WO2018056140A1 - 液晶表示パネル - Google Patents

液晶表示パネル Download PDF

Info

Publication number
WO2018056140A1
WO2018056140A1 PCT/JP2017/033049 JP2017033049W WO2018056140A1 WO 2018056140 A1 WO2018056140 A1 WO 2018056140A1 JP 2017033049 W JP2017033049 W JP 2017033049W WO 2018056140 A1 WO2018056140 A1 WO 2018056140A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
pixel
display area
transmittance
display panel
Prior art date
Application number
PCT/JP2017/033049
Other languages
English (en)
French (fr)
Inventor
昌行 兼弘
仲西 洋平
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201780057131.5A priority Critical patent/CN109716224B/zh
Priority to US16/333,605 priority patent/US10725355B2/en
Publication of WO2018056140A1 publication Critical patent/WO2018056140A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133388Constructional arrangements; Manufacturing methods with constructional differences between the display region and the peripheral region
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/56Substrates having a particular shape, e.g. non-rectangular
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale

Definitions

  • the present invention relates to a liquid crystal display panel.
  • the liquid crystal display panel includes a display area for displaying an image and a light shielding portion outside the display area.
  • a display area of the liquid crystal display panel a plurality of liquid crystal pixels are arranged in a matrix.
  • the conventional liquid crystal display panel is generally rectangular in shape, but in recent years, with the development of processing technology, liquid crystal display panels having various shapes such as semicircular or trapezoidal shapes have been manufactured. (Patent Document 1).
  • the display area often has a shape corresponding to the outer shape of the liquid crystal display panel.
  • FIG. 12 is a diagram showing a configuration of a conventional liquid crystal display panel 900.
  • the liquid crystal display panel 900 has an end 901 having a curved outer shape.
  • An end portion 901 having a curved outer shape is produced by cutting a corner portion of a rectangular liquid crystal display panel.
  • the liquid crystal display panel 900 includes a display region 901a and a light shielding portion 901b (black matrix (BM)) outside the display region 901a at the end portion 901. Since the light shielding portion 901b is formed of a light shielding member, it does not transmit white light from the backlight. Therefore, the light shielding part 901b is always black.
  • the display region 901a has a stepped (lightning-shaped) outline based on the shape and size of the liquid crystal pixels 9.
  • the liquid crystal display panel 900 shown in FIG. 12 When the liquid crystal display panel 900 shown in FIG. 12 is not in black display, there is a brightness contrast between the display area 901a and the light shielding portion 901b, and thus the non-smooth outline of the display area 901a is easily visible to the user. In particular, when the display area 901a is white display, the contrast becomes large, and the non-smooth outline of the display area 901a is conspicuous.
  • the present invention has been made in view of the above problems, and an object thereof is to improve the display quality of a liquid crystal display panel by making the outline of a display area inconspicuous.
  • a liquid crystal display panel is a liquid crystal display panel including a display region including liquid crystal pixels and a black light-shielding portion outside the display region.
  • the display area includes a boundary display area that includes liquid crystal pixels that are in contact with the light-shielding portion and arranged in a step shape, and a normal display area that is inside the boundary display area. The video is displayed darker than the normal display area.
  • the display quality of the liquid crystal display panel can be improved by making the outline of the display area inconspicuous.
  • FIG. 1 is a diagram illustrating a configuration of a liquid crystal display panel according to Embodiment 1.
  • FIG. (A) and (b) are the figures which show the structure of the liquid crystal pixel with which the liquid crystal display panel which concerns on Embodiment 1 was equipped, (a) shows the liquid crystal pixel of IPS (In-Plane * Switching * mode) mode, ) Denotes a liquid crystal pixel in FFS (Fringe Field Switching) mode.
  • A) and (b) are the figures which show the structure of the liquid crystal pixel with which the liquid crystal display panel which concerns on Embodiment 1 was equipped, (a) shows the structure of the liquid crystal pixel with a large transmittance
  • FIG. 1 Shows a configuration of a liquid crystal pixel having a small.
  • A is a graph which shows the correspondence of the gradation of an image
  • (b) is the liquid crystal pixel in the liquid crystal display panel which concerns on Embodiment 1.
  • FIG. It is a figure which shows arrangement
  • (A) is a table showing a correspondence relationship between the area of a picture element region outside the virtual ideal line, the angle of an electrode of a liquid crystal pixel constituting the picture element, and the transmittance of the picture element.
  • B show the area of the pixel region outside the ideal line.
  • FIG. (A) is a graph which shows the correspondence of the gradation of the image
  • (b) is a design of the transmittance
  • FIG. (A) (b) is a figure which shows the structure of the liquid crystal pixel which concerns on Embodiment 3, (a) shows a liquid crystal pixel with many electrodes and a large transmittance
  • (A) is a graph which shows the correspondence of the gradation of the image in the liquid crystal display panel which concerns on Embodiment 3, and the transmittance
  • (b) is a figure which shows arrangement
  • (A) is a graph which shows the correspondence of the gradation of the image
  • (b) is the area
  • (A) (b) is a figure which shows the structure of the liquid crystal pixel which concerns on Embodiment 5, (a) shows the liquid crystal pixel with a large transmittance
  • (A) is a graph which shows the correspondence of the gradation of the image
  • (b) is the area
  • Embodiment 1 An embodiment of the present invention will be described below with reference to FIGS.
  • FIG. 1 is a diagram showing a configuration of the liquid crystal display panel 100.
  • the liquid crystal display panel 100 has a curved end 101.
  • a rectangular liquid crystal display panel is first manufactured by a known manufacturing method.
  • a light shielding portion black matrix (BM)
  • BM black matrix
  • the light shielding portion is formed outside the ideal line so as not to exceed the ideal line shown in FIG.
  • the light shielding part may be made of, for example, a black resist resin.
  • the corners of the rectangular liquid crystal display panel are cut. As a result, an end 101 having a curved outer shape of the liquid crystal display panel 100 is formed.
  • the liquid crystal display panel 100 includes a normal display area 101a, a light shielding part 101b, and a boundary display area 101c at an end 101.
  • a plurality of liquid crystal pixels 2a are arranged in the normal display area 101a.
  • White light from a backlight (not shown) is transmitted through the liquid crystal pixel 2a, so that the normal display area 101a is colored.
  • the light shielding unit 101b does not transmit white light from the backlight.
  • the liquid crystal pixels 2b are arranged along the ideal line shown in FIG.
  • the three liquid crystal pixels 2a and 2b adjacent to each other correspond to the three colors of RGB and constitute one picture element.
  • one picture element is composed of a set of three liquid crystal pixels 2a and 2b necessary for full color display.
  • the normal display area 101a and the boundary display area 101c correspond to a display area, that is, an area where an image is displayed.
  • the liquid crystal pixel 2b in the boundary display area 101c is designed to have a smaller transmittance than the liquid crystal pixel 2a in the normal display area 101a.
  • the amount of light transmitted through the liquid crystal pixel 2b in the boundary display region 101c is smaller than the amount of light transmitted through the liquid crystal pixel 2a in the normal display region 101a.
  • the transmittance of the liquid crystal pixels 2a and 2b varies depending on the gradation of the video. More precisely, when the gradations of the images displayed in the normal display area 101a and the boundary display area 101c are the same, the transmittance of the liquid crystal pixel 2b in the boundary display area 101c is within the normal display area 101a.
  • the transmittance of a certain liquid crystal pixel 2a and higher than 0 that is, the transmittance of the light shielding portion 101b. Therefore, when the liquid crystal display panel 100 is not displaying black, as shown in FIG. 1, the boundary display area 101c is darker than the normal display area 101a.
  • the brightness contrast between the normal display area 101a and the light shielding unit 101b is buffered by the boundary display area 101c that is darker than the normal display area 101a, so that the outline of the display area is conspicuous. Hateful.
  • FIG. 2A shows a structural example of the liquid crystal pixel 1 in an IPS (In-Plane Switching mode) mode.
  • FIG. 2B shows a structural example of the liquid crystal pixel 2 in the FFS (Fringe Field Switching) mode.
  • the liquid crystal pixels 1 and 2 have a structure in which liquid crystal is sandwiched between a pair of glass substrates.
  • a TFT Thin Film Transistor
  • a pixel electrode 17, and a common electrode 18 are disposed on one glass substrate.
  • the TFT includes a source electrode 19, a semiconductor layer 20, and a gate electrode 21.
  • a color filter 15 is disposed on the other glass substrate.
  • the pixel electrode 17 of each liquid crystal pixel 1 is connected to the source bus line 11.
  • the common electrode 18 of each liquid crystal pixel 1 is connected to the gate bus line 12.
  • two alignment control layers 16 are arranged so as to sandwich the liquid crystal.
  • the alignment control layer 16 generates a lateral electric field between the pixel electrode 17 and the common electrode 18.
  • the liquid crystal molecules are driven by the generated lateral electric field.
  • the orientation of the liquid crystal molecules in the liquid crystal pixel 1 is determined according to the strength of the lateral electric field. Further, the transmittance through the liquid crystal pixel 1 is also determined. In this way, the liquid crystal pixel 1 is controlled.
  • a TFT in the FFS mode liquid crystal pixel 2, a TFT, a pixel electrode 37, and a common electrode 38 are disposed on one glass substrate.
  • the TFT includes a source electrode 39, a semiconductor layer 40, and a gate electrode 41.
  • the pixel electrode 37 of each liquid crystal pixel 2 is connected to the source bus line 31.
