feedback control can be performed so that the output intensity of the light source unit 20 is constant.
  • the measurement unit 40 may be configured to measure the spectral intensity characteristic of the light source unit 20, and may include, for example, a spectrometer.
  • the measuring unit 40 may generate information on the spectral intensity characteristics as shown in FIG. 2 by measuring the spectral characteristics of the output lights of the LEDs 21 to 24.
  • the measurement unit 40 may be configured to measure the wavelength sensitivity of the irradiation target. For example, you may be comprised so that the wavelength dependence of the light absorbency of irradiation object can be measured.
  • the display operation unit 50 is an input unit that receives an input operation from the user, and is configured by, for example, a touch panel device.
  • the display operation unit 50 displays a screen for inputting or selecting the operating condition of the ultraviolet light irradiation device 10 so that the user can input the operating condition of the ultraviolet light irradiation device 10.
  • the display operation unit 50 may be configured with a display unit and an input unit separately.
  • the display operation unit 50 enables, for example, setting input of parameters related to irradiation objects and parameters related to irradiation conditions.
  • the parameters relating to the irradiation target include the type, amount, concentration, and the like of the irradiation target.
  • a parameter related to the irradiation target input of information related to the wavelength sensitivity of the irradiation target (spectral action characteristics to be described later, see FIG. 3) may be accepted.
  • parameters relating to irradiation conditions input of information regarding processing time, a total amount of irradiation energy (total dose amount), and a target value of an action amount to be applied to an irradiation target may be accepted.
  • the display operation unit 50 may allow the user to select one of a plurality of irradiation modes. For example, a low power consumption mode, a short time mode, an automatic mode, etc. may be prepared. In the low power consumption mode, for example, the drive current value is determined so that the power consumption required for the target amount of action is minimized. In the short time mode, for example, the drive current value is determined so that the irradiation time for obtaining the target amount of action is minimized. In the automatic mode, for example, the drive current value is determined so that both power consumption and irradiation time are optimized.
  • the display operation unit 50 may allow the user to select one of a plurality of irradiation targets. For example, when used for sterilization treatment, a combination of a fluid to be sterilized and a bacterial species to be sterilized may be designated. Moreover, when using for resin hardening process, you may enable it to designate the material of resin used as irradiation object.
  • the control unit 60 calculates the drive current values of the plurality of LEDs 21 to 24 based on the spectral intensity characteristics of the plurality of LEDs 21 to 24 and the spectral action characteristics of the irradiation target.
  • the control unit 60 holds information regarding spectral intensity characteristics and information regarding spectral action characteristics.
  • the control unit 60 specifies the spectral action characteristic to be referenced based on the input of the display operation unit 50.
  • the control unit 60 estimates the amount of action given to the irradiation target by light irradiation.
  • the control unit 60 determines the light emission intensity of each of the LEDs 21 to 24 so that the estimated action amount satisfies a predetermined condition, and obtains a drive current value necessary to obtain the determined light emission intensity.
  • the amount of action given to the irradiation object by light irradiation is a numerical value of the desired degree of effect that can be obtained by ultraviolet light irradiation.
  • the action amount E is described as the following equation (1) using the spectral intensity distribution P ( ⁇ ) of the light source unit 20, the spectral action characteristic ⁇ ( ⁇ ) of the irradiation target, and the irradiation time t of the ultraviolet light. it can. That is, the action amount E is obtained by integrating the product of the spectral intensity distribution P ( ⁇ ) of the light source unit 20 as a whole and the spectral action characteristic ⁇ ( ⁇ ) of the irradiation target with respect to the wavelength.
  • the wavelengths ⁇ A and ⁇ B serving as the integration ranges correspond to the lower limit value and the upper limit value of the wavelength range that can be output by the light source, respectively.
  • the spectral action characteristic ⁇ ( ⁇ ) of the irradiation target means the wavelength dependence or the wavelength sensitivity characteristic with respect to the degree of the effect obtained by the ultraviolet light irradiation.
  • the spectral action characteristic in the case of sterilization shows a correlation between the wavelength ⁇ of ultraviolet light and the sterilization rate by ultraviolet light irradiation
  • the spectral action characteristic in the case of resin curing is the wavelength ⁇ of ultraviolet light and ultraviolet light irradiation. The correlation with the amount of resin hardening by is shown.
  • FIG. 3 is a graph schematically showing the spectral action characteristics of the irradiation target.
  • the spectral effects characteristic alpha 1 (lambda) in sterilized illustrates the spectral effects characteristic alpha 2 (lambda) in the resin cure.
  • the graph shown is merely an example, and the shape of the graph may vary depending on the type of irradiation target and the action to be obtained by ultraviolet light irradiation.
  • the control unit 60 maximizes the obtained action amount E based on the spectral intensity distributions P 1 ( ⁇ ) to P 4 ( ⁇ ) of the LEDs 21 to 24 and the spectral action characteristic ⁇ ( ⁇ ) of the irradiation target.
  • the light emission intensity of each of the LEDs 21 to 24 is determined.
  • equation (2) estimated effect level E R per unit are calculated time using is maximized, the coefficient k i (i indicating the relative value of the light emission intensity of each LED: Determine the values of 1-4).
  • FIG. 4 is a graph schematically showing a calculation example of the coefficients k 1 to k 4 indicating the light emission intensity of each LED.
  • the coefficient k i of the light emission intensity of each LED is calculated based on a predetermined spectral action characteristic ⁇ 1 ( ⁇ ).
  • the spectral effects characteristic alpha 1 (lambda) first 1LED21 large coefficient k 1 of the value corresponding to the high first wavelength lambda 1 of the fourth wavelength lower value of the spectral effects characteristic alpha 1 (lambda) lambda each coefficient k i as the coefficient k 4 of the 4LED24 decreases is determined corresponding to 4.
  • each coefficient k i is determined so that the LED having a higher contribution ratio to the spectral action characteristic ⁇ has a higher emission intensity.
