WO2021134428A1 - 无人机降落控制方法、装置、无人机基站及无人机系统 - Google Patents

无人机降落控制方法、装置、无人机基站及无人机系统 Download PDF

Info

Publication number
WO2021134428A1
WO2021134428A1 PCT/CN2019/130384 CN2019130384W WO2021134428A1 WO 2021134428 A1 WO2021134428 A1 WO 2021134428A1 CN 2019130384 W CN2019130384 W CN 2019130384W WO 2021134428 A1 WO2021134428 A1 WO 2021134428A1
Authority
WO
WIPO (PCT)
Prior art keywords
landing platform
drone
landing
pose information
information
Prior art date
Application number
PCT/CN2019/130384
Other languages
English (en)
French (fr)
Inventor
赵阳
王昊
宾朋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/130384 priority Critical patent/WO2021134428A1/zh
Priority to CN201980052716.7A priority patent/CN112567307A/zh
Publication of WO2021134428A1 publication Critical patent/WO2021134428A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the embodiments of the present invention relate to the technical field of unmanned aerial vehicles, and in particular to an unmanned aerial vehicle landing control method and device, an unmanned aerial vehicle base station, and an unmanned aerial vehicle system.
  • net bag recovery method Another method of landing in the traditional technology is: net bag recovery method, which often requires the drone to cut off the power in the air to achieve. This will make it impossible for the drone to take off quickly for the second time, and will easily cause damage to the blades and motors and the risk of individual entanglement.
  • the embodiments of the present invention provide a drone landing control method, device, drone base station, and drone system to solve the problem in the prior art that the drone is likely to roll over and cause the drone to fail to land; or, it is easy to make The blades and motors are prone to damage and individual entanglement risks.
  • the first aspect of the embodiments of the present invention provides a drone landing control method, including:
  • the first posture information of the UAV, the second posture information of the base and the third posture information of the landing platform are acquired, wherein the landing platform is set on the On the base, the landing platform is used to receive the landing drone;
  • the pose of the landing platform is adjusted according to the target pose information, so that the UAV can land on the landing platform.
  • a drone landing control device including:
  • Memory used to store computer programs
  • the processor is configured to run a computer program stored in the memory to realize:
  • the first posture information of the UAV, the second posture information of the base and the third posture information of the landing platform are acquired, wherein the landing platform is set on the On the base, the landing platform is used to receive the landing drone;
  • the pose of the landing platform is adjusted according to the target pose information, so that the UAV can land on the landing platform.
  • a computer-readable storage medium is provided.
  • the storage medium is a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions, and the program instructions are used to implement the above The drone landing control method described in the first aspect.
  • a control terminal including the drone landing control device described in the second aspect.
  • an unmanned aerial vehicle including the drone landing control device described in the above-mentioned second aspect.
  • a sixth aspect of the embodiments of the present invention provides a drone base station, including the drone landing control device described in the second aspect.
  • the drone when the drone is performing a landing operation, by acquiring the first pose information of the drone, the second pose information of the base, and the third pose information of the landing platform, The target pose information of the landing platform is determined according to the first pose information, the second pose information, and the third pose information, and then the pose of the landing platform can be adjusted according to the target pose information It effectively realizes that the drone can land on the landing platform smoothly.
  • the realization process of this method is highly reliable, low in control costs, and has a wide range of applications. It can be applied to various application scenarios under complex conditions, thus being effective This improves the practicality of the method.
  • a drone base station including:
  • a landing platform which is set on the base and is used to receive the landing drone
  • the first inertial measurement unit is arranged on the base and is used to obtain the pose information of the base;
  • the second inertial measurement unit is arranged on the landing platform and is used to obtain the posture information of the landing platform;
  • the driving device is arranged on the base and used to obtain a control signal, and adjust the posture of the landing platform based on the control signal.
  • a seventh aspect of the embodiments of the present invention provides an unmanned aerial vehicle system, including an unmanned aerial vehicle and the unmanned aerial vehicle base station described in the sixth aspect.
  • An eighth aspect of the embodiments of the present invention provides an unmanned aerial vehicle system, including an unmanned aerial vehicle and the unmanned aerial vehicle base station described in the second aspect described above.
  • the technical solution provided by the embodiment of the present invention uses a landing platform set on a base and then a driving device set on the base to adjust the posture of the landing platform, thereby effectively realizing the operation of the drone.
  • the position of the landing platform can be adjusted in real time according to the landing attitude of the drone, so that the attitude of the landing platform can be actively controlled to be consistent with the landing attitude of the drone, ensuring that the drone can be stable and safe
  • the ground landed on the landing platform thereby improving the safety and reliability of the UAV base station.
  • FIG. 1 is a schematic diagram of a scene of a drone landing control method provided by an embodiment of the present invention
  • FIG. 2 is a first flowchart of a method for controlling drone landing according to an embodiment of the present invention
  • FIG. 3 is a second schematic flowchart of a method for controlling landing of a drone according to an embodiment of the present invention
  • FIG. 4 is a third flowchart of a method for controlling drone landing according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the process of determining the target pose information of the landing platform according to the first pose information, the second pose information, and the third pose information provided in FIG. 2;
  • Fig. 6 is a schematic flow chart of adjusting the pose of the landing platform according to the target pose information provided in Fig. 2;
  • Fig. 7 is a schematic diagram of generating a control signal according to the target pose information provided in Fig. 6;
  • Figure 8 is a schematic structural diagram of a drone landing control device provided by an embodiment of the present invention.
  • Figure 9 is a perspective view of the structure of an unmanned aerial vehicle base station provided by an embodiment of the present invention.
  • Figure 10 is a perspective view of the structure of the base provided in Figure 9;
  • FIG. 11 is a schematic structural diagram of a drone landing on a drone base station according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an unmanned aerial vehicle system provided by an embodiment of the present invention.
  • the first inertial measurement unit 904. The second inertial measurement unit;
  • Data processing module 1001, drone;
  • connection herein includes any direct and indirect means of connection. Therefore, if it is described in the text that a first device is connected to a second device, it means that the first device can be directly connected to the second device, or indirectly connected to the second device through other devices.
  • UAVs As UAVs become more widely used, there are more and more types of UAVs.
  • UAVs can include rotary-wing UAVs, vertical take-off and landing UAVs and composite UAVs; among them, Rotor-wing UAV has the characteristics of good stability, strong anti-interference ability, active hovering, and relatively low requirements for take-off and landing conditions. Therefore, it has achieved relatively rapid development in the civil and military fields. application.
  • the application scenario includes a control terminal 101 and a drone.
  • the man-machine 102 and the landing platform 103 wherein the control terminal 101 is used to control the drone 102, and the landing platform 103 is used to receive the landing drone 102. It is understandable that the landing platform 103 can be used in different application scenarios.
  • the landing platform 103 can be a platform in any of the following application scenarios: ships, ocean platforms, cars, trains and other sports platforms, and the landing platform 103 can also be equipped with a power supply device, for example: the landing platform 103 can be configured There is a corresponding external power supply or solar power supply device, etc. to realize the adjustment of the posture information of the landing platform 103.
  • this embodiment provides a drone landing control method, which can achieve: when the drone 102 is performing a landing operation, the first attitude information of the drone 102 and the position of the base are obtained.
  • the second pose information and the third pose information of the landing platform 103 where the landing platform 103 can be set on the base, and the landing platform 103 is used to receive the landing drone 102; according to the first pose information, the second The pose information and the third pose information determine the target pose information of the landing platform 103; after obtaining the target pose information of the landing platform 103, the pose information of the landing platform 103 can be adjusted according to the target pose information, so that The drone 102 can land on the landing platform 103 stably.
  • the aforementioned pose information may include position information and attitude information.
  • the first pose information of the drone may indicate the position information and attitude information of the drone;
  • the second pose information of the base may indicate The position information and posture information of the base;
  • the third posture information of the landing platform can indicate the position information and posture information of the landing platform.
  • the landing platform 103 can be set on the base, and the landing platform 103 Used to receive the landing drone 102; determine the target pose information of the landing platform 103 according to the pose information of the drone 102, the pose information of the base, and the pose information of the landing platform 103; after obtaining the landing platform 103 After the target pose information is obtained, the pose of the landing platform 103 can be adjusted according to the target pose information, so that the drone 102 can land on the landing platform 103 stably.
  • the pose information of the drone 102 may change over time.
  • the third pose information of the landing platform 103 can be adjusted based on the first pose information of the drone 102.
  • the first posture information, the second posture information of the base, and the third posture information of the landing platform 103 determine the target posture information of the landing platform 103, where the target posture information may be the first posture information of the drone 102
  • the ideal pose information corresponding to the pose information that is, when the drone 102 is landing with the first pose information, if the pose information of the landing platform 103 is the target pose information, it can accurately receive The drone 102 that is landing further ensures the stability and reliability of the drone 102 during the landing operation.
  • the target pose information of the landing platform 103 will also change with the first pose information. Changes occur.
  • the target pose information can be determined multiple times and the landing platform 103 can be adjusted through the determined target pose information, which further improves the unmanned operation. The stability and reliability of the landing control of the aircraft 102.
  • this embodiment provides An unmanned aerial vehicle landing control method is provided, which is used to solve the long-standing problem of difficult landing of an unmanned aerial vehicle in the prior art.
  • the execution subject of the method is a drone landing control device. It is understood that the drone landing control method of the drone landing control device can be applied to a control terminal, a drone or a drone base station.
  • the drone landing control method can be applied to control terminals, drones or drone base stations; the execution subject of this method is the drone landing control device, it is understandable that the drone landing control device It can be implemented as software, or a combination of software and hardware, and the drone landing control device can be applied to control terminals, drones or drone base stations.
  • the method may include:
  • Step S201 During the landing operation of the UAV, obtain the first posture information of the UAV, the second posture information of the base, and the third posture information of the landing platform, wherein the landing platform is set on the base , The landing platform is used to receive the landing drone.
  • the drone when the operation of the drone is completed, an abnormal operating state occurs, or the user has a landing demand, the drone can be controlled to perform a landing operation.
  • the first attitude information of the drone can be obtained.
  • the first inertial measurement unit can be set on the drone.
  • the first attitude information of the drone can be obtained. It may include: obtaining first pose information of the drone through a first inertial measurement unit provided on the drone, and the first pose information may include position information and attitude information.
  • the drone landing control device can be communicatively connected with the first inertial measurement unit. After the first inertial measurement unit obtains the first attitude information of the drone, the first attitude information of the drone can be Send to the drone landing control device, so that the drone landing control device can accurately and effectively obtain the first attitude information of the drone.
  • obtaining the second pose information of the base may include: obtaining the second pose information through a second inertial measurement unit provided on the base.
  • a second inertial measurement unit is provided on the base, and the drone landing control device can be communicatively connected with the second inertial measurement unit. After the second inertial measurement unit obtains the second pose information of the base, it can The second pose information of the base is sent to the drone landing control device, so that the drone landing control device can accurately and effectively obtain the second pose information of the base.
  • obtaining the third posture information of the landing platform includes: obtaining the third posture information through a third inertial measurement unit provided on the landing platform.
  • a third inertial measurement unit is provided on the landing platform, and the drone landing control device can be communicatively connected with the third inertial measurement unit. After the third inertial measurement unit obtains the third posture information of the landing platform, The third pose information of the landing platform is sent to the drone landing control device, so that the drone landing control device can accurately and effectively obtain the third pose information of the landing platform.
  • Step S202 Determine the target pose information of the landing platform according to the first pose information, the second pose information, and the third pose information.
  • the first pose information, the second pose information, and the third pose information can be analyzed and processed, so that the landing can be obtained.
  • Target pose information of the platform It is understandable that the target pose information is the ideal pose information corresponding to the first pose information, that is, the drone uses the first pose information for landing operations, and the landing platform's attitude is the target pose information It can ensure that the drone can land on the landing platform smoothly and accurately.
  • the pose information of the drone can change at any time. Therefore, the pose information of the drone can be detected in real time, and then the updated pose information can be obtained, and it can be based on the updated pose information.
  • the posture information, the second posture information of the base, and the current target posture information of the landing platform are used to determine the updated target posture information of the landing platform to ensure that the drone can land on the landing platform smoothly.
  • Step S203 Adjust the pose of the landing platform according to the target pose information, so that the UAV can land on the landing platform.
  • the pose of the landing platform can be adjusted to the target pose information, so that the drone can land on the landing platform smoothly and accurately.
  • the first attitude information of the drone, the second attitude information of the base, and the third position of the landing platform are acquired.
  • Posture information, the target posture information of the landing platform is determined according to the first posture information, the second posture information, and the third posture information, and then the position of the landing platform can be determined according to the target posture information.
  • the adjustment of the attitude effectively realizes that the drone can land on the landing platform smoothly.
  • the realization process of this method has high reliability, low control cost, wide application range, and can be applied to various application scenarios under complex conditions. , Thereby effectively improving the practicability of the method.
  • Figure 3 is a schematic diagram of the second flow chart of a drone landing control method provided by an embodiment of the present invention; on the basis of the above-mentioned embodiment, referring to Figure 3, when the drone landing control method is applied to the control terminal ,
  • the method in this embodiment may further include:
  • Step S301 Acquire the landing request operation to trigger the landing request instruction, which is used to control the drone to perform the landing operation.
  • Step S302 Control the drone to perform a landing operation according to the landing request operation.
  • the landing request operation can be performed through the control terminal, and the control terminal is used to control the landing of the drone.
  • an operation interface may be provided on the control terminal, and the operation interface may receive a landing request operation input by the user, so as to generate a corresponding landing request instruction.
  • the landing request instruction is used to control the Man-machine landing operation.
  • a voice receiving unit is provided on the control terminal, and the voice receiving unit can receive a landing request operation input by a user in a voice manner, and then can generate a landing request instruction based on the received landing request operation. Therefore, after the landing request operation is acquired, the drone can be controlled to perform the landing operation according to the generated landing request instruction. It is conceivable that when the control terminal does not obtain the landing request operation, the drone can be controlled to maintain the current working state.
  • Fig. 4 is a third schematic flow chart of a drone landing control method provided by an embodiment of the present invention; on the basis of the above embodiment, with continued reference to Fig. 4, the method in this embodiment may further include:
  • Step S401 Obtain the first plane where the tripod of the drone is located and the second plane where the landing platform is located.
  • Step S402 Control the first plane to correspond to the second plane.
  • the drone includes a fuselage and a tripod set on the fuselage.
  • the tripod can be a fixed tripod or a deformable tripod, wherein the structural state of the fixed tripod will not change, and the deformable tripod
  • the structural state of the drone can be changed according to the operating state of the drone, for example: when the drone is in the landing state, the deformable tripod can be in the extended state; when the drone is in the operating state, the deformable tripod can be in the Contracted state to reduce the space area occupied by the deformable tripod.
  • the first plane where the drone’s tripod is located and the second plane where the landing platform is located can be obtained.
  • the first inertial measurement unit set on the drone is used to determine the first plane where the tripod of the drone is located. Specifically, the first inertial measurement unit can be set on the fuselage of the drone, and then obtain the drone fuselage.
  • the structural feature parameters between the drone and the tripod are obtained through the first inertial measurement unit to obtain the UAV's pose information.
  • the UAV's pose information and the structural feature parameters between the drone body and the tripod are namely The first plane where the tripod on the drone is located can be determined.
  • the first plane where the tripod is located refers to the plane formed by the end of the tripod for contacting the landing platform.
  • those skilled in the art can also use other methods to obtain the first plane where the tripod of the drone is located, as long as they can accurately obtain the first plane where the tripod of the drone is located, which will not be repeated here. .