  • the common electrode 38 of each liquid crystal pixel 2 is connected to the gate bus line 32.
  • two alignment control layers 36 are arranged so as to sandwich the liquid crystal.
  • the pixel electrode 37 and the common electrode 38 are arranged side by side in the vertical direction.
  • the alignment control layer 36 generates an oblique fringe electric field between the pixel electrode 37 and the common electrode 38 by applying an electric field between the pixel electrode 37 and the common electrode 38.
  • Drive liquid crystal molecules The orientation of the liquid crystal molecules in the liquid crystal pixel 2 is determined according to the strength of the fringe electric field. Further, the transmittance through the liquid crystal pixel 2 is also determined. In this way, the liquid crystal pixel 2 is controlled.
  • the liquid crystal pixels 2a and 2b are in the FFS mode will be described. However, in the present embodiment and the subsequent embodiments, the liquid crystal pixels 2a and 2b may be in the IPS mode.
  • the configuration of the liquid crystal pixels 2a and 2b provided in the liquid crystal display panel 100 will be described with reference to FIGS.
  • the liquid crystal pixels 2a and 2b shown in FIGS. 3A and 3B are all in the above-described FFS mode.
  • the pixel electrodes 37 are arranged in a comb shape.
  • the liquid crystal pixel 2a shown in FIG. 3A is designed so that the angle of the pixel electrode 37 is small and the transmittance is large.
  • the liquid crystal pixel 2b shown in FIG. 3B is designed such that the angle of the pixel electrode 37 is larger than the optimum angle of the liquid crystal pixel 2a and the transmittance is small.
  • the angle of the pixel electrode 37 is about 5 degrees with respect to the longitudinal direction of the liquid crystal pixel 2a.
  • the angle of the pixel electrode 37 is about 50 degrees with respect to the longitudinal direction of the liquid crystal pixel 2b. Accordingly, the liquid crystal pixel 2b having a large angle of the pixel electrode 37 has a smaller transmittance than the liquid crystal pixel 2a having a small angle of the pixel electrode 37, which is optimized to have the largest transmittance.
  • FIG. 4A is a graph showing the correspondence between the gradation of the image displayed on the liquid crystal display panel 100 and the transmittance of the liquid crystal pixels 2a and 2b (when the gamma value is 2.2).
  • FIG. 4B is a diagram illustrating the arrangement of the liquid crystal pixels 2 a and 2 b in the liquid crystal display panel 100.
  • the transmittance of the liquid crystal pixels 2a and 2b is controlled according to the gradation of the video.
  • the 5 deg graph corresponding to the liquid crystal pixel 2a and the 50 deg graph corresponding to the liquid crystal pixel 2b are different from each other. That is, the transmittance corresponding to the same gradation (except when the gradation is 0) is different between the liquid crystal pixel 2a having a small angle of the pixel electrode 37 and the liquid crystal pixel 2b having a large angle of the pixel electrode 37.
  • the difference in transmittance corresponding to the maximum gradation (255) is the largest.
  • the transmissivity of the liquid crystal pixel 2a corresponding to the maximum gradation is 1 (see the 5 deg graph).
  • the transmittance of the liquid crystal pixel 2b corresponding to the maximum gradation is about 0.3 (see the graph of 50 degrees)
  • the liquid crystal pixel 2a and the liquid crystal pixel 2b The difference in transmittance between the two is about 0.7.
  • the transmittance range of the liquid crystal pixel 2b is narrowed by about 70% with reference to the transmittance range of the liquid crystal pixel 2a. Therefore, when the liquid crystal display panel 100 does not display black, the liquid crystal pixel 2b is darker than the liquid crystal pixel 2a.
  • the three liquid crystal pixels 2a and 2b corresponding to the three colors of RGB form one set (one picture element), and the transmittance for each picture element. Controlled.
  • the liquid crystal pixels 2a having a small angle of the pixel electrode 37 are arranged inside the ideal line, that is, in the normal display area 101a described above.
  • a black matrix (BM) is formed outside the ideal line, that is, in the light shielding portion 101b described above.
  • a liquid crystal pixel 2b having a large angle of the pixel electrode 37 is disposed in the boundary display area 101c between the normal display area 101a and the light shielding portion 101b.
  • the picture elements composed of the liquid crystal pixels 2b are arranged at positions overlapping the ideal line.
  • the transmittance is controlled for each picture element, the three liquid crystal pixels 2a and 2b constituting one picture element have the same transmittance. Therefore, it is possible to prevent an unintended color (that is, not corresponding to an image) from being displayed in the boundary display area 101c.
  • the configuration has been described in which the transmittance of all picture elements located at the position overlapping the ideal line is reduced at the same rate.
  • a configuration will be described in which the transmittance of the liquid crystal pixel 2b is designed more finely according to the area S of the pixel region outside the ideal line.
  • FIG. 5A shows the area S (ratio) of the pixel region outside the ideal line and the angle of the pixel electrode 37 of the liquid crystal pixel 2b (with respect to the pixel composed of three liquid crystal pixels 2b). It is a table showing the correspondence between the design value) and the transmittance (gradation conversion) of the liquid crystal pixel 2b.
  • FIG. 5B shows the area S of the pixel region outside the ideal line.
  • the transmittance of the liquid crystal pixel 2b is divided into a plurality of stages according to the area S described above.
  • the transmittance of the liquid crystal pixel 2b is designed by the angle of the pixel electrode 37 of the liquid crystal pixel 2b.
  • the angle of the pixel electrode 37 of the liquid crystal pixel 2b is any one of 15, 25, 35, 45, and 50 degrees.
  • the angle of the pixel electrode 37 of the liquid crystal pixel 2b constituting the picture element is designed to be 50 degrees.
  • the maximum transmittance of the liquid crystal pixel 2b constituting the picture element is 157 in terms of gradation corresponding to the same transmittance of the liquid crystal pixel 2a. That is, the brightness of the liquid crystal pixel 2b when the image gradation is the maximum value (255) is equal to the brightness of the liquid crystal pixel 2a when the image gradation is 157.
  • FIG. 6A is a graph showing the correspondence between the gradation of an image displayed on the liquid crystal display panel 200 and the transmittance of the liquid crystal pixel 2b.
  • FIG. 6B is a diagram illustrating an arrangement of the liquid crystal pixels 2 a and 2 b in the liquid crystal display panel 200.
  • the gradation of the image is changed depending on whether the angle of the pixel electrode 37 of the liquid crystal pixel 2b is 15, 25, 35, 45, or 50 degrees.
  • the correspondence relationship with the transmittance of the liquid crystal pixel 2b is different.
  • the greater the angle of the pixel electrode 37 of the liquid crystal pixel 2b the smaller the transmittance of the liquid crystal pixel 2b corresponding to the same gradation (except when the gradation is 0).
  • the transmittance of the liquid crystal pixel 2b corresponding to the maximum gradation value (255) is 1.
  • the transmittance of the liquid crystal pixel 2b corresponding to the same gradation (255) is about 0.35.
  • the brightness of the liquid crystal pixel 2b differs depending on the area S described above.
  • the larger the area S that is, the larger the pixel region outside the ideal line
  • the transmittance of the liquid crystal pixel 2b in which the angle of the pixel electrode 37 is 15, 25, 35, 45, and 50 degrees is 1, 0.90, and 0.75, respectively. , 0.57, and 0.33.
  • the angle of the pixel electrode 37 is 25, 35, 45, and 50 degrees with reference to the transmittance of the liquid crystal pixel 2b in which the angle of the pixel electrode 37 is 15 degrees.
  • the transmittance of a certain liquid crystal pixel 2b is as low as about 10, 25, 43, and 67%, respectively.
  • the transmittance of the liquid crystal pixel 2b in the boundary display region 101c is designed in a plurality of stages according to the area S, so that the outline of the normal display region 101a becomes less conspicuous. Therefore, it is visually recognized as if the outline of the display area is smooth.
  • the configuration in which the transmittance of the liquid crystal pixels 2a and 2b is designed based on the angle of the pixel electrode 37 of the liquid crystal pixels 2a and 2b has been described.
  • a configuration for designing the transmittance of the liquid crystal pixels 2a and 2b based on the number of pixel electrodes 37 provided in the liquid crystal pixels 202a and 202b will be described.
  • FIGS. 7A and 7B are diagrams showing the configuration of the liquid crystal pixels 202a and 202b.
  • Liquid crystal pixels 202a and 202b shown in FIGS. 7A and 7B correspond to the FFS mode liquid crystal pixels 2 described in the first embodiment (see FIG. 2B).
  • the number of pixel electrodes 37 in the liquid crystal pixels 202a and 202b is different from each other.
  • a liquid crystal pixel 202 a shown in FIG. 7A has four pixel electrodes 37, and a liquid crystal pixel 202 b shown in FIG. 7B has one pixel electrode 37.
  • the liquid crystal pixel 202b having a small number of pixel electrodes 37 has a lower transmittance than the liquid crystal pixel 202a having a large number of pixel electrodes 37.
  • FIG. 8A is a graph showing the correspondence between the gradation of the video and the transmittance of the liquid crystal pixels 202a and 202b.
  • FIG. 8B is a diagram showing the arrangement of the liquid crystal pixels 202a and 202b in the liquid crystal display panel 300 according to the present embodiment.
  • a graph corresponding to the liquid crystal pixel 202a (graph of 4 lines in FIG. 8A) and a graph corresponding to the liquid crystal pixel 202b (graph of 1 line in FIG. 8A).
  • the transmittance of the liquid crystal pixel 202a corresponding to the maximum gradation (255) is 1, and the transmittance of the liquid crystal pixel 202b corresponding to the same gradation (255) is about 0. .3, the transmittance difference is about 0.7. That is, the transmittance range of the liquid crystal pixel 202b is narrowed with reference to the transmittance range of the liquid crystal pixel 202a.
  • liquid crystal pixels 202a having four pixel electrodes 37 are arranged inside the ideal line, that is, in the normal display region 101a described above.
  • a liquid crystal pixel 202b having one pixel electrode 37 is arranged on the ideal line, that is, in the boundary display area 101c that is the boundary between the normal display area 101a and the light shielding portion 101b.
