WO2019134150A1 - 无人机的故障检测方法、装置及可移动平台 - Google Patents

无人机的故障检测方法、装置及可移动平台 Download PDF

Info

Publication number
WO2019134150A1
WO2019134150A1 PCT/CN2018/071678 CN2018071678W WO2019134150A1 WO 2019134150 A1 WO2019134150 A1 WO 2019134150A1 CN 2018071678 W CN2018071678 W CN 2018071678W WO 2019134150 A1 WO2019134150 A1 WO 2019134150A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
drone
parameter information
preset threshold
state parameter
Prior art date
Application number
PCT/CN2018/071678
Other languages
English (en)
French (fr)
Inventor
高翔
李进吉
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880031266.9A priority Critical patent/CN110612252A/zh
Priority to PCT/CN2018/071678 priority patent/WO2019134150A1/zh
Publication of WO2019134150A1 publication Critical patent/WO2019134150A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • B64C25/18Operating mechanisms
    • B64C25/26Control or locking systems therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers

Definitions

  • the invention relates to the technical field of drones, in particular to a fault detection method and device for a drone and a movable platform.
  • UAVs are unmanned aircraft operated by radio remote control equipment and self-contained program control devices. They are widely used in aerial photography, agriculture, disaster relief, etc. Therefore, it is necessary to detect drones to ensure drones. The safety is crucial.
  • the multi-rotor UAV when detecting whether the multi-rotor UAV has a fault, it is detected by the motor current feedback device and the motor speed feedback device in the multi-rotor UAV, if the motor current increases, the rotation speed If it is too low or too high, it is determined that the multi-rotor UAV has a fault, thereby turning off the motor for stall protection to improve the safety of the multi-rotor drone.
  • the motor current feedback device and the motor speed feedback device increase the cost, and the motor current feedback device and the motor speed feedback device are not provided in the motors of many multi-rotor UAVs, so that the motor current feedback device and the motor speed feedback cannot be passed.
  • the device detects whether there is a fault in the multi-rotor UAV. Therefore, for these multi-rotor UAVs, how to detect the failure of the UAV to improve the safety of the multi-rotor UAV is urgently needed to be solved by those skilled in the art. The problem.
  • the invention provides a fault detecting method and device for a drone and a movable platform, which can detect a fault of the drone, thereby improving the safety of the drone.
  • an embodiment of the present invention provides a method for detecting a fault of a drone, including:
  • an embodiment of the present invention provides a fault detection apparatus for a drone, including:
  • a processor configured to determine that the UAV malfunctions according to the current flight state parameter information and preset flight state parameter information.
  • an embodiment of the present invention provides a computer readable storage medium, where a computer program is stored, and when the computer program is executed by a processor, performing the drone of the first aspect Fault detection method.
  • an embodiment of the present invention provides a mobile platform, including the power device and the fault detecting device of the unmanned aerial vehicle according to the second aspect.
  • the fault detecting method, device and movable platform of the unmanned aerial vehicle determine the flight state parameter information of the drone, and determine the malfunction of the drone according to the flight state parameter information and the flight mode of the drone . It can be seen that the fault detection method, device and movable platform of the unmanned aerial vehicle according to the embodiments of the present invention determine whether the drone is faulty according to the flight state parameter information and the flight mode of the drone, and determine the drone. After the fault occurs, turn off the motor of the drone to prevent the motor from stalling, thus improving the safety of the drone.
  • FIG. 1 is a schematic diagram of a method for detecting a failure of a drone according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of determining whether a drone has failed in a take-off mode according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of determining whether a drone has failed in another take-off mode according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of determining whether a drone has failed in a cruise mode according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of determining whether a drone has failed in another cruise mode according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of determining whether a drone has failed in a cruise mode according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of determining whether a drone has failed in another cruise mode according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of determining whether a drone has failed in a cruise mode according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of determining whether a drone has failed in another cruise mode according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a fault detecting apparatus for a drone according to an embodiment of the present invention.
  • the fault detection method, device and movable platform of the drone provided by the embodiment of the invention can be applied to a drone that cannot detect whether there is a fault through the motor current feedback device and the motor speed feedback device.
  • a drone that cannot detect whether there is a fault through the motor current feedback device and the motor speed feedback device.
  • an ultra-small multi-rotor drone In the embodiment of the present invention, in order to detect whether the ultra-small multi-rotor UAV has a fault, the current flight state parameter information of the drone is detected; so that the current flight state parameter information and the preset flight state parameter information can be determined to be none. If the man-machine fails, the motor of the multi-rotor drone can be turned off to prevent the motor from stalling, thus improving the safety of the multi-rotor drone.
  • the fault when detecting whether there is a fault in the multi-rotor UAV, the fault may be a fault existing in the take-off mode, or a fault existing in the cruise mode, and the detection manner is also detected for the fault in different flight modes. different.
  • the fault detection method of the drone may be a fault detection device of the drone, and the fault detection device of the drone may be independently set. It can also be integrated in the processor.
  • the fault detection method of the drone may include:
  • the current flight state information may include a current attitude angle or current speed information.
  • the current aircraft state parameter information of the drone can be detected in real time.
  • the current flight state parameter information of the drone can also be detected by a preset duration.
  • the preset flight state parameter information is the maximum flight state parameter information allowed by the drone under normal conditions, that is, within the range of the maximum flight state parameter information, the drone is considered to be a normal flight state.
  • the current flight state parameter information may be compared with the flight state information in the normal state to determine whether the drone has failed, and the determination is made to When the man-machine fails, the motor of the drone is turned off to prevent the motor from stalling, thereby improving the safety of the drone.
  • the S102 determines that the UAV is faulty according to the current flight state parameter information and the preset flight state parameter information, and may include:
  • the flight mode includes a takeoff mode or a cruise mode.
  • the flight states corresponding to different flight modes are determined.
  • the parameter information is different.
  • the corresponding first flight state information may be attitude angle or speed information; if the flight mode is the cruise mode, the corresponding second flight state information may be the attitude angle.
  • the fault detection method of the drone determines the flight state parameter information of the drone, and determines the failure of the drone according to the flight state parameter information and the flight mode of the drone. It can be seen that the fault detection method of the unmanned aerial vehicle provided by the embodiment of the present invention determines whether the unmanned aircraft has a fault according to the flight state parameter information and the flight mode of the drone, and after the failure of the drone is determined, the shutdown is not performed.
  • the motor of the man-machine prevents the motor from stalling, thus improving the safety of the drone.
  • the aircraft state parameter information corresponding to the different flight modes is determined. Differently, in different flight modes, the scheme corresponding to determining the failure of the drone according to the flight state parameter information and the preset flight state parameter information is also different.
  • the first flight parameter information when the flight mode of the drone is the takeoff mode, the first flight parameter information includes the first attitude angle or speed information, and may be based on the first attitude angle or speed information, and the preset flight state parameter information. Determine if the drone has failed.
  • the second flight parameter information includes the second attitude angle, and the drone may be determined according to the second attitude angle and the preset flight state parameter information.
  • the drone can be determined according to the first attitude angle and the preset flight parameter information, and if the drone is rolled over, the drone is determined to be faulty; 2 is a schematic diagram of determining whether a drone has failed in a take-off mode according to an embodiment of the present invention.
  • the drone can be determined to be blocked or covered by the foreign object according to the speed information and the preset flight parameter information. If the drone is blocked or covered by the foreign object, the drone cannot take off normally, thereby
  • FIG. 3 is a schematic diagram of determining whether a drone has failed in another take-off mode according to an embodiment of the present invention.
  • the method may include:
  • the first flight state parameter information includes a first attitude angle.
  • the corresponding preset flight state parameter is a first preset threshold
  • the first preset threshold is the maximum attitude angle allowed by the drone in the normal takeoff mode.
