WO2013056663A1 - 半透半反液晶显示面板及液晶显示器 - Google Patents

半透半反液晶显示面板及液晶显示器 Download PDF

Info

Publication number
WO2013056663A1
WO2013056663A1 PCT/CN2012/083173 CN2012083173W WO2013056663A1 WO 2013056663 A1 WO2013056663 A1 WO 2013056663A1 CN 2012083173 W CN2012083173 W CN 2012083173W WO 2013056663 A1 WO2013056663 A1 WO 2013056663A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display panel
electrode
light shielding
shielding layer
Prior art date
Application number
PCT/CN2012/083173
Other languages
English (en)
French (fr)
Inventor
柳在健
秦广奎
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/703,648 priority Critical patent/US9081224B2/en
Publication of WO2013056663A1 publication Critical patent/WO2013056663A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors

Definitions

  • Embodiments of the present invention relate to a transflective liquid crystal display panel and a display having the liquid crystal display panel. Background technique
  • the transflective liquid crystal display has low power consumption and strong adaptability to ambient light. It is a relatively common flat panel display technology and is widely used in mobile display devices such as mobile phones and PDAs. Transflective liquid crystal displays can display images either individually or simultaneously in both transmissive and reflective modes, so transflective LCDs can be used in any ambient light.
  • the basic structure of a transflective liquid crystal display is to divide each pixel into two parts, a transmissive area and a reflective area, so that the transmissive liquid crystal operates in a transmissive mode, and the reflective liquid crystal operates in a reflective mode. When the ambient light is dark, the backlight is turned on, the light passes through the transmissive area, and the display works in the transmissive mode.
  • the ambient light is brighter than the backlight, and the display works in the reflective mode, using the reflection of the surrounding light to display image.
  • the transmissive region and the reflective region have different cell gaps to compensate for the optical path difference.
  • Fig. 1 is a schematic view showing the basic structure of a pixel of a transflective liquid crystal display in the conventional art.
  • the transition zone 208 has, for example, an angle of inclination of 45 degrees, so that when the difference in cell thickness of the reflective zone 206 and the transmissive zone 210 is 1-2 microns, the transition zone 208 will also have a width of 1-2 microns.
  • the liquid crystal molecules are distorted to cause rotational dislocations, causing light leakage in the dark state, resulting in a decrease in contrast. Summary of the invention
  • a transflective liquid crystal display panel has a plurality of pixels, each of which includes a reflective area, a transmissive area, and a transition area between the reflective area and the transmissive area.
  • a light shielding layer is disposed in at least a portion of the plurality of pixels, and the light shielding layer is disposed at a position corresponding to the transition region
  • a liquid comprising the above-described transflective liquid crystal display panel is provided Crystal display.
  • FIG. 1 is a schematic view showing a basic structure of a pixel of a transflective liquid crystal display panel in a conventional art
  • FIG. 2 is a schematic diagram showing the basic structure of a pixel of a transflective liquid crystal display panel according to a first embodiment of the present invention
  • FIG. 3 is a top plan view showing a pixel of a transflective liquid crystal display panel according to a first embodiment of the present invention and a pixel of a conventional transflective liquid crystal display panel;
  • FIG. 4 is a schematic diagram showing the basic structure of a pixel of a transflective liquid crystal display panel according to a second embodiment of the present invention.
  • Fig. 5 is a view showing the basic configuration of a pixel of a transflective liquid crystal display panel according to a third embodiment of the present invention. detailed description
  • Fig. 2 is a schematic view showing the basic structure of a pixel of a transflective liquid crystal display panel according to a first embodiment of the present invention.
  • the transflective liquid crystal display panel includes a counter substrate 202, an array array substrate 204, and a liquid crystal layer including a plurality of liquid crystal molecules between the opposite substrate 202 and the array substrate 204 (not shown) Show).
  • the counter substrate 202 is, for example, a color film substrate or a glass substrate.
  • the opposite substrate 202 is a color film substrate
  • a black matrix (BM) and a color pixel layer (for example, red, green, and blue (RGB) pixel layers) between adjacent black matrices are included.
  • the counter substrate 202 may further include a common electrode.
  • the array substrate 204 includes a plurality of gate lines and a plurality of data lines, the gate lines and the data lines crossing each other thereby defining a plurality of pixels arranged in a matrix, each of the pixels including a thin film transistor as a switching element and a liquid crystal for controlling Arranged pixel electrodes.
  • the gate of the thin film transistor of each pixel is electrically connected or integrally formed with the corresponding gate line
  • the source is electrically connected or integrally formed with the corresponding data line
  • the drain is electrically connected or integrally formed with the corresponding pixel electrode.
  • the array substrate 1 may further include a common electrode.
  • a plurality of pixels are formed on the opposite substrate and the array substrate.
  • One or more pixels constitute one pixel unit.
  • three pixels of red, green, and blue (R, G, B) constitute one pixel unit, that is, one pixel unit includes R pixels, G pixels, and B pixels.
  • the image is displayed in units of pixel units. For example, in Fig. 2, one of R pixels, G pixels, and B pixels will be described as an example.
  • pixel 200 has a reflective region 206, a transition region 208, and a transmissive region 210.
  • Transition zone 208 is located between reflective zone 206 and transmissive zone 210.
  • a light shielding layer 212 is formed at a position corresponding to the transition region 208 on the opposite substrate 202.
  • the light shielding layer 212 may be formed of any material that is impermeable to light, such as an opaque metal or resin.
  • the light shielding layer 212 is made of the same material as the black matrix, so that it can be prepared simultaneously with the black matrix to simplify the process.
  • the BM layer is usually made of metallic chromium (Cr), and can also be made of chromium oxide (CrOx) or resin in order to reduce surface reflection.
  • the light shielding layer 212 and the black matrix BM can be simultaneously prepared by the following method. In one example, the printing method is used, that is, the light shielding layer 212 can be simultaneously formed by changing the printing pattern in which the BM is originally formed.
  • the entire area is first coated with a BM material, and then subjected to exposure etching to etch away unnecessary regions to simultaneously form the black matrix BM and the light shielding layer 212.
  • exposure etching to etch away unnecessary regions to simultaneously form the black matrix BM and the light shielding layer 212.
  • only the mask during exposure is changed.
  • the pattern can simultaneously form the black matrix BM and the light shielding layer 212.
  • the opacifying layer can be made of a different material than the black matrix and/or can be prepared separately from the black matrix.
  • the light shielding layer 212 is formed on the side of the opposite substrate away from the liquid crystal layer, but is shielded from light. Layer 212 may also be formed on the side of the opposite substrate adjacent to the liquid crystal layer.
  • the light shielding layer 212 is formed on the opposite substrate 202, light leakage due to irregularity of the liquid crystal arrangement in the transition region 208 can be prevented.
  • Fig. 3 is a plan view showing a comparison of pixels of a transflective liquid crystal display panel and pixels of a conventional transflective liquid crystal display panel according to a first embodiment of the present invention.
  • the left side view in the figure is the pixel of the transflective liquid crystal display panel according to the first embodiment of the present invention, and the right side view is the pixel of the conventional transflective liquid crystal display panel.
  • a black matrix BN and a light shielding layer 212 are formed in the pixels of the transflective liquid crystal display panel.
  • Fig. 4 is a view showing the basic configuration of a pixel of a transflective liquid crystal display panel according to a second embodiment of the present invention.
  • the basic structure of the pixel 200 in the second embodiment is the same as that of the pixel 200 in the first embodiment, except that in the second embodiment, no light shielding layer is formed on the opposite substrate 202, and
  • the light shielding layer 212 is formed at a position on the array substrate 204 corresponding to the transition region 208.
  • a light shielding layer 212 is formed on a side of the array substrate 204 close to the liquid crystal layer.
  • the light shielding layer 212 may be formed on the side of the array substrate 204 opposite to the side close to the liquid crystal layer, that is, at the bottom of the transflective liquid crystal panel.
  • the light shielding layer 212 is formed on the bottom of the transflective liquid crystal panel by applying a light shielding material layer under the transition region 208.
  • the light shielding layer 212 may be formed of any material that is opaque to light, such as an opaque metal or resin.
  • the light shielding layer 212 in this embodiment is made of a metal material, which can be formed simultaneously with the source and the drain of the TFT in the process of fabricating the TFT to simplify the process.
  • the light shielding layer 212 may be formed simultaneously with the gate of the TFT.
  • the light shielding layer 212 is formed on the array substrate 204, light leakage due to irregularity of the liquid crystal arrangement in the transition region 208 can be prevented.
  • the light shielding layer 212 is formed on the opposite substrate 202 and the array substrate 204 separately in the above first and second embodiments, it may also be on the opposite substrate 202 and the array substrate 204.
  • the light shielding layer 212 is simultaneously formed on the upper side to reduce light leakage.
  • FIG. 5 is a basic diagram of a pixel of a transflective liquid crystal display panel according to a third embodiment of the present invention. Schematic diagram of the structure.
  • a first electrode 212' is formed at a position on the opposite substrate 202 corresponding to the transition region 208
  • a second electrode 212" is formed at a position on the array substrate 204 corresponding to the transition region 208.
  • An alternating voltage or a direct current voltage of, for example, 3-10 V is applied between the first electrode 212 and the second electrode 212".
  • an electric field is formed in the transition region 208 to control the rotation of the liquid crystal molecules in the transition region 208, so that the liquid crystal molecules at the transition region form a liquid crystal light-shielding layer, thereby preventing light leakage.
  • the first electrode 212, and the second electrode 212" may be made of any conductive material. Further, in this embodiment, the first electrode 212, and the second electrode 212" may be light transmissive, It can also be opaque.
  • the first electrode 212 is formed simultaneously with the common electrode.
  • the second electrode 212" is formed simultaneously with the common electrode. Further, it is preferable that the second electrode 212" is formed simultaneously with the source and the drain of the TFT on the array substrate 204. Moreover, the second electrode 212" may also be formed simultaneously with the gate of the TFT.
  • a voltage of 3-10 volts (AC or DC) is applied to form an electric field in the transition region 208, thereby controlling the rotation of the liquid crystal molecules in the transition region 208, leaving the transition region 208 in a dark state, thereby preventing light leakage.
  • the transflective liquid crystal display according to the above embodiment of the present invention is advantageous in reducing light leakage and increasing contrast, thereby improving the picture quality of the liquid crystal panel.
  • first embodiment and the third embodiment may be combined to form a light shielding layer 212 while forming a BM on the color filter substrate, and a first electrode 212' is formed on the inner surface of the color filter substrate, on the inner surface of the array substrate.
  • a second electrode 212" is formed thereon, and an alternating voltage or a direct current voltage of 3-10 V is applied between the first electrode 212' and the second electrode 212".
  • the size of the light shielding layer may be larger than the size of the corresponding transition region.
  • the liquid crystal display of the embodiment of the present invention may further include components such as a backlight module and a driving circuit in addition to the liquid crystal panel, which will not be described in detail herein.
  • the liquid crystal display can be used, for example, for a mobile phone, a pen Record books, GPS and other equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种半透半反液晶显示面板及具有该液晶显示面板的显示器。该半透半反液晶显示面板具有多个像素(200),每个像素(200)包括反射区(206)、透射区(210)和位于反射区(206)和透射区(210)之间的过渡区(208)。在多个像素(200)的至少一部分中设置有遮光层(212),且该遮光层(212)设置在与上述过渡区(208)对应的位置处。

Description

半透半反液晶显示面板及液晶显示器 技术领域
本发明的实施例涉及半透半反液晶显示面板和具有该液晶显示面板的显 示器。 背景技术
半透半反液晶显示器具有功耗低,环境光适应性强,是目前比较常见的平 板显示技术, 被广泛应用于手机、 PDA等移动显示设备。 半透半反液晶显示 器可以单独或同时釆用透射模式和反射模式来显示图像, 所以半透半反液晶 显示器可以在任何环境光下使用。 半透半反液晶显示器的基本结构是将每个 像素分成透射区和反射区两部分, 使透射区液晶工作于透射模式, 反射区液 晶工作于反射模式。 当环境光较暗时, 打开背光源, 光线透过透射区, 显示 器工作于透射模式, 而在明亮的环境下, 环境光比背光源亮, 显示器工作于 反射模式, 利用周围光的反射来显示图像。 在半透半反液晶显示器的各像素 中, 通常透射区和反射区具有不同的盒厚 (cell gap)以补偿光程差。
然而, 在半透半反模式的显示器中, 正是由于各像素的反射区和透射区 的盒厚不同, 从而在反射区和透射区之间形成了过渡区。 图 1是传统技术中 的半透半反液晶显示器的像素的基本结构的示意图。如图 1所示,过渡区 208 例如具有 45度的倾角,因此当反射区 206和透射区 210的盒厚差为 1-2微米 时, 过渡区 208的也将具有 1-2微米的宽度。 在该过渡区 208中, 液晶分子 会产生畸变引起旋转位错,造成在暗态时会引起漏光,从而导致对比度下降。 发明内容
根据本发明的第一方面, 提供一种半透半反液晶显示面板。 该半透半反 液晶显示面板具有多个像素, 每个像素包括反射区、 透射区和位于反射区和 透射区之间的过渡区。 在多个像素的至少一部分中设置有遮光层, 且该遮光 层设置在与上述过渡区对应的位置处
根据本发明的第二方面, 提供一种包括上述半透半反液晶显示面板的液 晶显示器。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1 是传统技术中的半透半反液晶显示面板的像素的基本结构的示意 图;
图 2是根据本发明第一实施例的半透半反液晶显示面板的像素的基本结 构的示意图;
图 3是根据本发明第一实施例的半透半反液晶显示面板的像素与传统技 术的半透半反液晶显示面板的像素的对比俯视图;
图 4是根据本发明第二实施例的半透半反液晶显示面板的像素的基本结 构的示意图;
图 5是根据本发明第三实施例的半透半反液晶显示面板的像素的基本结 构的示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
实施例一
图 2是根据本发明第一实施例的半透半反液晶显示面板的像素的基本结 构的示意图。
参考图 2,根据本实施例的半透半反液晶显示面板包括对向基板 202、阵 列阵列基板 204和位于对向基板 202与阵列基板 204之间包括多个液晶分子 的液晶层(图中未示)。
对向基板 202例如为彩膜基板或玻璃基板。 在对向基板 202为彩膜基板 的情况下, 对向基板 202例如包括黑矩阵( Black Matrix, 简称 BM )和位于 相邻黑矩阵之间的彩色像素层 (例如红、 绿和蓝色 (RGB )像素层)。 此外, 对于 VA型、 MVA型等的垂直电场模式的液晶显示面板, 对向基板 202还可 以包括公共电极。
阵列基板 204包括多条栅线和多条数据线, 这些栅线和数据线彼此交叉 由此限定了排列为矩阵的多个像素, 每个像素包括作为开关元件的薄膜晶体 管和用于控制液晶的排列的像素电极。 例如, 每个像素的薄膜晶体管的栅极 与相应的栅线电连接或一体形成, 源极与相应的数据线电连接或一体形成, 漏极与相应的像素电极电连接或一体形成。 此外, 对于例如 FFS型、 IPS型 等的水平电场模式的液晶显示面板, 阵列基板 1还可以包括公共电极。
对向基板和阵列基板上形成多个像素。 一个或多个像素构成一个像素单 元。 例如, 红、 绿、 蓝(R、 G、 B ) 三个像素构成一个像素单元, 即, 一个 像素单元包括 R像素、 G像素、和 B像素。图像以像素单元为单位进行显示。 例如,在图 2中, 以 R像素、 G像素、和 B像素中的一个作为示例进行说明。
如图 2所示,像素 200具有反射区 206、过渡区 208和透射区 210。 过渡 区 208位于反射区 206和透射区 210之间。
在该实施例中,为了防止过渡区 208漏光,如图 2所示,在对向基板 202 上与过渡区 208对应的位置处形成遮光层 212。 遮光层 212可以由任何不透 光的材料形成, 例如不透光的金属或树脂。
在对向基板 202为彩膜基板的情况下, 优选遮光层 212由与黑矩阵相同 的材料制成, 从而可与黑矩阵同时制备以简化工艺。 BM层通常是由金属铬 ( Cr )制成, 为了降低表面反射, 也可用氧化铬(CrOx )或树脂制成。 例如, 可以通过以下方法来同时制备遮光层 212和黑矩阵 BM。 在一个示例中, 釆 用印刷法, 即只要改变原来形成 BM的印刷图案即可同时形成遮光层 212。 在另一个实例中, 先将整个区域涂上 BM材料, 然后经过曝光刻蚀, 将不需 要的区域刻蚀掉以同时形成黑矩阵 BM和遮光层 212, 该方案中只要改变曝 光时的掩模板图案即可同时形成黑矩阵 BM和遮光层 212。
当然, 遮光层可以由与黑矩阵不同的材料制成, 并且 /或者可以与黑矩阵 分开制备。
在图 2中, 遮光层 212形成在对向基板的远离液晶层的一侧, 但是遮光 层 212也可以形成在对向基板的靠近液晶层的一侧。
在该实施例中, 由于在对向基板 202上形成了遮光层 212, 因此可以防 止过渡区 208中由于液晶排布不规则而造成的漏光。
图 3示出了根据本发明第一实施例的半透半反液晶显示面板的像素与传 统技术的半透半反液晶显示面板的像素的对比俯视图。 该图中左侧视图为根 据本发明第一实施例的半透半反液晶显示面板的像素, 右侧视图为传统技术 的半透半反液晶显示面板的像素。 如图 3所示, 在半透半反液晶显示面板的 像素中形成有黑矩阵 BN和遮光层 212。
实施例二
图 4是根据本发明第二实施例的半透半反液晶显示面板的像素的基本结 构的示意图。 该第二实施例中的像素 200的基本结构与第一实施例中的像素 200 的基本结构相同, 所不同的是: 在第二实施例中, 没有在对向基板 202 上形成遮光层, 而是在阵列基板 204上与过渡区 208对应的位置处形成遮光 层 212。 例如, 如图 4所示, 遮光层 212形成在阵列基板 204的靠近液晶层 的一侧。
此外, 尽管未示出, 但是遮光层 212也可以形成在阵列基板 204的与靠 近液晶层的一侧相反的一侧, 即形成在半透半反液晶面板的底部。 例如, 通 过在过渡区 208的下方涂覆遮光材料层, 而将遮光层 212形成在半透半反液 晶面板的底部。
遮光层 212可以由任何不透光的材料形成, 例如不透光的金属或树脂。 优选地, 该实施例中的遮光层 212由金属材料制成, 可以在制造 TFT的过程 中, 与 TFT的源极和漏极同时形成, 以简化工艺。 而且, 遮光层 212也可以 与 TFT的栅极同时形成。
在该实施例中, 由于在阵列基板 204上形成了遮光层 212, 因此可以防 止过渡区 208中由于液晶排布不规则而造成的漏光。
需要说明的是, 虽然在上述第一和第二实施例中, 分别描述了单独在对 向基板 202上和阵列基板 204上形成遮光层 212,但是还可以在对向基板 202 上和阵列基板 204上同时形成遮光层 212, 以减少漏光。
实施例三
图 5是根据本发明第三实施例的半透半反液晶显示面板的像素的基本结 构的示意图。
在该实施例中, 在对向基板 202上的与过渡区 208对应的位置处形成第 一电极 212' , 在阵列基板 204上的与过渡区 208对应的位置处形成第二电极 212"。 然后在第一电极 212,和第二电极 212"之间施加例如 3-10V的交流电 压或直流电压。 从而在过渡区 208中形成了电场, 以控制过渡区 208中的液 晶分子旋转, 使过渡区处的液晶分子形成液晶遮光层, 从而防止了漏光。
在该实施例中, 第一电极 212,和第二电极 212"可以由任何导电材料制 成。 此外, 在该实施例中, 第一电极 212,和第二电极 212"可以是透光的, 也 可以是不透光。
在对向基板 202包括公共电极的情况下, 优选第一电极 212,与公共电极 同时形成。
在阵列基板 204包括公共电极的情况下,优选第二电极 212"与公共电极 同时形成。 此外, 优选第二电极 212"与阵列基板 204上的 TFT的源极和漏 极同时形成。 而且, 第二电极 212"也可以与 TFT的栅极同时形成。
在该第三实施例中, 在第一电极 212,和第二电极 212"之间施加例如
3-10V的电压(交流或直流), 以在过渡区 208中形成电场, 从而控制过渡区 208中的液晶分子旋转, 使过渡区 208保持暗态, 从而防止了漏光。
根据本发明上述实施例的半透半反液晶显示器有利于减少漏光、 增加对 比度, 从而提高了液晶面板的画面品质。
需要说明的是, 虽然上面分别描述了本发明的几个实施例, 但是这些实 施例可以进行各种组合。 例如, 可以将第一实施例和第三实施例组合, 在彩 膜基板上形成 BM的同时形成遮光层 212, 在彩膜基板的内表面上形成第一 电极 212' , 在阵列基板的内表面上形成第二电极 212" , 并在第一电极 212' 和第二电极 212"之间施加 3-10V的交流电压或直流电压。
需要说明的是, 为了保证液晶显示器面板制造过程中的对盒精度, 可使 所述遮光层的尺寸大于相应过渡区的尺寸。
需要说明的是, 上面的描述是针对单个像素进行的。 但是上面的描述也 可以应用到液晶显示面板的部分或全部像素。
本发明实施例的液晶显示器除了液晶面板之外, 还可以包括背光模块、 驱动电路等部件, 这里不再详述。 该液晶显示器例如可以用于移动电话、 笔 记本电脑、 GPS等设备。
以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围 之内。

Claims

1、 一种半透半反液晶显示面板, 具有多个像素, 每个像素包括反射区、 透射区和位于反射区和透射区之间的过渡区, 其中在所述多个像素的至少一 部分中设置有遮光层, 且该遮光层设置在与所述过渡区对应的位置处。
2、根据权利要求 1所述的显示面板,其中所述显示面板还包括对向基板、 阵列基板以及位于对向基板和阵列基板之间包括有多个液晶分子的液晶层。
3、根据权利要求 2所述的显示面板,其中所述遮光层设置在所述对向基 板和所述阵列基板之一上,或者设置在所述对向基板和所述阵列基板二者上。
4、根据权利要求 3所述的显示面板,其中所述遮光层设置在所述对向基 板上, 并位于所述对向基板的远离所述液晶层的一侧或靠近所述液晶层的一 侧。
5、根据权利要求 4所述的显示面板,其中所述对向基板为彩膜基板且该 彩膜基板具有设置在其上的黑矩阵; 并且
其中所述遮光层与所述黑矩阵同时形成。
6、根据权利要求 3所述的显示面板,其中所述遮光层设置在所述阵列基 板上, 并位于所述阵列基板的远离所述液晶层的一侧或靠近所述液晶层的一 侧。
7、根据权利要求 6所述的显示面板,其中所述阵列基板包括形成其上的 薄膜晶体管 (TFT ); 并且
其中所述遮光层与所述 TFT的源极和漏极同时形成。
8、根据权利要求 2所述的显示面板,其中在所述对向基板的与所述过渡 区对应的位置处设置有第一电极;
其中在所述阵列基板的与所述过渡区对应的位置处设置有第二电极; 并 且
其中在所述第一电极和所述第二电极之间施加有预定的电压, 以使所述 第一电极和第二电极之间的与所述过渡区对应的液晶分子形成为所述遮光 层。
9、根据权利要求 8所述的显示面板,其中所述对向基板包括形成其上的 公共电极, 所述第一电极与所述公共电极同时形成。
10、 根据权利要求 8所述的显示面板, 其中所述阵列基板包括形成其上 的公共电极, 所述第二电极与所述公共电极同时形成。
11、 根据权利要求 8所述的显示面板, 其中所述阵列基板包括形成其上 的 TFT , 所述第二电极与所述 TFT的源极和漏极同时形成。
12、 根据权利要求 8所述的显示面板, 所述预定电压为 3-10V的交流电 压或直流电压。
13、 根据权利要求 8所述的显示面板, 所述第一电极是透光的或不透光 的。
14、 根据权利要求 8所述的显示面板, 所述第二电极是透光的或不透光 的。
15、 根据权利要求 1所述的显示面板, 其中所述遮光层的尺寸大于过渡 区的尺寸。
16、 一种液晶显示器, 包括权利要求 1所述的半透半反液晶显示面板。
PCT/CN2012/083173 2011-10-21 2012-10-19 半透半反液晶显示面板及液晶显示器 WO2013056663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/703,648 US9081224B2 (en) 2011-10-21 2012-10-19 Transflective liquid crystal display panel and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110322762.XA CN102645784B (zh) 2011-10-21 2011-10-21 半透半反液晶显示面板及液晶显示器
CN201110322762.X 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013056663A1 true WO2013056663A1 (zh) 2013-04-25

Family

ID=46658691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083173 WO2013056663A1 (zh) 2011-10-21 2012-10-19 半透半反液晶显示面板及液晶显示器

Country Status (3)

Country Link
US (1) US9081224B2 (zh)
CN (1) CN102645784B (zh)
WO (1) WO2013056663A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645784B (zh) * 2011-10-21 2015-04-08 京东方科技集团股份有限公司 半透半反液晶显示面板及液晶显示器
CN114566114B (zh) * 2022-04-29 2022-08-09 惠科股份有限公司 显示面板和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410812A (zh) * 2001-09-25 2003-04-16 精工爱普生株式会社 半透射反射式液晶装置和使用它的电子设备
CN1410811A (zh) * 2001-09-25 2003-04-16 精工爱普生株式会社 半透射反射式液晶装置及利用该装置的电子设备
CN1417622A (zh) * 2001-10-29 2003-05-14 Lg.菲利浦Lcd株式会社 透反式液晶显示装置及其制作方法
JP2007071938A (ja) * 2005-09-05 2007-03-22 Sanyo Epson Imaging Devices Corp 液晶装置および電子機器
JP2008015228A (ja) * 2006-07-06 2008-01-24 Seiko Epson Corp 液晶装置及び電子機器
CN101539680A (zh) * 2008-03-18 2009-09-23 Nec液晶技术株式会社 透反射液晶显示单元
CN102645784A (zh) * 2011-10-21 2012-08-22 京东方科技集团股份有限公司 半透半反液晶显示面板及液晶显示器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19934799B4 (de) * 1999-07-28 2008-01-24 Az Electronic Materials (Germany) Gmbh Chiral-smektische Flüssigkristallmischung und ihre Verwendung in Aktivmatrix-Displays mit hohen Kontrastwerten
JP2001343660A (ja) * 2000-03-31 2001-12-14 Sharp Corp 液晶表示装置およびその欠陥修正方法
KR20070082953A (ko) * 2006-02-20 2007-08-23 삼성전자주식회사 액정표시패널
JP5215617B2 (ja) * 2007-09-04 2013-06-19 株式会社ジャパンディスプレイイースト 液晶表示装置
JP5151408B2 (ja) 2007-11-08 2013-02-27 Nltテクノロジー株式会社 半透過型液晶表示装置
US8390772B2 (en) * 2007-11-28 2013-03-05 Sony Corporation Liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410812A (zh) * 2001-09-25 2003-04-16 精工爱普生株式会社 半透射反射式液晶装置和使用它的电子设备
CN1410811A (zh) * 2001-09-25 2003-04-16 精工爱普生株式会社 半透射反射式液晶装置及利用该装置的电子设备
CN1417622A (zh) * 2001-10-29 2003-05-14 Lg.菲利浦Lcd株式会社 透反式液晶显示装置及其制作方法
JP2007071938A (ja) * 2005-09-05 2007-03-22 Sanyo Epson Imaging Devices Corp 液晶装置および電子機器
JP2008015228A (ja) * 2006-07-06 2008-01-24 Seiko Epson Corp 液晶装置及び電子機器
CN101539680A (zh) * 2008-03-18 2009-09-23 Nec液晶技术株式会社 透反射液晶显示单元
CN102645784A (zh) * 2011-10-21 2012-08-22 京东方科技集团股份有限公司 半透半反液晶显示面板及液晶显示器

Also Published As

Publication number Publication date
US20140049716A1 (en) 2014-02-20
US9081224B2 (en) 2015-07-14
CN102645784A (zh) 2012-08-22
CN102645784B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
US9176339B2 (en) Liquid crystal display device
TW574547B (en) Transflective liquid crystal device and electronic apparatus using the same
JP4828557B2 (ja) 液晶表示装置
JP3753141B2 (ja) 液晶表示装置および電子機器
JP4167085B2 (ja) 液晶表示装置
JP4900072B2 (ja) 液晶装置および電子機器
US20160170273A1 (en) Liquid crystal display
JP3900141B2 (ja) 液晶表示装置および電子機器
US20060028604A1 (en) Liquid crystal display device
JP2008090279A (ja) 液晶表示装置及び電子機器
US7978287B2 (en) Transflective liquid crystal display device
WO2019041922A1 (zh) 阵列基板及制造方法、显示面板及制造方法、显示装置
US11281043B2 (en) Display panel and display apparatus
WO2013056663A1 (zh) 半透半反液晶显示面板及液晶显示器
WO2007129480A1 (ja) 半透過型液晶表示装置及びその製造方法
WO2009113206A1 (ja) 液晶表示装置
JP4196671B2 (ja) 液晶表示装置
JP2010276909A (ja) 液晶表示装置
JP2010054775A (ja) 電気光学装置及び電子機器
KR20150137278A (ko) 어레이 기판 및 이를 포함하는 액정 표시 장치
JP4900073B2 (ja) 液晶装置および電子機器
JP4127272B2 (ja) 電気光学装置用基板、電気光学装置及び電子機器
JP2008070688A (ja) 液晶装置、及び電子機器
WO2007077644A1 (ja) 液晶表示装置
JP2009276435A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13703648

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.08.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12841524

Country of ref document: EP

Kind code of ref document: A1