  • the liquid crystal pixel 202b has a smaller transmittance than the liquid crystal pixel 202a. Therefore, when the liquid crystal display panel 300 does not display black, the boundary display area 101c is brighter than the light-shielding portion 101b formed of a black matrix and darker than the normal display area 101a.
  • the boundary display area 101c is sandwiched between the normal display area 101a and the light shielding part 101b, compared with the configuration in which the normal display area 101a and the light shielding part 101b are directly adjacent to each other.
  • the outline of the display area is less noticeable.
  • liquid crystal display panel 300 three liquid crystal pixels 202a and 202b corresponding to three colors of RGB form one set (one picture element), and the transmittance is controlled for each picture element. Therefore, it is possible to prevent an unintended color (that is, not corresponding to a video signal) from being displayed in the boundary display region 101c as compared with the configuration in which the transmittance is controlled for each of the liquid crystal pixels 202a and 202b. .
  • the liquid crystal pixels 202a and 202b may be in the IPS mode.
  • the liquid crystal pixels 202b are transmitted according to the area S of the pixel region outside the ideal line.
  • the structure which designs a rate more finely is demonstrated.
  • FIG. 9A is a graph showing the correspondence between the gradation of the video and the transmittance of the liquid crystal pixel 202b.
  • FIG. 9B shows the area S (ratio) of the pixel region outside the ideal line, the number (design value) of the pixel electrodes 37 of the liquid crystal pixel 2b, and the transmittance (floor) of the liquid crystal pixel 202b. It is a table which shows a corresponding relationship with key conversion.
  • the gradation of the image and the liquid crystal pixel are determined depending on whether the number of the pixel electrodes 37 of the liquid crystal pixel 202b is 1, 2, 3, or 4.
  • the correspondence relationship with the transmittance of 202b is different.
  • the transmittance of the liquid crystal pixel 202b corresponding to the maximum gradation value (255) is 1.
  • the transmittance of the liquid crystal pixel 202b corresponding to the same gradation (255) is about 0.33. That is, as the number of pixel electrodes 37 of the liquid crystal pixel 202b increases, the transmittance range of the liquid crystal pixel 202b becomes narrower.
  • the transmittance of the liquid crystal pixel 202b is divided into a plurality of stages according to the area S described above.
  • the area S of the pixel region outside the ideal line is 66% or more and less than 100%
  • the number of pixel electrodes 37 of the liquid crystal pixel 202b constituting the pixel is designed to be one.
  • the maximum transmittance of the liquid crystal pixel 202b constituting the picture element is 150 in terms of a gradation corresponding to the same transmittance of the liquid crystal pixel 202a.
  • the brightness of the liquid crystal pixel 202b when the image gradation is the maximum value (255) is equal to the brightness of the liquid crystal pixel 202a when the image gradation is 150.
  • the transmittance of the liquid crystal pixel 202b in the boundary display area 101c is finely designed according to the area S, so that the outline of the normal display area 101a becomes less conspicuous. Therefore, it is visually recognized as if the outline of the normal display area 101a is smooth.
  • the configuration in which the transmittance of the liquid crystal pixel 202b is controlled by the number of the pixel electrodes 37 of the liquid crystal pixel 202b has been described.
  • a configuration in which the transmittance of the liquid crystal pixel 202b is more finely controlled by the arrangement of the pixel electrode 37 in the liquid crystal pixel 202b in the configuration described in the fourth embodiment will be described.
  • FIGS. (A) and (b) of FIG. 10 are diagrams showing the configuration of the liquid crystal pixels 202b1 and 202b2.
  • Both of the liquid crystal pixels 202b1 and 202b2 according to the present embodiment correspond to the case where the liquid crystal pixel 202b described in the fourth embodiment has two pixel electrodes 37.
  • the liquid crystal pixel 202b1 shown in FIG. 10B is designed to have a high transmittance
  • the liquid crystal pixel 202b2 shown in FIG. 10B is designed to have a low transmittance.
  • the positions of the two pixel electrodes 37 are close to each other, so that the electric field applied to the liquid crystal by the pixel electrode 37 becomes strong.
  • the electric field applied to the liquid crystal by the pixel electrode 37 is weakened. The stronger the electric field acting on the liquid crystal, the easier the alignment of the liquid crystal molecules. Accordingly, the liquid crystal pixel 202b1 in which the positions of the two pixel electrodes 37 are far is smaller in transmittance than the liquid crystal pixel 202b2 in which the positions of the two pixel electrodes 37 are close.
  • FIG. 11A is a graph showing the correspondence between the gradation of an image displayed on the liquid crystal display panel 300 (see FIG. 8B) and the transmittance of the liquid crystal pixel 202b.
  • FIG. 11B shows an area S (ratio) of a pixel area outside the ideal line and a pixel of the liquid crystal pixel 2b constituting the picture element with respect to the picture element constituted by the three liquid crystal pixels 202b. It is a table which shows the correspondence of the number (design value) of the electrode 37, and the transmittance
  • the gradation of the image and the liquid crystal pixel are determined depending on whether the number of the pixel electrodes 37 of the liquid crystal pixel 202b is 1, 2, 3, or 4.
  • the correspondence relationship with the transmittance of 202b is different.
  • the liquid crystal pixel 202b is changed according to the positional relationship between the two pixel electrodes 37 of the liquid crystal pixel 202b, that is, the liquid crystal pixel 202b of FIG.
  • the correspondence between the gradation of the video and the transmittance varies depending on which of the liquid crystal pixels 202b1 and 202b2 shown in FIG. In FIG.
  • the transmittance of the liquid crystal pixel 202 b is designed not only by the number of pixel electrodes 37 of the liquid crystal pixel 202 b but also by the position of the pixel electrode 37.
  • the transmittance of the liquid crystal pixel 202b is divided into six stages according to the area S. Five of the six stages are distinguished by the number of pixel electrodes 37. Of the six stages, two stages having the same number of pixel electrodes 37 are distinguished by the positional relationship between the two pixel electrodes 37. Specifically, when the area S is 43 or more and less than 68, the liquid crystal pixel 202b is designed such that the position of the pixel electrode 37 is close and the transmittance of the liquid crystal pixel 202b is large. Further, when the area S is 35 or more and less than 43, the liquid crystal pixel 202b is designed such that the position of the pixel electrode 37 is far and the transmittance of the liquid crystal pixel 202b is small.
  • the transmittance of the liquid crystal pixel 202b in the boundary display area 101c can be designed more finely according to the area S, so that the outline of the display area becomes less conspicuous.
  • the liquid crystal display panel (100, 200, 300) includes a display area composed of liquid crystal pixels (2a, 2b, 202a, 202b, 202b1, 202b2) and a black color outside the display area.
  • the display area includes a boundary display area (101c) including liquid crystal pixels in contact with the light-shielding part and arranged in a step shape, and the boundary display area.
  • the inner normal display area (101a) and the boundary display area displays an image darker than the normal display area.
  • the display area is divided into the normal display area and the boundary display area, and the image is displayed darker than the normal display area in the boundary display area in contact with the light shielding portion. Therefore, the brightness contrast at the boundary between the display area and the light shielding portion is reduced. As a result, the step-shaped contour of the display area becomes inconspicuous, and the display quality of the liquid crystal display panel can be improved.
  • the liquid crystal display panel according to aspect 2 of the present invention is the liquid crystal display panel according to aspect 1, in which the light transmittance of the liquid crystal pixels in the normal display region is relatively high, and the light transmittance of the liquid crystal pixels in the boundary display region is You may be comprised so that it may become relatively low.
  • the boundary display area displays an image more than the normal display area. It can be displayed dark.
  • the number of electrodes of the liquid crystal pixels in the boundary display area may be smaller than the number of electrodes of the liquid crystal pixels in the normal display area.
  • the liquid crystal pixel in the boundary display region since the number of electrodes of the liquid crystal pixel in the boundary display region is small, the liquid crystal pixel in the boundary display region has a weak electric field for aligning the liquid crystal molecules. Therefore, the amount of light transmitted through the liquid crystal pixels in the boundary display area is reduced. The light transmittance of the liquid crystal pixels in the boundary display area is lowered.
  • the angle of the electrode of the liquid crystal pixel in the boundary display area is the liquid crystal pixel in the normal display area. It may be larger than the angle of the electrode.
  • the angle of the liquid crystal pixels in the boundary display area is large, the amount of light transmitted through the liquid crystal pixels in the boundary display area is reduced. Therefore, the light transmittance of the liquid crystal pixels in the boundary display area is lowered.
  • the liquid crystal display panel according to aspect 5 of the present invention is the liquid crystal display panel according to any one of the above aspects 2 to 4, in which three liquid crystal pixels corresponding to the three colors RGB constitute one picture element.
  • the three liquid crystal pixels to be configured may have the same light transmittance.
  • the liquid crystal display panel according to aspect 6 of the present invention is the liquid crystal display panel according to aspect 5, in which the picture element having a higher ratio of the area outside the virtual ideal line in the boundary display area has a lower transmittance. Good.
  • Liquid crystal display panel 101a Normal display area (display area) 101b Light-shielding part 101c Boundary display area (display area) 2a, 2b, 202a, 202b, 202b1, 202b2 liquid crystal pixels