  • the change curve of the attitude angle of the drone in the normal state with time and the curve of the attitude angle when the rollover occurs with time may be determined.
  • the two variation curves are used to determine a preset curve, and the first preset threshold is any point on the preset curve.
  • the first preset threshold in the takeoff mode, the first preset thresholds corresponding to different moments are different.
  • the corresponding first preset threshold on the preset curve may be 10 degrees, and when t is 0.2 seconds, in advance
  • the first preset threshold corresponding to the curve may be 15 degrees, wherein the first attitude angle may be any one or a combination of a pitch angle, a roll angle, and a yaw angle.
  • the method may be implemented in multiple possible manners:
  • the drone may be turned off at this time.
  • the motor may be turned off to prevent The motor is blocked, which improves the safety of the drone.
  • a rate of change between the first attitude angle and the preset first attitude angle is determined; if the rate of change is greater than the second predetermined threshold, determining that the drone has failed.
  • the preset first attitude angle is an attitude angle of the drone in the normal takeoff mode.
  • the preset attitude angles corresponding to different moments are also different.
  • the preset first attitude angle may be 10 degrees
  • t is 0.2 seconds
  • the preset first posture angle may be 15 degrees.
  • the second preset threshold it can be specifically set according to actual needs.
  • the second preset threshold may be 100 degrees/second, 50 degrees/second, or the like.
  • the rate of change between the first attitude angle and the preset first attitude angle may be calculated first, if If the rate of change is greater than the second preset threshold, it is determined that the drone has the possibility of rollover. At this time, the motor can be turned off to prevent the motor from stalling, thereby improving the safety of the drone.
  • the method may include:
  • the first flight state parameter information includes speed information obtained by the drone after outputting the first pulling force in the first time period, and the value of the first pulling force is greater than that required by the drone when the hovering state is in the hovering state. pull.
  • the first time period can be 0.1 seconds.
  • the first speed information includes a first vertical acceleration and a first speed.
  • the corresponding preset flight state parameter is a first preset condition, and the first preset condition includes: in the normal takeoff mode, the drone is at the first The corresponding acceleration and speed after the first pulling force is output during the time period.
  • the corresponding acceleration of the drone after the first pull force is output may be 2 m/s 2 , and the corresponding speed may be 0.2 m/s.
  • the specific speed may be set according to actual needs.
  • the embodiment of the present invention is described by taking an example that the acceleration may be 2 m/s 2 and the speed may be 0.2 m/s, but the present invention is not limited thereto.
  • the first pulling force may be output during the initial period of take-off of the drone, so that the pulling force is increased from 0% to a higher pulling level (for example, 70%).
  • a higher pulling level for example, 70%.
  • the first vertical acceleration of the drone is greater than 2m/s 2 and the speed is greater than 0.2m/s, indicating that the drone is flying upwards, it is determined that the drone is not blocked or covered by foreign objects.
  • the drone is in a normal takeoff state. If the first vertical acceleration of the drone is less than 2m/s 2 , or the speed is less than 0.2m/s, or the first vertical acceleration is less than 2m/s 2 and the speed is less than 0.2m/s, the drone is not up.
  • Accelerated flight (including no take-off and take-off speed does not meet the preset value), it is determined that the drone is blocked or covered by foreign objects, and can not take off normally. At this time, the motor can be turned off to prevent the motor from stalling, thereby improving the unmanned Machine safety.
  • the preset time period refers to starting from an acceleration greater than 2 m/s 2 and ending with a preset time period, and determining whether the first vertical acceleration and the speed satisfy the first preset condition within the preset time period to determine Whether the drone is faulty.
  • FIG. 2 and FIG. 3 describe in detail how the drone determines whether the drone has failed according to the first attitude angle or speed information and the preset flight state parameter information in the take-off state.
  • the second attitude angle may be any one or a combination of a pitch angle, a roll angle, and a yaw angle.
  • determining whether the UAV is faulty according to the second attitude angle and the preset flight state parameter information may include two possible implementation manners, as shown in FIG. 4 and FIG. 5, FIG. FIG. 5 is a schematic diagram of determining whether a drone has failed in another cruise mode according to an embodiment of the present invention.
  • the method may include:
  • the second flight state parameter parameter information includes a second attitude angle.
  • the corresponding preset flight state parameter information is a fourth preset threshold, where the fourth preset threshold is the maximum allowed by the drone in the normal cruise mode. Attitude angle.
  • the fourth preset threshold may be 75 degrees.
  • the motor can be turned off to prevent the motor from stalling, thus improving the safety of the drone.
  • the method may include:
  • the second flight state parameter information includes a second attitude angle.
  • the corresponding preset flight state parameter information includes a fifth preset threshold and a sixth preset threshold
  • the fifth preset threshold is that the drone is in the normal cruise mode.
  • the maximum error allowed by the attitude angle, the sixth preset threshold is the maximum duration allowed by the drone in the second attitude angle state in the normal cruise mode.
  • the fifth preset threshold may be 15 degrees
  • the sixth preset threshold may be 3 seconds.
  • the preset second attitude angle is an attitude angle of the drone in the normal cruise mode.
  • the error between the second attitude angle and the preset second attitude angle may be compared, and the error is compared with the fifth preset threshold. If the error is greater than the fifth preset threshold, the duration of the drone in the state corresponding to the second attitude angle is further determined.
  • the drone may have a rollover during the cruise process. At this time, the motor can be turned off to prevent the motor from stalling, thereby improving the safety of the drone.
  • the flight state parameter information when the flight state parameter information includes the second attitude angle, how to determine the unmanned person according to the second attitude angle and the preset flight state parameter information in the cruise state is described in detail.
  • the flight state parameter information may also include acceleration.
  • the second scenario that is, in the cruise mode, how to according to the acceleration, the second attitude angle, and the preset flight state parameter information Determine if the drone has failed.
  • the second attitude angle may be any one or a combination of a pitch angle, a roll angle, and a yaw angle.
  • determining whether the drone has failed according to the acceleration, the second attitude angle, and the preset flight state parameter information may include two possible implementation manners, as shown in FIG. 6 and FIG.
  • FIG. 6 is a schematic diagram of determining whether a drone has failed in a cruise mode according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of determining whether a drone has failed in another cruise mode according to an embodiment of the present invention.
  • the method may include:
  • the second flight state parameter parameter information includes an acceleration and a second attitude angle.
  • the corresponding preset flight state parameter information is a fourth preset threshold and a seventh preset threshold, where the fourth preset threshold is the drone
  • the maximum attitude angle allowed in the normal cruise mode the seventh preset threshold is the maximum acceleration allowed by the drone in the normal cruise mode.
  • the fourth preset threshold may be 75 degrees
  • the seventh preset threshold may be 6g.
  • the motor can be turned off to prevent the motor from stalling, thereby improving the safety of the drone.
  • the method may include:
  • the second flight state parameter information includes an acceleration and a second attitude angle.
  • the corresponding preset flight state parameter information includes a fifth preset threshold, a sixth preset threshold, and a seventh preset threshold, where the fifth preset threshold is The maximum error allowed by the attitude angle of the drone in the normal cruise mode.
  • the sixth preset threshold is the maximum duration allowed by the drone in the second attitude angle state in the normal cruise mode.
  • the seventh preset The threshold is the maximum acceleration allowed by the drone in normal cruise mode.
  • the fifth preset threshold may be 15 degrees
  • the sixth preset threshold may be 3 seconds
  • the seventh preset threshold may be 6 g.
  • the preset second attitude angle is an attitude angle of the drone in the normal cruise mode.
  • the error between the second attitude angle and the preset second attitude angle may be compared, and the error is compared with the fifth preset threshold. If the error is greater than the fifth preset threshold, and the acceleration is greater than the seventh preset threshold, the duration of the drone in the state corresponding to the second attitude angle is further determined.
  • the drone may have a rollover during the cruise process. At this time, the motor can be turned off to prevent the motor from stalling, thereby improving the safety of the drone.
  • the flight state parameter information may also include a height.
  • the second attitude angle may be any one or a combination of a pitch angle, a roll angle, and a yaw angle. In the cruise mode, according to the acceleration, the altitude, the second attitude angle, and the preset flight state parameter information.
  • FIG. 8 is a schematic diagram of determining whether a UAV is faulty in a cruise mode according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of determining whether a drone has failed in another cruise mode according to an embodiment of the present invention.
  • the method may include:
  • the second flight state parameter parameter information includes an acceleration, a height, and a second attitude angle.
