CN107074351B - 无人机的控制方法、装置、飞行控制器及无人飞行器 - Google Patents

无人机的控制方法、装置、飞行控制器及无人飞行器 Download PDF

Info

Publication number
CN107074351B
CN107074351B CN201680003175.5A CN201680003175A CN107074351B CN 107074351 B CN107074351 B CN 107074351B CN 201680003175 A CN201680003175 A CN 201680003175A CN 107074351 B CN107074351 B CN 107074351B
Authority
CN
China
Prior art keywords
unmanned vehicle
flight controller
failure
power supply
speed regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201680003175.5A
Other languages
English (en)
Other versions
CN107074351A (zh
Inventor
林灿龙
王立
商志猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Dajiang Innovations Technology Co Ltd
Original Assignee
Shenzhen Dajiang Innovations Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Dajiang Innovations Technology Co Ltd filed Critical Shenzhen Dajiang Innovations Technology Co Ltd
Publication of CN107074351A publication Critical patent/CN107074351A/zh
Application granted granted Critical
Publication of CN107074351B publication Critical patent/CN107074351B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • B64C25/18Operating mechanisms
    • B64C25/26Control or locking systems therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明实施例提供一种无人机的控制方法、装置、飞行控制器及无人飞行器,该方法包括:根据对无人飞行器(100)进行监测获得的监测信息,确定所述无人飞行器(100)是否故障;若所述无人飞行器(100)出现故障,则控制所述无人飞行器(100)的脚架释放。本实施例通过对飞行控制器(70)的故障检测、通信系统与地面站(112)的通讯故障检测、动力系统的故障检测,确定无人飞行器(100)是否故障,若无人飞行器(100)出现故障,则控制无人飞行器(100)的脚架释放,避免无人飞行器(100)出现紧急故障坠落时无法即时释放脚架,防止无人飞行器(100)触地时机体、云台、相机等设备受损。