  • the light emission intensity is increased at the wavelength ⁇ having the large spectral action characteristic ⁇ , and conversely, the light emission intensity is reduced at the wavelength ⁇ having the small spectral action characteristic ⁇ , thereby increasing the amount of action E on the irradiation target, and The power consumption as a whole can be suppressed.
  • the control unit 60 calculates the drive current values I 1 , I 2 , I 3 , and I 4 of the LEDs 21 to 24 to obtain the light emission intensity according to the determined coefficient k i .
  • the control unit 60 holds information indicating the correlation between the light emission intensity P of the LED and the drive current value I, and determines the drive current value of each LED based on the correlation information.
  • FIG. 5 is a graph schematically showing the correlation between the light emission intensity P and the drive current value I of the LED.
  • the drive current value I corresponding to a certain light emission intensity P can be determined by referring to the correlation as shown in the figure.
  • the drive current value I i (i: 1 to 4) may be simply calculated by multiplying the coefficient k i indicating the emission intensity by a predetermined constant.
  • the drive current value I i may be calculated based on the measurement result of the measurement unit 40.
  • the control unit 60 may perform feedback control of the drive current values I 1 to I 4 of the LEDs 21 to 24 so that the light emission intensity according to the determined coefficient k i can be maintained.
  • the drive current obtained from the correlation between the light emission intensity and the drive current value shown in FIG. 5 is used as an initial value, and the light emission intensity of each of the LEDs 21 to 24 driven based on the initial value is measured by the measuring unit 40. Subsequently, the drive current value is determined so that the emission intensity is maintained.
  • the estimated effect level E R per unit time may be calculated the value of the coefficient k i indicating the emission intensity of each LED to a predetermined target value E T.
  • Target value E T relates effect amount per unit time may be set via the input from the display operation unit 50, even if the control unit 60 is calculated based on another parameter which is input from the display operation unit 50 Good.
  • the target value E T may be calculated based on parameters such as irradiation target processing time. If the irradiation object is a fluid, the target value E T based on the information about the flow rate may be calculated.
  • the control unit 60 may calculate a combination that minimizes the sum of the coefficients k i as a solution.
  • the solution of the coefficient k i may be calculated so that the sum of the drive current values I 1 to I 4 of the LEDs 21 to 24 is minimized.
  • the control unit 60 may use information indicating the correlation between the emission intensity of each of the LEDs 21 to 24 and the drive current value as shown in FIG.
  • the control unit 60 may further hold information indicating the maximum current value that can be driven by each of the LEDs 21 to 24, and calculate the solution of the coefficient k i using the maximum current value as a constraint condition.
  • the solution of the coefficient k i may be calculated so that at least one of the plurality of LEDs 21 to 24 has the maximum current value.
  • the controller 60 may determine the light emission intensity of each LED based on the target value related to the processing time. For example, determining the emission intensity of each LED so as to calculate the effect level E R per unit required time, the effect level E R can be obtained in order to obtain the target value E T of the working volume in the predetermined irradiation time May be. In this case, a coefficient k i having a value different from the coefficient k i of the light emission intensity calculated to minimize power consumption may be calculated. For example, the irradiation efficiency as was sacrificed to some extent, may control the drive of each LED as effect level E T of the target can be obtained in a shorter time.
  • the irradiation time may be determined from the following equation.
  • the control unit 60 may estimate the dose amount irradiated to the irradiation target based on the light emission intensity measured by the measurement unit 40, and may determine the time until the total dose amount reaches the target value as the irradiation time.
  • the ultraviolet light irradiation apparatus 10 first acquires information on the spectral intensity characteristics of the light source unit 20 and information on the spectral action characteristics of the irradiation target. These pieces of information may be acquired from the measurement unit 40, stored in the control unit 60 in advance, input through the display operation unit 50, or a database connected via a network. It may be acquired from an external device.
  • the ultraviolet light irradiation apparatus 10 accepts setting of parameters related to the irradiation target and irradiation conditions. Based on the set parameters, the control unit 60 determines a coefficient k i indicating the relative value of the light emission intensity of each LED 21 to 24, and the drive current value I of each LED 21 to 24 for realizing the coefficient k i. i is calculated. The control unit 60 may also calculate the irradiation time. The drive unit 30 supplies the calculated drive current values I i to the corresponding LEDs 21 to 24, respectively, so that the LEDs 21 to 24 are driven at a light emission intensity ratio according to the coefficient k i . After a predetermined irradiation time has elapsed, the control unit 60 stops driving the LEDs 21 to 24, and the display operation unit 50 displays that the irradiation process has been completed.
  • the amount of action on the irradiation target is optimal.
  • Each LED can be driven so that The ultraviolet LED used in the light source unit 20 has a center wavelength or peak wavelength as a design value and a spread width of the wavelength distribution (full width at half maximum, etc.), but there is a variation in wavelength characteristics among individual LEDs actually used. To do. Therefore, if the light emission intensity and the irradiation time are determined without considering the wavelength characteristics of the individual ultraviolet LEDs, the irradiation amount may be insufficient or excessive, and efficient ultraviolet light irradiation may not be realized.
  • control is performed based on the spectral intensity characteristics of the individual LEDs and the spectral action characteristics of the irradiation target, so that the LEDs can be driven under conditions optimal for the irradiation process.
  • the efficiency of the irradiation process of ultraviolet light can be improved.
  • the light source unit 20 includes a plurality of LEDs.
  • the light source unit 20 may include only one ultraviolet LED. Even in this case, the efficiency of the irradiation process can be improved by determining the drive current value based on both the wavelength characteristics of one ultraviolet LED and the wavelength characteristics of the irradiation target.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Hardware Design (AREA)
  • Epidemiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