  • controlling the first plane to correspond to the second plane can include: controlling the first plane to be parallel to the second plane .
  • controlling the first plane to correspond to the second plane may further include: controlling the angle formed between the first plane and the second plane to be smaller than a preset angle threshold.
  • the method in this embodiment may further include:
  • Step S403 Obtain the degree of inclination of the second plane.
  • Step S404 When the degree of inclination is greater than or equal to a preset angle threshold, when the drone is landing on the landing platform, limit the position of the drone that has landed on the landing platform operating.
  • the third inertial measurement unit provided on the landing platform can obtain the degree of inclination of the second plane where the landing platform is located, and the degree of inclination can be represented by the angle between the second plane and the preset plane. After reaching the degree of inclination of the second plane, the degree of inclination can be analyzed and compared with the preset angle threshold. When the degree of inclination is greater than or equal to the preset angle threshold, the second plane can be determined to be an inclined plane; When the angle threshold is set, it can be determined that the second plane is a horizontal plane.
  • the preset angle threshold is a pre-configured minimum angle value used to identify whether the second plane is an inclined plane. This embodiment does not limit its specific numerical range, and those skilled in the art can according to specific application requirements and The design scene is set, for example, the preset angle threshold can be 10°, 15°, 20° or 30° and so on.
  • the degree of inclination is greater than or equal to the preset angle threshold, at this time, when the drone is landing on the landing platform, in order to ensure that the drone can land on the landing platform smoothly and fixedly, the The drone landing on the landing platform performs a position limiting operation.
  • this embodiment does not limit the specific implementation of the position limiting operation of the drone landing on the landing platform, and those skilled in the art can set it according to specific application requirements and design requirements, for example: on the landing platform
  • the upper plane is pre-configured with a limiter, and the upper plane of the limiter constitutes the second plane; when the drone is landing on the landing platform, the landing position of the drone can be detected by the sensor set on the landing platform, and then according to the landing For position adjustment, the limit piece pre-configured on the landing platform protrudes from the second plane, so that the UAV can be restricted on the landing platform through the limit piece.
  • performing a position limiting operation on the drone that has landed on the landing platform may include:
  • Step S4041 Charging the landing platform so that the drone is adsorbed on the landing platform, wherein the landing platform is made of a magnetic medium material.
  • the landing platform is made of magnetic medium materials.
  • magnetic medium materials can include five categories: diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic.
  • Those skilled in the art can design according to specific application requirements and designs. Need to arbitrarily choose specific magnetic media materials.
  • the landing platform can be magnetic, which can adsorb the drone that landed on the landing platform, thereby effectively preventing the drone from moving back and forth on the landing platform, especially during landing When the second plane on which the platform is located is inclined, it can effectively prevent the drone from sliding down on the landing platform.
  • the drone by acquiring the degree of inclination of the second plane, when the degree of inclination is greater than or equal to a preset angle threshold, when the drone is landed on the landing platform, the drone will land on the landing platform.
  • the position limiting operation of the drone on the landing platform effectively ensures that the drone can land on the landing platform stably, and further improves the safety and reliability of the landing control of the drone.
  • FIG. 5 is a schematic diagram of the process of determining the target pose information of the landing platform according to the first pose information, the second pose information, and the third pose information provided in FIG. 2; on the basis of the above embodiment, continue to refer to the accompanying drawings
  • this embodiment does not limit the specific implementation manner of determining the target pose information of the landing platform according to the first pose information, the second pose information, and the third pose information.
  • Application requirements and design requirements are set.
  • the determination of the target pose information of the landing platform according to the first pose information, the second pose information, and the third pose information in this embodiment may include:
  • Step S501 Determine the coordinate system rotation matrix formed between the first pose information, the second pose information and the third pose information.
  • Step S502 Determine the target pose information of the landing platform through the first pose information, the second pose information, the third pose information, and the coordinate system rotation matrix.
  • the target pose information includes target pose information and target angle information.
  • the coordinate system rotation matrix formed between the first pose information, the second pose information and the third pose information can be determined.
  • the coordinate system rotation matrix is used to identify the coordinate system where the drone is located and where the base is located.
  • the coordinate system offset existing between the coordinate systems can then be analyzed and processed based on the coordinate system rotation matrix using the first pose information, the second pose information and the third pose information to determine the target pose of the landing platform Information, the target pose information may include target pose information and target angle information.
  • the first pose information R1 may include R1_pitch axis, R1_roll axis, and R1_yaw axis
  • the second pose information R2 may include R2_pitch axis, R2_roll axis, and R2_yaw axis
  • the third pose information R3 may include R3_pitch axis, R3_roll axis.
  • R3_yaw axis may include R1_pitch axis, R1_roll axis, and R1_yaw axis.
  • the coordinate system rotation matrix H corresponding to the first pose information R1, the second pose information R2, and the third pose information R3 can be determined, and then based on the coordinate system rotation matrix H, the first pose information R1, The second posture information R2 and the third posture information R3 are analyzed and processed to determine the target posture information R of the landing platform, so as to use the target posture information R to adjust and control the landing platform.
  • the coordinate system rotation matrix formed between the first pose information, the second pose information, and the third pose information is determined, and then the first pose information, the second pose information, and the third pose information are passed.
  • the pose information and the coordinate system rotation matrix determine the target pose information of the landing platform, which effectively improves the accuracy and reliability of determining the target pose information, and further ensures the practicability of the method.
  • FIG. 6 is a schematic diagram of the flow chart of adjusting the pose of the landing platform according to the target pose information provided in FIG. 2; on the basis of the above-mentioned embodiment, referring to FIG.
  • the specific implementation method for adjusting the pose of the landing platform is not limited. Those skilled in the art can set it according to specific application requirements and design requirements.
  • the positioning of the landing platform is adjusted according to the target pose information in this embodiment. Adjusting the pose can include:
  • Step S601 Generate a control signal according to the target pose information.
  • Step S602 Send the control signal to the driving device, so that the driving device adjusts the posture of the landing platform according to the control signal, and the driving device is set on the base.
  • the target pose information after acquiring the target pose information, the target pose information can be analyzed and processed, so that a control signal can be generated, and then the control signal can be sent to the driving device, so that the driving device can control the position of the landing platform according to the control signal.
  • the driving device may include a plurality of motors and a motor control unit for controlling the motors; the driving device to adjust the pose of the landing platform according to the control signal may include:
  • Step S6021 The motor control unit controls the motor according to the control signal, so as to adjust the posture of the landing platform through the motor.
  • the driving equipment includes four motors as an example for description.
  • the four motors include motor 1, motor 2, motor 3, and motor 4.
  • motor 1, motor and No. 3 motor can be the main motor, and the No. 4 motor is the backup motor.
  • the setting positions of the above four motors can be respectively: the first position information of the No. 1 motor is (x1, y1, z1), the second position information of the No. 2 motor is (x2, y2, z2), and the No. 3 motor's first position information is (x2, y2, z2).
  • the posture of the landing platform since the posture of the landing platform is related to the z-axis information of the motor, it can be realized by adjusting the z-axis position of the motor.
  • the initial posture of the landing platform is R_roll and R_pitch, where, Get the target attitude of the landing platform as
  • the distance control signals L1, L2, and L3 corresponding to the above-mentioned No. 1, No. 2 and No. 3 motors can be generated based on the above-mentioned z-axis offset.
  • the signals L1, L2, and L3 can be used to identify the running distance of the motor connection point in the z-axis direction when the motor No. 1, No. 2 and No. 3 motor is operated for 1 week.
  • the operating angle of the motor can also be determined based on the above-mentioned z-axis offset. Specifically, the operating angle of the No. 1 motor is 0 and that of the No. 2 motor. Motor No. 3 After obtaining the operating angle and operating distance of the above-mentioned motor, the operating distance and operating angle can be used to control the motor, and the position of the landing platform can be adjusted by the motor, which can effectively ensure that the drone can be stabilized. Land on the landing platform.
  • this embodiment provides another implementation method for adjusting the pose of the landing platform according to the target pose information, which specifically includes:
  • Step S701 Adjust the pose of the landing platform according to the target pose information, so that the landing platform moves relative to the base.
  • the landing platform's pose can be adjusted according to the target pose information.
  • the landing platform is set on the base, and when the landing platform's pose is adjusted, the landing platform Can be moved relative to the base.
  • the pose of the landing platform is adjusted through the target pose information, so that the landing platform can move relative to the base, thereby achieving a stable adjustment of the landing platform Reliability further ensures that the drone can land on the landing platform smoothly.
  • this embodiment provides another way to determine the target pose information of the landing platform.
  • the first pose information and the second pose information Determining the target pose information of the landing platform with the third pose information may include:
  • Step S801 Obtain the location information of the landing platform.
  • Step S802 Determine the target pose information of the landing platform according to the position information, the first pose information, the second pose information, and the third pose information.
  • the position information of the landing platform can be obtained first.
  • the position information of the landing platform can be obtained. It includes: obtaining the position information of the landing platform through a vision sensor arranged on the unmanned aerial vehicle, where the visual sensor may be a downward looking sensor arranged on the unmanned aerial vehicle.
  • the target pose information of the landing platform can be determined according to the position information, the first pose information, the second pose information, and the third pose information. It is understandable that, For landing platforms located at different locations, even if the first pose information, second pose information, and third pose information are the same, the target pose information of the landing platform obtained is different due to the different location information of the landing platform of.
  • the method in this embodiment may further include:
  • Step S901 Obtain the moving speed of the landing platform and the distance information between the drone and the landing platform.
  • Step S902 Adjust the running speed of the drone according to the moving speed and the distance information.
  • the moving speed of the landing platform when the drone is controlled to perform landing operations, the moving speed of the landing platform can be obtained. It is understandable that the moving speed of the landing platform can be greater than or equal to 0. When the moving speed of the landing platform is greater than 0, it means that The landing platform is in a moving state. When the moving speed of the landing platform is equal to 0, it means that the landing platform is at a standstill.
  • the distance information between the drone and the landing platform can also be acquired. Specifically, the acquisition of the distance information between the drone and the landing platform may include: acquiring the distance information between the drone and the landing platform. The distance information between the drone and the landing platform.
  • the operating speed of the drone can be adjusted according to the moving speed and distance information. Specifically, the operating speed of the drone can be adjusted according to the moving speed and the distance information. Adjustments can include:
  • Step S9021 When the moving speed is greater than 0, the operating speed of the drone is adjusted according to the distance information, so that the drone and the landing platform are at the same speed. or,
  • Step S9022 When the moving speed is equal to 0, reduce the running speed of the drone according to the decrease of the distance information.
  • the moving speed can be analyzed and identified.
  • the moving speed is greater than 0, the landing platform is in motion.
  • the distance between the drone and the landing platform can be determined.
  • the information adjusts the movement speed of the UAV to make the UAV and the landing platform move at the same speed, that is, the UAV's running speed is the same as the movement speed of the landing platform.
  • the moving speed is equal to 0, the landing platform is in a static state.
  • the operating speed of the drone can be directly adjusted according to the distance information, that is, as the distance information continues to decrease, the drone's operating speed can be reduced. Movement speed, so that the drone can land on the landing platform smoothly.
  • the operation of the drone is performed according to the moving speed and the distance information.
  • the speed adjustment further ensures that the drone can land on the landing platform stably, effectively improving the safety and reliability of the method.
  • FIG. 8 is a schematic structural diagram of a drone landing control device provided by an embodiment of the present invention. referring to FIG. 8, this embodiment provides a drone landing control device, which can Applied to control terminals, UAVs or UAV base stations.
  • the drone landing control device can execute the drone landing control method shown in FIG. 2 described above.
  • the drone landing control device may include:
  • the memory 82 is used to store computer programs
  • the processor 81 is configured to run a computer program stored in the memory 82 to implement:
  • the first posture information of the UAV, the second posture information of the base and the third posture information of the landing platform are obtained.
  • the landing platform is set on the base and the landing platform Used to receive the landing drone;
  • the pose of the landing platform is adjusted according to the target pose information, so that the UAV can land on the landing platform.
  • the structure of the drone landing control device may also include a communication interface 83 for the electronic device to communicate with other devices or a communication network.
  • the drone landing control method is applied to the control terminal, and the processor 81 is also used to: obtain the landing request operation to trigger the landing request instruction, the landing request instruction is used to control the drone to perform the landing operation; operate according to the landing request , Control the drone for landing operations.
  • the processor 81 when the processor 81 obtains the first attitude information of the drone, the processor 81 is further configured to obtain the first attitude information through the first inertial measurement unit provided on the drone.
  • the processor 81 when the processor 81 obtains the second pose information of the base, the processor 81 is further configured to obtain the second pose information through the second inertial measurement unit provided on the base.
  • the processor 81 when the processor 81 obtains the third posture information of the landing platform, the processor 81 is further configured to obtain the third posture information through the third inertial measurement unit provided on the landing platform.
  • the processor 81 is further configured to: obtain the first plane where the tripod of the drone is located and the second plane where the landing platform is located; and control the first plane to correspond to the second plane.
  • the processor 81 controls the first plane to correspond to the second plane, the processor 81 is further configured to: control the first plane to be parallel to the second plane.
  • the processor 81 is further configured to: obtain the degree of inclination of the second plane; when the degree of inclination is greater than or equal to a preset angle threshold, when the drone is landed on the landing platform , Performing position limiting operations on the UAV landing on the landing platform.
  • the processor 81 when the processor 81 performs a position limiting operation on the drone that has landed on the landing platform, the processor 81 is further configured to: charge the landing platform so that all The unmanned aerial vehicle is adsorbed on the landing platform, wherein the landing platform is composed of a magnetic medium material.
  • the processor 81 determines the target pose information of the landing platform according to the first pose information, the second pose information, and the third pose information
  • the processor 81 is further configured to: determine the first pose information and The coordinate system rotation matrix formed between the second pose information and the third pose information; the target of the landing platform is determined by the first pose information, the second pose information, the third pose information and the coordinate system rotation matrix
  • the pose information, the target pose information includes target pose information and target angle information.
  • the processor 81 adjusts the pose of the landing platform according to the target pose information
  • the processor 81 is also used to: generate a control signal according to the target pose information; send the control signal to the driving device to drive The device adjusts the posture of the landing platform according to the control signal, and the driving device is arranged on the base.
  • the driving device includes a plurality of motors and a motor control unit for controlling the motors; the driving device adjusts the posture of the landing platform according to the control signal, including: the motor control unit controls the motor according to the control signal, so as to control the motor by the motor Adjust the posture of the landing platform.
  • the processor 81 adjusts the pose of the landing platform according to the target pose information
  • the processor 81 is also used to: adjust the pose of the landing platform according to the target pose information so that the landing platform is relative to the base. Block move.
  • the processor 81 determines the target pose information of the landing platform according to the first pose information, the second pose information, and the third pose information
  • the processor 81 is further configured to: obtain the Position information of the landing platform; determining the target pose information of the landing platform according to the position information, the first pose information, the second pose information, and the third pose information.
  • the processor 81 when the processor 81 obtains the position information of the landing platform, the processor 81 is further configured to obtain the position information of the landing platform through a vision sensor provided on the unmanned aerial vehicle.
  • the processor 81 is further configured to: obtain the moving speed of the landing platform and the distance information between the unmanned aerial vehicle and the landing platform; The operating speed of the drone is adjusted.
  • the processor 81 obtains the distance information between the drone and the landing platform
  • the processor 81 is also used to: obtain the distance between the drone and the landing platform through a vision sensor provided on the drone. Describe the distance information between landing platforms.
  • the processor 81 adjusts the operating speed of the drone according to the moving speed and the distance information
  • the processor 81 is further configured to: when the moving speed is greater than 0, according to the The distance information adjusts the operating speed of the drone so that the drone and the landing platform have the same speed; or, when the moving speed is equal to 0, reduce the speed according to the decrease in the distance information.
  • the operating speed of the drone is further configured to: when the moving speed is greater than 0, according to the The distance information adjusts the operating speed of the drone so that the drone and the landing platform have the same speed; or, when the moving speed is equal to 0, reduce the speed according to the decrease in the distance information. The operating speed of the drone.
  • the device shown in Fig. 8 can execute the methods of the embodiments shown in Figs. 2-7.
  • parts that are not described in detail in this embodiment please refer to the relevant descriptions of the embodiments shown in Figs. 2-7.
  • For the implementation process and technical effects of this technical solution please refer to the description in the embodiment shown in FIG. 2 to FIG. 7, which will not be repeated here.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by electronic devices, including instructions for executing the drone landing control method in the method embodiments shown in FIGS. 2-7. program of.
  • control terminal which can be used to control a drone.
  • the control terminal can include the drone landing control device shown in FIG. 8 above.
  • Another aspect of this embodiment provides an unmanned aerial vehicle, which may include the drone landing control device shown in FIG. 8 above.
  • Another aspect of this embodiment provides a drone base station, which can be used to receive a landing drone.
  • the drone base station can include the drone shown in FIG. 8 above. Landing control device.
  • the unmanned aerial vehicle system may include an unmanned aerial vehicle base station for receiving a landing unmanned aerial vehicle.
  • the effect is the same as the specific structure, implementation process, and implementation effect of the UAV base station shown in the foregoing embodiment. For details, reference may be made to the relevant description of the foregoing embodiment, which will not be repeated here.
  • Figure 9 is a perspective view of the structure of a base station for drones provided by an embodiment of the present invention
  • Figure 10 is a perspective view of the structure of the base provided in Figure 9
  • Figure 11 is a perspective view of the drone provided by an embodiment of the present invention landing Schematic diagram of the structure on the human-machine base station; referring to Figures 9-11, this embodiment provides an unmanned aerial vehicle base station, which is used to receive landing drones.
  • the unmanned aerial vehicle The machine base station can have different manifestations in different application scenarios.
  • the drone base station can be at least one of the following: ship drone base station, marine platform drone base station, car drone base station, train unmanned Machine base station and so on.
  • the UAV base station includes:
  • the landing platform 902 is set on the base 901 and is used to receive the landing drone 1001;
  • the first inertial measurement unit 903 is arranged on the base 901 and is used to obtain the pose information of the base 901;
  • the second inertial measurement unit 904 is set on the landing platform 902 and is used to obtain the posture information of the landing platform 902;
  • the driving device 905 is arranged on the base 901 and is used to obtain control signals and adjust the posture of the landing platform 902 based on the control signals.
  • the shape and structure of the base 901 are not limited, and those skilled in the art can set it according to specific application requirements.
  • the base 901 may be a circular base, a square base, a rectangular base, or the like.
  • the specific connection manner of the landing platform 902 set on the base 901 is not limited, and those skilled in the art can set it according to specific application requirements.
  • the landing platform 902 can be set on the base 901 through the driving device 905.
  • the driving device 905 is fixedly arranged on the base 901; or, the landing platform 902 can be arranged on the base 901 through a connecting piece, and the connecting piece is arranged on the base 901 through the driving device 905, etc.; as long as it can make the landing platform 902 relative to The base 901 can be moved, which will not be repeated here.
  • the position where the first inertial measurement unit 903 is installed on the base 901 is not limited, and those skilled in the art can set it according to specific application requirements.
  • the first inertial measurement unit 903 may be installed on the base 901.
  • the position of the second inertial measurement unit 904 on the landing platform 902 is not limited, and those skilled in the art can set it according to specific application requirements.
  • the second inertial measurement unit 904 can be installed on the landing platform.
  • the front end, left end, right end, or rear end of the 902 can be achieved as long as the posture information of the landing platform 902 can be stably obtained through the second inertial measurement unit 904.
  • the landing platform 902 can also be equipped with a power supply device.
  • the landing platform 902 can be equipped with a corresponding external power supply or solar power supply device, etc., to adjust the pose information of the landing platform 902.
  • the driving device 905 in this embodiment may include :Multiple motors are arranged on the base 901 and used to adjust the posture of the landing platform 902 so that the landing platform 902 can move relative to the base 901; the motor control unit is used to obtain control signals and perform adjustments according to the control signals.
  • the motor is controlled to adjust the posture of the landing platform 902.
  • the number of motors is three or four, and three or four motors can be evenly arranged on the base 901 to adjust the posture of the landing platform 902 by controlling the motors.
  • the drone base station in this embodiment may include: a first communication module 906, which is arranged on the base 901, and is used to send the pose information of the base 901 and the landing platform 902 to Control terminal; and used to receive the control signal sent by the control terminal, and send the control signal to the drive device 905;
  • a first communication module 906 which is arranged on the base 901, and is used to send the pose information of the base 901 and the landing platform 902 to Control terminal; and used to receive the control signal sent by the control terminal, and send the control signal to the drive device 905;
  • the control terminal used to control the drone 1001, is used to receive the pose information of the base 901 and the landing platform 902, and determine the control signal according to the pose information of the base 901 and the landing platform 902 .
  • control terminal may include a third communication module, which is communicatively connected to the first communication module 906, so that the UAV base station can use the first communication module 906 and the third communication module to obtain The pose information of the base 901 and the landing platform 902 are sent to the control terminal.
  • the control terminal obtains the pose information of the base 901 and the landing platform 902, and compares the pose information of the base 901.
  • the control terminal can send the generated control signal to the UAV base station through the third communication module and the first communication module 906, so that the unmanned
  • the base station can receive the control signal sent by the control terminal, and can send the control signal to the driving device 905 to adjust the posture of the landing platform 902.
  • the drone base station in this embodiment may include: a first communication module 906, which is arranged on the base 901, and is used to send the pose information of the base 901 and the landing platform 902 To the drone 1001; and used to receive the control signal sent by the drone 1001, and send the control signal to the driving device 905.
  • a first communication module 906 which is arranged on the base 901, and is used to send the pose information of the base 901 and the landing platform 902 To the drone 1001; and used to receive the control signal sent by the drone 1001, and send the control signal to the driving device 905.
  • the drone 1001 may include a second communication module 1002, and the second communication module 1002 is communicatively connected with the first communication module 906, so that the drone base station can use the first communication module 906 and the second communication module 1002, Send the acquired pose information of the base 901 and the landing platform 902 to the drone 1001, and the drone 1001 obtains the pose information of the base 901 and the landing platform 902, And analyze and process the pose information of the base 901 and the landing platform 902, so as to generate a control signal, and then the UAV 1001 can pass the generated control signal through the second communication module 1002 and the first communication module 906 is sent to the drone base station, so that the drone base station can receive the control signal sent by the drone 1001, and can send the control signal to the driving device 905, so as to adjust the posture of the landing platform 902.
  • the UAV base station in this embodiment may further include: a first communication module 906, which is disposed on the base 901, and is connected to the second communication module 1002 on the UAV 1001 to obtain The pose information of the drone 1001; the data processing module 907 is used to determine the control signal according to the pose information of the base 901, the pose information of the landing platform 902, and the pose information of the drone 1001, and send the control signal To the drive device 905.
  • a first communication module 906 which is disposed on the base 901, and is connected to the second communication module 1002 on the UAV 1001 to obtain The pose information of the drone 1001
  • the data processing module 907 is used to determine the control signal according to the pose information of the base 901, the pose information of the landing platform 902, and the pose information of the drone 1001, and send the control signal To the drive device 905.
  • the UAV base station may further include a first communication module 906 and a data processing module 907.
  • the UAV 1001 may include a second communication module 1002, and the second communication module 1002 and the first communication module 906 are communicatively connected, thereby
  • the drone 1001 can send the acquired pose information of the drone 1001 to the drone base station through the first communication module 906 and the second communication module 1002, and the drone base station can acquire the drone 1001.
  • the data processing module 907 can then use the data processing module 907 to compare the pose information of the base 901, the pose information of the landing platform 902, and the pose information of the UAV 1001, as well as the pose information of the base 901 and the landing platform.
  • the posture information of the 902 and the posture information of the drone 1001 are analyzed and processed, so that a control signal can be generated, and then the control signal can be sent to the driving device 905 to adjust the posture of the landing platform 902.
  • the drone 1001 may include: a third inertial measurement unit 1003 for obtaining the first plane where the tripod of the drone is located, and passing the first plane through the second communication module 1002 and the third communication module Send to the control terminal; at this time, the second inertial measurement unit 904 on the landing platform 902 can obtain the second plane where the landing platform 902 is located, and send the second plane to the control terminal through the first communication module 906 and the third communication module ; After the control terminal receives the first plane and the second plane, the first plane can be controlled to correspond to the second plane, specifically, the first plane can be controlled to be parallel to the second plane.
  • the second inertial measurement unit 904 provided on the landing platform 902 can also obtain the degree of inclination of the second plane, where the degree of inclination is greater than or equal to
  • the control terminal can control The preset power supply device charges the landing platform 902 so that the UAV can be adsorbed on the landing platform 902, wherein the landing platform 902 is made of a magnetic medium material.
  • the UAV 1001 may include a vision sensor, which is used to obtain the position information of the landing platform 902, and pass the position information of the landing platform 902 through the second communication module 1002 and the third communication module. It is sent to the control terminal, and after receiving the position information, the control terminal can determine the target pose information of the landing platform 902 in combination with the first pose information, the second pose information, and the third pose information.
  • a vision sensor which is used to obtain the position information of the landing platform 902, and pass the position information of the landing platform 902 through the second communication module 1002 and the third communication module. It is sent to the control terminal, and after receiving the position information, the control terminal can determine the target pose information of the landing platform 902 in combination with the first pose information, the second pose information, and the third pose information.
  • the drone 1001 may include: a vision sensor, which is used to obtain distance information between the drone and the landing platform, and then send the distance information to the control terminal;
  • the landing platform 902 may include a speed sensor , Used to obtain the moving speed of the landing platform, and then send the moving speed to the control terminal.
  • the control terminal After the control terminal obtains the moving speed and distance information, it can control the operating speed of the drone according to the moving speed and the distance information. Make adjustments. Specifically, when the moving speed is greater than 0, the operating speed of the drone is adjusted according to the distance information, so that the drone and the landing platform are at the same speed. Alternatively, when the moving speed is equal to 0, the operating speed of the drone is reduced according to the decrease of the distance information.
  • the UAV base station provided in this embodiment adjusts the posture of the landing platform 902 through the landing platform 902 set on the base 901, and then through the driving device 905 set on the base 901, thereby effectively achieving the
  • the UAV 1001 performs a landing operation, it can adjust the posture of the landing platform in real time according to the landing posture of the UAV 1001, so that the posture of the landing platform 902 can be actively controlled to be consistent with the landing posture of the UAV 1001. It is ensured that the UAV 1001 can land on the landing platform 902 smoothly and safely, thereby improving the safety and reliability of the UAV base station.
  • FIG. 12 is a schematic structural diagram of an unmanned aerial vehicle system provided by an embodiment of the present invention.
  • this embodiment provides an unmanned aerial vehicle system, which has a wide range of use and reliability High and low cost, it can make drones land smoothly under complicated conditions.
  • the UAV system may include the UAV base station shown in Figs. 9-11.
  • the UAV base station may include: a base 901, a landing platform 902, a data processing unit (including: a direct current unit and a control unit), a driving device 905 (including: multiple motors and a power supply system), and a first communication module 906 (For example: wireless communication antenna module), the first inertial measurement unit 903 on the base 901, the second inertial measurement unit 904 on the landing platform 902, and so on.
  • a data processing unit including: a direct current unit and a control unit
  • a driving device 905 including: multiple motors and a power supply system
  • a first communication module 906 Form example: wireless communication antenna module
  • the UAV system may further include: a control terminal 1101 and a UAV 1001.
  • the drone 1001 may include: a third inertial measurement unit 1003 and a second communication module 1002 (for example, a wireless communication antenna module).
  • the control terminal 1101 may include a third communication module 1102 (for example, a wireless communication antenna module) and a controller (not shown in the figure).
  • the controller may have an attitude angle algorithm built in, and the attitude angle algorithm is used to control the drone.
  • the pose information, the pose information of the base and the pose information of the landing platform are analyzed and processed. Specifically, the control terminal 1101 may obtain the pose information of the base 901 and the landing platform 902 through the third communication module 1102 and the first communication module 906, respectively. Specifically, the control terminal 1101 may obtain the pose information of the landing platform 902 through the third communication module.
  • the controller can use the built-in attitude angle algorithm to compare the pose information of the base 901, the pose information of the landing platform 902, and the position of the drone 1001.
  • the posture information is analyzed and processed, so that the target posture information of the landing platform 902 and the control signal corresponding to the target posture information can be calculated, and then the control terminal 1101 can send the target posture information and control signals of the landing platform 902 to
  • the UAV base station the UAV base station can send to the driving device 905 according to the received control signal, so as to adjust the driving device 905 according to the control signal to realize the process of adjusting the attitude of the landing platform 902.
  • Step 1 After the control terminal 1101 obtains the landing request, the third communication module 1102 on the control terminal 1101 can establish a communication connection with the first communication module 906 and the second communication module 1002;
  • Step 2 After the third communication module 1102 establishes a communication connection with the first communication module 906 and the second communication module 1002, combine the data collected by the first inertial measurement unit 903, the second inertial measurement unit 904, and the third inertial measurement unit 1003
  • the pose information can be transmitted to the control terminal 1101 through the third communication module 1102;
  • Step 3 The control terminal 1101 can analyze and process the pose information collected by the first inertial measurement unit 903, the second inertial measurement unit 904, and the third inertial measurement unit 1003 using the attitude angle algorithm to determine the target pose of the landing platform 902 information;
  • Step 4 The control terminal 1101 can use the attitude angle algorithm to analyze and process the attitude information collected by the first inertial measurement unit 903, the second inertial measurement unit 904, and the third inertial measurement unit 1003, and output the information corresponding to the driving device 905
  • the control signal can then be transmitted to the data processing module 907 through the third communication module 1102 and the first communication module 906;
  • Step 5 The data processing module 907 controls the driving device 905 to adjust the landing platform 902 to the target pose information according to the received control signal;
  • Step 6 Obtain the pose information collected by the first inertial measurement unit 903, the second inertial measurement unit 904, and the third inertial measurement unit 1003 at the next moment, and repeat the above steps 1 to 5 until the drone 1001 completely landed .
  • the attitude angle algorithm can also be configured on the UAV base station or UAV 1001, so that the UAV base station or UAV 1001 can also be used for the first inertial measurement unit 903 and the second inertial measurement unit 904.
  • the posture information collected by the third inertial measurement unit 1003 is analyzed and processed, and a control signal corresponding to the driving device 905 is generated.
  • the UAV 1001 due to the separation of movement between the UAV 1001 and the landing platform 902, and the posture of the landing platform 902 can be adjusted by the driving device 905, specifically, the UAV 1001 During the landing operation, the position of the landing platform can be adjusted in real time according to the landing position of the UAV 1001, so that the position of the landing platform 902 can be actively controlled to be consistent with the landing position of the UAV 1001, and further It is ensured that the UAV 1001 can land on the landing platform 902 smoothly and safely, thereby improving the safety and reliability of the UAV system.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • the aforementioned storage media include: U disk, mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机降落控制方法、装置、无人机基站及无人机系统。方法包括:在无人机(102)进行降落操作时,获取无人机(102)的第一位姿信息、基座的第二位姿信息和降落平台(103)的第三位姿信息,降落平台(103)设置于基座上,降落平台(103)用于接收降落的无人机(102)(步骤201);根据第一位姿信息、第二位姿信息和第三位姿信息确定降落平台(103)的目标位姿信息(步骤202);根据目标位姿信息对降落平台(103)的位姿进行调整,以使无人机(102)降落至降落平台(103)(步骤203)。在无人机(102)进行降落操作时,通过第一位姿信息、第二位姿信息和第三位姿信息确定降落平台(103)的目标位姿信息,根据目标位姿信息对降落平台(103)的位姿进行调整,有效地实现了无人机(102)可以平稳地降落至降落平台(103),进而提高了实用性。

Description

无人机降落控制方法、装置、无人机基站及无人机系统 技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种无人机降落控制方法、装置、无人机基站及无人机系统。
背景技术
随着科学技术的飞速发展,无人机由于其稳定性好、抗干扰能力强的特点,在民用和军事领域取得了较为广泛的发展和应用。例如:无人机在环境监测、人员侦查、地理信息收集、风光采集等方面的应用程度不断增加,虽然,目前无人机的飞行控制技术越来越成熟,但是在复杂环境下,无人机的起降操作依然是其取得更广泛和深入应用的主要制约因素之一。
目前,无人机在复杂环境(例如:海上移动平台或颠簸路面平台)下的降落操作对于无人机及操作人员来说依旧是严峻挑战,传统技术中的一种降落方式是:依靠无人机上的传感器进行自动降落或依靠人眼视觉的人工操作来实现。然而,由于视觉或单一传感器容易受到信号干扰,并且,由于无人机与降落平台之间容易存在相对角度,容易产生侧翻,导致降落失败的风险,这样容易对桨叶、电机难治搭载仪器产生不可逆的损坏。
而传统技术中的另一种降落方式是:网兜回收方式,该方式往往需要无人机在空中断电来实现。这样会使得无人机无法迅速二次起飞,并且容易使得桨叶、电机容易出现损坏和个别缠绕的风险。
发明内容
本发明实施例提供一种无人机降落控制方法、装置、无人机基站及无人机系统,以解决现有技术中存在的容易产生侧翻,导致无人机降落失败;或者,容易使得桨叶、电机容易出现损坏和个别缠绕的风险的问题。
本发明实施例的第一方面,提供了一种无人机降落控制方法,包括:
在无人机进行降落操作时,获取所述无人机的第一位姿信息、基座的第二位姿信息和降落平台的第三位姿信息,其中,所述降落平台设置于所述基座上,所述降落平台用于接收降落的无人机;
根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息;
根据所述目标位姿信息对所述降落平台的位姿进行调整,以使所述无人机降落至所述降落平台。
本发明实施例的第二方面,提供了一种无人机降落控制装置,包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
在无人机进行降落操作时,获取所述无人机的第一位姿信息、基座的第二位姿信息和降落平台的第三位姿信息,其中,所述降落平台设置于所述基座上,所述降落平台用于接收降落的无人机;
根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息;
根据所述目标位姿信息对所述降落平台的位姿进行调整,以使所述无人机降落至所述降落平台。
本发明实施例的第三方面,提供了一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现上述第一方面所述的无人机降落控制方法。
本发明实施例的第四方面,提供了一种控制终端,包括上述第二方面所述的无人机降落控制装置。
本发明实施例的第五方面,提供了一种无人机,包括上述第二方面所述的无人机降落控制装置。
本发明实施例的第六方面,提供了一种无人机基站,包括上述第二方 面所述的无人机降落控制装置。
本发明实施例提供的技术方案,在无人机进行降落操作时,通过获取所述无人机的第一位姿信息、基座的第二位姿信息和降落平台的第三位姿信息,根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息,而后可以根据所述目标位姿信息对所述降落平台的位姿进行调整,有效地实现了无人机可以平稳地降落至所述降落平台,该方法的实现过程可靠性高,控制成本低,应用范围广泛,并且可以适用于各种复杂条件下的应用场景,从而有效地提高了该方法的实用性。
本发明实施例的第七方面,提供了一种无人机基站,包括:
基座;
降落平台,设置于所述基座上,用于接收降落的无人机;
第一惯性测量单元,设置于所述基座上,用于获取所述基座的位姿信息;
第二惯性测量单元,设置于所述降落平台上,用于获取所述降落平台的位姿信息;
驱动设备,设置于所述基座上,用于获取控制信号,并基于所述控制信号对所述降落平台的位姿进行调整。
本发明实施例的第七方面,提供了一种无人机系统,包括无人机和上述第六方面所述的无人机基站。
本发明实施例的第八方面,提供了一种无人机系统,包括无人机和上述第二方面所述的无人机基站。
本发明实施例提供的技术方案,通过设置于基座上的降落平台,而后通过设置于基座上的驱动设备对所述降落平台的位姿进行调整,从而有效地实现了在无人机进行降落操作时,可以根据无人机的降落姿态实时地对降落平台的位姿进行调整,从而能够实现主动控制降落平台的姿态与无人机的降落姿态相一致,保证无人机可以平稳、安全地降落至降落平台上,进而提高了 该无人机基站使用的安全可靠性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种无人机降落控制方法的场景示意图;
图2为本发明实施例提供的一种无人机降落控制方法的流程示意图一;
图3为本发明实施例提供的一种无人机降落控制方法的流程示意图二;
图4为本发明实施例提供的一种无人机降落控制方法的流程示意图三;
图5为图2中提供的根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息的流程示意图;
图6为图2中提供的根据所述目标位姿信息对所述降落平台的位姿进行调整的流程示意图;
图7为图6中提供的根据所述目标位姿信息生成控制信号的示意图;
图8为本发明实施例提供的一种无人机降落控制装置的结构示意图;
图9为本发明实施例提供的一种无人机基站的结构透视图;
图10为图9中提供的基座的结构透视图;
图11为本发明实施例提供的无人机降落至无人机基站上的结构示意图;
图12为本发明实施例提供的一种无人机系统的结构示意图。
图中,
901、基座;                      902、降落平台;
903、第一惯性测量单元;          904、第二惯性测量单元;
905、驱动设备;                  906、第一通信模块;
907、数据处理模块;              1001、无人机;
1002、第二通信模块;              1003、第三惯性测量单元;
1101、控制终端;                  1102、第三通信模块。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
在通篇说明书及权利要求当中所提及的“包括”为一开放式用语,故应解释成“包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。
此外,“连接”一词在此包含任何直接及间接的连接手段。因此,若文中描述一第一装置连接于一第二装置,则代表所述第一装置可直接连接于所述第二装置,或通过其它装置间接地连接至所述第二装置。
应当理解,本文中使用的术语“及/或、和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了便于理解本申请的技术方案,下面对现有技术进行简要说明:
随着无人机应用的越来越广泛,无人机的类型越来越多,例如:无人机可以包括旋翼式无人机、垂直起降无人机以及复合式无人机;其中,旋翼式无人机由于其具有稳定性好、抗干扰能力强、能够主动悬停等特征,并且对于起飞和降落的条件要求相对较低,因此,在民用和军事领域取得了较为迅速的发展和应用。
值得注意的是,目前无人机的自动飞行控制技术越来越成熟,但是,在复杂环境下,无人机的起降操作依然是其取得更广泛和深入应用的主要制约因素之一;例如:海上移动平台或颠簸路面平台上的降落操作,对于无人机及操作人员来说依旧是严峻挑战。现有技术中,无人机的降落方式主要是依靠无人机上的传感器进行自动降落或依靠人眼视觉的人工操作。然而,由于视觉或单一传感器容易受到信号干扰,并且,由于无人机与降落平台之间容易存在相对角度,容易产生侧翻,导致降落失败的风险,这样容易对桨叶、电机难治搭载仪器产生不可逆的损坏。
而现有技术中的另一种降落方式是:网兜回收方式,该方式往往需要无人机在空中断电来实现。这样会使得无人机无法迅速二次起飞,并且容易使得桨叶、电机容易出现损坏和个别缠绕的风险。
下面结合附图,对本发明的一些实施方式作详细说明。在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
为了解决现有技术中长期存在的无人机的安全降落困难的问题,参考附图1所示,提供了一种无人机降落控制方法的应用场景,该应用场景中包括控制终端101、无人机102和降落平台103,其中,控制终端101用于控制无人机102,降落平台103用于接收降落的无人机102,可以理解的是,降落平台103可以在不同的应用场景中具有不同的表现形式,降落平台103可以为以下任意一个应用场景下的平台:船舶、海洋平台、汽车、火车等运动平台,并且,降落平台103还可以配置有供电装置,例如:降落平台103可以配置有相对应的外部供电电源或者太阳能供电装置等等,以实现对降落平台103的位姿信息进行调整。
基于上述的应用场景,本实施例提供了一种无人机降落控制方法,该方法可以实现:在无人机102进行降落操作时,获取无人机102的第一位姿信息、基座的第二位姿信息和降落平台103的第三位姿信息,其中,降落平台 103可以设置于基座上,降落平台103用于接收降落的无人机102;根据第一位姿信息、第二位姿信息和第三位姿信息确定降落平台103的目标位姿信息;在获取到降落平台103的目标位姿信息之后,可以根据目标位姿信息对降落平台103的位姿进行调整,以使无人机102可以稳定地降落至降落平台103。
其中,上述的位姿信息可以包括位置信息和姿态信息,例如,无人机的第一位姿信息,可以表示无人机的位置信息和姿态信息;基座的第二位姿信息,可以表示基座的位置信息和姿态信息;降落平台的第三位姿信息,可以表示降落平台的位置信息和姿态信息。在无人机102进行降落操作时,获取无人机102的位姿信息、基座的位姿信息和降落平台103的位姿信息,其中,降落平台103可以设置于基座上,降落平台103用于接收降落的无人机102;根据无人机102的位姿信息、基座的位姿信息和降落平台103的位姿信息确定降落平台103的目标位姿信息;在获取到降落平台103的目标位姿信息之后,可以根据目标位姿信息对降落平台103的位姿进行调整,以使无人机102可以稳定地降落至降落平台103。
在无人机102进行降落操作时,无人机102的位姿信息可以是随着时间而发生变化的。为了保证无人机102可以准确地降落平台103上,可以基于无人机102的第一位姿信息来对降落平台103的第三位姿信息进行调整,具体的,可以基于无人机102的第一位姿信息、基座的第二位姿信息和降落平台103的第三位姿信息确定降落平台103的目标位姿信息,其中,该目标位姿信息可以是与无人机102的第一位姿信息相对应的理想位姿信息,即在无人机102以第一位姿信息进行降落操作时,若降落平台103的位姿信息为目标位姿信息时,则可以准确地接收到正在降落的无人机102,进而保证了无人机102进行降落操作的稳定可靠性。
可以理解的是,在无人机102的位姿信息由第一位姿信息变为第四位姿信息时,那么,降落平台103的目标位姿信息也会随着第一位姿信息的变化发生变化,在无人机102进行降落操作的过程中,可以经过多次的目标位姿 信息的确定以及通过所确定的目标位姿信息对降落平台103进行调整的操作,进一步提高了对无人机102进行降落控制的稳定可靠性。
为了便于理解本实施例中无人机降落控制方法的实现原理和效果,下面对本实施例中的无人机降落控制方法的具体实现过程进行详细说明,参考附图2所示,本实施例提供了一种无人机降落控制方法,该方法用于解决解决现有技术中长期存在的无人机的安全降落困难的问题。具体的,该方法的执行主体为无人机降落控制装置,可以理解的是,该无人机降落控制装置无人机降落控制方法可以应用于控制终端、无人机或无人机基站。,也即该无人机降落控制方法可以应用于控制终端、无人机或无人机基站;该方法的执行主体为无人机降落控制装置,可以理解的是,该无人机降落控制装置可以实现为软件、或者软件和硬件的组合,且无人机降落控制装置可以应用于控制终端、无人机或无人机基站。具体的,该方法可以包括:
步骤S201:在无人机进行降落操作时,获取无人机的第一位姿信息、基座的第二位姿信息和降落平台的第三位姿信息,其中,降落平台设置于基座上,降落平台用于接收降落的无人机。
其中,在无人机的作业执行完毕、出现异常运行状态或者用户存在降落需求时,则可以控制无人机进行降落操作。在无人机进行降落操作时,可以获取无人机的第一位姿信息,具体实现时,无人机上可以设置有第一惯性测量单元,此时,获取无人机的第一位姿信息可以包括:通过设置于无人机上的第一惯性测量单元,获取到无人机的第一位姿信息,该第一位姿信息可以包括位置信息和姿态信息。
具体的,该无人机降落控制装置可以与第一惯性测量单元通信连接,在第一惯性测量单元获取到无人机的第一位姿信息之后,可以将无人机的第一位姿信息发送至无人机降落控制装置,从而使得无人机降落控制装置可以准确、有效地获取到无人机的第一位姿信息。
相类似的,获取基座的第二位姿信息可以包括:通过设置于基座上的第 二惯性测量单元,获取第二位姿信息。
具体的,基座上设置有第二惯性测量单元,该无人机降落控制装置可以与第二惯性测量单元通信连接,在第二惯性测量单元获取到基座的第二位姿信息之后,可以将基座的第二位姿信息发送至无人机降落控制装置,从而使得无人机降落控制装置可以准确、有效地获取到基座的第二位姿信息。
相类似的,获取降落平台的第三位姿信息,包括:通过设置于降落平台上的第三惯性测量单元,获取第三位姿信息。
具体的,降落平台上设置有第三惯性测量单元,该无人机降落控制装置可以与第三惯性测量单元通信连接,在第三惯性测量单元获取到降落平台的第三位姿信息之后,可以将降落平台的第三位姿信息发送至无人机降落控制装置,从而使得无人机降落控制装置可以准确、有效地获取到降落平台的第三位姿信息。
可以理解的是,本领域技术人员也可以采用其他的方式来获取无人机的第一位姿信息、基座的第二位姿信息和降落平台的第三位姿信息,只要能够保证对无人机的第一位姿信息、基座的第二位姿信息和降落平台的第三位姿信息进行获取的准确可靠性即可,在此不再赘述。
步骤S202:根据第一位姿信息、第二位姿信息和第三位姿信息确定降落平台的目标位姿信息。
在获取到第一位姿信息、第二位姿信息和第三位姿信息之后,可以对第一位姿信息、第二位姿信息和第三位姿信息进行分析处理,从而可以获取到降落平台的目标位姿信息。可以理解的是,该目标位姿信息是与第一位姿信息相对应的理想位姿信息,即在无人机以第一位姿信息进行降落操作、且降落平台的姿态为目标位姿信息时,可以保证无人机能够平稳、准确地降落到降落平台上。
需要注意的是,无人机的位姿信息可以是随时发生变化的,因此,可以实时对无人机的位姿信息进行检测,而后可以获得更新的位姿信息,并可以 基于更新后的位姿信息、基座的第二位姿信息、降落平台的当前目标位姿信息来确定降落平台的更新的目标位姿信息,以保证无人机可以平稳地降落在降落平台上。
步骤S203:根据目标位姿信息对降落平台的位姿进行调整,以使无人机降落至降落平台。
在获取到目标位姿信息之后,可以将降落平台的位姿调整为目标位姿信息,从而使得无人机可以平稳、准确地降落在降落平台上。
本实施例提供的无人机降落控制方法,在无人机进行降落操作时,通过获取所述无人机的第一位姿信息、基座的第二位姿信息和降落平台的第三位姿信息,根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息,而后可以根据所述目标位姿信息对所述降落平台的位姿进行调整,有效地实现了无人机可以平稳地降落至所述降落平台,该方法的实现过程可靠性高,控制成本低,应用范围广泛,并且可以适用于各种复杂条件下的应用场景,从而有效地提高了该方法的实用性。
图3为本发明实施例提供的一种无人机降落控制方法的流程示意图二;在上述实施例的基础上,继续参考附图3所示,在无人机降落控制方法应用于控制终端时,本实施例中的方法还可以包括:
步骤S301:获取降落请求操作,以触发降落请求指令,降落请求指令用于控制无人机进行降落操作。
步骤S302:根据降落请求操作,控制无人机进行降落操作。
其中,在用户针对无人机存在降落需求时,可以通过控制终端执行降落请求操作,该控制终端用于对无人机进行降落控制。具体的,一种可实现的方式为:控制终端上可以设置有操作界面,该操作界面可以接收用户输入的降落请求操作,从而可以生成相对应的降落请求指令,该降落请求指令用于控制无人机进行降落操作。另一种可实现的方式为:控制终端上设置有语音接收单元,该语音接收单元可以接收用户以语音的方式输入降落请求操作, 而后可以基于所接收到的降落请求操作生成降落请求指令。因此,在获取到降落请求操作之后,可以根据所生成的降落请求指令控制无人机进行降落操作。可以想到的是,在控制终端未获取到降落请求操作时,则可以控制无人机保持当前的工作状态。
本实施例中,通过获取降落请求操作,而后根据降落请求操作,控制无人机进行降落操作,有效地实现了对无人机进行降落操作的时机或者应用场景进行识别,进一步保证了该方法使用的稳定可靠性。
图4为本发明实施例提供的一种无人机降落控制方法的流程示意图三;在上述实施例的基础上,继续参考附图4所示,本实施例中的方法还可以包括:
步骤S401:获取无人机上脚架所在的第一平面以及降落平台所在的第二平面。
步骤S402:控制第一平面与第二平面相对应。
具体的,无人机包括机身和设置于机身上的脚架,该脚架可以为固定脚架或可变形脚架,其中,固定脚架的结构状态不会发生变化,可变形脚架的结构状态可以根据无人机的运行状态发生变化,例如:在无人机处于降落状态时,可变形脚架可以处于伸开状态;在无人机处于作业状态时,可变形脚架可以处于收缩状态,以减少可变形脚架所占用的空间面积。
在控制无人机进行降落操作时,为了能够保证无人机能够平稳地降落至降落平台上,可以获取无人机上脚架所在的第一平面以及降落平台所在的第二平面,其中,可以通过设置于无人机上的第一惯性测量单元来确定无人机上脚架所在的第一平面,具体的,第一惯性测量单元可以设置于无人机的机身上,而后获取无人机机身与脚架之间的结构特征参数,通过第一惯性测量单元获取到无人机的位姿信息,通过无人机的位姿信息和无人机机身与脚架之间的结构特征参数即可确定无人机上脚架所在的第一平面,需要注意的是,脚架所在的第一平面是指脚架上用于接触降落平台的端部所构成的平面。当 然的,本领域技术人员也可以采用其他的方式获取到无人机上脚架所在的第一平面,只要能够准确地获取到无人机上脚架所在的第一平面即可,在此不再赘述。
在获取到第一平面和第二平面之后,可以控制第一平面与第二平面相对应;具体的,控制第一平面与第二平面相对应可以包括:控制第一平面与第二平面相平行。在另一些实例中,控制第一平面与第二平面相对应还可以包括:控制第一平面与第二平面之间所形成的角度小于预设角度阈值。
本实施例中,通过获取无人机上脚架所在的第一平面以及降落平台所在的第二平面,并控制第一平面与第二平面相对应,有效地保证了无人机可以平稳地降落至降落平台上,进一步提高了该方法使用的稳定可靠性。
在上述实施例的基础上,为了保证无人机能够平稳地降落在降落平台上,本实施例中的方法还可以包括:
步骤S403:获取所述第二平面的倾斜程度。
步骤S404:在所述倾斜程度大于或等于预设角度阈值时,则在所述无人机降落至所述降落平台上时,对降落在所述降落平台上的所述无人机进行限位操作。
具体的,通过设置于降落平台上的第三惯性测量单元可以获取到降落平台所在的第二平面的倾斜程度,该倾斜程度可以由第二平面与预设平面之间的夹角进行表示,获取到第二平面的倾斜程度之后,可以将倾斜程度与预设角度阈值进行分析比较,在倾斜程度大于或等于预设角度阈值时,则可以确定第二平面为倾斜的平面;在倾斜程度小于预设角度阈值时,则可以确定第二平面为水平的平面。其中,预设角度阈值是预先配置的用于识别第二平面是否为倾斜的平面的最低角度值,本实施例对于其具体的数值范围不做限定,本领域技术人员可以根据具体的应用需求和设计场景进行设置,例如,预设角度阈值可以为10°、15°、20°或者30°等等。
在所述倾斜程度大于或等于预设角度阈值时,此时,在所述无人机降落 至所述降落平台上时,为了保证无人机能够平稳、固定地降落在降落平台上,可以对降落在所述降落平台上的所述无人机进行限位操作。具体的,本实施例对于对降落在降落平台上的无人机进行限位操作的具体实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,例如:在降落平台上预先配置有限位件,该限位件的上平面构成第二平面;在无人机降落在降落平台上时,可以通过设置于降落平台上的传感器检测无人机的降落位置,而后根据降落位置调整预先配置在降落平台上的限位件突出于第二平面,从而实现了通过限位件可以将无人机限位在降落平台上。
在一些实例中,对降落在所述降落平台上的所述无人机进行限位操作可以包括:
步骤S4041:对所述降落平台进行充电,以使所述无人机吸附在所述降落平台上,其中,所述降落平台是由磁介质材料构成。
其中,降落平台是由磁介质材料构成,具体的,磁介质材料可以包括抗磁体、顺磁体、铁磁体、反铁磁体和亚铁磁体五大类,本领域技术人员可以根据具体的应用需求和设计需求任意选择具体的磁介质材料。而后,在对降落平台进行充电之后,降落平台可以具有磁性,从而可以吸附住降落在降落平台上的无人机,进而有效地避免了无人机在降落平台上进行来回移动,尤其是在降落平台所在的第二平面是倾斜的情况下,可以有效地避免无人机在降落平台上下滑。
本实施例中,通过获取所述第二平面的倾斜程度,在所述倾斜程度大于或等于预设角度阈值时,则在所述无人机降落至所述降落平台上时,对降落在所述降落平台上的所述无人机进行限位操作,有效地保证了无人机可以稳定地降落在降落平台上,进一步提高了对无人机降落进行控制的安全可靠性。
图5为图2中提供的根据第一位姿信息、第二位姿信息和第三位姿信息确定降落平台的目标位姿信息的流程示意图;在上述实施例的基础上,继续参考附图5所示,本实施例对于根据第一位姿信息、第二位姿信息和第三位 姿信息确定降落平台的目标位姿信息的具体实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,较为优选的,本实施例中的根据第一位姿信息、第二位姿信息和第三位姿信息确定降落平台的目标位姿信息可以包括:
步骤S501:确定第一位姿信息与第二位姿信息和第三位姿信息之间所构成的坐标系旋转矩阵。
步骤S502:通过第一位姿信息、第二位姿信息、第三位姿信息和坐标系旋转矩阵,确定降落平台的目标位姿信息,目标位姿信息包括目标姿态信息和目标角度信息。
在对无人机进行降落控制时,由于无人机所在的坐标系、基座所在的坐标系不同,因此,在获取到第一位姿信息、第二位姿信息和第三位姿信息之后,可以确定第一位姿信息、第二位姿信息和第三位姿信息之间所构成的坐标系旋转矩阵,该坐标系旋转矩阵用于标识无人机所在的坐标系与基座所在的坐标系之间存在的坐标系偏移量,而后可以基于坐标系旋转矩阵,利用第一位姿信息、第二位姿信息和第三位姿信息进行分析处理,从而确定降落平台的目标位姿信息,该目标位姿信息可以包括目标姿态信息和目标角度信息。
举例来说,第一位姿信息R1可以R1_pitch轴、R1_roll轴以及R1_yaw轴,第二位姿信息R2可以包括R2_pitch轴、R2_roll轴以及R2_yaw轴,第三位姿信息R3可以包括R3_pitch轴、R3_roll轴以及R3_yaw轴。而后可以确定与第一位姿信息R1、第二位姿信息R2以及第三位姿信息R3所对应的坐标系旋转矩阵H,而后可以基于坐标系旋转矩阵H,对第一位姿信息R1、第二位姿信息R2以及第三位姿信息R3进行分析处理,确定降落平台的目标位姿信息R,以便利用目标位姿信息R对降落平台进行调整和控制。
本实施例中,通过确定第一位姿信息、第二位姿信息和第三位姿信息之间所构成的坐标系旋转矩阵,而后通过第一位姿信息、第二位姿信息、第三位姿信息和坐标系旋转矩阵,确定降落平台的目标位姿信息,有效地提高了 对目标位姿信息进行确定的准确可靠性,进一步保证了该方法的实用性。
图6为图2中提供的根据目标位姿信息对降落平台的位姿进行调整的流程示意图;在上述实施例的基础上,继续参考附图6所示,本实施例对于根据目标位姿信息对降落平台的位姿进行调整的具体实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,较为优选的,本实施例中的根据目标位姿信息对降落平台的位姿进行调整可以包括:
步骤S601:根据目标位姿信息生成控制信号。
步骤S602:将控制信号发送至驱动设备,以使驱动设备根据控制信号对降落平台的位姿进行调整,驱动设备设置于基座上。
其中,在获取到目标位姿信息之后,可以对目标位姿信息进行分析处理,从而可以生成控制信号,而后可以将控制信号发送至驱动设备,以使驱动设备可以根据控制信号对降落平台的位姿进行调整。具体的,驱动设备可以包括多个电机和用于控制电机的电机控制单元;驱动设备根据控制信号对降落平台的位姿进行调整可以包括:
步骤S6021:电机控制单元根据控制信号对电机进行控制,以通过电机对降落平台的位姿进行调整。
参考附图7所示,以驱动设备包括四个电机为例进行说明,四个电机包括1号电机、2号电机、3号电机和4号电机,具体的,1号电机、2号电机和3号电机可以为主用电机,4号电机为备用电机。上述四个电机的设置位置可以分别为:1号电机的第一位置信息为(x1,y1,z1),2号电机的第二位置信息为(x2,y2,z2),3号电机的第三位置信息为(x3,y3,z3),4号电机的第四位置信息为(x4,y4,z4),其中,x1=x3,x2=x4,y1=y2,y3=y4。
具体的,在对降落平台的位姿进行调整的过程中,由于降落平台的位姿与电机的z轴信息有关,因此,可以通过对电机的z轴位置进行调整来实现。假设,获取降落平台的初始姿态为R_roll和R_pitch,其中,
Figure PCTCN2019130384-appb-000001
Figure PCTCN2019130384-appb-000002
获取到降落平台的目标姿态为
Figure PCTCN2019130384-appb-000003
Figure PCTCN2019130384-appb-000004
在对电机的z轴信息进行调整的过程中,假设z1`、z2`和z3`可以为确定值,且z1`与z1相等,则可以得到dz1=z1`-z1=0,dz2=z2`-z2,dz3=z3`-z3。在获得上述z轴偏移量之后,即可以基于上述的z轴偏移量生成与上述1号电机、2号电机和3号电机相对应的距离控制信号L1、L2和L3,其中,电机控制信号L1、L2和L3可以分别用于标识与1号电机、2号电机和3号电机运转1周时,电机连接点在z轴方向上的运转距离。
并且,还可以基于上述的z轴偏移量来确定电机的运转角度,具体的,1号电机的运转角度为0,2号电机的
Figure PCTCN2019130384-appb-000005
3号电机的
Figure PCTCN2019130384-appb-000006
Figure PCTCN2019130384-appb-000007
在获取到上述电机的运转角度和运转距离之后,可以利用运转距离和运转角度对电机进行控制,实现了通过电机对降落平台的位姿进行调整,从而可以有效地保证了无人机可以平稳地降落至降落平台上。
在上述实施例的基础上,本实施例提供了另一种根据目标位姿信息对降落平台的位姿进行调整的实现方式,具体的包括:
步骤S701:根据目标位姿信息对降落平台的位姿进行调整,使得降落平台相对于基座移动。
具体的,在获取到目标位姿信息之后,可以根据目标位姿信息对降落平台的位姿进行调整,其中,降落平台设置于基座上,在降落平台的位姿进行调整时,使得降落平台可以相对于基座进行移动。
本实施例中,在获取到目标位姿信息之后,通过目标位姿信息对降落平台的位姿进行调整,从而使得降落平台可以相对于基座进行移动,进而实现了对降落平台进行调整的稳定可靠性,进一步保证了无人机可以平稳地降落至降落平台上。
在上述实施例的基础上,本实施例提供了另一种确定降落平台的目标位 姿信息的实现方式,具体的,本实施例中的根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息可以包括:
步骤S801:获取所述降落平台的位置信息。
步骤S802:根据所述位置信息、第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息。
其中,为了能够保证无人机可以准确地降落在降落平台上,在获取降落平台的目标位姿信息时,可以先获取降落平台的位置信息,具体的,获取所述降落平台所在的位置信息可以包括:通过设置于无人机上的视觉传感器获取所述降落平台的位置信息,其中,视觉传感器可以为设置于无人机上的下视传感器。在获取到降落平台的位置信息之后,可以根据所述位置信息、第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息,可以理解的是,位于不同位置信息处的降落平台,即使第一位姿信息、第二位姿信息和第三位姿信息均相同,但是由于降落平台的位置信息不同,所获得降落平台的目标位姿信息也是不同的。
本实施例中,通过获取所述降落平台的位置信息,并根据所述位置信息、第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息,有效地提高了对降落平台的目标位姿信息进行获取的准确可靠性,进而提高了对无人机进行降落控制的准确性。
在上述任意一个实施例的基础上,为了提高对无人机进行降落控制的准确性,本实施例中的方法还可以包括:
步骤S901:获取所述降落平台的移动速度、以及所述无人机与所述降落平台之间的距离信息。
步骤S902:根据所述移动速度和所述距离信息对所述无人机的运行速度进行调整。
其中,在控制无人机进行降落操作时,可以获取到降落平台的移动速度,可以理解的是,降落平台的移动速度可以大于或等于0,在降落平台的移动 速度大于0时,则说明该降落平台处于运动状态,在降落平台的移动速度等于0时,则说明该降落平台处于静止状态。并且,还可以获取无人机与降落平台之间的距离信息,具体的,获取所述无人机与所述降落平台之间的距离信息可以包括:通过设置于无人机上的视觉传感器获取所述无人机与所述降落平台之间的距离信息。
在获取到移动速度和距离信息之后,可以根据移动速度和距离信息对无人机的运行速度进行调整,具体的,根据所述移动速度和所述距离信息对所述无人机的运行速度进行调整可以包括:
步骤S9021:在所述移动速度大于0时,根据所述距离信息对所述无人机的运行速度进行调整,以使得所述无人机与所述降落平台共速。或者,
步骤S9022:在所述移动速度等于0时,根据所述距离信息的减小,降低所述无人机的运行速度。
其中,在获取到降落平台的移动速度之后,可以对移动速度进行分析识别,在移动速度大于0时,则说明降落平台处于运动状态,此时,可以根据无人机与降落平台之间的距离信息对无人机的运动速度进行调整,使得无人机与降落平台共速,即无人机的运行速度与降落平台的移动速度相同。在移动速度等于0时,则说明降落平台处于静止状态,此时,则可以根据距离信息直接对无人机的运行速度进行调整,即随着距离信息的不断减小,可以降低无人机的运动速度,以使得无人机可以平稳地降落在降落平台上。
本实施例中,通过获取所述降落平台的移动速度、以及所述无人机与所述降落平台之间的距离信息,根据所述移动速度和所述距离信息对所述无人机的运行速度进行调整,进一步保证了无人机可以稳定地降落在降落平台上,有效地提高了该方法使用的安全可靠性。
图8为本发明实施例提供的一种无人机降落控制装置的结构示意图;参考附图8所示,本实施例提供了一种无人机降落控制装置,该无人机降落控制装置可以应用于控制终端、无人机或无人机基站。并且,该无人机降落 控制装置可以执行上述图2所示的无人机降落控制方法。具体的,该无人机降落控制装置可以包括:
存储器82,用于存储计算机程序;
处理器81,用于运行存储器82中存储的计算机程序以实现:
在无人机进行降落操作时,获取无人机的第一位姿信息、基座的第二位姿信息和降落平台的第三位姿信息,其中,降落平台设置于基座上,降落平台用于接收降落的无人机;
根据第一位姿信息、第二位姿信息和第三位姿信息确定降落平台的目标位姿信息;
根据目标位姿信息对降落平台的位姿进行调整,以使无人机降落至降落平台。
其中,无人机降落控制装置的结构中还可以包括通信接口83,用于电子设备与其他设备或通信网络通信。
进一步的,无人机降落控制方法应用于控制终端,处理器81,还用于:获取降落请求操作,以触发降落请求指令,降落请求指令用于控制无人机进行降落操作;根据降落请求操作,控制无人机进行降落操作。
进一步的,在处理器81获取无人机的第一位姿信息时,处理器81,还用于:通过设置于无人机上的第一惯性测量单元,获取第一位姿信息。
进一步的,在处理器81获取基座的第二位姿信息时,处理器81,还用于:通过设置于基座上的第二惯性测量单元,获取第二位姿信息。
进一步的,在处理器81获取降落平台的第三位姿信息时,处理器81,还用于:通过设置于降落平台上的第三惯性测量单元,获取第三位姿信息。
进一步的,处理器81,还用于:获取无人机上脚架所在的第一平面以及降落平台所在的第二平面;控制第一平面与第二平面相对应。
进一步的,在处理器81控制第一平面与第二平面相对应时,处理器81,还用于:控制第一平面与第二平面相平行。
进一步的,处理器81,还用于:获取所述第二平面的倾斜程度;在所述倾斜程度大于或等于预设角度阈值时,则在所述无人机降落至所述降落平台上时,对降落在所述降落平台上的所述无人机进行限位操作。
进一步的,在所述处理器81对降落在所述降落平台上的所述无人机进行限位操作时,所述处理器81,还用于:对所述降落平台进行充电,以使所述无人机吸附在所述降落平台上,其中,所述降落平台是由磁介质材料构成。
进一步的,在处理器81根据第一位姿信息、第二位姿信息和第三位姿信息确定降落平台的目标位姿信息时,处理器81,还用于:确定第一位姿信息与第二位姿信息和第三位姿信息之间所构成的坐标系旋转矩阵;通过第一位姿信息、第二位姿信息、第三位姿信息和坐标系旋转矩阵,确定降落平台的目标位姿信息,目标位姿信息包括目标姿态信息和目标角度信息。
进一步的,在处理器81根据目标位姿信息对降落平台的位姿进行调整时,处理器81,还用于:根据目标位姿信息生成控制信号;将控制信号发送至驱动设备,以使驱动设备根据控制信号对降落平台的位姿进行调整,驱动设备设置于基座上。
进一步的,驱动设备包括多个电机和用于控制电机的电机控制单元;驱动设备根据控制信号对降落平台的位姿进行调整,包括:电机控制单元根据控制信号对电机进行控制,以通过电机对降落平台的位姿进行调整。
进一步的,在处理器81根据目标位姿信息对降落平台的位姿进行调整时,处理器81,还用于:根据目标位姿信息对降落平台的位姿进行调整,使得降落平台相对于基座移动。
进一步的,在处理器81根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息时,处理器81,还用于:获取所述降落平台的位置信息;根据所述位置信息、第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息。
进一步的,在处理器81获取所述降落平台的位置信息时,处理器81, 还用于:通过设置于无人机上的视觉传感器获取所述降落平台的位置信息。
进一步的,处理器81,还用于:获取所述降落平台的移动速度、以及所述无人机与所述降落平台之间的距离信息;根据所述移动速度和所述距离信息对所述无人机的运行速度进行调整。
进一步的,在处理器81获取所述无人机与所述降落平台之间的距离信息时,处理器81,还用于:通过设置于无人机上的视觉传感器获取所述无人机与所述降落平台之间的距离信息。
进一步的,在处理器81根据所述移动速度和所述距离信息对所述无人机的运行速度进行调整时,处理器81,还用于:在所述移动速度大于0时,根据所述距离信息对所述无人机的运行速度进行调整,以使得所述无人机与所述降落平台共速;或者,在所述移动速度等于0时,根据所述距离信息的减小,降低所述无人机的运行速度。
图8所示装置可以执行图2-图7所示实施例的方法,本实施例未详细描述的部分,可参考对图2-图7所示实施例的相关说明。该技术方案的执行过程和技术效果参见图2-图7所示实施例中的描述,在此不再赘述。
另外,本发明实施例提供了一种计算机存储介质,用于储存电子设备所用的计算机软件指令,其包含用于执行上述图2-图7所示方法实施例中无人机降落控制方法所涉及的程序。
本实施例的又一方面提供了一种控制终端,该控制终端可以用于控制无人机,具体的,该控制终端可以包括上述图8所示的无人机降落控制装置。
本实施例的控制终端中的无人机降落控制装置的具体结构、实现过程和实现效果与上述图8所示装置的具体结构、实现过程和实现效果相同,具体可参考上述对图8所示实施例的相关说明,在此不再赘述。
本实施例的另一方面提供了一种无人机,该无人机可以包括上述图8所示的无人机降落控制装置。
本实施例的无人机中的无人机降落控制装置的具体结构、实现过程和 实现效果与上述图8所示装置的具体结构、实现过程和实现效果相同,具体可参考上述对图8所示实施例的相关说明,在此不再赘述。
本实施例的又一方面提供了一种无人机基站,该无人机基站可以用于接收降落的无人机,具体的,该无人机基站可以包括上述图8所示的无人机降落控制装置。
本实施例的无人机基站中的无人机降落控制装置的具体结构、实现过程和实现效果与上述图8所示装置的具体结构、实现过程和实现效果相同,具体可参考上述对图8所示实施例的相关说明,在此不再赘述。
本实施例的又一方面提供了一种无人机系统,该无人机系统可以包括用于接收降落的无人机的无人机基站,该无人机基站的具体结构、实现过程和实现效果与上述实施例中所示的无人机基站的具体结构、实现过程和实现效果相同,具体可参考上述实施例的相关说明,在此不再赘述。
图9为本发明实施例提供的一种无人机基站的结构透视图;图10为图9中提供的基座的结构透视图;图11为本发明实施例提供的无人机降落至无人机基站上的结构示意图;参考附图9-11所示,本实施例提供了一种无人机基站,该无人机基站用于接收降落的无人机,可以理解的是,无人机基站可以在不同的应用场景中具有不同的表现形式,例如:无人机基站可以为以下至少之一:船舶无人机基站、海洋平台无人机基站、汽车无人机基站、火车无人机基站等等。具体的,该无人机基站包括:
基座901;
降落平台902,设置于基座901上,用于接收降落的无人机1001;
第一惯性测量单元903,设置于基座901上,用于获取基座901的位姿信息;
第二惯性测量单元904,设置于降落平台902上,用于获取降落平台902的位姿信息;
驱动设备905,设置于基座901上,用于获取控制信号,并基于控制信 号对降落平台902的位姿进行调整。
其中,对于基座901的形状结构不做限定,本领域技术人员可以根据具体的应用需求进行设置,例如,基座901可以为圆形基座、方形基座或者矩形基座等等。另外,对于降落平台902设置于基座901上的具体连接方式不做限定,本领域技术人员可以根据具体的应用需求进行设置,例如:降落平台902可以通过驱动设备905设置于基座901上,驱动设备905固定设置于基座901上;或者,降落平台902可以通过连接件设置于基座901上,连接件通过驱动设备905设置于基座901上等等;只要能够使得降落平台902相对于基座901可以进行移动即可,在此不再赘述。
另外,对于第一惯性测量单元903设置于基座901上的位置不做限定,本领域技术人员可以根据具体的应用需求进行设置,例如,可以将第一惯性测量单元903设置于基座901的前侧端、左侧端、右侧端或者后侧端等等,只要能够实现通过第一惯性测量单元903可以稳定地获取基座901的位姿信息即可。相类似的,对于第二惯性测量单元904设置于降落平台902上的位置不做限定,本领域技术人员可以根据具体的应用需求进行设置,例如,可以将第二惯性测量单元904设置于降落平台902的前侧端、左侧端、右侧端或者后侧端等等,只要能够实现通过第二惯性测量单元904可以稳定地获取降落平台902的位姿信息即可。另外,降落平台902还可以配置有供电装置,例如:降落平台902可以配置有相对应的外部供电电源或者太阳能供电装置等等,以实现对降落平台902的位姿信息进行调整。
此外,本实施例对于驱动设备905的具体结构不做限定,本领域技术人员可以根据具体的应用需求对驱动设备905的具体结构进行设置,较为优选的,本实施例中的驱动设备905可以包括:多个电机,设置于基座901上,用于对降落平台902的位姿进行调整,使得降落平台902相对于基座901移动;电机控制单元,用于获取控制信号,并根据控制信号对电机进行控制,以实现对降落平台902的位姿进行调整。进一步的,电机的个数为三个或四 个,并且,三个或者四个电机可以均匀地设置于基座901上,以通过对电机的控制对降落平台902的位姿进行调整。
在一些实例中,本实施例中的无人机基站可以包括:第一通信模块906,设置于基座901上,用于将基座901的位姿信息和降落平台902的位姿信息发送至控制终端;并用于接收控制终端发送的控制信号,并将控制信号发送至驱动设备905;
控制终端,用于控制无人机1001,用于接收基座901的位姿信息和降落平台902的位姿信息,并根据基座901的位姿信息和降落平台902的位姿信息确定控制信号。
具体的,控制终端上可以包括第三通信模块,该第三通信模块与第一通信模块906通信连接,从而无人机基站可以通过第一通信模块906和第三通信模块,将所获取到的基座901的位姿信息和降落平台902的位姿信息发送至控制终端,该控制终端获取到基座901的位姿信息和降落平台902的位姿信息,并对基座901的位姿信息和降落平台902的位姿信息进行分析处理,从而可以生成控制信号,而后控制终端可以将所生成的控制信号通过第三通信模块和第一通信模块906发送至无人机基站,从而使得无人机基站可以接收到控制终端发送的控制信号,并可以将控制信号发送至驱动设备905,以实现对降落平台902的位姿进行调整。
在另一些实例中,本实施例中的无人机基站可以包括:第一通信模块906,设置于基座901上,用于将基座901的位姿信息和降落平台902的位姿信息发送至无人机1001;并用于接收无人机1001发送的控制信号,并将控制信号发送至驱动设备905。
具体的,无人机1001上可以包括第二通信模块1002,该第二通信模块1002和第一通信模块906通信连接,从而无人机基站可以通过第一通信模块906和第二通信模块1002,将所获取到的基座901的位姿信息和降落平台902的位姿信息发送至无人机1001,该无人机1001获取到基座901的位姿信息 和降落平台902的位姿信息,并对基座901的位姿信息和降落平台902的位姿信息进行分析处理,从而可以生成控制信号,而后无人机1001可以将所生成的控制信号通过第二通信模块1002和第一通信模块906发送至无人机基站,从而使得无人机基站可以接收到无人机1001发送的控制信号,并可以将控制信号发送至驱动设备905,以实现对降落平台902的位姿进行调整。
在另一些实例中,本实施例中的无人机基站还可以包括:第一通信模块906,设置于基座901上,与无人机1001上的第二通信模块1002相连接,用于获取无人机1001的位姿信息;数据处理模块907,用于根据基座901的位姿信息、降落平台902的位姿信息和无人机1001的位姿信息确定控制信号,并将控制信号发送至驱动设备905。
具体的,无人机基站还可以包括第一通信模块906和数据处理模块907,无人机1001上可以包括第二通信模块1002,该第二通信模块1002和第一通信模块906通信连接,从而无人机1001可以通过第一通信模块906和第二通信模块1002,将所获取到的无人机1001的位姿信息发送至无人机基站,该无人机基站可以获取到无人机1001的位姿信息,而后可以利用数据处理模块907对基座901的位姿信息、降落平台902的位姿信息和无人机1001的位姿信息,并对基座901的位姿信息、降落平台902的位姿信息和无人机1001的位姿信息进行分析处理,从而可以生成控制信号,而后可以将控制信号发送至驱动设备905,以实现对降落平台902的位姿进行调整。
在另一些实例中,无人机1001可以包括:第三惯性测量单元1003,用于获得无人机上脚架所在的第一平面,并将第一平面通过第二通信模块1002和第三通信模块发送至控制终端;此时,降落平台902上的第二惯性测量单元904可以获取降落平台902所在的第二平面,并将第二平面通过第一通信模块906和第三通信模块发送至控制终端;在控制终端接收到第一平面和第二平面之后,可以控制第一平面与第二平面相对应,具体的,可以控制第一平面与第二平面相平行。
在另一些实例中,在控制终端获取到第二平面之后,还可以通过设置于降落平台902上的第二惯性测量单元904获取所述第二平面的倾斜程度,在所述倾斜程度大于或等于预设角度阈值时,则在所述无人机降落至所述降落平台902上时,对降落在所述降落平台902上的所述无人机进行限位操作,具体的,控制终端可以控制预设的供电装置对降落平台902进行充电,以使所述无人机吸附在所述降落平台902上,其中,所述降落平台902是由磁介质材料构成。
在另一些实例中,无人机1001可以包括:视觉传感器,该视觉传感器用于获取所述降落平台902的位置信息,并将降落平台902的位置信息通过第二通信模块1002和第三通信模块发送至控制终端,控制终端接收到位置信息之后,可以结合第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台902的目标位姿信息。
在另一些实例中,无人机1001可以包括:视觉传感器,该视觉传感器用于获取无人机与降落平台之间的距离信息,而后将距离信息发送至控制终端;降落平台902可以包括速度传感器,用于获取降落平台的移动速度,而后将移动速度发送至控制终端,控制终端获取到移动速度和距离信息之后,可以根据所述移动速度和所述距离信息对所述无人机的运行速度进行调整。具体的,在所述移动速度大于0时,根据所述距离信息对所述无人机的运行速度进行调整,以使得所述无人机与所述降落平台共速。或者,在所述移动速度等于0时,根据所述距离信息的减小,降低所述无人机的运行速度。
本实施例提供的无人机基站,通过设置于基座901上的降落平台902,而后通过设置于基座901上的驱动设备905对降落平台902的位姿进行调整,从而有效地实现了在无人机1001进行降落操作时,可以根据无人机1001的降落姿态实时地对降落平台的位姿进行调整,从而能够实现主动控制降落平台902的姿态与无人机1001的降落姿态相一致,保证无人机1001可以平稳、安全地降落至降落平台902上,进而提高了该无人机基站使用的安全可靠性。
图12为本发明实施例提供的一种无人机系统的结构示意图,参考附图12所示,本实施例提供了一种无人机系统,该无人机系统的使用范围广泛、可靠性高、成本低,能够在复杂条件下使得无人机进行平稳地降落操作。具体的,该无人机系统可以包括上述图9-图11所示的无人机基站。
其中,无人机基站可以包括:基座901、降落平台902、数据处理单元(包括:直流电流单元和控制单元)、驱动设备905(包括:多个电机以及电源系统)、第一通信模块906(例如:无线通信天线模块)、基座901上的第一惯性测量单元903、降落平台902上的第二惯性测量单元904等等。
在一些实例中,该无人机系统还可以包括:控制终端1101和无人机1001。
无人机1001可以包括:第三惯性测量单元1003、第二通信模块1002(例如:无线通信天线模块)。控制终端1101可以包括第三通信模块1102(例如:无线通信天线模块)和控制器(图中未示出),控制器中可以内置有姿态角度算法,该姿态角度算法用于对无人机的位姿信息、基座的位姿信息和降落平台的位姿信息进行分析处理。具体的,控制终端1101可以分别通过第三通信模块1102和第一通信模块906,获取基座901的位姿信息和降落平台902的位姿信息,具体的,控制终端1101可以通过第三通信模块1102和第二通信模块1002获取无人机1001的位姿信息,而后控制器可以利用内置的姿态角度算法对基座901的位姿信息、降落平台902的位姿信息和无人机1001的位姿信息进行分析处理,从而可以计算出降落平台902的目标位姿信息以及与该目标位姿信息相对应的控制信号,而后控制终端1101可以将降落平台902的目标位姿信息和控制信号发送至无人机基站,无人机基站可以根据所接收到的控制信号发送至驱动设备905,以根据控制信号对驱动设备905的调整实现对降落平台902的姿态进行调整的过程。
下面,对该无人机系统的具体应用过程进行说明:
步骤1、在控制终端1101获取到降落请求之后,可以使得控制终端1101上的第三通信模块1102与第一通信模块906和第二通信模块1002建立通信连接;
步骤2、在第三通信模块1102与第一通信模块906和第二通信模块1002建立通信连接之后,将第一惯性测量单元903、第二惯性测量单元904和第三惯性测量单元1003所采集的位姿信息可以通过第三通信模块1102传输给控制终端1101;
步骤3、控制终端1101可以利用姿态角度算法对第一惯性测量单元903、第二惯性测量单元904和第三惯性测量单元1003所采集的位姿信息进行分析处理,确定降落平台902的目标位姿信息;
步骤4、控制终端1101可以利用姿态角度算法对第一惯性测量单元903、第二惯性测量单元904和第三惯性测量单元1003所采集的位姿信息进行分析处理,输出与驱动设备905相对应的控制信号,而后,通过第三通信模块1102与第一通信模块906,可以将控制信号传输给数据处理模块907;
步骤5、数据处理模块907根据接收到的控制信号,控制驱动设备905调整降落平台902至目标位姿信息;
步骤6、获取下一时刻的第一惯性测量单元903、第二惯性测量单元904和第三惯性测量单元1003所采集的位姿信息,重复上述步骤1至步骤5,直至无人机1001完全降落。
可以理解的是,姿态角度算法也可以配置在无人机基站或者无人机1001上,从而使得无人机基站或者无人机1001也可以对第一惯性测量单元903、第二惯性测量单元904和第三惯性测量单元1003所采集的位姿信息进行分析处理,并生成与驱动设备905相对应的控制信号。
本实施例中提供的无人机系统,由于无人机1001与降落平台902之间的运动分离,且降落平台902的位姿可以通过驱动设备905进行调整,具体的,在无人机1001进行降落操作时,可以根据无人机1001的降落位姿实时地对 降落平台的位姿进行调整,从而能够实现主动地控制降落平台902的位姿与无人机1001的降落位姿保持一致,进一步保证了无人机1001可以平稳、安全地降落至降落平台902上,进而提高了该无人机系统使用的安全可靠性。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明 各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (50)

  1. 一种无人机降落控制方法,其特征在于,包括:
    在无人机进行降落操作时,获取所述无人机的第一位姿信息、基座的第二位姿信息和降落平台的第三位姿信息,其中,所述降落平台设置于所述基座上,所述降落平台用于接收降落的无人机;
    根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息;
    根据所述目标位姿信息对所述降落平台的位姿进行调整,以使所述无人机降落至所述降落平台。
  2. 根据权利要求1所述的方法,其特征在于,所述无人机降落控制方法应用于控制终端、无人机或无人机基站。
  3. 根据权利要求2所述的方法,其特征在于,所述无人机降落控制方法应用于控制终端,所述方法还包括:
    获取降落请求操作,以触发降落请求指令,所述降落请求指令用于控制所述无人机进行降落操作;
    根据所述降落请求操作,控制所述无人机进行降落操作。
  4. 根据权利要求1所述的方法,其特征在于,获取所述无人机的第一位姿信息,包括:
    通过设置于所述无人机上的第一惯性测量单元,获取所述第一位姿信息。
  5. 根据权利要求1所述的方法,其特征在于,获取基座的第二位姿信息,包括:
    通过设置于所述基座上的第二惯性测量单元,获取所述第二位姿信息。
  6. 根据权利要求1所述的方法,其特征在于,获取降落平台的第三位姿信息,包括:
    通过设置于所述降落平台上的第三惯性测量单元,获取所述第三位姿信息。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述无人机上脚架所在的第一平面以及所述降落平台所在的第二平面;
    控制所述第一平面与所述第二平面相对应。
  8. 根据权利要求7所述的方法,其特征在于,所述控制第一平面与所述第二平面相对应,包括:
    控制所述第一平面与所述第二平面相平行。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    获取所述第二平面的倾斜程度;
    在所述倾斜程度大于或等于预设角度阈值时,则在所述无人机降落至所述降落平台上时,对降落在所述降落平台上的所述无人机进行限位操作。
  10. 根据权利要求9所述的方法,其特征在于,对降落在所述降落平台上的所述无人机进行限位操作,包括:
    对所述降落平台进行充电,以使所述无人机吸附在所述降落平台上,其中,所述降落平台是由磁介质材料构成。
  11. 根据权利要求1所述的方法,其特征在于,根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息,包括:
    确定所述第一位姿信息与第二位姿信息和第三位姿信息之间所构成的坐标系旋转矩阵;
    通过所述第一位姿信息、第二位姿信息、第三位姿信息和所述坐标系旋转矩阵,确定所述降落平台的目标位姿信息,所述目标位姿信息包括目标姿态信息和目标角度信息。
  12. 根据权利要求1所述的方法,其特征在于,根据所述目标位姿信息对所述降落平台的位姿进行调整,包括:
    根据所述目标位姿信息生成控制信号;
    将所述控制信号发送至驱动设备,以使所述驱动设备根据所述控制信号 对所述降落平台的位姿进行调整,所述驱动设备设置于所述基座上。
  13. 根据权利要求12所述的方法,其特征在于,所述驱动设备包括多个电机和用于控制所述电机的电机控制单元;所述驱动设备根据所述控制信号对所述降落平台的位姿进行调整,包括:
    所述电机控制单元根据控制信号对所述电机进行控制,以通过所述电机对所述降落平台的位姿进行调整。
  14. 根据权利要求1所述的方法,其特征在于,根据所述目标位姿信息对所述降落平台的位姿进行调整,包括:
    根据所述目标位姿信息对所述降落平台的位姿进行调整,使得所述降落平台相对于所述基座移动。
  15. 根据权利要求1所述的方法,其特征在于,根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息,包括:
    获取所述降落平台的位置信息;
    根据所述位置信息、第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息。
  16. 根据权利要求15所述的方法,其特征在于,获取所述降落平台所在的位置信息,包括:
    通过设置于无人机上的视觉传感器获取所述降落平台的位置信息。
  17. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述降落平台的移动速度、以及所述无人机与所述降落平台之间的距离信息;
    根据所述移动速度和所述距离信息对所述无人机的运行速度进行调整。
  18. 根据权利要求17所述的方法,其特征在于,获取所述无人机与所述降落平台之间的距离信息,包括:
    通过设置于无人机上的视觉传感器获取所述无人机与所述降落平台之间的距离信息。
  19. 根据权利要求17所述的方法,其特征在于,根据所述移动速度和所述距离信息对所述无人机的运行速度进行调整,包括:
    在所述移动速度大于0时,根据所述距离信息对所述无人机的运行速度进行调整,以使得所述无人机与所述降落平台共速;或者,
    在所述移动速度等于0时,根据所述距离信息的减小,降低所述无人机的运行速度。
  20. 一种无人机降落控制装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现:
    在无人机进行降落操作时,获取所述无人机的第一位姿信息、基座的第二位姿信息和降落平台的第三位姿信息,其中,所述降落平台设置于所述基座上,所述降落平台用于接收降落的无人机;
    根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息;
    根据所述目标位姿信息对所述降落平台的位姿进行调整,以使所述无人机降落至所述降落平台。
  21. 根据权利要求20所述的装置,其特征在于,所述无人机降落控制装置应用于控制终端、无人机或无人机基站。
  22. 根据权利要求21所述的装置,其特征在于,所述无人机降落控制方法应用于控制终端,所述处理器,还用于:
    获取降落请求操作,以触发降落请求指令,所述降落请求指令用于控制所述无人机进行降落操作;
    根据所述降落请求操作,控制所述无人机进行降落操作。
  23. 根据权利要求20所述的装置,其特征在于,在所述处理器获取所述无人机的第一位姿信息时,所述处理器,还用于:
    通过设置于所述无人机上的第一惯性测量单元,获取所述第一位姿信息。
  24. 根据权利要求20所述的装置,其特征在于,在所述处理器获取基座的第二位姿信息时,所述处理器,还用于:
    通过设置于所述基座上的第二惯性测量单元,获取所述第二位姿信息。
  25. 根据权利要求20所述的装置,其特征在于,在所述处理器获取降落平台的第三位姿信息时,所述处理器,还用于:
    通过设置于所述降落平台上的第三惯性测量单元,获取所述第三位姿信息。
  26. 根据权利要求20所述的装置,其特征在于,所述处理器,还用于:
    获取所述无人机上脚架所在的第一平面以及所述降落平台所在的第二平面;
    控制所述第一平面与所述第二平面相对应。
  27. 根据权利要求26所述的装置,其特征在于,在所述处理器控制所述第一平面与所述第二平面相对应时,所述处理器,还用于:
    控制所述第一平面与所述第二平面相平行。
  28. 根据权利要求26所述的装置,其特征在于,所述处理器,还用于:
    获取所述第二平面的倾斜程度;
    在所述倾斜程度大于或等于预设角度阈值时,则在所述无人机降落至所述降落平台上时,对降落在所述降落平台上的所述无人机进行限位操作。
  29. 根据权利要求28所述的装置,其特征在于,在所述处理器对降落在所述降落平台上的所述无人机进行限位操作时,所述处理器,还用于:
    对所述降落平台进行充电,以使所述无人机吸附在所述降落平台上,其中,所述降落平台是由磁介质材料构成。
  30. 根据权利要求20所述的装置,其特征在于,在所述处理器根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息时,所述处理器,还用于:
    确定所述第一位姿信息与第二位姿信息和第三位姿信息之间所构成的坐 标系旋转矩阵;
    通过所述第一位姿信息、第二位姿信息、第三位姿信息和所述坐标系旋转矩阵,确定所述降落平台的目标位姿信息,所述目标位姿信息包括目标姿态信息和目标角度信息。
  31. 根据权利要求20所述的装置,其特征在于,在所述处理器根据所述目标位姿信息对所述降落平台的位姿进行调整时,所述处理器,还用于:
    根据所述目标位姿信息生成控制信号;
    将所述控制信号发送至驱动设备,以使所述驱动设备根据所述控制信号对所述降落平台的位姿进行调整,所述驱动设备设置于所述基座上。
  32. 根据权利要求31所述的装置,其特征在于,所述驱动设备包括多个电机和用于控制所述电机的电机控制单元;所述驱动设备根据所述控制信号对所述降落平台的位姿进行调整,包括:
    所述电机控制单元根据控制信号对所述电机进行控制,以通过所述电机对所述降落平台的位姿进行调整。
  33. 根据权利要求20所述的装置,其特征在于,在所述处理器根据所述目标位姿信息对所述降落平台的位姿进行调整时,所述处理器,还用于:
    根据所述目标位姿信息对所述降落平台的位姿进行调整,使得所述降落平台相对于所述基座移动。
  34. 根据权利要求20所述的装置,其特征在于,在所述处理器根据所述第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息时,所述处理器,还用于:
    获取所述降落平台的位置信息;
    根据所述位置信息、第一位姿信息、第二位姿信息和第三位姿信息确定所述降落平台的目标位姿信息。
  35. 根据权利要求34所述的装置,其特征在于,在所述处理器获取所述降落平台的位置信息时,所述处理器,还用于:
    通过设置于无人机上的视觉传感器获取所述降落平台的位置信息。
  36. 根据权利要求20所述的装置,其特征在于,所述处理器,还用于:
    获取所述降落平台的移动速度、以及所述无人机与所述降落平台之间的距离信息;
    根据所述移动速度和所述距离信息对所述无人机的运行速度进行调整。
  37. 根据权利要求36所述的装置,其特征在于,在所述处理器获取所述无人机与所述降落平台之间的距离信息时,所述处理器,还用于:
    通过设置于无人机上的视觉传感器获取所述无人机与所述降落平台之间的距离信息。
  38. 根据权利要求36所述的装置,其特征在于,在所述处理器根据所述移动速度和所述距离信息对所述无人机的运行速度进行调整时,所述处理器,还用于:
    在所述移动速度大于0时,根据所述距离信息对所述无人机的运行速度进行调整,以使得所述无人机与所述降落平台共速;或者,
    在所述移动速度等于0时,根据所述距离信息的减小,降低所述无人机的运行速度。
  39. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-19中任意一项所述的无人机降落控制方法。
  40. 一种控制终端,其特征在于,包括权利要求20-38中任意一项所述的无人机降落控制装置。
  41. 一种无人机,其特征在于,包括权利要求20-38中任意一项所述的无人机降落控制装置。
  42. 一种无人机基站,其特征在于,包括权利要求20-38中任意一项所述的无人机降落控制装置。
  43. 一种无人机基站,其特征在于,包括:
    基座;
    降落平台,设置于所述基座上,用于接收降落的无人机;
    第一惯性测量单元,设置于所述基座上,用于获取所述基座的位姿信息;
    第二惯性测量单元,设置于所述降落平台上,用于获取所述降落平台的位姿信息;
    驱动设备,设置于所述基座上,用于获取控制信号,并基于所述控制信号对所述降落平台的位姿进行调整。
  44. 根据权利要求43所述的无人机基站,其特征在于,还包括:
    第一通信模块,设置于所述基座上,用于将所述基座的位姿信息和所述降落平台的位姿信息发送至所述控制终端;并用于接收所述控制终端发送的控制信号,并将所述控制信号发送至所述驱动设备;
    控制终端,用于控制所述无人机,用于接收所述基座的位姿信息和所述降落平台的位姿信息,并根据所述基座的位姿信息和所述降落平台的位姿信息确定控制信号。
  45. 根据权利要求43所述的无人机基站,其特征在于,还包括:
    第一通信模块,设置于所述基座上,用于将所述基座的位姿信息和所述降落平台的位姿信息发送至所述无人机;并用于接收所述无人机发送的控制信号,并将所述控制信号发送至所述驱动设备。
  46. 根据权利要求43所述的无人机基站,其特征在于,还包括:
    第一通信模块,设置于所述基座上,与所述无人机上的第二通信模块相连接,用于获取所述无人机的位姿信息;
    数据处理模块,用于根据所述基座的位姿信息、降落平台的位姿信息和无人机的位姿信息确定控制信号,并将所述控制信号发送至所述驱动设备。
  47. 根据权利要求43-46中任意一项所述的无人机基站,其特征在于,所述驱动设备包括:
    多个电机,设置于所述基座上,用于对所述降落平台的位姿进行调整, 使得所述降落平台相对于所述基座移动;
    电机控制单元,用于获取控制信号,并根据所述控制信号对所述电机进行控制,以实现对所述降落平台的位姿进行调整。
  48. 根据权利要求47所述的无人机基站,所述电机的个数为三个或四个。
  49. 一种无人机系统,其特征在于,包括无人机和权利要求43-48中任意一项所述的无人机基站。
  50. 一种无人机系统,其特征在于,包括无人机和权利要求42中所述的无人机基站。
PCT/CN2019/130384 2019-12-31 2019-12-31 无人机降落控制方法、装置、无人机基站及无人机系统 WO2021134428A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/130384 WO2021134428A1 (zh) 2019-12-31 2019-12-31 无人机降落控制方法、装置、无人机基站及无人机系统
CN201980052716.7A CN112567307A (zh) 2019-12-31 2019-12-31 无人机降落控制方法、装置、无人机基站及无人机系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130384 WO2021134428A1 (zh) 2019-12-31 2019-12-31 无人机降落控制方法、装置、无人机基站及无人机系统

Publications (1)

Publication Number Publication Date
WO2021134428A1 true WO2021134428A1 (zh) 2021-07-08

Family

ID=75041167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130384 WO2021134428A1 (zh) 2019-12-31 2019-12-31 无人机降落控制方法、装置、无人机基站及无人机系统

Country Status (2)

Country Link
CN (1) CN112567307A (zh)
WO (1) WO2021134428A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250995A (zh) * 2023-11-20 2023-12-19 西安天成益邦电子科技有限公司 承载平台姿态矫正控制方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822007B (zh) * 2022-04-22 2023-11-11 藏識科技有限公司 飛行器停放方法與系統
CN115496930B (zh) * 2022-11-08 2023-03-21 之江实验室 一种图像处理方法、装置、存储介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094877A (zh) * 2016-07-18 2016-11-09 衢州赋腾信息科技有限公司 一种无人机着陆导航系统及控制方法
CN106371447A (zh) * 2016-10-25 2017-02-01 南京奇蛙智能科技有限公司 一种无人机全天候精准降落的控制方法
US20170225802A1 (en) * 2014-10-13 2017-08-10 Systems Engineering Associates Corporation Systems and methods for deployment and operation of vertical take-off and landing (vtol) unmanned aerial vehicles
CN109131922A (zh) * 2018-08-30 2019-01-04 上海复亚智能科技有限公司 一种无人机自动机场系统
CN109521800A (zh) * 2018-11-19 2019-03-26 广州杰超科技有限公司 一种旋翼无人机定点降落方法及基站
CN209311915U (zh) * 2018-11-19 2019-08-27 广州杰超科技有限公司 一种旋翼无人机定点降落基站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211943738U (zh) * 2019-12-31 2020-11-17 深圳市大疆创新科技有限公司 无人机基站、装置及无人机系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170225802A1 (en) * 2014-10-13 2017-08-10 Systems Engineering Associates Corporation Systems and methods for deployment and operation of vertical take-off and landing (vtol) unmanned aerial vehicles
CN106094877A (zh) * 2016-07-18 2016-11-09 衢州赋腾信息科技有限公司 一种无人机着陆导航系统及控制方法
CN106371447A (zh) * 2016-10-25 2017-02-01 南京奇蛙智能科技有限公司 一种无人机全天候精准降落的控制方法
CN109131922A (zh) * 2018-08-30 2019-01-04 上海复亚智能科技有限公司 一种无人机自动机场系统
CN109521800A (zh) * 2018-11-19 2019-03-26 广州杰超科技有限公司 一种旋翼无人机定点降落方法及基站
CN209311915U (zh) * 2018-11-19 2019-08-27 广州杰超科技有限公司 一种旋翼无人机定点降落基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250995A (zh) * 2023-11-20 2023-12-19 西安天成益邦电子科技有限公司 承载平台姿态矫正控制方法及系统
CN117250995B (zh) * 2023-11-20 2024-02-02 西安天成益邦电子科技有限公司 承载平台姿态矫正控制方法及系统

Also Published As

Publication number Publication date
CN112567307A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US20220026929A1 (en) Systems and methods for taking, processing, retrieving, and displaying images from unmanned aerial vehicles
US12012224B2 (en) Autonomous aerial vehicle hardware configuration
US10648809B2 (en) Adaptive compass calibration based on local field conditions
WO2021134428A1 (zh) 无人机降落控制方法、装置、无人机基站及无人机系统
CN106681369B (zh) 一种云台姿态控制方法及系统
JP6671375B2 (ja) 無人機の飛行補助方法
US9915955B2 (en) Extensible quadrotor body
CN107434034A (zh) 具有竖直起飞和着陆(vtol)功能的无人飞行器(uav)
CN103963963B (zh) 多旋翼飞行器的飞行控制方法及系统
CN111867932A (zh) 包含全向深度感测和避障空中系统的无人飞行器及其操作方法
US10703508B1 (en) Stereoscopic flight simulator with data acquisition
Huh et al. A vision-based automatic landing method for fixed-wing UAVs
WO2018072133A1 (zh) 控制移动设备的方法、控制系统和移动设备
CN106054903A (zh) 一种多旋翼无人机自适应降落方法及系统
CN104769496A (zh) 具有用于定位和交互的绳组件的飞行摄像机
WO2017185363A1 (zh) 无人飞行器的控制方法、装置及系统
CN105217054A (zh) 一种固定翼垂直起降无人机自动检测起降平台
CN112789672A (zh) 控制和导航系统、姿态优化、映射和定位技术
JP6281720B2 (ja) 撮像システム
CN109073747A (zh) 一种无人飞行器及无人飞行器的避障控制方法
CN211943738U (zh) 无人机基站、装置及无人机系统
CN106240807A (zh) 一种集光电探测一体化的无人机
WO2018223378A1 (zh) 无人飞行器的控制方法、设备及无人飞行器
CN109901438A (zh) 用于安防的高空搜索装置
KR101846466B1 (ko) 멀티로터 타입의 회전익 무인비행체 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958111

Country of ref document: EP

Kind code of ref document: A1