Description

无人机的控制方法、装置、飞行控制器及无人飞行器
技术领域
本发明实施例涉及无人机领域,尤其涉及一种无人机的控制方法、装置、飞行控制器及无人飞行器。
背景技术
现有技术中多旋翼无人机安装有可变形的脚架,在无人机正常飞行时脚架可收起,在无人机降落时脚架可释放触地。
当无人机出现紧急故障时,无人机处于失控状态,在失控状态下无人机可能会发生坠机现象,由于无人机处于失控状态时,脚架无法被打开,则无人机从紧急故障产生到触地坠机过程中,脚架始终处于收起状态,导致无人机触地时机体、云台、相机等设备受损。
发明内容
本发明实施例提供一种无人机的控制方法、装置、飞行控制器及无人飞行器,以避免无人飞行器出现紧急故障坠落时无法即时释放脚架。
本发明实施例的一个方面是提供一种无人机的控制方法,包括:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
本发明实施例的另一个方面是提供一种控制装置,包括一个或多个处理器,所述处理器用于:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
本发明实施例的另一个方面是提供一种飞行控制器,包括一个或多个MCU,所述MCU用于:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
本发明实施例的另一个方面是提供一种无人飞行器,包括:机身、动力系统、飞行控制器、控制装置;
所述动力系统,安装在所述机身,用于提供飞行动力;
所述飞行控制器,与所述动力系统连接,用于控制所述无人飞行器飞行;
所述控制装置,与所述飞行控制器连接,用于检测所述飞行控制器是否故障,并在所述飞行控制器故障时,控制所述无人飞行器的脚架释放;
所述飞行控制器包括一个或多个MCU,在所述飞行控制器正常时,所述MCU用于:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
本发明实施例提供的无人机的控制方法、装置、飞行控制器及无人飞行器,通过对飞行控制器的故障检测、通信系统与地面站的通讯故障检测、动力系统的故障检测,确定无人飞行器是否故障,若无人飞行器出现故障,则控制无人飞行器的脚架释放,避免无人飞行器出现紧急故障坠落时无法即时释放脚架,防止无人飞行器触地时机体、云台、相机等设备受损。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的无人机的控制方法的流程图;
图2为本发明另一实施例提供的无人机的控制方法的流程图;
图3为本发明另一实施例提供的无人机的控制方法的流程图;
图4为本发明另一实施例提供的无人机的控制方法的流程图;
图5为本发明另一实施例提供的无人机的控制方法的流程图;
图5A为本发明另一实施例提供的电源检测方法的流程图;
图5B为本发明另一实施例提供的电子调速器检测方法的流程图;
图5C为本发明另一实施例提供的电机检测方法的流程图;
图5D为本发明另一实施例提供的螺旋桨检测方法的流程图;
图6为本发明实施例提供的控制装置的结构图;
图7为本发明实施例提供的飞行控制器的结构图;
图8为本发明实施例提供的无人飞行器的结构图。
附图标记:
60-控制装置 61-处理器 62-电参数检测电路
63-信号监测电路 70-飞行控制器 71-微控制单元
72-信号监测电路 73-电参数检测电路 100-无人飞行器
102-支撑设备 104-拍摄设备 106-螺旋桨
107-电机 108-传感系统 110-通信系统
112-地面站 114-天线 117-电子调速器
118-飞行控制器 119-控制装置
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种无人机的控制方法。图1为本发明实施例提供的无人机的控制方法的流程图。如图1所示,本实施例中的方法,可以包括:
步骤S101、根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障。
本实施例适用于无人飞行器的故障检测,并根据检测到的故障信息,控制无人机即时释放脚架,以免无人飞行器出现紧急故障坠落时无人飞行器不能即时释放脚架。无人飞行器至少包括:动力系统、通信系统、飞行控制器,动力系统安装在机身,用于提供飞行动力;飞行控制器与动力系统连接,用于控制无人飞行器飞行;通信系统用于和地面站进行通信,地面站可以是遥控器、智能终端、虚拟现实头戴式显示设备如虚拟现实眼镜、虚拟显示头盔中的至少一种。
本实施例的执行主体可以是飞行控制器,也可以是中心板,中心板是无人飞行器中的辅助控制设备,当飞行控制器出现故障,无法控制无人飞行器正常飞行时,中心板替代飞行控制器,实现对无人飞行器的控制,具体如控制脚架释放,控制通信系统和地面站进行通讯等。
本实施例中,无人飞行器的故障检测可实现为飞行控制器的故障检测、通信系统与地面站的通讯故障检测、动力系统的故障检测,具体的,可对通信系统、飞行控制器和动力系统中的至少一个进行监测,根据监测到的监测信息,确定无人飞行器是否故障,以下实施例将分别介绍对通信系统、飞行控制器和动力系统的故障检测方法。
在一些实施例中,对无人飞行器的故障检测还可以实现为对无人飞行器的机械结构的故障检测,例如机架完整性检测。
步骤S102、若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
在本实施例中,通过中心板对飞行控制器进行故障检测,当中心板检测到飞行控制器出现故障时,由中心板控制无人飞行器的脚架释放。
当飞行控制器正常时,由飞行控制器对通信系统与地面站的通讯、动力系统进行故障检测;当通信系统与地面站通讯故障或动力系统故障时,飞行控制器控制无人飞行器的脚架释放。