紫外光照射装置10は、少なくとも一つの紫外線LEDを含む光源部20と、紫外線LEDに駆動電流を供給する駆動部30と、駆動部30の動作を制御する制御部60と、を備える。制御部60は、紫外線LEDの分光強度特性を示す情報と、光源部による光照射の対象となる照射対象の分光作用特性を示す情報とに基づいて、紫外線LEDの駆動電流値を算出し、駆動部30は、制御部60が算出した値の駆動電流を紫外線LEDに供給する。

Description

紫外光照射装置
 本発明は、紫外光照射装置に関する。
 紫外線は、紫外線による樹脂硬化の分野や、医療や食品分野における滅菌もしくは殺菌処理などで広く用いられている。例えば、樹脂硬化のための紫外線光源として、紫外線LED(Light Emitting Diode)を用いたものがある。このような装置として、硬化波長の異なる複数種類の樹脂に対応できるように波長特性の異なる複数の紫外線LEDを組み合わせた構成が示されている(例えば、特許文献1参照)。
特開2010-56192号公報
 実際に用いる紫外線LEDには波長特性や出力強度に個体差があり、紫外光の照射対象には波長に応じた感受特性がある。そのため、光源および照射対象の波長特性を適切に考慮しない場合、光量不足により所望の効果が得られなかったり、照射過剰により無駄に電力が消費されたりしてしまう。
 本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、照射対象に対して効率的に紫外光を照射できる紫外光照射装置を提供することにある。
 本発明のある態様の紫外光照射装置は、少なくとも一つの紫外線LEDを含む光源部と、紫外線LEDに駆動電流を供給する駆動部と、駆動部の動作を制御する制御部と、を備える。制御部は、紫外線LEDの分光強度特性を示す情報と、光源部による光照射の対象となる照射対象の分光作用特性を示す情報とに基づいて、紫外線LEDの駆動電流値を算出し、駆動部は、制御部が算出した値の駆動電流を紫外線LEDに供給する。
 この態様によると、紫外線LEDの分光強度特性と、照射対象の分光作用特性とに基づいて光照射により照射対象に与える作用量を推定し、作用量が最適となるように紫外線LEDを駆動できる。これにより、照射量の不足や過剰の発生を防ぎ、効率的に照射対象に紫外光を照射して所望の効果を得ることができる。
 制御部は、紫外線LEDの分光強度特性と照射対象の分光作用特性の積を波長に対して積算することにより得られる推定作用量が所定条件を満たすように紫外線LEDの駆動電流値を算出してもよい。
 制御部は、紫外線LEDの発光強度と紫外線LEDの駆動電流値の相関を示す情報に基づいて、紫外線LEDの駆動電流値を算出してもよい。
 紫外線LEDの発光強度を計測する計測部をさらに備えてもよい。制御部は、計測部の計測結果と紫外線LEDの駆動電流値の相関に基づいて、紫外線LEDの駆動電流値を算出してもよい。
 照射対象に与えるべき作用量の目標値の指定を受け付ける入力部をさらに備えてもよい。制御部は、目標値を実現するための紫外線LEDの駆動電流値を算出してもよい。
 制御部は、目標値を実現するための紫外線LEDの駆動時間値を算出し、駆動部は、制御部が算出した値の駆動時間にわたって紫外線LEDに駆動電流を供給してもよい。
 入力部は、照射対象への光照射時間の指定をさらに受け付け、制御部は、作用量の目標値と光照射時間の双方の条件を満たすように紫外線LEDの駆動電流値を算出してもよい。
 光源部は、分光強度特性の異なる複数の紫外線LEDを含んでもよい。制御部は、複数の紫外線LEDのそれぞれの分光強度特性を示す情報に基づいて、複数の紫外線LEDのそれぞれに対応する複数の駆動電流値を算出し、駆動部は、制御部が算出した複数の値の駆動電流のそれぞれを対応する紫外線LEDに供給してもよい。
 本発明によれば、照射対象に対して効率的に紫外光を照射できる。
実施の形態に係る紫外光照射装置の機能構成を概略的に示す図である。 複数のLEDの分光強度特性を模式的に示すグラフである。 照射対象の分光作用特性を模式的に示すグラフである。 各LEDの発光強度を示す係数の算出例を模式的に示すグラフである。 LEDの発光強度と駆動電流値の相関を模式的に示すグラフである。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 図1は、実施の形態に係る紫外光照射装置10の機能構成を概略的に示す図である。紫外光照射装置10は、光源部20と、駆動部30と、計測部40と、表示操作部50と、制御部60とを備える。紫外光照射装置10は、紫外線の照射による殺菌処理や樹脂硬化処理に用いられる。紫外光照射装置10は、例えば、水などの流体に対して紫外光を照射し、流体を連続的に殺菌するための流体殺菌装置に組み込んで用いることができる。
 光源部20は、複数のLED21,22,23,24を含む。複数のLED21~24の少なくとも一つは、中心波長またはピーク波長が約250nm~350nmの範囲に含まれる深紫外光を出力するよう構成される。このような紫外線LEDとして、例えば、窒化アルミニウムガリウム(AlGaN)を用いたものが知られている。複数のLED21~24の少なくとも一つは、中心波長またはピーク波長が約350nm~450nmの範囲に含まれる紫外光または青色光を出力するよう構成されてもよい。このような紫外光または青色光LEDとして、例えば、窒化ガリウム(GaN)を用いたものが知られている。光源部20は、450nmより長波長の可視光または赤外光を出力するLEDを含んでもよい。本実施の形態では、4つのLEDを含む場合を図示しているが、光源部20に含まれるLEDの数は問わない。光源部20は、実質的に波長特性の等しいLEDを複数含んでもよい。
 図2は、複数のLED21~24の分光強度特性を模式的に示すグラフである。複数のLED21~24は、それぞれ異なる波長特性を有する。第1LED21は、中心波長またはピーク波長が第1波長λとなる第1強度分布P(λ)を有する。第2LED22は、中心波長またはピーク波長が第2波長λとなる第2強度分布P(λ)を有する。第3LED23は、中心波長またはピーク波長が第3波長λとなる第3強度分布P(λ)を有する。第4LED24は、中心波長またはピーク波長が第4波長λとなる第4強度分布P(λ)を有する。
 ある実施例において、複数の紫外線LED21~24の波長特性は、それぞれの中心波長またはピーク波長がλ<λ<λ<λとなるように構成される。また、中心波長またはピーク波長が隣接するLEDの強度分布が互いに重なるように波長特性が選択される。この場合、紫外光照射装置10は、少なくとも第1波長λから第4波長λの波長範囲において連続的なスペクトルを有する紫外光を出力できるよう構成される。なお、変形例においては、中心波長またはピーク波長が隣接するLEDの強度分布が重ならないように波長特性が選択されてもよい。この場合、ある限定的な波長範囲の紫外光を出力できないように構成される。
 複数のLED21~24の波長特性は、紫外光照射装置10の用途に応じて選択されることが好ましい。例えば、紫外光照射装置10を殺菌処理目的で使用する場合、殺菌作用が高いとされる約260~270nmの波長範囲の紫外光を出力するLEDが含まれることが好ましい。また、紫外光照射装置10を樹脂硬化目的で使用する場合、樹脂の硬化波長に応じて、約300~350nmの波長範囲や、約350~400nmの波長範囲の紫外光を出力するLEDが含まれることが好ましい。
 図1に戻り、駆動部30は、光源部20に含まれる複数のLED21~24に駆動電流を供給するよう構成される。駆動部30は、例えば、複数のLED21~24に定電流を供給する定電流回路を有する。駆動部30は、制御部60からの指令に基づいて、複数のLED21~24のそれぞれに異なる値の駆動電流を供給できるよう構成される。駆動部30は、複数のLED21~24の発光強度をそれぞれ独立に制御できる。
 計測部40は、光源部20の出力強度を計測し、計測結果を制御部60に送信する。計測部40は、光強度の測定が可能なパワーメータなどを含む。計測部40を設けることにより、光源部20の出力をモニタすることができ、光源部20の出力強度が一定となるようにフィードバック制御することもできる。
 計測部40は、光源部20の分光強度特性を計測できるよう構成されてもよく、例えば、分光計などを含んでもよい。計測部40は、各LED21~24のそれぞれの出力光の分光特性を計測することにより、図2に示すような分光強度特性に関する情報を生成してもよい。計測部40は、照射対象の波長感受性を計測できるよう構成されてもよい。例えば、照射対象の吸光度の波長依存性を計測できるよう構成されてもよい。
 表示操作部50は、ユーザからの入力操作を受け付ける入力部であり、例えば、タッチパネル装置などで構成される。表示操作部50は、紫外光照射装置10の動作条件を入力または選択するための画面を表示し、ユーザが紫外光照射装置10の動作条件を入力できるようにする。表示操作部50は、表示部と入力部とが分かれて構成されてもよい。
 表示操作部50は、例えば、照射対象に関するパラメータや、照射条件に関するパラメータの設定入力を可能にする。ここで、照射対象に関するパラメータとは、照射対象の種類、量、濃度などである。照射対象に関するパラメータとして、照射対象の波長感受性(後述する分光作用特性など、図3参照)に関する情報の入力を受け付けてもよい。また、照射条件に関するパラメータとして、処理時間、照射エネルギー総量(総ドーズ量)、照射対象に与える作用量の目標値に関する情報の入力を受け付けてもよい。
 表示操作部50は、複数用意される照射モードのいずれかをユーザが選択できるようにしてもよい。例えば、低消費電力モード、短時間モード、おまかせモードなどが用意されてもよい。低消費電力モードでは、例えば、目標とする作用量に対して必要な消費電力が最小となるように駆動電流値が決定される。短時間モードでは、例えば、目標とする作用量を得るための照射時間が最小となるように駆動電流値が決定される。おまかせモードでは、例えば、消費電力と照射時間の双方が最適化されるように駆動電流値が決定される。