  • the corresponding preset flight state parameter information is a fourth preset threshold, a seventh preset threshold, and an eighth preset threshold, and the fourth pre- The threshold value is the maximum attitude angle allowed by the drone in the normal cruise mode.
  • the seventh preset threshold is the maximum acceleration allowed by the drone in the normal cruise mode.
  • the eighth preset threshold is the drone.
  • the fourth preset threshold may be 75 degrees
  • the seventh preset threshold may be 6g
  • the eighth preset threshold may be 6 meters.
  • the drone After determining the acceleration, the height, and the second attitude angle respectively, the drone can be determined according to the acceleration, the height, the second attitude angle, and the corresponding fourth preset threshold, the seventh preset threshold, and the eighth preset threshold. Whether the fault occurs, if the acceleration is greater than the seventh preset threshold, the height is less than the eighth preset threshold, and the second attitude angle is greater than the fourth preset threshold, determining that the drone has failed, at this time, the motor can be turned off to prevent The motor is blocked, which improves the safety of the drone.
  • the method may include:
  • the second flight state parameter information includes an acceleration, a height, and a second attitude angle.
  • the corresponding preset flight state parameter information includes a fifth preset threshold, a sixth preset threshold, a seventh preset threshold, and an eighth preset threshold.
  • the fifth preset threshold is the maximum error allowed by the attitude angle of the drone in the normal cruise mode
  • the sixth preset threshold is allowed by the drone in the second attitude angle state in the normal cruise mode.
  • the maximum duration, the seventh preset threshold is the maximum acceleration allowed by the drone in the normal cruise mode
  • the eighth preset threshold is the maximum height allowed by the drone when it is dropped.
  • the fifth preset threshold may be 15 degrees
  • the sixth preset threshold may be 3 seconds
  • the seventh preset threshold may be 6g
  • the eighth preset threshold may be 6 meters.
  • the preset second attitude angle is an attitude angle of the drone in the normal cruise mode.
  • the error between the second attitude angle and the preset second attitude angle may be compared, and the error is compared with the fifth preset threshold. If the error is greater than the fifth preset threshold, the acceleration is greater than the seventh preset threshold, and the height is less than the eighth preset threshold, the duration of the drone in the state corresponding to the second attitude angle is further determined.
  • the drone may have a rollover during the cruise process. At this time, the motor can be turned off to prevent the motor from stalling, thereby improving the safety of the drone.
  • the second flight state parameter in the cruise mode, may also include only the height and the second attitude angle, that is, the drone may be determined in the cruise mode according to the altitude and the second attitude angle.
  • the embodiment shown in FIG. 8 to FIG. 9 can be parameterized, and the embodiment of the present invention will not be described again.
  • FIG. 10 is a schematic structural diagram of a fault detecting apparatus 10 for a drone according to an embodiment of the present invention. As shown in FIG. 10, the fault detecting apparatus 10 of the drone may include:
  • the sensor 1001 is configured to detect current flight state parameter information of the drone.
  • the processor 1002 is configured to determine that the drone has failed according to the current flight state parameter information and the preset flight state parameter information.
  • the senor 1001 is further configured to acquire a current flight mode of the drone; wherein the flight mode includes a takeoff mode or a cruise mode.
  • the processor 1002 is specifically configured to determine that the UAV malfunctions according to the flight state parameter information and the preset flight state parameter information in the current flight mode of the UAV.
  • the flight state parameter information includes attitude angle or speed information.
  • the processor 1002 is configured to acquire first flight state parameter information corresponding to the drone in the takeoff mode if the current flight mode is the takeoff mode; the first flight state parameter information includes the first attitude angle or the speed information. And determining that the drone has failed according to the first attitude angle or speed information and the preset flight state parameter information.
  • the preset flight state parameter information includes a first preset threshold.
  • the processor 1002 is specifically configured to determine that the drone has failed if the first attitude angle is greater than the first preset threshold.
  • the preset flight state parameter information includes a preset first attitude angle and a second preset threshold.
  • the processor 1002 is specifically configured to determine a rate of change between the first attitude angle and the preset first attitude angle; the preset first attitude angle is an attitude angle of the drone in the normal takeoff mode; if the rate of change is greater than the second The preset threshold determines that the drone has failed.
  • the preset flight parameters include a first preset condition.
  • the processor 1002 is configured to: when the speed information meets the first preset condition, determine that the drone has a fault in the preset time period; and the speed information is obtained after the drone outputs the first pull force in the first time period.
  • the first preset condition is used to indicate that the speed of the drone is less than a third preset threshold.
  • the first speed information includes a first vertical acceleration and a first speed.
  • the value of the first pulling force is greater than the pulling force required by the drone in the hovering state.
  • the processor 1002 is configured to: if the current flight mode is the cruise mode, acquire the second parameter information corresponding to the drone in the cruise mode; the second parameter information includes the second attitude angle; and according to the second attitude angle And the preset flight state parameter information determines that the drone has failed.
  • the preset flight state parameter information includes a fourth preset threshold.
  • the processor 1002 is specifically configured to determine that the UAV fails if the second posture angle is greater than the fourth preset threshold.
  • the preset flight state parameter information includes a fifth preset threshold and a sixth preset threshold.
  • the processor 1002 is configured to acquire a duration of the UAV in a state corresponding to the second posture angle if the error of the second posture angle and the preset second posture angle is greater than a fifth preset threshold; wherein, the preset The second attitude angle is an attitude angle of the drone in the normal cruise mode; if the duration is greater than the sixth preset threshold, it is determined that the drone has failed.
  • the second parameter information further includes an acceleration.
  • the processor 1002 is specifically configured to determine that the UAV malfunctions according to the acceleration, the second attitude angle, and the preset flight state parameter information.
  • the preset flight state parameter information includes a fourth preset threshold and a seventh preset threshold.
  • the processor 1002 is configured to determine that the UAV is faulty if the acceleration is greater than a seventh preset threshold and the second posture angle is greater than a fourth preset threshold.
  • the preset flight state parameter information includes a fifth preset threshold, a sixth preset threshold, and a seventh preset threshold.
  • the processor 1002 is configured to acquire a state corresponding to the second attitude angle of the drone if the acceleration is greater than the seventh preset threshold, and the error of the second attitude angle and the preset second attitude angle is greater than the fifth preset threshold.
  • the second parameter information further includes a height.
  • the processor 1002 is specifically configured to determine that the UAV malfunctions according to the acceleration, the altitude, the second attitude angle, and the preset flight state parameter information.
  • the preset flight state parameter information includes a fourth preset threshold, a seventh preset threshold, and an eighth preset threshold.
  • the processor 1002 is configured to determine that the UAV is faulty if the acceleration is greater than the seventh preset threshold, the height is less than the eighth preset threshold, and the second posture angle is greater than the fourth preset threshold.
  • the preset flight state parameter information includes a fifth preset threshold, a sixth preset threshold, a seventh preset threshold, and an eighth preset threshold.
  • the processor 1002 is configured to acquire the drone if the acceleration is greater than the seventh preset threshold, the height is less than the eighth preset threshold, and the error of the second posture angle and the preset second posture angle is greater than the fifth preset threshold. a duration in a state corresponding to the second attitude angle; wherein the preset second attitude angle is an attitude angle of the drone in the normal cruise mode; if the duration is greater than the sixth preset threshold, determining that the drone occurs malfunction.
  • the fault detecting device 10 of the above-mentioned UAV can correspondingly implement the technical solution of the fault detecting method of the unmanned aerial vehicle of any of the embodiments, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, performs fault detection of the unmanned aerial vehicle shown in any embodiment. method.
  • the above-mentioned computer readable storage medium can correspondingly implement the technical solution of the fault detection method of the unmanned aerial vehicle of any of the embodiments, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the embodiment of the invention further provides a movable platform, which comprises a power device and a fault detecting device of the drone shown in any of the above embodiments.
  • the above-mentioned mobile platform can correspondingly implement the technical solution of the fault detection method of the unmanned aerial vehicle of any of the embodiments, and the implementation principle and technical effects thereof are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机的故障检测方法、装置及可移动平台,该方法包括:检测无人机的当前飞行状态参数信息(S101);根据所述当前飞行状态参数信息和预设飞行状态参数信息确定所述无人机发生故障(S102)。该方法根据当前飞行状态参数信息和预设飞行状态参数信息能够检测无人机的故障,从而提高无人机的安全性。