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

表示領域の輪郭を目立たなくさせることにより、液晶表示パネルの表示品位を向上させることを目的として、液晶表示パネル(100)の表示領域は、通常表示領域(101a)と境界表示領域(101c)とを含み、黒色の遮光部(101b)と接する境界表示領域(101c)は、通常表示領域(101a)よりも映像を暗く表示する。

Description

液晶表示パネル
 本発明は、液晶表示パネルに関する。
 液晶表示パネルは、映像を表示する表示領域と、表示領域の外側の遮光部とを含む。液晶表示パネルの表示領域には、マトリクス状に、複数の液晶画素が配列されている。従来の液晶表示パネルの外形は矩形である場合が一般的であったが、近年では、加工技術が発達したことで、半円形または台形等の様々な外形を有する液晶表示パネルも製造されている(特許文献1)。このような液晶表示パネルでは、表示領域も、液晶表示パネルの外形に対応する形状である場合が多い。
 図12は、従来の液晶表示パネル900の構成を示す図である。図12に示すように、液晶表示パネル900は、曲線的な外形の端部901を有する。曲線的な外形の端部901は、矩形の液晶表示パネルの角部を切断することによって作製される。液晶表示パネル900は、端部901において、表示領域901aと、表示領域901aよりも外側の遮光部901b(ブラックマトリクス(BM))とを含む。遮光部901bは、遮光性部材によって形成されているため、バックライトからの白光を透過させない。したがって、遮光部901bは、常に黒色である。液晶表示パネル900の端部901において、表示領域901aは、液晶画素9の形状および大きさに基づいて、段差形(稲妻形)の輪郭を有する。
国際公開特許公報「WO2007/13574号公報(2008年10月2日公開)」
 図12に示す液晶表示パネル900が黒表示でない場合、表示領域901aと遮光部901bとの間には、明るさのコントラストがあるため、表示領域901aの滑らかでない輪郭は、ユーザに視認されやすい。特に、表示領域901aが白表示である場合、上記コントラストが大きくなるため、表示領域901aの滑らかでない輪郭が目立つ。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、表示領域の輪郭を目立たなくさせることにより、液晶表示パネルの表示品位を向上させることにある。
 上記の課題を解決するために、本発明の一態様に係る液晶表示パネルは、液晶画素で構成された表示領域と、上記表示領域の外側にある黒色の遮光部とを含む液晶表示パネルであって、上記表示領域は、上記遮光部と接し、かつ段差形に配列した液晶画素を含む境界表示領域と、上記境界表示領域よりも内側の通常表示領域とを含んでおり、上記境界表示領域は、上記通常表示領域よりも映像を暗く表示する。
 本発明の一態様によれば、表示領域の輪郭を目立たなくさせることにより、液晶表示パネルの表示品位を向上させることができる。
実施形態1に係る液晶表示パネルの構成を示す図である。 (a)(b)は、実施形態1に係る液晶表示パネルが備えた液晶画素の構成を示す図であり、(a)はIPS(In-Plane Switching mode)モードの液晶画素を示し、(b)はFFS(Fringe Field Switching)モードの液晶画素を示す。 (a)(b)は、実施形態1に係る液晶表示パネルが備えた液晶画素の構成を示す図であり、(a)は透過率が大きい液晶画素の構成を示し、(b)は透過率が小さい液晶画素の構成を示す。 (a)は、実施形態1に係る液晶画素について、映像の階調と液晶画素の透過率との対応関係を示すグラフであり、(b)は、実施形態1に係る液晶表示パネルにおける液晶画素の配置を示す図である。 (a)は、仮想的な理想ラインよりも外側にある絵素の領域の面積と、絵素を構成する液晶画素の電極の角度と、絵素の透過率との対応関係を示すテーブルであり、(b)は、理想ラインよりも外側にある絵素の領域の面積を示す。 (a)は、実施形態2に係る液晶表示パネルにおける映像の階調と絵素の透過率との対応関係を示すグラフであり、(b)は、液晶表示パネルにおける絵素の透過率の設計を示す図である。 (a)(b)は、実施形態3に係る液晶画素の構成を示す図であり、(a)は、電極の数が多く、透過率が大きい液晶画素を示し、(b)は、電極の数が少なく、透過率が小さい液晶画素を示す。 (a)は、実施形態3に係る液晶表示パネルにおける映像の階調と絵素の透過率との対応関係を示すグラフであり、(b)は、液晶表示パネルにおける液晶画素の配置を示す図である。 (a)は、実施形態4に係る液晶表示パネルにおける映像の階調と絵素の透過率との対応関係を示すグラフであり、(b)は、理想ラインよりも外側にある絵素の領域の面積と、絵素を構成する液晶画素の画素電極の本数と、絵素の透過率との対応関係を示すテーブルである。 (a)(b)は、実施形態5に係る液晶画素の構成を示す図であり、(a)は、2本の電極の位置が近く、透過率が大きい液晶画素を示し、(b)は、電極の位置が遠く、透過率が小さい液晶画素を示す。 (a)は、実施形態5に係る液晶表示パネルにおける映像の階調と絵素の透過率との対応関係を示すグラフであり、(b)は、理想ラインよりも外側にある絵素の領域の面積と、絵素を構成する液晶画素の画素電極の本数と、絵素の透過率との対応関係を示すテーブルである。 従来の液晶表示パネルの構成を示す図である。
 〔実施形態1〕
 本発明の一実施形態について、図1~図4に基づいて説明すれば、以下のとおりである。
 (液晶表示パネル100の構成)
 図1を用いて、本実施形態に係る液晶表示パネル100の構成を説明する。図1は、液晶表示パネル100の構成を示す図である。図1に示すように、液晶表示パネル100は、曲線的な形状の端部101を有する。液晶表示パネル100の一製造方法では、まず、周知の製造方法によって、矩形の液晶表示パネルを製造する。次に、製造した矩形の液晶表示パネルの角部に、遮光部(ブラックマトリクス(BM))を形成する。遮光部は、図1に示す理想ラインを超えないように、理想ラインよりも外側に形成される。遮光部は、例えば、黒色のレジスト樹脂で構成されてよい。その後、上記矩形の液晶表示パネルの角部を切断する。これにより、液晶表示パネル100の曲線的な外形の端部101が形成される。
 図1に示すように、液晶表示パネル100は、端部101において、通常表示領域101aと、遮光部101bと、境界表示領域101cとを含む。通常表示領域101a内には、複数の液晶画素2aが配列されている。バックライト(図示せず)からの白光が、液晶画素2aを透過することで、通常表示領域101aは発色する。一方、遮光部101bは、バックライトからの白光を透過させない。また、通常表示領域101aと遮光部101bとの間の境界表示領域101cには、図1に示す理想ラインに沿って、液晶画素2bが配列されている。互いに隣接する3つの液晶画素2a、2bは、RGBの3色に対応しており、1絵素を構成する。つまり、一絵素は、フルカラー表示を行うために必要な3つの液晶画素2a、2bの組で構成される。液晶表示パネル100では、通常表示領域101aおよび境界表示領域101cが、表示領域、つまり、映像が表示される領域に対応する。
 境界表示領域101c内の液晶画素2bは、通常表示領域101a内の液晶画素2aよりも透過率が小さくなるように設計されている。液晶表示パネル100が黒表示でない場合、通常表示領域101a中の液晶画素2aを透過する光の光量と比較して、境界表示領域101c中の液晶画素2bを透過する光の光量は少なくなる。液晶画素2a、2bの透過率は、映像の階調によって異なる。より正確には、通常表示領域101aおよび境界表示領域101c内に表示される映像の階調が同じである場合、境界表示領域101c内にある液晶画素2bの透過率は、通常表示領域101a内にある液晶画素2aの透過率よりも低く、かつ0(つまり、遮光部101bの透過率)よりも高い。そのため、液晶表示パネル100が黒表示でない場合、図1に示すように、境界表示領域101cは、通常表示領域101aよりも暗くなる。
 本実施形態の構成によれば、通常表示領域101aと遮光部101bとの間の明るさのコントラストが、通常表示領域101aよりも暗い境界表示領域101cによって緩衝されるので、表示領域の輪郭が目立ちにくい。
 (液晶画素の構造例)
 図2の(a)(b)を用いて、液晶表示パネル100を構成する液晶画素2a、2bの構造例を説明する。図2の(a)は、IPS(In-Plane Switching mode)モードの液晶画素1の構造例を示す。図2の(b)は、FFS(Fringe Field Switching)モードの液晶画素2の構造例を示す。図2の(a)(b)に示すように、液晶画素1、2は、一対のガラス基板によって液晶が挟まれた構造を有する。
 図2の(a)に示すように、IPSモードの液晶画素1では、一方のガラス基板上には、TFT(Thin Film Transistor)、画素電極17、およびコモン電極18が配置されている。TFTは、ソース電極19、半導体層20、およびゲート電極21を備えている。他方のガラス基板上には、カラーフィルタ15が配置されている。各液晶画素1の画素電極17は、ソースバスライン11と接続されている。また、各液晶画素1のコモン電極18は、ゲートバスライン12と接続されている。また、液晶を挟むように、2つの配向制御層16が配置されている。配向制御層16は、画素電極17とコモン電極18との間に、横電界を発生させる。そして、発生した横電界により、液晶分子を駆動する。横電界の強度に応じて、液晶画素1中の液晶分子の配向が決まる。また、液晶画素1を透過する透過率も決まる。このようにして、液晶画素1が制御される。
 図2の(b)に示すように、FFSモードの液晶画素2では、一方のガラス基板上には、TFT、画素電極37、およびコモン電極38が配置されている。TFTは、ソース電極39、半導体層40、およびゲート電極41を備えている。各液晶画素2の画素電極37は、ソースバスライン31と接続されている。また、各液晶画素2のコモン電極38は、ゲートバスライン32と接続されている。また、液晶を挟むように、2つの配向制御層36が配置されている。液晶画素2では、画素電極37とコモン電極38とが、縦方向に並んで配置されている。配向制御層36は、画素電極37とコモン電極38との間に電界を作用することにより、画素電極37とコモン電極38との間に、斜め方向のフリンジ電界を発生させ、発生したフリンジ電界により、液晶分子を駆動する。フリンジ電界の強度に応じて、液晶画素2中の液晶分子の配向が決まる。また、液晶画素2を透過する透過率も決まる。このようにして、液晶画素2が制御される。なお、以下では、液晶画素2a、2bがFFSモードである場合について説明するが、本実施形態およびのちの実施形態において、液晶画素2a、2bは、IPSモードであってもよい。
 (液晶画素の構成)
 図3の(a)(b)を用いて、液晶表示パネル100が備えた液晶画素2a、2bの構成を説明する。図3の(a)(b)に示す液晶画素2a、2bは、いずれも、前述したFFSモードである。液晶画素2a、2bでは、画素電極37が櫛歯状に並んでいる。図3の(a)に示す液晶画素2aは、画素電極37の角度が小さく、透過率が大きくなるように設計されている。図3の(b)に示す液晶画素2bは、画素電極37の角度が、液晶画素2aの最適角度より大きく、透過率が小さくなるように設計されている。
 図3の(a)に示す液晶画素2aにおいて、画素電極37の角度は、液晶画素2aの長手方向を基準として、約5度である。また、図3の(b)に示す液晶画素2bにおいて、画素電極37の角度は、液晶画素2bの長手方向を基準として、約50度である。したがって、画素電極37の角度が大きい液晶画素2bは、透過率が最も大きくなるように最適化された、画素電極37の角度が小さい液晶画素2aよりも透過率が小さい。
 (液晶画素の配置および制御方法)
 図4の(a)(b)を用いて、液晶表示パネル100における液晶画素2a、2bの配置および制御方法を説明する。図4の(a)は、液晶表示パネル100に表示される映像の階調と、液晶画素2a、2bの透過率との対応関係を示すグラフである(ガンマ値が2.2である場合)。また、図4の(b)は、液晶表示パネル100における液晶画素2a、2bの配置を示す図である。
 図4の(a)に示す対応関係に基づいて、映像の階調に応じて、液晶画素2a、2bの透過率が制御される。図4の(a)に示すように、液晶画素2aに対応する5degのグラフと、液晶画素2bに対応する50degのグラフとが、互いに異なっている。つまり、画素電極37の角度が小さい液晶画素2aと、画素電極37の角度が大きい液晶画素2bとでは、同じ階調(階調が0である場合を除く)に対応する透過率が互いに異なる。特に、最大の階調(255)に対応する透過率の差が最も大きい。図4の(a)では、最大の階調に対応する液晶画素2aの透過率は1である(5degのグラフ参照)。一方、最大の階調に対応する液晶画素2bの透過率は約0.3である(50degのグラフ参照)から、液晶表示パネル100が白表示である場合、液晶画素2aと液晶画素2bとの間の透過率の差は、約0.7である。換言すれば、液晶画素2aの透過率の範囲を基準として、液晶画素2bの透過率の範囲は、約70%狭くなっている。したがって、液晶表示パネル100が黒表示でない場合、液晶画素2aと比較して、液晶画素2bは暗くなる。
 図4の(b)に示すように、液晶表示パネル100では、RGBの3色に対応する3つの液晶画素2a、2bが1組(1絵素)となっており、絵素ごとに透過率を制御される。理想ラインよりも内側、つまり前述した通常表示領域101a内には、画素電極37の角度が小さい液晶画素2aが配列されている。一方、理想ラインよりも外側、つまり前述した遮光部101b内には、ブラックマトリクス(BM)が形成されている。また、通常表示領域101aと遮光部101bとの間にある境界表示領域101c内には、画素電極37の角度が大きい液晶画素2bが配置されている。液晶画素2bで構成される絵素は、理想ラインと重なる位置に配列している。
 液晶表示パネル100では、絵素ごとに透過率を制御されるので、1つの絵素を構成する3つの液晶画素2a、2bの透過率はそれぞれ等しい。そのため、境界表示領域101cにおいて、意図しない(つまり、映像に対応しない)色が表示されることを防止することができる。
 〔実施形態2〕
 本発明の他の実施形態について、図5~図6に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 前記実施形態1では、理想ラインと重なる位置にある全ての絵素の透過率を、同率で低下させる構成を説明した。本実施形態では、理想ラインよりも外側にある絵素の領域の面積Sに応じて、液晶画素2bの透過率をより細やかに設計する構成を説明する。
 (液晶画素の配置および制御方法)
 図5の(a)(b)を用いて、本実施形態における液晶画素2bの透過率の設計を説明する。図5の(a)は、3つの液晶画素2bで構成される絵素に関して、理想ラインよりも外側にある絵素の領域の面積S(割合)と、液晶画素2bの画素電極37の角度(設計値)と、液晶画素2bの透過率(階調換算)との対応関係を示すテーブルである。また、図5の(b)は、理想ラインよりも外側にある絵素の領域の面積Sを示す。
 図5の(a)に示すように、本実施形態では、液晶画素2bの透過率が、上述した面積Sに応じて、複数の段階に分けられている。具体的には、液晶画素2bの透過率は、液晶画素2bの画素電極37の角度によって設計される。液晶画素2bの画素電極37の角度は、15、25、35、45、50度のいずれかである。例えば、面積Sが66%以上かつ100%未満である場合、その絵素を構成する液晶画素2bの画素電極37の角度は、50度に設計される。また、同じ場合に、絵素を構成する液晶画素2bの最大の透過率は、液晶画素2aの同じ透過率に対応する階調に換算して、157である。つまり、映像の階調が最大値(255)である場合の液晶画素2bの明るさは、映像の階調が157である場合の液晶画素2aの明るさに等しい。
 図6の(a)(b)を用いて、本実施形態に係る液晶表示パネル200における液晶画素2bの透過率の配置および制御方法を説明する。図6の(a)は、液晶表示パネル200に表示される映像の階調と、液晶画素2bの透過率との対応関係を示すグラフである。図6の(b)は、液晶表示パネル200における液晶画素2a、2bの配置を示す図である。
 図6の(a)に示すように、本実施形態では、液晶画素2bの画素電極37の角度が15、25、35、45、50度のいずれであるかに応じて、映像の階調と液晶画素2bの透過率との対応関係が、それぞれ異なる。液晶画素2bの画素電極37の角度が大きいほど、同じ階調に対応する液晶画素2bの透過率が小さい(階調が0である場合を除く)。例えば、図6の(a)に示すように、画素電極37の角度が15度である場合、階調の最大値(255)に対応する液晶画素2bの透過率は、1である。一方、画素電極37の角度が50度である場合、同じ階調(255)に対応する液晶画素2bの透過率は、約0.35である。換言すれば、画素電極37の角度が大きくなるほど、液晶画素2bの透過率の範囲は狭くなっている。
 図6の(b)に示すように、液晶表示パネル200では、液晶画素2bの明るさが、前述した面積Sによって異なっている。面積Sが大きい(すなわち、理想ラインよりも外側にある絵素の領域が大きい)ほど、同じ階調に対応する液晶画素2bの透過率が小さくなる。例えば、液晶表示パネル200が白表示である場合、画素電極37の角度が15、25、35、45、50度である液晶画素2bの透過率は、それぞれ、1、0.90、0.75、0.57、0.33である。換言すれば、液晶表示パネル200が白表示である場合、画素電極37の角度が15度である液晶画素2bの透過率を基準として、画素電極37の角度が25、35、45、50度である液晶画素2bの透過率は、それぞれ、10、25、43、67%程度低い。
 本実施形態の構成によれば、境界表示領域101c内の液晶画素2bの透過率を、面積Sに応じて、複数の段階に設計するので、通常表示領域101aの輪郭がより目立たなくなる。したがって、表示領域の輪郭が滑らかであるかのように視認される。
 〔実施形態3〕
 本発明の他の実施形態について、図7~図8に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 前記実施形態1および2では、液晶画素2a、2bの画素電極37の角度に基づいて、液晶画素2a、2bの透過率を設計する構成を説明した。本実施形態では、液晶画素202a、202bが備えた画素電極37の本数に基づいて、液晶画素2a、2bの透過率を設計する構成を説明する。
 (液晶画素の構成)
 図7の(a)(b)を用いて、本実施形態における液晶画素202a、202bの設計を説明する。図7の(a)(b)は、液晶画素202a、202bの構成を示す図である。図7の(a)(b)に示す液晶画素202a、202bは、前記実施形態1で説明したFFSモードの液晶画素2(図2の(b)参照)に対応する。液晶画素202a、202bは、画素電極37の本数が互いに異なっている。図7の(a)に示す液晶画素202aは、4本の画素電極37を有しており、図7の(b)に示す液晶画素202bは、1本の画素電極37を有する。
 画素電極37の本数が多いほど、画素電極37が液晶に作用する電界は強くなる。そして、液晶に作用する電界が強いほど、液晶分子の配向が揃いやすい。したがって、画素電極37の本数が少ない液晶画素202bは、画素電極37の本数が多い液晶画素202aと比較して、透過率が小さい。
 (液晶画素の配置および制御方法)
 図8の(a)(b)を用いて、本実施形態に係る液晶画素202a、202bの配置および制御方法を説明する。図8の(a)は、映像の階調と液晶画素202a、202bの透過率との対応関係を示すグラフである。図8の(b)は、本実施形態に係る液晶表示パネル300における液晶画素202a、202bの配置を示す図である。
 図8の(a)に示すように、液晶画素202aに対応するグラフ(図8の(a)の4lineのグラフ)と、液晶画素202bに対応するグラフ(図8の(a)の1lineのグラフ)とは互いに異なっている。図8の(a)に示すように、最大の階調(255)に対応する液晶画素202aの透過率は1であり、同じ階調(255)に対応する液晶画素202bの透過率は約0.3であるから、透過率の差は約0.7である。つまり、液晶画素202aの透過率の範囲を基準として、液晶画素202bの透過率の範囲は狭くなっている。
 図8の(b)に示すように、理想ラインよりも内側、つまり前述した通常表示領域101a内には、4本の画素電極37を有する液晶画素202aが配列されている。また、理想ライン上、つまり、通常表示領域101aと遮光部101bとの境界にある境界表示領域101c内には、1本の画素電極37を有する液晶画素202bが配置されている。前述したように、液晶画素202bは、液晶画素202aよりも、透過率が小さい。したがって、液晶表示パネル300が黒表示でない場合、境界表示領域101cは、ブラックマトリクスで形成される遮光部101bよりも明るく、通常表示領域101aよりも暗い。液晶表示パネル300では、通常表示領域101aと遮光部101bとの間に、境界表示領域101cが挟まれているので、通常表示領域101aと遮光部101bとが直接的に隣接する構成と比較して、表示領域の輪郭が目立ち難くなっている。
 また、液晶表示パネル300では、RGBの3色に対応する3つの液晶画素202a、202bが1組(1絵素)となっており、絵素ごとに透過率を制御される。そのため、液晶画素202a、202bごとに、透過率を制御する構成と比較して、境界表示領域101cにおいて、意図しない(つまり、映像信号に対応しない)色が表示されることを防止することができる。なお、本実施形態およびのちの実施形態において、液晶画素202a、202bは、IPSモードであってもよい。
 〔実施形態4〕
 本発明の他の実施形態について、図9に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態では、前記実施形態3で説明した液晶表示パネル300(図8の(b)参照)において、理想ラインよりも外側にある絵素の領域の面積Sに応じて、液晶画素202bの透過率を、より細やかに設計する構成を説明する。
 (液晶画素の配置および制御方法)
 図9の(a)(b)を用いて、本実施形態における液晶画素202bの透過率の制御方法を説明する。図9の(a)は、映像の階調と、液晶画素202bの透過率との対応関係を示すグラフである。図9の(b)は、理想ラインよりも外側にある絵素の領域の面積S(割合)と、液晶画素2bの画素電極37の本数(設計値)と、液晶画素202bの透過率(階調換算)との対応関係を示すテーブルである。
 図9の(a)に示すように、本実施形態では、液晶画素202bの画素電極37の本数が1、2、3、4本のいずれであるかに応じて、映像の階調と液晶画素202bの透過率との対応関係が異なる。液晶画素202bの画素電極37の本数が多いほど、液晶画素202bの透過率が小さい。例えば、図9の(a)に示すように、画素電極37が4本である場合、階調の最大値(255)に対応する液晶画素202bの透過率は、1である。一方、画素電極37が1本である場合、同じ階調(255)に対応する液晶画素202bの透過率は、約0.33である。つまり、液晶画素202bの画素電極37の本数が多くなるほど、液晶画素202bの透過率の範囲は狭くなっている。
 図9の(b)に示すように、本実施形態では、液晶画素202bの透過率が、前述した面積Sに応じて、複数の段階に分けられている。例えば、理想ラインよりも外側にある絵素の領域の面積Sが66%以上かつ100%未満である場合、その絵素を構成する液晶画素202bの画素電極37の本数は1本に設計される。この場合、絵素を構成する液晶画素202bの最大の透過率は、液晶画素202aの同じ透過率に対応する階調に換算して、150である。換言すれば、映像の階調が最大値(255)である場合の液晶画素202bの明るさは、映像の階調が150である場合の液晶画素202aの明るさに等しい。
 本実施形態の構成によれば、境界表示領域101c内の液晶画素202bの透過率を、面積Sに応じて細かく設計するので、通常表示領域101aの輪郭がより目立たなくなる。したがって、通常表示領域101aの輪郭が滑らかであるかのように視認される。
 〔実施形態5〕
 本発明の他の実施形態について、図10~図11に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 前記実施形態4では、液晶画素202bの画素電極37の本数により、液晶画素202bの透過率を制御する構成を説明した。本実施形態では、前記実施形態4で説明した構成において、液晶画素202bにおける画素電極37の配置により、液晶画素202bの透過率をより細やかに制御する構成を説明する。
 (液晶画素の構成)
 図10の(a)(b)を用いて、本実施形態に係る液晶画素202b1、202b2の構成を説明する。図10の(a)(b)は、液晶画素202b1、202b2の構成を示す図である。本実施形態に係る液晶画素202b1、202b2は、どちらも、前記実施形態4で説明した液晶画素202bが2本の画素電極37を有する場合に相当する。図10の(b)に示す液晶画素202b1は、透過率が大きくなるように設計されており、図10の(b)に示す液晶画素202b2は、透過率が小さくなるように設計されている。
 図10の(a)に示す液晶画素202b1では、2本の画素電極37の位置が互いに近いので、画素電極37が液晶に作用する電界は強くなる。一方、図10の(b)に示す液晶画素202b2では、2本の画素電極37の位置が互いに遠いので、画素電極37が液晶に作用する電界は弱くなる。液晶に作用する電界が強いほど、液晶分子の配向が揃いやすい。したがって、2本の画素電極37の位置が遠い液晶画素202b1は、2本の画素電極37の位置が近い液晶画素202b2と比較して、透過率が小さい。
 (液晶画素の配置および制御)
 図11の(a)(b)を用いて、本実施形態における液晶画素202bの透過率の制御方法を説明する。図11の(a)は、液晶表示パネル300(図8の(b)参照)に表示される映像の階調と、液晶画素202bの透過率との対応関係を示すグラフである。図11の(b)は、3つの液晶画素202bで構成される絵素に関して、理想ラインよりも外側にある絵素の領域の面積S(割合)と、絵素を構成する液晶画素2bの画素電極37の本数(設計値)と、絵素の透過率(階調換算)との対応関係を示すテーブルである。
 図11の(a)に示すように、本実施形態では、液晶画素202bの画素電極37の本数が1、2、3、4本のいずれであるかに応じて、映像の階調と液晶画素202bの透過率との対応関係が異なる。さらに、液晶画素202bの画素電極37の本数が2本である場合、液晶画素202bの2本の画素電極37の位置関係に応じて、つまり、液晶画素202bが、図10の(a)(b)に示す液晶画素202b1、202b2のどちらであるかに応じて、映像の階調と透過率との対応関係が異なる。図11の(a)では、2本の画素電極37の位置が近い場合に対応するグラフを“2line(b)”で示す。また、2本の画素電極37の位置が遠い場合に対応するグラフを“2line(a)”で示す。
 前記実施形態4で説明したように、液晶画素202bの画素電極37の本数が多いほど、液晶画素202bの透過率が小さい。また、前述したように、液晶画素202bの画素電極37の本数が2本である場合、2本の画素電極37の位置が近いほど、液晶画素202bの透過率が大きい。本実施形態では、液晶画素202bの透過率が、液晶画素202bの画素電極37の本数によって設計されるだけでなく、画素電極37の位置によっても設計される。
 図11の(b)に示すように、本実施形態では、液晶画素202bの透過率が、面積Sに応じて、6つの段階に分けられている。6つの段階のうちの5つの段階は、画素電極37の本数によって区別される。また、6つの段階のうち、画素電極37の本数が同じである2つの段階は、2本の画素電極37の位置関係によって区別される。具体的には、面積Sが43以上かつ68未満である場合、液晶画素202bは、画素電極37の位置が近く、液晶画素202bの透過率が大きくなるように設計される。また、面積Sが35以上かつ43未満である場合、液晶画素202bは、画素電極37の位置が遠く、液晶画素202bの透過率が小さくなるように設計される。
 本実施形態の構成によれば、境界表示領域101c内の液晶画素202bの透過率を、面積Sに応じて、より細かく設計することができるので、表示領域の輪郭がより目立たなくなる。
 〔まとめ〕
 本発明の態様1に係る液晶表示パネル(100、200、300)は、液晶画素(2a、2b、202a、202b、202b1、202b2)で構成された表示領域と、上記表示領域の外側にある黒色の遮光部(101b)とを含む液晶表示パネルであって、上記表示領域は、上記遮光部と接し、かつ段差形に配列した液晶画素を含む境界表示領域(101c)と、上記境界表示領域よりも内側の通常表示領域(101a)とを含んでおり、上記境界表示領域は、上記通常表示領域よりも映像を暗く表示する。
 上記の構成によれば、表示領域が、通常表示領域と境界表示領域とに分かれており、遮光部と接する境界表示領域では、通常表示領域よりも映像が暗く表示される。そのため、表示領域と遮光部との境界における明るさのコントラストが低減される。その結果、表示領域の段差形の輪郭が目立たなくなるので、液晶表示パネルの表示品位を向上させることができる。
 本発明の態様2に係る液晶表示パネルは、上記態様1において、上記通常表示領域内の液晶画素の光の透過率は相対的に高く、上記境界表示領域内の液晶画素の光の透過率は相対的に低くなるように構成されていてもよい。
 上記の構成によれば、境界表示領域内の液晶画素の光の透過率が、通常表示領域内の液晶画素の光の透過率よりも低いため、境界表示領域は、通常表示領域よりも映像を暗く表示することができる。
 本発明の態様3に係る液晶表示パネルは、上記態様2において、上記境界表示領域内の液晶画素の電極の本数は、上記通常表示領域内の液晶画素の電極の本数よりも少なくてもよい。
 上記の構成によれば、境界表示領域内の液晶画素の電極の本数が少ないため、境界表示領域内の液晶画素は、液晶分子の配向を揃えるための電界が弱い。したがって、境界表示領域内の液晶画素を透過する光の光量が少なくなる。境界表示領域内の液晶画素の光の透過率が低くなる。
 本発明の態様4に係る液晶表示パネルは、上記態様2において、液晶画素の長手方向を基準とするとき、上記境界表示領域内の液晶画素の電極の角度は、上記通常表示領域内の液晶画素の電極の角度よりも大きくてもよい。
 上記の構成によれば、境界表示領域内の液晶画素の角度が大きいため、境界表示領域内の液晶画素を透過する光の光量が少なくなる。したがって、境界表示領域内の液晶画素の光の透過率が低くなる。
 本発明の態様5に係る液晶表示パネルは、上記態様2~4のいずれかにおいて、RGBの3色に対応する3つの液晶画素が、1つの絵素を構成しており、1つの絵素を構成する3つの液晶画素は、光の透過率が等しくてもよい。
 上記の構成によれば、一絵素を構成する画素の透過率が等しいので、映像に対応しない色が表示されることを防止することができる。
 本発明の態様6に係る液晶表示パネルは、上記態様5において、上記境界表示領域において、仮想的な理想ラインよりも外側にある領域の割合が高い上記絵素ほど、上記透過率が低くてもよい。
 上記の構成によれば、理想ラインよりも外側にある絵素の領域の割合に基づいて、絵素の透過率を細かく設計することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
  100、200、300 液晶表示パネル
 101a 通常表示領域(表示領域)
 101b 遮光部
 101c 境界表示領域(表示領域)
 2a、2b、202a、202b、202b1、202b2 液晶画素

Claims (6)

  1.  液晶画素で構成された表示領域と、上記表示領域の外側にある黒色の遮光部とを含む液晶表示パネルであって、
     上記表示領域は、上記遮光部と接し、かつ段差形に配列した液晶画素を含む境界表示領域と、上記境界表示領域よりも内側の通常表示領域とを含んでおり、上記境界表示領域は、上記通常表示領域よりも映像を暗く表示することを特徴とする液晶表示パネル。
  2.  上記通常表示領域内の液晶画素の光の透過率は相対的に高く、上記境界表示領域内の液晶画素の光の透過率は相対的に低くなるように構成されていることを特徴とする請求項1に記載の液晶表示パネル。
  3.  上記境界表示領域内の液晶画素の電極の本数は、上記通常表示領域内の液晶画素の電極の本数よりも少ないことを特徴とする請求項2に記載の液晶表示パネル。
  4.  上記表示領域内の液晶画素の長手方向を基準とするとき、
     上記境界表示領域内の液晶画素の電極の角度は、上記通常表示領域内の液晶画素の電極の角度よりも大きいことを特徴とする請求項2に記載の液晶表示パネル。
  5.  RGBの3色に対応する3つの液晶画素が、1つの絵素を構成しており、
     1つの絵素を構成する3つの液晶画素は、光の透過率が等しいことを特徴とする請求項2~4のいずれか1項に記載の液晶表示パネル。
  6.  上記境界表示領域において、仮想的な理想ラインよりも外側にある領域の割合が高い上記絵素ほど、上記透過率が低いことを特徴とする請求項5に記載の液晶表示パネル。
PCT/JP2017/033049 2016-09-20 2017-09-13 液晶表示パネル WO2018056140A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780057131.5A CN109716224B (zh) 2016-09-20 2017-09-13 液晶显示面板
US16/333,605 US10725355B2 (en) 2016-09-20 2017-09-13 Liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016183395 2016-09-20
JP2016-183395 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056140A1 true WO2018056140A1 (ja) 2018-03-29

Family

ID=61690331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033049 WO2018056140A1 (ja) 2016-09-20 2017-09-13 液晶表示パネル

Country Status (3)

Country Link
US (1) US10725355B2 (ja)
CN (1) CN109716224B (ja)
WO (1) WO2018056140A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467457B2 (en) 2020-04-17 2022-10-11 Japan Display Inc. Display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487796B (zh) * 2019-01-28 2023-08-11 瀚宇彩晶股份有限公司 显示面板
CN109884827B (zh) * 2019-04-09 2022-06-03 合肥京东方光电科技有限公司 一种显示面板及其制作方法、显示装置
CN111929952B (zh) * 2019-05-13 2023-12-01 瀚宇彩晶股份有限公司 显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039324A (ja) * 1989-06-06 1991-01-17 Optrex Corp ネガ型液晶表示素子
KR20070037925A (ko) * 2005-10-04 2007-04-09 엘지.필립스 엘시디 주식회사 백 라이트 유닛 및 이를 구비하는 액정표시장치
JP2009192792A (ja) * 2008-02-14 2009-08-27 Seiko Instruments Inc 液晶表示装置
JP2010286825A (ja) * 2009-05-13 2010-12-24 Nec Lcd Technologies Ltd カラー画像表示方式、カラーフィルタ基板、カラー画素アレイ基板、画像表示装置及び電子機器
JP2012242465A (ja) * 2011-05-17 2012-12-10 Yupiteru Corp 表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253883B2 (en) 2006-05-12 2012-08-28 Sharp Kabushiki Kaisha Display panel and display device
WO2009057342A1 (ja) * 2007-10-31 2009-05-07 Sharp Kabushiki Kaisha 表示パネル及び表示装置
KR101165532B1 (ko) * 2008-04-25 2012-07-16 샤프 가부시키가이샤 액정 표시 장치
US9278705B2 (en) * 2009-12-08 2016-03-08 Nec Corporation Information presentation device using tactile stimulus with vibrator
CN203480174U (zh) * 2013-09-06 2014-03-12 京东方科技集团股份有限公司 液晶显示面板及显示装置
CN104570457B (zh) * 2014-12-23 2017-11-24 上海天马微电子有限公司 一种彩色滤光基板及显示装置
KR102291464B1 (ko) * 2015-04-30 2021-08-19 삼성디스플레이 주식회사 액정 표시 장치
TWI559045B (zh) * 2016-01-27 2016-11-21 友達光電股份有限公司 曲面顯示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039324A (ja) * 1989-06-06 1991-01-17 Optrex Corp ネガ型液晶表示素子
KR20070037925A (ko) * 2005-10-04 2007-04-09 엘지.필립스 엘시디 주식회사 백 라이트 유닛 및 이를 구비하는 액정표시장치
JP2009192792A (ja) * 2008-02-14 2009-08-27 Seiko Instruments Inc 液晶表示装置
JP2010286825A (ja) * 2009-05-13 2010-12-24 Nec Lcd Technologies Ltd カラー画像表示方式、カラーフィルタ基板、カラー画素アレイ基板、画像表示装置及び電子機器
JP2012242465A (ja) * 2011-05-17 2012-12-10 Yupiteru Corp 表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467457B2 (en) 2020-04-17 2022-10-11 Japan Display Inc. Display device
US11681191B2 (en) 2020-04-17 2023-06-20 Japan Display Inc. Display device

Also Published As

Publication number Publication date
US10725355B2 (en) 2020-07-28
CN109716224A (zh) 2019-05-03
CN109716224B (zh) 2021-11-05
US20190212619A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US10416490B2 (en) Curved display and automotive device
JP2019207432A (ja) 光バルブを備えた液晶表示装置
TWI484272B (zh) 透明液晶顯示面板之畫素結構
WO2018056140A1 (ja) 液晶表示パネル
US10705373B2 (en) Liquid crystal display panel and display device
JP2009300556A (ja) 表示装置
JP5507805B2 (ja) 半透過型液晶ディスプレイ
US20160146991A1 (en) Color filter substrate and display device
JP2007148347A (ja) 液晶表示装置及びこれを利用した端末機
JP2007148347A5 (ja)
CN106647061B (zh) 像素结构及液晶显示面板
US10429689B2 (en) Liquid crystal display device
US10197878B2 (en) Display device
KR102452434B1 (ko) 액정표시장치
US11360362B2 (en) Display panel and display device
JP4297483B2 (ja) 液晶表示装置
JP2019020477A (ja) 液晶表示装置
JP2018072755A (ja) 液晶表示装置
JP7113597B2 (ja) 液晶表示装置
CN112698533B (zh) 液晶显示装置
JP2015203753A (ja) 液晶表示装置
US9030635B2 (en) Liquid crystal display device comprising a stage having an electrode formation surface
JP2006330243A (ja) 半透過型カラー液晶表示装置
JP4400595B2 (ja) 液晶表示装置
CN117492286A (zh) 双盒液晶显示面板及其驱动方法和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP