WO2018056358A1 - 発音装置、警報装置、及び感知器 - Google Patents
発音装置、警報装置、及び感知器 Download PDFInfo
- Publication number
- WO2018056358A1 WO2018056358A1 PCT/JP2017/034105 JP2017034105W WO2018056358A1 WO 2018056358 A1 WO2018056358 A1 WO 2018056358A1 JP 2017034105 W JP2017034105 W JP 2017034105W WO 2018056358 A1 WO2018056358 A1 WO 2018056358A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- sound
- signal
- pwm signal
- generation unit
- Prior art date
Links
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 79
- 230000008859 change Effects 0.000 claims description 47
- 238000001514 detection method Methods 0.000 claims description 22
- 230000005855 radiation Effects 0.000 claims description 7
- 239000000779 smoke Substances 0.000 description 19
- 238000004891 communication Methods 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B3/00—Audible signalling systems; Audible personal calling systems
- G08B3/10—Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K9/00—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
- G10K9/12—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
- G10K9/122—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/103—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
- G08B17/107—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
Definitions
- the present invention generally relates to a sounding device, an alarm device, and a sensor, and more particularly, to a sounding device, an alarm device, and a sensor that generate sounds having a plurality of frequencies.
- Patent Literature 1 Conventionally, a home alarm device (sensor) for detecting an alarm such as a fire or gas leak in a home has been disclosed (for example, see Patent Document 1).
- the residential alarm device of Patent Literature 1 includes a sounding device that outputs a sweep sound (alarm sound) whose frequency linearly changes with time when an abnormality is detected.
- the present invention has been made in view of the above reasons, and an object of the present invention is to provide a sounding device, an alarm device, and a sensor capable of sharing a configuration with sounds of a plurality of patterns having different tones. .
- the sound generation device includes a signal generation unit and a sound generation unit.
- the sound generation unit can generate a plurality of patterns of sounds having different tones.
- the signal generation unit outputs a signal corresponding to any one of the plurality of patterns to the sound generation unit.
- the sound generation unit generates a sound having a pattern corresponding to the signal from the signal generation unit.
- the alarm device is the above sound generator, and the sound generator generates an alarm sound.
- the sensor which concerns on 1 aspect of this invention is equipped with said alarm device and the detection part which detects a specific event.
- the alarm device generates an alarm sound when the detection unit detects the specific event.
- FIG. 1 is a block diagram of a sensor including a sounding device according to Embodiment 1 of the present invention.
- FIG. 2 is a perspective view of the sound generating device.
- FIG. 3 is a time chart of the PWM signal generated by the signal generation unit of the sound producing device.
- FIG. 4 is a time chart of the frequency and duty of the PWM signal generated by the signal generator of the sound producing device.
- FIG. 5 is a graph of the frequency characteristics of the casing of the sounding device.
- FIG. 6 is a time chart of the frequency and duty of the PWM signal generated by the signal generator of the sound producing device according to the modification of the first embodiment of the present invention.
- FIG. 1 is a block diagram of a sensor including a sounding device according to Embodiment 1 of the present invention.
- FIG. 2 is a perspective view of the sound generating device.
- FIG. 3 is a time chart of the PWM signal generated by the signal generation unit of the sound producing device.
- FIG. 4 is
- FIG. 7 is a time chart of the frequency and duty of the PWM signal generated by the signal generator of the sound producing device according to another modification of the first embodiment of the present invention.
- FIG. 8 is a block diagram of a sensor including a sounding device according to Embodiment 2 of the present invention.
- FIG. 9 is a block diagram of a sensor including a sounding device according to a modification of the second embodiment of the present invention.
- FIG. 1 is a block diagram of a sensor 100 including the sounding device 1 of the present embodiment.
- the sound generation device 1 of the present embodiment is a device that can generate sounds having a plurality of frequencies included in a human audible range (for example, 20 Hz to 20 kHz).
- the sounding device 1 is an alarm device 10 that generates a sound whose frequency changes with time as an alarm sound.
- the sensor 100 of this embodiment is a smoke sensor and includes an alarm device 10. When detecting the generation of smoke, the sensor 100 generates an alarm sound from the alarm device 10.
- the sound generation device 1 includes a signal generation unit 2, a sound generation unit 4, an acoustic circuit 3, and a housing 11 (see FIG. 2).
- the housing 11 houses the signal generator 2, the sound generator 4, and the acoustic circuit 3, and is attached to the ceiling of a building, for example.
- the housing 11 is provided with a power supply 5 that functions as an operating power supply for the sound producing device 1.
- the power source 5 is composed of a battery.
- the power source 5 is not limited to a battery.
- the sounding device 1 may be configured to use a commercial power supply as an operating power supply.
- the signal generator 2 is, for example, a microcomputer, and generates a PWM signal (PWM: PulsePWidth Modulation).
- PWM PulsePWidth Modulation
- the signal generator 2 is configured to be able to change the frequency of the PWM signal. That is, the signal generation unit 2 is configured to generate a signal (PWM signal) whose frequency and duty are variable.
- the signal generator 2 outputs the PWM signal to the acoustic circuit 3.
- the acoustic circuit 3 includes an inductor 31 and a switching element 32.
- the inductor 31 and the switching element 32 are connected in series between the output terminals of the power supply 5.
- the inductor 31 functions as a boost coil.
- the sound generating unit 4 is connected between both ends of the inductor 31.
- the sound generating unit 4 is composed of a separately excited piezoelectric buzzer, and the voltage across the inductor 31 is input.
- the sound generator 4 generates a sound having the frequency of the input voltage.
- the casing 11 is formed with a hole through which the sound generated by the sound generator 4 is passed, and the sound generated by the sound generator 4 reaches the outside of the casing 11 through this hole. Further, the magnitude of the instantaneous sound pressure of the sound generated by the sound generator 4 varies depending on the amplitude of the voltage input to the sound generator 4.
- the sound generation unit 4 is not limited to a piezoelectric buzzer but may be a speaker.
- the switching element 32 is an npn transistor, a collector is connected to a booster coil, an emitter is connected to the negative output side of the power supply 5, and a base is connected to the signal generator 2.
- the switching element 32 is turned on when the signal level of the PWM signal is at the Hi level, and turned off when the signal level is at the Low level. Therefore, the switching element 32 is turned on / off when the PWM signal is input to the base.
- the switching element 32 When the switching element 32 is on, energy is accumulated in the inductor 31 by the current supplied from the power source 5 to the inductor 31. Then, at the timing when the switching element 32 is turned off, the energy stored in the inductor 31 is released, and a voltage obtained by boosting the output voltage of the power supply 5 is applied to the sound generator 4. Therefore, the frequency of the sound generated by the sound generator 4 is the same as the frequency of the PWM signal. In addition, as the duty of the switching element 32 increases, the energy stored in the inductor 31 increases, and the voltage applied to the sound generator 4 increases. Therefore, when the frequency of the PWM signal is constant, the greater the duty of the PWM signal, the greater the power consumption in the sound generation unit 4, but the instantaneous sound pressure of the sound generated by the sound generation unit 4 also increases.
- the signal generation unit 2 changes the frequency of the PWM signal as time elapses. Thereby, a sound whose frequency changes with the passage of time is generated from the sound generation unit 4 as an alarm sound.
- the switching element 32 may be a pnp transistor, IGBT (Insulated Gate Bipolar Transistor), MOSFET (Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor), or the like.
- the sensor 100 of this embodiment includes an alarm device 10 (sound generator 1) and a detector 6.
- the detection unit 6 detects a specific event.
- the detection part 6 of this embodiment is comprised so that generation
- the detection unit 6 includes a light emitting unit 61 such as a light emitting diode and a light receiving unit 62 such as a photodiode.
- the light emitting unit 61 and the light receiving unit 62 are arranged so that the light receiving surface of the light receiving unit 62 deviates from the optical axis of the irradiation light of the light emitting unit 61.
- the casing 11 has a hole through which smoke can be introduced into the casing 11.
- the detection unit 6 detects the generation of smoke by causing the light receiving unit 62 to receive the irradiation light of the light emitting unit 61 scattered by the smoke.
- the detection unit 6 transmits a detection signal to the signal generation unit 2 when the generation of smoke, which is a specific event, is detected.
- the signal generator 2 generates a PWM signal using the detection signal from the detector 6 as a trigger. That is, when the detection unit 6 detects the generation of smoke, the signal generation unit 2 outputs a PWM signal to the acoustic circuit 3, so that the sound generation unit 4 generates a sound (alarm sound).
- an alarm system including a plurality of sensors 100 and a parent device may be configured.
- the sensor 100 further includes a communication unit and is configured to be able to communicate with the parent device.
- the detection unit 6 detects the generation of smoke
- the sensor 100 transmits a notification signal from the communication unit to the parent device.
- the master unit When receiving the notification signal, the master unit generates an alarm sound from another sensor 100 different from the sensor 100 that transmitted the notification signal. That is, when one sensor 100 detects the generation of smoke, the master unit also generates an alarm sound in conjunction with the other sensor 100.
- the specific event detected by the detection unit 6 is not limited to the generation of smoke.
- the detection unit 6 may be configured to detect the generation of heat. That is, the sensor 100 may be a heat sensor.
- the signal generation unit 2 generates a PWM signal using a detection signal input when the detection unit 6 detects the generation of smoke as a trigger.
- the signal generation unit 2 changes the frequency of the PWM signal with time.
- the signal generation unit 2 of the present embodiment alternately changes the frequency of the PWM signal between a first frequency f1 (for example, 1000 Hz) and a second frequency f2 (for example, 500 Hz).
- the first frequency f1 and the second frequency f2 change with a period T100.
- a period in which the frequency of the PWM signal is the first frequency f1 is a first period T10 (eg, 250 msec, 500 msec, etc.), and a period of the second frequency f2 is a second period T20 (eg, 250 msec) , 500 milliseconds, etc.).
- FIG. 5 shows a graph of the frequency characteristics of the casing 11.
- the difference between the first frequency f1 and the second frequency f2 is different from the resonance frequency f0 of the housing 11.
- the resonance frequency f0 is also called a natural frequency, and is a frequency at which the housing 11 is likely to vibrate.