Description

无人机的故障检测方法、装置及可移动平台 技术领域
本发明涉及无人机技术领域,尤其涉及一种无人机的故障检测方法、装置及可移动平台。
背景技术
无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,在航拍、农业、灾难救援等领域应用甚广,因此,检测无人机是否存在故障,以确保无人机的安全是至关重要的。
以多旋翼无人机为例,在检测该多旋翼无人机是否存在故障时,是通过该多旋翼无人机中的电机电流反馈装置和电机转速反馈装置检测的,若电机电流增加、转速过低或过高,则确定该多旋翼无人机存在故障,从而关闭电机进行堵转保护,以提高该多旋翼无人机的安全性。
然而,电机电流反馈装置和电机转速反馈装置会增加成本,而且很多的多旋翼无人机的电机中并没有设置电机电流反馈装置和电机转速反馈装置,从而无法通过电机电流反馈装置和电机转速反馈装置检测多旋翼无人机是否存在故障,因此,对于这些多旋翼无人机而言,如何检测无人机的故障,以提高该多旋翼无人机的安全性,是本领域技术人员亟待解决的问题。
发明内容
本发明提供一种无人机的故障检测方法、装置及可移动平台,能够检测无人机的故障,从而提高无人机的安全性。
第一方面,本发明实施例提供一种无人机的故障检测方法,包括:
检测无人机的当前飞行状态参数信息;
根据所述当前飞行状态参数信息和预设飞行状态参数信息确定所述无人机发生故障。
第二方面,本发明实施例提供一种无人机的故障检测装置,包括:
传感器,用于检测无人机的当前飞行状态参数信息;
处理器,用于根据所述当前飞行状态参数信息和预设飞行状态参数信息确定所述无人机发生故障。
第三方面,本发明实施例提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,在所述计算机程序被处理器执行时,执行第一方面所述的无人机的故障检测方法。
第四方面,本发明实施例提供一种可移动平台,包括动力装置及上述第二方面所述的无人机的故障检测装置。
本发明实施例提供的无人机的故障检测方法、装置及可移动平台,通过检测无人机的飞行状态参数信息,并根据飞行状态参数信息和无人机的飞行模式确定无人机发生故障。由此可见,本发明实施例提供的无人机的故障检测方法、装置及可移动平台,是根据飞行状态参数信息和无人机的飞行模式确定无人机是否发生故障,在确定无人机发生故障后,关闭无人机的电机,以防止电机堵转,从而提高了无人机的安全性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种无人机的故障检测方法的示意图;
图2为本发明实施例提供的一种起飞模式下确定无人机是否发生故障的示意图;
图3为本发明实施例提供的另一种起飞模式下确定无人机是否发生故障的示意图;
图4为本发明实施例提供的一种巡航模式下确定无人机是否发生故障的示意图;
图5为本发明实施例提供的另一种巡航模式下确定无人机是否发生故障的示意图;
图6为本发明实施例提供的一种巡航模式下确定无人机是否发生故障的示意图;
图7为本发明实施例提供的另一种巡航模式下确定无人机是否发生故障的示意图;
图8为本发明实施例提供的一种巡航模式下确定无人机是否发生故障的示意图;
图9为本发明实施例提供的另一种巡航模式下确定无人机是否发生故障的示意图;
图10为本发明实施例提供的一种无人机的故障检测装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围,在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
本发明实施例提供的无人机的故障检测方法、装置及可移动平台,可以应用于无法通过电机电流反馈装置和电机转速反馈装置检测是否存在故障的无人机。例如,超小型的多旋翼无人机。在本发明实施例中,为了检测超小型的多旋翼无人机是否存在故障,通过检测无人机的当前飞行状态参数信息;使得可以根据当前飞行状态参数信息和预设飞行状态参数信息确定无人机发生故障,在确定故障时,可以关闭多旋翼无人机的电机,以防止电机堵转,从而提高了多旋翼无人机的安全性。需要说明的是,在检测多旋翼无人机是否存在故障时,该故障可以是起飞模式下存在的故障,也可以是巡航模式下存在的故障,对于不同飞行模式下的故障,其检测方式也不同。
图1是本发明实施例的一种无人机的故障检测方法的示意图,该无人机的故障检测方法可以由无人机的故障检测装置,该无人机的故障检测装 置可以独立设置,也可以集成在处理器中。请参见图1所示,该无人机的故障检测方法可以包括:
S101、检测无人机的当前飞行状态参数信息。
可选的,当前飞行状态信息可以包括当前姿态角或当前速度信息。
在检测无人机的当前飞行状态参数信息时,可以实时检测该无人机的当前飞机状态参数信息,当然,也可以间隔一个预设时长检测无人机的当前飞行状态参数信息。
S102、根据当前飞行状态参数信息和预设飞行状态参数信息确定无人机发生故障。
其中,预设飞行状态参数信息为无人机在正常状态下所允许的最大的飞行状态参数信息,即在该最大飞行状态参数信息范围以内,就认为无人机为正常飞行状态。
在分别确定当前飞行状态参数信息和预设飞行状态参数信息之后,就可以将当前飞行状态参数信息和正常状态下的飞行状态信息进行比较,从而确定无人机是否发生故障,并在确定该无人机发生故障时关闭无人机的电机,以防止电机堵转,从而提高了无人机的安全性。
可选的,S102根据当前飞行状态参数信息和预设飞行状态参数信息确定无人机发生故障,可以包括:
获取无人机的当前飞行模式;根据无人机的当前飞行模式下的飞行状态参数信息及预设飞行状态参数信息确定无人机发生故障。
其中,飞行模式包括起飞模式或巡航模式。
需要说明的是,在本发明实施例中,在根据无人机的当前飞行模式下的飞行状态参数信息及预设飞行状态参数信息确定无人机发生故障时,不同的飞行模式对应的飞行状态参数信息不同。示例的,若飞行模式为起飞模式,则对应的第一飞行状态信息可以为姿态角或速度信息;若飞行模式为巡航模式,则对应的第二飞行状态信息可以为姿态角。
本发明实施例提供的无人机的故障检测方法,通过检测无人机的飞行状态参数信息,并根据飞行状态参数信息和无人机的飞行模式确定无人机发生故障。由此可见,本发明实施例提供的无人机的故障检测方法,是根据飞行状态参数信息和无人机的飞行模式确定无人机是否发生故障,在确 定无人机发生故障后,关闭无人机的电机,以防止电机堵转,从而提高了无人机的安全性。
基于图1所示的实施例,在根据无人机的当前飞行模式下的飞行状态参数信息及预设飞行状态参数信息确定无人机是否发生故障时,由于不同飞行模式对应的飞机状态参数信息不同,则在不同飞行模式下,根据飞行状态参数信息和预设飞行状态参数信息确定无人机发生故障对应的方案也不同。在第一种场景下,当无人机的飞行模式为起飞模式时,第一飞行参数信息包括第一姿态角或速度信息,可以根据第一姿态角或速度信息,及预设飞行状态参数信息确定无人机是否发生故障。在第二种场景下,当无人机的飞行模式为巡航模式时,第二飞行参数信息包括第二姿态角可以根据第二姿态角及预设飞行状态参数信息确定无人机是否发生故障。
下面,将详细描述两种不同场景下,如何根据飞行模式和其对应的飞行状态参数信息确定无人机是否发生故障。
在第一种场景下,即在起飞模式下,根据第一姿态角或速度信息,及预设飞行参数信息确定无人机是否发生故障时,可以包括多种可能的实现方式:
在一种可能的实现方式中,可以根据第一姿态角及预设飞行参数信息判断无人机是否发生侧翻,若无人机发生侧翻,则确定无人机发生故障;具体请参见图2所示,图2为本发明实施例提供的一种起飞模式下确定无人机是否发生故障的示意图。在另一种可能的实现方式中,可以根据速度信息及预设飞行参数信息判断无人机是否被异物遮挡或覆盖,若无人机被异物遮挡或覆盖,则无人机无法正常起飞,从而确定无人机发生故障;具体请参见图3所示,图3为本发明实施例提供的另一种起飞模式下确定无人机是否发生故障的示意图。
具体的,在第一种可能的实现方式中,根据第一姿态角及预设飞行状态参数判断无人机是否发生故障时,请结合图2所示,该方法可以包括:
S201、获取无人机在起飞模式下对应的第一飞行状态参数信息。
其中,第一飞行状态参数信息包括第一姿态角。当第一飞行状态参数信息包括第一姿态角时,对应的预设飞行状态参数为第一预设阈值,该第一预设阈值即为无人机在正常起飞模式下所允许的最大姿态角。
S202、根据第一姿态角和第一预设阈值确定无人机发生故障。
需要说明的是,在确定第一预设阈值时,可以先确定无人机在正常状态下的姿态角随时间的变化曲线,及发生侧翻时的姿态角随时间的变化曲线,可以根据这两条变化曲线折中确定一个预设曲线,第一预设阈值即为该预设曲线上的任一点。对于第一预设阈值而言,在起飞模式下,不同时刻对应的第一预设阈值不同。例如,以起飞开始为t=0时刻,随着t的增加,当t为0.1秒时,在预设曲线上对应的第一预设阈值可以为10度,当t为0.2秒时,在预设曲线上对应的第一预设阈值可以为15度,其中,第一姿态角可以是俯仰角、横滚角、偏航角中的任意一个或者多个的组合。
