WO2018058672A1 - 无人机的控制方法、装置及无人飞行器 - Google Patents

无人机的控制方法、装置及无人飞行器 Download PDF

Info

Publication number
WO2018058672A1
WO2018058672A1 PCT/CN2016/101367 CN2016101367W WO2018058672A1 WO 2018058672 A1 WO2018058672 A1 WO 2018058672A1 CN 2016101367 W CN2016101367 W CN 2016101367W WO 2018058672 A1 WO2018058672 A1 WO 2018058672A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight controller
unmanned aerial
aerial vehicle
monitoring
electronic governor
Prior art date
Application number
PCT/CN2016/101367
Other languages
English (en)
French (fr)
Inventor
林灿龙
王立
商志猛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/101367 priority Critical patent/WO2018058672A1/zh
Priority to CN201680003175.5A priority patent/CN107074351B/zh
Publication of WO2018058672A1 publication Critical patent/WO2018058672A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • B64C25/18Operating mechanisms
    • B64C25/26Control or locking systems therefor

Definitions

  • the embodiment of the invention relates to the field of unmanned aerial vehicles, and particularly relates to a control method and device for an unmanned aerial vehicle and an unmanned aerial vehicle.
  • the multi-rotor UAV is equipped with a deformable tripod, and the tripod can be retracted when the drone is in normal flight, and the tripod can be released to the ground when the drone is landing.
  • the drone When the UAV has an emergency fault, the drone is out of control. In the uncontrolled state, the drone may crash. When the drone is out of control, the tripod cannot be opened. In the process of emergency failure to the grounding crash, the tripod is always in a stowed state, causing damage to the body, pan/tilt, camera, etc. when the drone touches the ground.
  • Embodiments of the present invention provide a method, a device, and an unmanned aerial vehicle for controlling an unmanned aerial vehicle, so as to prevent an unmanned aerial vehicle from being able to release the tripod immediately when an emergency failure occurs.
  • An aspect of the embodiments of the present invention provides a method for controlling a drone, including:
  • the tripod of the unmanned aerial vehicle is controlled to be released.
  • the tripod of the unmanned aerial vehicle is controlled to be released.
  • the tripod of the unmanned aerial vehicle is controlled to be released.
  • an unmanned aerial vehicle including: a fuselage, a power system, a flight controller, and a control device;
  • the power system is mounted to the airframe for providing flight power
  • the flight controller is connected to the power system for controlling the flight of the unmanned aerial vehicle
  • the control device is connected to the flight controller for detecting whether the flight controller is faulty, and controlling the tripod release of the unmanned aerial vehicle when the flight controller is faulty;
  • the flight controller includes one or more MCUs, and when the flight controller is normal, the MCU is used to:
  • the tripod of the unmanned aerial vehicle is controlled to be released.
  • the control method, device and unmanned aerial vehicle of the unmanned aerial vehicle determine whether the unmanned aerial vehicle is faulty by detecting faults of the flight controller, detecting communication faults of the communication system and the ground station, and detecting faults of the power system. If the UAV fails, the UAV's tripod is controlled to be released, so that the UAV can not be released immediately when the UAV crashes, preventing the UAV from touching the ground, the PTZ, the camera, etc. .
  • FIG. 1 is a flowchart of a method for controlling a drone according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 5A is a flowchart of a power source detecting method according to another embodiment of the present invention.
  • FIG. 5B is a flowchart of a method for detecting an electronic governor according to another embodiment of the present invention.
  • FIG. 5C is a flowchart of a method for detecting a motor according to another embodiment of the present invention.
  • 5D is a flowchart of a propeller detecting method according to another embodiment of the present invention.
  • FIG. 6 is a structural diagram of a control apparatus according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a flight controller according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • FIG. 1 is a flowchart of a method for controlling a drone according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment may include:
  • Step S101 Determine, according to the monitoring information obtained by monitoring the unmanned aerial vehicle, whether the unmanned aerial vehicle is faulty.
  • the embodiment is applicable to the fault detection of the unmanned aerial vehicle, and controls the unmanned aerial vehicle to release the tripod according to the detected fault information, so as to prevent the unmanned aerial vehicle from releasing the tripod immediately when the unmanned aerial vehicle has an emergency fault.
  • the unmanned aerial vehicle includes at least: a power system, a communication system, a flight controller, a power system installed in the airframe for providing flight power, a flight controller connected to the power system for controlling the flight of the unmanned aerial vehicle, and a communication system for
  • the ground station communicates, and the ground station may be at least one of a remote controller, a smart terminal, a virtual reality head mounted display device such as virtual reality glasses, and a virtual display helmet.
  • the execution body of this embodiment may be a flight controller or a center board.
  • the center board is an auxiliary control device in the unmanned aerial vehicle.
  • the center board replaces the flight.
  • the controller realizes the control of the unmanned aerial vehicle, such as controlling the tripod release, controlling the communication system and the ground station to communicate.
  • the fault detection of the unmanned aerial vehicle can be implemented as fault detection of the flight controller, communication fault detection of the communication system and the ground station, and fault detection of the power system, and specifically, the communication system, the flight controller, and the power At least one of the systems performs monitoring, and based on the monitored monitoring information, determines whether the UAV is faulty.
  • the following embodiments will respectively describe fault detection methods for the communication system, the flight controller, and the power system.
  • fault detection of an unmanned aerial vehicle may also be implemented as fault detection of the mechanical structure of the unmanned aerial vehicle, such as rack integrity detection.
  • Step S102 If the UAV fails, control the tripod release of the UAV.
  • the flight controller is fault-detected through the center panel, and when the center panel detects that the flight controller is faulty, the center panel controls the tripod of the unmanned aerial vehicle to be released.
  • the flight controller controls the communication between the communication system and the ground station, and the power system detects the fault; when the communication system communicates with the ground station or the power system fails, the flight controller controls the tripod of the unmanned aerial vehicle. freed.
  • the fault detection of the flight controller, the communication fault detection of the communication system and the ground station, and the fault detection of the power system are used to determine whether the unmanned aerial vehicle is faulty. If the unmanned aerial vehicle fails, the tripod of the unmanned aerial vehicle is controlled. Release, to avoid the UAV's emergency failure, when the fall is not possible, the tripod can not be released immediately, and the equipment, the gimbal, the camera and other equipment are damaged when the UAV touches the ground.
  • Embodiments of the present invention provide a method for controlling a drone.
  • FIG. 2 is a flowchart of a method for controlling a drone according to another embodiment of the present invention. As shown in FIG. 2, on the basis of the embodiment shown in FIG. 1, the embodiment introduces a method for detecting a fault of a communication system by a flight controller, and the method may include:
  • Step S201 Monitor a communication channel between the communication system and a ground remote controller.
  • Step S202 Determine, according to the signal transmitted on the communication channel, whether communication between the communication system and the ground remote controller is faulty.
  • the communication system of the UAV includes a receiver that can receive the wireless signal transmitted by the ground remote controller, and if the receiver does not receive the wireless signal transmitted by the ground remote controller within a preset time, then receives The machine sends information including a flag to the flight controller, the flag indicating that the receiver loses contact with the ground remote controller, and the flight controller determines, according to the flag, that the communication between the communication system and the ground remote controller is faulty.
  • the flight controller can also monitor the communication channel between the communication system and the ground remote controller, and determine whether the communication between the communication system and the ground remote controller is faulty according to the signal monitored on the communication channel, which can be realized.
  • the method is: if the signal transmitted on the communication channel is monitored within the preset time, it is determined that the communication between the communication system and the ground remote controller is normal, and if the signal transmitted on the communication channel is not monitored within the preset time, then it is determined. Communication between the communication system and the ground remote control has failed.
  • the flight controller determines that communication between the communication system and the ground remote control has failed, the flight controller controls the tripod release of the unmanned aerial vehicle.
  • the flight controller detects faults in communication between the communication system and the ground remote controller.
  • the tripod of the unmanned aerial vehicle is immediately controlled to be released.
  • the ground remote control cannot properly control the unmanned aerial vehicle, and the unmanned aerial vehicle's tripod cannot be released immediately, thereby preventing damage to the body, the pan/tilt, the camera, and the like when the unmanned aerial vehicle touches the ground.
  • FIG. 3 is a flowchart of a method for controlling a drone according to another embodiment of the present invention. As shown in FIG. 3, on the basis of the embodiment shown in FIG. 1, this embodiment describes a method for detecting faults of a flight controller by a center board, and the method may include:
  • Step S301 detecting an electrical parameter of a power supply device of the flight controller; or detecting a connection circuit between the flight controller and the power supply device.
  • Step S302 Determine whether the flight controller is faulty according to whether the power supply device supplies power to the flight controller, or according to whether a connection circuit between the flight controller and the power supply device is turned on.
  • the power system of the unmanned aerial vehicle includes: a power supply, an electronic governor, a motor, and a propeller.
  • the flight controller is connected to the power system. Specifically, the flight controller is connected to the electronic governor. Since the electronic governor is connected to the power source, the power supply can supply power to the electronic governor. Therefore, the electronic governor can be given to the flight controller. powered by.
  • a separate power supply can be used to power the flight controller.
  • the center board can detect the electrical parameters of the power supply device that supplies power to the flight controller, such as output current, output voltage, and output power, and determine the power supply according to the values of the output current, the output voltage, and the output power. Whether the device supplies power to the flight controller.
  • the center board may further detect whether the connection circuit between the flight controller and the power supply device is turned on, and determine whether the power supply device normally supplies power to the flight controller according to whether the connection circuit is turned on or not.
  • the power supply device If the power supply device is abnormal, or the connection circuit between the flight controller and the power supply device is abnormal, the power supply device cannot supply power to the flight controller normally, due to flight control.
  • the device is used to control the flight of the unmanned aerial vehicle. If the power supply device cannot supply power to the flight controller normally, the unmanned aerial vehicle will lose control during the flight. Therefore, when the center plate determines that the power supply of the flight controller is abnormal, the control is immediately performed. The UAV's tripod is released and the flight controller is used to control the UAV flight.
  • the electrical parameter of the power supply device of the flight controller is detected by the center board, or the connection circuit between the flight controller and the power supply device determines whether the power supply device is abnormal, or whether the connection circuit between the flight controller and the power supply device is An abnormality occurs. If the abnormality occurs, it is determined that the power supply of the flight controller is abnormal, the tripod release of the unmanned aerial vehicle is controlled instantaneously, and the flight controller is used instead of the flight controller to control the unmanned aerial vehicle flight, thereby improving the safety of the unmanned aerial vehicle during the flight.
  • FIG. 4 is a flowchart of a method for controlling a drone according to another embodiment of the present invention. As shown in FIG. 4, on the basis of the embodiment shown in FIG. 1, this embodiment introduces another method for detecting faults of the flight controller by the center board, and the method may include:
  • Step S401 monitoring a communication link between the flight controller and the electronic governor; or monitoring a communication link between the flight controller and the communication system.
  • Step S402 determining whether the communication link between the flight controller and the electronic governor is faulty, or determining whether the communication link between the flight controller and the communication system is faulty. Whether the flight controller is faulty.
  • the center board can also determine whether the flight controller is faulty by detecting whether the flight controller is in communication with other devices around it, and specifically, the center board can monitor the relationship between the flight controller and the electronic governor. a communication link, or a communication link between the flight controller and the communication system, if the communication link between the flight controller and the electronic governor fails, or a communication link between the flight controller and the communication system In the event of a failure, the flight controller is determined to be faulty, the tripod release of the unmanned aerial vehicle is immediately controlled, and the flight controller is used to control the unmanned aerial vehicle flight.
  • the center board detects whether the communication link between the flight controller and the electronic governor is faulty, and whether the communication link between the flight controller and the communication system is faulty, and determines whether the flight controller is faulty, if the flight control If the device fails, the center board controls the unmanned flight in real time.
  • the tripod of the device is released and replaces the flight controller to control the flight of the unmanned aerial vehicle, which improves the safety of the unmanned aerial vehicle during flight.
  • Embodiments of the present invention provide a method for controlling a drone.
  • FIG. 5 is a flowchart of a method for controlling a drone according to another embodiment of the present invention. As shown in FIG. 5, on the basis of the embodiment shown in FIG. 1, the embodiment introduces a method for detecting a fault of a power system by a flight controller, and the method may include:
  • Step S501 Determine, according to the monitoring information obtained by monitoring the power system, whether the unmanned aerial vehicle is faulty.
  • Step S502 If the UAV fails, control the tripod release of the UAV.
  • the power system of the unmanned aerial vehicle includes: a power supply, an electronic governor, a motor, and a propeller.
  • the monitoring of the power system can be implemented to monitor at least one of the power source, the electronic governor, the motor, and the propeller.
  • the following describes the monitoring of the power supply, the electronic governor, the motor, and the propeller, and the method steps for determining whether the UAV is faulty according to the obtained monitoring information:
  • the method may include:
  • Step S10 Detecting electrical parameters of the power source.
  • the electrical parameters of the power supply include at least one of the following: power, lifetime, temperature, internal resistance, output voltage, and output current.
  • the method for detecting the electrical parameters of the power source is not limited in this embodiment.
  • Step S11 Determine, according to the electrical parameter of the power source, whether the power supply has a power failure.
  • the power supply failure of the power supply includes at least one of the following: insufficient power supply, current disturbance, and voltage disturbance.
  • the power supply life, temperature and internal resistance of the power supply, it can be determined whether the power supply is insufficient. According to whether the frequency, amplitude and waveform of the power supply output voltage deviate from the normal condition, determine whether the power supply has voltage disturbance; according to the frequency and amplitude of the power supply output current. Whether the waveform deviates from the normal condition and determines whether the power supply has a current disturbance.
  • the method of whether the aircraft is faulty may include:
  • Step S20 monitoring an output signal of the electronic governor.
  • Step S21 Determine, according to an output signal of the electronic governor, whether the electronic governor outputs a pulse width modulated PWM signal.
  • Step S22 Determine, according to the PWM signal output by the electronic governor, whether the PWM signal output by the electronic governor is correct.
  • the flight controller and the electronic governor can perform information communication, and the electronic governor sends a feedback signal to the flight controller according to the signal sent by the flight controller, and the flight controller can be based on the feedback signal of the electronic governor.
  • Determine whether the feedback signal is a Pulse Width Modulation (PWM) signal, and if it is a PWM signal, further detect whether the PWM signal is correct, and an achievable manner of detecting whether the PWM signal is correct is: according to the electronic Whether the PWM signal output by the governor is consistent with the PWM signal sent by the flight controller to the electronic governor, and determining whether the PWM signal output by the electronic governor is correct.
  • PWM Pulse Width Modulation
  • the method may include:
  • Step S30 detecting electrical parameters of the motor.
  • the electrical parameters of the motor include at least one of: voltage, current, rotational speed, reduction ratio, output power, and efficiency. This embodiment does not limit the method of detecting the electrical parameters of the motor.
  • Step S31 Determine, according to electrical parameters of the motor, whether the motor has a power failure.
  • the power failure of the motor includes at least one of the following: insufficient power and stop of rotation.
  • the flight controller receives the speed of the motor sent by the electronic governor. When the speed of the motor is less than the threshold, it can be determined that the motor is insufficient. If the speed of the motor is less than a minimum threshold, it is determined that the power stops rotating.
  • the method may include:
  • Step S40 detecting the rotation speed of the motor.
  • Step S41 If the rotation speed of the motor is greater than a threshold, determine that the propeller is faulty.
  • the propeller failure includes the propeller propeller.
  • the flight controller receives the speed of the motor sent by the electronic governor. When the speed of the motor is greater than the threshold, it indicates that the speed of the propeller is greater than the normal speed, and the propeller has the possibility of propellering. Therefore, it is determined that the propeller has a propeller failure.
  • At least one of the power source, the electronic governor, the motor, and the propeller is monitored by the flight controller, and according to the respective monitoring information, whether the power source, the electronic governor, the motor, and the propeller are faulty, if the power source, If at least one of the electronic governor, the motor, and the propeller fails, it is determined that the unmanned aerial vehicle's power system has failed, and the flight controller immediately controls the unmanned aerial vehicle's tripod release to prevent the UAV from failing in an emergency failure. Instantly release the tripod to prevent damage to the body, pan/tilt, camera, etc. when the UAV touches the ground.
  • FIG. 6 is a structural diagram of a control apparatus according to an embodiment of the present invention.
  • the control apparatus may be specifically a center board in the above embodiment.
  • the control apparatus 60 includes one or more processors 61, one or more.
  • the processor 61 is configured to: determine, according to the monitoring information obtained by monitoring the unmanned aerial vehicle, whether the unmanned aerial vehicle is faulty; if the unmanned aerial vehicle fails, control the tripod release of the unmanned aerial vehicle.
  • control device 60 further includes an electrical parameter detecting circuit 62 electrically connected to the processor 61, the electrical parameter detecting circuit 62 for detecting electrical parameters of the power supply device of the flight controller, or detecting the flight control a connection circuit between the device and the power supply device.
  • the processor 61 is specifically configured to determine whether the flight controller is faulty according to whether the power supply device supplies power to the flight controller, or according to whether a connection circuit between the flight controller and the power supply device is turned on. .
  • control device 60 further includes: a signal monitoring circuit 63 electrically connected to the processor 61 for monitoring a communication link between the flight controller and the electronic governor, or monitoring the A communication link between the flight controller and the communication system.
  • the processor 61 is specifically configured to: according to whether a communication link between the flight controller and the electronic governor is faulty, or according to a communication link between the flight controller and the communication system No fault, determine if the flight controller is faulty.
  • the processor 61 is configured to control the tripod release of the UAV.
  • control device provided by the embodiment of the present invention are similar to those of the embodiment shown in FIG. 3 and FIG. 4, and details are not described herein again.
  • the electrical parameter of the power supply device of the flight controller is detected by the center board, or the connection circuit between the flight controller and the power supply device determines whether the power supply device is abnormal, or whether the connection circuit between the flight controller and the power supply device is An abnormality occurs.
  • the tripod release of the unmanned aerial vehicle is controlled instantaneously, and the flight controller is used instead of the flight controller to control the unmanned aerial vehicle flight, thereby improving the safety of the unmanned aerial vehicle during flight; Detecting whether the communication link between the flight controller and the electronic governor is faulty through the center board, and whether the communication link between the flight controller and the communication system is faulty, determining whether the flight controller is faulty, and if the flight controller is faulty, Then the center plate instantly controls the release of the unmanned aerial vehicle's tripod, and replaces the flight controller to control the unmanned aerial vehicle flight, thereby improving the safety of the unmanned aerial vehicle during flight.
  • FIG. 7 is a structural diagram of a flight controller according to an embodiment of the present invention.
  • the flight controller may be specifically a flight controller in the foregoing method embodiment.
  • the flight controller 70 includes one or more micro controls.
  • a micro controller unit (71) the micro control unit 71 is configured to: determine, according to the monitoring information obtained by monitoring the unmanned aerial vehicle, whether the unmanned aerial vehicle is faulty; if the unmanned aerial vehicle fails, control The stand of the UAV is released.
  • the flight controller 70 further includes a signal monitoring circuit 72 electrically connected to the micro control unit 71 for monitoring a communication channel between the communication system of the UAV and the ground remote controller; the micro control unit 71 And configured to determine whether communication between the communication system and the ground remote controller is faulty according to a signal transmitted on the communication channel.
  • the flight controller 70 further includes an electrical parameter detecting circuit 73.
  • the electrical parameter detecting circuit 73 is electrically connected to the micro control unit 71 for detecting electrical parameters of the power system of the unmanned aerial vehicle.
  • the micro control unit 71 is specifically used. Determining whether the power system is faulty according to an electrical parameter of the power system.
  • the power system includes: a power source, an electronic governor, a motor, and a propeller.
  • the fault detection of the flight controller, the communication fault detection of the communication system and the ground station, and the fault detection of the power system are used to determine whether the unmanned aerial vehicle is faulty. If the unmanned aerial vehicle fails, the tripod of the unmanned aerial vehicle is controlled. Release; fault detection of communication between the communication system and the ground remote controller through the flight controller, and when detecting communication failure between the communication system and the ground remote controller, immediately control the release of the tripod of the unmanned aerial vehicle to avoid no
  • the ground remote control cannot properly control the unmanned aerial vehicle, and the unmanned aerial vehicle's tripod cannot be released immediately, thereby preventing damage to the body, the pan/tilt, the camera, and the like when the unmanned aerial vehicle touches the ground.
  • Embodiments of the present invention provide a flight controller.
  • the electrical parameter detecting circuit 73 is specifically configured to detect electrical parameters of the power source.
  • the micro control unit 71 is specifically configured to determine whether the power supply has a power failure according to the electrical parameter of the power source.
  • the power supply failure of the power supply includes at least one of the following: insufficient power supply, current disturbance, and voltage disturbance.
  • the signal monitoring circuit 72 is further configured to monitor an output signal of the electronic governor; the micro control unit 71 is specifically configured to determine, according to an output signal of the electronic governor, whether the electronic governor outputs a pulse width modulated PWM signal And determining, according to the PWM signal output by the electronic governor, whether the PWM signal output by the electronic governor is correct.
  • the micro control unit 71 determines, according to whether the PWM signal output by the electronic governor and the PWM signal sent by the flight controller to the electronic governor are consistent, determining a PWM signal output by the electronic governor. is it right or not.
  • the electrical parameter detecting circuit 73 is further configured to detect an electrical parameter of the motor; the micro control unit 71 is specifically configured to determine whether the motor has a power failure according to an electrical parameter of the motor.
  • the electrical parameters of the motor include at least one of: voltage, current, rotational speed, reduction ratio, output power, and efficiency.
  • the power failure of the motor includes at least one of the following: insufficient power and stop of rotation.
  • the electrical parameter detecting circuit 73 is further configured to detect the rotational speed of the motor; the micro control unit 71 is specifically configured to determine whether the rotational speed of the motor is greater than a threshold, and if yes, determine the propeller failure.
  • the propeller failure includes the propeller propeller.
  • At least one of the power source, the electronic governor, the motor, and the propeller is monitored by the flight controller, and according to the respective monitoring information, whether the power source, the electronic governor, the motor, and the propeller are faulty, if the power source, If at least one of the electronic governor, the motor, and the propeller fails, it is determined that the unmanned aerial vehicle's power system has failed, and the flight controller immediately controls the unmanned aerial vehicle's tripod release to prevent the UAV from failing in an emergency failure. Instantly release the tripod to prevent damage to the body, pan/tilt, camera, etc. when the UAV touches the ground.
  • FIG. 8 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • the unmanned aerial vehicle 100 includes: a fuselage, a power system, a flight controller 118, and a control device 119, where the power system includes at least the following A power source, a motor 107, a propeller 106, and an electronic governor 117, the power system is mounted on the airframe for providing flight power; and the flight controller 118 is communicatively coupled to the power system for controlling the Human aircraft flying.
  • the control device 119 is specifically the center plate in the above embodiment, and the control device 119 is connected to the flight controller 118 for detecting whether the flight controller 118 is faulty, and controlling the tripod of the unmanned aerial vehicle 100 when the flight controller 118 fails.
  • the release, the specific principle and the implementation are similar to the above embodiment, and the structure of the control device 119 is similar to that of the above embodiment, and details are not described herein again.
  • the flight controller 118 When the flight controller 118 is normal, the flight controller 118 detects the communication failure of the communication system and the ground station, and the failure of the power system.
  • the specific principle and implementation manner are similar to the above embodiment, and the structure of the flight controller 118 is also the same as above. The embodiment is similar and will not be described here.
  • the unmanned aerial vehicle 100 further includes: a sensing system 108, a communication system 110, a supporting device 102, and a photographing device 104.
  • the supporting device 102 may specifically be a pan/tilt
  • the communication system 110 may specifically include receiving
  • the receiver is configured to receive a wireless signal transmitted by the antenna 114 of the ground station 112.
  • the fault detection of the flight controller, the communication fault detection of the communication system and the ground station, and the fault detection of the power system are used to determine whether the unmanned aerial vehicle is faulty. If the unmanned aerial vehicle fails, the tripod of the unmanned aerial vehicle is controlled. Release to avoid the tightness of the UAV When the emergency fault falls, the tripod cannot be released immediately, preventing the damage of the body, the pan/tilt, the camera and the like when the unmanned aerial vehicle touches the ground.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机的控制方法、装置及无人飞行器(100),该方法包括:根据对无人飞行器(100)进行监测获得的监测信息,确定所述无人飞行器(100)是否故障;若所述无人飞行器(100)出现故障,则控制所述无人飞行器(100)的脚架释放。通过对飞行控制器(70)的故障检测、通信系统与地面站(112)的通讯故障检测、动力系统的故障检测,确定无人飞行器(100)是否故障,若无人飞行器(100)出现故障,则控制无人飞行器(100)的脚架释放,避免无人飞行器(100)出现紧急故障坠落时无法即时释放脚架,防止无人飞行器(100)触地时机体、云台、相机等设备受损。

Description

无人机的控制方法、装置及无人飞行器 技术领域
本发明实施例涉及无人机领域,尤其涉及一种无人机的控制方法、装置及无人飞行器。
背景技术
现有技术中多旋翼无人机安装有可变形的脚架,在无人机正常飞行时脚架可收起,在无人机降落时脚架可释放触地。
当无人机出现紧急故障时,无人机处于失控状态,在失控状态下无人机可能会发生坠机现象,由于无人机处于失控状态时,脚架无法被打开,则无人机从紧急故障产生到触地坠机过程中,脚架始终处于收起状态,导致无人机触地时机体、云台、相机等设备受损。
发明内容
本发明实施例提供一种无人机的控制方法、装置及无人飞行器,以避免无人飞行器出现紧急故障坠落时无法即时释放脚架。
本发明实施例的一个方面是提供一种无人机的控制方法,包括:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
本发明实施例的另一个方面是提供一种控制装置,包括一个或多个处理器,所述处理器用于:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
本发明实施例的另一个方面是提供一种飞行控制器,包括一个或多个MCU,所述MCU用于:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器 是否故障;
若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
本发明实施例的另一个方面是提供一种无人飞行器,包括:机身、动力系统、飞行控制器、控制装置;
所述动力系统,安装在所述机身,用于提供飞行动力;
所述飞行控制器,与所述动力系统连接,用于控制所述无人飞行器飞行;
所述控制装置,与所述飞行控制器连接,用于检测所述飞行控制器是否故障,并在所述飞行控制器故障时,控制所述无人飞行器的脚架释放;
所述飞行控制器包括一个或多个MCU,在所述飞行控制器正常时,所述MCU用于:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
本发明实施例提供的无人机的控制方法、装置及无人飞行器,通过对飞行控制器的故障检测、通信系统与地面站的通讯故障检测、动力系统的故障检测,确定无人飞行器是否故障,若无人飞行器出现故障,则控制无人飞行器的脚架释放,避免无人飞行器出现紧急故障坠落时无法即时释放脚架,防止无人飞行器触地时机体、云台、相机等设备受损。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的无人机的控制方法的流程图;
图2为本发明另一实施例提供的无人机的控制方法的流程图;
图3为本发明另一实施例提供的无人机的控制方法的流程图;
图4为本发明另一实施例提供的无人机的控制方法的流程图;
图5为本发明另一实施例提供的无人机的控制方法的流程图;
图5A为本发明另一实施例提供的电源检测方法的流程图;
图5B为本发明另一实施例提供的电子调速器检测方法的流程图;
图5C为本发明另一实施例提供的电机检测方法的流程图;
图5D为本发明另一实施例提供的螺旋桨检测方法的流程图;
图6为本发明实施例提供的控制装置的结构图;
图7为本发明实施例提供的飞行控制器的结构图;
图8为本发明实施例提供的无人飞行器的结构图。
附图标记:
60-控制装置       61-处理器         62-电参数检测电路
63-信号监测电路   70-飞行控制器     71-微控制单元
72-信号监测电路   73-电参数检测电路 100-无人飞行器
102-支撑设备      104-拍摄设备      106-螺旋桨
107-电机          108-传感系统      110-通信系统
112-地面站        114-天线          117-电子调速器
118-飞行控制器    119-控制装置
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本 发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种无人机的控制方法。图1为本发明实施例提供的无人机的控制方法的流程图。如图1所示,本实施例中的方法,可以包括:
步骤S101、根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障。
本实施例适用于无人飞行器的故障检测,并根据检测到的故障信息,控制无人机即时释放脚架,以免无人飞行器出现紧急故障坠落时无人飞行器不能即时释放脚架。无人飞行器至少包括:动力系统、通信系统、飞行控制器,动力系统安装在机身,用于提供飞行动力;飞行控制器与动力系统连接,用于控制无人飞行器飞行;通信系统用于和地面站进行通信,地面站可以是遥控器、智能终端、虚拟现实头戴式显示设备如虚拟现实眼镜、虚拟显示头盔中的至少一种。
本实施例的执行主体可以是飞行控制器,也可以是中心板,中心板是无人飞行器中的辅助控制设备,当飞行控制器出现故障,无法控制无人飞行器正常飞行时,中心板替代飞行控制器,实现对无人飞行器的控制,具体如控制脚架释放,控制通信系统和地面站进行通讯等。
本实施例中,无人飞行器的故障检测可实现为飞行控制器的故障检测、通信系统与地面站的通讯故障检测、动力系统的故障检测,具体的,可对通信系统、飞行控制器和动力系统中的至少一个进行监测,根据监测到的监测信息,确定无人飞行器是否故障,以下实施例将分别介绍对通信系统、飞行控制器和动力系统的故障检测方法。
在一些实施例中,对无人飞行器的故障检测还可以实现为对无人飞行器的机械结构的故障检测,例如机架完整性检测。
步骤S102、若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
在本实施例中,通过中心板对飞行控制器进行故障检测,当中心板检测到飞行控制器出现故障时,由中心板控制无人飞行器的脚架释放。
当飞行控制器正常时,由飞行控制器对通信系统与地面站的通讯、动力系统进行故障检测;当通信系统与地面站通讯故障或动力系统故障时,飞行控制器控制无人飞行器的脚架释放。
本实施例通过对飞行控制器的故障检测、通信系统与地面站的通讯故障检测、动力系统的故障检测,确定无人飞行器是否故障,若无人飞行器出现故障,则控制无人飞行器的脚架释放,避免无人飞行器出现紧急故障坠落时无法即时释放脚架,防止无人飞行器触地时机体、云台、相机等设备受损。
本发明实施例提供一种无人机的控制方法。图2为本发明另一实施例提供的无人机的控制方法的流程图。如图2所示,在图1所示实施例的基础上,本实施例介绍飞行控制器对通信系统进行故障检测的方法,该方法可以包括:
步骤S201、监测所述通信系统与地面遥控器之间的通讯信道。
步骤S202、根据所述通讯信道上传输的信号,确定所述通信系统与地面遥控器之间的通讯是否故障。
在本实施例中,无人飞行器的通信系统包括接收机,该接收机可接收地面遥控器发送的无线信号,若接收机在预设时间内没有接收到地面遥控器发送的无线信号,则接收机向飞行控制器发送包括标识位的信息,该标识位表示该接收机与地面遥控器失去联系,则飞行控制器根据该标识位,确定通信系统与地面遥控器之间的通讯出现故障。
另外,飞行控制器还可以对通信系统与地面遥控器之间的通讯信道进行监测,根据在通讯信道上监测到的信号,确定通信系统与地面遥控器之间的通讯是否故障,一种可实现方式是:若在预设时间内监测到通讯信道上传输有信号,则确定通信系统与地面遥控器之间的通讯正常,若在预设时间内监测不到通讯信道上传输有信号,则确定通信系统与地面遥控器之间的通讯出现故障。
由于通信系统与地面遥控器之间的通讯故障可以作为无人飞行器故 障的一种,因此,当飞行控制器确定出通信系统与地面遥控器之间的通讯出现故障时,飞行控制器控制无人飞行器的脚架释放。
本实施例通过飞行控制器对通信系统与地面遥控器之间的通讯进行故障检测,当检测出通信系统与地面遥控器之间的通讯出现故障时,即时控制无人飞行器的脚架释放,以免无人飞行器出现紧急故障坠落时,地面遥控器无法正常控制无人飞行器,无人飞行器的脚架无法即时释放,进而防止无人飞行器触地时机体、云台、相机等设备受损。
本发明实施例提供一种无人机的控制方法。图3为本发明另一实施例提供的无人机的控制方法的流程图。如图3所示,在图1所示实施例的基础上,本实施例介绍中心板对飞行控制器进行故障检测的一种方法,该方法可以包括:
步骤S301、检测所述飞行控制器的供电装置的电参数;或者检测所述飞行控制器与所述供电装置之间的连接电路。
步骤S302、根据所述供电装置是否给所述飞行控制器供电,或者,根据所述飞行控制器与所述供电装置之间的连接电路是否导通,确定所述飞行控制器是否故障。
无人飞行器的动力系统包括:电源、电子调速器、电机、螺旋桨。飞行控制器与动力系统连接,具体的,飞行控制器与电子调速器连接,由于电子调速器连接有电源,电源可以给电子调速器供电,因此,电子调速器可以给飞行控制器供电。
另外,还可以采用单独的供电装置给飞行控制器供电。
为了检测飞行控制器的供电是否正常,中心板可以检测给飞行控制器供电的供电装置的电参数,例如输出电流、输出电压、输出功率,根据输出电流、输出电压、输出功率的值,确定供电装置是否给所述飞行控制器供电。或者,中心板还可以检测飞行控制器与所述供电装置之间的连接电路是否导通,根据连接电路的导通与否,确定供电装置是否正常给飞行控制器供电。
若供电装置出现异常,或飞行控制器与所述供电装置之间的连接电路出现异常,导致供电装置无法给飞行控制器正常供电,由于飞行控制 器用于控制无人飞行器飞行,若供电装置无法给飞行控制器正常供电,将导致无人飞行器在飞行过程中失去控制,因此,中心板确定出飞行控制器的供电出现异常时,即时控制所述无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行。
本实施例通过中心板检测飞行控制器的供电装置的电参数,或者飞行控制器与供电装置之间的连接电路,确定供电装置是否出现异常,或飞行控制器与供电装置之间的连接电路是否出现异常,若异常,则确定飞行控制器的供电出现异常,即时控制无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行,提高了无人飞行器在飞行过程中的安全性。
本发明实施例提供一种无人机的控制方法。图4为本发明另一实施例提供的无人机的控制方法的流程图。如图4所示,在图1所示实施例的基础上,本实施例介绍中心板对飞行控制器进行故障检测的另一种方法,该方法可以包括:
步骤S401、监测所述飞行控制器与电子调速器之间的通讯链路;或者监测所述飞行控制器与所述通信系统之间的通讯链路。
步骤S402、根据所述飞行控制器与所述电子调速器之间的通讯链路是否故障,或者,根据所述飞行控制器与所述通信系统之间的通讯链路是否故障,确定所述飞行控制器是否故障。
在本实施例中,中心板还可以通过检测飞行控制器与其周围的其他设备的通讯是否故障,确定飞行控制器是否故障,具体的,中心板可以监测飞行控制器与电子调速器之间的通讯链路,或者,飞行控制器与通信系统之间的通讯链路,若飞行控制器与电子调速器之间的通讯链路故障,或者,飞行控制器与通信系统之间的通讯链路故障,则确定飞行控制器故障,即时控制所述无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行。
本实施例通过中心板检测飞行控制器与电子调速器之间的通讯链路是否故障,以及飞行控制器与通信系统之间的通讯链路是否故障,确定飞行控制器是否故障,若飞行控制器故障,则中心板即时控制无人飞行 器的脚架释放,并替代飞行控制器控制无人飞行器飞行,提高了无人飞行器在飞行过程中的安全性。
本发明实施例提供一种无人机的控制方法。图5为本发明另一实施例提供的无人机的控制方法的流程图。如图5所示,在图1所示实施例的基础上,本实施例介绍飞行控制器对动力系统进行故障检测的方法,该方法可以包括:
步骤S501、根据对动力系统进行监测获得的监测信息,确定所述无人飞行器是否故障。
步骤S502、若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
无人飞行器的动力系统包括:电源、电子调速器、电机、螺旋桨。
本实施例中,对动力系统的监测可实现为对电源、电子调速器、电机、螺旋桨中的至少一个进行监测。下面分别介绍对电源、电子调速器、电机、螺旋桨的监测,以及根据获得的监测信息,确定所述无人飞行器是否故障的方法步骤:
1)对电源的监测,以及根据获得的监测信息,确定所述无人飞行器是否故障的方法,如图5A所示,该方法可以包括:
步骤S10、检测所述电源的电参数。
电源的电参数包括如下至少一种:电量、寿命、温度、内阻、输出电压、输出电流,本实施例不限定电源的电参数的检测方法。
步骤S11、根据所述电源的电参数,确定所述电源是否出现供电故障。
所述电源的供电故障包括如下至少一种:供电不足、电流扰动和电压扰动。
根据电源的电量、寿命、温度、内阻可确定电源是否供电不足;根据电源输出电压的频率、幅值、波形是否偏离正常状况,确定电源是否出现电压扰动;根据电源输出电流的频率、幅值、波形是否偏离正常状况,确定电源是否出现电流扰动。
2)对电子调速器的监测,以及根据获得的监测信息,确定所述无人 飞行器是否故障的方法,如图5B所示,该方法可以包括:
步骤S20、监测所述电子调速器的输出信号。
步骤S21、根据所述电子调速器的输出信号,确定所述电子调速器是否输出脉冲宽度调制PWM信号。
步骤S22、根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确。
本实施例中,飞行控制器和电子调速器可以进行信息通讯,电子调速器根据飞行控制器发送的信号,向飞行控制器发送反馈信号,飞行控制器可根据电子调速器的反馈信号,确定该反馈信号是否为脉冲宽度调制(Pulse Width Modulation,简称PWM)信号,若是PWM信号,则进一步检测该PWM信号是否正确,检测PWM信号是否正确的一种可实现方式是:根据所述电子调速器输出的PWM信号与所述飞行控制器发送给所述电子调速器的PWM信号是否一致,确定所述电子调速器输出的PWM信号是否正确。
若电子调速器无法输出脉冲宽度调制PWM信号,或者输出的脉冲宽度调制PWM信号有误,则确定电子调速器出现故障。
3)对电机的监测,以及根据获得的监测信息,确定所述无人飞行器是否故障的方法,如图5C所示,该方法可以包括:
步骤S30、检测所述电机的电参数。
所述电机的电参数包括如下至少一种:电压、电流、转速、减速比、输出功率和效率。本实施例不限定电机的电参数的检测方法。
步骤S31、根据所述电机的电参数,确定所述电机是否出现动力故障。
所述电机的动力故障包括如下至少一种:动力不足和停止转动。
飞行控制器接收电子调速器发送的电机的转速,当电机的转速小于阈值时,可以确定电机动力不足,若电机的转速小于一个极小的阈值,则确定动力停止转动。
4)对螺旋桨的监测,以及根据获得的监测信息,确定所述无人飞行器是否故障的方法,如图5D所示,该方法可以包括:
步骤S40、检测所述电机的转速。
步骤S41、若所述电机的转速大于阈值,则确定所述螺旋桨故障。
所述螺旋桨故障包括所述螺旋桨射桨。
飞行控制器接收电子调速器发送的电机的转速,当电机的转速大于阈值时,表示螺旋桨旋转的速度大于了正常的速度,螺旋桨有射桨的可能,因此,确定螺旋桨出现射桨故障。
本实施例通过飞行控制器对电源、电子调速器、电机、螺旋桨中的至少一个进行监测,并根据各自的监测信息,确定电源、电子调速器、电机、螺旋桨是否出现故障,若电源、电子调速器、电机、螺旋桨中的至少一个出现故障,则确定无人飞行器的动力系统出现了故障,飞行控制器即时控制无人飞行器的脚架释放,避免无人飞行器出现紧急故障坠落时无法即时释放脚架,防止无人飞行器触地时机体、云台、相机等设备受损。
本发明实施例提供一种控制装置。图6为本发明实施例提供的控制装置的结构图,该控制装置具体可以是上述实施例中的中心板,如图6所示,控制装置60包括一个或多个处理器61,一个或多个处理器61用于:根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
另外,控制装置60还包括:电参数检测电路62,电参数检测电路62与处理器61电连接,电参数检测电路62用于检测飞行控制器的供电装置的电参数,或者检测所述飞行控制器与所述供电装置之间的连接电路。处理器61具体用于根据所述供电装置是否给所述飞行控制器供电,或者,根据所述飞行控制器与所述供电装置之间的连接电路是否导通,确定所述飞行控制器是否故障。
可选的,控制装置60还包括:信号监测电路63,信号监测电路63与处理器61电连接,用于监测所述飞行控制器与电子调速器之间的通讯链路,或者监测所述飞行控制器与所述通信系统之间的通讯链路。处理器61具体用于根据所述飞行控制器与所述电子调速器之间的通讯链路是否故障,或者,根据所述飞行控制器与所述通信系统之间的通讯链路是 否故障,确定所述飞行控制器是否故障。
另外,当所述飞行控制器故障时,处理器61用于控制所述无人飞行器的脚架释放。
本发明实施例提供的控制装置的具体原理和实现方式均与图3、图4所示实施例类似,此处不再赘述。
本实施例通过中心板检测飞行控制器的供电装置的电参数,或者飞行控制器与供电装置之间的连接电路,确定供电装置是否出现异常,或飞行控制器与供电装置之间的连接电路是否出现异常,若异常,则确定飞行控制器的供电出现异常,即时控制无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行,提高了无人飞行器在飞行过程中的安全性;通过中心板检测飞行控制器与电子调速器之间的通讯链路是否故障,以及飞行控制器与通信系统之间的通讯链路是否故障,确定飞行控制器是否故障,若飞行控制器故障,则中心板即时控制无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行,提高了无人飞行器在飞行过程中的安全性。
本发明实施例提供一种飞行控制器。图7为本发明实施例提供的飞行控制器的结构图,该飞行控制器具体可以是上述方法实施例中的飞行控制器,如图7所示,飞行控制器70包括一个或多个微控制单元(Micro Controller Unit,简称MCU)71,微控制单元71用于:根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
另外,飞行控制器70还包括信号监测电路72,信号监测电路72与微控制单元71电连接,用于监测所述无人飞行器的通信系统与地面遥控器之间的通讯信道;微控制单元71用于根据所述通讯信道上传输的信号,确定所述通信系统与地面遥控器之间的通讯是否故障。
可选的,飞行控制器70还包括电参数检测电路73,电参数检测电路73与微控制单元71电连接,用于检测所述无人飞行器的动力系统的电参数;微控制单元71具体用于根据所述动力系统的电参数,确定所述动力系统是否故障。
所述动力系统包括:电源、电子调速器、电机、螺旋桨。
本发明实施例提供的飞行控制器的具体原理和实现方式均与图1、图2所示实施例类似,此处不再赘述。
本实施例通过对飞行控制器的故障检测、通信系统与地面站的通讯故障检测、动力系统的故障检测,确定无人飞行器是否故障,若无人飞行器出现故障,则控制无人飞行器的脚架释放;通过飞行控制器对通信系统与地面遥控器之间的通讯进行故障检测,当检测出通信系统与地面遥控器之间的通讯出现故障时,即时控制无人飞行器的脚架释放,以免无人飞行器出现紧急故障坠落时,地面遥控器无法正常控制无人飞行器,无人飞行器的脚架无法即时释放,进而防止无人飞行器触地时机体、云台、相机等设备受损。
本发明实施例提供一种飞行控制器。在图7所示实施例的基础上,电参数检测电路73具体用于检测所述电源的电参数。微控制单元71具体用于根据所述电源的电参数,确定所述电源是否出现供电故障。所述电源的供电故障包括如下至少一种:供电不足、电流扰动和电压扰动。
信号监测电路72还用于监测所述电子调速器的输出信号;微控制单元71具体用于根据所述电子调速器的输出信号,确定所述电子调速器是否输出脉冲宽度调制PWM信号;根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确。可选的,微控制单元71根据所述电子调速器输出的PWM信号与所述飞行控制器发送给所述电子调速器的PWM信号是否一致,确定所述电子调速器输出的PWM信号是否正确。
另外,电参数检测电路73还用于检测所述电机的电参数;微控制单元71具体用于根据所述电机的电参数,确定所述电机是否出现动力故障。所述电机的电参数包括如下至少一种:电压、电流、转速、减速比、输出功率和效率。所述电机的动力故障包括如下至少一种:动力不足和停止转动。
此外,电参数检测电路73还用于检测所述电机的转速;微控制单元71具体用于判断所述电机的转速是否大于阈值,若是,则确定所述螺旋桨故障。所述螺旋桨故障包括所述螺旋桨射桨。
本发明实施例提供的飞行控制器的具体原理和实现方式均与图5所示实施例类似,此处不再赘述。
本实施例通过飞行控制器对电源、电子调速器、电机、螺旋桨中的至少一个进行监测,并根据各自的监测信息,确定电源、电子调速器、电机、螺旋桨是否出现故障,若电源、电子调速器、电机、螺旋桨中的至少一个出现故障,则确定无人飞行器的动力系统出现了故障,飞行控制器即时控制无人飞行器的脚架释放,避免无人飞行器出现紧急故障坠落时无法即时释放脚架,防止无人飞行器触地时机体、云台、相机等设备受损。
本发明实施例提供一种无人飞行器。图8为本发明实施例提供的无人飞行器的结构图,如图8所示,无人飞行器100包括:机身、动力系统、飞行控制器118和控制装置119,所述动力系统包括如下至少一种:电源、电机107、螺旋桨106和电子调速器117,动力系统安装在所述机身,用于提供飞行动力;飞行控制器118与所述动力系统通讯连接,用于控制所述无人飞行器飞行。
控制装置119具体为上述实施例中的中心板,控制装置119与飞行控制器118连接,用于检测飞行控制器118是否故障,并在飞行控制器118故障时,控制无人飞行器100的脚架释放,具体原理和实现方式均与上述实施例类似,控制装置119的结构也与上述实施例类似,此处不再赘述。
当飞行控制器118正常时,飞行控制器118对通信系统与地面站的通讯故障、动力系统的故障进行检测,具体原理和实现方式均与上述实施例类似,飞行控制器118的结构也与上述实施例类似,此处不再赘述,
另外,如图8所示,无人飞行器100还包括:传感系统108、通信系统110、支撑设备102、拍摄设备104,其中,支撑设备102具体可以是云台,通信系统110具体可以包括接收机,接收机用于接收地面站112的天线114发送的无线信号。
本实施例通过对飞行控制器的故障检测、通信系统与地面站的通讯故障检测、动力系统的故障检测,确定无人飞行器是否故障,若无人飞行器出现故障,则控制无人飞行器的脚架释放,避免无人飞行器出现紧 急故障坠落时无法即时释放脚架,防止无人飞行器触地时机体、云台、相机等设备受损。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (56)

  1. 一种无人机的控制方法,其特征在于,包括:
    根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
    若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
  2. 根据权利要求1所述的方法,其特征在于,所述无人飞行器包括:通信系统、飞行控制器、动力系统。
  3. 根据权利要求2所述的方法,其特征在于,所述对无人飞行器进行监测,包括:
    对所述通信系统、所述飞行控制器和所述动力系统中的至少一个进行监测。
  4. 根据权利要求3所述的方法,其特征在于,所述对所述通信系统进行监测,包括:
    监测所述通信系统与地面遥控器之间的通讯信道。
  5. 根据权利要求4所述的方法,其特征在于,所述根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
    根据所述通讯信道上传输的信号,确定所述通信系统与地面遥控器之间的通讯是否故障。
  6. 根据权利要求3所述的方法,其特征在于,所述对所述飞行控制器进行监测,包括:
    检测所述飞行控制器的供电装置的电参数;或者
    检测所述飞行控制器与所述供电装置之间的连接电路。
  7. 根据权利要求6所述的方法,其特征在于,所述根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
    根据所述供电装置是否给所述飞行控制器供电,或者,根据所述飞行控制器与所述供电装置之间的连接电路是否导通,确定所述飞行控制器是否故障。
  8. 根据权利要求3所述的方法,其特征在于,所述对所述飞行控制器进行监测,包括:
    监测所述飞行控制器与电子调速器之间的通讯链路;或者
    监测所述飞行控制器与所述通信系统之间的通讯链路。
  9. 根据权利要求8所述的方法,其特征在于,所述根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
    根据所述飞行控制器与所述电子调速器之间的通讯链路是否故障,或者,根据所述飞行控制器与所述通信系统之间的通讯链路是否故障,确定所述飞行控制器是否故障。
  10. 根据权利要求3所述的方法,其特征在于,所述动力系统包括:电源、电子调速器、电机、螺旋桨。
  11. 根据权利要求10所述的方法,其特征在于,所述对所述动力系统进行监测,包括:
    对所述电源、所述电子调速器、所述电机、所述螺旋桨中的至少一个进行监测。
  12. 根据权利要求11所述的方法,其特征在于,所述对所述电源进行监测,包括:
    检测所述电源的电参数;
    所述根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
    根据所述电源的电参数,确定所述电源是否出现供电故障。
  13. 根据权利要求12所述的方法,其特征在于,所述电源的供电故障包括如下至少一种:
    供电不足、电流扰动和电压扰动。
  14. 根据权利要求11所述的方法,其特征在于,所述对所述电子调速器进行监测,包括:
    监测所述电子调速器的输出信号;
    所述根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
    根据所述电子调速器的输出信号,确定所述电子调速器是否输出脉冲宽度调制PWM信号;
    根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确,包括:
    根据所述电子调速器输出的PWM信号与所述飞行控制器发送给所述电子调速器的PWM信号是否一致,确定所述电子调速器输出的PWM信号是否正确。
  16. 根据权利要求11所述的方法,其特征在于,所述对所述电机进行监测,包括:
    检测所述电机的电参数;
    所述根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
    根据所述电机的电参数,确定所述电机是否出现动力故障。
  17. 根据权利要求16所述的方法,其特征在于,所述电机的电参数包括如下至少一种:
    电压、电流、转速、减速比、输出功率和效率。
  18. 根据权利要求17所述的方法,其特征在于,所述电机的动力故障包括如下至少一种:
    动力不足和停止转动。
  19. 根据权利要求11所述的方法,其特征在于,所述对所述螺旋桨进行监测,包括:
    检测所述电机的转速;
    所述根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
    若所述电机的转速大于阈值,则确定所述螺旋桨故障。
  20. 根据权利要求19所述的方法,其特征在于,所述螺旋桨故障包括所述螺旋桨射桨。
  21. 一种控制装置,其特征在于,包括一个或多个处理器,所述处理器用于:
    根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
    若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
  22. 根据权利要求21所述的控制装置,其特征在于,还包括:
    电参数检测电路,所述电参数检测电路与所述处理器电连接,用于检测飞行控制器的供电装置的电参数,或者检测所述飞行控制器与所述供电装置之间的连接电路。
  23. 根据权利要求22所述的控制装置,其特征在于,所述处理器具体用于根据所述供电装置是否给所述飞行控制器供电,或者,根据所述飞行控制器与所述供电装置之间的连接电路是否导通,确定所述飞行控制器是否故障。
  24. 根据权利要求21所述的控制装置,其特征在于,还包括:
    信号监测电路,所述信号监测电路与所述处理器电连接,用于监测所述飞行控制器与电子调速器之间的通讯链路,或者监测所述飞行控制器与所述通信系统之间的通讯链路。
  25. 根据权利要求24所述的控制装置,其特征在于,所述处理器具体用于根据所述飞行控制器与所述电子调速器之间的通讯链路是否故障,或者,根据所述飞行控制器与所述通信系统之间的通讯链路是否故障,确定所述飞行控制器是否故障。
  26. 根据权利要求23或25所述的控制装置,其特征在于,所述处理器具体用于当所述飞行控制器故障时,控制所述无人飞行器的脚架释放。
  27. 一种飞行控制器,其特征在于,包括一个或多个MCU,所述MCU用于:
    根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
    若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
  28. 根据权利要求27所述的飞行控制器,其特征在于,还包括:
    信号监测电路,所述信号监测电路与所述MCU电连接,用于监测所述无人飞行器的通信系统与地面遥控器之间的通讯信道;
    所述MCU具体用于根据所述通讯信道上传输的信号,确定所述通信系统与地面遥控器之间的通讯是否故障。
  29. 根据权利要求28所述的飞行控制器,其特征在于,还包括:
    电参数检测电路,所述电参数检测电路与所述MCU电连接,用于检测所述无人飞行器的动力系统的电参数;
    所述MCU具体用于根据所述动力系统的电参数,确定所述动力系统是否故障。
  30. 根据权利要求29所述的飞行控制器,其特征在于,所述动力系统包括:
    电源、电子调速器、电机、螺旋桨。
  31. 根据权利要求30所述的飞行控制器,其特征在于,所述电参数检测电路具体用于检测所述电源的电参数;
    所述MCU具体用于根据所述电源的电参数,确定所述电源是否出现供电故障。
  32. 根据权利要求31所述的飞行控制器,其特征在于,所述电源的供电故障包括如下至少一种:
    供电不足、电流扰动和电压扰动。
  33. 根据权利要求30所述的飞行控制器,其特征在于,所述信号监测电路还用于监测所述电子调速器的输出信号;
    所述MCU具体用于根据所述电子调速器的输出信号,确定所述电子调速器是否输出脉冲宽度调制PWM信号;根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确。
  34. 根据权利要求33所述的飞行控制器,其特征在于,所述MCU具体用于根据所述电子调速器输出的PWM信号与所述飞行控制器发送给所述电子调速器的PWM信号是否一致,确定所述电子调速器输出的PWM信号是否正确。
  35. 根据权利要求30所述的飞行控制器,其特征在于,所述电参数检测电路具体用于检测所述电机的电参数;
    所述MCU具体用于根据所述电机的电参数,确定所述电机是否出现动力故障。
  36. 根据权利要求35所述的飞行控制器,其特征在于,所述电机的电参数包括如下至少一种:
    电压、电流、转速、减速比、输出功率和效率。
  37. 根据权利要求36所述的飞行控制器,其特征在于,所述电机的动力故障包括如下至少一种:
    动力不足和停止转动。
  38. 根据权利要求30所述的飞行控制器,其特征在于,所述电参数检测电路具体用于检测所述电机的转速;
    所述MCU具体用于判断所述电机的转速是否大于阈值,若是,则确定所述螺旋桨故障。
  39. 根据权利要求38所述的飞行控制器,其特征在于,所述螺旋桨故障包括所述螺旋桨射桨。
  40. 一种无人飞行器,其特征在于,包括:机身、动力系统、飞行控制器、控制装置;
    所述动力系统,安装在所述机身,用于提供飞行动力;
    所述飞行控制器,与所述动力系统连接,用于控制所述无人飞行器飞行;
    所述控制装置,与所述飞行控制器连接,用于检测所述飞行控制器是否故障,并在所述飞行控制器故障时,控制所述无人飞行器的脚架释放;
    所述飞行控制器包括一个或多个MCU,在所述飞行控制器正常时,所述MCU用于:
    根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
    若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
  41. 根据权利要求40所述的无人飞行器,其特征在于,所述控制装置包括一个或多个处理器,以及电参数检测电路;
    所述电参数检测电路与所述处理器电连接,所述电参数检测电路用于检测所述飞行控制器的供电装置的电参数,或者检测所述飞行控制器与所述供电装置之间的连接电路。
  42. 根据权利要求41所述的无人飞行器,其特征在于,所述处理器具体用于根据所述供电装置是否给所述飞行控制器供电,或者,根据所 述飞行控制器与所述供电装置之间的连接电路是否导通,确定所述飞行控制器是否故障。
  43. 根据权利要求40所述的无人飞行器,其特征在于,所述控制装置还包括:
    信号监测电路,所述信号监测电路与所述处理器电连接,用于监测所述飞行控制器与电子调速器之间的通讯链路,或者监测所述飞行控制器与所述通信系统之间的通讯链路。
  44. 根据权利要求43所述的无人飞行器,其特征在于,所述处理器具体用于根据所述飞行控制器与所述电子调速器之间的通讯链路是否故障,或者,根据所述飞行控制器与所述通信系统之间的通讯链路是否故障,确定所述飞行控制器是否故障。
  45. 根据权利要求40所述的无人飞行器,其特征在于,所述飞行控制器还包括:
    信号监测电路,所述信号监测电路与所述MCU电连接,用于监测所述无人飞行器的通信系统与地面遥控器之间的通讯信道;
    所述MCU具体用于根据所述通讯信道上传输的信号,确定所述通信系统与地面遥控器之间的通讯是否故障。
  46. 根据权利要求45所述的无人飞行器,其特征在于,所述飞行控制器还包括:
    电参数检测电路,所述电参数检测电路与所述MCU电连接,用于检测所述无人飞行器的动力系统的电参数;
    所述MCU具体用于根据所述动力系统的电参数,确定所述动力系统是否故障。
  47. 根据权利要求46所述的无人飞行器,其特征在于,所述动力系统包括:
    电源、电子调速器、电机、螺旋桨。
  48. 根据权利要求47所述的无人飞行器,其特征在于,所述电参数检测电路具体用于检测所述电源的电参数;
    所述MCU具体用于根据所述电源的电参数,确定所述电源是否出现供电故障。
  49. 根据权利要求48所述的无人飞行器,其特征在于,所述电源的供电故障包括如下至少一种:
    供电不足、电流扰动和电压扰动。
  50. 根据权利要求47所述的无人飞行器,其特征在于,所述信号监测电路还用于监测所述电子调速器的输出信号;
    所述MCU具体用于根据所述电子调速器的输出信号,确定所述电子调速器是否输出脉冲宽度调制PWM信号;根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确。
  51. 根据权利要求50所述的无人飞行器,其特征在于,所述MCU具体用于根据所述电子调速器输出的PWM信号与所述飞行控制器发送给所述电子调速器的PWM信号是否一致,确定所述电子调速器输出的PWM信号是否正确。
  52. 根据权利要求47所述的无人飞行器,其特征在于,所述电参数检测电路具体用于检测所述电机的电参数;
    所述MCU具体用于根据所述电机的电参数,确定所述电机是否出现动力故障。
  53. 根据权利要求52所述的无人飞行器,其特征在于,所述电机的电参数包括如下至少一种:
    电压、电流、转速、减速比、输出功率和效率。
  54. 根据权利要求53所述的无人飞行器,其特征在于,所述电机的动力故障包括如下至少一种:
    动力不足和停止转动。
  55. 根据权利要求47所述的无人飞行器,其特征在于,所述电参数检测电路具体用于检测所述电机的转速;
    所述MCU具体用于判断所述电机的转速是否大于阈值,若是,则确定所述螺旋桨故障。
  56. 根据权利要求55所述的无人飞行器,其特征在于,所述螺旋桨故障包括所述螺旋桨射桨。
PCT/CN2016/101367 2016-09-30 2016-09-30 无人机的控制方法、装置及无人飞行器 WO2018058672A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/101367 WO2018058672A1 (zh) 2016-09-30 2016-09-30 无人机的控制方法、装置及无人飞行器
CN201680003175.5A CN107074351B (zh) 2016-09-30 2016-09-30 无人机的控制方法、装置、飞行控制器及无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101367 WO2018058672A1 (zh) 2016-09-30 2016-09-30 无人机的控制方法、装置及无人飞行器

Publications (1)

Publication Number Publication Date
WO2018058672A1 true WO2018058672A1 (zh) 2018-04-05

Family

ID=59624221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101367 WO2018058672A1 (zh) 2016-09-30 2016-09-30 无人机的控制方法、装置及无人飞行器

Country Status (2)

Country Link
CN (1) CN107074351B (zh)
WO (1) WO2018058672A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937886A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 无人机的故障检测方法及装置
CN117163305A (zh) * 2023-09-04 2023-12-05 黑龙江惠达科技股份有限公司 检测无人机动力系统的方法和装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019080067A1 (zh) * 2017-10-26 2019-05-02 深圳市大疆创新科技有限公司 农用机控制方法、装置及系统
CN107967798A (zh) * 2017-11-28 2018-04-27 佛山市安尔康姆航空科技有限公司 无人机接收器控制方法
WO2019119201A1 (zh) * 2017-12-18 2019-06-27 深圳市大疆灵眸科技有限公司 一种云台控制方法、无人机、云台及存储介质
CN109976297B (zh) * 2017-12-27 2021-11-09 西安远智电子科技有限公司 一种失控保护的检测方法、装置及无人机
CN108227740A (zh) * 2017-12-29 2018-06-29 北京臻迪科技股份有限公司 飞行器断链控制方法及飞行器
CN110612252A (zh) * 2018-01-05 2019-12-24 深圳市大疆创新科技有限公司 无人机的故障检测方法、装置及可移动平台
CN108341072B (zh) * 2018-02-11 2021-06-04 深圳禾苗通信科技有限公司 无人机动力系统故障检测的方法、装置及无人机
JP6986686B2 (ja) * 2018-07-03 2021-12-22 パナソニックIpマネジメント株式会社 情報処理方法、制御装置及び係留移動体
US11188075B2 (en) * 2018-08-02 2021-11-30 Qualcomm Incorporated Controlling a robotic vehicle following flight controller signal loss
TWI696907B (zh) * 2018-11-26 2020-06-21 財團法人工業技術研究院 通訊失效偵測方法和裝置
WO2020142945A1 (zh) * 2019-01-09 2020-07-16 深圳市大疆创新科技有限公司 电机失效检测方法、设备及存储介质
CN109878715B (zh) * 2019-03-05 2021-10-08 广州极飞科技股份有限公司 无人飞行器的故障监测预警方法及无人飞行器
CN109871034A (zh) * 2019-03-25 2019-06-11 苏州极目机器人科技有限公司 飞行控制方法、装置及无人飞行器
WO2022067463A1 (zh) * 2020-09-29 2022-04-07 深圳市大疆创新科技有限公司 无人飞行器的动力故障检测方法、装置及无人飞行器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754358A (zh) * 2014-01-10 2014-04-30 深圳市大疆创新科技有限公司 一种无人飞行器的起落架控制方法及装置
CN204489196U (zh) * 2015-02-12 2015-07-22 深圳大学 一种燃料动力多旋翼无人机
JP2016084120A (ja) * 2014-10-23 2016-05-19 鈴木 淳史 回転翼無人機
CN105607516A (zh) * 2016-01-07 2016-05-25 谭圆圆 一种飞行监控装置及飞行状态监控方法
CN105928695A (zh) * 2016-05-11 2016-09-07 中国矿业大学 一种小型无人直升机机械零部件故障诊断系统及故障诊断方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102464108A (zh) * 2010-11-01 2012-05-23 成都飞机工业(集团)有限责任公司 无人机发动机故障处理方法
CN104229126B (zh) * 2014-09-15 2016-06-01 中国运载火箭技术研究院 一种高可靠起落架控制系统
CN204264445U (zh) * 2014-11-28 2015-04-15 成都飞机工业(集团)有限责任公司 一种起落架收放系统
CN105000172A (zh) * 2015-07-27 2015-10-28 江西洪都航空工业集团有限责任公司 飞机起落架收放电气控制系统
CN205010480U (zh) * 2015-07-28 2016-02-03 西安航空制动科技有限公司 一种无人机起落架综合控制系统
CN105302043B (zh) * 2015-11-17 2019-02-22 重庆国飞通用航空设备制造有限公司 一种无人机的安全控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754358A (zh) * 2014-01-10 2014-04-30 深圳市大疆创新科技有限公司 一种无人飞行器的起落架控制方法及装置
JP2016084120A (ja) * 2014-10-23 2016-05-19 鈴木 淳史 回転翼無人機
CN204489196U (zh) * 2015-02-12 2015-07-22 深圳大学 一种燃料动力多旋翼无人机
CN105607516A (zh) * 2016-01-07 2016-05-25 谭圆圆 一种飞行监控装置及飞行状态监控方法
CN105928695A (zh) * 2016-05-11 2016-09-07 中国矿业大学 一种小型无人直升机机械零部件故障诊断系统及故障诊断方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937886A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 无人机的故障检测方法及装置
CN112937886B (zh) * 2019-12-10 2023-05-02 广州极飞科技股份有限公司 无人机的故障检测方法及装置
CN117163305A (zh) * 2023-09-04 2023-12-05 黑龙江惠达科技股份有限公司 检测无人机动力系统的方法和装置

Also Published As

Publication number Publication date
CN107074351A (zh) 2017-08-18
CN107074351B (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2018058672A1 (zh) 无人机的控制方法、装置及无人飞行器
US11511857B2 (en) Aerial vehicle control method and aerial vehicle
US10059459B2 (en) Unmanned aerial vehicle recovery system
US9786188B2 (en) Safety motor controller for a vehicle
WO2018018518A1 (zh) 多旋翼无人机及其控制方法
US7406370B2 (en) Electrical energy management system on a more electric vehicle
WO2017147755A1 (zh) 油门控制信号处理方法、电子调速器、控制器及移动平台
WO2019134150A1 (zh) 无人机的故障检测方法、装置及可移动平台
JP6219002B2 (ja) 飛行制御装置およびこれを備える無人航空機
WO2017000238A1 (zh) 一种电池管理方法、单体电池、飞行控制系统及无人机
KR20220047392A (ko) 분산형 비행 제어 시스템
WO2018072194A1 (zh) 处理故障的方法、飞行器、服务器和控制设备
WO2019140617A1 (zh) 电池控制方法、电池控制系统、无人机及电池
US11656670B2 (en) Common unmanned system architecture
US20130159039A1 (en) Data center infrastructure management system for maintenance
WO2017185363A1 (zh) 无人飞行器的控制方法、装置及系统
WO2017166080A1 (zh) 执行状态指示方法、装置及无人机
US11354202B1 (en) Mixed-criticality network for common unmanned system architecture
US11687400B2 (en) Method and system for controlling auxiliary systems of unmanned system
CN106941777B (zh) 无人机及其挂载装置、挂载平台、控制方法和控制系统
WO2022193966A1 (zh) 一种监测电池的方法、电池及无人机
WO2020107563A1 (zh) 负载控制电路及可移动平台
WO2020107391A1 (zh) 负载控制方法、装置及可移动平台
JP6932456B2 (ja) 無人航空機およびバッテリカートリッジ
WO2020107465A1 (zh) 控制方法、无人机和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917422

Country of ref document: EP

Kind code of ref document: A1