- the resonance frequency f0 is determined by the material and shape of the housing 11, the size of the hole through which sound passes, the resonance frequency of the sounding body of the sounding part 4, and the like.
- the resonance frequency can be measured by, for example, a hammering test.
- the hammering test is a method for measuring the resonance frequency of an object by hitting an object with an acceleration pickup with an impulse hammer and analyzing the measurement result of the acceleration pickup with an FFT analyzer (FFT: Fourier®Transform).
- the relationship between the first frequency f1, the second frequency f2, and the resonance frequency f0 is the resonance frequency f0, the first frequency f1, and the second frequency f2 in descending order of the frequency value (f0> f1> f2). ). That is, the difference between the first frequency f1 and the resonance frequency f0 is smaller than the difference between the second frequency f2 and the resonance frequency f0. In other words, the first frequency f1 is closer to the resonance frequency f0 than the second frequency f2.
- the signal generation unit 2 changes the duty of the PWM signal according to the frequency of the PWM signal.
- the duty when the frequency of the PWM signal is the first frequency f1 is the first duty D1
- the duty when the frequency of the PWM signal is the second frequency f2 is the second duty D2.
- the duty of the PWM signal is a ratio of the on-time (time when the signal level is Hi level) in one cycle of the PWM signal.
- the second duty D2 Ton2 / T2.
- the signal generator 2 changes the duty by adjusting the ON time according to the frequency of the PWM signal.
- the relationship between the first duty D1 and the second duty D2 is such that the first duty D1 is larger than the second duty D2 (D1> D2). That is, the first duty D1 when the frequency of the PWM signal is the first frequency f1 closer to the resonance frequency f0 out of the first frequency f1 and the second frequency f2, the frequency of the PWM signal is the second frequency f2. Is greater than the second duty D2.
- the signal generation unit 2 alternately changes the frequency of the PWM signal to the first frequency f1 and the second frequency f2 with time, and sets the duty of the PWM signal to the first duty D1 and the second frequency f2. It is changed alternately to the duty D2.
- the first frequency f1 is a value closer to the resonance frequency of the housing 11 than the second frequency f2. Therefore, the housing 11 is more likely to resonate with the sound with the first frequency f1 than with the sound with the second frequency f2.
- the signal generator 2 is configured such that the first duty D1 when the frequency of the PWM signal is the first frequency f1 is larger than the second duty D2 when the frequency of the PWM signal is the second frequency f2.
- the duty of the PWM signal is changed. That is, the signal generation unit 2 causes the first duty D1 when the frequency of the PWM signal is the first frequency f1 at which the housing 11 is more likely to resonate than the second frequency f2 to be greater than the second duty D2. Further, the duty of the PWM signal is changed. In other words, the signal generation unit 2 determines the duty of the PWM signal so that the second duty D2 when the frequency of the PWM signal is the second frequency f2 at which the housing 11 is less likely to resonate than the first frequency f1 is small. Is changing.
- the signal generator 2 increases the instantaneous sound pressure of the sound at the first frequency f1 compared to the sound at the second frequency f2 by making the first duty D1 larger than the second duty D2. Furthermore, since the sound of the first frequency f1 is likely to resonate, the instantaneous sound pressure of the sound of the first frequency f1 is further increased. Further, the signal generator 2 makes the second duty D2 smaller than the first duty D1. Thereby, compared with the time of the sound of the 1st frequency f1, the power consumption of the sound production
- the relationship between the first frequency f1, the second frequency f2, and the resonance frequency f0 is an example, and is not limited to the above.
- the first frequency f1 and the second frequency f2 may be higher than the resonance frequency f0, or the resonance frequency f0 may be a value between the first frequency f1 and the second frequency f2.
- the signal generation unit 2 may make the first period T10 in which the frequency of the PWM signal is the first frequency f1 in the period T100 longer than the second period T20 in the period of the second frequency f2. Thereby, the generation period of the sound of the first frequency f1 at which the housing 11 is likely to resonate becomes longer, and the sound pressure of the sound generated by the sound generation unit 4 is further increased.
- the signal generation unit 2 alternately changes the frequency of the PWM signal to two frequencies (the first frequency f1 and the second frequency f2) as time elapses. You may change to three or more frequencies.
- the signal generation unit 2 may gradually change (sweep) the frequency of the PWM signal as time elapses.
- the signal generation unit 2 changes the frequency of the PWM signal from the second frequency f2 to the first frequency f1 in a cycle T200 (for example, 1 second, 2 seconds, etc.) (see FIG. 6).
- a frequency between the first frequency f1 (for example, 1000 Hz) and the second frequency f2 (for example, 500 Hz) is set as a third frequency f3 (for example, 900 Hz).
- a band from the third frequency f3 to the first frequency f1 is a first band B1
- a band from the second frequency f2 to the third frequency f3 is a second band B2.
- the signal generation unit 2 gradually changes the frequency of the PWM signal over a plurality of bands (first band B1 and second band B2) as time elapses. Further, the signal generator 2 changes the duty of the PWM signal for each of a plurality of bands. In the present modification, when the frequency of the PWM signal is included in the first band B1, the signal generation unit 2 changes the duty of the PWM signal to the first duty D1, and the frequency of the PWM signal is included in the second band B2. In this case, the duty of the PWM signal is changed to the second duty D2.
- the signal generation unit 2 of the present modification changes the duty of the PWM signal for each of a plurality of bands when gradually changing the frequency of the PWM signal. Therefore, compared with the case where both the frequency and duty of the PWM signal are gradually changed, the process for the signal generator 2 to generate the PWM signal becomes easier.
- the amount of change in the frequency of the PWM signal per unit time may not be constant.
- a change amount of the frequency per unit time when the frequency of the PWM signal is changing in the first band B1 including the first frequency f1 is defined as a first change amount ⁇ 1.
- a change amount of the frequency per unit time when the frequency of the PWM signal is changing in the second band B2 including the second frequency f2 is defined as a second change amount ⁇ 2.
- the signal generation unit 2 changes the frequency of the PWM signal so that the first change amount ⁇ 1 is smaller than the second change amount ⁇ 2. That is, the signal generation unit 2 slows down the sweep speed when the frequency of the PWM signal is the first band B1 including the first frequency f1. Thereby, the generation period of the sound of the first band B1 including the first frequency f1 is lengthened, and the sound pressure of the sound generated by the sound generation unit 4 is further increased.
- the signal generation unit 2 changes the frequency of the PWM signal over two bands, but it may change over three or more bands.
- the signal generation unit 2 changes the duty of the PWM signal for each frequency band of the PWM signal, but the present invention is not limited to this.
- the signal generation unit 2 may gradually change the frequency of the PWM signal as time elapses, and may change the duty of the PWM signal to a duty that corresponds to the frequency of the PWM signal on a one-to-one basis. That is, the signal generator 2 gradually changes the duty of the PWM signal from the second duty D2 to the first duty D1 in accordance with the change of the frequency of the PWM signal from the second frequency f2 to the first frequency f1 (FIG. 7). As a result, the sound pressure of the sound generated by the sound generator 4 gradually changes.
- the signal generator 2 changes the duty of the PWM signal so that the change width of the duty of the PWM signal is within a predetermined range. Thereby, it is suppressed that the difference of the instantaneous sound pressure due to the change in frequency becomes too large.
- the signal generator 2 may be configured to set the duty based on a plurality of frequencies arbitrarily input by the user so that the change width of the duty of the PWM signal is within a predetermined range. Thereby, even if it is a case where the sound generator 1 produces
- the signal generation unit 2 changes the duty of the PWM signal with reference to the resonance frequency f0 of the housing 11, but this is not limitative.
- the signal generation unit 2 may change the duty of the PWM signal based on the radiation characteristic of the sound radiated from the sound generation unit 4 to the outside of the housing 11.
- the radiation characteristic in the present embodiment is a characteristic indicating the sound pressure level of the sound radiated from the housing 11 with respect to the sound frequency when the sound generation unit 4 generates a sound of a predetermined sound pressure level. This radiation characteristic is determined by the resonance frequency f 0 of the housing 11, the resonance frequency of the sound generator 4, the position of the sound generator 4 in the housing 11, and the like.
- the signal generator 2 changes the duty of the PWM signal with reference to the frequency (peak frequency f10) at which the sound pressure level in the radiation characteristic has a peak value.
- the relationship between the first frequency f1, the second frequency f2, and the peak frequency f10 is the peak frequency f10, the first frequency f1, and the second frequency f2 in descending order of the frequency value (f10> f1> f2).
- the signal generator 2 uses the PWM signal as the first duty D1 when the frequency of the PWM signal is the first frequency f1 closer to the peak frequency f10 out of the first frequency f1 and the second frequency f2. Is greater than the second duty D2 when the frequency is the second frequency f2.
- the signal generator 2 determines that the difference between the first on-time Ton1 when the frequency of the PWM signal is the first frequency f1 and the second on-time Ton2 when the frequency of the PWM signal is the second frequency f2. You may correct
- the signal generation unit 2 sets a value obtained by multiplying the duty corresponding to the preset second frequency f2 by the second coefficient to the second duty D2.
- the first coefficient is a value larger than the second coefficient.
- the first threshold value and the second threshold value may be the same value or different values.
- the signal generation unit 2 corrects the duty by the coefficient based on the frequency of the PWM signal, so that the difference in the ON time before and after the frequency of the PWM signal is changed can be reduced.
- correction of the duty of the PWM signal using a coefficient based on the frequency of the PWM signal is not limited to the above.
- the duty of the PWM signal may be corrected using a coefficient based on the radiation characteristic of the sound radiated from the sound generation unit 4 to the outside of the housing 11.
- the coefficient is set so as to increase as the frequency of the PWM signal approaches the peak frequency f10.
- the duty of the PWM signal may be corrected using a coefficient based on a frequency with high sensitivity of the human ear.
- the coefficient is set so that the frequency of the PWM signal increases as the frequency of the human ear becomes closer to the higher frequency. As a result, the sound generated by the sound generator 4 can be heard louder by humans.
- the coefficient may be set so as to increase as the frequency of the PWM signal increases.
- the coefficient may be set based on a frequency change period in the PWM signal.
- the coefficient is set so as to increase as the period during which the frequency of the PWM signal is kept constant is longer in the change period of the frequency of the PWM signal.
- the frequency change period T100 of the PWM signal the first period T10 in which the frequency of the PWM signal is maintained at the first frequency f1
- a coefficient is set (see FIG. 3).
- the coefficient (first coefficient) multiplied by the duty corresponding to the first frequency f1 is a ratio occupied by the first period T10 in the period T100 (duty of the first period T10) or the time length of the first period T10. It is set so as to become larger as is larger.
- the coefficient (second coefficient) to be multiplied by the duty corresponding to the second frequency f2 is the ratio of the second frequency T20 in the period T100 (duty of the second period T20) or the time length of the second period T20. A larger value is set to be larger. As a result, in the sound generated by the sound generator 4, the duty of the dominant frequency is increased, and the sound pressure can be increased.
- the above-described coefficient may be a value of 1 or more, or a value of less than 1.
- FIG. 8 is a block diagram of the sensor 100 including the sounding device 1 of the present embodiment.
- the sound generation device 1 of this embodiment can generate a plurality of patterns of sounds with different tones from the sound generation unit 4.
- symbol is attached
- a warning system is configured by a plurality (three in FIG. 8) of sensors 100 and the parent device 9 (see FIG. 8).
- the alarm system includes a plurality of sensors 100 and a parent device 9.
- the sensor 100 of the present embodiment includes a sounding device 1 and a communication unit 8.
- the communication unit 8 is configured to be able to perform wireless communication with the parent device 9.
- the detection unit 6 detects the generation of smoke
- the sensor 100 transmits a notification signal from the communication unit 8 to the parent device 9.
- the base unit 9 receives the notification signal
- the base unit 9 transmits an alarm signal to another sensor 100 different from the sensor 100 that transmitted the notification signal, and generates an alarm sound from the other sensor 100.
- the master unit 9 controls the other sensors 100 to generate an alarm sound in conjunction with each other.
- the communication unit 8 may be configured to perform wired communication with the parent device 9.
- the sound generation device 1 of the present embodiment includes a sound generation unit 4, a signal generation unit 2, and a setting unit 7.
- the sound generation unit 4 can generate multiple patterns of sounds with different tones.
- the signal generation unit 2 is configured to be able to change the period and frequency (tone) of the PWM signal transmitted to the sound generation unit 4 into a plurality of patterns.
- a plurality of patterns of sounds can be generated from the sound generator 4.
- the sound of multiple patterns is, for example, the international standard “ISO18201”, German “DIN-333404-3”, British “BS 5839-1”, French “NF S32-001”, Dutch “NEN 2575” It is a sound of a pattern that complies with standards such as.
- PWM signal data (cycle, frequency, duty, etc.) corresponding to a plurality of sound patterns is stored in a storage unit 70 such as a ROM (Read Only Memory).
- the signal generation unit 2 changes the duty of the PWM signal based on the resonance frequency f0 (or peak frequency f10) of the housing 11 as in the first embodiment.
- the signal generation unit 2 sets the duty when the frequency of the PWM signal is closer to the resonance frequency f0 (peak frequency f10), and the frequency when the frequency of the PWM signal is farther from the resonance frequency f0 (peak frequency f10). Make it larger than the duty at a certain time.
- the setting unit 7 sets a sound pattern corresponding to the PWM signal transmitted from the signal generation unit 2 to the sound generation unit 4 in the signal generation unit 2. In other words, the setting unit 7 determines a sound pattern corresponding to the PWM signal transmitted from the signal generation unit 2 to the sound generation unit 4.
- the signal generation unit 2 transmits to the sound generation unit 4 a PWM signal corresponding to the pattern set (determined) by the setting unit 7 among the plurality of patterns.
- the master unit 9 is configured to transmit a setting signal to the sensor 100 (communication unit 8) in accordance with an operation from the user.
- the setting signal includes data indicating a sound pattern generated from the sound generator 1 (sound generator 4) of the sensor 100.
- the setting unit 7 determines a pattern to be set in the signal generation unit 2 from a plurality of patterns based on the setting signal received from the base unit 9 by the communication unit 8.
- the transmission of the setting signal from the parent device 9 to the sensor 100 is performed at the time of initial setting after the parent device 9 and the sensor 100 are installed, for example.
- the sound generation device 1 of the present embodiment is configured to be able to generate a plurality of patterns of sounds. And when the detection part 6 detects generation
- FIG. 9 shows a modified example of the sound producing device 1 of the present embodiment.
- the setting unit 7 has the operation unit 71, and the user can switch the sound pattern to be generated as the alarm sound by operating the operation unit 71.
- the operation unit 71 is constituted by a dip switch, for example, and accepts an operation from the user.
- sounds of a plurality of patterns are associated with the states of the plurality of slide switches.
- the setting unit 7 determines a pattern to be set in the signal generation unit 2 from a plurality of patterns based on the operation signal output from the operation unit 71.
- the operation signal indicates the state of a plurality of slide switches that the operation unit 71 has. That is, the operation signal indicates the sound of the pattern selected by the user from the sounds of the plurality of patterns.
- the signal generation unit 2 transmits to the sound generation unit 4 a PWM signal corresponding to the pattern set (determined) by the setting unit 7 among the plurality of patterns.
- the sounding device 1 of the present modification when the detection unit 6 detects the generation of smoke, the sounding device 1 of the present modification generates a sound of a pattern set by the user in the operation unit 71 among a plurality of patterns as an alarm sound.
- the signal generation unit 2 changes the sound pattern generated from the sound generation unit 4 by changing the cycle and frequency of the PWM signal into a plurality of patterns, but the configuration is not limited to this.
- the signal generation unit 2 may generate sound from the sound generation unit 4 by playing back a WAV file (RIFF waveform Audio Format, RIFF: Resource Interchange File Format).
- “playing back a WAV file” means transmitting a signal for generating a sound from the sound generation unit 4.
- the WAV file is stored in the storage unit 70 provided in the sound generation device 1.
- the storage unit 70 stores a plurality of WAV files corresponding to a plurality of patterns of sounds.
- the signal generation unit 2 extracts the WAV file corresponding to the pattern set by the setting unit 7 from the storage unit 70, and reproduces the extracted WAV file. That is, the sound generator 4 generates a pattern of sound according to the signal from the signal generator 2. Thereby, the sound of the pattern set by the setting unit 7 is generated from the sound generation unit 4 as an alarm sound.
- the sound generation device 1 includes a sound generation unit 4 and a signal generation unit 2.
- the sound generation unit 4 can generate a plurality of patterns of sounds having different tones.
- the signal generator 2 outputs a signal corresponding to any one of the plurality of patterns to the sound generator 4.
- the sound generation unit 4 generates a sound having a pattern corresponding to the signal from the signal generation unit 2.
- the sound generation device 1 can generate a plurality of patterns of sounds with different tones, so that the configuration can be shared without changing the configuration of the sound generation device 1 for each sound of the plurality of patterns. It becomes.
- the sounding device 1 further includes a setting unit 7 that sets, in the signal generating unit 2, a pattern corresponding to the signal that the signal generating unit 2 outputs to the sounding unit 4 in the first aspect.
- the setting unit 7 sets a pattern based on the setting signal from the parent device 9 in the signal generating unit 2.
- the sound pattern generated from the sound generation unit 4 can be set using the master unit 9 provided separately from the sound generation device 1.
- the sounding device 1 includes an operation unit 71 that receives an operation from the user.
- the setting unit 7 sets a pattern based on the operation signal output from the operation unit 71 in the signal generation unit 2.
- the sound pattern generated from the sound generator 4 can be set by the sound generator 1 alone.
- the signal generation unit 2 in any one of the first to fourth aspects, the signal generation unit 2 generates a PWM signal having a variable frequency as a signal.
- the sound generator 4 generates a sound corresponding to the frequency and duty of the PWM signal.
- the signal generation unit 2 changes the frequency of the PWM signal and changes the duty of the PWM signal in accordance with the change in the frequency of the PWM signal.
- the sound generation device 1 can reduce power consumption because a period in which the duty of the PWM signal is smaller than when the duty of the PWM signal is constant occurs.
- the sounding device 1 further includes a housing 11 that houses the sounding part 4 in the fifth aspect.
- the signal generation unit 2 changes the frequency of the PWM signal to a frequency including the first frequency f1 and the second frequency f2.
- the difference between the resonance frequency f0 of the housing 11 and the first frequency f1 is smaller than the difference between the resonance frequency f0 of the housing 11 and the second frequency f2.
- the signal generator 2 makes the duty when the frequency of the PWM signal is the first frequency f1 larger than the duty when the frequency of the PWM signal is the second frequency f2.
- the sound producing device 1 can increase the sound pressure of the sound generated from the sound producing unit 4.
- the sound generating device 1 can increase the volume when generating an audible sound from the sound generating unit 4.
- this configuration is not an essential configuration for the sound generation device 1.
- the signal generation unit 2 sets the duty when the frequency of the PWM signal is a frequency close to a frequency with high human ear sensitivity to the duty when the frequency is far from a frequency with high human ear sensitivity. You may be comprised so that it may enlarge.
- the sound generating device 1 according to the seventh aspect is the sixth aspect in which the signal generating unit 2 performs the first period T10 in which the frequency of the PWM signal is the first frequency f1, and the frequency of the PWM signal is the second frequency f2. 2 longer than T20.
- the sound generation device 1 can increase the ratio of the sound generation period of the first frequency f1 having a high instantaneous sound pressure, and can increase the sound pressure of the sound generated from the sound generation unit 4.
- this configuration is not an essential configuration for the sound generator 1.
- the sound generator 1 has the second period T20 in which the frequency of the PWM signal is the second frequency f2, and the frequency of the PWM signal is the first frequency f1. It may be longer than a certain first period T10. Thereby, power consumption can be further reduced.
- the signal generation unit 2 gradually changes the frequency of the PWM signal over a plurality of bands as time elapses. Further, the signal generation unit 2 changes the duty of the PWM signal for each of a plurality of bands.
- the signal generation unit 2 changes the duty of the PWM signal for each band. Therefore, the signal generation unit 2 generates the PWM signal as compared with the case where both the frequency and the duty of the PWM signal are gradually changed. To facilitate the processing.
- the signal generation unit 2 gradually changes the frequency of the PWM signal as time elapses. Further, the signal generation unit 2 changes the duty of the PWM signal to a duty corresponding to the frequency of the PWM signal on a one-to-one basis.
- the duty of the PWM signal gradually changes according to the change of the PWM signal. Therefore, the sound producing device 1 can gradually change the sound pressure of the sound generated from the sound producing unit 4.
- a change amount of the frequency of the PWM signal per unit time when the frequency of the PWM signal changes in the second band B2 is defined as a second change amount ⁇ 2.
- the signal generation unit 2 changes the frequency of the PWM signal so that the first change amount ⁇ 1 is smaller than the second change amount ⁇ 2.
- the sound generation device 1 can increase the sound pressure of the sound generated by the sound generation unit 4 by extending the sound generation period of the first band B1 including the first frequency f1.
- this configuration is not essential for the sound generator 1, and the amount of change in the frequency of the PWM signal per unit time may be constant.
- the sounding device 1 further includes a housing 11 that houses the sounding part 4 in the fifth aspect.
- the signal generator 2 changes the duty of the PWM signal based on the radiation characteristics of the sound radiated from the sound generator 4 to the outside of the housing 11.
- the sound producing device 1 can increase the sound pressure of the sound generated from the sound producing unit 4.
- the sound generating device 1 can increase the volume when generating an audible sound from the sound generating unit 4.
- the signal generation unit 2 corrects the duty of the PWM signal with a coefficient based on the frequency of the PWM signal.
- the sound generated from the sound generator 4 can be adjusted according to the frequency of the PWM signal.
- the signal generation unit 2 sets the duty of the PWM signal so that the change width of the duty of the PWM signal is within a predetermined range. Change.
- the sound producing device 1 can suppress the difference in instantaneous sound pressures of sounds generated from the sound producing unit 4 from becoming too large.
- this configuration is not an essential configuration for the sound producing device 1, and the change width of the duty of the PWM signal may be outside a predetermined range.
- the frequency of the PWM signal is 20 Hz or more and 20 kHz or less.
- the alarm device 10 according to the fifteenth aspect is the sounding device 1 according to any one of the first to fourteenth aspects, and the sounding unit 4 generates an alarm sound.
- the alarm device 10 has a period in which the duty of the PWM signal is small, so that it is possible to reduce power consumption compared to the case where the duty of the PWM signal is kept constant.
- the sensor 100 according to the sixteenth aspect includes the alarm device 10 according to the fifteenth aspect and a detection unit 6 that detects a specific event.
- the alarm device 10 generates an alarm sound when the detection unit 6 detects a specific event. generate.
- the sensor 100 generates a period in which the duty of the PWM signal is small, so that it is possible to reduce power consumption as compared with the case where the duty of the PWM signal is constant.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Alarm Systems (AREA)
- Fire Alarms (AREA)
- Fire-Detection Mechanisms (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
トーンが異なる複数パターンの音で構成の共通化を図ることが可能な発音装置、警報装置、及び感知器を提供する。発音装置(1)は、発音部(4)と、信号生成部(2)と、を備える。発音部(4)は、トーンが異なる複数のパターンの音を発生可能である。信号生成部(2)は、複数のパターンのうちいずれかのパターンに対応した信号を発音部(4)に出力する。発音部(4)は、信号生成部(2)からの信号に応じたパターンの音を発生させる。
Description
本発明は、一般に発音装置、警報装置、及び感知器に関し、より詳細には、複数の周波数の音を発生させる発音装置、警報装置、及び感知器に関する。
従来、住宅における火災やガス漏れなどの異常を検出して警報する住宅用警報器(感知器)が開示されている(例えば、特許文献1参照)。特許文献1の住宅用警報器は、異常を検出した際に、時間の経過に伴って周波数が直線的に変化するスイープ音(警報音)を出力する発音装置を備えている。
従来の発音装置では、同じトーンあるいはトーンの変化が一定のパターンの音しか発生することができなかった。
本発明は、上記事由に鑑みてなされており、その目的は、トーンが異なる複数パターンの音で構成の共通化を図ることが可能な発音装置、警報装置、及び感知器を提供することにある。
本発明の一態様に係る発音装置は、信号生成部と、発音部と、を備える。前記発音部は、トーンが異なる複数のパターンの音を発生可能である。前記信号生成部は、前記複数のパターンのうちいずれかのパターンに対応した信号を前記発音部に出力する。前記発音部は、前記信号生成部からの前記信号に応じたパターンの音を発生させる。
本発明の一態様に係る警報装置は、上記の発音装置であって、前記発音部は、警報音を発生させる。
本発明の一態様に係る感知器は、上記の警報装置と、特定事象を検知する検知部と、を備える。前記警報装置は、前記検知部が前記特定事象を検知した場合、警報音を発生させる。
以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に説明する実施形態は、本発明の様々な実施形態の一つに過ぎない。下記の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
(1)実施形態1
(1.1)構成
図1に、本実施形態の発音装置1を含む感知器100のブロック図を示す。図2に、本実施形態の発音装置1を含む感知器100の外観図を示す。本実施形態の発音装置1は、人間の可聴域(例えば20Hz~20kHz)に含まれる複数の周波数の音を発生可能な装置である。発音装置1は、時間経過に伴って周波数が変化する音を警報音として発生させる警報装置10である。本実施形態の感知器100は、煙感知器であり、警報装置10を備えている。感知器100は、煙の発生を検知すると警報装置10から警報音を発生させる。
(1.1)構成
図1に、本実施形態の発音装置1を含む感知器100のブロック図を示す。図2に、本実施形態の発音装置1を含む感知器100の外観図を示す。本実施形態の発音装置1は、人間の可聴域(例えば20Hz~20kHz)に含まれる複数の周波数の音を発生可能な装置である。発音装置1は、時間経過に伴って周波数が変化する音を警報音として発生させる警報装置10である。本実施形態の感知器100は、煙感知器であり、警報装置10を備えている。感知器100は、煙の発生を検知すると警報装置10から警報音を発生させる。
以下に、本実施形態の発音装置1の詳細について説明する。
発音装置1は、信号生成部2、発音部4、音響回路3、及び筐体11(図2参照)を備えている。筐体11は、信号生成部2、発音部4、及び音響回路3を収納しており、例えば建物の天井に取り付けられる。また、筐体11には、発音装置1の動作電源として機能する電源5が設けられている。電源5は、電池で構成されている。なお、電源5は、電池に限らない。発音装置1は、例えば商用電源を動作電源とする構成であってもよい。
信号生成部2は、例えばマイコン(マイクロコンピュータ)であり、PWM信号(PWM:Pulse Width Modulation)を生成する。信号生成部2は、PWM信号の周波数を変化させることができるように構成されている。すなわち、信号生成部2は、周波数及びデューティが可変である信号(PWM信号)を生成するように構成されている。信号生成部2は、PWM信号を音響回路3に出力する。
音響回路3は、インダクタ31、及びスイッチング素子32を備えている。インダクタ31及びスイッチング素子32は、電源5の出力端間に直列接続されている。
インダクタ31は、昇圧コイルとして機能する。インダクタ31の両端間に、発音部4が接続されている。発音部4は、他励式の圧電ブザーで構成されており、インダクタ31の両端電圧が入力される。発音部4は、入力された電圧の周波数の音を発生させる。筐体11には、発音部4が発生させた音を通す孔が形成されており、この孔を通して発音部4が発生させた音が筐体11の外側へ届く。また、発音部4が発生させる音の瞬時音圧の大きさは、発音部4に入力された電圧の振幅の大きさによって変化する。発音部4は、圧電ブザーに限らず、スピーカであってもよい。
スイッチング素子32は、npnトランジスタであり、コレクタに昇圧コイルが接続され、エミッタに電源5の負極側の出力端が接続され、ベースに信号生成部2が接続されている。スイッチング素子32は、PWM信号の信号レベルがHiレベルであるときにオンし、Lowレベルであるときにオフする。したがって、スイッチング素子32は、ベースにPWM信号が入力されることによってオン/オフする。
スイッチング素子32がオン状態である場合、電源5からインダクタ31に供給される電流によって、インダクタ31にエネルギが蓄積される。そして、スイッチング素子32がターンオフしたタイミングで、インダクタ31に蓄積されたエネルギが解放され、発音部4に、電源5の出力電圧を昇圧した電圧が印加される。したがって、発音部4が発生させる音の周波数は、PWM信号の周波数と同じとなる。また、スイッチング素子32のデューティが大きいほど、インダクタ31に蓄積されるエネルギが大きくなり、発音部4に印加される電圧が大きくなる。したがって、PWM信号の周波数が一定である場合、PWM信号のデューティが大きいほど、発音部4での消費電力が大きくなるが、発音部4が発生させる音の瞬時音圧も大きくなる。
詳しくは後述の「(1.2)動作例」で説明するが、信号生成部2は、時間経過に伴ってPWM信号の周波数を変化させる。これにより、時間経過に伴って周波数が変化する音が警報音として、発音部4から発生する。
なお、スイッチング素子32は、pnpトランジスタ、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等であってもよい。
本実施形態の感知器100は、警報装置10(発音装置1)と、検知部6とを備えている。
検知部6は、特定事象を検知する。本実施形態の検知部6は、特定事象として煙の発生を検知するように構成されている。検知部6は、例えば発光ダイオード等の発光部61と、例えばフォトダイオード等の受光部62とを備えている。発光部61及び受光部62は、受光部62の受光面が、発光部61の照射光の光軸上から外れるように配置されている。筐体11には、煙を筐体11内に導入可能な孔が形成されている。筐体11内に煙が存在しない場合、発光部61の照射光は、受光部62の受光面にほとんど到達しない。筐体11内に煙が存在する場合、発光部61の照射光が煙によって散乱し、散乱した光の一部が受光部62の受光面に到達する。つまり、検知部6は、煙によって散乱された発光部61の照射光を受光部62で受光することで、煙の発生を検知する。
検知部6は、特定事象である煙の発生を検知した場合、検知信号を信号生成部2に送信する。信号生成部2は、検知部6からの検知信号をトリガとして、PWM信号を生成する。つまり、検知部6が煙の発生を検知した場合、信号生成部2がPWM信号を音響回路3に出力することにより、発音部4が音(警報音)を発生させる。
また、複数の感知器100と、親機とを備えた警報システムが構成されていてもよい。この場合、感知器100は、通信部を更に備え、親機と通信可能に構成されている。感知器100は、検知部6が煙の発生を検知した場合、通信部から親機に通知信号を送信する。親機は、通知信号を受信すると、通知信号を送信した感知器100とは異なる他の感知器100から警報音を発生させる。つまり、親機は、1台の感知器100が煙の発生を検知すると、他の感知器100も連動して警報音を発生させる。
なお、検知部6が検知する特定事象は、煙の発生に限らない。例えば、検知部6は、熱の発生を検知するように構成されていてもよい。つまり、感知器100は、熱感知器であってもよい。
(1.2)動作例
次に、本実施形態の発音装置1(警報装置10、感知器100)の動作例について図3、図4を参照して説明する。
次に、本実施形態の発音装置1(警報装置10、感知器100)の動作例について図3、図4を参照して説明する。
信号生成部2は、検知部6が煙の発生を検知した際に入力される検知信号をトリガとしてPWM信号を生成する。信号生成部2は、時間経過に伴ってPWM信号の周波数を変化させる。本実施形態の信号生成部2は、PWM信号の周波数を、第1周波数f1(例えば、1000Hz)と第2周波数f2(例えば、500Hz)とに交互に変化させる。第1周波数f1と第2周波数f2とは、周期T100で変化している。周期T100のうち、PWM信号の周波数が第1周波数f1である期間を第1期間T10(例えば、250m秒、500m秒等)、第2周波数f2である期間を第2期間T20(例えば、250m秒、500m秒等)とする。
図5に筐体11の周波数特性のグラフを示す。第1周波数f1及び第2周波数f2は、筐体11の共振周波数f0との差が互いに異なる。共振周波数f0は、固有振動数とも呼ばれ、筐体11が振動しやすい周波数である。共振周波数f0は、筐体11の材質、形状、音を通す孔の寸法、及び発音部4が有する発音体の共振周波数等によって定まる。共振周波数は、例えばハンマリングテストで測定することができる。ハンマリングテストとは、加速度ピックアップを取り付けた物体をインパルスハンマで打撃し、加速度ピックアップの測定結果をFFTアナライザ(FFT:Fast Fourier Transform)で解析することにより物体の共振周波数を測定する方法である。
本実施形態では、第1周波数f1、第2周波数f2、及び共振周波数f0の関係は、周波数の値が高い順に共振周波数f0、第1周波数f1、第2周波数f2である(f0>f1>f2)。つまり、第1周波数f1と共振周波数f0との差は、第2周波数f2と共振周波数f0との差よりも小さい。言い換えれば、第1周波数f1は、第2周波数f2よりも共振周波数f0に近い値である。
また、信号生成部2は、PWM信号の周波数に応じてPWM信号のデューティを変化させる。本実施形態では、PWM信号の周波数が第1周波数f1であるときのデューティを第1デューティD1とし、PWM信号の周波数が第2周波数f2であるときのデューティを第2デューティD2とする。PWM信号のデューティは、PWM信号の1周期におけるオン時間(信号レベルがHiレベルである時間)が占める割合である。PWM信号の周波数が第1周波数f1であるときの周期(=1/f1)を第1周期T1、オン時間を第1オン時間Ton1とした場合、第1デューティD1は、D1=Ton1/T1となる。PWM信号の周波数が第2周波数f2であるときの周期(=1/f2)を第2周期T2、オン時間を第2オン時間Ton2とした場合、第2デューティD2は、D2=Ton2/T2となる。信号生成部2は、PWM信号の周波数に応じてオン時間を調整することにより、デューティを変化させる。
本実施形態では、第1デューティD1と第2デューティD2との関係は、第1デューティD1の方が第2デューティD2よりも大きい値である(D1>D2)。つまり、PWM信号の周波数が、第1周波数f1と第2周波数f2とのうち共振周波数f0に近い方の第1周波数f1であるときの第1デューティD1は、PWM信号の周波数が第2周波数f2であるときの第2デューティD2よりも大きい。
このように、信号生成部2は、時間経過に伴ってPWM信号の周波数を第1周波数f1と第2周波数f2とに交互に変化させ、かつ、PWM信号のデューティを第1デューティD1と第2デューティD2とに交互に変化させる。第1周波数f1は、第2周波数f2よりも筐体11の共振周波数に近い値である。したがって、筐体11は、第2周波数f2の音に比べて第1周波数f1の音に共鳴しやすい。
また、信号生成部2は、PWM信号の周波数が第1周波数f1であるときの第1デューティD1が、PWM信号の周波数が第2周波数f2であるときの第2デューティD2よりも大きくなるようにPWM信号のデューティを変化させている。つまり、信号生成部2は、PWM信号の周波数が、第2周波数f2よりも筐体11が共鳴しやすい第1周波数f1であるときの第1デューティD1が、第2デューティD2よりも大きくなるように、PWM信号のデューティを変化させている。言い換えれば、信号生成部2は、PWM信号の周波数が、第1周波数f1よりも筐体11が共鳴しにくい第2周波数f2であるときの第2デューティD2が小さくなるように、PWM信号のデューティを変化させている。
信号生成部2は、第1デューティD1を第2デューティD2よりも大きくすることにより、第2周波数f2の音と比べて第1周波数f1の音の瞬時音圧が増大される。さらに、第1周波数f1の音は、筐体11が共鳴しやすいため、第1周波数f1の音の瞬時音圧がより増大される。また、信号生成部2は、第2デューティD2を第1デューティD1よりも小さくしている。これにより、第1周波数f1の音の発生時と比べて、第2周波数f2の音の発生時における発音部4の消費電力が低減する。
なお、上記の第1周波数f1、第2周波数f2、及び共振周波数f0の関係は一例であって、上記に限らない。第1周波数f1及び第2周波数f2は、共振周波数f0よりも高い値であってもよいし、共振周波数f0が第1周波数f1と第2周波数f2との間の値であってもよい。
(1.3)変形例
次に、本実施形態の発音装置1の変形例について説明する。
次に、本実施形態の発音装置1の変形例について説明する。
信号生成部2は、周期T100のうち、PWM信号の周波数が第1周波数f1である第1期間T10を、第2周波数f2である期間を第2期間T20よりも長くしてもよい。これにより、筐体11が共鳴しやすい第1周波数f1の音の発生期間が長くなり、発音部4が発生する音の音圧がより増大される。
上述した例では、信号生成部2は、時間経過に伴ってPWM信号の周波数を、2つの周波数(第1周波数f1、第2周波数f2)に交互に変化させているが、これに限らず、3つ以上の周波数に変化させてもよい。
また、信号生成部2は、時間経過に伴ってPWM信号の周波数を徐々に変化(スイープ)させてもよい。本変形例では、信号生成部2は、PWM信号の周波数を、周期T200(例えば1秒、2秒等)で第2周波数f2から第1周波数f1まで変化させている(図6参照)。第1周波数f1(例えば、1000Hz)と第2周波数f2(例えば、500Hz)との間の周波数を第3周波数f3(例えば、900Hz)とする。また、第3周波数f3から第1周波数f1までの帯域を第1帯域B1、第2周波数f2から第3周波数f3までの帯域を第2帯域B2とする。つまり、信号生成部2は、時間経過に伴ってPWM信号の周波数を複数の帯域(第1帯域B1、第2帯域B2)にわたって徐々に変化させている。また、信号生成部2は、PWM信号のデューティを複数の帯域ごとに変化させている。本変形例では、信号生成部2は、PWM信号の周波数が第1帯域B1に含まれる場合、PWM信号のデューティを第1デューティD1に変化させ、PWM信号の周波数が第2帯域B2に含まれる場合、PWM信号のデューティを第2デューティD2に変化させる。
このように、本変形例の信号生成部2は、PWM信号の周波数を徐々に変化させる際に、PWM信号のデューティを複数の帯域ごとに変化させる。したがって、PWM信号の周波数とデューティとの両方を徐々に変化させる場合に比べて、信号生成部2がPWM信号を生成するための処理が容易となる。
また、単位時間あたりにおけるPWM信号の周波数の変化量(PWM信号の周波数のスイープ速度)は、一定でなくてもよい。PWM信号の周波数が、第1周波数f1を含む第1帯域B1内で変化しているときの単位時間あたりの周波数の変化量を第1変化量Δ1とする。PWM信号の周波数が、第2周波数f2を含む第2帯域B2内で変化しているときの単位時間当たりの周波数の変化量を第2変化量Δ2とする。信号生成部2は、第1変化量Δ1が第2変化量Δ2よりも小さくなるように、PWM信号の周波数を変化させる。つまり、信号生成部2は、PWM信号の周波数が、第1周波数f1を含む第1帯域B1であるときのスイープ速度を遅くする。これにより、第1周波数f1を含む第1帯域B1の音の発生期間が長くなり、発音部4が発生する音の音圧がより増大される。
上述した例では、信号生成部2は、PWM信号の周波数を2つの帯域にわたって変化させているが、3つ以上の帯域にわたって変化させてもよい。
また、上述した例では、信号生成部2は、PWM信号の周波数の帯域ごとにPWM信号のデューティを変化させているが、これに限らない。信号生成部2は、時間経過に伴ってPWM信号の周波数を徐々に変化させ、かつ、PWM信号のデューティをPWM信号の周波数と一対一に対応したデューティに変化させてもよい。つまり、信号生成部2は、PWM信号の周波数の第2周波数f2から第1周波数f1への変化に合わせて、PWM信号のデューティを第2デューティD2から第1デューティD1へ徐々に変化させる(図7参照)。これにより、発音部4が発生する音の音圧が徐々に変化する。
また、信号生成部2は、PWM信号のデューティの変化幅が所定範囲内となるようにPWM信号のデューティを変化させることが好ましい。これにより、周波数の変化による瞬時音圧の差が大きくなり過ぎることが抑制される。
また、信号生成部2は、ユーザが任意に入力した複数の周波数に基づいて、PWM信号のデューティの変化幅が所定範囲内となるようにデューティを設定するように構成されていてもよい。これにより、発音装置1は、ユーザが入力した複数の周波数の音を発生させる場合であっても、消費電力の低減を図ることができる。また、信号生成部2は、PWM信号のデューティが下限値以上となるようにデューティを設定することが好ましい。これにより、PWM信号のデューティが小さいときに発生する音の音圧が、小さくなり過ぎることが抑制される。
また、上述した例では、信号生成部2は、筐体11の共振周波数f0を基準にしてPWM信号のデューティを変化させているが、これに限らない。信号生成部2は、発音部4から筐体11の外側へ放射される音の放射特性に基づいて、PWM信号のデューティを変化させてもよい。本実施形態における放射特性とは、発音部4が所定音圧レベルの音を発生させた場合において、音の周波数に対する、筐体11から放射された音の音圧レベルを示す特性である。この放射特性は、筐体11の共振周波数f0、発音部4の共振周波数、筐体11における発音部4の位置等によって定まる。信号生成部2は、放射特性における音圧レベルがピーク値となる周波数(ピーク周波数f10)を基準にしてPWM信号のデューティを変化させる。例えば、第1周波数f1、第2周波数f2、ピーク周波数f10の関係が、周波数の値が高い順にピーク周波数f10、第1周波数f1、第2周波数f2であるとする(f10>f1>f2)。この場合、信号生成部2は、PWM信号の周波数が、第1周波数f1と第2周波数f2とのうちピーク周波数f10に近い方の第1周波数f1であるときの第1デューティD1を、PWM信号の周波数が第2周波数f2であるときの第2デューティD2よりも大きくする。
また、信号生成部2は、PWM信号の周波数が第1周波数f1であるときの第1オン時間Ton1と、PWM信号の周波数が第2周波数f2であるときの第2オン時間Ton2との差が低減するように、PWM信号のデューティを補正してもよい。例えば、信号生成部2は、PWM信号の第1周波数f1が第1閾値よりも高い場合、予め設定された第1周波数f1に対応するデューティに、第1係数を乗算した値を第1デューティD1とする。また、信号生成部2は、PWM信号の第2周波数f2が第2閾値よりも低い場合、予め設定された第2周波数f2に対応するデューティに、第2係数を乗算した値を第2デューティD2とする。第1係数は、第2係数よりも大きい値である。第1閾値と第2閾値とは、互いに同じ値であってもよいし、互いに異なる値であってもよい。
このように信号生成部2が、PWM信号の周波数に基づいた係数でデューティを補正することにより、PWM信号の周波数を変化させた前後においてオン時間の差を低減することができる。
なお、PWM信号の周波数に基いた係数を用いたPWM信号のデューティの補正は、上記に限らない。
例えば、発音部4から筐体11の外側へ放射される音の放射特性に基づいた係数を用いて、PWM信号のデューティを補正してもよい。この場合、係数は、PWM信号の周波数がピーク周波数f10に近いほど大きくなるように設定される。これにより、発音部4が発生する音の音圧がより増大される。
また、人間の耳の感度が高い周波数に基づいた係数を用いて、PWM信号のデューティを補正してもよい。この場合、係数は、PWM信号の周波数が、人間の耳の感度が高い周波数に近いほど大きくなるように設定される。これにより、人間にとって、発音部4が発生する音がより大きく聞こえる。
また、係数は、PWM信号の周波数が高くなるほど大きくなるように設定されていてもよい。
また、係数は、PWM信号における周波数の変化周期に基づいて設定されていてもよい。この場合、係数は、PWM信号の周波数の変化周期において、PWM信号の周波数が一定に保たれている期間が長いほど大きくなるように設定される。例えば、PWM信号の周波数の変化周期T100において、PWM信号の周波数が第1周波数f1に保たれている第1期間T10と、PWM信号の周波数が第2周波数f2に保たれている第2期間T20とに基づいて、係数が設定される(図3参照)。この場合、第1周波数f1に対応するデューティに乗算する係数(第1係数)は、周期T100において第1期間T10が占める割合(第1期間T10のデューティ)、又は第1期間T10の時間長さが大きいほど、大きくなるように設定される。また、第2周波数f2に対応するデューティに乗算する係数(第2係数)は、周期T100において第2周波数T20が占める割合(第2期間T20のデューティ)、又は第2期間T20の時間長さが大きいほど、大きくなるように設定される。これにより、発音部4が発生する音において、支配的となる周波数のデューティが大きくなり、音圧の増加を図ることができる。
なお、上述した係数は、1以上の値であってもよいし、1未満の値であってもよい。
(2)実施形態2
(2.1)構成
図8に、本実施形態の発音装置1を含む感知器100のブロック図を示す。本実施形態の発音装置1は、発音部4からトーンが異なる複数パターンの音が発生可能である。なお、上述した実施形態1と同様の構成については、同一符号を付して説明を省略する。
(2.1)構成
図8に、本実施形態の発音装置1を含む感知器100のブロック図を示す。本実施形態の発音装置1は、発音部4からトーンが異なる複数パターンの音が発生可能である。なお、上述した実施形態1と同様の構成については、同一符号を付して説明を省略する。
本実施形態では、複数(図8では3つ)の感知器100と親機9とで警報システムが構成されている(図8参照)。言い換えれば、警報システムは、複数の感知器100と親機9とを備えている。
本実施形態の感知器100は、発音装置1と、通信部8と、を備えている。通信部8は、親機9と無線通信が可能に構成されている。感知器100は、検知部6が煙の発生を検知した場合、通信部8から親機9に通知信号を送信する。親機9は、通知信号を受信すると、通知信号を送信した感知器100とは異なる他の感知器100に警報信号を送信し、他の感知器100から警報音を発生させる。つまり、親機9は、1台の感知器100が煙の発生を検知すると、他の感知器100も連動して警報音を発生させるよう制御する。なお、通信部8は、親機9との間で有線通信を行うように構成されていてもよい。
また、本実施形態の発音装置1は、発音部4と、信号生成部2と、設定部7と、を備えている。発音部4は、トーンが異なる複数パターンの音が発生可能である。具体的には、信号生成部2は、発音部4に送信するPWM信号の周期、周波数(トーン)を、複数パターンに変化可能に構成されている。これにより、発音部4から複数パターンの音が発生可能となる。複数パターンの音とは、例えば、国際規格の“ISO 8201”、ドイツの“DIN 33404-3”、英国の“BS 5839-1”、フランスの“NF S32-001”、オランダの“NEN 2575”等の規格に準拠したパターンの音である。複数の音のパターンに対応するPWM信号のデータ(周期、周波数、デューティなど)は、例えばROM(Read Only Memory)等の記憶部70に記憶されている。
また、信号生成部2は、実施形態1と同様に、筐体11の共振周波数f0(又はピーク周波数f10)を基準にして、PWM信号のデューティを変化させる。信号生成部2は、PWM信号の周波数が共振周波数f0(ピーク周波数f10)に近い方の周波数であるときのデューティを、PWM信号の周波数が共振周波数f0(ピーク周波数f10)に遠い方の周波数であるときのデューティよりも大きくする。
設定部7は、信号生成部2が発音部4に送信するPWM信号に対応する音のパターンを、信号生成部2に設定する。言い換えれば、設定部7は、信号生成部2が発音部4に送信するPWM信号に対応する音のパターンを決定する。信号生成部2は、複数パターンのうち、設定部7によって設定(決定)されたパターンに対応するPWM信号を発音部4に送信する。
親機9は、ユーザからの操作に応じて設定信号を感知器100(通信部8)に送信するように構成されている。この設定信号には、感知器100の発音装置1(発音部4)から発生させる音のパターンを指示するデータが含まれている。設定部7は、通信部8が親機9から受信した設定信号に基づいて、複数のパターンから、信号生成部2に設定するパターンを決定する。親機9から感知器100への設定信号の送信は、例えば、親機9及び感知器100の設置後の初期設定時に行われる。
上述したように、本実施形態の発音装置1は、複数パターンの音を発生可能に構成されている。そして、発音装置1は、検知部6が煙の発生を検知した場合、複数パターンのうち、親機9によって設定されたパターンの音を警報音として発生させる。したがって、例えば国ごとに警報音として発生させる音のパターンが異なる場合であっても、1種類の発音装置1(感知器100)で各国に対応したパターンの音を警報音として発生させることができる。つまり、各国で発音装置1(感知器100)を共通化することができる。
(2.2)変形例
図9に、本実施形態の発音装置1の変形例を示す。
図9に、本実施形態の発音装置1の変形例を示す。
本変形例の発音装置1は、設定部7が操作部71を有しており、ユーザが操作部71を操作することにより、警報音として発生させる音のパターンを切り替えることができる。
操作部71は、例えばディップスイッチで構成されており、ユーザからの操作を受け付ける。操作部71は、複数のスライドスイッチの状態に、複数のパターンの音が対応付けられている。設定部7は、操作部71が出力する操作信号に基づいて、複数のパターンから、信号生成部2に設定するパターンを決定する。操作信号は、操作部71が有する複数のスライドスイッチの状態を示している。つまり、操作信号は、複数のパターンの音からユーザが選択したパターンの音を示している。信号生成部2は、複数パターンのうち、設定部7によって設定(決定)されたパターンに対応するPWM信号を発音部4に送信する。
このように、本変形例の発音装置1は、検知部6が煙の発生を検知した場合、複数のパターンのうち、ユーザが操作部71に設定したパターンの音を警報音として発生させる。
なお、上述した例では、信号生成部2は、PWM信号の周期、周波数を複数パターンに変化させることにより、発音部4から発生させる音のパターンを変化させているが、この構成に限らない。例えば、信号生成部2は、WAVファイル(RIFF waveform Audio Format、RIFF:Resource Interchange File Format)を再生することにより、発音部4から音を発生させてもよい。ここでいう「WAVファイルを再生する」とは、発音部4から音を発生させるための信号を送信することを意味する。WAVファイルは、発音装置1に設けられた記憶部70に記憶されている。記憶部70には、複数のパターンの音に対応する複数のWAVファイルが記憶されている。信号生成部2は、設定部7によって設定されたパターンに対応するWAVファイルを記憶部70から抽出し、抽出したWAVファイルを再生する。つまり、発音部4は、信号生成部2からの信号に応じたパターンの音を発生させる。これにより、設定部7によって設定されたパターンの音が、警報音として発音部4から発生される。
(3)まとめ
第1態様に係る発音装置1は、発音部4と、信号生成部2と、を備える。発音部4は、トーンが異なる複数のパターンの音を発生可能である。信号生成部2は、複数のパターンのうちいずれかのパターンに対応した信号を発音部4に出力する。発音部4は、信号生成部2からの信号に応じたパターンの音を発生させる。
第1態様に係る発音装置1は、発音部4と、信号生成部2と、を備える。発音部4は、トーンが異なる複数のパターンの音を発生可能である。信号生成部2は、複数のパターンのうちいずれかのパターンに対応した信号を発音部4に出力する。発音部4は、信号生成部2からの信号に応じたパターンの音を発生させる。
上記構成により、発音装置1は、トーンが異なる複数パターンの音を発生させることができるので、複数パターンの音ごとに発音装置1の構成を変更することなく、構成の共通化を図ることが可能となる。
第2態様に係る発音装置1は、第1態様において、信号生成部2が発音部4に出力する信号に対応するパターンを、信号生成部2に設定する設定部7を更に備える。
上記構成により、発音部4から発生させる音のパターンを設定することができる。
第3態様に係る発音装置1は、第2態様において、設定部7は、親機9からの設定信号に基いたパターンを、信号生成部2に設定する。
上記構成により、発音装置1とは別に設けられた親機9を用いて、発音部4から発生させる音のパターンを設定することができる。
第4態様に係る発音装置1は、第2態様において、設定部7は、ユーザからの操作を受け付ける操作部71を有する。設定部7は、操作部71が出力する操作信号に基いたパターンを、信号生成部2に設定する。
上記構成により、発音装置1単体で、発音部4から発生させる音のパターンを設定することができる。
第5態様に係る発音装置1は、第1~第4態様のいずれかにおいて、信号生成部2は、信号として周波数が可変であるPWM信号を生成する。発音部4は、PWM信号の周波数及びデューティに応じた音を発生させる。信号生成部2は、PWM信号の周波数を変化させ、かつ、PWM信号の周波数の変化に応じてPWM信号のデューティを変化させる。
上記構成により、発音装置1は、PWM信号のデューティが一定である場合に比べて、PWM信号のデューティが小さい期間が発生するので、消費電力の低減を図ることが可能となる。
第6態様に係る発音装置1は、第5態様において、発音部4を収納する筐体11を更に備える。信号生成部2は、PWM信号の周波数を、第1周波数f1と第2周波数f2とを含む周波数に変化させる。筐体11の共振周波数f0と第1周波数f1との差は、筐体11の共振周波数f0と第2周波数f2との差よりも小さい。信号生成部2は、PWM信号の周波数が第1周波数f1であるときのデューティを、PWM信号の周波数が第2周波数f2であるときのデューティよりも大きくする。
上記構成により、筐体11が共鳴しやすい第1周波数f1の音を発生させるときのPWM信号のデューティが大きくなることによって、第1周波数f1の音の瞬時音圧が効率よく増大される。したがって、発音装置1は、発音部4から発生させる音の音圧の増大を図ることが可能となる。発音装置1は、発音部4から可聴音を発生させる場合、大音量化を図ることが可能となる。ただし、この構成は、発音装置1に必須の構成ではない。例えば、信号生成部2は、PWM信号の周波数が、人間の耳の感度が高い周波数に近い周波数であるときのデューティを、人間の耳の感度が高い周波数から遠い周波数であるときのデューティよりも大きくするように構成されていてもよい。
第7態様に係る発音装置1は、第6態様において、信号生成部2は、PWM信号の周波数が第1周波数f1である第1期間T10を、PWM信号の周波数が第2周波数f2である第2期間T20よりも長くする。
上記構成により、発音装置1は、瞬時音圧が大きい第1周波数f1の音の発生期間の割合が大きくなり、発音部4から発生させる音の音圧の増大を図ることが可能となる。ただし、この構成は、発音装置1に必須の構成ではなく、例えば、発音装置1は、PWM信号の周波数が第2周波数f2である第2期間T20を、PWM信号の周波数が第1周波数f1である第1期間T10よりも長くしてもよい。これにより、消費電力をより低減することが可能となる。
第8態様に係る発音装置1は、第5~第7態様のいずれか1つの態様において、信号生成部2は、時間経過に伴ってPWM信号の周波数を複数の帯域にわたって徐々に変化させる。また、信号生成部2は、PWM信号のデューティを複数の帯域ごとに変化させる。
上記構成により、信号生成部2は、PWM信号のデューティを帯域ごとに変化させるので、PWM信号の周波数とデューティとの両方を徐々に変化させる場合に比べて、信号生成部2がPWM信号を生成するための処理が容易となる。
第9態様の係る発音装置1は、第5~第7態様のいずれか1つの態様において、信号生成部2は、時間経過に伴ってPWM信号の周波数を徐々に変化させる。また、信号生成部2は、PWM信号のデューティをPWM信号の周波数と一対一に対応したデューティに変化させる。
上記構成により、PWM信号のデューティは、PWM信号の変化に合わせて徐々に変化する。したがって、発音装置1は、発音部4から発生する音の音圧を徐々に変化させることが可能となる。
第10態様に係る発音装置1は、第5態様において、発音部4を収納する筐体11を更に備える。信号生成部2は、時間経過に伴ってPWM信号の周波数を、第1周波数を含む第1帯域B1と、筐体11の共振周波数との差が第1周波数f1よりも大きい第2周波数f2を含む第2帯域B2とを含む複数の帯域にわたって徐々に変化させる。また、PWM信号のデューティを複数の帯域ごとに変化させる。PWM信号の周波数が第1帯域B1内で変化しているときの、単位時間あたりにおけるPWM信号の周波数の変化量を第1変化量Δ1とする。PWM信号の周波数が第2帯域B2内で変化しているときの、単位時間あたりにおけるPWM信号の周波数の変化量を第2変化量Δ2とする。信号生成部2は、第1変化量Δ1が第2変化量Δ2よりも小さくなるように、PWM信号の周波数を変化させる。
上記構成により、発音装置1は、第1周波数f1を含む第1帯域B1の音の発生期間を長くして、発音部4が発生させる音の音圧をより増大することが可能となる。ただし、この構成は、発音装置1に必須の構成ではなく、単位時間あたりにおけるPWM信号の周波数の変化量は一定であってもよい。
第11態様に係る発音装置1は、第5態様において、発音部4を収納する筐体11を更に備える。信号生成部2は、発音部4から筐体11の外側へ放射される音の放射特性に基づいて、PWM信号のデューティを変化させる。
上記構成により、発音装置1は、発音部4から発生させる音の音圧の増大を図ることが可能となる。発音装置1は、発音部4から可聴音を発生させる場合、大音量化を図ることが可能となる。
第12態様に係る発音装置1は、第5~第11態様のいずれかにおいて、信号生成部2は、PWM信号のデューティを、PWM信号の周波数に基いた係数で補正する。
上記構成により、PWM信号の周波数に応じて発音部4から発生する音を調整することができる。
第13態様に係る発音装置1は、第5~第12態様のいずれか1つの態様において、信号生成部2は、PWM信号のデューティの変化幅が所定範囲内となるようにPWM信号のデューティを変化させる。
上記構成により、発音装置1は、発音部4から発生させる音の瞬時音圧の差が大きくなり過ぎることを抑制することが可能となる。ただし、この構成は、発音装置1に必須の構成ではなく、PWM信号のデューティの変化幅は所定範囲外であってもよい。
第14態様に係る発音装置1は、第5~第13態様のいずれか1つの態様において、PWM信号の周波数は、20Hz以上かつ20kHz以下である。
上記構成により、人間の可聴音を発生させる発音装置1において、消費電力の低減を図ることが可能となる。
第15態様に係る警報装置10は、第1~第14態様のいずれか1つの態様の発音装置1であって、発音部4は、警報音を発生させる。
上記構成により、警報装置10は、PWM信号のデューティが小さい期間が発生するので、PWM信号のデューティを一定にする場合に比べて、消費電力の低減を図ることが可能となる。
第16態様に係る感知器100は、第15態様の警報装置10と、特定事象を検知する検知部6とを備え、警報装置10は、検知部6が特定事象を検知した場合、警報音を発生させる。
上記構成により、感知器100は、PWM信号のデューティが小さい期間が発生するので、PWM信号のデューティを一定にする場合に比べて、消費電力の低減を図ることが可能となる。
1 発音装置
10 警報装置
100 感知器
11 筐体
2 信号生成部
3 音響回路
4 発音部
6 検知部
7 設定部
71 操作部
9 親機
f1 第1周波数
f2 第2周波数
T10 第1期間
T20 第2期間
B1 第1帯域
B2 第2帯域
Δ1 第1変化量
Δ2 第2変化量
10 警報装置
100 感知器
11 筐体
2 信号生成部
3 音響回路
4 発音部
6 検知部
7 設定部
71 操作部
9 親機
f1 第1周波数
f2 第2周波数
T10 第1期間
T20 第2期間
B1 第1帯域
B2 第2帯域
Δ1 第1変化量
Δ2 第2変化量
Claims (16)
- トーンが異なる複数のパターンの音を発生可能な発音部と、
前記複数のパターンのうちいずれかのパターンに対応した信号を前記発音部に出力する信号生成部と、を備え、
前記発音部は、前記信号生成部からの前記信号に応じたパターンの音を発生させる
ことを特徴とする発音装置。 - 前記信号生成部が前記発音部に出力する前記信号に対応するパターンを、前記信号生成部に設定する設定部を更に備える
ことを特徴とする請求項1に記載の発音装置。 - 前記設定部は、親機からの設定信号に基づいたパターンを、前記信号生成部に設定する
ことを特徴とする請求項2に記載の発音装置。 - 前記設定部は、ユーザからの操作を受け付ける操作部を有し、前記操作部が出力する操作信号に基づいたパターンを、前記信号生成部に設定する
ことを特徴とする請求項2に記載の発音装置。 - 前記信号生成部は、前記信号として周波数が可変であるPWM信号を生成し、
前記発音部は、前記PWM信号の周波数及びデューティに応じた音を発生させ、
前記信号生成部は、前記PWM信号の周波数を変化させ、かつ、前記PWM信号の周波数の変化に応じて前記PWM信号のデューティを変化させる
ことを特徴とする請求項1~4のいずれか1項に記載の発音装置。 - 前記発音部を収納する筐体を更に備え、
前記信号生成部は、前記PWM信号の周波数を、第1周波数と第2周波数とを含む周波数に変化させ、
前記筐体の共振周波数と前記第1周波数との差は、前記筐体の前記共振周波数と前記第2周波数との差よりも小さく、
前記信号生成部は、前記PWM信号の周波数が前記第1周波数であるときのデューティを、前記PWM信号の周波数が前記第2周波数であるときのデューティよりも大きくする
ことを特徴とする請求項5に記載の発音装置。 - 前記信号生成部は、前記PWM信号の周波数が前記第1周波数である第1期間を、前記PWM信号の周波数が前記第2周波数である第2期間よりも長くする
ことを特徴とする請求項6に記載の発音装置。 - 前記信号生成部は、時間経過に伴って前記PWM信号の周波数を複数の帯域にわたって徐々に変化させ、かつ、前記PWM信号のデューティを前記複数の帯域ごとに変化させる
ことを特徴とする請求項5~7のいずれか1項に記載の発音装置。 - 前記信号生成部は、時間経過に伴って前記PWM信号の周波数を徐々に変化させ、かつ、前記PWM信号のデューティを前記PWM信号の周波数と一対一に対応したデューティに変化させる
ことを特徴とする請求項5~7のいずれか1項に記載の発音装置。 - 前記発音部を収納する筐体を更に備え、
前記信号生成部は、時間経過に伴って前記PWM信号の周波数を、第1周波数を含む第1帯域と、前記筐体の共振周波数との差が前記第1周波数よりも大きい第2周波数を含む第2帯域とを含む複数の帯域にわたって徐々に変化させ、かつ、前記PWM信号のデューティを前記複数の帯域ごとに変化させ、
前記PWM信号の周波数が前記第1帯域内で変化しているときの、単位時間あたりにおける前記PWM信号の周波数の変化量を第1変化量とし、
前記PWM信号の周波数が前記第2帯域内で変化しているときの、単位時間あたりにおける前記PWM信号の周波数の変化量を第2変化量とし、
前記信号生成部は、前記第1変化量が前記第2変化量よりも小さくなるように、前記PWM信号の周波数を変化させる
ことを特徴とする請求項5に記載の発音装置。 - 前記発音部を収納する筐体を更に備え、
前記信号生成部は、前記発音部から前記筐体の外側へ放射される音の放射特性に基づいて、前記PWM信号のデューティを変化させる
ことを特徴とする請求項5に記載の発音装置。 - 前記信号生成部は、前記PWM信号のデューティを、前記PWM信号の周波数に基いた係数で補正する
ことを特徴とする請求項5~11のいずれか1項に記載の発音装置。 - 前記信号生成部は、前記PWM信号のデューティの変化幅が所定範囲内となるように前記PWM信号のデューティを変化させる
ことを特徴とする請求項5~12のいずれか1項に記載の発音装置。 - 前記PWM信号の周波数は、20Hz以上かつ20kHz以下である
ことを特徴とする請求項5~13のいずれか1項に記載の発音装置。 - 請求項1~14のいずれか1項に記載の発音装置であって、
前記発音部は、警報音を発生させる
ことを特徴とする警報装置。 - 請求項15に記載の警報装置と、
特定事象を検知する検知部と、を備え、
前記警報装置は、前記検知部が前記特定事象を検知した場合、警報音を発生させる
ことを特徴とする感知器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018540294A JP6964258B2 (ja) | 2016-09-21 | 2017-09-21 | 発音装置、警報装置、及び感知器 |
EP23188227.5A EP4246484A3 (en) | 2016-09-21 | 2017-09-21 | Sound-emitting device, notification device, and sensor |
EP17853127.3A EP3518231B1 (en) | 2016-09-21 | 2017-09-21 | Sound-emitting device, notification device, and sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016184499 | 2016-09-21 | ||
JP2016-184499 | 2016-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018056358A1 true WO2018056358A1 (ja) | 2018-03-29 |
Family
ID=61690417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/034105 WO2018056358A1 (ja) | 2016-09-21 | 2017-09-21 | 発音装置、警報装置、及び感知器 |
Country Status (3)
Country | Link |
---|---|
EP (2) | EP3518231B1 (ja) |
JP (1) | JP6964258B2 (ja) |
WO (1) | WO2018056358A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020013397A (ja) * | 2018-07-19 | 2020-01-23 | 能美防災株式会社 | 警報装置及びその警報音の周波数の設定方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005524185A (ja) * | 2002-05-13 | 2005-08-11 | エドワーズ システムズ テクノロジー インコーポレイテッド | 設置された警報装置のオーディオ出力及びビジュアル出力を調整する方法及び機器 |
JP2010049606A (ja) * | 2008-08-25 | 2010-03-04 | Hochiki Corp | 警報器 |
JP2010049605A (ja) * | 2008-08-25 | 2010-03-04 | Hochiki Corp | 警報器 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7505600B2 (en) * | 2004-04-01 | 2009-03-17 | Floyd Bell, Inc. | Processor control of an audio transducer |
US7170404B2 (en) * | 2004-07-23 | 2007-01-30 | Innovalarm Corporation | Acoustic alert communication system with enhanced signal to noise capabilities |
GB2449633A (en) * | 2007-05-26 | 2008-12-03 | Steven Nigel Kelsey | Portable smoke and carbon monoxide with personal location beacon. |
JP5186199B2 (ja) * | 2007-12-25 | 2013-04-17 | ホーチキ株式会社 | 警報器 |
JP5123104B2 (ja) | 2008-08-25 | 2013-01-16 | ホーチキ株式会社 | 警報器 |
JP5075898B2 (ja) * | 2009-09-25 | 2012-11-21 | パナソニック株式会社 | 警報器 |
WO2011100121A1 (en) * | 2010-02-09 | 2011-08-18 | Innovalarm Corporation | Supplemental alert generation device |
JP5891458B2 (ja) * | 2012-06-25 | 2016-03-23 | パナソニックIpマネジメント株式会社 | 警報音駆動回路 |
-
2017
- 2017-09-21 EP EP17853127.3A patent/EP3518231B1/en active Active
- 2017-09-21 WO PCT/JP2017/034105 patent/WO2018056358A1/ja unknown
- 2017-09-21 EP EP23188227.5A patent/EP4246484A3/en active Pending
- 2017-09-21 JP JP2018540294A patent/JP6964258B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005524185A (ja) * | 2002-05-13 | 2005-08-11 | エドワーズ システムズ テクノロジー インコーポレイテッド | 設置された警報装置のオーディオ出力及びビジュアル出力を調整する方法及び機器 |
JP2010049606A (ja) * | 2008-08-25 | 2010-03-04 | Hochiki Corp | 警報器 |
JP2010049605A (ja) * | 2008-08-25 | 2010-03-04 | Hochiki Corp | 警報器 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020013397A (ja) * | 2018-07-19 | 2020-01-23 | 能美防災株式会社 | 警報装置及びその警報音の周波数の設定方法 |
JP7170443B2 (ja) | 2018-07-19 | 2022-11-14 | 能美防災株式会社 | 警報装置及びその警報音の周波数の設定方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4246484A3 (en) | 2023-11-29 |
EP4246484A2 (en) | 2023-09-20 |
EP3518231A1 (en) | 2019-07-31 |
JP6964258B2 (ja) | 2021-11-10 |
JPWO2018056358A1 (ja) | 2019-07-25 |
EP3518231B1 (en) | 2023-08-30 |
EP3518231A4 (en) | 2019-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090034746A1 (en) | Chassis with noise cancellation function, noise cancellation method, method for producing noise cancellation sound data, program for producing noise cancellation sound data, and medium | |
US8401201B2 (en) | Sound processing apparatus and method | |
US9580010B2 (en) | Vehicle approach notification apparatus | |
WO2010098346A1 (ja) | 超音波伝播時間測定システム | |
US8558708B2 (en) | Supplemental alert generation device with speaker enclosure assembly | |
US7605687B2 (en) | Ambient condition detector with variable pitch alarm | |
WO2010035760A1 (ja) | ループゲイン推定装置およびハウリング防止装置 | |
JP5568986B2 (ja) | 超音波伝播時間測定システム | |
US20160232759A1 (en) | Life safety device with compact circumferential acoustic resonator | |
WO2009036330A1 (en) | Adaptive audio content generation system | |
US8237577B2 (en) | Supplemental alert generation device | |
WO2018056358A1 (ja) | 発音装置、警報装置、及び感知器 | |
US8723656B2 (en) | Human audible localization for sound emitting devices | |
EP2691013A1 (en) | Infant monitor | |
JP6207309B2 (ja) | 電子体温計および報知装置 | |
JP5123106B2 (ja) | 警報器 | |
US7068176B2 (en) | Smoke detector with sound quality enhancement chamber | |
JP2005077875A (ja) | 警報音源認識装置及び警報音源認識方法 | |
JP5953609B2 (ja) | 警報音の発信方法 | |
CN117319870A (zh) | 一种耳机佩戴状态检测方法、装置、耳机和存储介质 | |
JP5186199B2 (ja) | 警報器 | |
JP5075898B2 (ja) | 警報器 | |
JP2016001775A (ja) | 超指向性マイクロフォンシステム | |
CN115002601A (zh) | 煲耳机设备、方法、装置及计算机可读存储介质 | |
JP5920824B2 (ja) | 加振ベル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17853127 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018540294 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017853127 Country of ref document: EP Effective date: 20190423 |