在分别确定第一姿态角和第一预设阈值之后,就可以根据该第一姿态角和该第一预设阈值确定无人机是否发生故障。可选的,在本发明实施例中,在根据第一姿态角和第一预设阈值确定无人机是否发生故障时,可以通过多种可能的方式实现:
在一种实施方式下,若第一姿态角大于第一预设阈值,则确定无人机发生故障。
具体的,若某一时刻,无人机的第一姿态角大于该时刻对应的第一预设阈值,则说明此时无人机有发生侧翻的可能,此时,可以关闭电机,以防止电机堵转,从而提高了无人机的安全性。
在一种实施方式下,确定第一姿态角和预设第一姿态角之间的变化率;若变化率大于第二预设阈值,则确定无人机发生故障。
其中,预设第一姿态角为无人机在正常起飞模式下的姿态角。对于预设第一姿态角而言,不同时刻对应的预设姿态角也不同。例如,以起飞开始为t=0时刻,随着t的增加,当t为0.1秒时,预设第一姿态角可以为10度,当t为0.2秒时,预设第一姿态角可以为15度。
对于第二预设阈值,具体可以根据实际需要进行设置。示例的,在本发明实施例中,第二预设阈值可以为100度/秒、50度/秒等。
在方式2中,在确定某一时刻,无人机的第一姿态角和预设第一姿态角之后,可以先计算该第一姿态角和预设第一姿态角之间的变化率,若变化率大于第二预设阈值,则确定无人机有发生侧翻的可能,此时,可以关闭电机,以防止电机堵转,从而提高了无人机的安全性。
在详细描述了在第一种可能的实现方式中,如何根据第一姿态角及预设飞行状态参数判断无人机是否发生故障之后,下面,将详细描述在第二种可能的实现方式中,根据速度信息判断无人机是否发生故障时,请结合图3所示,该方法可以包括:
S301、获取无人机在起飞模式下对应的第一飞行状态参数信息。
其中,第一飞行状态参数信息包括速度信息,该速度信息是无人机在第一时间段内输出第一拉力后获取的,第一拉力的值大于无人机在悬停状态时所需的拉力。示例的,第一时间段可以为0.1秒。
可选的,第一速度信息包括第一垂直加速度和第一速度。当第一飞行状态参数信息包括第一垂直加速度和第一速度时,对应的预设飞行状态参数为第一预设条件,第一预设条件包括在正常起飞模式下,无人机在第一时间段内输出第一拉力后对应的加速度和速度。
示例的,在正常起飞模式下,无人机输出第一拉力后对应的加速度可以为2m/s 2,对应的速度可以为0.2m/s,当然,具体可以根据实际需要进行设置,在此,本发明实施例只是以加速度可以为2m/s 2和速度可以为0.2m/s为例进行说明,但并不代表本发明仅局限于此。
S302、在预设时间段内,若速度信息满足第一预设条件,则确定无人机发生故障。
为了判断无人机是否被异物遮挡或覆盖,可以在无人机起飞的初始阶段,在第一时间段内输出第一拉力,使得拉力从0%增加到一个较高的拉力水平(例如70%),此时,若无人机的第一垂直加速度大于2m/s 2,且速度大于为0.2m/s,说明无人机在向上加速飞行,则确定无人机没有被异物遮挡或覆盖,无人机处于正常起飞状态。若无人机的第一垂直加速度小于2m/s 2,或者速度小于为0.2m/s,又或者第一垂直加速度小于2m/s 2且速度小于为0.2m/s,说明无人机没有向上加速飞行(包括没有起飞和起飞速度不满足预设值),则确定该无人机被异物遮挡或覆盖,不能正常起飞,此时,可以关闭电机,以防止电机堵转,从而提高了无人机的安全性。
需要说明的是,预设时间段是指从加速度大于2m/s 2开始,以预设时长结束,在该预设时间段内判断第一垂直加速度和速度是否满足第一预设条件,以确定无人机是否存在故障。
上述图2和图3所示的实施例,详细地描述了无人机在起飞状态下,如何根据第一姿态角或速度信息,及预设飞行状态参数信息确定无人机是否发生故障,下面,将详细介绍在第二种场景下,即在巡航模式下,如何根据第二姿态角及预设飞行状态参数信息确定无人机是否发生故障。其中,第二姿态角可以是俯仰角、横滚角、偏航角中的任意一个或者多个的组合。可选的,在巡航模式下,根据第二姿态角及预设飞行状态参数信息确定无人机是否发生故障可以包括两种可能的实现方式中,请参见图4和图5所示,图4为本发明实施例提供的一种巡航模式下确定无人机是否发生故障的示意图,图5为本发明实施例提供的另一种巡航模式下确定无人机是否发生故障的示意图。
在第一种可能的实现方式中,请结合图4所示,该方法可以包括:
S401、获取无人机在巡航模式下对应的第二飞行状态参数信息。
其中,第二飞行状态参数参数信息包括第二姿态角。当第二飞行状态参数参数信息包括第二姿态角时,对应的预设飞行状态参数信息为第四预设阈值,该第四预设阈值即为无人机在正常巡航模式下所允许的最大姿态角。示例的,第四预设阈值可以为75度。
S402、若第二姿态角大于第四预设阈值,则确定无人机发生故障。
在分别确定第二姿态角和第四预设阈值之后,就可以根据该第二姿态角和第四预设阈值确定无人机是否发生故障,若第二姿态角大于第四预设阈值,则确定无人机发生故障,此时,可以关闭电机,以防止电机堵转,从而提高了无人机的安全性。
在第二种可能的实现方式中,请结合图5所示,该方法可以包括:
S501、获取无人机在巡航模式下对应的第二飞行状态参数信息。
其中,第二飞行状态参数信息包括第二姿态角。当第二飞行状态参数信息包括第二姿态角时,对应的预设飞行状态参数信息包括第五预设阈值和第六预设阈值,第五预设阈值即为无人机在正常巡航模式下的姿态角所允许的最大误差,第六预设阈值即为无人机在正常巡航模式下的第二姿态角状态下所允许的最大持续时间。示例的,在本发明实施例中,第五预设阈值可以为15度,第六预设阈值可以为3秒。
S502、若第二姿态角和预设第二姿态角的误差大于第五预设阈值,则 获取无人机在第二姿态角对应的状态下的持续时间。
其中,预设第二姿态角为无人机在正常巡航模式下的姿态角。
在分别确定第二姿态角和预设第二姿态角之后,就可以根据该第二姿态角和预设第二姿态角之间的误差,并将该误差和第五预设阈值进行比较,若误差大于第五预设阈值,则进一步确定无人机在该第二姿态角对应的状态下的持续时间。
S503、若持续时间大于第六预设阈值,则确定无人机发生故障。
若持续时间大于第六预设阈值,说明无人机在巡航过程中存在侧翻的可能,此时,可以关闭电机,以防止电机堵转,从而提高了无人机的安全性。
上述基于图4和图5所示的实施例,详细地描述了当飞行状态参数信息包括第二姿态角时,在巡航状态下,如何根据第二姿态角及预设飞行状态参数信息确定无人机是否发生故障,当然,该飞行状态参数信息还可以包括加速度,下面,将详细介绍在第二种场景下,即在巡航模式下,如何根据加速度、第二姿态角及预设飞行状态参数信息确定无人机是否发生故障。同样的,第二姿态角可以是俯仰角、横滚角、偏航角中的任意一个或者多个的组合。可选的,在巡航模式下,根据加速度、第二姿态角及预设飞行状态参数信息确定无人机是否发生故障可以包括两种可能的实现方式中,请参见图6和图7所示,图6为本发明实施例提供的一种巡航模式下确定无人机是否发生故障的示意图,图7为本发明实施例提供的另一种巡航模式下确定无人机是否发生故障的示意图。
在第一种可能的实现方式中,请结合图6所示,该方法可以包括:
S601、获取无人机在巡航模式下对应的第二飞行状态参数信息。
其中,第二飞行状态参数参数信息包括加速度和第二姿态角。当第二飞行状态参数参数信息包括加速度和第二姿态角时,对应的预设飞行状态参数信息为第四预设阈值和第七预设阈值,该第四预设阈值即为无人机在正常巡航模式下所允许的最大姿态角,第七预设阈值即为无人机在正常巡航模式下所允许的最大加速度。示例的,第四预设阈值可以为75度,第七预设阈值可以为6g。
S602、若加速度大于第七预设阈值,且第二姿态角大于第四预设阈值, 则确定无人机发生故障。
在分别确定加速度和第二姿态角之后,就可以根据该加速度和第二姿态角,及分别对应的第四预设阈值和第七预设阈值确定无人机是否发生故障,若加速度大于第七预设阈值,且第二姿态角大于第四预设阈值,则确定无人机发生故障,此时,可以关闭电机,以防止电机堵转,从而提高了无人机的安全性。
在第二种可能的实现方式中,请结合图7所示,该方法可以包括:
S701、获取无人机在巡航模式下对应的第二飞行状态参数信息。
其中,第二飞行状态参数信息包括加速度和第二姿态角。当第二飞行状态参数信息包括加速度和第二姿态角时,对应的预设飞行状态参数信息包括第五预设阈值、第六预设阈值及第七预设阈值,第五预设阈值即为无人机在正常巡航模式下的姿态角所允许的最大误差,第六预设阈值即为无人机在正常巡航模式下的第二姿态角状态下所允许的最大持续时间,第七预设阈值即为无人机在正常巡航模式下所允许的最大加速度。示例的,在本发明实施例中,第五预设阈值可以为15度,第六预设阈值可以为3秒,第七预设阈值可以为6g。
S702、若加速度大于第七预设阈值,且第二姿态角和预设第二姿态角的误差大于第五预设阈值,则获取无人机在第二姿态角对应的状态下的持续时间。
其中,预设第二姿态角为无人机在正常巡航模式下的姿态角。
在分别确定第二姿态角和预设第二姿态角之后,就可以根据该第二姿态角和预设第二姿态角之间的误差,并将该误差和第五预设阈值进行比较,若误差大于第五预设阈值,且加速度大于第七预设阈值,则进一步确定无人机在该第二姿态角对应的状态下的持续时间。
S703、若持续时间大于第六预设阈值,则确定无人机发生故障。
若持续时间大于第六预设阈值,说明无人机在巡航过程中存在侧翻的可能,此时,可以关闭电机,以防止电机堵转,从而提高了无人机的安全性。
上述基于图6-图7所示的实施例,详细地描述了当飞行状态参数信息包括加速度和第二姿态角时,在巡航状态下,如何根据加速度和第二姿态 角及预设飞行状态参数信息确定无人机是否发生故障,当然,该飞行状态参数信息还可以包括高度,下面,将详细介绍在第二种场景下,即在巡航模式下,如何根据加速度、高度、第二姿态角及预设飞行状态参数信息确定无人机是否发生故障。同样的,第二姿态角可以是俯仰角、横滚角、偏航角中的任意一个或者多个的组合,在巡航模式下,根据加速度、高度、第二姿态角及预设飞行状态参数信息确定无人机是否发生故障可以包括两种可能的实现方式中,请参见图8和图9所示,图8为本发明实施例提供的一种巡航模式下确定无人机是否发生故障的示意图,图9为本发明实施例提供的另一种巡航模式下确定无人机是否发生故障的示意图。
在第一种可能的实现方式中,请结合图8所示,该方法可以包括:
S801、获取无人机在巡航模式下对应的第二飞行状态参数信息。
其中,第二飞行状态参数参数信息包括加速度、高度和第二姿态角。当第二飞行状态参数参数信息包括加速度、高度和第二姿态角时,对应的预设飞行状态参数信息为第四预设阈值、第七预设阈值及第八预设阈值,该第四预设阈值即为无人机在正常巡航模式下所允许的最大姿态角,第七预设阈值即为无人机在正常巡航模式下所允许的最大加速度,第八预设阈值即为无人机在跌落时所允许的最大高度。示例的,第四预设阈值可以为75度,第七预设阈值可以为6g,第八预设阈值可以为6米。
S802、若加速度大于第七预设阈值,高度小于第八预设阈值,且第二姿态角大于第四预设阈值则确定无人机发生故障。
在分别确定加速度、高度及第二姿态角之后,就可以根据该加速度、高度、第二姿态角及分别对应的第四预设阈值、第七预设阈值和第八预设阈值确定无人机是否发生故障,若加速度大于第七预设阈值,高度小于第八预设阈值,且第二姿态角大于第四预设阈值,则确定无人机发生故障,此时,可以关闭电机,以防止电机堵转,从而提高了无人机的安全性。
在第二种可能的实现方式中,请结合图9所示,该方法可以包括:
S901、获取无人机在巡航模式下对应的第二飞行状态参数信息。
其中,第二飞行状态参数信息包括加速度、高度及第二姿态角。当第二飞行状态参数信息包括加速度、高度和第二姿态角时,对应的预设飞行状态参数信息包括第五预设阈值、第六预设阈值、第七预设阈值及第八预 设阈值,第五预设阈值即为无人机在正常巡航模式下的姿态角所允许的最大误差,第六预设阈值即为无人机在正常巡航模式下的第二姿态角状态下所允许的最大持续时间,第七预设阈值即为无人机在正常巡航模式下所允许的最大加速度,第八预设阈值即为无人机在跌落时所允许的最大高度。示例的,在本发明实施例中,第五预设阈值可以为15度,第六预设阈值可以为3秒,第七预设阈值可以为6g,第八预设阈值可以为6米。
S902、若加速度大于第七预设阈值,高度小于第八预设阈值,且第二姿态角和预设第二姿态角的误差大于第五预设阈值,则获取无人机在第二姿态角对应的状态下的持续时间。
其中,预设第二姿态角为无人机在正常巡航模式下的姿态角。
在分别确定第二姿态角、高度及预设第二姿态角之后,就可以根据该第二姿态角和预设第二姿态角之间的误差,并将该误差和第五预设阈值进行比较,若误差大于第五预设阈值,加速度大于第七预设阈值,且高度小于第八预设阈值,则进一步确定无人机在该第二姿态角对应的状态下的持续时间。
S903、若持续时间大于第六预设阈值,则确定无人机发生故障。
若持续时间大于第六预设阈值,说明无人机在巡航过程中存在侧翻的可能,此时,可以关闭电机,以防止电机堵转,从而提高了无人机的安全性。
需要说明的是,在本发明实施例中,在巡航模式下,第二飞行状态参数也可以只包括高度和第二姿态角,即可以根据高度和第二姿态角确定无人机在巡航模式下是否发生故障,其具体实现方式可参数图8-图9所示的实施例,在此,本发明实施例不再进行赘述。
图10为本发明实施例提供的一种无人机的故障检测装置10的结构示意图,请参见图10所示,该无人机的故障检测装置10可以包括:
传感器1001,用于检测无人机的当前飞行状态参数信息。
处理器1002,用于根据当前飞行状态参数信息和预设飞行状态参数信息确定无人机发生故障。
可选的,传感器1001,还用于获取无人机的当前飞行模式;其中,飞行模式包括起飞模式或巡航模式。
处理器1002,具体用于根据无人机的当前飞行模式下的飞行状态参数信息及预设飞行状态参数信息确定无人机发生故障。
可选的,飞行状态参数信息包括姿态角或速度信息。
可选的,处理器1002,具体用于若当前飞行模式为起飞模式,获取无人机在起飞模式下对应的第一飞行状态参数信息;第一飞行状态参数信息包括第一姿态角或速度信息;并根据第一姿态角或速度信息,及预设飞行状态参数信息确定无人机发生故障。
可选的,预设飞行状态参数信息包括第一预设阈值。
处理器1002,具体用于若第一姿态角大于第一预设阈值,则确定无人机发生故障。
可选的,预设飞行状态参数信息包括预设第一姿态角和第二预设阈值。
处理器1002,具体用于确定第一姿态角和预设第一姿态角之间的变化率;预设第一姿态角为无人机在正常起飞模式下的姿态角;若变化率大于第二预设阈值,则确定无人机发生故障。
可选的,预设飞行参数包括第一预设条件。
处理器1002,具体用于在预设时间段内,若速度信息满足第一预设条件,则确定无人机发生故障;速度信息是无人机在第一时间段内输出第一拉力后获取的;第一预设条件用于指示无人机的速度小于第三预设阈值。
可选的,第一速度信息包括第一垂直加速度和第一速度。
可选的,第一拉力的值大于无人机在悬停状态时所需的拉力。
可选的,处理器1002,具体用于若当前飞行模式为巡航模式,获取无人机在巡航模式下对应的第二参数信息;第二参数信息包括第二姿态角;并根据第二姿态角及预设飞行状态参数信息确定无人机发生故障。
可选的,预设飞行状态参数信息包括第四预设阈值。
处理器1002,具体用于若第二姿态角大于第四预设阈值,则确定无人机发生故障。
可选的,预设飞行状态参数信息包括第五预设阈值和第六预设阈值。
处理器1002,具体用于若第二姿态角和预设第二姿态角的误差大于第五预设阈值,则获取无人机在第二姿态角对应的状态下的持续时间;其中, 预设第二姿态角为无人机在正常巡航模式下的姿态角;若持续时间大于第六预设阈值,则确定无人机发生故障。
可选的,第二参数信息还包括加速度。
处理器1002,具体用于根据加速度、第二姿态角及预设飞行状态参数信息确定无人机发生故障。
可选的,预设飞行状态参数信息包括第四预设阈值和第七预设阈值。
处理器1002,具体用于若加速度大于第七预设阈值,且第二姿态角大于第四预设阈值,则确定无人机发生故障。
可选的,预设飞行状态参数信息包括第五预设阈值、第六预设阈值及第七预设阈值。
处理器1002,具体用于若加速度大于第七预设阈值,且第二姿态角和预设第二姿态角的误差大于第五预设阈值,则获取无人机在第二姿态角对应的状态下的持续时间;其中,预设第二姿态角为无人机在正常巡航模式下的姿态角;若持续时间大于第六预设阈值,则确定无人机发生故障。
可选的,第二参数信息还包括高度。
处理器1002,具体用于根据加速度、高度、第二姿态角及预设飞行状态参数信息确定无人机发生故障。
可选的,预设飞行状态参数信息包括第四预设阈值、第七预设阈值及第八预设阈值。
处理器1002,具体用于若加速度大于第七预设阈值,高度小于第八预设阈值,且第二姿态角大于第四预设阈值则确定无人机发生故障。
可选的,预设飞行状态参数信息包括第五预设阈值、第六预设阈值、第七预设阈值及第八预设阈值。
处理器1002,具体用于若加速度大于第七预设阈值,高度小于第八预设阈值,且第二姿态角和预设第二姿态角的误差大于第五预设阈值,则获取无人机在第二姿态角对应的状态下的持续时间;其中,预设第二姿态角为无人机在正常巡航模式下的姿态角;若持续时间大于第六预设阈值,则确定无人机发生故障。
上述无人机的故障检测装置10,对应地可执行任一实施例的无人机的故障检测方法的技术方案,其实现原理和技术效果类似,在此不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,在所述计算机程序被处理器执行时,执行任一实施例所示的无人机的故障检测方法。
上述计算机可读存储介质,对应地可执行任一实施例的无人机的故障检测方法的技术方案,其实现原理和技术效果类似,在此不再赘述。
本发明实施例还提供一种可移动平台,该可移动平台包括动力装置及上述任一实施例所示的无人机的故障检测装置。
上述可移动平台,对应地可执行任一实施例的无人机的故障检测方法的技术方案,其实现原理和技术效果类似,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (38)

  1. 一种无人机的故障检测方法,其特征在于,包括:
    检测无人机的当前飞行状态参数信息;
    根据所述当前飞行状态参数信息和预设飞行状态参数信息确定所述无人机发生故障。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述当前飞行状态参数信息和预设飞行状态参数信息确定所述无人机发生故障,包括:
    获取所述无人机的当前飞行模式;其中,所述飞行模式包括起飞模式或巡航模式;
    根据所述无人机的当前飞行模式下的飞行状态参数信息及预设飞行状态参数信息确定所述无人机发生故障。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述飞行状态参数信息包括姿态角或速度信息。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述无人机的当前飞行模式下的飞行状态参数信息及预设飞行状态参数信息确定所述无人机发生故障,包括:
    若所述当前飞行模式为起飞模式,获取所述无人机在起飞模式下对应的第一飞行状态参数信息;所述第一飞行状态参数信息包括第一姿态角或速度信息;
    根据所述第一姿态角或所述速度信息,及所述预设飞行状态参数信息确定所述无人机发生故障。
  5. 根据权利要求4所述的方法,其特征在于,所述预设飞行状态参数信息包括第一预设阈值,根据所述第一姿态角及所述预设飞行状态参数信息确定所述无人机发生故障,包括:
    若所述第一姿态角大于所述第一预设阈值,则确定所述无人机发生故障。
  6. 根据权利要求4所述的方法,其特征在于,所述预设飞行状态参数信息包括预设第一姿态角和第二预设阈值,根据所述第一姿态角及所述预设飞行状态参数信息确定所述无人机发生故障,包括:
    确定所述第一姿态角和所述预设第一姿态角之间的变化率;所述预设第一姿态角为所述无人机在正常起飞模式下的姿态角;
    若所述变化率大于所述第二预设阈值,则确定所述无人机发生故障。
  7. 根据权利要求4所述的方法,其特征在于,所述预设飞行参数包括第一预设条件,根据所述速度信息及所述预设飞行状态参数信息确定所述无人机发生故障,包括:
    在预设时间段内,若所述速度信息满足所述第一预设条件,则确定所述无人机发生故障;所述速度信息是所述无人机在第一时间段内输出第一拉力后获取的;所述第一预设条件用于指示所述无人机的速度小于第三预设阈值。
  8. 根据权利要求7所述的方法,其特征在于,所述第一速度信息包括第一垂直加速度和第一速度。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一拉力的值大于所述无人机在悬停状态时所需的拉力。
  10. 根据权利要求2所述的方法,其特征在于,所述根据所述无人机的当前飞行模式下的飞行状态参数信息及预设飞行状态参数信息确定所述无人机发生故障,包括:
    若所述当前飞行模式为巡航模式,获取所述无人机在巡航模式下对应的第二参数信息;所述第二参数信息包括第二姿态角;
    根据所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障。
  11. 根据权利要求10所述的方法,其特征在于,所述预设飞行状态参数信息包括第四预设阈值,所述根据所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障,包括:
    若所述第二姿态角大于所述第四预设阈值,则确定所述无人机发生故障。
  12. 根据权利要求10所述的方法,其特征在于,所述预设飞行状态参数信息包括第五预设阈值和第六预设阈值,所述根据所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障,包括:
    若所述第二姿态角和预设第二姿态角的误差大于所述第五预设阈值, 则获取所述无人机在所述第二姿态角对应的状态下的持续时间;其中,所述预设第二姿态角为所述无人机在正常巡航模式下的姿态角;
    若所述持续时间大于所述第六预设阈值,则确定所述无人机发生故障。
  13. 根据权利要求10所述的方法,其特征在于,所述第二参数信息还包括加速度,所述根据所述无人机的当前飞行模式下的飞行状态参数信息及预设飞行状态参数信息确定所述无人机发生故障,包括:
    根据所述加速度、所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障。
  14. 根据权利要求13所述的方法,其特征在于,所述预设飞行状态参数信息包括第四预设阈值和第七预设阈值,所述根据所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障,包括:
    若所述加速度大于所述第七预设阈值,且所述第二姿态角大于所述第四预设阈值,则确定所述无人机发生故障。
  15. 根据权利要求13所述的方法,其特征在于,所述预设飞行状态参数信息包括第五预设阈值、第六预设阈值及第七预设阈值,所述根据所述加速度、所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障,包括:
    若所述加速度大于所述第七预设阈值,且所述第二姿态角和预设第二姿态角的误差大于所述第五预设阈值,则获取所述无人机在所述第二姿态角对应的状态下的持续时间;其中,所述预设第二姿态角为所述无人机在正常巡航模式下的姿态角;
    若所述持续时间大于所述第六预设阈值,则确定所述无人机发生故障。
  16. 根据权利要求13所述的方法,其特征在于,所述第二参数信息还包括高度,所述根据所述加速度、所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障,包括:
    根据所述加速度、所述高度、所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障。
  17. 根据权利要求16所述的方法,其特征在于,所述预设飞行状态 参数信息包括第四预设阈值、第七预设阈值及第八预设阈值,所述根据所述加速度、所述高度、所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障,包括:
    若所述加速度大于所述第七预设阈值,所述高度小于所述第八预设阈值,且所述第二姿态角大于所述第四预设阈值则确定所述无人机发生故障。
  18. 根据权利要求16所述的方法,其特征在于,所述预设飞行状态参数信息包括第五预设阈值、第六预设阈值、第七预设阈值及第八预设阈值,所述根据所述加速度、所述高度、所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障,包括:
    若所述加速度大于所述第七预设阈值,所述高度小于所述第八预设阈值,且所述第二姿态角和预设第二姿态角的误差大于所述第五预设阈值,则获取所述无人机在所述第二姿态角对应的状态下的持续时间;其中,所述预设第二姿态角为所述无人机在正常巡航模式下的姿态角;
    若所述持续时间大于所述第六预设阈值,则确定所述无人机发生故障。
  19. 一种无人机的故障检测装置,其特征在于,包括:
    传感器,用于检测无人机的当前飞行状态参数信息;
    处理器,用于根据所述当前飞行状态参数信息和预设飞行状态参数信息确定所述无人机发生故障。
  20. 根据权利要求19所述的装置,其特征在于,
    所述传感器,还用于获取所述无人机的当前飞行模式;其中,所述飞行模式包括起飞模式或巡航模式;
    所述处理器,具体用于根据所述无人机的当前飞行模式下的飞行状态参数信息及预设飞行状态参数信息确定所述无人机发生故障。
  21. 根据权利要求19或20所述的装置,其特征在于,
    所述飞行状态参数信息包括姿态角或速度信息。
  22. 根据权利要求20所述的装置,其特征在于,
    所述处理器,具体用于若所述当前飞行模式为起飞模式,获取所述无人机在起飞模式下对应的第一飞行状态参数信息;所述第一飞行状态参数 信息包括第一姿态角或速度信息;并根据所述第一姿态角或所述速度信息,及所述预设飞行状态参数信息确定所述无人机发生故障。
  23. 根据权利要求22所述的装置,其特征在于,所述预设飞行状态参数信息包括第一预设阈值;
    所述处理器,具体用于若所述第一姿态角大于所述第一预设阈值,则确定所述无人机发生故障。
  24. 根据权利要求22所述的装置,其特征在于,所述预设飞行状态参数信息包括预设第一姿态角和第二预设阈值;
    所述处理器,具体用于确定所述第一姿态角和所述预设第一姿态角之间的变化率;所述预设第一姿态角为所述无人机在正常起飞模式下的姿态角;若所述变化率大于所述第二预设阈值,则确定所述无人机发生故障。
  25. 根据权利要求22所述的装置,其特征在于,所述预设飞行参数包括第一预设条件;
    所述处理器,具体用于在预设时间段内,若所述速度信息满足所述第一预设条件,则确定所述无人机发生故障;所述速度信息是所述无人机在第一时间段内输出第一拉力后获取的;所述第一预设条件用于指示所述无人机的速度小于第三预设阈值。
  26. 根据权利要求25所述的装置,其特征在于,所述第一速度信息包括第一垂直加速度和第一速度。
  27. 根据权利要求25或26所述的装置,其特征在于,所述第一拉力的值大于所述无人机在悬停状态时所需的拉力。
  28. 根据权利要求20所述的装置,其特征在于,
    所述处理器,具体用于若所述当前飞行模式为巡航模式,获取所述无人机在巡航模式下对应的第二参数信息;所述第二参数信息包括第二姿态角;并根据所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障。
  29. 根据权利要求28所述的装置,其特征在于,所述预设飞行状态参数信息包括第四预设阈值;
    所述处理器,具体用于若所述第二姿态角大于所述第四预设阈值,则确定所述无人机发生故障。
  30. 根据权利要求28所述的装置,其特征在于,所述预设飞行状态参数信息包括第五预设阈值和第六预设阈值;
    所述处理器,具体用于若所述第二姿态角和预设第二姿态角的误差大于所述第五预设阈值,则获取所述无人机在所述第二姿态角对应的状态下的持续时间;其中,所述预设第二姿态角为所述无人机在正常巡航模式下的姿态角;若所述持续时间大于所述第六预设阈值,则确定所述无人机发生故障。
  31. 根据权利要求28所述的装置,其特征在于,所述第二参数信息还包括加速度;
    所述处理器,具体用于根据所述加速度、所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障。
  32. 根据权利要求31所述的装置,其特征在于,所述预设飞行状态参数信息包括第四预设阈值和第七预设阈值;
    所述处理器,具体用于若所述加速度大于所述第七预设阈值,且所述第二姿态角大于所述第四预设阈值,则确定所述无人机发生故障。
  33. 根据权利要求31所述的装置,其特征在于,所述预设飞行状态参数信息包括第五预设阈值、第六预设阈值及第七预设阈值;
    所述处理器,具体用于若所述加速度大于所述第七预设阈值,且所述第二姿态角和预设第二姿态角的误差大于所述第五预设阈值,则获取所述无人机在所述第二姿态角对应的状态下的持续时间;其中,所述预设第二姿态角为所述无人机在正常巡航模式下的姿态角;若所述持续时间大于所述第六预设阈值,则确定所述无人机发生故障。
  34. 根据权利要求31所述的装置,其特征在于,所述第二参数信息还包括高度;
    所述处理器,具体用于根据所述加速度、所述高度、所述第二姿态角及所述预设飞行状态参数信息确定所述无人机发生故障。
  35. 根据权利要求34所述的装置,其特征在于,所述预设飞行状态参数信息包括第四预设阈值、第七预设阈值及第八预设阈值;
    所述处理器,具体用于若所述加速度大于所述第七预设阈值,所述高度小于所述第八预设阈值,且所述第二姿态角大于所述第四预设阈值则确 定所述无人机发生故障。
  36. 根据权利要求34所述的装置,其特征在于,所述预设飞行状态参数信息包括第五预设阈值、第六预设阈值、第七预设阈值及第八预设阈值;
    所述处理器,具体用于若所述加速度大于所述第七预设阈值,所述高度小于所述第八预设阈值,且所述第二姿态角和预设第二姿态角的误差大于所述第五预设阈值,则获取所述无人机在所述第二姿态角对应的状态下的持续时间;其中,所述预设第二姿态角为所述无人机在正常巡航模式下的姿态角;若所述持续时间大于所述第六预设阈值,则确定所述无人机发生故障。
  37. 一种计算机可读存储介质,其特征在于,
    计算机可读存储介质上存储有计算机程序,在所述计算机程序被处理器执行时,执行权利要求1~18任一项所述的无人机的故障检测方法。
  38. 一种可移动平台,其特征在于,包括动力装置及上述权利要求19~36任一项所述的无人机的故障检测装置。
PCT/CN2018/071678 2018-01-05 2018-01-05 无人机的故障检测方法、装置及可移动平台 WO2019134150A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880031266.9A CN110612252A (zh) 2018-01-05 2018-01-05 无人机的故障检测方法、装置及可移动平台
PCT/CN2018/071678 WO2019134150A1 (zh) 2018-01-05 2018-01-05 无人机的故障检测方法、装置及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071678 WO2019134150A1 (zh) 2018-01-05 2018-01-05 无人机的故障检测方法、装置及可移动平台

Publications (1)

Publication Number Publication Date
WO2019134150A1 true WO2019134150A1 (zh) 2019-07-11

Family

ID=67144089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071678 WO2019134150A1 (zh) 2018-01-05 2018-01-05 无人机的故障检测方法、装置及可移动平台

Country Status (2)

Country Link
CN (1) CN110612252A (zh)
WO (1) WO2019134150A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112298602A (zh) * 2020-10-28 2021-02-02 广州极飞科技有限公司 无人机的故障检测方法、装置、设备及存储介质
CN112947509A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112937888A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112947353A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112937887A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 无人驾驶设备的故障原因的确定方法及装置
CN112947538A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 无人机的故障检测方法及装置
CN112947352A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112937886A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 无人机的故障检测方法及装置
CN112945592A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 故障原因确定方法及装置
CN112947352B (zh) * 2019-12-10 2024-06-07 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649973A (zh) * 2020-07-22 2020-09-11 北京星际荣耀空间科技有限公司 一种火箭故障检测方法、装置及火箭
CN113496559A (zh) * 2021-06-29 2021-10-12 广州极飞科技股份有限公司 无人设备数据获取方法、装置、系统、无人设备及存储介质
CN113514109A (zh) * 2021-08-18 2021-10-19 广东新创华科环保股份有限公司 一种无人机飞行故障检测方法和系统
CN113968348B (zh) * 2021-11-03 2022-11-25 西安羚控电子科技有限公司 一种无人机伺服作动系统的故障处理方法及装置
CN114348264B (zh) * 2022-01-29 2022-08-02 国家海洋环境预报中心 一种基于海洋环境的无人机搜救方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754358A (zh) * 2014-01-10 2014-04-30 深圳市大疆创新科技有限公司 一种无人飞行器的起落架控制方法及装置
JP2016084120A (ja) * 2014-10-23 2016-05-19 鈴木 淳史 回転翼無人機
CN105607516A (zh) * 2016-01-07 2016-05-25 谭圆圆 一种飞行监控装置及飞行状态监控方法
CN105974222A (zh) * 2016-04-27 2016-09-28 乐视控股(北京)有限公司 一种无人机故障检测的方法、装置和系统
CN107074351A (zh) * 2016-09-30 2017-08-18 深圳市大疆创新科技有限公司 无人机的控制方法、装置及无人飞行器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517666B (zh) * 2014-09-05 2019-08-27 深圳市大疆创新科技有限公司 基于情景的飞行模式选择
CN204178240U (zh) * 2014-11-17 2015-02-25 湖南基石信息技术有限公司 无人机飞行控制系统
CN107340764B (zh) * 2017-06-08 2018-11-06 腾讯科技(深圳)有限公司 无人机的异常处理方法、装置、存储介质及无人机终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754358A (zh) * 2014-01-10 2014-04-30 深圳市大疆创新科技有限公司 一种无人飞行器的起落架控制方法及装置
JP2016084120A (ja) * 2014-10-23 2016-05-19 鈴木 淳史 回転翼無人機
CN105607516A (zh) * 2016-01-07 2016-05-25 谭圆圆 一种飞行监控装置及飞行状态监控方法
CN105974222A (zh) * 2016-04-27 2016-09-28 乐视控股(北京)有限公司 一种无人机故障检测的方法、装置和系统
CN107074351A (zh) * 2016-09-30 2017-08-18 深圳市大疆创新科技有限公司 无人机的控制方法、装置及无人飞行器

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945592A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 故障原因确定方法及装置
CN112937888B (zh) * 2019-12-10 2022-12-27 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112937888A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112947353A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112947352B (zh) * 2019-12-10 2024-06-07 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112947538A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 无人机的故障检测方法及装置
CN112947509A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112947352A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112937887A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 无人驾驶设备的故障原因的确定方法及装置
CN112947353B (zh) * 2019-12-10 2022-06-21 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112937886A (zh) * 2019-12-10 2021-06-11 广州极飞科技股份有限公司 无人机的故障检测方法及装置
CN112937886B (zh) * 2019-12-10 2023-05-02 广州极飞科技股份有限公司 无人机的故障检测方法及装置
CN112945592B (zh) * 2019-12-10 2023-11-21 广州极飞科技股份有限公司 故障原因确定方法及装置
CN112947538B (zh) * 2019-12-10 2024-04-12 广州极飞科技股份有限公司 无人机的故障检测方法及装置
CN112947509B (zh) * 2019-12-10 2024-04-12 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN112298602A (zh) * 2020-10-28 2021-02-02 广州极飞科技有限公司 无人机的故障检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN110612252A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2019134150A1 (zh) 无人机的故障检测方法、装置及可移动平台
US11919637B2 (en) Automatic return method, apparatus and unmanned aerial vehicle
US10156854B2 (en) UAV and UAV landing control device and method
US9783286B1 (en) Method and an apparatus for controlling a UAV, and a UAV take-off system
US20160347469A1 (en) Aircraft Recovery Control
US20170152033A1 (en) Mutirotor aircraft control systems
CN108089596B (zh) 一种飞行器控制方法、装置及飞行器
WO2018058672A1 (zh) 无人机的控制方法、装置及无人飞行器
US20230245576A1 (en) Predictive aircraft flight envelope protection system
US10817000B2 (en) Unmanned aerial vehicle and control method of unmanned aerial vehicle
CN105517893B (zh) 异常飞机响应监视器
US20220139230A1 (en) Aircraft control system with residual error containment
EP3828661A1 (en) Gimbal and unmanned aerial vehicle control method, gimbal, and unmanned aerial vehicle
WO2018170738A1 (zh) 控制方法和无人机
WO2023025200A1 (zh) 一种无人机迫降控制方法及装置、遥控装置和存储介质
JP7246192B2 (ja) 特定の飛行状態を支援するために航空機の複数のエンジンによって生成される推力を制御するための方法及びシステム
CN104699105A (zh) 一种六旋翼飞行器的容错控制方法
JP2019505902A (ja) 自動航空機システム操作用システム及び方法
US11807364B2 (en) Method and device for determining abnormally mounted propeller in unmanned aerial vehicle (UAV)
US10246183B1 (en) Propeller impact detection and force reduction
WO2021134428A1 (zh) 无人机降落控制方法、装置、无人机基站及无人机系统
EP3602078B1 (en) Method and system for determining an estimation of an anemometric parameter in an aircraft
EP3627272A1 (en) Aircraft anti-spin systems
WO2018103192A1 (zh) 一种无人机姿态保持方法及装置
KR101621461B1 (ko) 쿼드 로터 자세 제어 시스템 및 그의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898357

Country of ref document: EP

Kind code of ref document: A1