 表示操作部50は、複数用意される照射対象のいずれかをユーザが選択できるようにしてもよい。例えば、殺菌処理に用いる場合、殺菌対象となる流体と、殺菌しようとする菌種との組み合わせを指定できるようにしてもよい。また、樹脂硬化処理に用いる場合、照射対象となる樹脂の材料を指定できるようにしてもよい。
 制御部60は、複数のLED21~24の分光強度特性と、照射対象の分光作用特性とに基づいて複数のLED21~24の駆動電流値を算出する。制御部60は、分光強度特性に関する情報と、分光作用特性に関する情報を保持する。制御部60は、表示操作部50の入力に基づいて、参照すべき分光作用特性を特定する。制御部60は、複数のLED21~24の分光強度特性と照射対象の分光作用特性に基づいて、光照射により照射対象に与える作用量を推定する。制御部60は、推定した作用量が所定条件を満たすように各LED21~24の発光強度を決定し、決定した発光強度を得るために必要な駆動電流値を求める。
 ここで、光照射により照射対象に与える作用量とは、紫外光照射により得ることのできる所望の効果の度合いを数値化したものである。作用量Eは、光源部20の分光強度分布P(λ)と、照射対象の分光作用特性α(λ)と、紫外光の照射時間tを用いて、以下の式(1)のように記述できる。つまり、作用量Eは、光源部20の全体としての分光強度分布P(λ)と照射対象の分光作用特性α(λ)の積を波長に対して積分することにより得られる。なお、積分範囲となる波長λ、λは、光源が出力可能な波長範囲の下限値および上限値にそれぞれ対応する。
Figure JPOXMLDOC01-appb-M000001
 ここで、照射対象の分光作用特性α(λ)とは、紫外光照射により得られる効果の度合いに対する波長依存性または波長感受特性のことをいう。例えば、殺菌処理の場合の分光作用特性は、紫外光の波長λと紫外光照射による殺菌率との相関関係を示し、樹脂硬化の場合の分光作用特性は、紫外光の波長λと紫外光照射による樹脂硬化量との相関関係を示す。
 図3は、照射対象の分光作用特性を模式的に示すグラフである。このグラフでは、殺菌処理における分光作用特性α(λ)と、樹脂硬化における分光作用特性α(λ)とを例示している。殺菌処理における分光作用特性α(λ)は、例えば、λ=260nm付近において殺菌量が最大となるような曲線形状を有する。また、樹脂硬化における分光作用特性α(λ)は、例えば、λ=330nm付近において樹脂硬化量が最大となるような曲線形状を有する。なお、図示されるグラフはあくまで例示であり、照射対象の種類や紫外光照射により得ようとする作用に応じてグラフ形状が異なりうることが理解されよう。
 制御部60は、各LED21~24の分光強度分布P(λ)~P(λ)と、照射対象の分光作用特性α(λ)に基づいて、得られる作用量Eが最大化されるように各LED21~24の発光強度を決定する。具体的には、以下の式(2)を用いて算出される単位時間あたりの推定作用量Eが最大化されるように、各LEDの発光強度の相対値を示す係数k(i:1~4)の値を決定する。例えば、各LEDの発光強度を示す係数kの値は、係数kの和を一定(例えば、k+k+k+k=1)とする条件下で公知の最適化問題を解くことにより求めることができる。
Figure JPOXMLDOC01-appb-M000002
 図4は、各LEDの発光強度を示す係数k~kの算出例を模式的に示すグラフである。図示する例では、所定の分光作用特性α(λ)に基づいて各LEDの発光強度の係数kを算出している。図示する例では、分光作用特性α(λ)の値が高い第1波長λに対応する第1LED21の係数kが大きく、分光作用特性α(λ)の値が低い第4波長λに対応する第4LED24の係数kが小さくなるよう各係数kが決定されている。つまり、分光作用特性αへの寄与率が高いLEDほど発光強度が高くなるように各係数kが決定される。このように、分光作用特性αの大きい波長λにおいて発光強度を大きくし、逆に分光作用特性αの小さい波長λにおいて発光強度を小さくすることで、照射対象への作用量Eを高めつつ、光源全体としての消費電力を抑えることができる。
 制御部60は、決定した係数kにしたがった発光強度を得るための各LED21~24の駆動電流値I,I,I,Iを算出する。制御部60は、LEDの発光強度Pと駆動電流値Iの相関を示す情報を保持し、その相関情報に基づいて各LEDの駆動電流値を決定する。図5は、LEDの発光強度Pと駆動電流値Iの相関を模式的に示すグラフである。図示されるような相関関係を参照することにより、ある発光強度Pに対応する駆動電流値Iを決定することができる。なお、変形例においては、発光強度を示す係数kに所定の定数を乗算することにより、簡易的に駆動電流値I(i:1~4)を算出してもよい。その他、計測部40の計測結果に基づいて駆動電流値Iを算出してもよい。
 制御部60は、決定した係数kにしたがった発光強度を維持できるように、各LED21~24の駆動電流値I~Iをフィードバック制御してもよい。例えば、図5に示す発光強度と駆動電流値の相関から求められる駆動電流を初期値とし、初期値に基づいて駆動される各LED21~24の発光強度を計測部40により計測する。つづいて、その発光強度が維持されるように駆動電流値を決定する。
 制御部60は、単位時間あたりの推定作用量Eが所定の目標値Eとなるように各LEDの発光強度を示す係数kの値を算出してもよい。単位時間あたりの作用量に関する目標値Eは、表示操作部50からの入力を通じて設定されてもよいし、表示操作部50から入力される別のパラメータに基づいて制御部60が算出してもよい。例えば、ユーザが入力する照射対象の種類、照射対象の量や濃度、照射対象の処理時間といったパラメータに基づいて目標値Eが算出されてもよい。照射対象が流体である場合、流速に関する情報に基づいて目標値Eが算出されてもよい。
 制御部60は、係数kの組み合わせとして複数の解が得られる場合には、係数kの和が最小化される組み合わせを解として算出してもよい。その他、各LED21~24の駆動電流値I~Iの和が最小化されるように係数kの解を算出してもよい。このとき、制御部60は、図5に示すような各LED21~24の発光強度と駆動電流値の相関を示す情報を用いてもよい。制御部60は、さらに各LED21~24の駆動可能な最大電流値を示す情報を保持し、この最大電流値を制約条件に用いて係数kの解を算出してもよい。例えば、複数のLED21~24の少なくとも一つが最大電流値となるように係数kの解を算出してもよい。
 制御部60は、処理時間に関する目標値に基づいて、各LEDの発光強度を決定してもよい。例えば、所定の照射時間内に作用量の目標値Eを得るために必要な単位時間あたりの作用量Eを算出し、その作用量Eが得られるように各LEDの発光強度を決定してもよい。この場合、消費電力が最小となるように算出される発光強度の係数kとは異なる値の係数kを算出してもよい。例えば、照射効率をある程度犠牲にしたとしても、より短時間で目標とする作用量Eが得られるように各LEDの駆動を制御してもよい。
 制御部60は、照射エネルギー総量(総ドーズ量)の目標値に基づいて、紫外光の照射時間tを決定してもよい。例えば、照射対象の種類、量および濃度などの情報から処理に必要な総作用量の目標値Eを算出し、単位時間あたりの推定作用量Eを用いて、t=E/Eの式から照射時間を決定してもよい。制御部60は、計測部40により計測される発光強度に基づいて照射対象に照射されるドーズ量を推定し、総ドーズ量が目標値となるまでの時間を照射時間として決定してもよい。
 以上の構成に基づく紫外光照射装置10の動作について説明する。紫外光照射装置10は、まず、光源部20の分光強度特性に関する情報と、照射対象の分光作用特性に関する情報とを取得する。これらの情報は、計測部40から取得してもよいし、制御部60にあらかじめ記憶されていてもよいし、表示操作部50を通じて入力されてもよいし、ネットワークを経由して接続されるデータベースなどの外部装置から取得されてもよい。
 次に、紫外光照射装置10は、照射対象および照射条件に関するパラメータの設定を受け付ける。制御部60は、設定されたパラメータに基づいて、各LED21~24の発光強度の相対値を示す係数kを決定し、その係数kを実現するための各LED21~24の駆動電流値Iを算出する。制御部60は、併せて照射時間を算出してもよい。駆動部30は、算出された駆動電流値Iをそれぞれ対応するLED21~24に供給し、各LED21~24が係数kにしたがった発光強度比で駆動するようにする。制御部60は、所定の照射時間が経過した後、各LED21~24の駆動を停止させ、表示操作部50は、照射処理が完了した旨を表示する。
 本実施の形態によれば、各LED21~24の分光強度特性と、照射対象の分光作用特性とに基づいて各LED21~24の駆動電流値を決定することにより、照射対象への作用量が最適になるように各LEDを駆動できる。光源部20に用いる紫外線LEDは、設計値としての中心波長またはピーク波長と、波長分布の広がり幅(半値全幅など)とを有するが、実際に使用する個々のLEDには波長特性のばらつきが存在する。そのため、個別の紫外線LEDの波長特性を考慮せずに発光強度や照射時間を決定してしまうと、照射量に不足や過剰が生じ、効率的な紫外光照射が実現できなくなるおそれがある。一方、本実施の形態によれば、個々のLEDの分光強度特性と、照射対象の分光作用特性に基づいた制御がなされるため、照射処理に最適な条件でLEDを駆動することができる。これにより、紫外光の照射処理の効率を向上させることができる。
 以上、本発明を実施の形態にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
 上述の実施の形態では、光源部20が複数のLEDを含む場合について示した。変形例においては、光源部20が一つの紫外線LEDのみを含んでもよい。この場合であっても、一つの紫外線LEDの波長特性と照射対象の波長特性の双方に基づいて駆動電流値を決定することで、照射処理を効率化できる。
 10…紫外光照射装置、20…光源部、21…第1LED、22…第2LED、23…第3LED、24…第4LED、30…駆動部、40…計測部、50…表示操作部、60…制御部。
 本発明によれば、照射対象に対して効率的に紫外光を照射できる。

Claims (8)

  1.  少なくとも一つの紫外線LEDを含む光源部と、
     前記紫外線LEDに駆動電流を供給する駆動部と、
     前記駆動部の動作を制御する制御部と、を備え、
     前記制御部は、前記紫外線LEDの分光強度特性を示す情報と、前記光源部による光照射の対象となる照射対象の分光作用特性を示す情報とに基づいて、前記紫外線LEDの駆動電流値を算出し、
     前記駆動部は、前記制御部が算出した値の駆動電流を前記紫外線LEDに供給することを特徴とする紫外光照射装置。
  2.  前記制御部は、前記紫外線LEDの分光強度特性と前記照射対象の分光作用特性の積を波長に対して積算することにより得られる推定作用量が所定条件を満たすように前記紫外線LEDの駆動電流値を算出することを特徴とする請求項1に記載の紫外光照射装置。
  3.  前記制御部は、前記紫外線LEDの発光強度と前記紫外線LEDの駆動電流値の相関を示す情報に基づいて、前記紫外線LEDの駆動電流値を算出することを特徴とする請求項1または2に記載の紫外光照射装置。
  4.  前記紫外線LEDの発光強度を計測する計測部をさらに備え、
     前記制御部は、前記計測部の計測結果と前記紫外線LEDの駆動電流値の相関に基づいて、前記紫外線LEDの駆動電流値を算出することを特徴とする請求項1または2に記載の紫外光照射装置。
  5.  前記照射対象に与えるべき作用量の目標値の指定を受け付ける入力部をさらに備え、
     前記制御部は、前記目標値を実現するための前記紫外線LEDの駆動電流値を算出することを特徴とする請求項1から4のいずれか一項に記載の紫外光照射装置。
  6.  前記制御部は、前記目標値を実現するための前記紫外線LEDの駆動時間値を算出し、
     前記駆動部は、前記制御部が算出した値の駆動時間にわたって前記紫外線LEDに駆動電流を供給することを特徴とする請求項5に記載の紫外光照射装置。
  7.  前記入力部は、照射対象への光照射時間の指定をさらに受け付け、
     前記制御部は、前記作用量の目標値と前記光照射時間の双方の条件を満たすように前記紫外線LEDの駆動電流値を算出することを特徴とする請求項5または6に記載の紫外光照射装置。
  8.  前記光源部は、分光強度特性の異なる複数の紫外線LEDを含み、
     前記制御部は、前記複数の紫外線LEDのそれぞれの分光強度特性を示す情報に基づいて、前記複数の紫外線LEDのそれぞれに対応する複数の駆動電流値を算出し、
     前記駆動部は、前記制御部が算出した複数の値の駆動電流のそれぞれを対応する紫外線LEDに供給することを特徴とする請求項1から7のいずれか一項に記載の紫外光照射装置。
PCT/JP2017/033911 2016-09-27 2017-09-20 紫外光照射装置 WO2018061934A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780059186.XA CN109791958A (zh) 2016-09-27 2017-09-20 紫外光照射装置
EP17855889.6A EP3522238A1 (en) 2016-09-27 2017-09-20 Ultraviolet irradiation apparatus
US16/364,855 US20190216959A1 (en) 2016-09-27 2019-03-26 Ultraviolet irradiation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-188380 2016-09-27
JP2016188380A JP2018056236A (ja) 2016-09-27 2016-09-27 紫外光照射装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/364,855 Continuation US20190216959A1 (en) 2016-09-27 2019-03-26 Ultraviolet irradiation device

Publications (1)

Publication Number Publication Date
WO2018061934A1 true WO2018061934A1 (ja) 2018-04-05

Family

ID=61759676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033911 WO2018061934A1 (ja) 2016-09-27 2017-09-20 紫外光照射装置

Country Status (5)

Country Link
US (1) US20190216959A1 (ja)
EP (1) EP3522238A1 (ja)
JP (1) JP2018056236A (ja)
CN (1) CN109791958A (ja)
WO (1) WO2018061934A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286462A1 (ja) * 2021-07-15 2023-01-19 Phcホールディングス株式会社 Ledモジュールおよび培養装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6963720B2 (ja) * 2018-08-30 2021-11-10 日亜化学工業株式会社 発光装置
JP7228111B2 (ja) * 2018-10-02 2023-02-24 日亜化学工業株式会社 紫外線照射装置及び紫外線硬化樹脂の硬化方法
JP6796700B1 (ja) * 2019-12-11 2020-12-09 東京瓦斯株式会社 光照射システム
JP6774584B1 (ja) * 2020-03-27 2020-10-28 東京瓦斯株式会社 光照射システム
US11957810B2 (en) * 2020-05-08 2024-04-16 The Boeing Company Ultraviolet light sanitizing pacing systems and methods
CN112834034A (zh) * 2020-12-31 2021-05-25 南京杰思尔环保智能科技有限公司 基于单片机实现的神经元网络修正波长uv发生器和方法
CN112783041A (zh) * 2020-12-31 2021-05-11 南京杰思尔环保智能科技有限公司 基于单片机实现的模糊控制技术修正波长uv发生器及方法
CN112835291A (zh) * 2020-12-31 2021-05-25 南京杰思尔环保智能科技有限公司 基于单片机实现的自适应修正波长uv发生器和策略
US20240082441A1 (en) * 2021-01-21 2024-03-14 Signify Holding B.V. A light emitting system for disinfecting a target area
EP4295868A4 (en) * 2021-03-31 2024-08-07 Daikin Ind Ltd TREATMENT DEVICE, UV EMISSION DEVICE AND UV EMISSION METHOD

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025707A (ja) * 2001-07-11 2003-01-29 Konica Corp 放射線硬化型インクジェット用インク及び、それを用いるインクジェット記録方法
US20060204670A1 (en) * 2003-01-09 2006-09-14 Con-Trol-Cure, Inc. UV curing method and apparatus
JP2006256322A (ja) * 2006-02-18 2006-09-28 Keyence Corp 紫外線照射装置
JP2008307754A (ja) * 2007-06-13 2008-12-25 Tohoku Ricoh Co Ltd 印刷ユニット装置
JP2010056192A (ja) 2008-08-27 2010-03-11 Kyocera Corp 面発光型照射デバイス、面発光型照射装置、および液滴吐出装置
JP2012051335A (ja) * 2010-09-03 2012-03-15 Nk Works Kk 印刷方法、印刷装置および紫外線照射システム
JP2013084691A (ja) * 2011-10-06 2013-05-09 Sharp Corp 半導体欠陥補修方法および半導体欠陥補修装置
JP2015193002A (ja) * 2014-03-28 2015-11-05 京セラ株式会社 光照射装置および印刷装置
WO2015199148A1 (ja) * 2014-06-25 2015-12-30 日産化学工業株式会社 液晶表示素子
JP2017043079A (ja) * 2015-08-29 2017-03-02 京セラ株式会社 印刷方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289192A (ja) * 2005-04-06 2006-10-26 Omron Corp 紫外線照射装置
US9321281B2 (en) * 2009-03-27 2016-04-26 Electronics For Imaging, Inc. Selective ink cure
US8928249B2 (en) * 2011-08-25 2015-01-06 Abl Ip Holding Llc Reducing lumen variability over a range of color temperatures of an output of tunable-white LED lighting devices
EP2618635A1 (en) * 2012-01-19 2013-07-24 Koninklijke Philips Electronics N.V. Self-adjusting lighting driver for driving lighting sources and lighting unit including self-adjusting lighting driver
US9724441B2 (en) * 2012-08-28 2017-08-08 Sensor Electronic Technology, Inc. Storage device including target UV illumination ranges
CN103528686A (zh) * 2013-09-24 2014-01-22 岑夏凤 一种光谱可调的led照明系统的配方优化算法
CN104322297A (zh) * 2014-11-28 2015-02-04 北京中农腾达科技有限公司 一种促进植物生长的光源照射装置
CN104645504A (zh) * 2015-02-12 2015-05-27 上海希格玛高技术有限公司 用于精准照射的紫外线光疗仪
US10441937B2 (en) * 2015-10-29 2019-10-15 Kyocera Corporation Light irradiation device and light irradiation system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025707A (ja) * 2001-07-11 2003-01-29 Konica Corp 放射線硬化型インクジェット用インク及び、それを用いるインクジェット記録方法
US20060204670A1 (en) * 2003-01-09 2006-09-14 Con-Trol-Cure, Inc. UV curing method and apparatus
JP2006256322A (ja) * 2006-02-18 2006-09-28 Keyence Corp 紫外線照射装置
JP2008307754A (ja) * 2007-06-13 2008-12-25 Tohoku Ricoh Co Ltd 印刷ユニット装置
JP2010056192A (ja) 2008-08-27 2010-03-11 Kyocera Corp 面発光型照射デバイス、面発光型照射装置、および液滴吐出装置
JP2012051335A (ja) * 2010-09-03 2012-03-15 Nk Works Kk 印刷方法、印刷装置および紫外線照射システム
JP2013084691A (ja) * 2011-10-06 2013-05-09 Sharp Corp 半導体欠陥補修方法および半導体欠陥補修装置
JP2015193002A (ja) * 2014-03-28 2015-11-05 京セラ株式会社 光照射装置および印刷装置
WO2015199148A1 (ja) * 2014-06-25 2015-12-30 日産化学工業株式会社 液晶表示素子
JP2017043079A (ja) * 2015-08-29 2017-03-02 京セラ株式会社 印刷方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286462A1 (ja) * 2021-07-15 2023-01-19 Phcホールディングス株式会社 Ledモジュールおよび培養装置

Also Published As

Publication number Publication date
EP3522238A1 (en) 2019-08-07
US20190216959A1 (en) 2019-07-18
CN109791958A (zh) 2019-05-21
JP2018056236A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
WO2018061934A1 (ja) 紫外光照射装置
US12011331B2 (en) Dental curing light
CN110602945B (zh) 使用led灯培育植物的方法及采用该方法的led灯系统
US7772787B2 (en) Light source and method for optimising illumination characteristics thereof
KR100965993B1 (ko) 고체 상태 광원 및 그 광원을 제조하는 방법
JP4971623B2 (ja) Led光源装置の製造方法
EP2273851A2 (en) System and method for controlling LED cluster
US7321004B2 (en) Method for photo-curing polymerizable compositions
US20100140450A1 (en) Automatic photopolymerisation device
CN1700936A (zh) 尤其用于医学和牙科领域的使用电光和化学装置的漂白设备
US20140123555A1 (en) Narrowband photosynthetically active radiation ('PAR") substantially only at each of multiple emission wavelengths yields good photosynthesis at reduced energy cost
EP3562270A3 (en) Calibration of drivers of a light source
KR20110065550A (ko) 조명 장치, 발광 색 변경 방법 및 발광 색 일정도 유지 방법
TWI542329B (zh) 具有光譜掃描之光硬化裝置
KR20160089967A (ko) 클로로필 측정 센서프로브
KR102325885B1 (ko) 식물 공장용 조명 시스템
JP2020186966A5 (ja) 光学測定装置、光源装置
RU2721665C1 (ru) Способ определения деградации фитооблучателя на основе квазимонохроматических светодиодов и система для его осуществления
KR101694995B1 (ko) 조명 장치 및 조명 장치의 제어 방법
Moreno et al. An irradiance formula of LEDs at near zone
Gryko et al. Optoelectronic set to objectification irradiation of cell cultures in Low Level Light Therapy procedures
Shailesh Effects of electro-thermal conditions on luminous efficacies of phosphor-converted white light emitting diodes
JP2009076380A (ja) Led照明装置
KR20110113676A (ko) 조명 장치 및 조명 장치의 제어 방법
JP2020062599A (ja) 流体殺菌装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855889

Country of ref document: EP

Effective date: 20190429