WO2018061918A1 - 液晶表示装置および液晶表示装置の製造方法 - Google Patents

液晶表示装置および液晶表示装置の製造方法 Download PDF

Info

Publication number
WO2018061918A1
WO2018061918A1 PCT/JP2017/033863 JP2017033863W WO2018061918A1 WO 2018061918 A1 WO2018061918 A1 WO 2018061918A1 JP 2017033863 W JP2017033863 W JP 2017033863W WO 2018061918 A1 WO2018061918 A1 WO 2018061918A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
alignment film
substrate
display device
group
Prior art date
Application number
PCT/JP2017/033863
Other languages
English (en)
French (fr)
Inventor
真伸 水崎
箕浦 潔
坂井 彰
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201780058766.7A priority Critical patent/CN109791328B/zh
Priority to US16/334,914 priority patent/US10802344B2/en
Publication of WO2018061918A1 publication Critical patent/WO2018061918A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/031Polarizer or dye
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133746Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for high pretilt angles, i.e. higher than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133749Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for low pretilt angles, i.e. lower than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2

Definitions

  • the present invention relates to a liquid crystal display device and a method for manufacturing the liquid crystal display device.
  • liquid crystal display devices are widely used as portable electronic devices such as smartphones, displays for televisions, personal computers, and the like.
  • an electric field controlled birefringence (ECB) method is known (for example, see Patent Document 1).
  • ECB-type liquid crystal display device liquid crystal molecules (liquid crystal material) are aligned perpendicularly to a substrate without applying a voltage, and the tilt angle of the liquid crystal material is changed by applying a voltage, whereby the liquid crystal Transmission / non-transmission of polarized light is controlled by utilizing the birefringence of the material.
  • the angle (pretilt angle) of the liquid crystal material with respect to the substrate in a state where no voltage is applied may be adjusted in order to improve the viewing angle and increase the definition.
  • the pretilt angle of the liquid crystal material is changed, the amount of retardation generated in the polarized light passing through the liquid crystal layer changes, and light leakage occurs during black display.
  • the display is brightly displayed during black display, and the problem that the contrast, which is the ratio of the lightness during black display to the lightness during white display, tends to decrease.
  • an optical compensation film for controlling retardation in the liquid crystal display device.
  • an optical compensation film for controlling retardation in the liquid crystal display device.
  • the number of steps increases, and thus productivity decreases.
  • the required optical compensation film is thin because the change in retardation caused by the change in the pretilt angle of the liquid crystal material is minute. It becomes difficult to handle.
  • one embodiment of the present invention is a negative liquid crystal that is sandwiched between a first substrate, a second substrate facing the first substrate, the first substrate, and the second substrate.
  • a first retardation layer and a second alignment film provided on a surface of the second substrate on the liquid crystal layer side, wherein at least one of the first alignment film and the second alignment film is the A photo-alignment film that is in contact with a liquid crystal layer and gives a pretilt angle of 75 ° or more and less than 90 ° to the liquid crystal material, and the first retardation layer is formed of a first polymer material having a first photofunctional group,
  • the photo-alignment film is formed of a second polymer material having a second photofunctional group, and the first photofunctional group and
  • the second photofunctional group provides a liquid crystal display device which is a group that generates at least one photoreaction selected from the group consisting of isomerization reaction, dimerization reaction, fleece rearrangement reaction, and cleavage reaction.
  • one of the first alignment film and the second alignment film is the photo-alignment film, and the other of the first alignment film and the second alignment film is a vertical alignment film. It is good also as a structure.
  • the first alignment film and the second alignment film are the photo-alignment films, the alignment direction of the liquid crystal material by the first alignment film, and the liquid crystal by the second alignment film.
  • the material orientation direction may be set in the same direction in the visual field from the normal direction of the first substrate.
  • the said 2nd phase difference layer is a said 1st phase difference layer. It is good also as a structure which uses a polymeric material as a forming material.
  • the pretilt angle may be 80.0 ° or more and 88.5 ° or less.
  • the first photofunctional group may be at least one selected from the group consisting of a cinnamate group, an azobenzene group, a chalcone group, a tolan group, and a cyclobutane group.
  • the second photofunctional group may be at least one selected from the group consisting of a coumarin group, a cinnamate group, and a stilbene group.
  • an alignment maintaining layer may be further provided in contact with the surfaces of the first alignment film and the second alignment film.
  • the liquid crystal alignment direction in the first pixel, the liquid crystal alignment direction in the second pixel, the liquid crystal alignment direction in the third pixel, and the fourth pixel may be different from each other, and the liquid crystal alignment direction of an arbitrary pixel among the four adjacent pixels may be different from the liquid crystal alignment direction of the remaining three pixels by an integer multiple of 90 °.
  • the first alignment film and the second alignment film may both be the photo-alignment film.
  • the first alignment film may be a vertical alignment film
  • the second alignment film may be the photo-alignment film
  • a configuration may further be provided that further includes an underlayer provided between the second substrate and the second alignment film.
  • a configuration may further be provided that includes a second retardation layer provided between the second substrate and the second alignment film and having birefringence.
  • a liquid crystal display device that can easily suppress a decrease in contrast even when the pretilt angle is adjusted.
  • a method of manufacturing a liquid crystal display device that can easily manufacture such a liquid crystal display device can be provided.
  • FIG. 3 is a cross-sectional view schematically showing the liquid crystal display device of the first embodiment. It is a figure which shows the relationship between the liquid crystal aligning direction in the liquid crystal display device of this embodiment, and the slow axis of a 1st phase difference layer. It is a figure which shows the relationship between the liquid crystal aligning direction in the liquid crystal display device of this embodiment, and the slow axis of a 1st phase difference layer.
  • the flowchart which shows the manufacturing method of the liquid crystal display device which concerns on 2nd Embodiment. Sectional drawing which shows the liquid crystal display device of 3rd Embodiment typically.
  • FIG. 1 is a cross-sectional view schematically showing a liquid crystal display device of the present embodiment.
  • the liquid crystal display device 100 of this embodiment includes an element substrate 10, a counter substrate 20, and a liquid crystal layer 30.
  • the liquid crystal display device 100 of the present embodiment employs a VA (Vertical Alignment) ECB mode device configuration.
  • VA Vertical Alignment
  • the element substrate 10 is provided on the surface of the first retardation layer 12 in contact with the TFT substrate 11, the first retardation layer 12 provided on the surface of the TFT substrate 11 on the liquid crystal layer 30 side, and the first retardation layer 12.
  • the first alignment film 13 and the first polarizing plate 19 provided on the opposite side of the TFT substrate 11 from the liquid crystal layer 30 are included.
  • the TFT substrate 11 corresponds to the “first substrate” in one embodiment of the present invention.
  • the TFT substrate 11 has a driving TFT element (not shown).
  • the drain electrode, the gate electrode, and the source electrode of the driving TFT element are electrically connected to the pixel electrode, the gate bus line, and the source bus line, respectively.
  • Each pixel is electrically connected via an electric wiring of a source bus line and a gate bus line.
  • each member of the TFT substrate 11 As a forming material of each member of the TFT substrate 11, a generally known material can be used.
  • IGZO a quaternary mixed crystal semiconductor material containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O)
  • the resulting semiconductor layer has a small off-leakage current, so that charge leakage is suppressed. Thereby, the rest period after voltage application to the liquid crystal layer can be lengthened. As a result, the number of times of voltage application during the period for displaying an image can be reduced, and the power consumption of the liquid crystal display device can be reduced.
  • the TFT substrate 11 may be an active matrix type in which each pixel includes a driving TFT, or may be a simple matrix type liquid crystal display device in which each pixel does not include a driving TFT.
  • the first retardation layer 12 is an optical element that is formed using a birefringent material, has birefringence, and imparts a predetermined retardation (retardation) to incident linearly polarized light.
  • the first retardation layer 12 of the present embodiment is directly provided on the surface of the TFT substrate 11 without interposing an alignment film.
  • the material for forming the first retardation layer 12 is a polymer material having a photofunctional group.
  • the material for forming the first retardation layer 12 corresponds to the “first polymer material” in one embodiment of the present invention, and the photofunctional group that the material for forming the first retardation layer 12 has in one embodiment of the present invention. Corresponds to “first photofunctional group”.
  • the first polymer material has at least one selected from the group consisting of a polyamic acid skeleton and a (meth) acryl skeleton as a main chain skeleton.
  • the first photofunctional group is a group that absorbs light and generates at least one photoreaction selected from the group consisting of an isomerization reaction, a dimerization reaction, a Fries rearrangement reaction, and a cleavage reaction.
  • the first photofunctional group include a cinnamate group (the following formula (1)), an azobenzene group (the following formula (2)), a chalcone group (the following formula (3)), a tolan group (the following formula (4)), and cyclobutane. Examples include at least one selected from the group consisting of a group (the following formula (5)).
  • the first photofunctional group may be included in the main chain skeleton of the first polymer material, or may be included in the side chain of the first polymer material.
  • the first photofunctional group is preferably contained in the side chain of the first polymer material because the photoreaction is easy and the light irradiation amount for causing the photoreaction can be suppressed.
  • the hydrogen atom may be substituted with a monovalent organic group or a fluorine atom
  • the hydrogen atom may be substituted with a monovalent organic group
  • the hydrogen atom may be substituted with a monovalent organic group
  • the hydrogen atom may be substituted with a monovalent organic group
  • photofunctional groups generate photoisomerization, dimerization reaction, and cleavage reaction by absorbing light in the absorption band of each photofunctional group.
  • first polymer material examples include the following.
  • the first polymer material having a polyamic acid skeleton has a polyamic acid skeleton represented by the following formula (10), and X units contained in the polyamic acid are represented by the following formulas (X-1) to (X-7) And those in which the E unit is represented by the following formulas (E-1) to (E-14), and those having the first photofunctional group in any of the X unit and the E unit can be exemplified.
  • the first photofunctional groups that can be adopted by the X unit are the following formulas (X-101) to (X-105), and the first photofunctional groups that can be adopted by the E unit are the following formulas (E-101) to (E-105) can be exemplified.
  • the first polymer material having a polyamic acid skeleton has a polyamic acid skeleton represented by the following formula (11), and an X unit contained in the polyamic acid is represented by the above formulas (X-1) to (X-8).
  • an E unit of the following formulas (E-21) to (E-36) and those having a first photofunctional group in the Z unit can be exemplified.
  • the first photofunctional group include the following formulas (Z-101) to (Z-106).
  • the first polymer material having a siloxane acid skeleton has a siloxane skeleton represented by the following formula (20) or a siloxane skeleton represented by the following formula (21), and the first photofunctional group is provided on the Z unit provided as a side chain. What it has can be illustrated. Examples of the first photofunctional group include the above formulas (Z-101) to (Z-103).
  • is any one of a hydrogen atom, a hydroxyl group and an alkoxy group.
  • the plurality of ⁇ may be the same or different from each other.
  • r is 0 ⁇ r ⁇ 0.5.
  • p represents an integer
  • is any one of a hydrogen atom, a hydroxyl group and an alkoxy group.
  • the plurality of ⁇ may be the same or different from each other.
  • r is 0 ⁇ r ⁇ 0.5.
  • p represents an integer
  • the coating film containing the material for forming the first retardation layer 12 is heat-treated.
  • the polymers constituting the coating film are polymerized to each other, and lose their fluidity to be cured.
  • the heated coating film is irradiated with polarized light.
  • a photofunctional group that receives polarized light undergoes a photoreaction.
  • the heated coating film has anisotropy in accordance with the polarization direction / irradiation direction.
  • the first retardation layer 12 exhibits appropriate birefringence as a retardation layer.
  • the in-plane retardation value of the first retardation layer 12 can be controlled by controlling the type of the first polymer material used and the thickness of the first retardation layer 12.
  • the first alignment film 13 has a function of giving alignment regulating force to the liquid crystal material in contact with the surface.
  • the first alignment film 13 may be a vertical alignment film or a photo-alignment film that gives a pretilt angle to the liquid crystal material.
  • the material for forming the alignment film has a photofunctional group, and is provided with alignment regulating force by light irradiation.
  • the material for forming the first alignment film 13 is a polymer material having a photofunctional group.
  • the material for forming the first alignment film 13 corresponds to the “second polymer material” in one embodiment of the present invention, and the photofunctional group included in the material for forming the first alignment film 13 is the “second polymer material in one embodiment of the present invention. Corresponds to “2 photofunctional group”.
  • the second polymer material has at least one selected from the group consisting of a polyamic acid skeleton and a siloxane skeleton as a main chain skeleton. Among these, a siloxane skeleton is preferable as the main chain skeleton of the second polymer material.
  • the second photofunctional group is a group that absorbs light and causes at least one photoreaction selected from the group consisting of an isomerization reaction, a dimerization reaction, and a Fries rearrangement reaction.
  • Examples of the second photofunctional group include at least one selected from the group consisting of a cinnamate group (the above formula (1)), a coumarin group (the following formula (5)), and a stilbene group (the following formula (6)). It is done.
  • the hydrogen atom may be substituted with a monovalent organic group
  • the hydrogen atom may be substituted with a monovalent organic group
  • the second photofunctional group may be directly bonded to the silicon atom included in the siloxane skeleton described above, or may be included in the side chain bonded to the silicon atom. Since the photoreaction is easy and the amount of light irradiation for causing the photoreaction can be suppressed, the second photofunctional group is preferably contained in the side chain. Also, not all side chains need to contain photofunctional groups, and for the purpose of improving thermal and chemical stability, they contain non-photoreactive side chains such as thermally functionalized polymerizable functional groups. You may go out.
  • the photofunctional groups cause photoisomerization and dimerization reaction by absorbing polarized light in the absorption band of each photofunctional group.
  • the second photofunctional group absorbs polarized light of the second wavelength and changes its structure
  • the first alignment film 13 defines the alignment direction of the liquid crystal material in contact with the surface in an arbitrary direction. That is, the first alignment film 13 can define the alignment direction of the liquid crystal material in an arbitrary direction according to the irradiation direction of the polarized light having the second wavelength when formed.
  • the second photofunctional group may be the same functional group as the first photofunctional group. Further, the second wavelength and the first wavelength may be the same wavelength.
  • the second polymer material include the following.
  • the second polymer material having a polyamic acid skeleton has the polyamic acid skeleton represented by the above formula (11), and the X units contained in the polyamic acid are represented by the above formulas (X-1) to (X-8). And those having the E unit of the above formulas (E-21) to (E-36), and those having the second photofunctional group in the Z unit can be exemplified. Examples of the second photofunctional group include the following formulas (Z-201) to (Z-223).
  • the second polymer material having a siloxane acid skeleton has a siloxane skeleton represented by the above formula (20) or a siloxane skeleton represented by the above formula (21), and a second photofunctional group is provided on a Z unit provided as a side chain. What it has can be illustrated.
  • Examples of the second photofunctional group include the following formulas (Z-224) to (Z-225).
  • Formation material for vertical alignment film Specific examples of the material for forming the vertical alignment film include the following.
  • an X unit having a polyamic acid skeleton represented by the above formula (11) and contained in the polyamic acid is represented by the above formulas (X-1) to (X-8).
  • Any one of the above formulas (E-21) to (E-36) and the Z unit is any of the following formulas (Z-301) to (Z-307) It can be illustrated.
  • a Z unit having a siloxane skeleton represented by the above formula (20) or a siloxane skeleton represented by the above formula (21) as a side chain is represented by the above formula (Z-301). ) To (Z-307).
  • the first polarizing plate 19 can be of a normally known configuration.
  • the counter substrate 20 is, for example, a color filter substrate 21, a second retardation layer 22 provided on the surface of the color filter substrate 21 on the liquid crystal layer 30 side, and the second retardation layer 22 in contact with the second retardation layer 22.
  • a second alignment film 23 provided on the surface and a second polarizing plate 29 provided on the side of the color filter substrate 21 opposite to the liquid crystal layer 30 are included.
  • the color filter substrate 21 corresponds to the “second substrate” in one embodiment of the present invention.
  • the color filter substrate 21 is, for example, a red color filter layer that absorbs part of incident light and transmits red light, a green color filter layer that absorbs part of incident light and transmits green light, and It has a blue color filter layer that partially absorbs and transmits blue light. Further, the color filter substrate 21 may have an overcoat layer covering the surface for the purpose of flattening the substrate surface and preventing elution of the color material component from the color filter layer.
  • the second retardation layer 22 is an optical element that is formed using a birefringent material, has birefringence, and imparts a predetermined retardation (retardation) to incident linearly polarized light.
  • the second retardation layer 22 of the present embodiment is directly provided on the surface of the color filter substrate 21 without an alignment film.
  • the material for forming the second retardation layer 22 may be the same as the first polymer material described above.
  • the retardation value of the second retardation layer 22 may be the same as or different from that of the first retardation layer 12.
  • the second alignment film 23 has a function of giving alignment regulating force to the liquid crystal material in contact with the surface.
  • the second alignment film 23 may be a vertical alignment film or a photo-alignment film that gives a pretilt angle to the liquid crystal material.
  • one of the first alignment film 13 and the second alignment film 23 is a photo-alignment film that gives a pretilt angle to the liquid crystal material.
  • the pretilt angle given to the liquid crystal material is 75 ° or more and less than 90 °.
  • the pretilt angle is preferably 80.0 ° or more.
  • the pretilt angle is preferably 88.5 ° or less, and more preferably less than 88.5 °.
  • the upper limit value and the lower limit value of the pretilt angle can be arbitrarily combined.
  • the pretilt angle that the first alignment film 13 gives to the liquid crystal material and the pretilt angle that the second alignment film 23 gives to the liquid crystal material are: It may be the same or different.
  • the alignment direction of the liquid crystal material by the first alignment film 13 and the alignment direction of the liquid crystal material by the second alignment film 23 are TFTs.
  • the field of view of the substrate 11 from the normal direction is preferably set to antiparallel orientation.
  • Anti-parallel alignment means that the azimuth angles of the liquid crystal material are the same in the field of view when the TFT substrate is viewed in plan.
  • the material for forming the second alignment film 23 can be the same as the second polymer material described above.
  • the second polarizing plate 29 As the second polarizing plate 29, a normally known configuration can be used.
  • the 1st polarizing plate 19 and the 2nd polarizing plate 29 are crossed Nicol arrangement, for example.
  • the liquid crystal layer 30 includes a liquid crystal material.
  • the liquid crystal material is a composition containing liquid crystal molecules having liquid crystallinity.
  • the liquid crystal material may be composed of only liquid crystal molecules that exhibit liquid crystal properties alone, and is a composition in which liquid crystal molecules that exhibit liquid crystal properties alone and organic compounds that do not exhibit liquid crystal properties alone are mixed. In addition, the composition as a whole may exhibit liquid crystallinity.
  • As the liquid crystal material negative liquid crystal having negative dielectric anisotropy is used. The liquid crystal molecules are given orientation according to the alignment regulating force of the first alignment film 13 and the second alignment film 23 in the state where no voltage is applied.
  • the liquid crystal display device 100 includes a seal portion that is sandwiched between the element substrate 10 and the counter substrate 20 and surrounds the periphery of the liquid crystal layer 30, and a spacer that is a columnar structure for defining the thickness of the liquid crystal layer 30. You may do it.
  • the liquid crystal display device having such a configuration makes it easy to change the pretilt angle while suppressing a decrease in contrast.
  • the angle (pretilt angle) of the liquid crystal material with respect to the substrate in a state where no voltage is applied may be adjusted in order to improve the viewing angle and increase the definition.
  • the pretilt angle of the liquid crystal material is changed, the amount of retardation generated in the polarized light passing through the liquid crystal layer changes, and light leakage occurs during black display.
  • the display is brightly displayed during black display, and the problem that the contrast, which is the ratio of the lightness during black display to the lightness during white display, tends to decrease.
  • a retardation that cancels a change in retardation of the liquid crystal layer that occurs when the pretilt angle is adjusted is imparted to the retardation layer (first retardation layer, second retardation layer).
  • the retardation layer first retardation layer, second retardation layer
  • the irradiation amount of polarized light when forming the retardation layer, the irradiation angle of the polarized light irradiated to the retardation layer with respect to the alignment direction of the liquid crystal, the formation material of the retardation layer, the retardation layer By changing various conditions such as the layer thickness, the retardation applied to the retardation layer can be adjusted. For this reason, even if the retardation generated with the change in the pretilt angle of the liquid crystal material is very small, the retardation value that the retardation layer (first retardation layer, second retardation layer) should have can be appropriately prepared. It becomes possible.
  • a vertical alignment type liquid crystal display device having a predetermined pretilt angle that exhibits a desired contrast is used as a reference, and the pretilt is achieved while suppressing a decrease in contrast from the configuration of the reference liquid crystal display device.
  • the retardation value that the retardation layer should have should be estimated by the following formulas (1) to (3). can do.
  • Re (photo) is a retardation value of the retardation layer.
  • Re (photo) is preferably 0.1 nm or more and 10 nm or less.
  • D is the thickness (unit: nm) of the liquid crystal layer.
  • ne is an extraordinary refractive index of the liquid crystal material constituting the liquid crystal layer.
  • n o is the ordinary refractive index of the liquid crystal material constituting the liquid crystal layer.
  • X is a pretilt angle (unit: °) of the photo-alignment film of an existing liquid crystal display device (reference liquid crystal display device) that exhibits a desired contrast ratio, and is 75 ° or more and less than 90 °.
  • the average value of the pretilt angles of the pair of alignment films is meant.
  • is the pretilt angle (unit: °) of the liquid crystal display device after the change.
  • the pretilt angles imparted to the liquid crystal material by the pair of alignment films are different from each other, the smaller pretilt angle is meant.
  • C is a coefficient depending on the (polar angle) anchoring strength of the liquid crystal layer. C tends to increase as the anchoring strength of the liquid crystal layer increases.
  • the alignment direction of the liquid crystal layer is set to 45 ° with respect to the crossed Nicols polarizing plate. C is 0.01 to 0.20.
  • the coefficient C can be obtained, for example, as follows. First, a pre-tilt applied to the photo-alignment film using a material for forming a photo-alignment film used for the reference liquid crystal display device and a material for the liquid crystal layer (liquid crystal material) used for the reference liquid crystal display device Two or more liquid crystal cells having different corners are manufactured. At this time, the azimuth angle of the pretilt angle is the same as that of the reference liquid crystal display device.
  • a graph (scatter diagram) based on the actual measurement values is created with the pretilt angle on the horizontal axis and the retardation value on the vertical axis.
  • a graph based on the above formula (1) is superimposed on the scatter diagram.
  • the coefficient C in the equation (1) is changed to obtain a coefficient C in which the actually measured retardation value and the graph according to the equation (1) are preferably matched (the equation (1) is fitted to the actually measured value). In this way, the coefficient C is obtained.
  • the diameter C may be obtained from an actual measurement value as described above, or may be obtained using a simulation result instead of the actual measurement value.
  • LCD Master manufactured by Shintech
  • Shintech can be used for the simulation.
  • a liquid crystal display device having a transmitted light intensity equivalent to an existing liquid crystal display device for example, an existing liquid crystal display device having a pretilt angle of 88.5 °
  • an appropriate value can be estimated as the retardation value Re (photo) of the retardation layer.
  • the second retardation layer 22 is adopted.
  • a polymer layer having no in-plane retardation hereinafter referred to as a base layer.
  • a material for forming the underlayer a polymer material having the same main chain skeleton as the first polymer material and the second polymer material described above and having no photofunctional group can be used.
  • the above-described material for forming the vertical alignment film can also be employed.
  • Specific examples of the material for forming the foundation layer include the following.
  • the material of the underlayer having a polyamic acid skeleton has a polyamic acid skeleton represented by the above formula (11), and the X units contained in the polyamic acid are represented by the above formulas (X-1) to (X-8) And those in which the E unit is the above formulas (E-21) to (E-36), and those in which the Z unit has the following formulas (Z-401) to (Z-408) can be exemplified. .
  • the above-described material for forming a vertical alignment film having a polyamic acid skeleton and the material for forming a vertical alignment film having a siloxane skeleton can also be used.
  • the second alignment film 23 may be formed directly on the surface of the color filter substrate 21 without forming the second retardation layer 22.
  • the TFT substrate 11 included in the element substrate 10 is used as a “first substrate” in one aspect of the present invention, and the element substrate 10 always includes a retardation layer (first retardation layer 12). Although it was set as the structure, it is not restricted to this. The reason why the TFT substrate 11 is the “first substrate” and the color filter substrate 21 is the “second substrate” is for convenience in the present embodiment.
  • the color filter substrate 21 is the “first substrate” and the counter substrate. 20 may always have a retardation layer.
  • FIGS. 2 and 3 are explanatory diagrams of a configuration that can be employed in the liquid crystal display device of the present embodiment, and are diagrams illustrating a relationship between the liquid crystal alignment direction and the slow axis of the first retardation layer.
  • the liquid crystal display device shown in FIGS. 2 and 3 has a configuration in which a pair of substrates each have a photo-alignment film having a pretilt angle (Nos. 1 to 3 in Table 1 above).
  • 2 and 3 show a liquid crystal display device having a configuration referred to as “4D-ECB (Electrically Controlled Birefringence)”.
  • the direction along one side of the element substrate 10 and the counter substrate 20 shown in the rectangle is the x-axis direction
  • the direction orthogonal to the x-axis direction in the substrate plane is the y-axis direction, the x-axis direction
  • a direction (that is, a vertical direction) orthogonal to each of the y-axis directions is defined as a z-axis direction.
  • FIG. 2 shows pixels P arranged in a 2 ⁇ 2 matrix that the liquid crystal display device 110 has.
  • the element substrate 10 and the counter substrate 20 are each divided into domains D corresponding to the respective pixels P.
  • the liquid crystal alignment direction indicated by an arrow that is, the azimuth angle of the pretilt direction of the liquid crystal molecules applied to the photo alignment film is defined for each domain D.
  • the direction away from the intersection O of the four domains D is 45 ° or 135 ° with respect to the y axis in the + x direction, and 45 ° with respect to the y axis in the ⁇ x direction.
  • the liquid crystal alignment direction is defined in the direction of 135 °.
  • the direction approaches the intersection O of the four domains D, and is 45 ° or 135 ° with respect to the y axis in the + x direction, and 45 ° or 135 ° with respect to the y axis in the ⁇ x direction.
  • the liquid crystal alignment direction is defined in the direction of.
  • the liquid crystal alignment direction in each domain becomes an antiparallel direction (ECB mode alignment).
  • EB mode alignment In such a liquid crystal display device 110, in the four adjacent pixels P, the liquid crystal alignment direction in the first pixel, the liquid crystal alignment direction in the second pixel, the liquid crystal alignment direction in the third pixel, The liquid crystal alignment directions in the pixels are different from each other. Further, the liquid crystal alignment direction of an arbitrary pixel among the four adjacent pixels P and the liquid crystal alignment direction of the remaining three pixels are different by an integral multiple of 90 °.
  • the slow axis of the first retardation layer is in the + x direction (symbol a1), the -x direction (symbol a2), the + y direction (symbol a3), and the -y direction (symbol). a4) is set.
  • the slow axis of the first retardation layer and the liquid crystal alignment direction in each domain intersect at 45 ° or 135 °.
  • FIG. 3 shows four pixels P (arranged in a 1 ⁇ 4 matrix) arranged in the ⁇ y direction, which the liquid crystal display device 120 has.
  • the element substrate 10 and the counter substrate 20 are each divided into domains D corresponding to the respective pixels P.
  • the liquid crystal alignment direction that is, the azimuth angle of the pretilt direction of the liquid crystal molecules applied to the photo-alignment film is defined for each domain D. Specifically, in the element substrate 10, 45 ° with respect to the y axis in the ⁇ x direction, 135 ° with respect to the y axis in the ⁇ x direction, 135 ° with respect to the y axis in the + x direction, and 135 ° with respect to the y axis in the + x direction.
  • the liquid crystal alignment direction is defined in each direction of 45 °.
  • the angle is 135 ° with respect to the y axis in the + x direction, 45 ° with respect to the y axis in the + x direction, 45 ° with respect to the y axis in the ⁇ x direction, and 135 ° with respect to the y axis in the ⁇ x direction.
  • a liquid crystal alignment direction is defined in each direction.
  • the liquid crystal alignment direction in each domain becomes an antiparallel direction (ECB mode alignment).
  • the slow axis of the first retardation layer is set in any of + x direction, ⁇ x direction, + y direction, and ⁇ y direction.
  • the slow axis of the first retardation layer and the liquid crystal alignment direction in each domain intersect at 45 ° or 135 °.
  • a liquid crystal display device having a liquid crystal alignment direction as shown in FIGS. 2 and 3 can be manufactured by a generally known manufacturing method using proximity exposure.
  • the liquid crystal alignment direction of either the element substrate 10 or the counter substrate 20 may be changed by 90 °.
  • the liquid crystal display device having such a configuration is a liquid crystal display device having a structure called “4D-RTN (Reverse Twisted Nematic)”.
  • the liquid crystal display device of the present embodiment has the above configuration.
  • liquid crystal display device configured as described above, it is possible to provide a liquid crystal display device that can easily suppress a decrease in contrast even if the pretilt angle is adjusted.
  • FIG. 4 is a flowchart showing a method for manufacturing a liquid crystal display device according to the second embodiment of the present invention.
  • the manufacturing method of the liquid crystal display device of the present embodiment will be described with reference to the flowchart of FIG.
  • the manufacturing method of the present embodiment is applicable to both the manufacturing of the element substrate 10 and the manufacturing of the counter substrate 20 described above. Therefore, in the following description, the substrate on which the retardation layer and the alignment film are formed is simply referred to as “substrate” without being limited to “TFT substrate 11” and “color filter substrate 21”. Similarly, regarding the retardation layer and the alignment film formed on the substrate, the “retardation layer” is simply added without limiting the first retardation layer, the second retardation layer, the first alignment film, and the second alignment film. It will be described as “[alignment film]”.
  • Step S1 a mixed solution containing a first polymer material having a first photofunctional group and a second polymer material having a second photofunctional group in a side chain is applied on the substrate (step S1).
  • the first photofunctional group one that does not cause photoreaction with polarized light having a wavelength that causes photoreaction in the second photofunctional group is selected. Further, as the second photofunctional group, one that does not cause photoreaction is selected with polarized light having a wavelength that causes photoreaction in the first photofunctional group.
  • the coating method of the solution various known methods can be adopted as long as a coating film having a desired film thickness can be obtained.
  • a spin coating method a bar coating method, an ink jet method, a slit coating method, a screen printing method, or the like can be employed.
  • the solution is applied by using a spin coating method.
  • step S2 the solvent is removed from the applied mixed solution, and further, the first coating film having the first polymer material as the forming material and the second coating material having the second polymer material as the forming material are further baked and dried. A laminated film with the film is formed (step S2).
  • drying may be promoted by removing the solvent by standing, heating, decompressing, blowing, or a combination thereof.
  • the layer is separated from the first polymer material so that the second polymer material is located on the air interface side during firing.
  • step S3 the formed laminated film is heated.
  • the first polymer material and the second polymer material are polymerized and lose fluidity and are cured.
  • Step S4 the first polarized light having a wavelength that causes a photoreaction in the first photofunctional group is irradiated to the laminated film after heating.
  • the irradiation of the first polarized light is performed from the normal direction of the substrate, for example.
  • the first photofunctional group one that causes a photoreaction in the first polarized light but does not cause a photoreaction in the second polarized light having a wavelength that causes a photoreaction in the second photofunctional group is used. Thereby, a photoreaction occurs only in the first photofunctional group, and a retardation layer is formed.
  • Step S5 the second laminated film having the wavelength that causes the second photofunctional group to undergo a photoreaction is irradiated onto the heated laminated film (step S5).
  • the irradiation with the second polarized light is performed, for example, from a direction inclined by 45 ° with respect to the normal line of the substrate.
  • the second photofunctional group one that causes a photoreaction in the second polarized light but does not cause a photoreaction in the first polarized light having a wavelength that causes the first photofunctional group to undergo a photoreaction is used.
  • the first photofunctional group forming the retardation layer does not photoreact, and only the second photofunctional group undergoes a photoreaction to form a photoalignment film.
  • the intensity of the second polarized light is smaller than the intensity of the first polarized light. For example, if the intensity of the first polarized light is 2 J / cm 2 , the intensity of the second polarized light is about 50 mJ / cm 2 .
  • the intensity of the second polarized light is smaller than the intensity of the first polarized light, it is difficult for the second polarized light to reach the first photofunctional group forming the retardation layer, and only the second photofunctional group undergoes a photoreaction. Prone to occur.
  • the irradiation amount of the first polarized light, the irradiation angle of the first polarized light with respect to the alignment direction of the liquid crystal material by the photo-alignment film, the formation material of the retardation layer, the layer of the retardation layer By changing various conditions such as thickness, the phase difference applied to the phase difference layer can be easily adjusted. For this reason, even if the retardation generated with the change in the pretilt angle of the liquid crystal material is very small, the retardation value that the retardation layer (first retardation layer, second retardation layer) should have can be appropriately prepared. It becomes possible.
  • FIG. 5 is a cross-sectional view schematically showing a liquid crystal display device 150 of the third embodiment, and corresponds to FIG. As shown in FIG. 5, the liquid crystal display device 150 of this embodiment includes an element substrate 15, a counter substrate 25, and a liquid crystal layer 30.
  • the element substrate 15 has an alignment maintaining layer 16 provided on the surface of the first alignment film 13 on the liquid crystal layer 30 side.
  • the counter substrate 25 has an alignment maintaining layer 26 provided on the surface of the second alignment film 23 on the liquid crystal layer 30 side.
  • the alignment maintaining layers 16 and 26 are made of a photopolymerized material, and define the function of regulating the alignment direction of the liquid crystal molecules of the liquid crystal layer 30 and improving the alignment regulating force when no voltage is applied to the liquid crystal layer 30. It has the function to do.
  • the alignment maintaining layers 16 and 26 are made of, for example, dimethacrylate represented by the following formula (30) or dimethacrylate represented by the following formula (31) as a polymerizable monomer.
  • the alignment maintaining layer When the alignment maintaining layer is formed, a material obtained by adding 0.5% by mass or less of dimethacrylate as described above to 100% by mass of the liquid crystal material used in the liquid crystal layer 30 is used. After using such a liquid crystal material and bonding a pair of substrates, non-polarized black light (wavelength: 320 nm) is irradiated for 20 minutes (5 J / cm 2 ) with no voltage applied. As a result, the dimethacrylate as described above forms an alignment maintaining layer that is deposited on the surface of the alignment film.
  • liquid crystal display device 150 having such alignment maintaining layers 16 and 26, in addition to the effect of one embodiment of the present invention, a change in VHR (Voltage Holding Ratio), residual DC, and pretilt angle is suppressed. It becomes quality.
  • VHR Voltage Holding Ratio
  • VHR Voltage Holding Ratio, voltage holding ratio
  • Residual DC measured by flicker elimination method.
  • Pretilt angle change amount The amount of change between the pretilt angle before energization and the pretilt angle after energization with an AC voltage of 7.5 V was measured. It can be determined that the liquid crystal display device having a smaller change amount of the pretilt angle is a better product.
  • Example 1 A film containing a mixture of a polyamic acid represented by the following formula (101) and a polyamic acid represented by the following formula (102) is applied to one surface of a substrate having an ITO electrode (hereinafter referred to as “substrate A”). did.
  • substrate A a substrate having an ITO electrode
  • polyamic acid represented by the following formula (101) and the polyamic acid represented by the following formula (102) those having a weight average molecular weight of 10,000 or more were used.
  • polarized light having a wavelength of 365 nm as a center was irradiated from the substrate normal direction by 2 J / cm 2 , and a retardation layer was formed by applying a retardation to the polyimide layer having the above formula (102) as a forming material.
  • the retardation of the retardation layer was 3 nm.
  • polarized light having a wavelength of 315 nm as the center was irradiated by 50 mJ / cm 2 from a direction of 45 ° with respect to the normal direction of the substrate.
  • the polarized light was irradiated so that the polarization axis of the polarized light to be irradiated intersected with the polarization axis of the polarized light irradiated to the retardation layer by 45 ° in a plan view.
  • a pretilt angle of about 87.0 ° was given to the polyimide layer having the above formula (101) as a forming material, and a photo-alignment film was formed.
  • substrate B a coating containing a mixture of the polyamic acid represented by the above formula (101) and the polyamic acid represented by the following formula (103) is applied to one surface of another substrate (hereinafter referred to as “substrate B”) to form a film. did.
  • polarized light having a wavelength of 315 nm as a center is irradiated with 50 mJ / cm 2 from a direction of 45 ° with respect to the normal direction of the substrate, and about 87.0 ° is applied to the polyimide layer having the above formula (101) as a forming material.
  • a pre-tilt angle was imparted to form a photo-alignment film.
  • a sealing agent was drawn on the photo-alignment film side of the substrate A, and a negative liquid crystal material was dropped on the photo-alignment film side of the substrate B. Both substrates were bonded together under vacuum to cure the sealant, and then re-aligned by heating to 130 ° C. to obtain a liquid crystal cell. At this time, the phase difference ⁇ n ⁇ d of the liquid crystal layer was designed to be 330 nm.
  • Example 1 Similarly to the substrate B, the substrate A is formed using a paint containing a mixture of the polyamic acid represented by the above formula (101) and the polyamic acid represented by the above formula (103).
  • a liquid crystal cell was produced in the same manner as in Example 1 except that. In the liquid crystal cell of Comparative Example 1, the pretilt angle of the photo-alignment film was 87.0 °.
  • Example 1 The liquid crystal cells of Example 1 and Comparative Example 1 obtained were evaluated by the above method. The evaluation results are shown in Table 2.
  • Example 1 As a result of the evaluation, it was found that the liquid crystal cell of Example 1 had no significant difference in response time, VHR, rDC, and tilt angle variation compared to the liquid crystal cell of Comparative Example 1, but the contrast was improved.
  • Example 2 A film containing the polyamic acid represented by the above formula (101) was applied to one surface of the substrate A without using the polyamic acid represented by the above formula (103).
  • polarized light having a wavelength of 315 nm as a center is irradiated with 50 mJ / cm 2 from a direction of 45 ° with respect to the normal direction of the substrate, and about 87.0 ° is applied to the polyimide layer having the above formula (101) as a forming material.
  • a pre-tilt angle was imparted to form a photo-alignment film.
  • a sealing agent was drawn on the photo-alignment film side of the substrate A, and a negative liquid crystal material was dropped on the photo-alignment film side of the substrate B produced in the same manner as in Example 1.
  • a monomer represented by the following formula (201) was dissolved in an amount of 0.3 mass% with respect to the entire liquid crystal material.
  • Both substrates were bonded together under vacuum to cure the sealant, and then heated to 130 ° C. to perform reorientation. Further, non-polarized black light (wavelength: 320 nm) was irradiated for 20 minutes (5 J / cm 2 ) to form an alignment maintaining layer to obtain a liquid crystal cell. At this time, the phase difference ⁇ n ⁇ d of the liquid crystal layer was designed to be 330 nm.
  • Example 2 A liquid crystal cell was produced in the same manner as in Example 2 except that the monomer represented by the above formula (201) was not dissolved in the negative liquid crystal material.
  • Example 2 The obtained liquid crystal cell of Example 2 and the liquid crystal cell of Comparative Example 2 were evaluated by the above methods. The evaluation results are shown in Table 3. For reference, the evaluation results for the liquid crystal cell of Example 1 are shown in Table 3.
  • the liquid crystal cell of Comparative Example 2 has only the photo-alignment film as the layer structure on the substrate A side as compared with the liquid crystal cell of Example 1 having a two-layer structure of the retardation layer and the photo-alignment film. As a result, the resistance of the entire film between the substrate A and the liquid crystal layer decreases. As a result, the liquid crystal cell of Comparative Example 2 has a lower VHR and an increased rDC than the liquid crystal cell of Example 1.
  • the polymer obtained by polymerizing the monomer represented by the above formula (201) functions as an alignment maintaining layer, and all of VHR, rDC, and tilt angle change amount can be improved. .
  • Example 3 A film containing a mixture of a polyamic acid represented by the above formula (102) and a polysiloxane represented by the following formula (105) was applied to each of the substrates A and B to form a film.
  • polarized light centered at a wavelength of 365 nm was irradiated from the normal direction of the substrate at 5 J / cm 2 , and a retardation layer was formed by applying a retardation to the polyamic acid layer having the above formula (102) as a forming material. .
  • the retardation of the retardation layer was 7 nm.
  • polarized light having a wavelength of 315 nm as a center is irradiated with 100 mJ / cm 2 from a direction of 50 ° with respect to the normal direction of the substrate, and the polysiloxane layer having the above formula (105) as a forming material is about 86.0 °.
  • the photo-alignment film was formed with a pretilt angle of.
  • a sealing agent was drawn on the photo-alignment film side of the substrate A, and a negative liquid crystal material was dropped on the photo-alignment film side of the substrate B. Both substrates were bonded together under vacuum to cure the sealant, and then re-aligned by heating to 130 ° C. to obtain a liquid crystal cell. At this time, the phase difference ⁇ n ⁇ d of the liquid crystal layer was designed to be 330 nm.
  • the substrate A, for each B, and polarization around the wavelength 315 nm, 100 mJ / cm 2 was irradiated from a direction of 50 ° with respect to the substrate normal direction, polysiloxanes to form the material of the above formula (105)
  • a pre-tilt angle of about 86.0 ° was given to this layer to form a photo-alignment film.
  • a sealing agent was drawn on the photo-alignment film side of the substrate A, and a negative liquid crystal material was dropped on the photo-alignment film side of the substrate B. Both substrates were bonded together under vacuum to cure the sealant, and then re-aligned by heating to 130 ° C. to obtain a liquid crystal cell. At this time, the phase difference ⁇ n ⁇ d of the liquid crystal layer was designed to be 330 nm.
  • Example 3 The liquid crystal cells of Example 3 and Comparative Example 3 thus obtained were evaluated by the above method. The evaluation results are shown in Table 4.
  • Example 4 A coating containing a mixture of polyamic acid represented by the following formula (106) and polysiloxane represented by the following formula (107) was applied to one surface of the substrate A to form a film.
  • polarized light centered at a wavelength of 365 nm was irradiated from the normal direction of the substrate at 5 J / cm 2 , and a retardation layer was formed by adding a retardation to the polyamic acid layer having the formula (106) as a forming material. .
  • the retardation of the retardation layer was 15 nm.
  • polarized light having a wavelength of 315 nm as a center is irradiated with 100 mJ / cm 2 from a direction of 50 ° with respect to the normal direction of the substrate, and the polysiloxane layer having the above formula (107) as a forming material is about 80.0 °.
  • the photo-alignment film was formed with a pretilt angle of.
  • a coating containing a mixture of polyamic acid represented by the above formula (103) and polysiloxane represented by the following formula (108) was applied to one surface of the substrate B to form a film.
  • polarized light having a wavelength of 315 nm as a center is irradiated with 100 mJ / cm 2 from a direction of 50 ° with respect to the normal direction of the substrate, and the polysiloxane layer having the above formula (107) as a forming material is about 80.0 °.
  • the photo-alignment film was formed with a pretilt angle of.
  • a sealing agent was drawn on the photo-alignment film side of the substrate A, and a negative liquid crystal material was dropped on the photo-alignment film side of the substrate B. Both substrates were bonded together under vacuum to cure the sealant, and then re-aligned by heating to 130 ° C. to obtain a liquid crystal cell. At this time, the phase difference ⁇ n ⁇ d of the liquid crystal layer was designed to be 330 nm.
  • a coating containing a mixture of the polyamic acid represented by the above formula (103) and the polysiloxane represented by the above formula (107) is applied, formed, and baked, whereby the above formula is formed on the substrate side.
  • a laminate of a polyimide layer having (103) as a forming material and a vertical alignment film having the above formula (107) as a forming material overlapping with the layer was formed.
  • a sealing agent was drawn on the photo-alignment film side of the substrate A, and a negative liquid crystal material was dropped on the photo-alignment film side of the substrate B produced in the same manner as in Example 4. Both substrates were bonded together under vacuum to cure the sealant, and then re-aligned by heating to 130 ° C. to obtain a liquid crystal cell. At this time, the phase difference ⁇ n ⁇ d of the liquid crystal layer was designed to be 330 nm.
  • Example 4 The liquid crystal cells of Example 4 and Comparative Example 4 thus obtained were evaluated by the above method. The evaluation results are shown in Table 5.
  • pretilt angle is 80.0 ° and 90.0 °, compared with the first and second embodiments in which the pretilt angle is 87.0 ° and the third embodiment in which the pretilt angle is 86.0 °. It was found that the rising response speed is fast, but the falling response speed is slow.
  • Example 5 A film containing polysiloxane represented by the above formula (107) was applied to one surface of the substrate A without using the polyamic acid represented by the above formula (106).
  • polarized light having a wavelength of 315 nm as a center is irradiated with 100 mJ / cm 2 from a direction of 50 ° with respect to the normal direction of the substrate, and the polysiloxane layer having the above formula (107) as a forming material is about 80.0 °.
  • the photo-alignment film was formed with a pretilt angle of.
  • a sealing agent was drawn on the photo-alignment film side of the substrate A, and a negative liquid crystal material was dropped on the photo-alignment film side of the substrate B produced in the same manner as in Example 4.
  • the monomer represented by the following formula (202) was dissolved in an amount of 0.3 mass% with respect to the entire liquid crystal material.
  • Both substrates were bonded together under vacuum to cure the sealant, and then heated to 130 ° C. to perform reorientation. Further, non-polarized black light (wavelength: 320 nm) was irradiated for 20 minutes (5 J / cm 2 ) to form an alignment maintaining layer to obtain a liquid crystal cell. At this time, the phase difference ⁇ n ⁇ d of the liquid crystal layer was designed to be 330 nm.
  • the liquid crystal cell of Comparative Example 5 is composed of only the photo-alignment film on the substrate A side as compared with the liquid crystal cell of Example 4 having a two-layer structure of the base layer and the photo-alignment film.
  • the resistance of the entire film between the substrate A and the liquid crystal layer decreases.
  • the liquid crystal cell of Comparative Example 5 has a lower VHR and an increased rDC than the liquid crystal cell of Example 4.
  • the polymer obtained by polymerizing the monomer represented by the above formula (202) functioned as an alignment maintaining layer, and all of VHR, rDC, and tilt angle change amount could be improved.
  • Example 6 A photo-alignment film was formed on one surface of the substrate A in the same manner as in Example 5.
  • a polysiloxane layer having the above formula (107) as a forming material was formed on one surface of the substrate B, and baked to form a vertical alignment film.
  • a sealing agent was drawn on the photo-alignment film side of the substrate A, and a negative liquid crystal material was dropped on the photo-alignment film side of the substrate B. Both substrates were bonded together under vacuum to cure the sealant, and then re-aligned by heating to 130 ° C. to obtain a vertical ECB mode liquid crystal cell. At this time, the phase difference ⁇ n ⁇ d of the liquid crystal layer was designed to be 330 nm.
  • the liquid crystal cell of Example 6 has the same response time, VHR, rDC, and tilt angle as the liquid crystal cell of Comparative Example 4 having the same pretilt angle configuration and no retardation layer as the liquid crystal cell of Example 6. It was found that the contrast was improved although there was no significant difference in the amount of change.
  • One embodiment of the present invention can be applied to, for example, a liquid crystal panel having a novel configuration, a method for manufacturing a liquid crystal panel that makes it easy to manufacture such a liquid crystal panel, a display device using the same.
  • SYMBOLS 10 Element substrate, 11 ... TFT substrate (1st substrate), 12 ... 1st phase difference layer, 13 ... 1st orientation film, 16, 26 ... Orientation maintenance layer, 20 ... Opposite substrate, 21 ... Color filter substrate (1st) 2 substrates), 22 ... second retardation layer, 23 ... second alignment film, 30 ... liquid crystal layer, 100, 150 ... liquid crystal display device

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

第1基板と、第2基板と、第1基板と第2基板とに挟持され、ネガ型の液晶材料を含む液晶層と、第1基板の液晶層側の面に設けられた第1配向膜と、第1基板と第1配向膜との間に設けられ、複屈折性を有する第1位相差層と、第2基板の液晶層側の面に設けられた第2配向膜と、を備え、第1配向膜および第2配向膜の少なくともいずれか一方は、液晶層と接し液晶材料に75°以上90°未満のプレチルト角を与える光配向膜であり、第1位相差層は、第1光官能基を有する第1高分子材料を形成材料とし、光配向膜は、第2光官能基を有する第2高分子材料を形成材料とし、第1光官能基および第2光官能基は、異性化反応、二量化反応、フリース転位反応、開裂反応のうち少なくとも1つの反応を生じる基である液晶表示装置。

Description

液晶表示装置および液晶表示装置の製造方法
 本発明は、液晶表示装置および液晶表示装置の製造方法に関するものである。
 本願は、2016年9月29日に日本に出願された特願2016-190892号について優先権を主張し、その内容をここに援用する。
 従来、スマートフォン等の携帯型電子機器や、テレビジョン、パーソナルコンピューター等のディスプレイとして、液晶表示装置が広く用いられている。
 液晶表示装置の配向モードの一つとして、電界制御複屈折(ECB、Electrically Controlled Birefringence)方式が知られている(例えば、特許文献1参照)。垂直配向型のECB方式の液晶表示装置では、電圧を印加しない状態で液晶分子(液晶材料)が基板に対して垂直に配向し、電圧を印加することで液晶材料の傾斜角度を変更させ、液晶材料の複屈折性を利用して偏光の透過・非透過を制御している。
特開2012-173600号公報
 特許文献1に記載されたような液晶表示装置では、視野角の改善や高精細化のため、電圧を印加しない状態における液晶材料の基板に対する角度(プレチルト角)を調整することがある。しかし、液晶材料のプレチルト角を変更すると、液晶層を通過する偏光に生じるリタデーションの大きさが変化し、黒表示時に光漏れを生じる。その結果、黒表示時に明るく表示されてしまい、白表示時の明度に対する黒表示時の明度の比であるコントラストが低下するという課題が生じやすい。
 このような課題に対し、液晶表示装置にリタデーションを制御する光学補償フィルム(位相差フィルム)を設けて課題を解決することも考えられる。しかし、光学補償フィルムが貼合された液晶表示装置(液晶パネル)を製造する場合、工程が増えるため生産性が低下する。
 また、単位膜厚あたりで補償できるリタデーション値が大きい光学補償フィルムを用いた場合、液晶材料のプレチルト角の変更に伴って生じるリタデーションの変化が微小であることから、必要とする光学補償フィルムが薄くなり、取扱いが困難となる。
 さらに、単位膜厚あたりで補償できるリタデーション値が大きい光学補償フィルムを用いた場合、液晶材料のプレチルト角の変更に伴って生じるリタデーション自体は適切に補償可能である。しかし、必要とする光学補償フィルムが厚くなるため、液晶表示装置全体の光透過率が低下してしまう。
 本発明の一態様はこのような事情に鑑みてなされたものであって、プレチルト角を調整したとしてもコントラストの低下を容易に抑制可能な液晶表示装置を提供することを目的とする。
また、このような液晶表示装置を容易に製造可能な液晶表示装置の製造方法を提供することをあわせて目的とする。
 上記の課題を解決するため、本発明の一形態は、第1基板と、前記第1基板と対向する第2基板と、前記第1基板と前記第2基板とに挟持され、ネガ型の液晶材料を含む液晶層と、前記第1基板の前記液晶層側の面に設けられた第1配向膜と、前記第1基板と前記第1配向膜との間に設けられ、複屈折性を有する第1位相差層と、前記第2基板の前記液晶層側の面に設けられた第2配向膜と、を備え、前記第1配向膜および前記第2配向膜の少なくともいずれか一方は、前記液晶層と接し前記液晶材料に75°以上90°未満のプレチルト角を与える光配向膜であり、前記第1位相差層は、第1光官能基を有する第1高分子材料を形成材料とし、前記光配向膜は、第2光官能基を有する第2高分子材料を形成材料とし、前記第1光官能基および前記第2光官能基は、異性化反応、二量化反応、フリース転位反応、開裂反応からなる群から選ばれる少なくとも1つの光反応を生じる基である液晶表示装置を提供する。
 本発明の一形態においては、前記第1配向膜および前記第2配向膜の一方は、前記光配向膜であり、前記第1配向膜および前記第2配向膜の他方は、垂直配向膜である構成としてもよい。
 本発明の一形態においては、前記第1配向膜および前記第2配向膜は、前記光配向膜であり、前記第1配向膜による前記液晶材料の配向方向と、前記第2配向膜による前記液晶材料の配向方向とは、前記第1基板の法線方向からの視野において同方向に設定されている構成としてもよい。
 本発明の一形態においては、前記第2基板と前記第2配向膜との間に設けられ、複屈折性を有する第2位相差層を有し、前記第2位相差層は、前記第1高分子材料を形成材料とする構成としてもよい。
 本発明の一形態においては、前記プレチルト角が80.0°以上88.5°以下である構成としてもよい。
 本発明の一形態においては、前記第1光官能基は、シンナメート基、アゾベンゼン基、カルコン基、トラン基、シクロブタン基からなる群から選ばれる少なくとも1種である構成としてもよい。
 本発明の一形態においては、前記第2光官能基は、クマリン基、シンナメート基、スチルベン基からなる群から選ばれる少なくとも1種である構成としてもよい。
 本発明の一形態においては、前記第1配向膜および前記第2配向膜の表面に接する配向維持層をさらに有する構成としてもよい。
 本発明の一形態においては、隣接する4つの画素において、第1の画素における液晶配向方向と、第2の画素における液晶配向方向と、第3の画素における液晶配向方向と、第4の画素における液晶配向方向とが互いに異なり、前記隣接する4つの画素のうち任意の画素の液晶配向方向と、残る3つの画素の液晶配向方向とが、90°の整数倍に異なっている構成としてもよい。
 本発明の一形態においては、前記第1配向膜および前記第2配向膜は、いずれも前記光配向膜である構成としてもよい。
 本発明の一形態においては、前記第1配向膜は、垂直配向膜であり、前記第2配向膜は、前記光配向膜である構成としてもよい。
 本発明の一形態においては、前記第2基板と前記第2配向膜との間に設けられた下地層をさらに有する構成としてもよい。
 本発明の一形態においては、前記第2基板と前記第2配向膜との間に設けられ、複屈折性を有する第2位相差層をさらに有する構成としてもよい。
 また、本発明の一形態は、基板上に、第1光官能基を有する第1高分子材料と、第2光官能基を側鎖に有する第2高分子材料と、を含む混合溶液を塗布した後、溶媒を除去して、前記第1高分子材料を形成材料とする第1塗膜と前記第2高分子材料を形成材料とする第2塗膜との積層膜を形成する工程と、前記積層膜を加熱する工程と、加熱後の前記積層膜に対し、前記第1光官能基に光反応を生じる波長の第1偏光を照射する工程と、加熱後の前記積層膜に対し、前記第2光官能基に光反応を生じる波長の第2偏光を照射する工程と、を有し、前記第1光官能基は、前記第2偏光では光反応を生じず、前記第2光官能基は、前記第1偏光では光反応を生じない液晶表示装置の製造方法を提供する。
 本発明の一態様によれば、プレチルト角を調整したとしてもコントラストの低下を容易に抑制可能な液晶表示装置を提供することができる。また、このような液晶表示装置を容易に製造可能な液晶表示装置の製造方法を提供することができる。
第1実施形態の液晶表示装置を模式的に示す断面図。 本実施形態の液晶表示装置における液晶配向方向と第1位相差層の遅相軸との関係を示す図である。 本実施形態の液晶表示装置における液晶配向方向と第1位相差層の遅相軸との関係を示す図である。 第2実施形態に係る液晶表示装置の製造方法を示すフロー図。 第3実施形態の液晶表示装置を模式的に示す断面図。
[第1実施形態]
 以下、図を参照しながら、本発明の第1実施形態に係る液晶表示装置について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
 図1は、本実施形態の液晶表示装置を模式的に示す断面図である。図1に示すように、本実施形態の液晶表示装置100は、素子基板10、対向基板20、液晶層30を有している。本実施形態の液晶表示装置100は、VA(Vertical Alignment)方式ECBモードの装置構成を採用している。
(素子基板)
 素子基板10は、TFT基板11と、TFT基板11の液晶層30側の面に設けられた第1位相差層12と、第1位相差層12に接し第1位相差層12の表面に設けられた第1配向膜13と、TFT基板11の液晶層30とは反対側に設けられた第1偏光板19と、を有している。
 TFT基板11は、本発明の一態様における「第1基板」に該当する。
 TFT基板11には、不図示の駆動用TFT素子を有している。駆動用TFT素子のドレイン電極、ゲート電極、およびソース電極は、それぞれ画素電極、ゲートバスライン、およびソースバスラインに電気的に接続されている。各画素は、ソースバスライン、ゲートバスラインの電気配線を介して電気的に接続されている。
 TFT基板11の各部材の形成材料は、通常知られた材料を用いることができる。駆動用TFTの半導体層の材料としては、IGZO(インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)を含む4元混晶半導体材料)を用いることが好ましい。IGZOを半導体層の形成材料として用いた場合、得られる半導体層ではオフリーク電流が小さいため、電荷のリークが抑制される。これにより、液晶層に電圧印加後の休止期間を長くすることができる。その結果、画像を表示する期間中の電圧印加回数を減らすことができ、液晶表示装置の消費電力を低減することができる。
 TFT基板11は、各画素に駆動用TFTを備えるアクティブマトリクス方式であってもよく、各画素が駆動用TFTを備えていない単純マトリクス方式の液晶表示装置であってもよい。
(第1位相差層)
 第1位相差層12は、複屈折材料を用いて形成されることで複屈折性を有し、入射する直線偏光に対し所定の位相差(リタデーション)を付与する光学素子である。本実施形態の第1位相差層12は、TFT基板11の表面に、配向膜を介することなく直接設けられている。
 第1位相差層12の形成材料は、光官能基を有する高分子材料である。第1位相差層12の形成材料は、本発明の一態様における「第1高分子材料」に該当し、第1位相差層12の形成材料が有する光官能基は、本発明の一態様における「第1光官能基」に該当する。
(第1高分子材料)
 第1高分子材料は、主鎖骨格としてポリアミック酸骨格、(メタ)アクリル骨格からなる群から選ばれる少なくとも1種を有する。
 第1光官能基は、光を吸収して、異性化反応、二量化反応、フリース転位反応、開裂反応からなる群から選ばれる少なくとも1つの光反応を生じる基である。第1光官能基としては、例えばシンナメート基(下記式(1))、アゾベンゼン基(下記式(2))、カルコン基(下記式(3))、トラン基(下記式(4))、シクロブタン基(下記式(5))からなる群から選ばれる少なくとも1種が挙げられる。第1光官能基は、第1高分子材料の主鎖骨格に含まれることとしてもよく、第1高分子材料の側鎖に含まれることとしてもよい。光反応が容易であり光反応を生じさせるための光照射量を抑制可能であることから、第1光官能基は、第1高分子材料の側鎖に含まれるほうが好ましい。
Figure JPOXMLDOC01-appb-C000001
 
(式中、水素原子は1価の有機基、フッ素原子で置換されていてもよい)
Figure JPOXMLDOC01-appb-C000002
 
(式中、水素原子は1価の有機基で置換されていてもよい)
Figure JPOXMLDOC01-appb-C000003
 
(式中、水素原子は1価の有機基で置換されていてもよい)
Figure JPOXMLDOC01-appb-C000004
 
(式中、水素原子は1価の有機基で置換されていてもよい)
Figure JPOXMLDOC01-appb-C000005
 
 これらの光官能基は、各光官能基の吸収帯域の光を吸収することで、光異性化、二量化反応、開裂反応を生じる。
 第1高分子材料としては、具体的には次のようなものを例示することができる。
(ポリアミック酸骨格のもの)
 ポリアミック酸骨格を有する第1高分子材料としては、下記式(10)に示すポリアミック酸骨格を有し、ポリアミック酸に含まれるXユニットが下記式(X-1)~(X-7)であるもの、およびEユニットが下記式(E-1)~(E-14)であるものに、さらに、XユニットおよびEユニットのいずれかに第1光官能基を有するものを例示することができる。Xユニットが採用し得る第1光官能基としては、下記式(X-101)~(X-105)、Eユニットが採用し得る第1光官能基としては、下記式(E-101)~(E-105)を例示することができる。
Figure JPOXMLDOC01-appb-C000006
 
(式中、pは整数を示す)
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
 または、ポリアミック酸骨格を有する第1高分子材料としては、下記式(11)に示すポリアミック酸骨格を有し、ポリアミック酸に含まれるXユニットが上記式(X-1)~(X-8)であるもの、およびEユニットが下記式(E-21)~(E-36)であるものに、さらに、Zユニットに第1光官能基を有するものを例示することができる。第1光官能基としては、下記式(Z-101)~(Z-106)を例示することができる。
Figure JPOXMLDOC01-appb-C000012
 
(式中、pは整数を示す)
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
(シロキサン酸骨格のもの)
 シロキサン酸骨格を有する第1高分子材料としては、下記式(20)に示すシロキサン骨格、または下記式(21)に示すシロキサン骨格を有し、側鎖として備えるZユニットに第1光官能基を有するものを例示することができる。第1光官能基としては、上記式(Z-101)~(Z-103)を例示することができる。
Figure JPOXMLDOC01-appb-C000016
 
(式中、αは水素原子、水酸基、アルコキシ基のいずれかである。複数のαは同一でもよく、互いに異なっていてもよい。
 rは0<r≦0.5である。pは整数を示す)
Figure JPOXMLDOC01-appb-C000017
 
(式中、αは水素原子、水酸基、アルコキシ基のいずれかである。複数のαは同一でもよく、互いに異なっていてもよい。
 rは0<r≦0.5である。pは整数を示す)
 第1位相差層12を形成する際には、まず第1位相差層12の形成材料を含む塗膜を加熱処理する。これにより塗膜を構成する高分子が互いに重合し、流動性を失って硬化する。
 次いで、加熱後の塗膜に偏光を照射する。これにより、上述したような光官能基のうち、偏光を受光した光官能基が光反応する。その結果、加熱後の塗膜は偏光方向・照射方向に応じた異方性を有する。
 すなわち、第1高分子材料を形成材料とし、加熱処理と偏光照射とを行うことによって、第1位相差層12は、位相差層として適切な複屈折性を示す。第1位相差層12の面内リタデーション値については、用いる第1高分子材料の種類、および第1位相差層12の厚みを制御することにより制御可能である。
(第1配向膜)
 第1配向膜13は、表面に接する液晶材料に配向規制力を与える機能を有する。第1配向膜13は、垂直配向膜であってもよく、液晶材料に対してプレチルト角を与える光配向膜であってもよい。光配向膜は、配向膜の形成材料が光官能基を有し、光照射することで配向規制力を付与したものである。
 第1配向膜13の形成材料は、光官能基を有する高分子材料である。第1配向膜13の形成材料は、本発明の一態様における「第2高分子材料」に該当し、第1配向膜13の形成材料が有する光官能基は、本発明の一態様における「第2光官能基」に該当する。
(第2高分子材料)
 第2高分子材料は、主鎖骨格としてポリアミック酸骨格、シロキサン骨格からなる群から選ばれる少なくとも1種を有する。中でも、第2高分子材料の主鎖骨格としては、シロキサン骨格が好ましい。
 第2光官能基は、光を吸収して、異性化反応、二量化反応、フリース転位反応からなる群から選ばれる少なくとも1つの光反応を生じる基である。第2光官能基としては、例えば、シンナメート基(上記式(1))、クマリン基(下記式(5))、スチルベン基(下記式(6))からなる群から選ばれる少なくとも1種が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 
(式中、水素原子は1価の有機基で置換されていてもよい)
Figure JPOXMLDOC01-appb-C000019
 
(式中、水素原子は1価の有機基で置換されていてもよい)
 第2光官能基は、上述したシロキサン骨格に含まれるケイ素原子に直接結合していてもよく、ケイ素原子に結合する側鎖中に含まれていてもよい。光反応が容易であり光反応を生じさせるための光照射量を抑制可能であることから、第2光官能基は、側鎖に含まれるほうが好ましい。また、すべての側鎖が光官能基を含んでいる必要はなく、熱・化学安定性を向上させることを目的として、熱的に架橋する重合性官能基など非光反応性の側鎖を含んでいてもよい。
 これらの光官能基は、各光官能基の吸収帯域の偏光を吸収することで、光異性化や二量化反応を生じる。その結果、第2光官能基は、第2の波長の偏光を吸収して構造が変化し、第1配向膜13は、表面に接する液晶材料の配向方向を任意の方向に規定する。すなわち、第1配向膜13は、形成時の第2の波長の偏光の照射方向に応じて、液晶材料の配向方向を任意の方向に規定することができる。
 なお、第2光官能基は、第1光官能基と同じ官能基であってもよい。また、第2の波長と第1の波長とは同じ波長であってもよい。
 第2高分子材料としては、具体的には次のようなものを例示することができる。
(ポリアミック酸骨格のもの)
 ポリアミック酸骨格を有する第2高分子材料としては、上記式(11)に示すポリアミック酸骨格を有し、ポリアミック酸に含まれるXユニットが上記式(X-1)~(X-8)であるもの、およびEユニットが上記式(E-21)~(E-36)であるものに、さらに、Zユニットに第2光官能基を有するものを例示することができる。第2光官能基としては、下記式(Z-201)~(Z-223)を例示することができる。
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
 
(シロキサン酸骨格のもの)
 シロキサン酸骨格を有する第2高分子材料としては、上記式(20)に示すシロキサン骨格、または上記式(21)に示すシロキサン骨格を有し、側鎖として備えるZユニットに第2光官能基を有するものを例示することができる。第2光官能基としては、下記式(Z-224)~(Z-225)を例示することができる。
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000044
 
(垂直配向膜の形成材料)
 垂直配向膜の形成材料としては、具体的には次のようなものを例示することができる。
(ポリアミック酸骨格のもの)
 ポリアミック酸骨格を有する垂直配向膜の形成材料としては、上記式(11)に示すポリアミック酸骨格を有し、ポリアミック酸に含まれるXユニットが上記式(X-1)~(X-8)のいずれかであり、Eユニットが上記式(E-21)~(E-36)のいずれかであり、Zユニットが下記式(Z-301)~(Z-307)のいずれかであるものを例示することができる。
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000047
 
(シロキサン酸骨格のもの)
 シロキサン酸骨格を有する第2高分子材料としては、上記式(20)に示すシロキサン骨格、または上記式(21)に示すシロキサン骨格を有し、側鎖として備えるZユニットが上記式(Z-301)~(Z-307)のいずれかであるものを例示することができる。
 第1偏光板19は、通常知られた構成のものを用いることができる。
(対向基板)
 対向基板20は、例えばカラーフィルタ基板21と、カラーフィルタ基板21の液晶層30側の面に設けられた第2位相差層22と、第2位相差層22に接し第2位相差層22の表面に設けられた第2配向膜23と、カラーフィルタ基板21の液晶層30とは反対側に設けられた第2偏光板29と、を有している。
 カラーフィルタ基板21は、本発明の一態様における「第2基板」に該当する。
 カラーフィルタ基板21は、例えば、入射する光の一部を吸収し赤色光を透過させる赤色カラーフィルタ層、入射する光の一部を吸収し緑色光を透過させる緑色カラーフィルタ層、入射する光の一部を吸収し青色光を透過させる青色カラーフィルタ層を有している。
さらに、カラーフィルタ基板21は、基板表面の平坦化とカラーフィルタ層からの色材成分の溶出を防ぐことを目的として、表面を覆うオーバーコート層を有していてもよい。
(第2位相差層)
 第2位相差層22は、複屈折材料を用いて形成されることで複屈折性を有し、入射する直線偏光に対し所定の位相差(リタデーション)を付与する光学素子である。本実施形態の第2位相差層22は、カラーフィルタ基板21の表面に、配向膜を介することなく直接設けられている。
 第2位相差層22の形成材料は、上述した第1高分子材料と同様のものを用いることができる。第2位相差層22のリタデーション値は、第1位相差層12と同じであってもよく、異なっていてもよい。
(第2配向膜)
 第2配向膜23は、表面に接する液晶材料に配向規制力を与える機能を有する。第2配向膜23は、垂直配向膜であってもよく、液晶材料に対してプレチルト角を与える光配向膜であってもよい。
 ただし、第1配向膜13と第2配向膜23とのいずれか一方は、液晶材料に対してプレチルト角を与える光配向膜である。第1配向膜13が光配向膜である場合、または第2配向膜23が光配向膜である場合、これらが液晶材料に与えるプレチルト角は、75°以上90°未満である。プレチルト角は、80.0°以上が好ましい。また、プレチルト角は88.5°以下であることが好ましく、88.5°未満であることがより好ましい。プレチルト角の上限値と下限値とは任意に組み合わせることができる。
 第1配向膜13と第2配向膜23とがいずれも光配向膜である場合、第1配向膜13が液晶材料に与えるプレチルト角と、第2配向膜23が液晶材料に与えるプレチルト角は、同じであってもよく、異なっていてもよい。
 第1配向膜13と第2配向膜23とがいずれも光配向膜である場合、第1配向膜13による液晶材料の配向方向と、第2配向膜23による液晶材料の配向方向とは、TFT基板11の法線方向からの視野(TFT基板を平面視したときの視野)において反平行配向に設定されているとよい。「反平行配向」とは、TFT基板を平面視したときの視野において、液晶材料の方位角が同じであることを指す。
 第2配向膜23の形成材料は、上述した第2高分子材料と同様のものを用いることができる。
 第2偏光板29は、通常知られた構成のものを用いることができる。第1偏光板19と第2偏光板29とは、例えばクロスニコル配置となっている。
(液晶層)
 液晶層30は、液晶材料を含んでいる。液晶材料は、液晶性を有する液晶分子を含む組成物である。液晶材料は、単独で液晶性を発現する液晶分子のみで構成されていてもよく、単独で液晶性を発現する液晶分子と、単独では液晶性を発現しない有機化合物とが混合した組成物であって、組成物全体として液晶性を発現するものであってもよい。液晶材料は、誘電異方性が負のネガ型液晶を用いる。液晶分子には、電圧無印加状態において、第1配向膜13、第2配向膜23の配向規制力に応じた配向性が付与されている。
 その他、液晶表示装置100は、素子基板10と対向基板20とに挟持され、液晶層30の周囲を囲むシール部や、液晶層30の厚さを規定するための柱状構造物であるスペーサを有していてもよい。
 このような構成の液晶表示装置は、コントラストの低下を抑制しながらプレチルト角を変更することが容易となる。
 すなわち、液晶表示装置においては、視野角の改善や高精細化のため、電圧を印加しない状態における液晶材料の基板に対する角度(プレチルト角)を調整することがある。しかし、液晶材料のプレチルト角を変更すると、液晶層を通過する偏光に生じるリタデーションの大きさが変化し、黒表示時に光漏れを生じる。その結果、黒表示時に明るく表示されてしまい、白表示時の明度に対する黒表示時の明度の比であるコントラストが低下するという課題が生じやすい。
 しかし、本実施形態の液晶表示装置においては、位相差層(第1位相差層、第2位相差層)に、プレチルト角を調整した時に生じる液晶層のリタデーションの変化を相殺するリタデーションを付与することで、黒表示時の光漏れを抑制することができる。
 このような構成の液晶表示装置では、位相差層を形成する際の偏光の照射量、液晶の配向方向に対する位相差層に照射する偏光の照射角度、位相差層の形成材料、位相差層の層厚等の各種条件を変更することにより、位相差層に付与する位相差を調整することができる。そのため、液晶材料のプレチルト角の変更に伴って生じるリタデーションが微小であったとしても、位相差層(第1位相差層、第2位相差層)が備えるべきリタデーション値を適切に調製することが可能となる。
 例えば、所定のプレチルト角を有する垂直配向方式の液晶表示装置であって、所望のコントラストを発現しているものを基準とし、当該基準の液晶表示装置の構成から、コントラストの低下を抑制しながらプレチルト角を変更する際に、位相差層が有するべきリタデーション値(第1位相差層のリタデーション値と第2位相差層のリタデーション値との合計)は、下記式(1)~(3)により概算することができる。
Figure JPOXMLDOC01-appb-M000048
 
Figure JPOXMLDOC01-appb-M000049
 
Figure JPOXMLDOC01-appb-M000050
 
 なお、式中、Re(photo)は、位相差層のリタデーション値である。Re(photo)は、0.1nm以上10nm以下であることが好ましい。
 dは、液晶層の厚み(単位:nm)である。
 nは、液晶層を構成する液晶材料の異常光屈折率である。
 nは、液晶層を構成する液晶材料の常光屈折率である。
 θは、液晶層について屈折率楕円体を考えたとき、nのベクトルおよびnのベクトルの合成ベクトルとnのベクトルとのなす角である。
 Xは、所望のコントラスト比を発現する既存の液晶表示装置(基準の液晶表示装置)が有する光配向膜のプレチルト角(単位:°)であり、75°以上90°未満である。基準の液晶表示装置において、一対の配向膜が液晶材料に付与するプレチルト角がそれぞれ異なる場合は、一対の配向膜のプレチルト角の平均値を意味する。
 αは、変更後の液晶表示装置のプレチルト角(単位:°)である。変更後の液晶表示装置において、一対の配向膜が液晶材料に付与するプレチルト角がそれぞれ異なる場合は、小さい方のプレチルト角を意味する。
 Cは、液晶層の(極角)アンカリング強度に依存する係数である。液晶層のアンカリング強度が大きいほど、Cが大きくなる傾向がある。ここで、液晶層の配向方向は、クロスニコル偏光板に対して45°方向とする。Cは、0.01~0.20である。
 ここで、係数Cは、例えば次のようにして求めることができる。
 まず、基準の液晶表示装置に用いられている光配向膜の形成材料と、基準の液晶表示装置に用いられている液晶層の材料(液晶材料)とを用い、光配向膜に付与されたプレチルト角のみ異なる2つ以上の液晶セルを作製する。この際、プレチルト角の方位角については、基準の液晶表示装置と同じとする。
 次いで、得られた液晶セルのそれぞれのリタデーションを測定する。
 次いで、プレチルト角と測定したリタデーションとについて、横軸をプレチルト角、縦軸をリタデーション値とした、実測値に基づくグラフ(散布図)を作成する。一方、上記式(1)に基づいたグラフを同散布図に重ねる。その際、式(1)における係数Cを変化させ、実測したリタデーション値と式(1)によるグラフとが好適に一致する係数Cを求める(実測値に式(1)をフィッティングさせる)。このようにして係数Cを求める。
 径数Cは、上述のように実測値から求めてもよく、実測値の代わりにシミュレーション結果を用いて求めてもよい。シミュレーションには、例えばLCD Master(Shintech社製)を用いることができる。
 上記式(1)を用いると、例えば、既存の液晶表示装置(例えば、現存するプレチルト角88.5°の液晶表示装置)と同等の透過光強度の液晶表示装置を、プレチルト角87°で製造する場合に、位相差層のリタデーション値Re(photo)として適切な値を見積もることができる。
 なお、本実施形態においては第2位相差層22を採用することとしたが、第2位相差層22のかわりに、面内位相差を有さない高分子層(以下、下地層と称する)を用いてもよい。下地層の形成材料としては、上述した第1高分子材料や第2高分子材料と同様の主鎖骨格を有し、且つ光官能基を有さない高分子材料を用いることができる。また、下地層の形成材料としては、上述した垂直配向膜の形成材料を採用することもできる。
 下地層の形成材料としては、具体的には次のようなものを例示することができる。
 ポリアミック酸骨格を有する下地層の材料としては、上記式(11)に示すポリアミック酸骨格を有し、ポリアミック酸に含まれるXユニットが上記式(X-1)~(X-8)であるもの、およびEユニットが上記式(E-21)~(E-36)であるものに、さらに、Zユニットに下記式(Z-401)~(Z-408)を有するものを例示することができる。
Figure JPOXMLDOC01-appb-C000051
 
 その他、下地層の形成材料としては、上述したポリアミック酸骨格を有する垂直配向膜の形成材料、およびシロキサン骨格を有する垂直配向膜の形成材料も使用することができる。
 また、第2位相差層22を形成することなく、カラーフィルタ基板21の表面に直接第2配向膜23を形成することとしてもよい。
 さらに、本実施形態においては、素子基板10に含まれるTFT基板11を本発明の一態様における「第1基板」とし、素子基板10は、常に位相差層(第1位相差層12)を有する構成としたが、これに限らない。TFT基板11を「第1基板」とし、カラーフィルタ基板21を「第2基板」としたのは、本実施形態における便宜上のものであり、カラーフィルタ基板21を「第1基板」として、対向基板20が常に位相差層を有する構成としてもよい。
 すなわち、本発明の一態様の液晶表示装置において採用し得る構成は、以下の表1の通りである。
Figure JPOXMLDOC01-appb-T000052
 
 図2,3は、本実施形態の液晶表示装置において採用し得る構成の説明図であり、液晶配向方向と第1位相差層の遅相軸との関係を示す図である。図2,3に示す液晶表示装置は、一対の基板がそれぞれプレチルト角を有する光配向膜を有する構成(上記表1におけるNo.1~3)とする。図2,3は、「4D-ECB(Electrically Controlled Birefringence)」と称される構成の液晶表示装置である。
 図2,3では、矩形に図示する素子基板10および対向基板20の1つの辺に沿った方向をx軸方向、基板面内においてx軸方向と直交する方向をy軸方向、x軸方向及びy軸方向のそれぞれと直交する方向(すなわち鉛直方向)をz軸方向とする。
 図2には、液晶表示装置110が有する2×2のマトリクス状に配置された画素Pを示している。素子基板10および対向基板20は、各画素Pに対応するドメインDにそれぞれ領域が分割されている。
 素子基板10および対向基板20においては、矢印で示す液晶配向方向、すなわち、光配向膜に付与された液晶分子のプレチルト方向の方位角が、ドメインD毎に規定されている。具体的には、素子基板10では、4つのドメインDの交点Oから遠ざかる方向であって、+x方向においてy軸に対し45°または135°の方向、-x方向においてy軸に対し45°または135°の方向に液晶配向方向が規定されている。
 また、対向基板20においては、4つのドメインDの交点Oに近づく方向であって、+x方向においてy軸に対し45°または135°の方向、-x方向においてy軸に対し45°または135°の方向に液晶配向方向が規定されている。
 このように液晶配向方向が設定された素子基板10と対向基板20とを重ね合せると、各ドメインにおいては、液晶配向方向がそれぞれ反平行方向(ECBモード配向)となる。このような液晶表示装置110では、隣接する4つの画素Pにおいて、第1の画素における液晶配向方向と、第2の画素における液晶配向方向と、第3の画素における液晶配向方向と、第4の画素における液晶配向方向とが互いに異なっている。また、隣接する4つの画素Pのうち任意の画素の液晶配向方向と、残る3つの画素の液晶配向方向とが、90°の整数倍異なっている。
 このような構成の液晶表示装置110においては、第1位相差層の遅相軸は、+x方向(符号a1)、-x方向(符号a2)、+y方向(符号a3)、-y方向(符号a4)のいずれかに設定される。このように設定されることで、第1位相差層の遅相軸と各ドメインでの液晶配向方向とは、45°または135°で交差する。
 図3には、液晶表示装置装置120が有する、-y方向に4つ並んで配置された(1×4のマトリクス状に配置された)画素Pを示している。素子基板10および対向基板20は、各画素Pに対応するドメインDにそれぞれ領域が分割されている。
 素子基板10および対向基板20においては、液晶配向方向、すなわち、光配向膜に付与された液晶分子のプレチルト方向の方位角が、ドメインD毎に規定されている。具体的には、素子基板10においては、-x方向にy軸に対し45°、-x方向にy軸に対し135°、+x方向にy軸に対し135°、+x方向にy軸に対し45°の各方向に液晶配向方向が規定されている。
 また、対向基板20においては、+x方向にy軸に対し135°、+x方向にy軸に対し45°、-x方向にy軸に対し45°、-x方向にy軸に対し135°の各方向に液晶配向方向が規定されている。
 このように液晶配向方向が設定された素子基板10と対向基板20とを重ね合せると、各ドメインにおいては、液晶配向方向がそれぞれ反平行方向(ECBモード配向)となる。
 このような構成の液晶表示装置120においても、第1位相差層の遅相軸は、+x方向、-x方向、+y方向、-y方向のいずれかに設定される。このように設定されることで、第1位相差層の遅相軸と各ドメインでの液晶配向方向とは、45°または135°で交差する。
 図2,3に示すような液晶配向方向が付与された液晶表示装置は、プロキシミティ露光を用いた通常知られた製造方法により製造可能である。
 なお、図2,3に示した液晶表示装置において、素子基板10と対向基板20とのいずれか一方の液晶配向方向を90°変更させた構成としてもよい。このような構成の液晶表示装置は、「4D-RTN(Reverse Twisted Nematic)」と称される構成の液晶表示装置となる。
 本実施形態の液晶表示装置は、以上のような構成となっている。
 以上のような構成の液晶表示装置においては、プレチルト角を調整したとしてもコントラストの低下を容易に抑制可能な液晶表示装置を提供することができる。
[第2実施形態]
 図4は、本発明の第2実施形態に係る液晶表示装置の製造方法を示すフロー図である。
以下、図4のフロー図に沿って本実施形態の液晶表示装置の製造方法を説明する。
 なお、本実施形態の製造方法は、上述した素子基板10の製造および対向基板20の製造のいずれにも適用可能である。そのため、以下の説明においては、位相差層および配向膜を形成する基板について、「TFT基板11」「カラーフィルタ基板21」という限定を加えることなく、単に「基板」と称する。同様に、基板上に形成する位相差層、配向膜についても、第1位相差層、第2位相差層、第1配向膜、第2配向膜という限定を加えることなく、単に「位相差層」[配向膜」と称して説明する。
(積層膜を形成する工程)
 まず、基板上に、第1光官能基を有する第1高分子材料と、第2光官能基を側鎖に有する第2高分子材料と、を含む混合溶液を塗布する(ステップS1)。
 第1光官能基としては、第2光官能基に光反応を生じる波長の偏光では光反応を生じないものを選択する。
 また、第2光官能基としては、第1光官能基に光反応を生じる波長の偏光では光反応を生じないものを選択する。
 溶液の塗布方法は、所望の膜厚の塗膜が得られるのであれば、種々の公知の方法を採用することができる。例えば、スピンコート法、バーコート法、インクジェット法、スリットコート法、スクリーン印刷法等を採用することができる。本実施形態では、スピンコート法を用いて溶液を塗布することとする。
 次いで、塗布した混合溶液から溶媒を除去し、さらに仮焼成して乾燥させることで第1高分子材料を形成材料とする第1塗膜と前記第2高分子材料を形成材料とする第2塗膜との積層膜を形成する(ステップS2)。
 溶媒の除去を行う際、静置、加熱、減圧、送風およびこれらの組合せにより、溶媒を除去し、乾燥を促進させてもよい。
 第2高分子材料は、第1高分子材料よりも側鎖の疎水性が高いため、焼成時、第2高分子材料は空気界面側に位置するように第1高分子材料と層分離する。
(積層膜を加熱する工程)
 次いで、形成した積層膜を加熱する(ステップS3)。これにより第1高分子材料と第2高分子材料とがそれぞれ重合し、流動性を失って硬化する。
(第1偏光を照射する工程)
 次いで、加熱後の積層膜に対し、第1光官能基に光反応を生じさせる波長の第1偏光を照射する(ステップS4)。第1偏光の照射は、例えば、基板の法線方向から行う。
 ここで、第1光官能基としては、第1偏光では光反応を生じる一方、第2光官能基に光反応を生じさせる波長の第2偏光では光反応を生じないものを用いておく。これにより、第1光官能基のみに光反応が生じ、位相差層が形成される。
(第2偏光を照射する工程)
 次いで、加熱後の積層膜に対し、第2光官能基に光反応を生じさせる波長の第2偏光を照射する(ステップS5)。第2偏光の照射は、例えば、基板の法線に対して45°傾斜した方向から行う。
 ここで、第2光官能基としては、第2偏光では光反応を生じる一方、第1光官能基に光反応を生じさせる波長の第1偏光では光反応を生じないものを用いておく。これにより、位相差層を形成している第1光官能基は光反応することなく、第2光官能基のみに光反応が生じ、光配向膜が形成される。
 また、第2偏光の強度は、第1偏光の強度よりも小さいこととする。例えば、第1偏光の強度が2J/cmであるとすると、第2偏光の強度は50mJ/cm程度とする。
第2偏光の強度を第1偏光の強度よりも小さくすることにより、位相差層を形成している第1光官能基に第2偏光が到達しにくく、第2光官能基のみに光反応が生じやすい。
 このような構成の液晶表示装置の製造方法においては、第1偏光の照射量、光配向膜による液晶材料の配向方向に対する第1偏光の照射角度、位相差層の形成材料、位相差層の層厚等の各種条件を変更することにより、位相差層に付与する位相差を容易に調整することができる。そのため、液晶材料のプレチルト角の変更に伴って生じるリタデーションが微小であったとしても、位相差層(第1位相差層、第2位相差層)が備えるべきリタデーション値を適切に調製することが可能となる。
 したがって、以上のような液晶表示装置の製造方法によれば、コントラストの低下を抑制可能な液晶表示装置を容易にすることが可能となる。
[第3実施形態]
 図5は、第3実施形態の液晶表示装置150を模式的に示す断面図であり、図1に対応する図である。図5に示すように、本実施形態の液晶表示装置150は、素子基板15、対向基板25、液晶層30を有している。
 素子基板15は、第1配向膜13の液晶層30側の表面に設けられた配向維持層16を有している。対向基板25は、第2配向膜23の液晶層30側の表面に設けられた配向維持層26を有している。
 配向維持層16,26は、光重合物を形成材料とし、液晶層30に電圧を印加していない時に、液晶層30の液晶分子の配向方向を規定し、配向規制力を向上させる機能を規定する機能を有する。配向維持層16,26は、例えば、重合性モノマーとして、下記式(30)で表されるジメタクリレートや下記式(31)で表されるジメタクリレートを形成材料とする。
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000054
 
 配向維持層を形成する際には、液晶層30で用いられる液晶材料100質量%に対し、上述したようなジメタクリレートを0.5質量%以下添加したものを用いる。このような液晶材料を用い、一対の基板を貼り合わせた後に、電圧無印加の状態で無偏光のブラックライト(波長320nm)を20分間(5J/cm)照射する。これにより、上述したようなジメタクリレートは、配向膜の表面に降り積もったような配向維持層を形成する。
 このような配向維持層16,26を有する液晶表示装置150は、本発明の一態様の効果に加え、VHR(Voltage Holding Ratio、電圧保持率)、残留DC、プレチルト角の変化が抑制された高品質なものとなる。
 以上、添付図面を参照しながら本発明の一態様に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 以下に本発明の一態様を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
 後述のように作製した実施例、比較例の液晶セルについて、下記方法により物性評価を行った。
(コントラスト)
 トプコン社製SR-UL1輝度計を用い暗室にてコントラストを測定した。
 測定温度:25℃、測定波長範囲:380~780nm
(応答特性)
 Photal5200(大塚電子)を用いて測定した。
 測定温度:25℃、透過率0.5~透過率最大の電圧間で測定
 VHR(Voltage Holding Ratio、電圧保持率):東陽テクニカ社製6254型VHR測定システムを用いて、1V、70℃条件で測定した。ここで、VHRとは1フレーム期間中に充電された電荷が保持される割合を意味する。VHRが大きい液晶表示装置の方が良品であると判断できる。
 残留DC:フリッカ消去法により測定した。DCオフセット電圧2V(AC電圧3V(60Hz))を2時間印加後の残留DC(rDC)を測定した。rDCが小さい液晶表示装置の方が良品であると判断できる。
 プレチルト角変化量:通電前のプレチルト角と、7.5VのAC電圧による通電後のプレチルト角との変化量を測定した。プレチルト角変化量が小さい液晶表示装置の方が良品であると判断できる。
<評価1>
(実施例1)
 ITO電極を有する基板(以下、基板Aと称する。)の一面に、下記式(101)に示すポリアミック酸と、下記式(102)に示すポリアミック酸との混合物を含む塗料を塗布して成膜した。下記式(101)に示すポリアミック酸、および下記式(102)に示すポリアミック酸は、それぞれ重量平均分子量が1万以上のものを用いた。
Figure JPOXMLDOC01-appb-C000055
 
(式中、pは整数を示す)
Figure JPOXMLDOC01-appb-C000056
 
(式中、pは整数を示す)
 次いで、焼成することで、基板側に上記式(102)を形成材料とするポリイミドの層、当該層と重なる上記式(101)を形成材料とするポリイミドの層、の積層体を作成した。
 次いで、波長365nmを中心とする偏光を、基板法線方向から2J/cm照射し、上記式(102)を形成材料とするポリイミドの層に位相差を付与して位相差層を形成した。位相差層のリタデーションは3nmであった。
 次いで、波長315nmを中心とする偏光を、基板法線方向に対して45°の方向から50mJ/cm照射した。その際、照射する偏光の偏光軸が、位相差層に照射した偏光の偏光軸に対し平面視で45°交差するようにして偏光を照射した。これにより、上記式(101)を形成材料とするポリイミドの層に約87.0°のプレチルト角を付与し、光配向膜を形成した。
 さらに、別の基板(以下、基板Bと称する。)の一面に、上記式(101)に示すポリアミック酸と、下記式(103)に示すポリアミック酸との混合物を含む塗料を塗布して成膜した。
Figure JPOXMLDOC01-appb-C000057
 
 次いで、焼成することで、基板側に上記式(103)を形成材料とするポリイミドの層、当該層と重なる上記式(101)を形成材料とするポリイミドの層、の積層体を作成した。
 次いで、波長315nmを中心とする偏光を、基板法線方向に対して45°の方向から50mJ/cm照射し、上記式(101)を形成材料とするポリイミドの層に約87.0°のプレチルト角を付与し、光配向膜を形成した。
 次いで、基板Aの光配向膜側にシール剤を描画し、基板Bの光配向膜側にネガ型液晶材料を滴下した。真空下にて両基板を貼り合わせ、シール剤を硬化させた後、130℃に加熱することにより再配向処理を行い、液晶セルを得た。このとき、液晶層の位相差Δn・dが、330nm設計となるように設計した。
(比較例1)
 基板Aにおいても、基板Bと同様に上記式(101)に示すポリアミック酸と、上記式(103)に示すポリアミック酸との混合物を含む塗料を用いて成膜し、基板Bと同様に成膜したこと以外は実施例1と同様にして、液晶セルを作製した。比較例1の液晶セルにおいて、光配向膜のプレチルト角は87.0°であった。
 得られた実施例1、比較例1の液晶セルについて、上記方法により評価を行った。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000058
 
 評価の結果、実施例1の液晶セルは、比較例1の液晶セルと比べ応答時間、VHR、rDC、チルト角変化量に大きな差は無いが、コントラストが改善されることが分かった。
<評価2>
(実施例2)
 基板Aの一面に、上記式(103)に示すポリアミック酸を用いることなく、上記式(101)に示すポリアミック酸を含む塗料を塗布して成膜した。
 次いで、焼成することで、上記式(101)を形成材料とするポリイミドの層を作成した。
 次いで、波長315nmを中心とする偏光を、基板法線方向に対して45°の方向から50mJ/cm照射し、上記式(101)を形成材料とするポリイミドの層に約87.0°のプレチルト角を付与し、光配向膜を形成した。
 次いで、基板Aの光配向膜側にシール剤を描画し、実施例1と同様に作製した基板Bの光配向膜側にネガ型液晶材料を滴下した。このとき、ネガ型液晶材料には、下記式(201)に示すモノマーを、液晶材料全体に対し0.3質量%溶解させた。
Figure JPOXMLDOC01-appb-C000059
 
 真空下にて両基板を貼り合わせ、シール剤を硬化させた後、130℃に加熱することにより再配向処理を行った。さらに、無偏光のブラックライト(波長320nm)を20分間(5J/cm)照射し、配向維持層を形成して液晶セルを得た。このとき、液晶層の位相差Δn・dが、330nm設計となるように設計した。
(比較例2)
 ネガ型液晶材料に、上記式(201)に示すモノマーを溶解させなかったこと以外は、実施例2と同様にして、液晶セルを作製した。
 得られた実施例2の液晶セル、および比較例2の液晶セルについて、上記方法により評価を行った。評価結果を表3に示す。また、参考として上述の実施例1の液晶セルについての評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000060
 
 評価の結果、比較例2の液晶セルは、位相差層と光配向膜との2層構造である実施例1の液晶セルと比べ、基板A側の層構成が光配向膜のみとなったことにより、基板Aと液晶層との間の膜全体の抵抗が低下する。その結果、比較例2の液晶セルは実施例1の液晶セルよりも、VHRが低下し、rDCが増加している。
 さらに、比較例2の液晶セルは、基板A側の膜が上記式(101)に示すポリマーのみの構成(光配向膜)となるため、基板A側の膜を構成する全高分子鎖が側鎖を含むことになる。側鎖を含む高分子は、分子の柔軟性が高いため、チルト角が変化しやすい傾向にある。
 これに対し、実施例2の液晶セルは、上記式(201)に示すモノマーを重合させたポリマーが配向維持層として機能し、VHR、rDC、チルト角変化量のいずれも改善することができた。
<評価3>
(実施例3)
 基板A,Bのそれぞれ一面に、上記式(102)に示すポリアミック酸と、下記式(105)に示すポリシロキサンとの混合物を含む塗料を塗布して成膜した。
Figure JPOXMLDOC01-appb-C000061
 
 次いで、波長365nmを中心とする偏光を、基板法線方向から5J/cm照射し、上記式(102)を形成材料とするポリアミック酸の層に位相差を付与して位相差層を形成した。位相差層のリタデーションは7nmであった。
 次いで、焼成することで、基板側にリタデーション付与後の上記式(102)を形成材料とするポリイミドの層、当該層と重なる上記式(105)を形成材料とするポリシロキサンの層、の積層体を作成した。
 次いで、波長315nmを中心とする偏光を、基板法線方向に対して50°の方向から100mJ/cm照射し、上記式(105)を形成材料とするポリシロキサンの層に約86.0°のプレチルト角を付与し、光配向膜を形成した。
 次いで、基板Aの光配向膜側にシール剤を描画し、基板Bの光配向膜側にネガ型液晶材料を滴下した。真空下にて両基板を貼り合わせ、シール剤を硬化させた後、130℃に加熱することにより再配向処理を行い、液晶セルを得た。このとき、液晶層の位相差Δn・dが、330nm設計となるように設計した。
(比較例3)
 基板A,Bのそれぞれ一面に、上記式(103)に示すポリアミック酸と、上記式(105)に示すポリシロキサンとの混合物を含む塗料を塗布して成膜し、焼成することで、基板側にリタデーション付与後の上記式(103)を形成材料とするポリイミドの層、当該層と重なる上記式(105)を形成材料とするポリシロキサンの層、の積層体を作成した。
 次いで、基板A,Bのそれぞれについて、波長315nmを中心とする偏光を、基板法線方向に対して50°の方向から100mJ/cm照射し、上記式(105)を形成材料とするポリシロキサンの層に約86.0°のプレチルト角を付与し、光配向膜を形成した。
 次いで、基板Aの光配向膜側にシール剤を描画し、基板Bの光配向膜側にネガ型液晶材料を滴下した。真空下にて両基板を貼り合わせ、シール剤を硬化させた後、130℃に加熱することにより再配向処理を行い、液晶セルを得た。このとき、液晶層の位相差Δn・dが、330nm設計となるように設計した。
 得られた実施例3、比較例3の液晶セルについて、上記方法により評価を行った。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000062
 
 評価の結果、実施例3の液晶セルは、比較例3の液晶セルと比べ応答時間、VHR、rDC、チルト角変化量に大きな差は無いが、コントラストが改善されることが分かった。
 また、プレチルト角を86.0°とすることで、プレチルト角が87.0°である実施例1,2と比べ、立上り応答速度は速くなるが、立下り応答速度が遅くなることが分かった。
<評価4>
(実施例4)
 基板Aの一面に、下記式(106)に示すポリアミック酸と、下記式(107)に示すポリシロキサンとの混合物を含む塗料を塗布して成膜した。
 
Figure JPOXMLDOC01-appb-C000064
 
 次いで、焼成することで、上記式(106)を形成材料とするポリイミドの層、当該層と重なる上記式(107)を形成材料とするポリシロキサンの層、の積層体を作成した。
 次いで、波長365nmを中心とする偏光を、基板法線方向から5J/cm照射し、上記式(106)を形成材料とするポリアミック酸の層に位相差を付与して位相差層を形成した。位相差層のリタデーションは15nmであった。
 次いで、波長315nmを中心とする偏光を、基板法線方向に対して50°の方向から100mJ/cm照射し、上記式(107)を形成材料とするポリシロキサンの層に約80.0°のプレチルト角を付与し、光配向膜を形成した。
 一方、基板Bの一面に、上記式(103)に示すポリアミック酸と、下記式(108)に示すポリシロキサンとの混合物を含む塗料を塗布して成膜した。
Figure JPOXMLDOC01-appb-C000065
 
 次いで、焼成することで、上記式(103)を形成材料とするポリイミドの層、当該層と重なる上記式(108)を形成材料とするポリシロキサンの層、の積層体を作成した。
 次いで、波長315nmを中心とする偏光を、基板法線方向に対して50°の方向から100mJ/cm照射し、上記式(107)を形成材料とするポリシロキサンの層に約80.0°のプレチルト角を付与し、光配向膜を形成した。
 次いで、基板Aの光配向膜側にシール剤を描画し、基板Bの光配向膜側にネガ型液晶材料を滴下した。真空下にて両基板を貼り合わせ、シール剤を硬化させた後、130℃に加熱することにより再配向処理を行い、液晶セルを得た。このとき、液晶層の位相差Δn・dが、330nm設計となるように設計した。
(比較例4)
 基板Aの一面に、上記式(103)に示すポリアミック酸と、上記式(107)に示すポリシロキサンとの混合物を含む塗料を塗布して成膜し、焼成することで、基板側に上記式(103)を形成材料とするポリイミドの層、当該層と重なる上記式(107)を形成材料とする垂直配向膜、の積層体を作成した。
 次いで、基板Aの光配向膜側にシール剤を描画し、実施例4と同様にして作製した基板Bの光配向膜側にネガ型液晶材料を滴下した。真空下にて両基板を貼り合わせ、シール剤を硬化させた後、130℃に加熱することにより再配向処理を行い、液晶セルを得た。このとき、液晶層の位相差Δn・dが、330nm設計となるように設計した。
 得られた実施例4、比較例4の液晶セルについて、上記方法により評価を行った。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000066
 
 評価の結果、実施例4の液晶セルは、比較例4の液晶セルと比べ応答時間、VHR、rDC、チルト角変化量に大きな差は無いが、コントラストが改善されることが分かった。
 また、プレチルト角を80.0°、90.0°の組合せとすることで、プレチルト角が87.0°である実施例1,2、プレチルト角が86.0°である実施例3と比べ、立上り応答速度は速くなるが、立下り応答速度が遅くなることが分かった。
<評価5>
(実施例5)
 基板Aの一面に、上記式(106)に示すポリアミック酸を用いることなく、上記式(107)に示すポリシロキサンを含む塗料を塗布して成膜した。
 次いで、焼成することで、上記式(107)を形成材料とするポリシロキサンの層を作成した。
 次いで、波長315nmを中心とする偏光を、基板法線方向に対して50°の方向から100mJ/cm照射し、上記式(107)を形成材料とするポリシロキサンの層に約80.0°のプレチルト角を付与し、光配向膜を形成した。
 次いで、基板Aの光配向膜側にシール剤を描画し、実施例4と同様に作製した基板Bの光配向膜側にネガ型液晶材料を滴下した。このとき、ネガ型液晶材料には、下記式(202)に示すモノマーを、液晶材料全体に対し0.3質量%溶解させた。
Figure JPOXMLDOC01-appb-C000067
 
 真空下にて両基板を貼り合わせ、シール剤を硬化させた後、130℃に加熱することにより再配向処理を行った。さらに、無偏光のブラックライト(波長320nm)を20分間(5J/cm)照射し、配向維持層を形成して液晶セルを得た。このとき、液晶層の位相差Δn・dが、330nm設計となるように設計した。
(比較例2)
 ネガ型液晶材料に、上記式(202)に示すモノマーを溶解させなかったこと以外は、実施例4と同様にして、液晶セルを作製した。
 得られた実施例5の液晶セル、および比較例5の液晶セルについて、上記方法により評価を行った。評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000068
 
 評価の結果、比較例5の液晶セルは、下地層と光配向膜との2層構造である実施例4の液晶セルと比べ、基板A側の層構成が光配向膜のみとなったことにより、基板Aと液晶層との間の膜全体の抵抗が低下する。その結果、比較例5の液晶セルは実施例4の液晶セルよりも、VHRが低下し、rDCが増加している。
 さらに、比較例5の液晶セルは、基板A側の膜が上記式(107)に示すポリマーのみの構成(光配向膜)となるため、基板A側の膜を構成する全高分子鎖が側鎖を含むことになる。側鎖を含む高分子は、分子の柔軟性が高いため、チルト角が変化しやすい傾向にある。
 これに対し、実施例5の液晶セルは、上記式(202)に示すモノマーを重合させたポリマーが配向維持層として機能し、VHR、rDC、チルト角変化量のいずれも改善することができた。
<評価6>
(実施例6)
 基板Aの一面に、上記実施例5と同様にして光配向膜を形成した。
 一方、基板Bの一面に、上記式(107)を形成材料とするポリシロキサンの層を作成し、焼成して垂直配向膜を形成した。
 次いで、基板Aの光配向膜側にシール剤を描画し、基板Bの光配向膜側にネガ型液晶材料を滴下した。真空下にて両基板を貼り合わせ、シール剤を硬化させた後、130℃に加熱することにより再配向処理を行い、垂直ECBモードの液晶セルを得た。このとき、液晶層の位相差Δn・dが、330nm設計となるように設計した。
 得られた実施例6の液晶セルについて、上記方法により評価を行った。評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000069
 
 評価の結果、実施例6の液晶セルは、実施例6の液晶セルとプレチルト角の構成が同じで位相差層を有さない比較例4の液晶セルと比べ応答時間、VHR、rDC、チルト角変化量に大きな差は無いが、コントラストが改善されることが分かった。
 以上の結果より、本発明の一態様が有用であることが確かめられた。
 本発明の一態様は、例えば、新規な構成の液晶パネル、このような液晶パネルを容易に製造可能とする液晶パネルの製造方法、それらを用いた表示装置などに適用することができる。
 10…素子基板、11…TFT基板(第1基板)、12…第1位相差層、13…第1配向膜、16,26…配向維持層、20…対向基板、21…カラーフィルタ基板(第2基板)、22…第2位相差層、23…第2配向膜、30…液晶層、100,150…液晶表示装置

Claims (14)

  1.  第1基板と、
     前記第1基板と対向する第2基板と、
     前記第1基板と前記第2基板とに挟持され、ネガ型の液晶材料を含む液晶層と、
     前記第1基板の前記液晶層側の面に設けられた第1配向膜と、
     前記第1基板と前記第1配向膜との間に設けられ、複屈折性を有する第1位相差層と、
     前記第2基板の前記液晶層側の面に設けられた第2配向膜と、を備え、
     前記第1配向膜および前記第2配向膜の少なくともいずれか一方は、前記液晶層と接し前記液晶材料に75°以上90°未満のプレチルト角を与える光配向膜であり、
     前記第1位相差層は、第1光官能基を有する第1高分子材料を形成材料とし、
     前記光配向膜は、第2光官能基を有する第2高分子材料を形成材料とし、
     前記第1光官能基および前記第2光官能基は、異性化反応、二量化反応、フリース転位反応、開裂反応からなる群から選ばれる少なくとも1つの光反応を生じる基である液晶表示装置。
  2.  前記第1配向膜および前記第2配向膜の一方は、前記光配向膜であり、
     前記第1配向膜および前記第2配向膜の他方は、垂直配向膜である請求項1に記載の液晶表示装置。
  3.  前記第1配向膜および前記第2配向膜は、前記光配向膜であり、
     前記第1配向膜による前記液晶材料の配向方向と、前記第2配向膜による前記液晶材料の配向方向とは、前記第1基板の法線方向からの視野において同方向に設定されている請求項1に記載の液晶表示装置。
  4.  前記第2基板と前記第2配向膜との間に設けられ、複屈折性を有する第2位相差層を有し、
     前記第2位相差層は、前記第1高分子材料を形成材料とする請求項1から3のいずれか1項に記載の液晶表示装置。
  5.  前記プレチルト角が80.0°以上88.5°以下である請求項1から4のいずれか1項に記載の液晶表示装置。
  6.  前記第1光官能基は、シンナメート基、アゾベンゼン基、カルコン基、トラン基、シクロブタン基からなる群から選ばれる少なくとも1種である請求項1から5のいずれか1項に記載の液晶表示装置。
  7.  前記第2光官能基は、クマリン基、シンナメート基、スチルベン基からなる群から選ばれる少なくとも1種である請求項1から6のいずれか1項に記載の液晶表示装置。
  8.  前記第1配向膜および前記第2配向膜の表面に接する配向維持層をさらに有する請求項1から7のいずれか1項に記載の液晶表示装置。
  9.  隣接する4つの画素において、第1の画素における液晶配向方向と、第2の画素における液晶配向方向と、第3の画素における液晶配向方向と、第4の画素における液晶配向方向とが互いに異なり、
     前記隣接する4つの画素のうち任意の画素の液晶配向方向と、残る3つの画素の液晶配向方向とが、90°の整数倍に異なっている請求項1から8のいずれか1項に記載の液晶表示装置。
  10.  前記第1配向膜および前記第2配向膜は、いずれも前記光配向膜である請求項1から9のいずれか1項に記載の液晶表示装置。
  11.  前記第1配向膜は、垂直配向膜であり、
     前記第2配向膜は、前記光配向膜である請求項1から9のいずれか1項に記載の液晶表示装置。
  12.  前記第2基板と前記第2配向膜との間に設けられた下地層をさらに有する請求項10または11に記載の液晶表示装置。
  13.  前記第2基板と前記第2配向膜との間に設けられ、複屈折性を有する第2位相差層をさらに有する請求項10に記載の液晶表示装置。
  14.  基板上に、第1光官能基を有する第1高分子材料と、第2光官能基を側鎖に有する第2高分子材料と、を含む混合溶液を塗布した後、溶媒を除去して、前記第1高分子材料を形成材料とする第1塗膜と前記第2高分子材料を形成材料とする第2塗膜との積層膜を形成する工程と、
     前記積層膜を加熱する工程と、
     加熱後の前記積層膜に対し、前記第1光官能基に光反応を生じる波長の第1偏光を照射する工程と、
     加熱後の前記積層膜に対し、前記第2光官能基に光反応を生じる波長の第2偏光を照射する工程と、を有し、
     前記第1光官能基は、前記第2偏光では光反応を生じず、
     前記第2光官能基は、前記第1偏光では光反応を生じない液晶表示装置の製造方法。
PCT/JP2017/033863 2016-09-29 2017-09-20 液晶表示装置および液晶表示装置の製造方法 WO2018061918A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780058766.7A CN109791328B (zh) 2016-09-29 2017-09-20 液晶显示装置及液晶显示装置的制造方法
US16/334,914 US10802344B2 (en) 2016-09-29 2017-09-20 Liquid crystal display device and method for manufacturing liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-190892 2016-09-29
JP2016190892 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061918A1 true WO2018061918A1 (ja) 2018-04-05

Family

ID=61760694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033863 WO2018061918A1 (ja) 2016-09-29 2017-09-20 液晶表示装置および液晶表示装置の製造方法

Country Status (3)

Country Link
US (1) US10802344B2 (ja)
CN (1) CN109791328B (ja)
WO (1) WO2018061918A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049230A (ja) * 2008-03-21 2010-03-04 Chisso Corp 光配向剤、配向膜およびこれを用いた液晶表示素子
WO2016017536A1 (ja) * 2014-07-31 2016-02-04 シャープ株式会社 液晶表示装置
WO2016084896A1 (ja) * 2014-11-28 2016-06-02 シャープ株式会社 液晶表示装置の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034051B2 (ja) * 1993-07-22 2008-01-16 株式会社半導体エネルギー研究所 液晶電気光学装置の作製方法
JP3597446B2 (ja) * 1999-05-24 2004-12-08 シャープ株式会社 液晶表示装置
WO2002035283A1 (fr) * 2000-10-23 2002-05-02 Matsushita Electric Industrial Co., Ltd. Affichage a cristaux liquides et procede de fabrication de celui-ci
US20020140888A1 (en) * 2001-03-30 2002-10-03 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device
CN101408632B (zh) * 2003-07-17 2010-12-08 大日本印刷株式会社 相位差层及使用它的液晶显示装置
JP4646030B2 (ja) * 2005-03-31 2011-03-09 株式会社 日立ディスプレイズ 液晶表示装置
CN100476536C (zh) * 2005-09-27 2009-04-08 乐金显示有限公司 面内切换模式液晶显示器件
TWI315423B (en) * 2005-12-30 2009-10-01 Ind Tech Res Inst Substrate structures, liquid crystal display devices and method of fabricating liquid crystal display devices
CN101379420B (zh) * 2006-02-07 2011-05-04 富士胶片株式会社 光学膜、相位差片以及液晶化合物
US8368831B2 (en) * 2007-10-19 2013-02-05 Dow Corning Corporation Oligosiloxane modified liquid crystal formulations and devices using same
CN102216839B (zh) * 2008-09-17 2014-09-17 三星显示有限公司 定向材料、定向层、液晶显示装置及其制造方法
JP5754086B2 (ja) * 2009-06-26 2015-07-22 住友化学株式会社 位相差板、表示装置ならびに位相差板の製造方法
JP5222864B2 (ja) * 2010-02-17 2013-06-26 株式会社ジャパンディスプレイイースト 液晶表示装置の製造方法
CN102971664B (zh) * 2010-07-05 2016-03-09 夏普株式会社 液晶显示装置
JP5906570B2 (ja) 2011-02-23 2016-04-20 ソニー株式会社 液晶表示装置及びその製造方法
KR101825215B1 (ko) * 2011-06-07 2018-02-05 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
CN202615086U (zh) * 2011-09-23 2012-12-19 天马微电子股份有限公司 一种双稳态胆甾相液晶显示结构
KR20140146523A (ko) * 2013-06-17 2014-12-26 엘지디스플레이 주식회사 액정 표시 장치 및 이를 제조하는 방법
WO2016031745A1 (ja) * 2014-08-29 2016-03-03 シャープ株式会社 液晶表示装置
US10197829B2 (en) * 2014-08-29 2019-02-05 Sharp Kabushiki Kaisha Liquid crystal display device
US20160170118A1 (en) * 2014-12-15 2016-06-16 Kent State University Active retardation films based on polymer stabilized cholesteric liquid crystal
EP3264169A4 (en) * 2015-02-27 2018-11-07 Sony Corporation Optical device, display device, and electronic device
CN107407841B (zh) * 2015-03-18 2021-01-15 夏普株式会社 液晶显示装置
CN107407842B (zh) * 2015-03-18 2021-03-23 夏普株式会社 液晶显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049230A (ja) * 2008-03-21 2010-03-04 Chisso Corp 光配向剤、配向膜およびこれを用いた液晶表示素子
WO2016017536A1 (ja) * 2014-07-31 2016-02-04 シャープ株式会社 液晶表示装置
WO2016084896A1 (ja) * 2014-11-28 2016-06-02 シャープ株式会社 液晶表示装置の製造方法

Also Published As

Publication number Publication date
US20190285925A1 (en) 2019-09-19
US10802344B2 (en) 2020-10-13
CN109791328A (zh) 2019-05-21
CN109791328B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
JP4653421B2 (ja) 液晶表示装置
US8576362B2 (en) Liquid crystal display device and polymer for alignment film materials
WO2010106915A1 (ja) 液晶表示装置及びその製造方法
WO2010131392A1 (ja) 液晶表示装置
WO2004053582A1 (ja) 液晶表示装置およびその製造方法
US20150056544A1 (en) Method for manufacturing liquid crystal display device, and liquid crystal display device
WO2014061755A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
WO2018061931A1 (ja) 液晶表示装置の設計方法、液晶表示装置の製造方法および液晶表示装置
JP2019056825A (ja) 液晶回折格子、液晶組成物、液晶回折格子の製造方法、及び、ワイヤグリッド偏光子
US9488869B2 (en) Liquid crystal display device and method for manufacturing same
JP5939614B2 (ja) 配向膜およびそれを用いた液晶表示装置
US20130342798A1 (en) Liquid crystal display panel, liquid crystal display apparatus, and liquid crystal display cell
WO2017208914A1 (ja) 液晶パネル、スイッチャブル・ミラーパネル及びスイッチャブル・ミラーディスプレイ
WO2014034517A1 (ja) 液晶表示装置及びその製造方法
WO2011013396A1 (ja) 液晶表示素子
JP2013109366A (ja) 液晶表示装置およびその製造方法
WO2018061918A1 (ja) 液晶表示装置および液晶表示装置の製造方法
US7405795B2 (en) In-plane-switching mode liquid crystal display device and method of fabricating the same with nematic liquid crystal molecule layer driven in-plane by molecules of sandwiching ferroelectric layers rotating along a virtual cone
CN110031992B (zh) 液晶显示装置及液晶显示装置的制造方法
CN110244494B (zh) 液晶显示装置、其制造方法及相位差层用单体材料
WO2017145917A1 (ja) 液晶表示装置及びその製造方法
JP5939589B2 (ja) 配向膜材料
WO2019031398A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
CN110662807A (zh) 组合物及液晶显示装置
JP5594835B2 (ja) 配向膜材料及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP