WO2022067463A1 - 无人飞行器的动力故障检测方法、装置及无人飞行器 - Google Patents

无人飞行器的动力故障检测方法、装置及无人飞行器 Download PDF

Info

Publication number
WO2022067463A1
WO2022067463A1 PCT/CN2020/118671 CN2020118671W WO2022067463A1 WO 2022067463 A1 WO2022067463 A1 WO 2022067463A1 CN 2020118671 W CN2020118671 W CN 2020118671W WO 2022067463 A1 WO2022067463 A1 WO 2022067463A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
electrical parameter
preset
drive motors
electrical
Prior art date
Application number
PCT/CN2020/118671
Other languages
English (en)
French (fr)
Inventor
贾向华
王璐
王晓亮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080008643.4A priority Critical patent/CN113302129A/zh
Priority to PCT/CN2020/118671 priority patent/WO2022067463A1/zh
Publication of WO2022067463A1 publication Critical patent/WO2022067463A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to the technical field of control, in particular to a method and device for detecting a power failure of an unmanned aerial vehicle, and an unmanned aerial vehicle.
  • Unmanned aerial vehicles have made great progress in recent years, and they are used in many fields. For example, unmanned aerial vehicles are often used for agricultural surveying, terrain mapping, film and television shooting, etc. Underwater sample collection, etc., they can greatly improve the work efficiency in the corresponding field. Due to installation, manufacturing, collision and other reasons, the installation angle of the drive motor of the drone may be abnormal. For example, under normal circumstances, the drive motor should be installed vertically. Due to manufacturing errors or collisions, the drive motor may deviate from the vertical. straight direction. Also, the propeller driven by the motor may break. At present, the fault detection of the UAV motor mainly detects the state of the motor through the ESC to detect whether the state of the motor is normal, but cannot detect the abnormal installation of the UAV's drive motor or the broken propeller. .
  • Embodiments of the present invention provide a method and device for detecting a power failure of an unmanned aerial vehicle, and an unmanned aerial vehicle, which are used to solve at least one of the above-mentioned technical problems.
  • an embodiment of the present invention provides a power failure detection method for an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a power system for providing flight power, and the power system includes a plurality of driving motors and a plurality of driving motors formed by the plurality of driving motors.
  • a plurality of propellers driven, wherein the method comprises:
  • a first safety response operation is performed.
  • the present invention provides a power failure detection device for an unmanned aerial vehicle, the unmanned aerial vehicle includes a power system for providing flight power, and the power system includes a plurality of drive motors and a drive motor driven by the plurality of drive motors. a plurality of propellers, the apparatus comprising:
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one
  • the processor can execute:
  • a first safety response operation is performed.
  • the present invention provides an unmanned aerial vehicle, comprising:
  • the power failure detection device of the unmanned aerial vehicle is installed on the movable body.
  • an embodiment of the present invention provides a storage medium, where one or more programs including execution instructions are stored in the storage medium, and the execution instructions can be used by an electronic device (including but not limited to a computer, a server, or a network). equipment, etc.) to read and execute, so as to execute the power failure detection method of any one of the above-mentioned unmanned aerial vehicles of the present invention.
  • an electronic device including but not limited to a computer, a server, or a network). equipment, etc.
  • an embodiment of the present invention further provides a computer program product, the computer program product includes a computer program stored on a storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, causes the The computer executes any one of the above-mentioned methods for detecting a power failure of an unmanned aerial vehicle.
  • this embodiment collects the working parameters (rotational speed or electrical parameters) of multiple drive motors when the UAV is in a hovering state, and based on the consistency of the working parameters of multiple drive motors It can analyze whether the drive motors in the multiple drive motors are abnormally installed or whether the propellers in the multiple propellers are broken, so as to realize the timely detection of abnormal installation of the motors or the damage of the propellers, and avoid potential safety hazards.
  • FIG. 1 is a flowchart of an embodiment of a power failure detection method for an unmanned aerial vehicle of the present invention
  • FIG. 2 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention
  • FIG. 3 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention
  • FIG. 4 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention
  • FIG. 5 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention.
  • FIG. 6 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention.
  • FIG. 7 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention.
  • FIG. 8 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention.
  • FIG. 9 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention.
  • FIG. 10 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention.
  • FIG. 11 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention.
  • FIG. 12 is a flowchart of another embodiment of the method for detecting a power failure of an unmanned aerial vehicle of the present invention.
  • FIG. 13 is a schematic structural diagram of an embodiment of the unmanned aerial vehicle of the present invention.
  • the present invention implements and provides a power failure detection method of an unmanned aerial vehicle, a device for executing the power failure detection method of the unmanned aerial vehicle, and an unmanned aerial vehicle (eg, a quadrotor unmanned aerial vehicle) equipped with the device. Subsequent embodiments of the present invention are described by taking the unmanned aerial vehicle as an example of a quadrotor unmanned aerial vehicle.
  • an embodiment of the present invention provides a power failure detection method for an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a power system for providing flight power, and the power system includes a plurality of driving motors and is driven by a plurality of driving motors.
  • the plurality of propellers, the method includes the following steps:
  • Step S10 acquiring rotational speeds or electrical parameters of the plurality of drive motors when the unmanned aerial vehicle is in a hovering state.
  • the quadrotor aircraft is in a hovering state, which means that the quadrotor aircraft relies on the power generated by the four drive motors to drive the four propellers to be in a stationary state in the air, and there is no horizontal and vertical movement.
  • the unmanned aerial vehicle is also equipped with an ESC system (each drive motor corresponds to an ESC system) corresponding to a plurality of drive motors (each drive motor drives a respective propeller), and the flight control of the unmanned aerial vehicle is
  • the system can obtain real-time status information such as motor speed, current, and voltage through the ESC system.
  • the plurality of drive motors are four drive motors, and the plurality of propellers are four propellers.
  • the rotational speeds of the four drive motors are R1 to R4 respectively, and the electrical parameters include voltage parameters and/or current parameters.
  • the voltage parameters of the four drive motors are U1 to U4 respectively, and the current parameters of the four drive motors are I1 to I4 respectively.
  • Step S20 Determine whether the drive motors of the multiple drive motors are abnormally installed or whether the propellers of the multiple propellers are broken according to the rotational speeds or electrical parameters of the multiple drive motors.
  • the rotational speeds R1 to R4 of the four driving motors it can be determined whether there is an abnormally installed motor among the four driving motors, or whether there is a broken propeller among the plurality of propellers.
  • Step S30 If it is determined that the drive motor of the plurality of drive motors is abnormally installed or the propeller of the plurality of propellers is broken, a first safety response operation is performed.
  • the multiple drive motors of the UAV need to drive the multiple propellers with roughly equivalent working parameters (speed or voltage or current). , to provide roughly equivalent power to maintain the hovering state of the UAV. If the installation angle of a certain drive motor deviates from the installation angle of other drive motors or a certain drive motor is damaged, the flight control system will automatically change the working parameters of the certain drive motor in order to achieve the hovering state normally ( speed or voltage or current), so that its working parameters are different from those of other drive motors.
  • the working parameters (rotational speed or electrical parameters) of multiple drive motors are collected when the UAV is in the hovering state, and the multiple drive motors are reversed based on the consistency analysis of the working parameters of the multiple drive motors. Whether the drive motor is installed abnormally or whether the propellers in the multiple propellers are broken, it realizes the timely detection of abnormal installation of the motor or the damage of the propeller, and avoids potential safety hazards.
  • performing the first safety response operation includes: sending first prompt information to a control terminal communicatively connected to the UAV, so that the control terminal displays a first prompt notification.
  • the control terminal may be a remote controller matched with the unmanned aerial vehicle, and the remote controller may be provided with a display screen and/or an indicator light.
  • a first prompt notification ( The first prompt notification may be a combination of one or more of text prompts, voice prompts, picture prompts, video prompts, or motion picture prompts, etc., which is not limited in the present invention), or click the preset mode by controlling the indicator light. Bright.
  • control terminal may also be a combination of a remote control and a smart phone.
  • the smart phone is installed on the remote controller and communicated with the remote controller, and the remote controller is communicatively connected with the unmanned aerial vehicle to receive data information sent by the unmanned aerial vehicle.
  • the remote controller After the remote controller receives the first prompt information, it controls the smartphone to display the first prompt notification.
  • An indicator light may also be configured on the remote control. After the remote control receives the first prompt message, it is controlled to light up according to a preset mode.
  • performing the first safety response operation includes: controlling the UAV to land or return home.
  • the unmanned aerial vehicle when it is determined that there is an abnormally installed drive motor or a damaged propeller on the unmanned aerial vehicle, the unmanned aerial vehicle is controlled to land or return to ensure the safety of the unmanned aerial vehicle in time.
  • step S20 determines, according to the rotational speed or electrical parameters of the plurality of driving motors, which of the plurality of driving motors Whether the drive motor is installed abnormally or whether the propellers in multiple propellers are broken, including:
  • Step S21 determining the degree of consistency of the rotational speeds of the plurality of driving motors according to the rotational speeds of the plurality of driving motors.
  • the rotational speeds of the four driving motors are R1 to R4 respectively, and the degree of consistency of the rotational speeds can be determined by comparing the rotational speeds R1 to R4 of the four driving motors.
  • the rotational speed of each driving motor may be compared with the average rotational speed or the median rotational speed determined according to the four driving motors to determine the degree of rotational speed consistency.
  • the rotational speeds of the four driving motors may be compared in pairs, and a pair of driving motors with the largest rotational speed difference may be selected to determine the degree of consistency of rotational speeds.
  • Step S22 if the degree of rotation speed consistency satisfies the preset condition of the rotation speed consistency degree, it is determined that the drive motors of the plurality of drive motors are abnormally installed or the propellers of the plurality of propellers are broken.
  • the preset condition for the degree of rotation speed consistency is a judgment condition for judging that a plurality of drive motors or a plurality of propellers are abnormally installed or broken.
  • the degree of rotation speed consistency determined in step S21 satisfies the preset conditions of rotation speed consistency degree, it is determined that there is an abnormally installed drive motor in the plurality of drive motors, or it is determined that there is a broken or damaged propeller in the plurality of propellers.
  • Step S23 Determine the degree of consistency of the electrical parameters of the plurality of driving motors according to the electrical parameters of the plurality of driving motors.
  • the electrical parameters include voltage parameters and/or current parameters.
  • the voltage parameters of the four drive motors are U1 to U4, respectively, and the current parameters of the four drive motors are I1 to I4, respectively.
  • the degree of consistency of the electrical parameters is determined by comparing the voltage parameters U1 to U4 (and/or the current parameters I1 to I4 ) of the four drive motors.
  • the voltage parameters (and/or current parameters) of each drive motor can be compared with the average value or the median voltage parameter (and/or current parameter) of the voltage parameters (and/or current parameters) determined according to the four drive motors. Comparison to determine the degree of consistency of electrical parameters.
  • the voltage parameters (and/or current parameters) of the four drive motors may be compared in pairs, and a pair of drive motors with the largest difference in rotational speed may be selected to determine the degree of consistency of the electrical parameters.
  • Step S24 If the degree of consistency of electrical parameters satisfies the preset condition of degree of consistency of electrical parameters, it is determined that the drive motors of the plurality of drive motors are abnormally installed or the propellers of the plurality of propellers are broken.
  • the preset condition for the degree of consistency of electrical parameters is a judgment condition for judging that there are abnormal installations or fractures in the plurality of drive motors or the plurality of propellers.
  • the degree of consistency of electrical parameters determined in step S23 satisfies the preset condition of degree of consistency of electrical parameters, it is determined that there is an abnormally installed drive motor among the plurality of drive motors or that there is a broken or damaged propeller among the plurality of propellers.
  • the degree of consistency among the multiple rotational speeds (or multiple electrical parameters) of the multiple drive motors of the unmanned aerial vehicle is used to accurately find the drive motor with abnormal performance, so as to determine the multiple drive motors or multiple drive motors. Whether there is an abnormally installed motor or a broken propeller in the propeller.
  • step S21 determines the degree of consistency of the rotational speeds of the plurality of driving motors according to the rotational speeds of the plurality of driving motors, include:
  • Step S211 determining a first characteristic rotational speed of the rotational speeds of the plurality of driving motors, where the first characteristic rotational speed is an average rotational speed or a median rotational speed.
  • the average rotational speed is: (R1+R2+R3+R4)/4.
  • Step S212 determining a second characteristic rotational speed of the rotational speeds of the plurality of driving motors, where the second characteristic rotational speed is the lowest rotational speed and/or the highest rotational speed.
  • the rotational speed is taken as the second characteristic rotational speed.
  • the lowest rotational speed R1 is determined as the second characteristic rotational speed
  • the lowest rotational speed R1 is determined as the second characteristic rotational speed
  • the second characteristic rotational speed is the lowest rotational speed and the highest rotational speed.
  • the drive motors or propellers corresponding to the lowest rotational speed and the highest rotational speed are abnormal.
  • Step S213 Determine the first rotational speed difference between the first characteristic rotational speed and the second characteristic rotational speed as the degree of consistency between the rotational speeds of the plurality of drive motors, and if the first rotational speed difference is greater than or equal to the first preset rotational speed difference threshold, determine The speed consistency degree satisfies the speed consistency degree preset condition.
  • step S213 includes: determining that the first rotational speed difference between the first characteristic rotational speed and the second characteristic rotational speed is the degree of consistency of rotational speeds of the plurality of driving motors, if If the first rotational speed difference is greater than or equal to the first preset rotational speed difference threshold, it is determined that the degree of rotational speed consistency satisfies the preset condition of rotational speed consistency.
  • step S213 includes: determining the rotational speed difference between the first characteristic rotational speed and the lowest rotational speed as the degree of consistency between the rotational speeds of the plurality of drive motors, if the rotational speed difference is is greater than or equal to the first preset rotational speed difference threshold, then it is determined that the degree of rotational speed consistency satisfies the preset condition of rotational speed consistency; and, it is determined that the rotational speed difference between the first characteristic rotational speed and the maximum rotational speed is the degree of rotational speed consistency of the plurality of drive motors, If the rotational speed difference is greater than or equal to the first preset rotational speed difference threshold, it is determined that the rotational speed consistency degree satisfies the preset condition for the rotational speed consistency degree.
  • the step S21 determining the degree of consistency of the rotational speeds of the multiple driving motors according to the rotational speeds of the multiple driving motors includes determining that the difference between the maximum rotational speed and the minimum rotational speed among the rotational speeds of the plurality of driving motors is the value for the plurality of driving motors.
  • the degree of consistency of the rotational speeds of the drive motors when the difference is greater than or equal to the preset rotational speed threshold, it is determined that the degree of rotational speed consistency satisfies the preset condition of rotational speed consistency.
  • step S23 determines the plurality of drives according to the electrical parameters of the plurality of drive motors The degree of consistency of electrical parameters of the motor, including:
  • Step S231 determining first characteristic electrical parameters of the plurality of driving motors, wherein the first characteristic electrical parameters are average electrical parameters or median electrical parameters.
  • the electrical parameters include voltage parameters and/or current parameters.
  • the voltage parameters of the four drive motors are U1 to U4, respectively, and the current parameters of the four drive motors are I1 to I4, respectively.
  • the degree of consistency of the electrical parameters is determined by comparing the voltage parameters U1 to U4 (and/or the current parameters I1 to I4 ) of the four drive motors.
  • the average voltage parameter is: (U1+U2+U3+U4)/4.
  • the average current parameter is: (I1+I2+I3+I4)/4.
  • the electrical parameters are voltage parameters and current parameters
  • the average voltage parameter or the median voltage parameter and the average current parameter or the median current parameter are simultaneously determined according to the above method.
  • Step S232 Determine second characteristic electrical parameters of the plurality of driving motors, wherein the second characteristic electrical parameters are the lowest electrical parameter and/or the highest electrical parameter.
  • the electrical parameter is a voltage parameter
  • first select the drive motor with the smallest voltage parameter and the largest voltage parameter and then compare the minimum voltage and the maximum voltage with the average voltage parameter or the median voltage parameter determined in step S211 respectively. A comparison is made, and a voltage closer to the average voltage parameter or the median voltage parameter is selected as the second characteristic electrical parameter.
  • the minimum voltage U1 is determined as the first Two characteristic electrical parameters; when the first characteristic electrical parameter takes the median electrical parameter, the minimum voltage is U1, the maximum voltage is U4, and the difference between U1 and the median voltage parameter is greater than the difference between U4 and the median voltage parameter , the minimum voltage U1 is determined as the second characteristic electrical parameter.
  • the second characteristic electrical parameter is the minimum voltage and the maximum voltage.
  • the electrical parameter is the current parameter
  • first select the drive motor with the smallest current parameter and the largest voltage parameter and then compare the minimum current and the maximum current with the average current parameter or the median current parameter determined in step S211 respectively.
  • a comparison is made, and a current that is closer to the average current parameter or the median current parameter is selected as the second characteristic electrical parameter.
  • the minimum current I1 is determined as the first Two characteristic electrical parameters; when the first characteristic electrical parameter takes the median current parameter, the minimum current is I1, the maximum current is I4, and the difference between I1 and the median current parameter is greater than the difference between I4 and the median current parameter, Then the minimum current I1 is determined as the second characteristic electrical parameter.
  • the second characteristic electrical parameter is the minimum current and the maximum current.
  • the electrical parameters are voltage parameters and current parameters
  • the second characteristic electrical parameters of the plurality of driving motors are determined according to the methods in the foregoing embodiments.
  • Step S233 Determine the first electrical parameter difference between the first characteristic electrical parameter and the second characteristic electrical parameter as the degree of consistency between the electrical parameters of the plurality of drive motors.
  • the electrical parameter difference is greater than or equal to the first preset electrical parameter difference threshold, it is determined that the electrical parameter consistency degree satisfies a preset condition for the electrical parameter consistency degree.
  • step S213 includes: determining that the first voltage parameter difference between the first characteristic voltage parameter and the second characteristic voltage parameter is a given value.
  • the degree of consistency of the electrical parameters of the plurality of drive motors is determined. If the difference between the first voltage parameters is greater than or equal to the first preset difference threshold of the electrical parameters, it is determined that the degree of consistency of the electrical parameters satisfies the pre-determined degree of consistency of the electrical parameters. Set conditions.
  • step S213 includes: determining that the voltage parameter difference between the first characteristic voltage parameter and the minimum voltage is the degree of consistency between the electrical parameters of the plurality of drive motors, if If the voltage parameter difference is greater than or equal to the first preset electrical parameter difference threshold, it is determined that the degree of consistency of the electrical parameters satisfies the preset condition of the degree of consistency of the electrical parameters; and, the voltage between the first characteristic voltage parameter and the maximum voltage is determined
  • the parameter difference is the degree of consistency of the electrical parameters of the plurality of drive motors. If the difference of the voltage parameters is greater than or equal to the first preset electrical parameter difference threshold, it is determined that the degree of consistency of the electrical parameters satisfies the preset condition of the degree of consistency of the electrical parameters .
  • step S213 includes: determining that the first current parameter difference between the first characteristic current parameter and the second characteristic current parameter is a given value.
  • the degree of consistency of the electrical parameters of the plurality of drive motors is determined. If the difference between the first current parameters is greater than or equal to the first preset difference threshold of the electrical parameters, it is determined that the degree of consistency of the electrical parameters satisfies the pre-determined degree of consistency of the electrical parameters. Set conditions.
  • step S213 includes: determining that the current parameter difference between the first characteristic current parameter and the minimum current is the degree of consistency between the electrical parameters of the plurality of drive motors, if If the current parameter difference is greater than or equal to the first preset electrical parameter difference threshold, it is determined that the degree of consistency of the electrical parameters satisfies the preset condition of the degree of consistency of the electrical parameters; and, the voltage between the first characteristic current parameter and the maximum current is determined
  • the parameter difference is the degree of consistency of the electrical parameters of the plurality of drive motors. If the difference of the current parameters is greater than or equal to the first preset electrical parameter difference threshold, it is determined that the degree of consistency of the electrical parameters satisfies the preset condition of the degree of consistency of the electrical parameters .
  • the step S23 determining the degree of consistency of the electrical parameters of the multiple drive motors according to the electrical parameters of the multiple drive motors includes determining a maximum electrical parameter and a minimum electrical parameter among the electrical parameters of the multiple drive motors The difference between them is the degree of consistency of the electrical parameters of the plurality of drive motors, and when the difference is greater than or equal to the preset electrical parameter threshold, it is determined that the degree of consistency of the electrical parameters satisfies the pre-determined degree of consistency of the electrical parameters. Set conditions.
  • a first safety response operation is performed in step S30, including:
  • Step S31 if the first rotational speed difference is greater than or equal to the first preset rotational speed difference threshold and smaller than the second preset rotational speed difference threshold, send first prompt information to the control terminal that is communicatively connected to the UAV, so that the control terminal displays the first prompt message.
  • a prompt notification if the first rotational speed difference is greater than or equal to the first preset rotational speed difference threshold and smaller than the second preset rotational speed difference threshold, send first prompt information to the control terminal that is communicatively connected to the UAV, so that the control terminal displays the first prompt message.
  • a prompt notification if the first rotational speed difference is greater than or equal to the first preset rotational speed difference threshold and smaller than the second preset rotational speed difference threshold.
  • control terminal may be a remote controller, or a combination of a remote controller and a mobile terminal (eg, a smart phone, a tablet computer), etc., which is not limited in the present invention.
  • a remote controller or a combination of a remote controller and a mobile terminal (eg, a smart phone, a tablet computer), etc., which is not limited in the present invention.
  • the first prompt notification may be alarm prompt information displayed on the display screen of the remote controller, or alarm prompt information displayed on the display screen of the mobile terminal.
  • the alarm prompt information may be one or a combination of texts, pictures, moving pictures, videos, and voices.
  • Step S32 if the first rotational speed difference is greater than or equal to the second preset rotational speed difference threshold, control the UAV to land or return home.
  • the measures taken are to send prompt information to the control terminal of the UAV communication connection so that the controller displays the first prompt notification, prompting the operator to take corresponding measures, such as completing the current flight mission as soon as possible, and then controlling the The unmanned aerial vehicle returned home and was repaired.
  • the first rotational speed difference is greater than or equal to the second preset rotational speed difference threshold, the corresponding fault level is relatively high, and the degree of urgency is relatively high. Therefore, the aircraft is directly controlled to land or return to avoid potential dangers to the greatest extent ( e.g. crash, etc.).
  • a first safety response operation is performed in step S30, including:
  • Step S31 ′ if the first electrical parameter difference is greater than or equal to the first preset electrical parameter difference threshold and smaller than the second preset electrical parameter difference threshold, communicate with the control terminal connected to the UAV Sending the first prompt information to cause the control terminal to display the first prompt notification.
  • the alarm condition satisfied by the first electrical parameter difference corresponds to a situation in which the failure level is relatively low.
  • Step S32 ′ if the first electrical parameter difference is greater than or equal to the second preset electrical parameter difference threshold, control the UAV to land or return home.
  • the alarm condition satisfied by the first electrical parameter difference corresponds to a situation in which the failure level is relatively high.
  • the electrical parameter may be a voltage parameter and/or a current parameter.
  • a first preset voltage parameter difference threshold and a second preset voltage parameter difference threshold corresponding to the voltage parameters and a first preset current parameter corresponding to the current parameters are respectively configured The difference threshold and the second preset current parameter difference threshold. Whether the difference value of the first electrical parameter corresponding to the voltage parameter satisfies the alarm condition or the difference value of the first electrical parameter corresponding to the current parameter satisfies the alarm condition, a corresponding alarm will be performed.
  • the alarm condition is a judgment condition compared with the magnitude between the corresponding first preset electrical parameter difference threshold and the second preset electrical parameter difference threshold.
  • the control operation corresponding to the higher failure level is preferentially performed.
  • the method further includes:
  • an ESC is configured for each drive motor in the unmanned aerial vehicle, a plurality of ESCs form an ESC system, and each ESC pushes the drive motor state information, and the flight control system obtains the drive motor state information, for example, speed or electrical parameters.
  • the flight state refers to a state in which the unmanned aerial vehicle has horizontal or vertical movement in the air.
  • the rotational speeds R1 to R4 of the four drive motors when it is in flight or electrical parameters.
  • the electrical parameters are voltage parameters U1 to U4 and/or current parameters I1 to I4.
  • S50 Determine whether the working state of the corresponding drive motor is abnormal according to the rotational speed or electrical parameters of each of the plurality of drive motors.
  • performing the second safety response operation includes: sending second prompt information to the control terminal communicatively connected to the UAV, so that the control terminal displays the second prompt notification.
  • control terminal may be a remote control matched with the unmanned aerial vehicle, and the remote control may be provided with a display screen and/or an indicator light.
  • the remote control receives the second prompt information, a second prompt notification (
  • the second prompt notification may be one or a combination of one or more of text prompts, voice prompts, picture prompts, video prompts, or moving image prompts, which is not limited in the present invention), or by controlling the indicator light according to a preset mode Bright.
  • control terminal may also be a combination of a remote control and a smart phone.
  • the smart phone is installed on the remote controller and communicated with the remote controller, and the remote controller is communicatively connected with the unmanned aerial vehicle to receive data information sent by the unmanned aerial vehicle.
  • the remote controller After the remote controller receives the second prompt information, it controls the smartphone to display the second prompt notification.
  • An indicator light may also be configured on the remote control. After the remote control receives the second prompt message, it is controlled to light up according to a preset mode.
  • performing the second safety response operation includes controlling the UAV to land or return home.
  • the unmanned aerial vehicle when it is determined that there is an abnormally installed drive motor or a damaged propeller on the unmanned aerial vehicle, the unmanned aerial vehicle is controlled to land or return to ensure the safety of the unmanned aerial vehicle in time.
  • step S10 obtains the rotational speed or electrical parameters of multiple drive motors when the UAV is in a hovering state, including:
  • the rotational speed or electrical parameters of the plurality of drive motors are acquired when the unmanned aerial vehicle is in a hovering state.
  • step S50 determines whether the working state of the corresponding drive motor is abnormal according to the rotational speed of each drive motor in the plurality of drive motors ,include:
  • Step S51 Calculate the reference electrical parameters of the corresponding drive motor according to the rotational speed of each of the plurality of drive motors.
  • the flight controller can obtain the real-time status of each motor on the aircraft through the communication line between the flight controller and the ESC. After the flight control system obtains the state information of a single motor, it can monitor the state of a single motor according to the relationship between the state information.
  • the specific implementation method is as follows. Under normal working conditions, the current of the UAV motor has a relationship with the rotational speed as shown in formula (1):
  • s is the rotational speed of the drive motor
  • I is the current of the drive motor
  • A, B, and C are constants.
  • Step S52 Acquire the actual electrical parameters of each of the plurality of drive motors collected by the sensor.
  • Step S53 When the second electrical parameter difference between the reference electrical parameter and the actual electrical parameter corresponding to the same drive motor is greater than or equal to a third preset electrical parameter difference threshold, determine the corresponding The working state of the drive motor is abnormal.
  • the reference electrical parameter of the corresponding driving motor is first calculated by the rotational speed of the driving motor, and then according to whether the reference electrical parameter is consistent with the actual electrical parameter of the same driving motor collected by the sensor (for example, the two Whether the difference is smaller than the preset difference) to determine whether the corresponding drive motor is abnormal.
  • step S50 determines the working state of the corresponding drive motor according to the electrical parameters of each drive motor in the plurality of drive motors Is it abnormal, including:
  • Step S51 ′ calculate the reference rotational speed of the corresponding drive motor according to the electrical parameters of each of the plurality of drive motors.
  • Step S52' acquiring the actual rotational speed of each of the plurality of driving motors collected by the sensor
  • Step S53 ′ when the second rotational speed difference between the reference rotational speed and the actual rotational speed corresponding to the same driving motor is greater than or equal to a third preset rotational speed difference threshold, determine that the working state of the corresponding driving motor is abnormal.
  • the reference speed of the corresponding drive motor is first calculated by the electrical parameters of the drive motor, and then according to whether the reference speed is consistent with the actual speed of the same drive motor collected by the sensor (for example, whether the difference between the two is less than preset difference) to determine whether the corresponding drive motor is abnormal.
  • step S60 performs a second safety response operation, including:
  • Step S61 when the second electrical parameter difference between the reference electrical parameter and the actual electrical parameter corresponding to the same drive motor is greater than or equal to the third preset electrical parameter difference threshold and smaller than the fourth preset electrical parameter difference.
  • the electrical parameter difference threshold is set, send second prompt information to the control terminal communicatively connected to the unmanned aerial vehicle, so that the control terminal displays the second prompt notification;
  • Step S62 when the second electrical parameter difference is greater than a fourth preset electrical parameter difference threshold, control the unmanned aerial vehicle to land or return home.
  • step S60 performs a second safety response operation, including:
  • Step S61' when the second speed difference between the reference speed and the actual speed corresponding to the same drive motor is greater than or equal to the third preset speed difference threshold and less than the fourth preset speed difference threshold, send the The control terminal that is communicatively connected to the UAV sends second prompt information so that the control terminal displays a second prompt notification;
  • Step S62 ′ when the second rotational speed difference is greater than or equal to the fourth preset rotational speed difference threshold, control the UAV to land or return home.
  • FIG. 12 it is a flow chart of the power failure detection method of the unmanned aerial vehicle of the present invention, and the method can be used for the control device of the unmanned aerial vehicle.
  • control device the method includes:
  • the instruction flow of the present invention is shown in FIG. 5. It can be seen that the method mainly includes the following steps: the ESC system pushes the motor state information, the flight control system obtains the motor state information, the flight control system judges the state of a single motor, and the flight control system determines the state of a single motor. The control system judges the status of multiple ESCs, the flight control system issues protection behavior commands, and the APP displays the fault status.
  • the ESC system is connected to the corresponding motor, and can send PWM commands to the motor to control the rotation of the motor. At the same time, real-time information such as current, voltage, and speed of the motor can also be obtained.
  • the ESC system can push various status information of the motor to the flight control system through the communication line between the ESC and the flight control system.
  • the flight control can obtain the real-time status of each motor on the aircraft through the communication line between the flight control and the ESC.
  • the flight control system After the flight control system obtains the state information of a single motor, it can monitor the state of a single motor according to the relationship between the state information.
  • the specific implementation method is as follows. Under normal working conditions, the current of the UAV motor has a relationship with the rotational speed as shown in formula (1):
  • the flight control system can obtain the actual speed s of a single motor. Through formula (1), the corresponding normal current under this speed can be obtained as I1. At the same time, the actual current of the motor obtained by the flight control is I2. If the difference between the actual current and the theoretical current is too large, it can be determined that the motor is in a fault state, and protection measures such as returning to home or landing need to be performed. Two-level protection thresholds need to be set. When the difference exceeds the first-level threshold, the user is prompted to manually control the aircraft to return; when the difference exceeds the second-level threshold, it is in a serious fault state, the aircraft is controlled to land, and the user is prompted.
  • the flight control system can obtain the state information of all motors, and can perform cross detection on all motor states.
  • the specific detection method is as follows: In theory, when the aircraft is hovering, the outputs of each motor are basically the same, and they will be in a relatively consistent working state.
  • the flight control system can sense the hovering state of the aircraft, and judge the state of each motor when hovering.
  • the fault state of a single motor and the state of motor cross detection can be accurately judged, and protective measures can be given in time to prompt the user to remove the fault.
  • the present invention also provides a power failure detection device for an unmanned aerial vehicle, the unmanned aerial vehicle includes a power system for providing flight power, the power system includes a plurality of driving motors and is driven by the plurality of driving motors a plurality of propellers driven by a motor, the device comprising:
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one
  • the processor can execute:
  • a first safety response operation is performed.
  • the processor is further configured to: send first prompt information to a control terminal communicatively connected to the UAV, so that the control terminal displays a first prompt notification.
  • the processor is further configured to: control the UAV to land or return home.
  • the processor is also used to:
  • the rotational speed consistency degree satisfies the preset rotational speed consistency degree condition, it is determined that the drive motor in the plurality of drive motors is abnormally installed or the propellers in the plurality of propellers are broken; or,
  • the degree of consistency of the electrical parameters satisfies the preset condition of the degree of consistency of the electrical parameters, it is determined that the drive motors of the plurality of drive motors are abnormally installed or the propellers of the plurality of propellers are broken.
  • the processor is also used to:
  • the first characteristic rotational speed is an average rotational speed or a median rotational speed
  • the second characteristic rotational speed is a minimum rotational speed or a maximum rotational speed
  • the processor is also used to:
  • the first characteristic electrical parameter is an average electrical parameter or a median electrical parameter
  • the first electrical parameter difference between the first characteristic electrical parameter and the second characteristic electrical parameter is the degree of consistency of the electrical parameters of the plurality of drive motors, if the first electrical parameter If the difference is greater than or equal to the first preset electrical parameter difference threshold, it is determined that the electrical parameter consistency degree satisfies the electrical parameter consistency degree preset condition.
  • the processor is also used to:
  • first rotation speed difference is greater than or equal to the first preset rotation speed difference threshold and smaller than the second preset rotation speed difference threshold, send first prompt information to the control terminal communicatively connected to the unmanned aerial vehicle to enable the control The terminal displays the first prompt notification;
  • the UAV is controlled to land or return home.
  • the processor is also used to:
  • first electrical parameter difference is greater than or equal to the first preset electrical parameter difference threshold and smaller than the second preset electrical parameter difference threshold, send a first prompt to the control terminal communicatively connected to the UAV information so that the control terminal displays the first prompt notification;
  • the UAV is controlled to land or return home.
  • the processor is also used to:
  • the processor is further configured to: send second prompt information to a control terminal communicatively connected to the UAV, so that the control terminal displays a second prompt notification.
  • the processor is further configured to: control the UAV to land or return home.
  • the processor is further configured to: when the working state of each of the plurality of drive motors is normal, acquire the values of the plurality of drive motors when the unmanned aerial vehicle is in a hovering state speed or electrical parameters.
  • the processor is also used to:
  • the processor is also used to:
  • the processor is also used to:
  • the UAV When the second electrical parameter difference is greater than a fourth preset electrical parameter difference threshold, the UAV is controlled to land or return home.
  • the processor is also used to:
  • the UAV When the second rotational speed difference is greater than or equal to the fourth preset rotational speed difference threshold, the UAV is controlled to land or return home.
  • the present invention also provides an unmanned aerial vehicle, comprising:
  • the power failure detection device of the unmanned aerial vehicle according to any one of the preceding embodiments installed on the movable body.
  • the present invention also provides a storage medium on which a computer program is stored, characterized in that, when the program is executed by a processor, the steps of the method described in any of the foregoing embodiments are implemented.
  • FIG. 13 it is a schematic structural diagram of an embodiment of an unmanned aerial vehicle provided by the present invention, including: a movable body 600 , and the movable body 600 according to any of the foregoing embodiments mounted on the movable body 600 .
  • Unmanned aerial vehicle controls are not limited to: a movable body 600 , and the movable body 600 according to any of the foregoing embodiments mounted on the movable body 600 .
  • Unmanned aerial vehicle controls unmanned aerial vehicle controls.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence, or the parts that make contributions to related technologies, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic disks , optical disc, etc., including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

一种无人飞行器的动力故障检测方法,包括:获取无人飞行器处于悬停状态时多个驱动电机的转速或者电性参数;根据多个驱动电机的转速或者电性参数确定多个驱动电机中的驱动电机是否安装异常或者多个螺旋桨中的螺旋桨是否断裂;若确定多个驱动电机中的驱动电机安装异常或者多个螺旋桨中的螺旋桨断裂,则执行第一安全响应操作。通过采集无人飞行器处于悬停状态时多个驱动电机的工作参数,并基于多个驱动电机的工作参数判断多个驱动电机中的驱动电机是否安装异常或者多个螺旋桨中的螺旋桨是否断裂的,实现了安装异常电机或者螺旋桨破损情况的及时发现,避免了安全隐患。

Description

无人飞行器的动力故障检测方法、装置及无人飞行器 技术领域
本发明涉及控制技术领域,尤其涉及一种无人飞行器的动力故障检测方法、装置及无人飞行器。
背景技术
无人航行器近年来得到长足的发展,其被应用于多个领域,例如无人飞行器常被用于农业勘测、地形地貌绘制、影视拍摄等,无人潜水器常被用于水下拍摄、水下样本采集等,它们可以极大地提升相应领域的工作效率。由于安装制造、碰撞等原因,无人机的驱动电机安装角度可能会异常,例如,在正常情况下,驱动电机应该是竖直安装的,由于制造误差或者碰撞的原因,驱动电机可能会偏离竖直方向。另外,由电机驱动的螺旋桨可能会断裂。目前,无人机电机的故障检测主要通过电调系统对电机状态进行检测以检测电机的状态是否正常,却不能检测无人机的驱动电机的安装异常或螺旋桨断裂问题。。
发明内容
本发明实施例提供一种无人飞行器的动力故障检测方法、装置及无人飞行器,用于至少解决上述技术问题之一。
第一方面,本发明实施例提供一种无人飞行器的动力故障检测方法,所述无人飞行器包括提供飞行动力的动力系统,所述动力系统包括多个驱动电机和由所述多个驱动电机驱动的多个螺旋桨,其特征在于,所述方法包括:
获取所述无人飞行器处于悬停状态时所述多个驱动电机的转速或者电性参数;
根据所述多个驱动电机的转速或者电性参数确定所述多个驱动电机中的驱动电机是否安装异常或者所述多个螺旋桨中的螺旋桨是否断裂;
若确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂,则执行第一安全响应操作。
第二方面,本发明提供一种无人飞行器的动力故障检测装置,所述无人飞行器包括提供飞行动力的动力系统,所述动力系统包括多个驱动电机和由所述多个驱动电机驱动的多个螺旋桨,所述装置包括:
至少一个处理器;
以及与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行:
获取所述无人飞行器处于悬停状态时所述多个驱动电机的转速或者电性参数;
根据所述多个驱动电机的转速或者电性参数确定所述多个驱动电机中的驱动电机是否安装异常或者所述多个螺旋桨中的螺旋桨是否断裂;
若确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂,则执行第一安全响应操作。
第三方面,本发明提供一种无人飞行器,包括:
可移动本体,和
安装在所述可移动本体上的根据前述任一实施例所述的无人飞行器的动力故障检测装置。
第四方面,本发明实施例提供一种存储介质,所述存储介质中存储有一个或多个包括执行指令的程序,所述执行指令能够被电子设备(包括但不限于计算机,服务器,或者网络设备等)读取并执行,以用于执行本发明上述任一项无人飞行器的动力故障检测方法。
第五方面,本发明实施例还提供一种计算机程序产品,所述计算机程序产品包括存储在存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任一项无人飞行器的动力故障检测方法。
本发明实施例的有益效果在于:本实施例就是通过采集无人飞行器处 于悬停状态时多个驱动电机的工作参数(转速或者电性参数),并基于对多个驱动电机的工作参数的一致性分析来反推多个驱动电机中的驱动电机是否安装异常或者多个螺旋桨中的螺旋桨是否断裂的,实现了安装异常电机或者螺旋桨破损情况的及时发现,避免了安全隐患。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的无人飞行器的动力故障检测方法的一实施例的流程图;
图2为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图3为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图4为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图5为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图6为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图7为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图8为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图9为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图10为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图11为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图12为本发明的无人飞行器的动力故障检测方法的另一实施例的流程图;
图13为本发明中的无人飞行器的一实施例的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”,不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明实施了提供一种无人飞行器的动力故障检测方法,执行该无人飞行器的动力故障检测方法的装置以及配置有该装置的无人飞行器(例如,四旋翼无人机)。后续本发明实施例均以无人飞行器为四旋翼无人机为例进行说明。
如图1所示,本发明的实施例提供一种无人飞行器的动力故障检测方法,无人飞行器包括提供飞行动力的动力系统,所述动力系统包括多个驱动电机和由多个驱动电机驱动的多个螺旋桨,该方法包括以下步骤:
步骤S10、获取无人飞行器处于悬停状态时多个驱动电机的转速或者电性参数。
示例性地,四旋翼飞行器处于悬停状态指的是四旋翼飞行器在空中依靠四个驱动电机驱动四个螺旋桨产生的动力处于静止状态,没有水平以及竖直方向的移动。
示例性地,无人飞行器上还配置有对应于多个驱动电机(每个驱动电机驱动各自的螺旋桨)的电调系统(每个驱动电机对应于一个电调系统),无人飞行器的飞控系统通过电调系统可以实时获取电机的转速、电流、电压等状态信息。
示例性地,对于四旋翼无人机,多个驱动电机为四个驱动电机,多个螺旋桨为四个螺旋桨。四个驱动电机的转速分别R1至R4,电性参数包括电压参数和/或电流参数,四个驱动电机的电压参数分别为U1至U4,四个驱动电机的电流参数分别为I1至I4。
步骤S20、根据多个驱动电机的转速或者电性参数确定多个驱动电机中的驱动电机是否安装异常或者多个螺旋桨中的螺旋桨是否断裂。
示例性地,可以通过判断四个驱动电机的转速R1至R4来判断四个驱动电机中是否有安装异常的电机,或者多个螺旋桨中是否有断裂的螺旋桨。或者,可以通过判断四个驱动电机的电压参数U1至U4(或者电流参数I1至I4)来判断四个驱动电机中是否有安装异常的电机,或者多个螺旋桨中是否有断裂的螺旋桨。
步骤S30、若确定多个驱动电机中的驱动电机安装异常或者多个螺旋桨中的螺旋桨断裂,则执行第一安全响应操作。
在无人飞行器处于悬停状态,并且多个驱动电机安装正常、多个螺旋桨完好时,需要无人飞行器的多个驱动电机以大致相当的工作参数(转速或者电压或者电流)来驱动多个螺旋桨,以提供大致相当的动力来维持无人飞行器的悬停状态。如果某一个驱动电机的安装角度相对于其它驱动电机的安装角度出现偏差或者某一个驱动电机发生破损,那么为了正常达到悬停状态,飞控系统就会自动改变该某一个驱动电机的工作参数(转速或者电压或者电流),从而就会使其工作参数不同于其它驱动电机的工作参数。
本实施例就是通过采集无人飞行器处于悬停状态时多个驱动电机的工作参数(转速或者电性参数),并基于对多个驱动电机的工作参数的一 致性分析来反推多个驱动电机中的驱动电机是否安装异常或者多个螺旋桨中的螺旋桨是否断裂的,实现了安装异常电机或者螺旋桨破损情况的及时发现,避免了安全隐患。
在一个实施例中,执行第一安全响应操作,包括:向无人飞行器通信连接的控制终端发送第一提示信息以使所述控制终端显示第一提示通知。
示例性地,控制终端可以是与无人飞行器配套的遥控器,遥控器可以具备显示屏幕和/或指示灯,当遥控器接收到第一提示信息之后,在显示屏幕上显示第一提示通知(第一提示通知可以是文字提示或者语音提示或者图片提示或者视频提示或者动图提示等中的一种或者多种的结合,本发明对此不作限定),或者通过控制指示灯按照预设模式点亮。
示例性地,控制终端还可以是遥控器与智能手机的结合。智能手机安装在遥控器上并与遥控器通信连接,遥控器与无人飞行器通信连接以接收无人飞行器所发送的数据信息。当遥控器接收到第一提示信息之后,控制智能手机显示第一提示通知。遥控器上还可以配置有指示灯,遥控器接收到第一提示信息之后,控制按照预设模式点亮。
在一个实施例中,执行第一安全响应操作,包括:控制无人飞行器降落或者返航。
本实施例中在判定无人飞行器上存在安装异常的驱动电机或者破损的螺旋桨时,控制无人飞行器降落或者返航,及时确保了无人飞行器的安全性。
如图2所示,为本发明的无人飞行器的故障检测方法的一实施例的流程图,在该实施例中,步骤S20根据多个驱动电机的转速或者电性参数确定多个驱动电机中的驱动电机是否安装异常或者多个螺旋桨中的螺旋桨是否断裂,包括:
步骤S21、根据多个驱动电机的转速确定多个驱动电机的转速一致程度。
示例性地,对于四旋翼无人机,四个驱动电机的转速分别R1至R4,可以通过对比四个驱动电机的转速R1至R4来确定转速一致程度。例如, 可以将各个驱动电机的转速分别与根据四个驱动电机所确定的转速均值或者中位转速进行比较来确定转速一致程度。例如,可以将四个驱动电机的转速分别进行两两对比,选出转速差异最大的一对驱动电机确定转速一致程度。
步骤S22、若转速一致程度满足转速一致程度预设条件时,确定多个驱动电机中的驱动电机安装异常或者多个螺旋桨中的螺旋桨断裂。
示例性地,转速一致程度预设条件是用于判定多个驱动电机或者多个螺旋桨中存在安装异常或者断裂的判断条件。当步骤S21中所确定的转速一致程度满足转速一致程度预设条件时,确定多个驱动电机中存在安装异常的驱动电机或者确定多个螺旋桨中存在断裂或者破损的螺旋桨。
或者,
步骤S23、根据多个驱动电机的电性参数确定多个驱动电机的电性参数一致程度。
示例性地,电性参数包括电压参数和/或电流参数,对于四旋翼无人机,四个驱动电机的电压参数分别为U1至U4,四个驱动电机的电流参数分别为I1至I4,可以通过对比四个驱动电机的电压参数U1至U4(和/或电流参数I1至I4)来确定电性参数一致程度。
例如,可以将各个驱动电机的电压参数(和/或电流参数)分别与根据四个驱动电机所确定的电压参数(和/或电流参数)均值或者中位电压参数(和/或电流参数)进行比较来确定电性参数一致程度。
例如,可以将四个驱动电机的电压参数(和/或电流参数)分别进行两两对比,选出转速差异最大的一对驱动电机确定电性参数一致程度。
步骤S24、若电性参数一致程度满足电性参数一致程度预设条件时,确定多个驱动电机中的驱动电机安装异常或者多个螺旋桨中的螺旋桨断裂。
示例性地,电性参数一致程度预设条件是用于判定多个驱动电机或者多个螺旋桨中存在安装异常或者断裂的判断条件。当步骤S23中所确定的电性参数一致程度满足电性参数一致程度预设条件时,确定多个驱动电机中存在安装异常的驱动电机或者确定多个螺旋桨中存在断裂或者破损的螺旋桨。
本实施例中采用无人飞行器的多个驱动电机的多个转速(或者多个电性参数)之间的一致性程度来准确地找到表现异常的驱动电机,从而判定多个驱动电机或者多个螺旋桨中是否存在安装异常的电机或者断裂的螺旋桨。
如图3所示,为本发明的无人飞行器的故障检测方法的一实施例的流程图,在该实施例中,步骤S21根据多个驱动电机的转速确定多个驱动电机的转速一致程度,包括:
步骤S211、确定多个驱动电机的转速的第一特征转速,其中,第一特征转速为平均转速或者中位转速。
示例性地,对于四旋翼无人机,平均转速为:(R1+R2+R3+R4)/4。中位转速可以为R1至R4中取值在中间的转速值,例如,如果R1﹤R2=R3﹤R4,则中位转速为R2或者R3;如果R1﹤R2﹤R3﹤R4,则中位转速为R2或者R3,或者根据确定R2和R3中与平均转速差值较小者为中位转速。
步骤S212、确定多个驱动电机的转速的第二特征转速,其中,第二特征转速为最低转速和/或最高转速。
示例性地,首先选出转速最低和转速最高的驱动电机,然后分别将最低转速和最高转速与步骤S211中所确定的平均转速或者中位转速进行比较,选出更接近平均转速或者中位转速的转速作为第二特征转速。
例如,当第一特征转速取平均转速,最低转速为R1,最高转速为R4,且R1与平均转速的差值大于R4与平均转速的差值,则确定最低转速R1为第二特征转速;当第一特征转速取中位转速,最低转速为R1,最高转速为R4,且R1与中位转速的差值大于R4与中位转速的差值,则确定最低转速R1为第二特征转速。
示例性地,在确定最低转速R1与第一特征转速的第一比较差值和最高转速R4与第一特征转速的第二比较差值后,若第一比较差值和第二比较差值两者之间相差不大(例如,较小者与较大者的比值大于0.9),则第二特征转速为最低转速和最高转速。本实施例可以检测出最低转速和最高转速分别对应的驱动电机或者螺旋桨都存在异常的情况。
步骤S213、确定第一特征转速和第二特征转速之间的第一转速差值为 多个驱动电机的转速一致程度,若第一转速差值大于或等于第一预设转速差阈值,则确定转速一致程度满足转速一致程度预设条件。
示例性地,当第二特征转速为最低转速或者最高转速时,步骤S213包括:确定第一特征转速和第二特征转速之间的第一转速差值为多个驱动电机的转速一致程度,若第一转速差值大于或等于第一预设转速差阈值,则确定转速一致程度满足转速一致程度预设条件。
示例性地,当第二特征转速为最低转速和最高转速时,步骤S213包括:确定第一特征转速和最低转速之间的转速差值为多个驱动电机的转速一致程度,若该转速差值大于或等于第一预设转速差阈值,则确定转速一致程度满足转速一致程度预设条件;和,确定第一特征转速和最高转速之间的转速差值为多个驱动电机的转速一致程度,若该转速差值大于或等于第一预设转速差阈值,则确定转速一致程度满足转速一致程度预设条件。
在一些实施例中,步骤S21根据多个驱动电机的转速确定多个驱动电机的转速一致程度包括,确定多个驱动电机的转速中的最大转速和最小转速之间的差值为所述多个驱动电机的转速一致程度,当该差值大于或等于预设转速阈值时,则确定所述转速一致程度满足转速一致程度预设条件。
本实施例中考虑到当多个驱动电机的最大转速和最小转速之差足够大时(通过预设转速阈值进行限定,具体取值根据不同类型的无人飞行器而不同,本发明对此不作限制),则多个驱动电机或者多个螺旋桨中必然存在安装的异常驱动电机或者破损、断裂的螺旋桨。基于该实施例能够更加快速、准确的检测无人飞行器的动力故障。
如图4所示,为本发明的无人飞行器的故障检测方法的一实施例的流程图,在该实施例中,步骤S23根据所述多个驱动电机的电性参数确定所述多个驱动电机的电性参数一致程度,包括:
步骤S231、确定所述多个驱动电机的第一特征电性参数,其中,所述第一特征电性参数为平均电性参数或者中位电性参数。
示例性地,电性参数包括电压参数和/或电流参数,对于四旋翼无人机,四个驱动电机的电压参数分别为U1至U4,四个驱动电机的电流参数 分别为I1至I4,可以通过对比四个驱动电机的电压参数U1至U4(和/或电流参数I1至I4)来确定电性参数一致程度。
示例性地,当电性参数为电压参数时,平均电压参数为:(U1+U2+U3+U4)/4。中位电压参数为U1至U4中取值在中间的电压参数。例如,如果U1﹤U2=U3﹤U4,则中位电压参数为U2或者U3;如果U1﹤U2﹤U3﹤U4,则中位电压参数为U2或者U3,或者根据确定U2和U3中与平均电压参数差值较小者为中位电压参数。
示例性地,当电性参数为电流参数时,平均电流参数为:(I1+I2+I3+I4)/4。中位电流参数为I1至I4中取值在中间的电流参数。例如,如果I1﹤I2=I3﹤I4,则中位电流参数为I2或者I3;如果I1﹤I2﹤I3﹤I4,则中位电流参数为I2或者I3,或者根据确定I2和I3中与平均电流参数差值较小者为中位电流参数。
示例性地,当电性参数为电压参数和电流参数时,按照上述方法同时确定平均电压参数或者中位电压参数以及平均电流参数或者中位电流参数。
步骤S232、确定所述多个驱动电机的第二特征电性参数,其中,所述第二特征电性参数为最低电性参数和/或最高电性参数。
示例性地,当电性参数为电压参数时,首先选出电压参数最小和电压参数最大的驱动电机,然后分别将最小电压和最大电压与步骤S211中所确定的平均电压参数或者中位电压参数进行比较,选出更接近平均电压参数或者中位电压参数的电压作为第二特征电性参数。
例如,当第一特征电性参数取平均电压参数,最小电压为U1,最大电压为U4,且U1与平均电压参数的差值大于U4与平均电压的差值时,则确定最小电压U1为第二特征电性参数;当第一特征电性参数取中位电性参数,最小电压为U1,最大电压为U4,且U1与中位电压参数的差值大于U4与中位电压参数的差值,则确定最小电压U1为第二特征电性参数。
示例性地,在确定最小电压U1与第一特征电性参数的第一比较差值和最大电压U4与第一特征电性参数的第二比较差值后,若第一比较差值和第二比较差值两者之间相差不大(例如,较小者与较大者的比值大于0.9),则第二特征电性参数为最小电压和最大电压。
示例性地,当电性参数为电流参数时,首先选出电流参数最小和电压参数最大的驱动电机,然后分别将最小电流和最大电流与步骤S211中所确定的平均电流参数或者中位电流参数进行比较,选出更接近平均电流参数或者中位电流参数的电流作为第二特征电性参数。
例如,当第一特征电性参数取平均电流参数,最小电流为I1,最大电流为I4,且I1与平均电流参数的差值大于I4与平均电流的差值时,则确定最小电流I1为第二特征电性参数;当第一特征电性参数取中位电流参数,最小电流为I1,最大电流为I4,且I1与中位电流参数的差值大于I4与中位电流参数的差值,则确定最小电流I1为第二特征电性参数。
示例性地,在确定最小电流I1与第一特征电流参数的第一比较差值和最大电流I4与第一特征电流参数的第二比较差值后,若第一比较差值和第二比较差值两者之间相差不大(例如,较小者与较大者的比值大于0.9),则第二特征电性参数为最小电流和最大电流。
示例性地,当电性参数为电压参数和电流参数时,根据前述实施例中的方法确定多个驱动电机的第二特征电性参数。
步骤S233、确定所述第一特征电性参数和所述第二特征电性参数之间的第一电性参数差值为所述多个驱动电机的电性参数一致程度,若所述第一电性参数差值大于或等于第一预设电性参数差阈值,则确定所述电性参数一致程度满足电性参数一致程度预设条件。
示例性地,当第二特征电性参数为最小电压或者最大电压时,步骤S213包括:确定所述第一特征电压参数和所述第二特征电压参数之间的第一电压参数差值为所述多个驱动电机的电性参数一致程度,若所述第一电压参数差值大于或等于第一预设电性参数差阈值,则确定所述电性参数一致程度满足电性参数一致程度预设条件。
示例性地,当第二特征转速为最小电压或者最大电压时,步骤S213包括:确定第一特征电压参数和最小电压之间的电压参数差值为多个驱动电机的电性参数一致程度,若该电压参数差值大于或等于第一预设电性参数差阈值,则确定电性参数一致程度满足电性参数一致程度预设条件;和,确定第一特征电压参数和最大电压之间的电压参数差值为多个驱动电机的电性参数一致程度,若该电压参数差值大于或等于第一预设电性参数差 阈值,则确定电性参数一致程度满足电性参数一致程度预设条件。
示例性地,当第二特征电性参数为最小电流或者最大电流时,步骤S213包括:确定所述第一特征电流参数和所述第二特征电流参数之间的第一电流参数差值为所述多个驱动电机的电性参数一致程度,若所述第一电流参数差值大于或等于第一预设电性参数差阈值,则确定所述电性参数一致程度满足电性参数一致程度预设条件。
示例性地,当第二特征转速为最小电流或者最大电流时,步骤S213包括:确定第一特征电流参数和最小电流之间的电流参数差值为多个驱动电机的电性参数一致程度,若该电流参数差值大于或等于第一预设电性参数差阈值,则确定电性参数一致程度满足电性参数一致程度预设条件;和,确定第一特征电流参数和最大电流之间的电压参数差值为多个驱动电机的电性参数一致程度,若该电流参数差值大于或等于第一预设电性参数差阈值,则确定电性参数一致程度满足电性参数一致程度预设条件。
在一些实施例中,步骤S23根据多个驱动电机的电性参数确定多个驱动电机的电性参数一致程度包括,确定多个驱动电机的电性参数中的最大电性参数和最小电性参数之间的差值为所述多个驱动电机的电性参数一致程度,当该差值大于或等于预设电性参数阈值时,则确定所述电性参数一致程度满足电性参数一致程度预设条件。
本实施例中考虑到当多个驱动电机的最大电性参数和最小电性参数之差足够大时(通过预设电性参数阈值进行限定,具体取值根据不同类型的无人飞行器而不同,本发明对此不作限制),则多个驱动电机或者多个螺旋桨中必然存在安装的异常驱动电机或者破损、断裂的螺旋桨。基于该实施例能够更加快速、准确的检测无人飞行器的动力故障。
如图5所示,在本发明的无人飞行器的动力故障检测方法的在一些实施例中,步骤S30中执行第一安全响应操作,包括:
步骤S31、若第一转速差值大于或等于第一预设转速差阈值且小于第二预设转速差阈值时,向无人飞行器通信连接的控制终端发送第一提示信息以使控制终端显示第一提示通知。
示例性地,控制终端可以是遥控器,也可以是遥控器与移动终端(例如,智能手机、平板电脑)的结合体等,本发明对此不作限定。
第一提示通知可以是显示在遥控器的显示屏幕上的报警提示信息,或者是显示在移动终端的显示屏幕上的报警提示信息。其中,报警提示信息可以是文字、图片、动图、视频、语音等中的一种或者多种的结合。
步骤S32、若第一转速差值大于或等于第二预设转速差阈值时,控制无人飞行器降落或者返航。
本实施例中通过设置第一预设转速差阈值和第二预设转速差阈值实现了对无人飞行器的不同故障等级的告警。多个驱动电机的转速的第一特征转速和第二特征转速之间的第一转速差值越大,则表明无人飞行器的故障等级越高。
在本实施例中当第一转速差值大于或等于第一预设转速差阈值且小于第二预设转速差阈值时所对应的故障等级相对较低,紧急程度相对较低,并不会对当前的飞行造成太大影响,因此采取的措施是向无人飞行器通信连接的控制终端发送提示信息以控制器显示第一提示通知,提示操控人员采取相应措施,例如尽快完成当前飞行任务,然后控制无人飞行器返航并进行检修。当第一转速差值大于或等于第二预设转速差阈值时所对应的故障等级相对较高,紧急程度相对较高,因此直接控制飞行器降落或者返航,以最大程度的避免潜在危险的发生(例如,坠机等)。
如图6所示,在本发明的无人飞行器的动力故障检测方法的在一些实施例中,步骤S30中执行第一安全响应操作,包括:
步骤S31′、若所述第一电性参数差值大于或等于第一预设电性参数差阈值且小于第二预设电性参数差阈值时,向所述无人飞行器通信连接的控制终端发送第一提示信息以使所述控制终端显示第一提示通知。
示例性地,本步骤中第一电性参数差值所满足的告警条件所对应的是故障等级相对较低的情况。
步骤S32′若所述第一电性参数差值大于或等于第二预设电性参数差阈值时,控制所述无人飞行器降落或者返航。
示例性地,本步骤中第一电性参数差值所满足的告警条件所对应的是 故障等级相对较高的情况。
本实施例中通过设置第一预设电性参数差阈值和第二预设电性参数差阈值实现了对无人飞行器的不同故障等级的告警。
本实施例中,电性参数可以是电压参数和/或电流参数。
当电性参数同时包括电压参数和电流参数时,分别配置有对应于电压参数的第一预设电压参数差阈值和第二预设电压参数差阈值以及对应于电流参数的第一预设电流参数差阈值和第二预设电流参数差阈值。无论是对应于电压参数的第一电性参数差值满足告警条件还是对应于电流参数的第一电性参数差值满足告警条件,都将进行相应的报警。其中,报警条件就是与相应的第一预设电性参数差阈值和第二预设电性参数差阈值之间的大小进行比较的判断条件。此外,当对应于电压参数和电流参数第一电性参数差值均满足告警条件时,优先执行对应于故障等级较高的控制操作。
如图7所示,在本发明的无人飞行器的动力故障检测方法的在一些实施例中,还包括:
S40、获取无人飞行器处于飞行状态时多个驱动电机的转速或者电性参数。
示例性地,在无人飞行器中为每个驱动电机配置一个电调,多个电调形成电调系统,并且每个电调推送驱动电机状态信息,飞控系统获取驱动电机状态信息,例如,转速或者电性参数。
示例性地,飞行状态指的是无人飞行器在空中具备水平或者竖直方向移动的状态。对于四旋翼无人机,获取其处于飞行状态时的四个驱动电机的转速R1至R4,或者电性参数。其中,电性参数为电压参数U1至U4和/或电流参数I1至I4。
S50、根据多个驱动电机中每一个驱动电机的转速或者电性参数确定对应驱动电机的工作状态是否异常。
示例性地,对于四旋翼无人机,根据四个驱动电机各自的转速或者电性参数确定驱动电机的工作状态是否异常。
S60、若多个驱动电机中的驱动电机的工作状态异常时,执行第二安 全响应操作。
示例性地,无人飞行器在正常工作状态下每个驱动电机的各种工作参数是相互匹配的,例如,转速与电性参数之间存在对应关系。本实施例中通过采集每个驱动电机的转速或者电性参数进行判断实现了对每个驱动电机工作状态是否异常的快速检测。
在一些实施例中,执行第二安全响应操作,包括:向无人飞行器通信连接的控制终端发送第二提示信息以使控制终端显示第二提示通知。
示例性地,控制终端可以是与无人飞行器配套的遥控器,遥控器可以具备显示屏幕和/或指示灯,当遥控器接收到第二提示信息之后,在显示屏幕上显示第二提示通知(第二提示通知可以是文字提示或者语音提示或者图片提示或者视频提示或者动图提示等中的一种或者多种的结合,本发明对此不作限定),或者通过控制指示灯按照预设模式点亮。
示例性地,控制终端还可以是遥控器与智能手机的结合。智能手机安装在遥控器上并与遥控器通信连接,遥控器与无人飞行器通信连接以接收无人飞行器所发送的数据信息。当遥控器接收到第二提示信息之后,控制智能手机显示第二提示通知。遥控器上还可以配置有指示灯,遥控器接收到第二提示信息之后,控制按照预设模式点亮。
在一些实施例中,执行第二安全响应操作,包括:控制无人飞行器降落或者返航。
本实施例中在判定无人飞行器上存在安装异常的驱动电机或者破损的螺旋桨时,控制无人飞行器降落或者返航,及时确保了无人飞行器的安全性。
在一些实施例中,步骤S10获取无人飞行器处于悬停状态时多个驱动电机的转速或者电性参数,包括:
当多个驱动电机中每一个驱动电机的工作状态都正常时,则获取无人飞行器处于悬停状态时所述多个驱动电机的转速或者电性参数。
本实施例中在悬停状态对无人飞行器进行故障检测获取多个驱动电机的转速或者电性参数之前,先对每个驱动电机的工作状态是否正常进行 了检测,只有在确定多个驱动电机均正常工作的情况下,才进一步进行后续的故障检测。避免了由于驱动电机工作异常而误判定成驱动电机安装异常或者螺旋桨断裂、破损的情况。
如图8所示,在本发明的无人飞行器的动力故障检测方法的在一些实施例中,步骤S50根据所述多个驱动电机中每一个驱动电机的转速确定对应驱动电机的工作状态是否异常,包括:
步骤S51、根据所述多个驱动电机中每一个驱动电机的转速推算对应的驱动电机的参考电性参数。
示例性地,飞控通过飞控与电调之间的通讯线,可以获取飞机上各个电机的实时状态。飞控系统获取到单个电机的状态信息后,可以根据状态信息之间的关系进行单个电机的状态监测,具体实现方式如下。无人机电机在正常工作条件下,其电流与转速有如公式(1)所示的关系:
Figure PCTCN2020118671-appb-000001
其中s为驱动电机转速,I为驱动电机电流,A,B,C为常数。在电机设计与测试阶段,可以通过台架实验,在驱动电机正常工作条件下,给电机输入特定的电流,得到相应的转速,进而可以得到公式中的常数A,B,C。上述也为电机在正常工作状态下的转速与电流之间的关系。
步骤S52、获取传感器采集到的所述多个驱动电机中每一个驱动电机的实际电性参数。
步骤S53、当对应于同一驱动电机的所述参考电性参数与所述实际电性参数之间的第二电性参数差值大于或等于第三预设电性参数差阈值时,确定相应的驱动电机的工作状态异常。
本实施例中首先通过驱动电机的转速推算对应的驱动电机的参考电性参数,然后根据该参考电性参数与传感器所采集的相同驱动电机的实际电性参数是否相一致(例如,两者的差值是否小于预设差值)来确定相应的驱动电机是否异常。
如图9所示,在本发明的无人飞行器的动力故障检测方法的在一些实施例中,步骤S50根据所述多个驱动电机中每一个驱动电机的电性参数确 定对应驱动电机的工作状态是否异常,包括:
步骤S51′、根据所述多个驱动电机中每一个驱动电机的电性参数推算对应的驱动电机的参考转速。
步骤S52′、获取传感器采集到的所述多个驱动电机中每一个驱动电机的实际转速;
步骤S53′、当对应于同一驱动电机的所述参考转速与所述实际转速之间的第二转速差值大于或等于第三预设转速差阈值时,确定相应的驱动电机的工作状态异常。
本实施例中首先通过驱动电机的电性参数推算对应的驱动电机的参考转速,然后根据该参考转速与传感器所采集的相同驱动电机的实际转速是否相一致(例如,两者的差值是否小于预设差值)来确定相应的驱动电机是否异常。
如图10所示,在本发明的无人飞行器的动力故障检测方法的在一些实施例中,步骤S60执行第二安全响应操作,包括:
步骤S61、当对应于同一驱动电机的所述参考电性参数与所述实际电性参数之间的第二电性参数差值大于或等于第三预设电性参数差阈值且小于第四预设电性参数差阈值时,向所述无人飞行器通信连接的控制终端发送第二提示信息以使所述控制终端显示第二提示通知;
步骤S62、当所述第二电性参数差值大于第四预设电性参数差阈值时,控制所述无人飞行器降落或者返航。
本实施例中通过设置第三预设电性参数差阈值和第四预设电性参数差阈值实现了对无人飞行器的不同故障等级的告警。多个驱动电机的转速的第一特征转速和第二特征转速之间的第一转速差值越大,则表明无人飞行器的故障等级越高。
如图11所示,在本发明的无人飞行器的动力故障检测方法的在一些实施例中,步骤S60执行第二安全响应操作,包括:
步骤S61′、当对应于同一驱动电机的所述参考转速与所述实际转速之间的第二转速差值大于或等于第三预设转速差阈值且小于第四预设转速 差阈值时,向所述无人飞行器通信连接的控制终端发送第二提示信息以使所述控制终端显示第二提示通知;
步骤S62′、当所述第二转速差值大于或等于所述第四预设转速差阈值时,控制所述无人飞行器降落或者返航。
本实施例中通过设置第三预设转速差阈值和第四预设转速差阈值实现了对无人飞行器的不同故障等级的告警。
如图12所示,为本发明的无人飞行器的动力故障检测方法的流程图,,该方法可用于无人飞行器的控制装置,例如,无人飞行器为无人机,相应的控制装置为飞控装置,该方法包括:
本发明的指令流程如附图5所示,可以看出本方法主要包括以下几个步骤:电调系统推送电机状态信息,飞控系统获取电机状态信息,飞控系统判断单个电机的状态,飞控系统判断多个电调的状态,飞控系统下发保护行为指令,APP显示故障状态。
电调系统与对应的电机连接,可以给电机下发PWM指令,控制电机旋转。同时,也可以获取电机的电流、电压、转速等实时信息。电调系统可以通过电调与飞控系统之间的通讯线,将电机的各种状态信息推送至飞控系统。
飞控通过飞控与电调之间的通讯线,可以获取飞机上各个电机的实时状态。
飞控系统获取到单个电机的状态信息后,可以根据状态信息之间的关系进行单个电机的状态监测,具体实现方式如下。无人机电机在正常工作条件下,其电流与转速有如公式(1)所示的关系:
Figure PCTCN2020118671-appb-000002
其中s为电机转速,I为电机电流,A,B,C为常数。在电机设计与测试阶段,可以通过台架实验,在电机正常工作条件下,给电机输入特定的电流,得到相应的转速,进而可以得到公式中的常数A,B,C。上述也为电机在正常工作状态下的转速与电流之间的关系。
无人机在实际工作中,飞控系统可以获取到单个电机的实际转速s,通过公式(1),可以得到该转速情况下对应的正常电流为I1。同时,飞 控获取到该电机的实际电流为I2。如果实际电流与理论电流相差过大,则可以判定该电机处于故障状态,需要执行返航,或者降落等保护措施。需要设置两级保护阈值,当差值超过一级阈值时,提示用户手动控制飞机返航;当差值超过二级阈值时,则为严重故障状态,控制飞机降落,并提示用户。
飞控系统可以得到全部电机的状态信息,可以对所有电机状态进行交叉检测。具体检测方法如下:理论上,飞机悬停时,各个电机的输出基本一致,会处于比较一致的工作状态。飞控系统可以感知飞机的悬停状态,并在悬停时,对各个电机的状态进行判断。计算所有电机转速均值s 0于电流均值i 0,将各个电机的实际转速与电流与上述均值做差,确定差值最大的电机,并判断电流与转速的差值是否超过阈值,如果超过阈值,则判断该电机存在安装问题,即可将该故障信息推送至APP,进而提示用户进行检查与维修,及时排除故障。
通过上述单个电机检测与多个电机交叉检测,可以准确判断单个电机的故障状态,以及电机交叉检测的状态,并及时给出保护措施,提示使用者进行故障解除。
在一些实施例中,本发明还提供一种无人飞行器的动力故障检测装置,所述无人飞行器包括提供飞行动力的动力系统,所述动力系统包括多个驱动电机和由所述多个驱动电机驱动的多个螺旋桨,所述装置包括:
至少一个处理器;
以及与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行:
获取所述无人飞行器处于悬停状态时所述多个驱动电机的转速或者电性参数;
根据所述多个驱动电机的转速或者电性参数确定所述多个驱动电机中的驱动电机是否安装异常或者所述多个螺旋桨中的螺旋桨是否断裂;
若确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂,则执行第一安全响应操作。
在一些实施例中,处理器还用于:向所述无人飞行器通信连接的控制终端发送第一提示信息以使所述控制终端显示第一提示通知。
在一些实施例中,处理器还用于:控制所述无人飞行器降落或者返航。
在一些实施例中,处理器还用于:
根据所述多个驱动电机的转速确定所述多个驱动电机的转速一致程度;
若所述转速一致程度满足转速一致程度预设条件时,确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂;或者,
根据所述多个驱动电机的电性参数确定所述多个驱动电机的电性参数一致程度;
若所述电性参数一致程度满足电性参数一致程度预设条件时,确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂。
在一些实施例中,处理器还用于:
确定所述多个驱动电机的转速的第一特征转速,其中,所述第一特征转速为平均转速或者中位转速;
确定所述多个驱动电机的转速的第二特征转速,其中,所述第二特征转速为最低转速或者最高转速;
确定所述第一特征转速和所述第二特征转速之间的第一转速差值为所述多个驱动电机的转速一致程度,若所述第一转速差值大于或等于第一预设转速差阈值,则确定所述转速一致程度满足转速一致程度预设条件。
在一些实施例中,处理器还用于:
确定所述多个驱动电机的第一特征电性参数,其中,所述第一特征电性参数为平均电性参数或者中位电性参数;
确定所述多个驱动电机的第二特征电性参数,其中,所述第二特征电性参数为最低电性参数或者最高电性参数;
确定所述第一特征电性参数和所述第二特征电性参数之间的第一电性参数差值为所述多个驱动电机的电性参数一致程度,若所述第一电性参数差值大于或等于第一预设电性参数差阈值,则确定所述电性参数一致程度满足电性参数一致程度预设条件。
在一些实施例中,处理器还用于:
若所述第一转速差值大于或等于第一预设转速差阈值且小于第二预设转速差阈值时,向所述无人飞行器通信连接的控制终端发送第一提示信息以使所述控制终端显示第一提示通知;
若所述第一转速差值大于或等于第二预设转速差阈值时,控制所述无人飞行器降落或者返航。
在一些实施例中,处理器还用于:
若所述第一电性参数差值大于或等于第一预设电性参数差阈值且小于第二预设电性参数差阈值时,向所述无人飞行器通信连接的控制终端发送第一提示信息以使所述控制终端显示第一提示通知;
若所述第一电性参数差值大于或等于第二预设电性参数差阈值时,控制所述无人飞行器降落或者返航。
在一些实施例中,处理器还用于:
获取所述无人飞行器处于飞行状态时所述多个驱动电机的转速或者电性参数;
根据所述多个驱动电机中每一个驱动电机的转速或者电性参数确定对应驱动电机的工作状态是否异常;
若所述多个驱动电机中的驱动电机的工作状态异常时,执行第二安全响应操作。
在一些实施例中,处理器还用于:向所述无人飞行器通信连接的控制 终端发送第二提示信息以使所述控制终端显示第二提示通知。
在一些实施例中,处理器还用于:控制所述无人飞行器降落或者返航。
在一些实施例中,处理器还用于:当所述多个驱动电机中每一个驱动电机的工作状态都正常时,则获取所述无人飞行器处于悬停状态时所述多个驱动电机的转速或者电性参数。
在一些实施例中,处理器还用于:
根据所述多个驱动电机中每一个驱动电机的转速推算对应的驱动电机的参考电性参数;
获取传感器采集到的所述多个驱动电机中每一个驱动电机的实际电性参数;
当对应于同一驱动电机的所述参考电性参数与所述实际电性参数之间的第二电性参数差值大于或等于第三预设电性参数差阈值时,确定相应的驱动电机的工作状态异常。
在一些实施例中,处理器还用于:
根据所述多个驱动电机中每一个驱动电机的电性参数推算对应的驱动电机的参考转速;
获取传感器采集到的所述多个驱动电机中每一个驱动电机的实际转速;
当对应于同一驱动电机的所述参考转速与所述实际转速之间的第二转速差值大于或等于第三预设转速差阈值时,确定相应的驱动电机的工作状态异常。
在一些实施例中,处理器还用于:
当对应于同一驱动电机的所述参考电性参数与所述实际电性参数之间的第二电性参数差值大于或等于第三预设电性参数差阈值且小于第四预设电性参数差阈值时,向所述无人飞行器通信连接的控制终端发送第二 提示信息以使所述控制终端显示第二提示通知;
当所述第二电性参数差值大于第四预设电性参数差阈值时,控制所述无人飞行器降落或者返航。
在一些实施例中,处理器还用于:
当对应于同一驱动电机的所述参考转速与所述实际转速之间的第二转速差值大于或等于第三预设转速差阈值且小于第四预设转速差阈值时,向所述无人飞行器通信连接的控制终端发送第二提示信息以使所述控制终端显示第二提示通知;
当所述第二转速差值大于或等于所述第四预设转速差阈值时,控制所述无人飞行器降落或者返航。
在一些实施例中,本发明还提供一种无人飞行器,包括:
可移动本体,和
安装在所述可移动本体上的前述任一实施例所述的无人飞行器的动力故障检测装置。
在一些实施例中,本发明还提供一种存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现前述任一实施例所述方法的步骤。
如图13所示,为本发明所提供的无人飞行器的一实施例的结构示意图,包括:可移动本体600,和安装在所述可移动本体600上的根据前述任一实施例所述的无人飞行器控制装置。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作合并,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须 的。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (34)

  1. 一种无人飞行器的动力故障检测方法,所述无人飞行器包括提供飞行动力的动力系统,所述动力系统包括多个驱动电机和由所述多个驱动电机驱动的多个螺旋桨,其特征在于,所述方法包括:
    获取所述无人飞行器处于悬停状态时所述多个驱动电机的转速或者电性参数;
    根据所述多个驱动电机的转速或者电性参数确定所述多个驱动电机中的驱动电机是否安装异常或者所述多个螺旋桨中的螺旋桨是否断裂;
    若确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂,则执行第一安全响应操作。
  2. 根据权利要求1所述的方法,其特征在于,所述执行第一安全响应操作,包括:
    向所述无人飞行器通信连接的控制终端发送第一提示信息以使所述控制终端显示第一提示通知。
  3. 根据权利要求1所述的方法,其特征在于,所述执行第一安全响应操作,包括:控制所述无人飞行器降落或者返航。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述多个驱动电机的转速或者电性参数确定所述多个驱动电机中的驱动电机是否安装异常或者所述多个螺旋桨中的螺旋桨是否断裂,包括:
    根据所述多个驱动电机的转速确定所述多个驱动电机的转速一致程度;
    若所述转速一致程度满足转速一致程度预设条件时,确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂;或者,
    根据所述多个驱动电机的电性参数确定所述多个驱动电机的电性参数一致程度;
    若所述电性参数一致程度满足电性参数一致程度预设条件时,确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述多个驱动电机的转速确定所述多个驱动电机的转速一致程度,包括:
    确定所述多个驱动电机的转速的第一特征转速,其中,所述第一特征转速为平均转速或者中位转速;
    确定所述多个驱动电机的转速的第二特征转速,其中,所述第二特征转速为最低转速和/或最高转速;
    确定所述第一特征转速和所述第二特征转速之间的第一转速差值为所述多个驱动电机的转速一致程度,若所述第一转速差值大于或等于第一预设转速差阈值,则确定所述转速一致程度满足转速一致程度预设条件。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述多个驱动电机的电性参数确定所述多个驱动电机的电性参数一致程度,包括:
    确定所述多个驱动电机的第一特征电性参数,其中,所述第一特征电性参数为平均电性参数或者中位电性参数;
    确定所述多个驱动电机的第二特征电性参数,其中,所述第二特征电性参数为最低电性参数和/或最高电性参数;
    确定所述第一特征电性参数和所述第二特征电性参数之间的第一电性参数差值为所述多个驱动电机的电性参数一致程度,若所述第一电性参数差值大于或等于第一预设电性参数差阈值,则确定所述电性参数一致程度满足电性参数一致程度预设条件。
  7. 根据权利要求5所述的方法,其特征在于,所述执行第一安全响应操作,包括:
    若所述第一转速差值大于或等于第一预设转速差阈值且小于第二预设转速差阈值时,向所述无人飞行器通信连接的控制终端发送第一提示信息以使所述控制终端显示第一提示通知;
    若所述第一转速差值大于或等于第二预设转速差阈值时,控制所述无人飞行器降落或者返航。
  8. 根据权利要求6所述的方法,其特征在于,所述执行第一安全响应操作,包括:
    若所述第一电性参数差值大于或等于第一预设电性参数差阈值且小于第二预设电性参数差阈值时,向所述无人飞行器通信连接的控制终端发送第一提示信息以使所述控制终端显示第一提示通知;
    若所述第一电性参数差值大于或等于第二预设电性参数差阈值时,控制所述无人飞行器降落或者返航。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    获取所述无人飞行器处于飞行状态时所述多个驱动电机的转速或者电性参数;
    根据所述多个驱动电机中每一个驱动电机的转速或者电性参数确定对应驱动电机的工作状态是否异常;
    若所述多个驱动电机中的驱动电机的工作状态异常时,执行第二安全响应操作。
  10. 根据权利要求9所述的方法,其特征在于,所述执行第二安全响应操作,包括:
    向所述无人飞行器通信连接的控制终端发送第二提示信息以使所述控制终端显示第二提示通知。
  11. 根据权利要求9所述的方法,其特征在于,所述执行第二安全响应操作,包括:控制所述无人飞行器降落或者返航。
  12. 根据权利要求9所述的方法,其特征在于,所述获取所述无人飞行器处于悬停状态时所述多个驱动电机的转速或者电性参数,包括:
    当所述多个驱动电机中每一个驱动电机的工作状态都正常时,则获取所述无人飞行器处于悬停状态时所述多个驱动电机的转速或者电性参数。
  13. 根据权利要求9所述的方法,其特征在于,所述根据所述多个驱动电机中每一个驱动电机的转速确定对应驱动电机的工作状态是否异常,包括:
    根据所述多个驱动电机中每一个驱动电机的转速推算对应的驱动电机的参考电性参数;
    获取传感器采集到的所述多个驱动电机中每一个驱动电机的实际电性参数;
    当对应于同一驱动电机的所述参考电性参数与所述实际电性参数之间的第二电性参数差值大于或等于第三预设电性参数差阈值时,确定相应的驱动电机的工作状态异常。
  14. 根据权利要求9所述的方法,其特征在于,所述根据所述多个驱动电机中每一个驱动电机的电性参数确定对应驱动电机的工作状态是否异常,包括:
    根据所述多个驱动电机中每一个驱动电机的电性参数推算对应的驱动电机的参考转速;
    获取传感器采集到的所述多个驱动电机中每一个驱动电机的实际转速;
    当对应于同一驱动电机的所述参考转速与所述实际转速之间的第二转速差值大于或等于第三预设转速差阈值时,确定相应的驱动电机的工作状态异常。
  15. 根据权利要求13所述的方法,其特征在于,所述执行第二安全响应操作,包括:
    当对应于同一驱动电机的所述参考电性参数与所述实际电性参数之间的第二电性参数差值大于或等于第三预设电性参数差阈值且小于第四预设电性参数差阈值时,向所述无人飞行器通信连接的控制终端发送第二 提示信息以使所述控制终端显示第二提示通知;
    当所述第二电性参数差值大于第四预设电性参数差阈值时,控制所述无人飞行器降落或者返航。
  16. 根据权利要求14所述的方法,其特征在于,所述执行第二安全响应操作,包括:
    当对应于同一驱动电机的所述参考转速与所述实际转速之间的第二转速差值大于或等于第三预设转速差阈值且小于第四预设转速差阈值时,向所述无人飞行器通信连接的控制终端发送第二提示信息以使所述控制终端显示第二提示通知;
    当所述第二转速差值大于或等于所述第四预设转速差阈值时,控制所述无人飞行器降落或者返航。
  17. 一种无人飞行器的动力故障检测装置,所述无人飞行器包括提供飞行动力的动力系统,所述动力系统包括多个驱动电机和由所述多个驱动电机驱动的多个螺旋桨,所述装置包括:
    至少一个处理器;
    以及与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行:
    获取所述无人飞行器处于悬停状态时所述多个驱动电机的转速或者电性参数;
    根据所述多个驱动电机的转速或者电性参数确定所述多个驱动电机中的驱动电机是否安装异常或者所述多个螺旋桨中的螺旋桨是否断裂;
    若确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂,则执行第一安全响应操作。
  18. 根据权利要求17所述的装置,其特征在于,所述处理器具体用于:
    向所述无人飞行器通信连接的控制终端发送第一提示信息以使所述 控制终端显示第一提示通知。
  19. 根据权利要求17所述的装置,其特征在于,所述处理器具体用于:控制所述无人飞行器降落或者返航。
  20. 根据权利要求17所述的装置,其特征在于,所述处理器具体用于:
    根据所述多个驱动电机的转速确定所述多个驱动电机的转速一致程度;
    若所述转速一致程度满足转速一致程度预设条件时,确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂;或者,
    根据所述多个驱动电机的电性参数确定所述多个驱动电机的电性参数一致程度;
    若所述电性参数一致程度满足电性参数一致程度预设条件时,确定所述多个驱动电机中的驱动电机安装异常或者所述多个螺旋桨中的螺旋桨断裂。
  21. 根据权利要求20所述的装置,其特征在于,所述处理器具体用于:
    确定所述多个驱动电机的转速的第一特征转速,其中,所述第一特征转速为平均转速或者中位转速;
    确定所述多个驱动电机的转速的第二特征转速,其中,所述第二特征转速为最低转速或者最高转速;
    确定所述第一特征转速和所述第二特征转速之间的第一转速差值为所述多个驱动电机的转速一致程度,若所述第一转速差值大于或等于第一预设转速差阈值,则确定所述转速一致程度满足转速一致程度预设条件。
  22. 根据权利要求20所述的装置,其特征在于,所述处理器具体用于:
    确定所述多个驱动电机的第一特征电性参数,其中,所述第一特征电性参数为平均电性参数或者中位电性参数;
    确定所述多个驱动电机的第二特征电性参数,其中,所述第二特征电性参数为最低电性参数或者最高电性参数;
    确定所述第一特征电性参数和所述第二特征电性参数之间的第一电性参数差值为所述多个驱动电机的电性参数一致程度,若所述第一电性参数差值大于或等于第一预设电性参数差阈值,则确定所述电性参数一致程度满足电性参数一致程度预设条件。
  23. 根据权利要求21所述的装置,其特征在于,所述处理器还用于:
    若所述第一转速差值大于或等于第一预设转速差阈值且小于第二预设转速差阈值时,向所述无人飞行器通信连接的控制终端发送第一提示信息以使所述控制终端显示第一提示通知;
    若所述第一转速差值大于或等于第二预设转速差阈值时,控制所述无人飞行器降落或者返航。
  24. 根据权利要求22所述的装置,其特征在于,所述处理器具体用于:
    若所述第一电性参数差值大于或等于第一预设电性参数差阈值且小于第二预设电性参数差阈值时,向所述无人飞行器通信连接的控制终端发送第一提示信息以使所述控制终端显示第一提示通知;
    若所述第一电性参数差值大于或等于第二预设电性参数差阈值时,控制所述无人飞行器降落或者返航。
  25. 根据权利要求17-24任一项所述的装置,其特征在于,所述处理器还用于:
    获取所述无人飞行器处于飞行状态时所述多个驱动电机的转速或者电性参数;
    根据所述多个驱动电机中每一个驱动电机的转速或者电性参数确定对应驱动电机的工作状态是否异常;
    若所述多个驱动电机中的驱动电机的工作状态异常时,执行第二安全响应操作。
  26. 根据权利要求25所述的装置,其特征在于,所述处理器具体用于:
    向所述无人飞行器通信连接的控制终端发送第二提示信息以使所述控制终端显示第二提示通知。
  27. 根据权利要求25所述的装置,其特征在于,所述处理器具体用于:控制所述无人飞行器降落或者返航。
  28. 根据权利要求25所述的装置,其特征在于,所述处理器具体用于:
    当所述多个驱动电机中每一个驱动电机的工作状态都正常时,则获取所述无人飞行器处于悬停状态时所述多个驱动电机的转速或者电性参数。
  29. 根据权利要求25所述的装置,其特征在于,所述处理器具体用于:
    根据所述多个驱动电机中每一个驱动电机的转速推算对应的驱动电机的参考电性参数;
    获取传感器采集到的所述多个驱动电机中每一个驱动电机的实际电性参数;
    当对应于同一驱动电机的所述参考电性参数与所述实际电性参数之间的第二电性参数差值大于或等于第三预设电性参数差阈值时,确定相应的驱动电机的工作状态异常。
  30. 根据权利要求25所述的装置,其特征在于,所述处理器具体用于:
    根据所述多个驱动电机中每一个驱动电机的电性参数推算对应的驱动电机的参考转速;
    获取传感器采集到的所述多个驱动电机中每一个驱动电机的实际转速;
    当对应于同一驱动电机的所述参考转速与所述实际转速之间的第二转速差值大于或等于第三预设转速差阈值时,确定相应的驱动电机的工作状态异常。
  31. 根据权利要求29所述的装置,其特征在于,所述处理器具体用于:
    当对应于同一驱动电机的所述参考电性参数与所述实际电性参数之间的第二电性参数差值大于或等于第三预设电性参数差阈值且小于第四预设电性参数差阈值时,向所述无人飞行器通信连接的控制终端发送第二提示信息以使所述控制终端显示第二提示通知;
    当所述第二电性参数差值大于第四预设电性参数差阈值时,控制所述无人飞行器降落或者返航。
  32. 根据权利要求30所述的装置,其特征在于,所述处理器具体用于:
    当对应于同一驱动电机的所述参考转速与所述实际转速之间的第二转速差值大于或等于第三预设转速差阈值且小于第四预设转速差阈值时,向所述无人飞行器通信连接的控制终端发送第二提示信息以使所述控制终端显示第二提示通知;
    当所述第二转速差值大于或等于所述第四预设转速差阈值时,控制所述无人飞行器降落或者返航。
  33. 一种无人飞行器,包括:
    可移动本体,和
    安装在所述可移动本体上的根据权利要求17-32中任一项所述的无人飞行器的动力故障检测装置。
  34. 一种存储介质,其上存储有计算机程序,其特征在于,该程序被 处理器执行时实现权利要求1-16中任一项所述方法的步骤。
PCT/CN2020/118671 2020-09-29 2020-09-29 无人飞行器的动力故障检测方法、装置及无人飞行器 WO2022067463A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080008643.4A CN113302129A (zh) 2020-09-29 2020-09-29 无人飞行器的动力故障检测方法、装置及无人飞行器
PCT/CN2020/118671 WO2022067463A1 (zh) 2020-09-29 2020-09-29 无人飞行器的动力故障检测方法、装置及无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118671 WO2022067463A1 (zh) 2020-09-29 2020-09-29 无人飞行器的动力故障检测方法、装置及无人飞行器

Publications (1)

Publication Number Publication Date
WO2022067463A1 true WO2022067463A1 (zh) 2022-04-07

Family

ID=77318816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118671 WO2022067463A1 (zh) 2020-09-29 2020-09-29 无人飞行器的动力故障检测方法、装置及无人飞行器

Country Status (2)

Country Link
CN (1) CN113302129A (zh)
WO (1) WO2022067463A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115440090B (zh) * 2022-08-31 2024-05-28 亿航智能设备(广州)有限公司 一种飞行器的故障保护方法、设备及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115656A (en) * 1997-06-17 2000-09-05 Mcdonnell Douglas Corporation Fault recording and reporting method
CN105302043A (zh) * 2015-11-17 2016-02-03 辽宁天行健航空科技有限公司 一种无人机的安全控制系统及控制方法
CN107074351A (zh) * 2016-09-30 2017-08-18 深圳市大疆创新科技有限公司 无人机的控制方法、装置及无人飞行器
CN108387843A (zh) * 2018-02-26 2018-08-10 广东翔龙航空技术有限公司 一种无人机电机故障在线检测方法
CN109398724A (zh) * 2018-10-31 2019-03-01 北京瑞深航空科技有限公司 无人机供电系统故障监控方法及装置、无人机
CN110979645A (zh) * 2019-12-18 2020-04-10 新疆联海创智信息科技有限公司 一种无人机故障后应急控制装置与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115656A (en) * 1997-06-17 2000-09-05 Mcdonnell Douglas Corporation Fault recording and reporting method
CN105302043A (zh) * 2015-11-17 2016-02-03 辽宁天行健航空科技有限公司 一种无人机的安全控制系统及控制方法
CN107074351A (zh) * 2016-09-30 2017-08-18 深圳市大疆创新科技有限公司 无人机的控制方法、装置及无人飞行器
CN108387843A (zh) * 2018-02-26 2018-08-10 广东翔龙航空技术有限公司 一种无人机电机故障在线检测方法
CN109398724A (zh) * 2018-10-31 2019-03-01 北京瑞深航空科技有限公司 无人机供电系统故障监控方法及装置、无人机
CN110979645A (zh) * 2019-12-18 2020-04-10 新疆联海创智信息科技有限公司 一种无人机故障后应急控制装置与方法

Also Published As

Publication number Publication date
CN113302129A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
US20180307231A1 (en) Intelligent electronic speed controller (iesc)
WO2019134150A1 (zh) 无人机的故障检测方法、装置及可移动平台
CN107014827B (zh) 基于影像处理的输电线路缺陷分析方法、装置和系统
US11356599B2 (en) Human-automation collaborative tracker of fused object
JP2022507995A (ja) 無人運転車用の障害物回避方法及び装置
WO2018058672A1 (zh) 无人机的控制方法、装置及无人飞行器
WO2022067463A1 (zh) 无人飞行器的动力故障检测方法、装置及无人飞行器
CN106707192B (zh) 飞行器安全检测管理装置及安全控制系统
US20180043780A1 (en) Method for processing throttle control signal, electronic speed regulator, controller, and mobile platform
CN111666187B (zh) 用于检测异常响应时间的方法和装置
WO2018103184A1 (zh) 一种基于无人机螺旋桨的桨叶角度调节的方法及无人机
CN110751270A (zh) 一种无人机电线故障检测方法、系统及设备
CN114692926A (zh) 车用电池的安全评估方法、系统、设备及可读存储介质
CN114378862B (zh) 基于云平台的机器人异常自动修复方法、装置和机器人
US10018895B2 (en) Projector, projector monitoring system, and projector monitoring method
CN110716803A (zh) 电脑系统、资源分配方法及其影像辨识方法
CN112800947A (zh) 视频监控方法、系统、电子设备及存储介质
CN116047499A (zh) 一种目标施工车辆的输电线路高精度实时防护系统和方法
CN114024504B (zh) 采用5g的光伏阵列状态监控方法、装置及系统
CN111267079A (zh) 一种智能巡检机器人巡检方法及装置
CN112947509A (zh) 确定无人驾驶设备故障原因的方法及装置
CN113759276B (zh) 一种接地诊断方法和装置
US20190028361A1 (en) System and method for monitoring multiple devices in multiple networks
CN114679569A (zh) 基于三维建模的产线可视化监控方法、系统和存储介质
CN115167512A (zh) 一种地面坡度探测方法、设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955491

Country of ref document: EP

Kind code of ref document: A1