本实施例通过对飞行控制器的故障检测、通信系统与地面站的通讯故障检测、动力系统的故障检测,确定无人飞行器是否故障,若无人飞行器出现故障,则控制无人飞行器的脚架释放,避免无人飞行器出现紧急故障坠落时无法即时释放脚架,防止无人飞行器触地时机体、云台、相机等设备受损。
本发明实施例提供一种无人机的控制方法。图2为本发明另一实施例提供的无人机的控制方法的流程图。如图2所示,在图1所示实施例的基础上,本实施例介绍飞行控制器对通信系统进行故障检测的方法,该方法可以包括:
步骤S201、监测所述通信系统与地面遥控器之间的通讯信道。
步骤S202、根据所述通讯信道上传输的信号,确定所述通信系统与地面遥控器之间的通讯是否故障。
在本实施例中,无人飞行器的通信系统包括接收机,该接收机可接收地面遥控器发送的无线信号,若接收机在预设时间内没有接收到地面遥控器发送的无线信号,则接收机向飞行控制器发送包括标识位的信息,该标识位表示该接收机与地面遥控器失去联系,则飞行控制器根据该标识位,确定通信系统与地面遥控器之间的通讯出现故障。
另外,飞行控制器还可以对通信系统与地面遥控器之间的通讯信道进行监测,根据在通讯信道上监测到的信号,确定通信系统与地面遥控器之间的通讯是否故障,一种可实现方式是:若在预设时间内监测到通讯信道上传输有信号,则确定通信系统与地面遥控器之间的通讯正常,若在预设时间内监测不到通讯信道上传输有信号,则确定通信系统与地面遥控器之间的通讯出现故障。
由于通信系统与地面遥控器之间的通讯故障可以作为无人飞行器故障的一种,因此,当飞行控制器确定出通信系统与地面遥控器之间的通讯出现故障时,飞行控制器控制无人飞行器的脚架释放。
本实施例通过飞行控制器对通信系统与地面遥控器之间的通讯进行故障检测,当检测出通信系统与地面遥控器之间的通讯出现故障时,即时控制无人飞行器的脚架释放,以免无人飞行器出现紧急故障坠落时,地面遥控器无法正常控制无人飞行器,无人飞行器的脚架无法即时释放,进而防止无人飞行器触地时机体、云台、相机等设备受损。
本发明实施例提供一种无人机的控制方法。图3为本发明另一实施例提供的无人机的控制方法的流程图。如图3所示,在图1所示实施例的基础上,本实施例介绍中心板对飞行控制器进行故障检测的一种方法,该方法可以包括:
步骤S301、检测所述飞行控制器的供电装置的电参数;或者检测所述飞行控制器与所述供电装置之间的连接电路。
步骤S302、根据所述供电装置是否给所述飞行控制器供电,或者,根据所述飞行控制器与所述供电装置之间的连接电路是否导通,确定所述飞行控制器是否故障。
无人飞行器的动力系统包括:电源、电子调速器、电机、螺旋桨。飞行控制器与动力系统连接,具体的,飞行控制器与电子调速器连接,由于电子调速器连接有电源,电源可以给电子调速器供电,因此,电子调速器可以给飞行控制器供电。
另外,还可以采用单独的供电装置给飞行控制器供电。
为了检测飞行控制器的供电是否正常,中心板可以检测给飞行控制器供电的供电装置的电参数,例如输出电流、输出电压、输出功率,根据输出电流、输出电压、输出功率的值,确定供电装置是否给所述飞行控制器供电。或者,中心板还可以检测飞行控制器与所述供电装置之间的连接电路是否导通,根据连接电路的导通与否,确定供电装置是否正常给飞行控制器供电。
若供电装置出现异常,或飞行控制器与所述供电装置之间的连接电路出现异常,导致供电装置无法给飞行控制器正常供电,由于飞行控制器用于控制无人飞行器飞行,若供电装置无法给飞行控制器正常供电,将导致无人飞行器在飞行过程中失去控制,因此,中心板确定出飞行控制器的供电出现异常时,即时控制所述无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行。
本实施例通过中心板检测飞行控制器的供电装置的电参数,或者飞行控制器与供电装置之间的连接电路,确定供电装置是否出现异常,或飞行控制器与供电装置之间的连接电路是否出现异常,若异常,则确定飞行控制器的供电出现异常,即时控制无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行,提高了无人飞行器在飞行过程中的安全性。
本发明实施例提供一种无人机的控制方法。图4为本发明另一实施例提供的无人机的控制方法的流程图。如图4所示,在图1所示实施例的基础上,本实施例介绍中心板对飞行控制器进行故障检测的另一种方法,该方法可以包括:
步骤S401、监测所述飞行控制器与电子调速器之间的通讯链路;或者监测所述飞行控制器与所述通信系统之间的通讯链路。
步骤S402、根据所述飞行控制器与所述电子调速器之间的通讯链路是否故障,或者,根据所述飞行控制器与所述通信系统之间的通讯链路是否故障,确定所述飞行控制器是否故障。
在本实施例中,中心板还可以通过检测飞行控制器与其周围的其他设备的通讯是否故障,确定飞行控制器是否故障,具体的,中心板可以监测飞行控制器与电子调速器之间的通讯链路,或者,飞行控制器与通信系统之间的通讯链路,若飞行控制器与电子调速器之间的通讯链路故障,或者,飞行控制器与通信系统之间的通讯链路故障,则确定飞行控制器故障,即时控制所述无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行。
本实施例通过中心板检测飞行控制器与电子调速器之间的通讯链路是否故障,以及飞行控制器与通信系统之间的通讯链路是否故障,确定飞行控制器是否故障,若飞行控制器故障,则中心板即时控制无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行,提高了无人飞行器在飞行过程中的安全性。
本发明实施例提供一种无人机的控制方法。图5为本发明另一实施例提供的无人机的控制方法的流程图。如图5所示,在图1所示实施例的基础上,本实施例介绍飞行控制器对动力系统进行故障检测的方法,该方法可以包括:
步骤S501、根据对动力系统进行监测获得的监测信息,确定所述无人飞行器是否故障。
步骤S502、若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
无人飞行器的动力系统包括:电源、电子调速器、电机、螺旋桨。
本实施例中,对动力系统的监测可实现为对电源、电子调速器、电机、螺旋桨中的至少一个进行监测。下面分别介绍对电源、电子调速器、电机、螺旋桨的监测,以及根据获得的监测信息,确定所述无人飞行器是否故障的方法步骤:
1)对电源的监测,以及根据获得的监测信息,确定所述无人飞行器是否故障的方法,如图5A所示,该方法可以包括:
步骤S10、检测所述电源的电参数。
电源的电参数包括如下至少一种:电量、寿命、温度、内阻、输出电压、输出电流,本实施例不限定电源的电参数的检测方法。
步骤S11、根据所述电源的电参数,确定所述电源是否出现供电故障。
所述电源的供电故障包括如下至少一种:供电不足、电流扰动和电压扰动。
根据电源的电量、寿命、温度、内阻可确定电源是否供电不足;根据电源输出电压的频率、幅值、波形是否偏离正常状况,确定电源是否出现电压扰动;根据电源输出电流的频率、幅值、波形是否偏离正常状况,确定电源是否出现电流扰动。
2)对电子调速器的监测,以及根据获得的监测信息,确定所述无人飞行器是否故障的方法,如图5B所示,该方法可以包括:
步骤S20、监测所述电子调速器的输出信号。
步骤S21、根据所述电子调速器的输出信号,确定所述电子调速器是否输出脉冲宽度调制PWM信号。
步骤S22、根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确。
本实施例中,飞行控制器和电子调速器可以进行信息通讯,电子调速器根据飞行控制器发送的信号,向飞行控制器发送反馈信号,飞行控制器可根据电子调速器的反馈信号,确定该反馈信号是否为脉冲宽度调制(Pulse Width Modulation,简称PWM)信号,若是PWM信号,则进一步检测该PWM信号是否正确,检测PWM信号是否正确的一种可实现方式是:根据所述电子调速器输出的PWM信号与所述飞行控制器发送给所述电子调速器的PWM信号是否一致,确定所述电子调速器输出的PWM信号是否正确。
若电子调速器无法输出脉冲宽度调制PWM信号,或者输出的脉冲宽度调制PWM信号有误,则确定电子调速器出现故障。
3)对电机的监测,以及根据获得的监测信息,确定所述无人飞行器是否故障的方法,如图5C所示,该方法可以包括:
步骤S30、检测所述电机的电参数。
所述电机的电参数包括如下至少一种:电压、电流、转速、减速比、输出功率和效率。本实施例不限定电机的电参数的检测方法。
步骤S31、根据所述电机的电参数,确定所述电机是否出现动力故障。
所述电机的动力故障包括如下至少一种:动力不足和停止转动。
飞行控制器接收电子调速器发送的电机的转速,当电机的转速小于阈值时,可以确定电机动力不足,若电机的转速小于一个极小的阈值,则确定动力停止转动。
4)对螺旋桨的监测,以及根据获得的监测信息,确定所述无人飞行器是否故障的方法,如图5D所示,该方法可以包括:
步骤S40、检测所述电机的转速。
步骤S41、若所述电机的转速大于阈值,则确定所述螺旋桨故障。
所述螺旋桨故障包括所述螺旋桨射桨。
飞行控制器接收电子调速器发送的电机的转速,当电机的转速大于阈值时,表示螺旋桨旋转的速度大于了正常的速度,螺旋桨有射桨的可能,因此,确定螺旋桨出现射桨故障。
本实施例通过飞行控制器对电源、电子调速器、电机、螺旋桨中的至少一个进行监测,并根据各自的监测信息,确定电源、电子调速器、电机、螺旋桨是否出现故障,若电源、电子调速器、电机、螺旋桨中的至少一个出现故障,则确定无人飞行器的动力系统出现了故障,飞行控制器即时控制无人飞行器的脚架释放,避免无人飞行器出现紧急故障坠落时无法即时释放脚架,防止无人飞行器触地时机体、云台、相机等设备受损。
本发明实施例提供一种控制装置。图6为本发明实施例提供的控制装置的结构图,该控制装置具体可以是上述实施例中的中心板,如图6所示,控制装置60包括一个或多个处理器61,一个或多个处理器61用于:根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
另外,控制装置60还包括:电参数检测电路62,电参数检测电路62与处理器61电连接,电参数检测电路62用于检测飞行控制器的供电装置的电参数,或者检测所述飞行控制器与所述供电装置之间的连接电路。处理器61具体用于根据所述供电装置是否给所述飞行控制器供电,或者,根据所述飞行控制器与所述供电装置之间的连接电路是否导通,确定所述飞行控制器是否故障。
可选的,控制装置60还包括:信号监测电路63,信号监测电路63与处理器61电连接,用于监测所述飞行控制器与电子调速器之间的通讯链路,或者监测所述飞行控制器与所述通信系统之间的通讯链路。处理器61具体用于根据所述飞行控制器与所述电子调速器之间的通讯链路是否故障,或者,根据所述飞行控制器与所述通信系统之间的通讯链路是否故障,确定所述飞行控制器是否故障。
另外,当所述飞行控制器故障时,处理器61用于控制所述无人飞行器的脚架释放。
本发明实施例提供的控制装置的具体原理和实现方式均与图3、图4所示实施例类似,此处不再赘述。
本实施例通过中心板检测飞行控制器的供电装置的电参数,或者飞行控制器与供电装置之间的连接电路,确定供电装置是否出现异常,或飞行控制器与供电装置之间的连接电路是否出现异常,若异常,则确定飞行控制器的供电出现异常,即时控制无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行,提高了无人飞行器在飞行过程中的安全性;通过中心板检测飞行控制器与电子调速器之间的通讯链路是否故障,以及飞行控制器与通信系统之间的通讯链路是否故障,确定飞行控制器是否故障,若飞行控制器故障,则中心板即时控制无人飞行器的脚架释放,并替代飞行控制器控制无人飞行器飞行,提高了无人飞行器在飞行过程中的安全性。
本发明实施例提供一种飞行控制器。图7为本发明实施例提供的飞行控制器的结构图,该飞行控制器具体可以是上述方法实施例中的飞行控制器,如图7所示,飞行控制器70包括一个或多个微控制单元(Micro Controller Unit,简称MCU)71,微控制单元71用于:根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;若所述无人飞行器出现故障,则控制所述无人飞行器的脚架释放。
另外,飞行控制器70还包括信号监测电路72,信号监测电路72与微控制单元71电连接,用于监测所述无人飞行器的通信系统与地面遥控器之间的通讯信道;微控制单元71用于根据所述通讯信道上传输的信号,确定所述通信系统与地面遥控器之间的通讯是否故障。
可选的,飞行控制器70还包括电参数检测电路73,电参数检测电路73与微控制单元71电连接,用于检测所述无人飞行器的动力系统的电参数;微控制单元71具体用于根据所述动力系统的电参数,确定所述动力系统是否故障。
所述动力系统包括:电源、电子调速器、电机、螺旋桨。
本发明实施例提供的飞行控制器的具体原理和实现方式均与图1、图2所示实施例类似,此处不再赘述。
本实施例通过对飞行控制器的故障检测、通信系统与地面站的通讯故障检测、动力系统的故障检测,确定无人飞行器是否故障,若无人飞行器出现故障,则控制无人飞行器的脚架释放;通过飞行控制器对通信系统与地面遥控器之间的通讯进行故障检测,当检测出通信系统与地面遥控器之间的通讯出现故障时,即时控制无人飞行器的脚架释放,以免无人飞行器出现紧急故障坠落时,地面遥控器无法正常控制无人飞行器,无人飞行器的脚架无法即时释放,进而防止无人飞行器触地时机体、云台、相机等设备受损。
本发明实施例提供一种飞行控制器。在图7所示实施例的基础上,电参数检测电路73具体用于检测所述电源的电参数。微控制单元71具体用于根据所述电源的电参数,确定所述电源是否出现供电故障。所述电源的供电故障包括如下至少一种:供电不足、电流扰动和电压扰动。
信号监测电路72还用于监测所述电子调速器的输出信号;微控制单元71具体用于根据所述电子调速器的输出信号,确定所述电子调速器是否输出脉冲宽度调制PWM信号;根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确。可选的,微控制单元71根据所述电子调速器输出的PWM信号与所述飞行控制器发送给所述电子调速器的PWM信号是否一致,确定所述电子调速器输出的PWM信号是否正确。
另外,电参数检测电路73还用于检测所述电机的电参数;微控制单元71具体用于根据所述电机的电参数,确定所述电机是否出现动力故障。所述电机的电参数包括如下至少一种:电压、电流、转速、减速比、输出功率和效率。所述电机的动力故障包括如下至少一种:动力不足和停止转动。
此外,电参数检测电路73还用于检测所述电机的转速;微控制单元71具体用于判断所述电机的转速是否大于阈值,若是,则确定所述螺旋桨故障。所述螺旋桨故障包括所述螺旋桨射桨。
本发明实施例提供的飞行控制器的具体原理和实现方式均与图5所示实施例类似,此处不再赘述。
本实施例通过飞行控制器对电源、电子调速器、电机、螺旋桨中的至少一个进行监测,并根据各自的监测信息,确定电源、电子调速器、电机、螺旋桨是否出现故障,若电源、电子调速器、电机、螺旋桨中的至少一个出现故障,则确定无人飞行器的动力系统出现了故障,飞行控制器即时控制无人飞行器的脚架释放,避免无人飞行器出现紧急故障坠落时无法即时释放脚架,防止无人飞行器触地时机体、云台、相机等设备受损。
本发明实施例提供一种无人飞行器。图8为本发明实施例提供的无人飞行器的结构图,如图8所示,无人飞行器100包括:机身、动力系统、飞行控制器118和控制装置119,所述动力系统包括如下至少一种:电源、电机107、螺旋桨106和电子调速器117,动力系统安装在所述机身,用于提供飞行动力;飞行控制器118与所述动力系统通讯连接,用于控制所述无人飞行器飞行。
控制装置119具体为上述实施例中的中心板,控制装置119与飞行控制器118连接,用于检测飞行控制器118是否故障,并在飞行控制器118故障时,控制无人飞行器100的脚架释放,具体原理和实现方式均与上述实施例类似,控制装置119的结构也与上述实施例类似,此处不再赘述。
当飞行控制器118正常时,飞行控制器118对通信系统与地面站的通讯故障、动力系统的故障进行检测,具体原理和实现方式均与上述实施例类似,飞行控制器118的结构也与上述实施例类似,此处不再赘述,
另外,如图8所示,无人飞行器100还包括:传感系统108、通信系统110、支撑设备102、拍摄设备104,其中,支撑设备102具体可以是云台,通信系统110具体可以包括接收机,接收机用于接收地面站112的天线114发送的无线信号。
本实施例通过对飞行控制器的故障检测、通信系统与地面站的通讯故障检测、动力系统的故障检测,确定无人飞行器是否故障,若无人飞行器出现故障,则控制无人飞行器的脚架释放,避免无人飞行器出现紧急故障坠落时无法即时释放脚架,防止无人飞行器触地时机体、云台、相机等设备受损。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (55)

1.一种无人机的控制方法,其特征在于,包括:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,其中,所述无人飞行器包括:通信系统、飞行控制器、动力系统;
通过所述无人飞行器上预设的辅助控制设备对所述飞行控制器进行故障检测;
当所述飞行控制器正常时,若所述无人飞行器中的所述通信系统或所述动力系统出现故障,则通过所述飞行控制器控制所述无人飞行器的脚架释放;或者,
若所述无人飞行器中的所述飞行控制器出现故障,则通过所述无人飞行器上预设的辅助控制设备控制所述无人飞行器的脚架释放。
2.根据权利要求1所述的方法,其特征在于,对无人飞行器进行监测,包括:
对所述通信系统、所述飞行控制器和所述动力系统中的至少一个进行监测。
3.根据权利要求2所述的方法,其特征在于,对所述通信系统进行监测,包括:
监测所述通信系统与地面遥控器之间的通讯信道。
4.根据权利要求3所述的方法,其特征在于,根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
根据所述通讯信道上传输的信号,确定所述通信系统与地面遥控器之间的通讯是否故障。
5.根据权利要求2所述的方法,其特征在于,对所述飞行控制器进行监测,包括:
检测所述飞行控制器的供电装置的电参数;或者
检测所述飞行控制器与所述供电装置之间的连接电路。
6.根据权利要求5所述的方法,其特征在于,根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
根据所述供电装置是否给所述飞行控制器供电,或者,根据所述飞行控制器与所述供电装置之间的连接电路是否导通,确定所述飞行控制器是否故障。
7.根据权利要求2所述的方法,其特征在于,对所述飞行控制器进行监测,包括:
监测所述飞行控制器与电子调速器之间的通讯链路;或者
监测所述飞行控制器与所述通信系统之间的通讯链路。
8.根据权利要求7所述的方法,其特征在于,根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
根据所述飞行控制器与所述电子调速器之间的通讯链路是否故障,或者,根据所述飞行控制器与所述通信系统之间的通讯链路是否故障,确定所述飞行控制器是否故障。
9.根据权利要求2所述的方法,其特征在于,所述动力系统包括:电源、电子调速器、电机、螺旋桨。
10.根据权利要求9所述的方法,其特征在于,对所述动力系统进行监测,包括:
对所述电源、所述电子调速器、所述电机、所述螺旋桨中的至少一个进行监测。
11.根据权利要求10所述的方法,其特征在于,对所述电源进行监测,包括:
检测所述电源的电参数;
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
根据所述电源的电参数,确定所述电源是否出现供电故障。
12.根据权利要求11所述的方法,其特征在于,所述电源的供电故障包括如下至少一种:
供电不足、电流扰动和电压扰动。
13.根据权利要求10所述的方法,其特征在于,对所述电子调速器进行监测,包括:
监测所述电子调速器的输出信号;
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
根据所述电子调速器的输出信号,确定所述电子调速器是否输出脉冲宽度调制PWM信号;
根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确。
14.根据权利要求13所述的方法,其特征在于,根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确,包括:
根据所述电子调速器输出的PWM信号与所述飞行控制器发送给所述电子调速器的PWM信号是否一致,确定所述电子调速器输出的PWM信号是否正确。
15.根据权利要求10所述的方法,其特征在于,对所述电机进行监测,包括:
检测所述电机的电参数;
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
根据所述电机的电参数,确定所述电机是否出现动力故障。
16.根据权利要求15所述的方法,其特征在于,所述电机的电参数包括如下至少一种:
电压、电流、转速、减速比、输出功率和效率。
17.根据权利要求16所述的方法,其特征在于,所述电机的动力故障包括如下至少一种:
动力不足和停止转动。
18.根据权利要求10所述的方法,其特征在于,对所述螺旋桨进行监测,包括:
检测所述电机的转速;
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,包括:
若所述电机的转速大于阈值,则确定所述螺旋桨故障。
19.根据权利要求18所述的方法,其特征在于,所述螺旋桨故障包括所述螺旋桨射桨。
20.一种控制装置,其特征在于,包括一个或多个处理器,所述处理器用于:根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,其中,所述无人飞行器包括:飞行控制器;
对所述飞行控制器进行故障检测,若所述无人飞行器中的所述飞行控制器出现故障,则控制所述无人飞行器的脚架释放;
其中,所述控制装置为所述无人飞行器上预设的辅助控制设备。
21.根据权利要求20所述的控制装置,其特征在于,还包括:
电参数检测电路,所述电参数检测电路与所述处理器电连接,用于检测飞行控制器的供电装置的电参数,或者检测所述飞行控制器与所述供电装置之间的连接电路。
22.根据权利要求21所述的控制装置,其特征在于,所述处理器具体用于根据所述供电装置是否给所述飞行控制器供电,或者,根据所述飞行控制器与所述供电装置之间的连接电路是否导通,确定所述飞行控制器是否故障。
23.根据权利要求20所述的控制装置,其特征在于,还包括:
信号监测电路,所述信号监测电路与所述处理器电连接,用于监测所述飞行控制器与电子调速器之间的通讯链路,或者监测所述飞行控制器与通信系统之间的通讯链路。
24.根据权利要求23所述的控制装置,其特征在于,所述处理器具体用于根据所述飞行控制器与所述电子调速器之间的通讯链路是否故障,或者,根据所述飞行控制器与所述通信系统之间的通讯链路是否故障,确定所述飞行控制器是否故障。
25.根据权利要求22或24所述的控制装置,其特征在于,所述处理器具体用于当所述飞行控制器故障时,控制所述无人飞行器的脚架释放。
26.一种飞行控制器,其特征在于,包括一个或多个MCU,所述MCU用于:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障,其中,所述无人飞行器包括:通信系统、动力系统;
当所述飞行控制器正常时,若所述无人飞行器中的所述通信系统或动力系统出现故障,则控制所述无人飞行器的脚架释放;
所述飞行控制器是否正常是通过所述无人飞行器上预设的辅助控制设备进行故障检测得到的,所述辅助控制设备用于在所述飞行控制器出现故障时,控制所述无人飞行器的脚架释放。
27.根据权利要求26所述的飞行控制器,其特征在于,还包括:
信号监测电路,所述信号监测电路与所述MCU电连接,用于监测所述无人飞行器的通信系统与地面遥控器之间的通讯信道;
所述MCU具体用于根据所述通讯信道上传输的信号,确定所述通信系统与地面遥控器之间的通讯是否故障。
28.根据权利要求27所述的飞行控制器,其特征在于,还包括:
电参数检测电路,所述电参数检测电路与所述MCU电连接,用于检测所述无人飞行器的动力系统的电参数;
所述MCU具体用于根据所述动力系统的电参数,确定所述动力系统是否故障。
29.根据权利要求28所述的飞行控制器,其特征在于,所述动力系统包括:
电源、电子调速器、电机、螺旋桨。
30.根据权利要求29所述的飞行控制器,其特征在于,所述电参数检测电路具体用于检测所述电源的电参数;
所述MCU具体用于根据所述电源的电参数,确定所述电源是否出现供电故障。
31.根据权利要求30所述的飞行控制器,其特征在于,所述电源的供电故障包括如下至少一种:
供电不足、电流扰动和电压扰动。
32.根据权利要求29所述的飞行控制器,其特征在于,所述信号监测电路还用于监测所述电子调速器的输出信号;
所述MCU具体用于根据所述电子调速器的输出信号,确定所述电子调速器是否输出脉冲宽度调制PWM信号;根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确。
33.根据权利要求32所述的飞行控制器,其特征在于,所述MCU具体用于根据所述电子调速器输出的PWM信号与所述飞行控制器发送给所述电子调速器的PWM信号是否一致,确定所述电子调速器输出的PWM信号是否正确。
34.根据权利要求29所述的飞行控制器,其特征在于,所述电参数检测电路具体用于检测所述电机的电参数;
所述MCU具体用于根据所述电机的电参数,确定所述电机是否出现动力故障。
35.根据权利要求34所述的飞行控制器,其特征在于,所述电机的电参数包括如下至少一种:
电压、电流、转速、减速比、输出功率和效率。
36.根据权利要求35所述的飞行控制器,其特征在于,所述电机的动力故障包括如下至少一种:
动力不足和停止转动。
37.根据权利要求29所述的飞行控制器,其特征在于,所述电参数检测电路具体用于检测所述电机的转速;
所述MCU具体用于判断所述电机的转速是否大于阈值,若是,则确定所述螺旋桨故障。
38.根据权利要求37所述的飞行控制器,其特征在于,所述螺旋桨故障包括所述螺旋桨射桨。
39.一种无人飞行器,其特征在于,包括:机身、动力系统、通信系统、飞行控制器、控制装置;
所述动力系统,安装在所述机身,用于提供飞行动力;
所述飞行控制器,与所述动力系统连接,用于控制所述无人飞行器飞行;
所述控制装置,与所述飞行控制器连接,用于检测所述飞行控制器是否故障,并在所述控制装置检测到所述飞行控制器故障时,控制所述无人飞行器的脚架释放,所述控制装置为所述无人飞行器上预设的辅助控制设备;
所述飞行控制器包括一个或多个MCU,在所述飞行控制器正常时,所述MCU用于:
根据对无人飞行器进行监测获得的监测信息,确定所述无人飞行器是否故障;
当所述飞行控制器正常时,若所述无人飞行器中的所述动力系统或通信系统出现故障,则控制所述无人飞行器的脚架释放。
40.根据权利要求39所述的无人飞行器,其特征在于,所述控制装置包括一个或多个处理器,以及电参数检测电路;
所述电参数检测电路与所述处理器电连接,所述电参数检测电路用于检测所述飞行控制器的供电装置的电参数,或者检测所述飞行控制器与所述供电装置之间的连接电路。
41.根据权利要求40所述的无人飞行器,其特征在于,所述处理器具体用于根据所述供电装置是否给所述飞行控制器供电,或者,根据所述飞行控制器与所述供电装置之间的连接电路是否导通,确定所述飞行控制器是否故障。
42.根据权利要求39所述的无人飞行器,其特征在于,所述控制装置还包括:
信号监测电路,所述信号监测电路与处理器电连接,用于监测所述飞行控制器与电子调速器之间的通讯链路,或者监测所述飞行控制器与所述通信系统之间的通讯链路。
43.根据权利要求42所述的无人飞行器,其特征在于,所述处理器具体用于根据所述飞行控制器与所述电子调速器之间的通讯链路是否故障,或者,根据所述飞行控制器与所述通信系统之间的通讯链路是否故障,确定所述飞行控制器是否故障。
44.根据权利要求39所述的无人飞行器,其特征在于,所述飞行控制器还包括:
信号监测电路,所述信号监测电路与所述MCU电连接,用于监测所述无人飞行器的通信系统与地面遥控器之间的通讯信道;
所述MCU具体用于根据所述通讯信道上传输的信号,确定所述通信系统与地面遥控器之间的通讯是否故障。
45.根据权利要求44所述的无人飞行器,其特征在于,所述飞行控制器还包括:
电参数检测电路,所述电参数检测电路与所述MCU电连接,用于检测所述无人飞行器的动力系统的电参数;
所述MCU具体用于根据所述动力系统的电参数,确定所述动力系统是否故障。
46.根据权利要求45所述的无人飞行器,其特征在于,所述动力系统包括:
电源、电子调速器、电机、螺旋桨。
47.根据权利要求46所述的无人飞行器,其特征在于,所述电参数检测电路具体用于检测所述电源的电参数;
所述MCU具体用于根据所述电源的电参数,确定所述电源是否出现供电故障。
48.根据权利要求47所述的无人飞行器,其特征在于,所述电源的供电故障包括如下至少一种:
供电不足、电流扰动和电压扰动。
49.根据权利要求46所述的无人飞行器,其特征在于,所述信号监测电路还用于监测所述电子调速器的输出信号;
所述MCU具体用于根据所述电子调速器的输出信号,确定所述电子调速器是否输出脉冲宽度调制PWM信号;根据所述电子调速器输出的PWM信号,确定所述电子调速器输出的PWM信号是否正确。
50.根据权利要求49所述的无人飞行器,其特征在于,所述MCU具体用于根据所述电子调速器输出的PWM信号与所述飞行控制器发送给所述电子调速器的PWM信号是否一致,确定所述电子调速器输出的PWM信号是否正确。
51.根据权利要求46所述的无人飞行器,其特征在于,所述电参数检测电路具体用于检测所述电机的电参数;
所述MCU具体用于根据所述电机的电参数,确定所述电机是否出现动力故障。
52.根据权利要求51所述的无人飞行器,其特征在于,所述电机的电参数包括如下至少一种:
电压、电流、转速、减速比、输出功率和效率。
53.根据权利要求52所述的无人飞行器,其特征在于,所述电机的动力故障包括如下至少一种:
动力不足和停止转动。
54.根据权利要求46所述的无人飞行器,其特征在于,所述电参数检测电路具体用于检测所述电机的转速;
所述MCU具体用于判断所述电机的转速是否大于阈值,若是,则确定所述螺旋桨故障。
55.根据权利要求54所述的无人飞行器,其特征在于,所述螺旋桨故障包括所述螺旋桨射桨。
CN201680003175.5A 2016-09-30 2016-09-30 无人机的控制方法、装置、飞行控制器及无人飞行器 Expired - Fee Related CN107074351B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101367 WO2018058672A1 (zh) 2016-09-30 2016-09-30 无人机的控制方法、装置及无人飞行器

Publications (2)

Publication Number Publication Date
CN107074351A CN107074351A (zh) 2017-08-18
CN107074351B true CN107074351B (zh) 2019-08-27

Family

ID=59624221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680003175.5A Expired - Fee Related CN107074351B (zh) 2016-09-30 2016-09-30 无人机的控制方法、装置、飞行控制器及无人飞行器

Country Status (2)

Country Link
CN (1) CN107074351B (zh)
WO (1) WO2018058672A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528846A (ja) * 2017-10-26 2020-10-01 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 農業用機械の制御方法、装置及びシステム
CN107967798A (zh) * 2017-11-28 2018-04-27 佛山市安尔康姆航空科技有限公司 无人机接收器控制方法
CN108780328A (zh) * 2017-12-18 2018-11-09 深圳市大疆灵眸科技有限公司 一种云台控制方法、无人机、云台及存储介质
CN109976297B (zh) * 2017-12-27 2021-11-09 西安远智电子科技有限公司 一种失控保护的检测方法、装置及无人机
CN108227740A (zh) * 2017-12-29 2018-06-29 北京臻迪科技股份有限公司 飞行器断链控制方法及飞行器
CN110612252A (zh) * 2018-01-05 2019-12-24 深圳市大疆创新科技有限公司 无人机的故障检测方法、装置及可移动平台
CN108341072B (zh) * 2018-02-11 2021-06-04 深圳禾苗通信科技有限公司 无人机动力系统故障检测的方法、装置及无人机
JP6986686B2 (ja) * 2018-07-03 2021-12-22 パナソニックIpマネジメント株式会社 情報処理方法、制御装置及び係留移動体
US11188075B2 (en) * 2018-08-02 2021-11-30 Qualcomm Incorporated Controlling a robotic vehicle following flight controller signal loss
TWI696907B (zh) * 2018-11-26 2020-06-21 財團法人工業技術研究院 通訊失效偵測方法和裝置
WO2020142945A1 (zh) * 2019-01-09 2020-07-16 深圳市大疆创新科技有限公司 电机失效检测方法、设备及存储介质
CN109878715B (zh) * 2019-03-05 2021-10-08 广州极飞科技股份有限公司 无人飞行器的故障监测预警方法及无人飞行器
CN109871034A (zh) * 2019-03-25 2019-06-11 苏州极目机器人科技有限公司 飞行控制方法、装置及无人飞行器
CN112937886B (zh) * 2019-12-10 2023-05-02 广州极飞科技股份有限公司 无人机的故障检测方法及装置
CN113302129A (zh) * 2020-09-29 2021-08-24 深圳市大疆创新科技有限公司 无人飞行器的动力故障检测方法、装置及无人飞行器
CN117163305A (zh) * 2023-09-04 2023-12-05 黑龙江惠达科技股份有限公司 检测无人机动力系统的方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102464108A (zh) * 2010-11-01 2012-05-23 成都飞机工业(集团)有限责任公司 无人机发动机故障处理方法
CN103754358B (zh) * 2014-01-10 2016-01-27 深圳市大疆创新科技有限公司 一种无人飞行器的起落架控制方法及装置
CN104229126B (zh) * 2014-09-15 2016-06-01 中国运载火箭技术研究院 一种高可靠起落架控制系统
JP2016084120A (ja) * 2014-10-23 2016-05-19 鈴木 淳史 回転翼無人機
CN204264445U (zh) * 2014-11-28 2015-04-15 成都飞机工业(集团)有限责任公司 一种起落架收放系统
CN204489196U (zh) * 2015-02-12 2015-07-22 深圳大学 一种燃料动力多旋翼无人机
CN105000172A (zh) * 2015-07-27 2015-10-28 江西洪都航空工业集团有限责任公司 飞机起落架收放电气控制系统
CN205010480U (zh) * 2015-07-28 2016-02-03 西安航空制动科技有限公司 一种无人机起落架综合控制系统
CN105302043B (zh) * 2015-11-17 2019-02-22 重庆国飞通用航空设备制造有限公司 一种无人机的安全控制方法
CN105607516A (zh) * 2016-01-07 2016-05-25 谭圆圆 一种飞行监控装置及飞行状态监控方法
CN105928695A (zh) * 2016-05-11 2016-09-07 中国矿业大学 一种小型无人直升机机械零部件故障诊断系统及故障诊断方法

Also Published As

Publication number Publication date
CN107074351A (zh) 2017-08-18
WO2018058672A1 (zh) 2018-04-05

Similar Documents

Publication Publication Date Title
CN107074351B (zh) 无人机的控制方法、装置、飞行控制器及无人飞行器
US11065979B1 (en) Aircraft monitoring system and method for electric or hybrid aircrafts
US11338684B2 (en) Systems and methods for restricting power to a load to prevent engaging circuit protection device for an aircraft
WO2017000238A1 (zh) 一种电池管理方法、单体电池、飞行控制系统及无人机
CN105244924B (zh) 一种无人机配电系统及无人机
EP3264550B1 (en) Access control method for parallel direct current power supplies and device thereof
CN105135615B (zh) 空调器的调试方法和装置
EP2770664B1 (en) Ethernet power supply method, apparatus and system.
US11323214B2 (en) Aircraft control system
CN112083712A (zh) 油门控制信号处理方法、电子调速器、控制器及移动平台
CN106687371B (zh) 无人飞行器的控制方法、装置及系统
CN206350029U (zh) 一种用于大型客机的机载娱乐系统
CN105988480A (zh) 飞行控制系统命令选择和数据传输
CN205334112U (zh) 一种基于北斗系统的多旋翼无人机集成式安全控制器
CN210652733U (zh) 一种安全防护的充电桩
JPWO2019044842A1 (ja) 電池パック、制御装置、制御方法、及びプログラム
CN105576747B (zh) 多旋翼载人飞行器的电源管理系统及飞行器
CN104967216B (zh) 一种变电站及其监控系统及其监控方法
US9882400B2 (en) Power cabinet management method and apparatus, and battery management system
CN205469847U (zh) 电子调速器、控制器及移动平台
CN108964020A (zh) 一种物理隔离型防雷系统及物理隔离型防雷方法
CN107528705A (zh) 故障处理方法及装置
CN108594713A (zh) 电机控制方法、洗碗机及计算机可读存储介质
CN107416212A (zh) 一种多旋翼飞行器的电机调速系统以及多旋翼飞行器
CN107800186A (zh) 多旋翼载人飞行器电源的反馈控制方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190827