WO2018056039A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2018056039A1
WO2018056039A1 PCT/JP2017/031798 JP2017031798W WO2018056039A1 WO 2018056039 A1 WO2018056039 A1 WO 2018056039A1 JP 2017031798 W JP2017031798 W JP 2017031798W WO 2018056039 A1 WO2018056039 A1 WO 2018056039A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
ceiling surface
air supply
support member
Prior art date
Application number
PCT/JP2017/031798
Other languages
French (fr)
Japanese (ja)
Inventor
波多野 章人
豊秀 林
隆行 郷原
弘明 高橋
皓太 宗徳
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201780045855.8A priority Critical patent/CN109478500B/en
Priority to KR1020197001983A priority patent/KR102168056B1/en
Publication of WO2018056039A1 publication Critical patent/WO2018056039A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomask substrates.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomask substrates.
  • Substrates, ceramic substrates, solar cell substrates and the like are included.
  • a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device.
  • the substrate processing apparatus of Patent Document 1 includes a baking furnace that performs a PAB process in which a substrate coated with a resist is heated to remove a solvent contained in the resist film.
  • the baking furnace of Patent Document 1 includes a hot plate that heats while horizontally supporting a substrate, and a top plate that is disposed above the substrate.
  • the gas supply port for discharging dry air is arranged outside the substrate, and the central exhaust port for discharging dry air is opened at a position facing the center of the upper surface of the substrate on the ceiling surface of the top plate.
  • Dry air discharged from the gas supply port flows between the upper surface of the substrate and the ceiling surface of the top plate toward the center of the substrate and is discharged to the central exhaust port.
  • the solvent evaporated from the resist film by heating the substrate is discharged to the central exhaust port together with the dry air.
  • the distance between the upper surface of the substrate and the ceiling surface of the top plate is constant from the outer periphery of the upper surface of the substrate to the center of the upper surface of the substrate.
  • one of the objects of the present invention is to improve the uniformity of substrate processing in a process of processing a substrate while forming an airflow flowing from the outer periphery of the substrate to the center of the substrate along the upper surface of the substrate.
  • One embodiment of the present invention includes a support member that horizontally supports a substrate, a ceiling surface that faces the upper surface of the substrate supported by the support member, and a cylinder that surrounds the substrate supported by the support member.
  • a distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is larger than a distance between the upper surface of the substrate and the ceiling surface at the outer peripheral portion of the upper surface of the substrate.
  • a hood formed so as to be narrow, and an air supply port arranged outside the substrate supported by the support member, the vertical passing through the center of the substrate supported by the support member An annular air supply port surrounding the line, and gas discharged from the air supply port is inserted into the space between the upper surface of the substrate supported by the support member and the ceiling surface from around the space.
  • the air supply unit to be supplied and the ceiling surface A substrate processing apparatus, comprising: an exhaust port that opens at a position facing a central portion of the upper surface of the substrate; and an exhaust unit that exhausts gas between the upper surface of the substrate and the ceiling surface through the exhaust port. I will provide a.
  • the gas discharged from the annular air supply port flows toward the center of the substrate between the upper surface of the substrate and the ceiling surface of the hood, and enters the exhaust port facing the center of the upper surface of the substrate. Discharged. Thereby, an airflow flowing toward the center of the substrate is formed above the substrate.
  • the distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is narrower than the distance between the upper surface of the substrate and the ceiling surface at the outer periphery of the upper surface of the substrate. Therefore, the gas discharged from the air supply port is guided toward the center of the upper surface of the substrate by the ceiling surface. Thereby, it is possible to suppress or prevent the occurrence of a staying region having a relatively low gas fluidity directly under the exhaust port, and to improve the uniformity of processing of the substrate.
  • the distance between the upper surface of the substrate and the ceiling surface is not narrow everywhere, but only at the center of the upper surface of the substrate. If the distance between the upper surface of the substrate and the ceiling surface is narrow, the resistance applied to the gas supplied to the space between the upper surface of the substrate and the ceiling surface increases, and smooth gas flow in the space is obstructed. Can be done. Therefore, by locally narrowing the distance between the upper surface of the substrate and the ceiling surface, it is possible to suppress or prevent the staying area from occurring directly below the exhaust port while suppressing or preventing the occurrence of turbulence of the airflow.
  • the gas discharged from the air supply port may be a reactive gas that reacts with the substrate, or may be a gas that does not react with the substrate, such as inert gas, dry air, and clean air. It may be a gas.
  • the annular air supply port may be a plurality of discharge ports arranged in the circumferential direction, or may be one slit continuous over the entire circumference.
  • the discharge ports included in the plurality of discharge ports may be circular or elliptical discharge ports, or may be slots extending in the circumferential direction.
  • At least one of the following features may be added to the substrate processing apparatus.
  • the distance between the upper surface of the substrate and the ceiling surface decreases stepwise or continuously as it approaches the vertical line from the outer periphery of the upper surface of the substrate to the center of the upper surface of the substrate.
  • the airflow may be disturbed.
  • the gas flowing inward through the space between the upper surface of the substrate and the ceiling surface is stepped or continuous toward the upper surface of the substrate as the distance between the upper surface of the substrate and the ceiling surface decreases. Be guided to. Thereby, the airflow flowing toward the center of the substrate can be gradually brought closer to the upper surface of the substrate while suppressing or preventing the occurrence of turbulence of the airflow.
  • the ceiling surface includes an annular inclined portion extending obliquely downward toward the vertical line.
  • the annular inclined portion extending obliquely downward toward the vertical line is provided on the ceiling surface.
  • the distance between the upper surface of the substrate and the ceiling surface continuously decreases as it approaches the center of the upper surface of the substrate.
  • the gas flowing inward through the space between the upper surface of the substrate and the ceiling surface is continuously guided toward the upper surface of the substrate by the inclined portion of the ceiling surface. Therefore, the gas flowing toward the center of the substrate can be gradually brought closer to the upper surface of the substrate while suppressing or preventing the occurrence of turbulence of the airflow.
  • the hood has an arcuate vertical cross section, and further includes an annular corner portion extending from an outer edge of the ceiling surface to an upper edge of the cylindrical surface.
  • the annular corner portion extending from the outer edge of the ceiling surface to the upper edge of the cylindrical surface has an arcuate vertical cross section.
  • the vertical cross section of the corner portion is L-shaped, a staying area can occur in the corner portion. Therefore, by providing the hood with a corner portion having an arcuate vertical cross section, the occurrence of such a stay zone can be suppressed or prevented.
  • the distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is narrower than the distance between the upper surface of the substrate and the ceiling surface at the outer peripheral portion of the upper surface of the substrate, and the thickness of the substrate Wider than.
  • the distance between the center of the upper surface of the substrate and the ceiling surface is not only narrower than the distance between the outer peripheral portion of the upper surface of the substrate and the ceiling surface, but is wider than the thickness of the substrate.
  • the exhaust port is opened at a position facing the center of the upper surface of the substrate on the ceiling surface.
  • the vertical distance from the upper surface of the substrate to the exhaust port is wider than the thickness of the substrate. If the exhaust port is too close to the upper surface of the substrate, a large resistance is applied to the gas that is about to enter between the exhaust port and the substrate. Therefore, by separating the exhaust port from the upper surface of the substrate by an appropriate distance, it is possible to suppress or prevent the staying area from occurring immediately below the exhaust port while suppressing or preventing the occurrence of turbulence of the airflow.
  • the air supply port is disposed at a height above the upper surface of the substrate supported by the support member and below the ceiling surface, and is supported by the support member in plan view. Gas is discharged in the discharge direction toward the center of the upper surface of the substrate.
  • the air supply port When the air supply port discharges gas vertically, the discharged gas changes its direction approximately 90 degrees and then flows inward toward the center of the substrate. According to this configuration, the air supply port is horizontally opposed to the space between the upper surface of the substrate and the ceiling surface. The gas discharged from the air supply port flows inward along the upper surface of the substrate without changing its direction at a large angle. Therefore, compared with the case where the air supply port discharges the gas vertically, the occurrence of the turbulence of the airflow at the outer peripheral portion of the substrate can be suppressed or prevented.
  • the discharge direction may be a horizontal direction, or an oblique direction inclined upward or downward with respect to a horizontal plane.
  • the substrate processing apparatus is disposed below the substrate supported by the support member, and further includes a heater that generates heat supplied to the substrate, and the air supply unit reacts with the substrate.
  • a reaction gas supply unit configured to supply a reaction gas to the air supply port;
  • the reactive gas that reacts with the substrate is discharged from the air supply port and supplied to the upper surface of the substrate. Thereby, the upper surface of the substrate is treated with the reactive gas. Further, the reaction gas is supplied to the upper surface of the substrate heated by the heater. Thereby, the reaction between the substrate and the reaction gas can be promoted.
  • the substrate processing apparatus further includes a wet processing unit that processes the substrate with a processing liquid, and a transport unit that transports the substrate from a dry processing unit including the support member and a hood to the wet processing unit.
  • the dry processing step of processing the substrate without supplying the liquid to the substrate is executed in the dry processing unit including the support member and the hood. Thereafter, the transport unit transports the substrate from the dry processing unit to the wet processing unit. In the wet processing unit, a wet processing step of supplying a processing liquid to the substrate is executed. Therefore, both the dry processing step and the wet processing step can be performed with the same substrate processing apparatus. Furthermore, since the dry treatment process and the wet treatment process are performed in separate units, the complexity of each unit can be suppressed or prevented.
  • the substrate processing apparatus is an apparatus for removing a resist pattern located on a thin film pattern formed on an upper surface of the substrate by supplying a reactive gas that reacts with the substrate to the substrate.
  • the space between the upper surface of the substrate and the ceiling surface is filled with the reactive gas discharged from the air supply port, and the reactive gas is uniformly supplied to each portion of the upper surface of the substrate including the central portion.
  • the resist pattern is vaporized or altered by the reaction between the resist and the reaction gas.
  • the resist pattern can be removed from the thin film pattern forming the surface layer of the substrate.
  • the substrate processing apparatus is disposed below the substrate supported by the support member, and further includes a heater that generates heat supplied to the substrate, and the air supply unit supplies ozone gas to the air supply It includes an ozone gas supply unit that supplies the mouth.
  • the ozone gas discharged from the air supply port is supplied to the upper surface of the substrate.
  • the resist pattern is vaporized or altered by the reaction between the resist and ozone gas.
  • ozone gas is supplied to the upper surface of the substrate heated by the heater. Thereby, the reaction between the resist and the ozone gas can be promoted, and the resist pattern can be reacted with the ozone gas uniformly in a short time.
  • Another embodiment of the present invention includes a supporting step of horizontally supporting a substrate with a supporting member, and a step executed in parallel with the supporting step, wherein the substrate is supported on the upper surface of the substrate supported by the supporting member.
  • An opposing ceiling surface and a cylindrical surface surrounding the substrate supported by the support member, and the distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is the upper surface of the substrate
  • An annular feed that is performed in parallel and is disposed outside the substrate supported by the support member and surrounds a vertical line passing through the center of the substrate supported by the support member.
  • a substrate processing method comprising: exhausting a gas between an upper surface of the substrate and the ceiling surface through an exhaust port that opens at a position facing the center of the upper surface of the substrate on the ceiling surface.
  • At least one of the following features may be added to the substrate processing method.
  • the distance between the upper surface of the substrate and the ceiling surface decreases stepwise or continuously as it approaches the vertical line from the outer periphery of the upper surface of the substrate to the center of the upper surface of the substrate. According to this method, the same effect as described above can be obtained.
  • the ceiling surface includes an annular inclined portion extending obliquely downward toward the vertical line. According to this method, the same effect as described above can be obtained.
  • the hood has an arcuate vertical cross section, and further includes an annular corner portion extending from an outer edge of the ceiling surface to an upper edge of the cylindrical surface. According to this method, the same effect as described above can be obtained.
  • the distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is narrower than the distance between the upper surface of the substrate and the ceiling surface at the outer peripheral portion of the upper surface of the substrate, and the thickness of the substrate Wider than. According to this method, the same effect as described above can be obtained.
  • the air supply port is disposed at a height above the upper surface of the substrate supported by the support member and below the ceiling surface, and is supported by the support member in plan view. Gas is discharged in the discharge direction toward the center of the upper surface of the substrate. According to this method, the same effect as described above can be obtained.
  • the substrate processing method is a step that is performed in parallel with the supporting step, and the heating step of heating the substrate with the heat generated by a heater disposed below the substrate supported by the supporting member
  • the air supply step includes a step of discharging a reaction gas that reacts with the substrate from the air supply port. According to this method, the same effect as described above can be obtained.
  • the substrate is transported by a transport unit from a dry processing unit in which the support step, the cover step, the air supply step, and the exhaust step are performed to a wet processing unit that processes the substrate with a processing liquid. And a wet processing step of processing the substrate by the wet processing unit after the transporting step is executed. According to this method, the same effect as described above can be obtained.
  • the substrate processing method is a method of removing a resist pattern located on a thin film pattern formed on an upper surface of the substrate by supplying a reactive gas that reacts with the substrate to the substrate. According to this method, the same effect as described above can be obtained.
  • the substrate processing method is a step that is performed in parallel with the supporting step, and the heating step of heating the substrate with the heat generated by a heater disposed below the substrate supported by the supporting member
  • the air supply step includes a step of discharging ozone gas from the air supply port. According to this method, the same effect as described above can be obtained.
  • FIG. 1 is a schematic plan view showing a schematic configuration of a substrate processing apparatus according to an embodiment of the present invention. It is process drawing which shows an example of the process of the board
  • FIG. 1 is a schematic plan view showing a schematic configuration of a substrate processing apparatus 1 according to an embodiment of the present invention.
  • the substrate processing apparatus 1 is a single-wafer type apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one.
  • the substrate processing apparatus 1 processes a plurality of load ports LP that respectively hold a plurality of carriers C that accommodate the substrates W, and a substrate W transported from the plurality of load ports LP with a processing fluid such as a processing liquid or a processing gas.
  • a plurality of processing units 2 2.
  • the substrate processing apparatus 1 further includes a transport unit that transports the substrate W and a control device 3 that controls the substrate processing apparatus 1.
  • the control device 3 is a computer including a memory 3m that stores information such as a program and a processor 3p that controls the substrate processing apparatus 1 in accordance with the information stored in the memory 3m.
  • the transfer unit includes an indexer robot IR, a shuttle SH, and a center robot CR arranged on a transfer path extending from the plurality of load ports LP to the plurality of processing units 2.
  • the indexer robot IR transports the substrate W between the plurality of load ports LP and the shuttle SH.
  • the shuttle SH transports the substrate W between the indexer robot IR and the center robot CR.
  • the center robot CR transports the substrate W between the shuttle SH and the plurality of processing units 2.
  • the center robot CR further transports the substrate W between the plurality of processing units 2.
  • the thick arrows shown in FIG. 1 indicate the moving directions of the indexer robot IR and the shuttle SH.
  • the plurality of processing units 2 form four towers arranged at four positions separated horizontally. Each tower includes a plurality of processing units 2 stacked in the vertical direction. Four towers are arranged in two on each side of the transport path.
  • the plurality of processing units 2 include a plurality of dry processing units 2D that process the substrate W while the substrates W are dried, and a plurality of wet processing units 2W that process the substrate W with the processing liquid.
  • the two towers on the load port LP side are formed by a plurality of dry processing units 2D, and the remaining two towers are formed by a plurality of wet processing units 2W.
  • the dry processing unit 2D includes a dry chamber 4 provided with a loading / unloading port through which the substrate W passes, a shutter 5 that opens and closes the loading / unloading port of the dry chamber 4, and a processing gas while heating the substrate W in the dry chamber 4.
  • the wet processing unit 2W includes a wet chamber 9 provided with a loading / unloading port through which the substrate W passes, a shutter 10 that opens and closes the loading / unloading port of the wet chamber 9, and a substrate W held horizontally in the wet chamber 9.
  • a spin chuck 11 that rotates about a vertical rotation axis A ⁇ b> 1 that passes through the center of the substrate W and a plurality of nozzles that discharge a processing liquid toward the substrate W held by the spin chuck 11 are included.
  • the plurality of nozzles include a chemical nozzle 12 for discharging a chemical liquid and a rinsing liquid nozzle 13 for discharging a rinsing liquid.
  • the control device 3 causes the spin motor of the spin chuck 11 to rotate the substrate W while holding the substrate W on the plurality of chuck pins of the spin chuck 11. In this state, the control device 3 causes the chemical liquid nozzle 12 or the rinsing liquid nozzle 13 to discharge liquid toward the upper surface of the substrate W. Thereby, the entire upper surface of the substrate W is covered with the liquid film. Thereafter, the control device 3 causes the spin chuck 11 to rotate the substrate W at a high speed to dry the substrate W.
  • FIG. 2 is a process diagram showing an example of the processing of the substrate W executed by the substrate processing apparatus 1.
  • FIG. 3 is a schematic view showing a cross section of the substrate W before and after the example of the processing of the substrate W shown in FIG.
  • the controller 3 is programmed to cause the substrate processing apparatus 1 to execute the following operations.
  • the substrate W to be processed by the substrate processing apparatus 1 is subjected to an etching process for etching a thin film covered with a resist pattern PR to form a thin film pattern PF. It is. That is, the carrier C in which such a substrate W is accommodated is placed on the load port LP. As will be described below, in the substrate processing apparatus 1, a resist removing process is performed to remove the resist pattern PR located on the thin film pattern PF.
  • the right side of FIG. 3 shows a cross section of the substrate W on which the resist removing process has been performed.
  • Step S1 When the substrate W is processed by the substrate processing apparatus 1, the indexer robot IR, the shuttle SH, and the center robot CR transfer the substrate W in the carrier C placed on the load port LP to the dry processing unit 2D (FIG. 2). Step S1).
  • a dry processing step of supplying ozone gas to the substrate W while heating the substrate W is performed (step S2 in FIG. 2).
  • the center robot CR carries the substrate W in the dry processing unit 2D into the wet processing unit 2W (step S3 in FIG. 2).
  • a wet processing step of supplying a processing liquid to the upper surface of the substrate W is performed while rotating the substrate W (step S4 in FIG. 2).
  • a chemical solution supply step is performed in which the chemical solution is discharged to the chemical solution nozzle 12 toward the upper surface of the substrate W while rotating the substrate W.
  • a rinsing liquid supply step is performed in which the rinsing liquid is discharged to the rinsing liquid nozzle 13 toward the upper surface of the substrate W while rotating the substrate W.
  • the drying process which dries the board
  • the indexer robot IR, the shuttle SH, and the center robot CR transfer the substrate W in the wet processing unit 2W to the carrier C placed on the load port LP (step S5 in FIG. 2).
  • FIG. 4 is a schematic cross-sectional view showing a vertical cross section (a cross section cut along a vertical plane) of the heating unit 8.
  • FIG. 5 is a schematic plan view of the hood 30.
  • FIG. 5 is a view of the hood 30 as seen in the direction of the arrow V shown in FIG.
  • FIG. 6 is a schematic plan view of the hot plate 21.
  • FIG. 7 is an enlarged cross-sectional view in which a part of FIG. 4 is enlarged.
  • a state where the hood 30 is located at the lower position (position shown in FIG. 4) will be described unless otherwise specified.
  • the heating unit 8 includes a hot plate 21 that heats the substrate W while horizontally supporting it, a hood 30 that is disposed above the substrate W supported by the hot plate 21, and a hood 30. And a supporting base ring 27.
  • the heating unit 8 further includes a hood lift actuator 29 that lifts and lowers the hood 30 relative to the hot plate 21 and the base ring 27, an O-ring 28 that seals a gap between the hood 30 and the base ring 27, and the hot plate 21.
  • a plurality of lift pins 24 that horizontally support the substrate W between the hood 30 and a lift raising / lowering actuator 26 that raises and lowers the plurality of lift pins 24.
  • the hot plate 21 includes a heater 22 that generates Joule heat, and a support member 23 that horizontally supports the substrate W and transmits heat of the heater 22 to the substrate W.
  • the heater 22 and the support member 23 are disposed below the substrate W.
  • the heater 22 is connected to a wiring (not shown) that supplies power to the heater 22.
  • the heater 22 may be disposed below the support member 23 or may be disposed inside the support member 23.
  • the support member 23 of the hot plate 21 includes a disk-like base portion 23 b disposed below the substrate W, and a plurality of hemispheres protruding upward from the upper surface of the base portion 23 b.
  • the upper surface of the base portion 23 b is parallel to the lower surface of the substrate W and has an outer diameter equal to or greater than the outer diameter of the substrate W.
  • the plurality of projecting portions 23a are in contact with the lower surface of the substrate W at positions away from the upper surface of the base portion 23b.
  • the plurality of protruding portions 23a are arranged at a plurality of positions in the upper surface of the base portion 23b so that the substrate W is horizontally supported.
  • the substrate W is supported horizontally with the lower surface of the substrate W separated upward from the upper surface of the base portion 23b.
  • the plurality of lift pins 24 are respectively inserted into the plurality of through holes penetrating the hot plate 21. Intrusion of fluid from the outside of the heating unit 8 into the through hole is prevented by the bellows 25 surrounding the lift pin 24.
  • the heating unit 8 may include an O-ring that seals a gap between the outer peripheral surface of the lift pin 24 and the inner peripheral surface of the through hole instead of or in addition to the bellows 25.
  • the lift pin 24 includes a hemispherical upper end portion that contacts the lower surface of the substrate W. The upper ends of the lift pins 24 are arranged at the same height.
  • the lift elevating actuator 26 includes an upper position where the upper ends of the plurality of lift pins 24 are positioned above the hot plate 21 (the position shown in FIG. 9A), and the upper ends of the plurality of lift pins 24 retracted inside the hot plate 21.
  • the plurality of lift pins 24 are moved in the vertical direction between the lower position (the position shown in FIG. 4).
  • the lift raising / lowering actuator 26 may be an electric motor or an air cylinder, or may be an actuator other than these. The same applies to other actuators such as the hood lift actuator 29.
  • the lift elevating actuator 26 raises the lift pins 24 from the lower position to the upper position while the substrate W is supported by the hot plate 21, the lower surface of the substrate W is separated from the plurality of protrusions 23 a of the hot plate 21. , Contact a plurality of lift pins 24.
  • the lift elevating actuator 26 lowers the plurality of lift pins 24 from the upper position to the lower position while the substrate W is supported by the plurality of lift pins 24, the lower surface of the substrate W becomes the plurality of lift pins 24. And contact the plurality of protrusions 23a of the hot plate 21. In this way, the substrate W is transferred between the hot plate 21 and the plurality of lift pins 24.
  • the base ring 27 is disposed on the upper surface of the flange portion 23c of the hot plate 21.
  • the base ring 27 surrounds the base portion 23 b with a space in the radial direction of the hot plate 21.
  • the upper surface of the base ring 27 is disposed below the upper surface of the base portion 23b.
  • the O-ring 28 is fitted in an annular groove that is recessed downward from the upper surface of the base ring 27.
  • the hood lift actuator 29 moves the hood 30 vertically between an upper position (position shown in FIG. 9A) and a lower position (position shown in FIG. 4).
  • the upper position is a position where the lower surface of the hood 30 is separated from the upper surface of the base ring 27 so that the substrate W can pass between the lower surface of the hood 30 and the upper surface of the base ring 27.
  • the lower position is a position where a gap between the lower surface of the hood 30 and the upper surface of the base ring 27 is sealed, and a sealed space SP that accommodates the substrate W supported by the hot plate 21 is formed.
  • the hood 30 has a circular upper plate 32 in a plan view that is disposed above the substrate W supported by the hot plate 21, a lower ring 34 having an inner diameter larger than the outer diameter of the substrate W, and a lower surface of the upper plate 32. And an annular plate-like seal 33 that seals the gap between the upper ring 34 and the upper surface of the lower ring 34, and a central block 31 that is inserted into a central through hole that penetrates the central portion of the upper plate 32.
  • the central block 31 is supported by the upper plate 32, and the lower ring 34 is connected to the upper plate 32 via a plate-shaped seal 33.
  • the upper plate 32 includes a plate portion 32 a having a lower surface parallel to the upper surface of the substrate W.
  • the central block 31 protrudes downward from the lower surface of the plate portion 32a.
  • the inner surface of the hood 30 has a circular ceiling surface 41 in a plan view disposed above the substrate W, a cylindrical surface 43 having a diameter larger than the outer diameter of the substrate W, and the cylindrical surface 43 from the outer edge of the ceiling surface 41. And an annular corner portion 42 extending to the upper edge.
  • the ceiling surface 41 has an outer diameter larger than the outer diameter of the substrate W.
  • the corner part 42 has, for example, an L-shaped vertical cross section.
  • the ceiling surface 41 has a central horizontal portion 41a that is coaxial and horizontal with the vertical line A2 passing through the central portion of the substrate W, an annular central inclined portion 41b that extends obliquely upward from the outer edge of the central horizontal portion 41a, An annular central vertical portion 41c extending vertically upward from the outer edge of the inclined portion 41b and an annular outer horizontal portion 41d extending horizontally outward from the upper end of the central vertical portion 41c are included.
  • the corner portion 42 extends from the outer edge of the outer horizontal portion 41 d to the upper edge of the cylindrical surface 43.
  • the substrate processing apparatus 1 includes an air supply unit that supplies a gas into the heating unit 8 and an exhaust unit that discharges the gas in the heating unit 8.
  • the air supply unit includes a plurality of air supply ports 46 that discharge gas and supply paths 47 that guide the gas to each air supply port 46.
  • the exhaust unit includes an exhaust port 44 through which the gas discharged from the plurality of air supply ports 46 flows, and an exhaust path 45 that guides the gas that has flowed into the exhaust port 44 to the outside of the heating unit 8.
  • the exhaust port 44 is opened at the central horizontal portion 41 a included in the inner surface of the hood 30.
  • the exhaust port 44 is circular or elliptical.
  • the exhaust port 44 faces the upper surface of the substrate W in the vertical direction only through the space.
  • the exhaust port 44 is disposed above the air supply port 46.
  • the exhaust passage 45 extends from the exhaust port 44 to the outer surface of the hood 30.
  • the exhaust passage 45 is provided in the central block 31.
  • the exhaust passage 45 penetrates the central block 31 in the vertical direction.
  • the air supply port 46 is opened by a cylindrical surface 43 included in the inner surface of the hood 30.
  • the air supply port 46 is circular or elliptical.
  • the air supply port 46 may be a slot extending in the circumferential direction.
  • the plurality of air supply ports 46 are arranged at the same height.
  • the air supply port 46 is disposed at a height above the upper surface of the substrate W and below the ceiling surface 41 of the hood 30.
  • the plurality of air supply ports 46 are arranged at equal intervals in the circumferential direction of the hot plate 21.
  • the supply path 47 is connected to the plurality of upper flow paths 47 a extending from the outer surface of the hood 30 to the inside of the hood 30, and is connected to each upper flow path 47 a, and the upstream ring surrounding the vertical line A ⁇ b> 2.
  • a plurality of lower flow paths 47 e extending to 46.
  • the upper flow path 47 a and the upstream annular path 47 b are provided in the upper plate 32.
  • the intermediate path 47 c is provided in the plate-shaped seal 33.
  • the downstream annular passage 47 d and the lower passage 47 e are provided in the lower ring 34.
  • the upstream annular passage 47 b and the downstream annular passage 47 d are partitioned from each other by the plate-shaped seal 33.
  • the intermediate passage 47c extends downward from the upstream annular passage 47b to the downstream annular passage 47d.
  • the plurality of intermediate paths 47c are arranged at positions that do not overlap the plurality of upper flow paths 47a in plan view.
  • the lower flow path 47e is arranged inside the downstream annular path 47d.
  • the lower flow path 47e extends horizontally from the downstream annular path 47d to the air supply port 46.
  • the air supply port 46 discharges the gas supplied from the lower flow path 47e in the horizontal discharge direction D1 toward the vertical line A2.
  • the ejection direction D1 may be an oblique direction inclined upward or downward with respect to the horizontal plane.
  • the distance between the upper surface of the substrate W and the ceiling surface 41 that is, the vertical distance from the upper surface of the substrate W to the ceiling surface 41 is the narrowest at the center of the substrate W, and the outer periphery of the substrate W The largest in the department. More specifically, the distance Gc between the upper surface of the substrate W and the ceiling surface 41 at the center of the upper surface of the substrate W is the distance Ge between the upper surface of the substrate W and the ceiling surface 41 at the outer periphery of the upper surface of the substrate W. Narrower than.
  • the gap Gc is wider than the thickness T1 of the substrate W and wider than the diameter D2 of the air supply port 46 corresponding to the length of the air supply port 46 in the vertical direction.
  • the interval Gc may be equal to or less than the diameter D2 of the air supply port 46.
  • the distance Gc between the upper surface of the substrate W and the ceiling surface 41 at the center of the upper surface of the substrate W is equal to the vertical distance from the upper surface of the substrate W to the exhaust port 44.
  • the interval Gc is narrower than the diameter D3 of the exhaust port 44 and narrower than the protruding amount of the central block 31, that is, the vertical distance G1 from the outer horizontal portion 41d to the central horizontal portion 41a.
  • the radius R1 of the central block 31, that is, the radial distance R1 from the vertical line A2 to the outer end (upper end) of the central inclined portion 41b is the radial distance from the outer end of the central inclined portion 41b to the cylindrical surface 43. Shorter than R2.
  • FIG. 8 is a schematic diagram showing an air supply unit that supplies gas to the heating unit 8 and an exhaust unit that discharges gas from the heating unit 8.
  • the air supply unit includes a first common pipe 55 that guides gas discharged from the plurality of air supply ports 46, and a plurality of second common pipes 56 that guide the gas supplied from the first common pipe 55 to the supply path 47. Including.
  • the exhaust unit includes a first exhaust pipe 60 that guides the gas discharged to the exhaust port 44, a second exhaust pipe 61 that guides the gas supplied from the first exhaust pipe 60, and a gas that flows through the second exhaust pipe 61. And an ozone filter 62 for removing ozone contained in the atmosphere.
  • the air supply unit includes a first ozone gas pipe 52 that guides the ozone gas generated by the ozone gas generation unit 51, a second ozone gas pipe 53 that guides the ozone gas supplied from the first ozone gas pipe 52 to the first common pipe 55, And an ozone gas supply valve 54 interposed in the second ozone gas pipe 53.
  • the air supply unit further includes a first nitrogen gas pipe 57 that guides nitrogen gas supplied from a nitrogen gas supply source, and a first nitrogen pipe that guides nitrogen gas supplied from the first nitrogen gas pipe 57 to the first common pipe 55. 2 a nitrogen gas pipe 58 and a nitrogen gas supply valve 59 interposed in the second nitrogen gas pipe 58.
  • the ozone gas supply valve 54 includes a valve body that forms a flow path, a valve element disposed in the flow path, and an actuator that moves the valve element.
  • the actuator may be a pneumatic actuator or an electric actuator, or may be an actuator other than these.
  • the control device 3 opens and closes the ozone gas supply valve 54 by controlling the actuator.
  • the ozone gas generation unit 51 is a unit that generates high-concentration ozone gas suitable for processing the substrate W.
  • a specific example of the concentration of ozone contained in the ozone gas is 250 to 300 g / m 3 .
  • the ozone gas generation unit 51 may be disposed in the substrate processing apparatus 1 or may be disposed outside the substrate processing apparatus 1. In the latter case, the ozone gas generation unit 51 may be disposed around the substrate processing apparatus 1 or may be disposed below (under the ground) a clean room where the substrate processing apparatus 1 is installed.
  • the ozone gas generated by the ozone gas generation unit 51 is heated through the first ozone gas pipe 52, the second ozone gas pipe 53, the first common pipe 55, and the second common pipe 56 in this order. It is supplied to the unit 8 and discharged from the plurality of air supply ports 46.
  • the nitrogen gas supply valve 59 is opened, the nitrogen gas is heated through the first nitrogen gas pipe 57, the second nitrogen gas pipe 58, the first common pipe 55, and the second common pipe 56 in this order. It is supplied to the unit 8 and discharged from the plurality of air supply ports 46.
  • Ozone gas is discharged from the plurality of air supply ports 46 in a state where the heating unit 8 is closed, that is, in a state where the hood 30 is located at the lower position.
  • the ozone gas discharged from the plurality of air supply ports 46 is discharged to the first exhaust pipe 60 through the exhaust port 44.
  • the ozone gas in the first exhaust pipe 60 flows into the second exhaust pipe 61 and passes through the ozone filter 62. Thereby, the density
  • the gas that has passed through the ozone filter 62 is guided toward an exhaust facility provided in a factory where the substrate processing apparatus 1 is installed.
  • FIG. 9A to 9F are schematic views showing an example of the state of the heating unit 8 when the dry processing step (step S2) shown in FIG. 2 is performed.
  • the shutter opening / closing actuator 63 positions the shutter 5 in the open position, and the hood lift actuator 29 and the lift lift actuator 26 are the hood 30 and a plurality of lift pins. 24 is positioned in the upper position.
  • the center robot CR advances the hand H into the dry chamber 4 while supporting the substrate W with the hand H. Thereafter, the substrate W having the device forming surface facing upward is placed on the plurality of lift pins 24.
  • the substrate W may be placed on the plurality of lift pins 24 by the hand H of the center robot CR, or may be placed on the plurality of lift pins 24 by the indoor transport mechanism 6 (see FIG. 1).
  • the center robot CR moves the substrate H on the hand H to the dry processing unit 2D and then moves the hand H out of the dry chamber 4. Thereafter, the shutter opening / closing actuator 63 moves the shutter 5 to the closed position, and closes the loading / unloading exit of the dry chamber 4. Further, as shown in FIG. 9B, the lift raising / lowering actuator 26 moves the plurality of lift pins 24 to the lower position, and the hood raising / lowering actuator 29 moves the hood 30 to the lower position. Thereby, the substrate W is supported by the hot plate 21.
  • the hot plate 21 is maintained at a temperature higher than room temperature (for example, 100 ° C. or higher) before the substrate W is supported by the hot plate 21. When the substrate W is supported by the hot plate 21, heating of the substrate W is started.
  • the ozone gas supply valve 54 is opened, and the plurality of air supply ports 46 start discharging ozone gas.
  • the ozone gas flows along the upper surface of the substrate W from the plurality of air supply ports 46 toward the center of the substrate W. Thereby, a plurality of airflows flowing from the outer periphery of the upper surface of the substrate W toward the center of the upper surface of the substrate W are formed.
  • the air in the sealed space SP is guided toward the exhaust port 44 by ozone gas and is discharged out of the sealed space SP through the exhaust port 44. Thereby, the sealed space SP is filled with ozone gas.
  • the ozone gas in the sealed space SP is guided toward the exhaust port 44 by the ozone gas discharged later, and is discharged out of the sealed space SP through the exhaust port 44. Therefore, the sealed space SP is continuously filled with ozone gas immediately after being discharged from the plurality of air supply ports 46. Concentration of the ozone gas discharged from the air supply port 46 is likely to decrease significantly in a short time. Therefore, ozone gas with a low concentration decrease, that is, ozone gas with high activity is continuously supplied to the upper surface of the substrate W.
  • FIG. 10 is a schematic cross-sectional view for explaining the flow of gas flowing from the outer periphery of the substrate W to the center of the substrate W along the upper surface of the substrate W.
  • the ozone gas discharged from the air supply port 46 flows inward between the outer horizontal portion 41d of the hood 30 and the outer peripheral portion of the upper surface of the substrate W. Thereafter, the ozone gas flows inward between the upper surface of the substrate W and the inner surface of the hood 30 while being guided toward the upper surface of the substrate W by the central inclined portion 41 b of the hood 30. Subsequently, the ozone gas flows inward between the central horizontal portion 41 a of the hood 30 and the upper surface of the substrate W and is discharged to the exhaust port 44.
  • the ozone gas flows along the center of the upper surface of the substrate W and is then discharged to the exhaust port 44. Therefore, it is difficult for gas to stay in the center of the upper surface of the substrate W, and the ozone gas present here is easily replaced with new ozone gas. Further, in the central inclined portion 41b and the central horizontal portion 41a, ozone gas flowing upward from the upper surface of the substrate W, that is, ozone gas with a small decrease in activity due to the reaction between the ozone gas and the resist and the temperature increase of the ozone gas is small. Since it is guided toward the substrate W, the processing speed at the center of the upper surface of the substrate W can be further increased.
  • the ozone gas supply valve 54 When a predetermined time has elapsed since the ozone gas supply valve 54 was opened, the ozone gas supply valve 54 is closed and the discharge of ozone gas is stopped. Thereafter, as shown in FIG. 9D, the nitrogen gas supply valve 59 is opened, and the plurality of air supply ports 46 start to discharge nitrogen gas. The ozone gas in the sealed space SP is guided to the exhaust port 44 by the nitrogen gas and is discharged out of the sealed space SP through the exhaust port 44. Thereby, the ozone gas in the sealed space SP is replaced with nitrogen gas. When a predetermined time elapses after the nitrogen gas supply valve 59 is opened, the nitrogen gas supply valve 59 is closed and the discharge of nitrogen gas is stopped.
  • the lift elevating actuator 26 moves the plurality of lift pins 24 to the upper position
  • the hood elevating actuator 29 moves the hood 30 to the upper position.
  • the shutter opening / closing actuator 63 moves the shutter 5 to the open position.
  • the substrate W on the hot plate 21 is lifted by a plurality of lift pins 24.
  • the center robot CR receives the substrate W with the hand H after the substrate W is cooled by the cooling unit 7 (see FIG. 1). Thereafter, the center robot CR carries the substrate W on the hand H into the wet processing unit 2W.
  • the distance Gc between the upper surface of the substrate W and the ceiling surface 41 at the center of the upper surface of the substrate W is such that the upper surface of the substrate W and the ceiling surface 41 at the outer periphery of the upper surface of the substrate W. It is narrower than the interval Ge. Therefore, the gas discharged from the air supply port 46 is guided toward the center of the upper surface of the substrate W by the ceiling surface 41. Thereby, it is possible to suppress or prevent the occurrence of a staying region having a relatively low gas fluidity directly under the exhaust port 44, and to improve the uniformity of processing of the substrate W.
  • the distance between the upper surface of the substrate W and the ceiling surface 41 is not narrow everywhere, but only at the center of the upper surface of the substrate W. If the distance between the upper surface of the substrate W and the ceiling surface 41 is narrow, the resistance applied to the gas supplied to the space between the upper surface of the substrate W and the ceiling surface 41 increases, and the smooth gas in the space Flow can be inhibited. Therefore, by locally reducing the distance between the upper surface of the substrate W and the ceiling surface 41, it is possible to suppress or prevent the staying area from occurring immediately below the exhaust port 44 while suppressing or preventing the occurrence of turbulence. it can.
  • the airflow may be disturbed.
  • the gas flowing inward in the space between the upper surface of the substrate W and the ceiling surface 41 is stepped toward the upper surface of the substrate W as the distance between the upper surface of the substrate W and the ceiling surface 41 decreases. Guided continuously or continuously. Thereby, the airflow flowing toward the center of the substrate W can be gradually brought closer to the upper surface of the substrate W while suppressing or preventing the occurrence of turbulence of the airflow.
  • an annular central inclined portion 41b extending obliquely downward toward the vertical line A2 is provided on the ceiling surface 41.
  • the distance between the upper surface of the substrate W and the ceiling surface 41 continuously decreases as the center of the upper surface of the substrate W is approached.
  • the gas flowing inward through the space between the upper surface of the substrate W and the ceiling surface 41 is continuously guided toward the upper surface of the substrate W by the central inclined portion 41 b of the ceiling surface 41. Accordingly, the gas flowing toward the center of the substrate W can be gradually brought closer to the upper surface of the substrate W while suppressing or preventing the occurrence of turbulence of the airflow.
  • the distance Gc between the center portion of the upper surface of the substrate W and the ceiling surface 41 is not only narrower than the distance Ge between the outer peripheral portion of the upper surface of the substrate W and the ceiling surface 41, but also from the thickness T1 of the substrate W. Is also wide.
  • the exhaust port 44 is opened at a position facing the center of the upper surface of the substrate W on the ceiling surface 41.
  • the vertical distance from the upper surface of the substrate W to the exhaust port 44 is larger than the thickness T1 of the substrate W. If the exhaust port 44 is too close to the upper surface of the substrate W, a large resistance is applied to the gas that is about to enter between the exhaust port 44 and the substrate W. Therefore, by separating the exhaust port 44 from the upper surface of the substrate W by an appropriate distance, it is possible to suppress or prevent the staying area from occurring immediately below the exhaust port 44 while suppressing or preventing the occurrence of air current turbulence.
  • the gas supply port 46 When the gas supply port 46 discharges the gas vertically, the discharged gas changes its direction approximately 90 degrees and then flows inward toward the center of the substrate W.
  • the air supply port 46 is horizontally opposed to the space between the upper surface of the substrate W and the ceiling surface 41. The gas discharged from the air supply port 46 flows inward along the upper surface of the substrate W without changing its direction at a large angle. Therefore, compared with the case where the air supply port 46 discharges the gas vertically, it is possible to suppress or prevent the occurrence of turbulence of the airflow at the outer peripheral portion of the substrate W.
  • the dry processing unit 2D performs the dry processing step of processing the substrate W without supplying the liquid to the substrate W. Thereafter, the center robot CR transports the substrate W from the dry processing unit 2D to the wet processing unit 2W. In the wet processing unit 2W, a wet processing step of supplying a processing liquid to the substrate W is executed. Therefore, both the dry processing step and the wet processing step can be executed by the same substrate processing apparatus 1. Furthermore, since the dry treatment process and the wet treatment process are performed in separate units, the complexity of each unit can be suppressed or prevented.
  • Ozone gas is an example of a reactive gas that reacts with the substrate W.
  • ozone gas discharged from the air supply port 46 is supplied to the upper surface of the substrate W.
  • the resist pattern PR is vaporized or altered by the reaction between the resist and ozone gas.
  • the ozone gas is supplied to the upper surface of the substrate W heated by the heater 22. Thereby, the reaction between the resist and the ozone gas can be promoted, and the resist pattern PR can be uniformly reacted with the ozone gas in a short time.
  • the vertical cross section of the corner portion 42 included in the inner surface of the hood 30 is not limited to an L shape, and may be an arc shape or other shapes.
  • the vertical cross section of the corner portion 42 is L-shaped, a staying area may occur in the corner portion 42. Therefore, by providing the hood 30 with the corner portion 42 having an arcuate vertical cross section, the occurrence of such a stay zone can be suppressed or prevented.
  • FIG. 12 shows an example in which the central block 31 is omitted and the central horizontal portion 41a and the outer inclined portion 41e are provided on the lower surface of the plate portion 32a.
  • the outer inclined portion 41e extends obliquely downward from the outer edge of the ceiling surface 41 of the hood 30 to the outer edge of the central horizontal portion 41a.
  • the distance Gc between the upper surface of the substrate W and the ceiling surface 41 at the center of the upper surface of the substrate W is smaller than the distance Ge between the upper surface of the substrate W and the ceiling surface 41 at the outer periphery of the upper surface of the substrate W, The distance between the upper surface of the substrate W and the ceiling surface 41 may not be the widest at the outer peripheral portion of the upper surface of the substrate W.
  • the distance Ge between the upper surface of the substrate W and the ceiling surface 41 at the outer peripheral portion of the upper surface of the substrate W may be constant over the entire circumference or may vary according to the position in the circumferential direction. The same applies to the distance between other portions of the upper surface of the substrate W excluding the central portion.
  • the air supply port 46 is not limited to the direction toward the center of the upper surface of the substrate W in a plan view, and the gas may be discharged in a vertical direction extending upward or downward from the air supply port 46. That is, the discharge direction D1 may be a vertical direction extending upward or downward from the air supply port 46.
  • the gas discharged from the air supply port 46 may be a gas other than ozone gas.
  • a gas containing a substance that reacts with a substrate W such as hydrogen fluoride or IPA (isopropyl alcohol) may be used. Dry air or clean air may be used.
  • Ozone gas, gas containing hydrogen fluoride, and gas containing IPA are examples of reactive gases that react with the substrate W, and dry air and clean air are examples of gases that do not react with the substrate W.
  • the gas containing hydrogen fluoride may be a hydrofluoric acid vapor or a gas containing hydrofluoric acid vapor or mist and a carrier gas (for example, an inert gas). The same applies to the gas containing IPA.
  • the heater 22 may be omitted from the substrate processing apparatus 1.
  • the wet processing unit 2W may be omitted from the substrate processing apparatus 1.
  • the substrate processing apparatus 1 is not limited to an apparatus that processes a disk-shaped substrate W, and may be an apparatus that processes a polygonal substrate W.
  • hood 41 ceiling surface 41a of hood: central horizontal portion 41b of ceiling surface: ceiling Central inclined portion 41c: Vertical vertical portion 41d of the ceiling surface: Horizontal horizontal portion 41e of the ceiling surface: Outer inclined portion 42 of the ceiling surface: Corner portion 43 of the hood 43: The cylindrical surface 44 of the hood: Exhaust port 46: Air supply Port 51: Ozone gas generation unit 52: First ozone gas pipe (reactive gas supply unit, ozone gas supply unit) 53: Second ozone gas pipe (reactive gas supply unit, ozone gas supply unit) 54: Ozone gas supply valve (reactive gas supply unit, ozone gas supply unit) 55: 1st common piping 56: 2nd common piping 60: 1st exhaust piping 61: 2nd exhaust piping 62: Ozone filter A2: Vertical line CR: Center robot D1: Discharge direction Gc: Center part and ceiling of the

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

This substrate processing device comprises a support member, a hood, a gas supply unit, and a gas exhaust unit. The gas supply unit supplies a gas delivered from a gas supply opening to a space between an upper surface of a substrate and a ceiling surface from around the space. The gas exhaust unit discharges the gas between the upper surface of the substrate and the ceiling surface through a gas exhaust opening that is opened in the ceiling surface at a position opposing a center part of the upper surface of the substrate. The spacing between the upper surface of the substrate and the ceiling surface at the center part of the upper surface of the substrate is smaller than the spacing between the upper surface of the substrate and the ceiling surface at an outer peripheral part of the upper surface of the substrate.

Description

基板処理装置および基板処理方法Substrate processing apparatus and substrate processing method
 本発明は、基板を処理する基板処理装置および基板処理方法に関する。処理対象の基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate. Examples of substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomask substrates. Substrates, ceramic substrates, solar cell substrates and the like are included.
 半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板を処理する基板処理装置が用いられる。特許文献1の基板処理装置は、レジストが塗布された基板を加熱して、レジスト膜に含まれる溶剤を除去するPAB工程を実行するベーク炉を備えている。 In a manufacturing process of a semiconductor device or a liquid crystal display device, a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device is used. The substrate processing apparatus of Patent Document 1 includes a baking furnace that performs a PAB process in which a substrate coated with a resist is heated to remove a solvent contained in the resist film.
 特許文献1のベーク炉は、基板を水平に支持しながら加熱するホットプレートと、基板の上方に配置される天板とを含む。ドライエアーを吐出するガス供給口は、基板よりも外側に配置されており、ドライエアーを排出する中心排気口は、天板の天井面において基板の上面の中心部に対向する位置で開口している。 The baking furnace of Patent Document 1 includes a hot plate that heats while horizontally supporting a substrate, and a top plate that is disposed above the substrate. The gas supply port for discharging dry air is arranged outside the substrate, and the central exhaust port for discharging dry air is opened at a position facing the center of the upper surface of the substrate on the ceiling surface of the top plate. Yes.
 ガス供給口から吐出されたドライエアーは、基板の上面と天板の天井面との間を基板の中心に向かって流れ、中心排気口に排出される。基板の加熱によってレジスト膜から蒸発した溶剤は、ドライエアーと共に中心排気口に排出される。基板の上面と天板の天井面との間隔は、基板の上面の外周部から基板の上面の中心部まで一定である。 Dry air discharged from the gas supply port flows between the upper surface of the substrate and the ceiling surface of the top plate toward the center of the substrate and is discharged to the central exhaust port. The solvent evaporated from the resist film by heating the substrate is discharged to the central exhaust port together with the dry air. The distance between the upper surface of the substrate and the ceiling surface of the top plate is constant from the outer periphery of the upper surface of the substrate to the center of the upper surface of the substrate.
特開2011-175998号公報JP 2011-175998 A
 本発明者らの研究によると、特許文献1のベーク炉では基板の上面の中心部だけで処理の速度が低下する可能性があることが分かった。本発明者らは、この原因の一つが以下であると考えている。 According to the research by the present inventors, it has been found that in the baking furnace of Patent Document 1, the processing speed may be reduced only at the center of the upper surface of the substrate. The present inventors consider that one of the causes is as follows.
 すなわち、特許文献1のベーク炉では、ガス供給口から吐出されたドライエアーが基板の上面と天板の天井面との間を基板の中心の方に流れる。図13に示すように、中心排気口の近傍では、ドライエアーが基板の上面に接しながら流れるのではなく、基板の上面から中心排気口の方に流れる。そのため、気体の流動性が相対的に低い滞留域(図13において二点鎖線で囲まれた領域)が中心排気口の直下に発生する。これが処理の速度を低下させる原因の一つだと考えられる。 That is, in the baking furnace of Patent Document 1, dry air discharged from the gas supply port flows between the upper surface of the substrate and the ceiling surface of the top plate toward the center of the substrate. As shown in FIG. 13, in the vicinity of the central exhaust port, dry air does not flow while contacting the upper surface of the substrate, but flows from the upper surface of the substrate toward the central exhaust port. For this reason, a staying region (a region surrounded by a two-dot chain line in FIG. 13) in which the gas fluidity is relatively low is generated immediately below the central exhaust port. This is considered to be one of the causes that reduce the processing speed.
 そこで、本発明の目的の一つは、基板の上面に沿って基板の外周から基板の中心に流れる気流を形成しながら基板を処理するプロセスにおいて基板の処理の均一性を高めることができる基板処理装置および基板処理方法を提供することである。 Accordingly, one of the objects of the present invention is to improve the uniformity of substrate processing in a process of processing a substrate while forming an airflow flowing from the outer periphery of the substrate to the center of the substrate along the upper surface of the substrate. An apparatus and a substrate processing method are provided.
 本発明の一実施形態は、基板を水平に支持する支持部材と、前記支持部材に支持されている前記基板の上面に対向する天井面と、前記支持部材に支持されている前記基板を取り囲む筒状面とを含み、前記基板の上面の中心部での前記基板の上面と前記天井面との間隔が、前記基板の上面の外周部での前記基板の上面と前記天井面との間隔よりも狭くなるように形成されたフードと、前記支持部材に支持されている前記基板よりも外側に配置された給気口であって、前記支持部材に支持されている前記基板の中心部を通る鉛直線を取り囲む環状の給気口を含み、前記給気口から吐出された気体を、前記支持部材に支持されている前記基板の上面と前記天井面との間の空間に、当該空間のまわりから供給する給気ユニットと、前記天井面において前記基板の上面の中心部に対向する位置で開口する排気口を含み、前記基板の上面と前記天井面との間の気体を前記排気口を介して排出する排気ユニットとを備える、基板処理装置を提供する。 One embodiment of the present invention includes a support member that horizontally supports a substrate, a ceiling surface that faces the upper surface of the substrate supported by the support member, and a cylinder that surrounds the substrate supported by the support member. A distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is larger than a distance between the upper surface of the substrate and the ceiling surface at the outer peripheral portion of the upper surface of the substrate. A hood formed so as to be narrow, and an air supply port arranged outside the substrate supported by the support member, the vertical passing through the center of the substrate supported by the support member An annular air supply port surrounding the line, and gas discharged from the air supply port is inserted into the space between the upper surface of the substrate supported by the support member and the ceiling surface from around the space. The air supply unit to be supplied and the ceiling surface A substrate processing apparatus, comprising: an exhaust port that opens at a position facing a central portion of the upper surface of the substrate; and an exhaust unit that exhausts gas between the upper surface of the substrate and the ceiling surface through the exhaust port. I will provide a.
 この構成によれば、環状の給気口から吐出された気体が、基板の上面とフードの天井面との間を基板の中心に向かって流れ、基板の上面の中心部に対向する排気口に排出される。これにより、基板の中心に向かって流れる気流が基板の上方に形成される。 According to this configuration, the gas discharged from the annular air supply port flows toward the center of the substrate between the upper surface of the substrate and the ceiling surface of the hood, and enters the exhaust port facing the center of the upper surface of the substrate. Discharged. Thereby, an airflow flowing toward the center of the substrate is formed above the substrate.
 基板の上面の中心部での基板の上面と天井面との間隔は、基板の上面の外周部での基板の上面と天井面との間隔よりも狭い。そのため、給気口から吐出された気体は、天井面によって基板の上面の中心部の方に案内される。これにより、気体の流動性が相対的に低い滞留域が排気口の直下に発生することを抑制または防止でき、基板の処理の均一性を高めることができる。 The distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is narrower than the distance between the upper surface of the substrate and the ceiling surface at the outer periphery of the upper surface of the substrate. Therefore, the gas discharged from the air supply port is guided toward the center of the upper surface of the substrate by the ceiling surface. Thereby, it is possible to suppress or prevent the occurrence of a staying region having a relatively low gas fluidity directly under the exhaust port, and to improve the uniformity of processing of the substrate.
 さらに、基板の上面と天井面との間隔は、至る所で狭いのではなく、基板の上面の中心部だけで狭い。基板の上面と天井面との間隔が至る所で狭いと、基板の上面と天井面との間の空間に供給される気体に加わる抵抗が増加し、当該空間での円滑な気体の流れが阻害され得る。したがって、基板の上面と天井面との間隔を局所的に狭くすることにより、気流の乱れの発生を抑制または防止しながら、滞留域が排気口の直下に発生することを抑制または防止できる。 Furthermore, the distance between the upper surface of the substrate and the ceiling surface is not narrow everywhere, but only at the center of the upper surface of the substrate. If the distance between the upper surface of the substrate and the ceiling surface is narrow, the resistance applied to the gas supplied to the space between the upper surface of the substrate and the ceiling surface increases, and smooth gas flow in the space is obstructed. Can be done. Therefore, by locally narrowing the distance between the upper surface of the substrate and the ceiling surface, it is possible to suppress or prevent the staying area from occurring directly below the exhaust port while suppressing or preventing the occurrence of turbulence of the airflow.
 給気口から吐出される気体は、基板と反応する反応ガスであってもよいし、不活性ガス、ドライエアー、およびクリーンエアーなどの基板とは反応しないガスであってもよいし、これら以外の気体であってもよい。環状の給気口は、周方向に配列された複数の吐出口であってもよいし、全周に亘って連続した1つのスリットであってもよい。複数の吐出口に含まれる吐出口は、円形または楕円形の吐出口であってもよいし、周方向に延びるスロットであってもよい。 The gas discharged from the air supply port may be a reactive gas that reacts with the substrate, or may be a gas that does not react with the substrate, such as inert gas, dry air, and clean air. It may be a gas. The annular air supply port may be a plurality of discharge ports arranged in the circumferential direction, or may be one slit continuous over the entire circumference. The discharge ports included in the plurality of discharge ports may be circular or elliptical discharge ports, or may be slots extending in the circumferential direction.
 本実施形態において、以下の特徴の少なくとも一つが、前記基板処理装置に加えられてもよい。 In the present embodiment, at least one of the following features may be added to the substrate processing apparatus.
 前記基板の上面と前記天井面との間隔は、前記基板の上面の外周部から前記基板の上面の中心部まで前記鉛直線に近づくにしたがって段階的または連続的に減少する。 The distance between the upper surface of the substrate and the ceiling surface decreases stepwise or continuously as it approaches the vertical line from the outer periphery of the upper surface of the substrate to the center of the upper surface of the substrate.
 気流を急に基板の上面の方に方向転換させると、気流の乱れが発生し得る。この構成によれば、基板の上面と天井面との間の空間を内方に流れる気体が、基板の上面と天井面との間隔が減少するにしたがって基板の上面の方に段階的または連続的に案内される。これにより、気流の乱れの発生を抑制または防止しながら、基板の中心に向かって流れる気流を基板の上面に徐々に近づけることができる。 If the airflow is suddenly changed to the upper surface of the substrate, the airflow may be disturbed. According to this configuration, the gas flowing inward through the space between the upper surface of the substrate and the ceiling surface is stepped or continuous toward the upper surface of the substrate as the distance between the upper surface of the substrate and the ceiling surface decreases. Be guided to. Thereby, the airflow flowing toward the center of the substrate can be gradually brought closer to the upper surface of the substrate while suppressing or preventing the occurrence of turbulence of the airflow.
 前記天井面は、前記鉛直線に向かって斜め下方に延びる環状の傾斜部を含む。 The ceiling surface includes an annular inclined portion extending obliquely downward toward the vertical line.
 この構成によれば、鉛直線に向かって斜め下方に延びる環状の傾斜部が、天井面に設けられている。言い換えると、基板の上面と天井面との間隔は、基板の上面の中心部に近づくにしたがって連続的に減少している。基板の上面と天井面との間の空間を内方に流れる気体は、天井面の傾斜部によって基板の上面の方に連続的に案内される。したがって、気流の乱れの発生を抑制または防止しながら、基板の中心に向かって流れる気体を基板の上面に徐々に近づけることができる。 According to this configuration, the annular inclined portion extending obliquely downward toward the vertical line is provided on the ceiling surface. In other words, the distance between the upper surface of the substrate and the ceiling surface continuously decreases as it approaches the center of the upper surface of the substrate. The gas flowing inward through the space between the upper surface of the substrate and the ceiling surface is continuously guided toward the upper surface of the substrate by the inclined portion of the ceiling surface. Therefore, the gas flowing toward the center of the substrate can be gradually brought closer to the upper surface of the substrate while suppressing or preventing the occurrence of turbulence of the airflow.
 前記フードは、円弧状の鉛直断面を有しており、前記天井面の外縁から前記筒状面の上縁に延びる環状のコーナー部をさらに含む。 The hood has an arcuate vertical cross section, and further includes an annular corner portion extending from an outer edge of the ceiling surface to an upper edge of the cylindrical surface.
 この構成によれば、天井面の外縁から筒状面の上縁に延びる環状のコーナー部が、円弧状の鉛直断面を有している。コーナー部の鉛直断面がL字状である場合、滞留域がコーナー部に発生し得る。したがって、円弧状の鉛直断面を有するコーナー部をフードに設けることにより、このような滞留域の発生を抑制または防止できる。 According to this configuration, the annular corner portion extending from the outer edge of the ceiling surface to the upper edge of the cylindrical surface has an arcuate vertical cross section. When the vertical cross section of the corner portion is L-shaped, a staying area can occur in the corner portion. Therefore, by providing the hood with a corner portion having an arcuate vertical cross section, the occurrence of such a stay zone can be suppressed or prevented.
 前記基板の上面の中心部での前記基板の上面と前記天井面との間隔は、前記基板の上面の外周部での前記基板の上面と前記天井面との間隔よりも狭く、前記基板の厚みよりも広い。 The distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is narrower than the distance between the upper surface of the substrate and the ceiling surface at the outer peripheral portion of the upper surface of the substrate, and the thickness of the substrate Wider than.
 この構成によれば、基板の上面の中心部と天井面との間隔は、基板の上面の外周部と天井面との間隔よりも狭いだけでなく、基板の厚みよりも広い。排気口は、天井面において基板の上面の中心部に対向する位置で開口している。基板の上面から排気口までの鉛直方向の距離は、基板の厚みよりも広い。排気口が基板の上面に近すぎると、排気口と基板との間に進入しようとする気体に大きな抵抗が加わる。したがって、排気口を適度な距離だけ基板の上面から離すことにより、気流の乱れの発生を抑制または防止しながら、滞留域が排気口の直下に発生することを抑制または防止できる。 According to this configuration, the distance between the center of the upper surface of the substrate and the ceiling surface is not only narrower than the distance between the outer peripheral portion of the upper surface of the substrate and the ceiling surface, but is wider than the thickness of the substrate. The exhaust port is opened at a position facing the center of the upper surface of the substrate on the ceiling surface. The vertical distance from the upper surface of the substrate to the exhaust port is wider than the thickness of the substrate. If the exhaust port is too close to the upper surface of the substrate, a large resistance is applied to the gas that is about to enter between the exhaust port and the substrate. Therefore, by separating the exhaust port from the upper surface of the substrate by an appropriate distance, it is possible to suppress or prevent the staying area from occurring immediately below the exhaust port while suppressing or preventing the occurrence of turbulence of the airflow.
 前記給気口は、前記支持部材に支持されている前記基板の上面よりも上方で且つ前記天井面よりも下方の高さに配置されており、平面視において、前記支持部材に支持されている前記基板の上面の中心部に向かう吐出方向に気体を吐出する。 The air supply port is disposed at a height above the upper surface of the substrate supported by the support member and below the ceiling surface, and is supported by the support member in plan view. Gas is discharged in the discharge direction toward the center of the upper surface of the substrate.
 給気口が気体を鉛直に吐出する場合、吐出された気体は、概ね90度方向転換した後、基板の中心に向かって内方に流れる。この構成によれば、給気口が、基板の上面と天井面との間の空間に水平に対向している。給気口から吐出された気体は、大きな角度で方向転換することなく、基板の上面に沿って内方に流れる。したがって、給気口が気体を鉛直に吐出する場合と比較して、基板の外周部での気流の乱れの発生を抑制または防止できる。 When the air supply port discharges gas vertically, the discharged gas changes its direction approximately 90 degrees and then flows inward toward the center of the substrate. According to this configuration, the air supply port is horizontally opposed to the space between the upper surface of the substrate and the ceiling surface. The gas discharged from the air supply port flows inward along the upper surface of the substrate without changing its direction at a large angle. Therefore, compared with the case where the air supply port discharges the gas vertically, the occurrence of the turbulence of the airflow at the outer peripheral portion of the substrate can be suppressed or prevented.
 平面視で基板の上面の中心部に向かう方向であれば、吐出方向は、水平方向であってもよいし、水平面に対して上方または下方に傾いた斜め方向であってもよい。 As long as it is a direction toward the center of the upper surface of the substrate in plan view, the discharge direction may be a horizontal direction, or an oblique direction inclined upward or downward with respect to a horizontal plane.
 前記基板処理装置は、前記支持部材に支持されている前記基板の下方に配置されており、前記基板に供給される熱を発生するヒーターをさらに備え、前記給気ユニットは、前記基板と反応する反応ガスを前記給気口に供給する反応ガス供給ユニットを含む。 The substrate processing apparatus is disposed below the substrate supported by the support member, and further includes a heater that generates heat supplied to the substrate, and the air supply unit reacts with the substrate. A reaction gas supply unit configured to supply a reaction gas to the air supply port;
 この構成によれば、基板と反応する反応ガスが、給気口から吐出され、基板の上面に供給される。これにより、基板の上面が反応ガスで処理される。さらに、反応ガスは、ヒーターによって加熱されている基板の上面に供給される。これにより、基板と反応ガスとの反応を促進できる。 According to this configuration, the reactive gas that reacts with the substrate is discharged from the air supply port and supplied to the upper surface of the substrate. Thereby, the upper surface of the substrate is treated with the reactive gas. Further, the reaction gas is supplied to the upper surface of the substrate heated by the heater. Thereby, the reaction between the substrate and the reaction gas can be promoted.
 前記基板処理装置は、処理液で前記基板を処理するウェット処理ユニットと、前記支持部材およびフードを含むドライ処理ユニットから前記ウェット処理ユニットに前記基板を搬送する搬送ユニットとをさらに備える。 The substrate processing apparatus further includes a wet processing unit that processes the substrate with a processing liquid, and a transport unit that transports the substrate from a dry processing unit including the support member and a hood to the wet processing unit.
 この構成によれば、基板に液体を供給することなく当該基板を処理するドライ処理工程が、支持部材およびフードを含むドライ処理ユニットで実行される。その後、搬送ユニットが、基板をドライ処理ユニットからウェット処理ユニットに搬送する。ウェット処理ユニットでは、基板に処理液を供給するウェット処理工程が実行される。したがって、同じ基板処理装置で、ドライ処理工程およびウェット処理工程の両方を実行できる。さらに、ドライ処理工程およびウェット処理工が別々のユニットで実行されるので、各ユニットの複雑化を抑制または防止できる。 According to this configuration, the dry processing step of processing the substrate without supplying the liquid to the substrate is executed in the dry processing unit including the support member and the hood. Thereafter, the transport unit transports the substrate from the dry processing unit to the wet processing unit. In the wet processing unit, a wet processing step of supplying a processing liquid to the substrate is executed. Therefore, both the dry processing step and the wet processing step can be performed with the same substrate processing apparatus. Furthermore, since the dry treatment process and the wet treatment process are performed in separate units, the complexity of each unit can be suppressed or prevented.
 前記基板処理装置は、前記基板と反応する反応ガスを前記基板に供給することにより、前記基板の上面に形成された薄膜のパターンの上に位置するレジストのパターンを除去する装置である。 The substrate processing apparatus is an apparatus for removing a resist pattern located on a thin film pattern formed on an upper surface of the substrate by supplying a reactive gas that reacts with the substrate to the substrate.
 この構成によれば、基板の上面と天井面との間の空間が、給気口から吐出された反応ガスで満たされ、中心部を含む基板の上面の各部に反応ガスが均一に供給される。レジストのパターンは、レジストと反応ガスとの反応により気化または変質する。これにより、基板の表層を形成する薄膜のパターンからレジストのパターンを除去できる。 According to this configuration, the space between the upper surface of the substrate and the ceiling surface is filled with the reactive gas discharged from the air supply port, and the reactive gas is uniformly supplied to each portion of the upper surface of the substrate including the central portion. . The resist pattern is vaporized or altered by the reaction between the resist and the reaction gas. Thus, the resist pattern can be removed from the thin film pattern forming the surface layer of the substrate.
 前記基板処理装置は、前記支持部材に支持されている前記基板の下方に配置されており、前記基板に供給される熱を発生するヒーターをさらに備え、前記給気ユニットは、オゾンガスを前記給気口に供給するオゾンガス供給ユニットを含む。 The substrate processing apparatus is disposed below the substrate supported by the support member, and further includes a heater that generates heat supplied to the substrate, and the air supply unit supplies ozone gas to the air supply It includes an ozone gas supply unit that supplies the mouth.
 この構成によれば、給気口から吐出されたオゾンガスが基板の上面に供給される。レジストのパターンは、レジストとオゾンガスとの反応により気化または変質する。さらに、オゾンガスは、ヒーターによって加熱されている基板の上面に供給される。これにより、レジストとオゾンガスとの反応を促進でき、レジストのパターンを均一に短時間でオゾンガスと反応させることができる。 According to this configuration, the ozone gas discharged from the air supply port is supplied to the upper surface of the substrate. The resist pattern is vaporized or altered by the reaction between the resist and ozone gas. Furthermore, ozone gas is supplied to the upper surface of the substrate heated by the heater. Thereby, the reaction between the resist and the ozone gas can be promoted, and the resist pattern can be reacted with the ozone gas uniformly in a short time.
 本発明の他の実施形態は、基板を支持部材で水平に支持する支持工程と、前記支持工程と並行して実行される工程であって、前記支持部材に支持されている前記基板の上面に対向する天井面と前記支持部材に支持されている前記基板を取り囲む筒状面とを含み、前記基板の上面の中心部での前記基板の上面と前記天井面との間隔が、前記基板の上面の外周部での前記基板の上面と前記天井面との間隔よりも狭くなるように形成されたフードの内部に前記支持部材に支持されている前記基板を配置するカバー工程と、前記支持工程と並行して実行される工程であって、前記支持部材に支持されている前記基板よりも外側に配置され、前記支持部材に支持されている前記基板の中心部を通る鉛直線を取り囲む環状の給気口から吐出された気体を、前記支持部材に支持されている前記基板の上面と前記天井面との間の空間に当該空間のまわりから供給する給気工程と、前記支持工程と並行して実行される工程であって、前記基板の上面と前記天井面との間の気体を、前記天井面において前記基板の上面の中心部に対向する位置で開口する排気口を介して排出する排気工程とを含む、基板処理方法を提供する。この方法によれば、前述の効果と同様な効果を奏することができる。 Another embodiment of the present invention includes a supporting step of horizontally supporting a substrate with a supporting member, and a step executed in parallel with the supporting step, wherein the substrate is supported on the upper surface of the substrate supported by the supporting member. An opposing ceiling surface and a cylindrical surface surrounding the substrate supported by the support member, and the distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is the upper surface of the substrate A cover step of disposing the substrate supported by the support member inside a hood formed so as to be narrower than an interval between the upper surface of the substrate and the ceiling surface at an outer periphery of the substrate; and An annular feed that is performed in parallel and is disposed outside the substrate supported by the support member and surrounds a vertical line passing through the center of the substrate supported by the support member. The gas discharged from the mouth An air supply step for supplying the space between the upper surface of the substrate supported by the support member and the ceiling surface from around the space, and a step executed in parallel with the support step, A substrate processing method comprising: exhausting a gas between an upper surface of the substrate and the ceiling surface through an exhaust port that opens at a position facing the center of the upper surface of the substrate on the ceiling surface. To do. According to this method, the same effect as described above can be obtained.
 本実施形態において、以下の特徴の少なくとも一つが、前記基板処理方法に加えられてもよい。 In the present embodiment, at least one of the following features may be added to the substrate processing method.
 前記基板の上面と前記天井面との間隔は、前記基板の上面の外周部から前記基板の上面の中心部まで前記鉛直線に近づくにしたがって段階的または連続的に減少する。この方法によれば、前述の効果と同様な効果を奏することができる。 The distance between the upper surface of the substrate and the ceiling surface decreases stepwise or continuously as it approaches the vertical line from the outer periphery of the upper surface of the substrate to the center of the upper surface of the substrate. According to this method, the same effect as described above can be obtained.
 前記天井面は、前記鉛直線に向かって斜め下方に延びる環状の傾斜部を含む。この方法によれば、前述の効果と同様な効果を奏することができる。 The ceiling surface includes an annular inclined portion extending obliquely downward toward the vertical line. According to this method, the same effect as described above can be obtained.
 前記フードは、円弧状の鉛直断面を有しており、前記天井面の外縁から前記筒状面の上縁に延びる環状のコーナー部をさらに含む。この方法によれば、前述の効果と同様な効果を奏することができる。 The hood has an arcuate vertical cross section, and further includes an annular corner portion extending from an outer edge of the ceiling surface to an upper edge of the cylindrical surface. According to this method, the same effect as described above can be obtained.
 前記基板の上面の中心部での前記基板の上面と前記天井面との間隔は、前記基板の上面の外周部での前記基板の上面と前記天井面との間隔よりも狭く、前記基板の厚みよりも広い。この方法によれば、前述の効果と同様な効果を奏することができる。 The distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is narrower than the distance between the upper surface of the substrate and the ceiling surface at the outer peripheral portion of the upper surface of the substrate, and the thickness of the substrate Wider than. According to this method, the same effect as described above can be obtained.
 前記給気口は、前記支持部材に支持されている前記基板の上面よりも上方で且つ前記天井面よりも下方の高さに配置されており、平面視において、前記支持部材に支持されている前記基板の上面の中心部に向かう吐出方向に気体を吐出する。この方法によれば、前述の効果と同様な効果を奏することができる。 The air supply port is disposed at a height above the upper surface of the substrate supported by the support member and below the ceiling surface, and is supported by the support member in plan view. Gas is discharged in the discharge direction toward the center of the upper surface of the substrate. According to this method, the same effect as described above can be obtained.
 前記基板処理方法は、前記支持工程と並行して実行される工程であって、前記支持部材に支持されている前記基板の下方に配置されたヒーターが発生した熱で前記基板を加熱する加熱工程をさらに含み、前記給気工程は、前記基板と反応する反応ガスを前記給気口から吐出する工程を含む。この方法によれば、前述の効果と同様な効果を奏することができる。 The substrate processing method is a step that is performed in parallel with the supporting step, and the heating step of heating the substrate with the heat generated by a heater disposed below the substrate supported by the supporting member The air supply step includes a step of discharging a reaction gas that reacts with the substrate from the air supply port. According to this method, the same effect as described above can be obtained.
 前記基板処理方法は、前記支持工程、カバー工程、給気工程、および排気工程が実行されるドライ処理ユニットから、処理液で前記基板を処理するウェット処理ユニットに搬送ユニットで前記基板を搬送する搬送工程と、前記搬送工程が実行された後、前記ウェット処理ユニットで前記基板を処理するウェット処理工程とをさらに含む。この方法によれば、前述の効果と同様な効果を奏することができる。 In the substrate processing method, the substrate is transported by a transport unit from a dry processing unit in which the support step, the cover step, the air supply step, and the exhaust step are performed to a wet processing unit that processes the substrate with a processing liquid. And a wet processing step of processing the substrate by the wet processing unit after the transporting step is executed. According to this method, the same effect as described above can be obtained.
 前記基板処理方法は、前記基板と反応する反応ガスを前記基板に供給することにより、前記基板の上面に形成された薄膜のパターンの上に位置するレジストのパターンを除去する方法である。この方法によれば、前述の効果と同様な効果を奏することができる。 The substrate processing method is a method of removing a resist pattern located on a thin film pattern formed on an upper surface of the substrate by supplying a reactive gas that reacts with the substrate to the substrate. According to this method, the same effect as described above can be obtained.
 前記基板処理方法は、前記支持工程と並行して実行される工程であって、前記支持部材に支持されている前記基板の下方に配置されたヒーターが発生した熱で前記基板を加熱する加熱工程をさらに含み、前記給気工程は、オゾンガスを前記給気口から吐出する工程を含む。この方法によれば、前述の効果と同様な効果を奏することができる。 The substrate processing method is a step that is performed in parallel with the supporting step, and the heating step of heating the substrate with the heat generated by a heater disposed below the substrate supported by the supporting member The air supply step includes a step of discharging ozone gas from the air supply port. According to this method, the same effect as described above can be obtained.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
本発明の一実施形態に係る基板処理装置の概略構成を示す模式的な平面図である。1 is a schematic plan view showing a schematic configuration of a substrate processing apparatus according to an embodiment of the present invention. 基板処理装置によって実行される基板の処理の一例を示す工程図である。It is process drawing which shows an example of the process of the board | substrate performed with a substrate processing apparatus. 図2に示す基板の処理の一例が実行される前と後の基板の断面を示す模式図である。It is a schematic diagram which shows the cross section of the board | substrate before and after an example of the process of the board | substrate shown in FIG. 2 is performed. 加熱ユニットの鉛直断面を示す模式的な断面図である。It is typical sectional drawing which shows the vertical cross section of a heating unit. フードの模式的な平面図である。It is a typical top view of food. ホットプレートの模式的な平面図である。It is a typical top view of a hot plate. 図4の一部を拡大した拡大断面図である。It is the expanded sectional view which expanded a part of FIG. 加熱ユニットに気体を供給する給気ユニットと加熱ユニットから気体を排出する排気ユニットとを示す模式図である。It is a schematic diagram which shows the air supply unit which supplies gas to a heating unit, and the exhaust unit which discharges | emits gas from a heating unit. 図2に示すドライ処理工程が行われているときの加熱ユニットの状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state of a heating unit when the dry processing process shown in FIG. 2 is performed. 図2に示すドライ処理工程が行われているときの加熱ユニットの状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state of a heating unit when the dry processing process shown in FIG. 2 is performed. 図2に示すドライ処理工程が行われているときの加熱ユニットの状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state of a heating unit when the dry processing process shown in FIG. 2 is performed. 図2に示すドライ処理工程が行われているときの加熱ユニットの状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state of a heating unit when the dry processing process shown in FIG. 2 is performed. 図2に示すドライ処理工程が行われているときの加熱ユニットの状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state of a heating unit when the dry processing process shown in FIG. 2 is performed. 図2に示すドライ処理工程が行われているときの加熱ユニットの状態の一例を示す模式図である。It is a schematic diagram which shows an example of the state of a heating unit when the dry processing process shown in FIG. 2 is performed. 基板の上面に沿って基板の外周から基板の中心に流れる気体の流れについて説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the flow of the gas which flows into the center of a board | substrate from the outer periphery of a board | substrate along the upper surface of a board | substrate. 本発明の他の実施形態に係る加熱ユニットの鉛直断面の一部を示す模式的な断面図である。It is typical sectional drawing which shows a part of vertical section of the heating unit which concerns on other embodiment of this invention. 本発明の他の実施形態に係る加熱ユニットの鉛直断面の一部を示す模式的な断面図である。It is typical sectional drawing which shows a part of vertical section of the heating unit which concerns on other embodiment of this invention. 従来技術における気体の流れについて説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the gas flow in a prior art.
 図1は、本発明の一実施形態に係る基板処理装置1の概略構成を示す模式的な平面図である。 FIG. 1 is a schematic plan view showing a schematic configuration of a substrate processing apparatus 1 according to an embodiment of the present invention.
 基板処理装置1は、半導体ウエハなどの円板状の基板Wを1枚ずつ処理する枚葉式の装置である。基板処理装置1は、基板Wを収容する複数のキャリアCをそれぞれ保持する複数のロードポートLPと、複数のロードポートLPから搬送された基板Wを処理液や処理ガスなどの処理流体で処理する複数の処理ユニット2とを含む。 The substrate processing apparatus 1 is a single-wafer type apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one. The substrate processing apparatus 1 processes a plurality of load ports LP that respectively hold a plurality of carriers C that accommodate the substrates W, and a substrate W transported from the plurality of load ports LP with a processing fluid such as a processing liquid or a processing gas. A plurality of processing units 2.
 基板処理装置1は、さらに、基板Wを搬送する搬送ユニットと、基板処理装置1を制御する制御装置3とを含む。制御装置3は、プログラム等の情報を記憶するメモリー3mとメモリー3mに記憶された情報にしたがって基板処理装置1を制御するプロセッサー3pとを含むコンピュータである。 The substrate processing apparatus 1 further includes a transport unit that transports the substrate W and a control device 3 that controls the substrate processing apparatus 1. The control device 3 is a computer including a memory 3m that stores information such as a program and a processor 3p that controls the substrate processing apparatus 1 in accordance with the information stored in the memory 3m.
 搬送ユニットは、複数のロードポートLPから複数の処理ユニット2に延びる搬送経路上に配置されたインデクサロボットIR、シャトルSH、およびセンターロボットCRを含む。インデクサロボットIRは、複数のロードポートLPとシャトルSHとの間で基板Wを搬送する。シャトルSHは、インデクサロボットIRとセンターロボットCRとの間で基板Wを搬送する。センターロボットCRは、シャトルSHと複数の処理ユニット2との間で基板Wを搬送する。センターロボットCRは、さらに、複数の処理ユニット2の間で基板Wを搬送する。図1に示す太線の矢印は、インデクサロボットIRおよびシャトルSHの移動方向を示している。 The transfer unit includes an indexer robot IR, a shuttle SH, and a center robot CR arranged on a transfer path extending from the plurality of load ports LP to the plurality of processing units 2. The indexer robot IR transports the substrate W between the plurality of load ports LP and the shuttle SH. The shuttle SH transports the substrate W between the indexer robot IR and the center robot CR. The center robot CR transports the substrate W between the shuttle SH and the plurality of processing units 2. The center robot CR further transports the substrate W between the plurality of processing units 2. The thick arrows shown in FIG. 1 indicate the moving directions of the indexer robot IR and the shuttle SH.
 複数の処理ユニット2は、水平に離れた4つの位置にそれぞれ配置された4つの塔を形成している。各塔は、上下方向に積層された複数の処理ユニット2を含む。4つの塔は、搬送経路の両側に2つずつで配置されている。複数の処理ユニット2は、基板Wを乾燥させたまま当該基板Wを処理する複数のドライ処理ユニット2Dと、処理液で基板Wを処理する複数のウェット処理ユニット2Wとを含む。ロードポートLP側の2つの塔は、複数のドライ処理ユニット2Dで形成されており、残り2つの塔は、複数のウェット処理ユニット2Wで形成されている。 The plurality of processing units 2 form four towers arranged at four positions separated horizontally. Each tower includes a plurality of processing units 2 stacked in the vertical direction. Four towers are arranged in two on each side of the transport path. The plurality of processing units 2 include a plurality of dry processing units 2D that process the substrate W while the substrates W are dried, and a plurality of wet processing units 2W that process the substrate W with the processing liquid. The two towers on the load port LP side are formed by a plurality of dry processing units 2D, and the remaining two towers are formed by a plurality of wet processing units 2W.
 ドライ処理ユニット2Dは、基板Wが通過する搬入搬出口が設けられたドライチャンバー4と、ドライチャンバー4の搬入搬出口を開閉するシャッター5と、ドライチャンバー4内で基板Wを加熱しながら処理ガスを基板Wに供給する加熱ユニット8と、加熱ユニット8によって加熱された基板Wをドライチャンバー4内で冷却する冷却ユニット7と、ドライチャンバー4内で基板Wを搬送する室内搬送機構6とを含む。 The dry processing unit 2D includes a dry chamber 4 provided with a loading / unloading port through which the substrate W passes, a shutter 5 that opens and closes the loading / unloading port of the dry chamber 4, and a processing gas while heating the substrate W in the dry chamber 4. A heating unit 8 for supplying the substrate W to the substrate W, a cooling unit 7 for cooling the substrate W heated by the heating unit 8 in the dry chamber 4, and an indoor transport mechanism 6 for transporting the substrate W in the dry chamber 4. .
 ウェット処理ユニット2Wは、基板Wが通過する搬入搬出口が設けられたウェットチャンバー9と、ウェットチャンバー9の搬入搬出口を開閉するシャッター10と、ウェットチャンバー9内で基板Wを水平に保持しながら基板Wの中心部を通る鉛直な回転軸線A1まわりに回転させるスピンチャック11と、スピンチャック11に保持されている基板Wに向けて処理液を吐出する複数のノズルとを含む。 The wet processing unit 2W includes a wet chamber 9 provided with a loading / unloading port through which the substrate W passes, a shutter 10 that opens and closes the loading / unloading port of the wet chamber 9, and a substrate W held horizontally in the wet chamber 9. A spin chuck 11 that rotates about a vertical rotation axis A <b> 1 that passes through the center of the substrate W and a plurality of nozzles that discharge a processing liquid toward the substrate W held by the spin chuck 11 are included.
 複数のノズルは、薬液を吐出する薬液ノズル12と、リンス液を吐出するリンス液ノズル13とを含む。制御装置3は、スピンチャック11の複数のチャックピンに基板Wを保持させながら、スピンチャック11のスピンモータに基板Wを回転させる。この状態で、制御装置3は、基板Wの上面に向けて薬液ノズル12またはリンス液ノズル13に液体を吐出させる。これにより、基板Wの上面全域が液膜で覆われる。その後、制御装置3は、スピンチャック11に基板Wを高速回転させて、基板Wを乾燥させる。 The plurality of nozzles include a chemical nozzle 12 for discharging a chemical liquid and a rinsing liquid nozzle 13 for discharging a rinsing liquid. The control device 3 causes the spin motor of the spin chuck 11 to rotate the substrate W while holding the substrate W on the plurality of chuck pins of the spin chuck 11. In this state, the control device 3 causes the chemical liquid nozzle 12 or the rinsing liquid nozzle 13 to discharge liquid toward the upper surface of the substrate W. Thereby, the entire upper surface of the substrate W is covered with the liquid film. Thereafter, the control device 3 causes the spin chuck 11 to rotate the substrate W at a high speed to dry the substrate W.
 図2は、基板処理装置1によって実行される基板Wの処理の一例を示す工程図である。図3は、図2に示す基板Wの処理の一例が実行される前と後の基板Wの断面を示す模式図である。制御装置3は、以下の動作を基板処理装置1に実行させるようにプログラムされている。 FIG. 2 is a process diagram showing an example of the processing of the substrate W executed by the substrate processing apparatus 1. FIG. 3 is a schematic view showing a cross section of the substrate W before and after the example of the processing of the substrate W shown in FIG. The controller 3 is programmed to cause the substrate processing apparatus 1 to execute the following operations.
 図3の左側に示すように、基板処理装置1で処理される基板Wは、レジストのパターンPRで覆われた薄膜をエッチングして、薄膜のパターンPFを形成するエッチング処理工程が行われた基板である。つまり、このような基板Wが収容されたキャリアCがロードポートLP上に置かれる。以下で説明するように、基板処理装置1では、薄膜のパターンPF上に位置するレジストのパターンPRを除去するレジスト除去工程が行われる。図3の右側は、レジスト除去工程が行われた基板Wの断面を示している。 As shown on the left side of FIG. 3, the substrate W to be processed by the substrate processing apparatus 1 is subjected to an etching process for etching a thin film covered with a resist pattern PR to form a thin film pattern PF. It is. That is, the carrier C in which such a substrate W is accommodated is placed on the load port LP. As will be described below, in the substrate processing apparatus 1, a resist removing process is performed to remove the resist pattern PR located on the thin film pattern PF. The right side of FIG. 3 shows a cross section of the substrate W on which the resist removing process has been performed.
 基板処理装置1で基板Wを処理するときは、インデクサロボットIR、シャトルSH、およびセンターロボットCRが、ロードポートLPに置かれたキャリアC内の基板Wをドライ処理ユニット2Dに搬送する(図2のステップS1)。ドライ処理ユニット2Dでは、基板Wを加熱しながら、オゾンガスを基板Wに供給するドライ処理工程が行われる(図2のステップS2)。その後、センターロボットCRが、ドライ処理ユニット2D内の基板Wをウェット処理ユニット2Wに搬入する(図2のステップS3)。 When the substrate W is processed by the substrate processing apparatus 1, the indexer robot IR, the shuttle SH, and the center robot CR transfer the substrate W in the carrier C placed on the load port LP to the dry processing unit 2D (FIG. 2). Step S1). In the dry processing unit 2D, a dry processing step of supplying ozone gas to the substrate W while heating the substrate W is performed (step S2 in FIG. 2). Thereafter, the center robot CR carries the substrate W in the dry processing unit 2D into the wet processing unit 2W (step S3 in FIG. 2).
 ウェット処理ユニット2Wでは、基板Wを回転させながら、基板Wの上面に処理液を供給するウェット処理工程が行われる(図2のステップS4)。具体的には、基板Wを回転させながら、基板Wの上面に向けて薬液ノズル12に薬液を吐出させる薬液供給工程が行われる。その後、基板Wを回転させながら、基板Wの上面に向けてリンス液ノズル13にリンス液を吐出させるリンス液供給工程が行われる。その後、基板Wを高速回転させることにより基板Wを乾燥させる乾燥工程が行われる。続いて、インデクサロボットIR、シャトルSH、およびセンターロボットCRが、ウェット処理ユニット2W内の基板WをロードポートLPに置かれたキャリアCに搬送する(図2のステップS5)。 In the wet processing unit 2W, a wet processing step of supplying a processing liquid to the upper surface of the substrate W is performed while rotating the substrate W (step S4 in FIG. 2). Specifically, a chemical solution supply step is performed in which the chemical solution is discharged to the chemical solution nozzle 12 toward the upper surface of the substrate W while rotating the substrate W. Thereafter, a rinsing liquid supply step is performed in which the rinsing liquid is discharged to the rinsing liquid nozzle 13 toward the upper surface of the substrate W while rotating the substrate W. Then, the drying process which dries the board | substrate W by rotating the board | substrate W at high speed is performed. Subsequently, the indexer robot IR, the shuttle SH, and the center robot CR transfer the substrate W in the wet processing unit 2W to the carrier C placed on the load port LP (step S5 in FIG. 2).
 次に、加熱ユニット8について詳細に説明する。 Next, the heating unit 8 will be described in detail.
 図4は、加熱ユニット8の鉛直断面(鉛直面で切断された断面)を示す模式的な断面図である。図5は、フード30の模式的な平面図である。図5は、図4に示す矢印Vの方向にフード30を見た図である。図6は、ホットプレート21の模式的な平面図である。図7は、図4の一部を拡大した拡大断面図である。以下では、特に断りがない限り、フード30が下位置(図4に示す位置)に位置している状態について説明する。 FIG. 4 is a schematic cross-sectional view showing a vertical cross section (a cross section cut along a vertical plane) of the heating unit 8. FIG. 5 is a schematic plan view of the hood 30. FIG. 5 is a view of the hood 30 as seen in the direction of the arrow V shown in FIG. FIG. 6 is a schematic plan view of the hot plate 21. FIG. 7 is an enlarged cross-sectional view in which a part of FIG. 4 is enlarged. Hereinafter, a state where the hood 30 is located at the lower position (position shown in FIG. 4) will be described unless otherwise specified.
 図4に示すように、加熱ユニット8は、基板Wを水平に支持しながら加熱するホットプレート21と、ホットプレート21に支持されている基板Wの上方に配置されるフード30と、フード30を支持するベースリング27とを含む。 As shown in FIG. 4, the heating unit 8 includes a hot plate 21 that heats the substrate W while horizontally supporting it, a hood 30 that is disposed above the substrate W supported by the hot plate 21, and a hood 30. And a supporting base ring 27.
 加熱ユニット8は、さらに、ホットプレート21およびベースリング27に対してフード30を昇降させるフード昇降アクチュエータ29と、フード30とベースリング27との間の隙間を密閉するOリング28と、ホットプレート21とフード30との間で基板Wを水平に支持する複数のリフトピン24と、複数のリフトピン24を昇降させるリフト昇降アクチュエータ26とを含む。 The heating unit 8 further includes a hood lift actuator 29 that lifts and lowers the hood 30 relative to the hot plate 21 and the base ring 27, an O-ring 28 that seals a gap between the hood 30 and the base ring 27, and the hot plate 21. A plurality of lift pins 24 that horizontally support the substrate W between the hood 30 and a lift raising / lowering actuator 26 that raises and lowers the plurality of lift pins 24.
 ホットプレート21は、ジュール熱を発生するヒーター22と、基板Wを水平に支持すると共に、ヒーター22の熱を基板Wに伝達する支持部材23とを含む。ヒーター22および支持部材23は、基板Wの下方に配置される。ヒーター22は、ヒーター22に電力を供給する配線(図示せず)に接続されている。ヒーター22は、支持部材23の下方に配置されていてもよいし、支持部材23の内部に配置されていてもよい。 The hot plate 21 includes a heater 22 that generates Joule heat, and a support member 23 that horizontally supports the substrate W and transmits heat of the heater 22 to the substrate W. The heater 22 and the support member 23 are disposed below the substrate W. The heater 22 is connected to a wiring (not shown) that supplies power to the heater 22. The heater 22 may be disposed below the support member 23 or may be disposed inside the support member 23.
 図4および図6に示すように、ホットプレート21の支持部材23は、基板Wの下方に配置される円板状のベース部23bと、ベース部23bの上面から上方に突出する複数の半球状の突出部23aと、ベース部23bの外周面から外方に突出する円環状のフランジ部23cとを含む。ベース部23bの上面は、基板Wの下面と平行で、基板Wの外径以上の外径を有している。複数の突出部23aは、ベース部23bの上面から上方に離れた位置で基板Wの下面に接触する。複数の突出部23aは、基板Wが水平に支持されるように、ベース部23bの上面内の複数の位置に配置されている。基板Wは、基板Wの下面がベース部23bの上面から上方に離れた状態で水平に支持される。 As shown in FIGS. 4 and 6, the support member 23 of the hot plate 21 includes a disk-like base portion 23 b disposed below the substrate W, and a plurality of hemispheres protruding upward from the upper surface of the base portion 23 b. Projecting portion 23a and an annular flange portion 23c projecting outward from the outer peripheral surface of the base portion 23b. The upper surface of the base portion 23 b is parallel to the lower surface of the substrate W and has an outer diameter equal to or greater than the outer diameter of the substrate W. The plurality of projecting portions 23a are in contact with the lower surface of the substrate W at positions away from the upper surface of the base portion 23b. The plurality of protruding portions 23a are arranged at a plurality of positions in the upper surface of the base portion 23b so that the substrate W is horizontally supported. The substrate W is supported horizontally with the lower surface of the substrate W separated upward from the upper surface of the base portion 23b.
 図4に示すように、複数のリフトピン24は、ホットプレート21を貫通する複数の貫通穴にそれぞれ挿入されている。加熱ユニット8の外から貫通穴への流体の進入は、リフトピン24を取り囲むベローズ25によって防止される。加熱ユニット8は、ベローズ25に代えてもしくはベローズ25に加えて、リフトピン24の外周面と貫通穴の内周面との間の隙間を密閉するOリングを備えていてもよい。リフトピン24は、基板Wの下面に接触する半球状の上端部を含む。複数のリフトピン24の上端部は、同じ高さに配置されている。 As shown in FIG. 4, the plurality of lift pins 24 are respectively inserted into the plurality of through holes penetrating the hot plate 21. Intrusion of fluid from the outside of the heating unit 8 into the through hole is prevented by the bellows 25 surrounding the lift pin 24. The heating unit 8 may include an O-ring that seals a gap between the outer peripheral surface of the lift pin 24 and the inner peripheral surface of the through hole instead of or in addition to the bellows 25. The lift pin 24 includes a hemispherical upper end portion that contacts the lower surface of the substrate W. The upper ends of the lift pins 24 are arranged at the same height.
 リフト昇降アクチュエータ26は、複数のリフトピン24の上端部がホットプレート21よりも上方に位置する上位置(図9Aに示す位置)と、複数のリフトピン24の上端部がホットプレート21の内部に退避した下位置(図4に示す位置)との間で、複数のリフトピン24を鉛直方向に移動させる。リフト昇降アクチュエータ26は、電動モータまたはエアーシリンダーであってもよいし、これら以外のアクチュエータであってもよい。フード昇降アクチュエータ29などの他のアクチュエータについても同様である。 The lift elevating actuator 26 includes an upper position where the upper ends of the plurality of lift pins 24 are positioned above the hot plate 21 (the position shown in FIG. 9A), and the upper ends of the plurality of lift pins 24 retracted inside the hot plate 21. The plurality of lift pins 24 are moved in the vertical direction between the lower position (the position shown in FIG. 4). The lift raising / lowering actuator 26 may be an electric motor or an air cylinder, or may be an actuator other than these. The same applies to other actuators such as the hood lift actuator 29.
 基板Wがホットプレート21に支持されている状態で、リフト昇降アクチュエータ26が複数のリフトピン24を下位置から上位置に上昇させると、基板Wの下面がホットプレート21の複数の突出部23aから離れ、複数のリフトピン24に接触する。これとは反対に、基板Wが複数のリフトピン24に支持されている状態で、リフト昇降アクチュエータ26が複数のリフトピン24を上位置から下位置に下降させると、基板Wの下面が複数のリフトピン24から離れ、ホットプレート21の複数の突出部23aに接触する。このようにして、基板Wが、ホットプレート21と複数のリフトピン24との間で受け渡される。 When the lift elevating actuator 26 raises the lift pins 24 from the lower position to the upper position while the substrate W is supported by the hot plate 21, the lower surface of the substrate W is separated from the plurality of protrusions 23 a of the hot plate 21. , Contact a plurality of lift pins 24. On the contrary, when the lift elevating actuator 26 lowers the plurality of lift pins 24 from the upper position to the lower position while the substrate W is supported by the plurality of lift pins 24, the lower surface of the substrate W becomes the plurality of lift pins 24. And contact the plurality of protrusions 23a of the hot plate 21. In this way, the substrate W is transferred between the hot plate 21 and the plurality of lift pins 24.
 ベースリング27は、ホットプレート21のフランジ部23cの上面上に配置されている。ベースリング27は、ホットプレート21の径方向に間隔を空けてベース部23bを取り囲んでいる。ベースリング27の上面は、ベース部23bの上面よりも下方に配置されている。Oリング28は、ベースリング27の上面から下方に凹んだ環状溝に嵌められている。フード30がベースリング27上に載せられると、ホットプレート21に支持されている基板Wを収容する密閉空間SPが、ホットプレート21、フード30、およびベースリング27によって形成される。 The base ring 27 is disposed on the upper surface of the flange portion 23c of the hot plate 21. The base ring 27 surrounds the base portion 23 b with a space in the radial direction of the hot plate 21. The upper surface of the base ring 27 is disposed below the upper surface of the base portion 23b. The O-ring 28 is fitted in an annular groove that is recessed downward from the upper surface of the base ring 27. When the hood 30 is placed on the base ring 27, a sealed space SP that accommodates the substrate W supported by the hot plate 21 is formed by the hot plate 21, the hood 30, and the base ring 27.
 フード昇降アクチュエータ29は、上位置(図9Aに示す位置)と下位置(図4に示す位置)との間でフード30を鉛直に移動させる。上位置は、基板Wがフード30の下面とベースリング27の上面との間を通過できるようにフード30の下面がベースリング27の上面から上方に離れた位置である。下位置は、フード30の下面とベースリング27の上面との間の隙間が密閉され、ホットプレート21に支持されている基板Wを収容する密閉空間SPが形成される位置である。 The hood lift actuator 29 moves the hood 30 vertically between an upper position (position shown in FIG. 9A) and a lower position (position shown in FIG. 4). The upper position is a position where the lower surface of the hood 30 is separated from the upper surface of the base ring 27 so that the substrate W can pass between the lower surface of the hood 30 and the upper surface of the base ring 27. The lower position is a position where a gap between the lower surface of the hood 30 and the upper surface of the base ring 27 is sealed, and a sealed space SP that accommodates the substrate W supported by the hot plate 21 is formed.
 フード30は、ホットプレート21に支持されている基板Wの上方に配置される平面視円形の上プレート32と、基板Wの外径よりも大きい内径を有する下リング34と、上プレート32の下面と下リング34の上面との間の隙間を密閉する環状の板状シール33と、上プレート32の中心部を貫通する中心貫通穴に挿入された中央ブロック31とを含む。中央ブロック31は、上プレート32に支持されており、下リング34は、板状シール33を介して上プレート32に連結されている。上プレート32は、基板Wの上面と平行な下面を有するプレート部32aを含む。中央ブロック31は、プレート部32aの下面から下方に突出している。 The hood 30 has a circular upper plate 32 in a plan view that is disposed above the substrate W supported by the hot plate 21, a lower ring 34 having an inner diameter larger than the outer diameter of the substrate W, and a lower surface of the upper plate 32. And an annular plate-like seal 33 that seals the gap between the upper ring 34 and the upper surface of the lower ring 34, and a central block 31 that is inserted into a central through hole that penetrates the central portion of the upper plate 32. The central block 31 is supported by the upper plate 32, and the lower ring 34 is connected to the upper plate 32 via a plate-shaped seal 33. The upper plate 32 includes a plate portion 32 a having a lower surface parallel to the upper surface of the substrate W. The central block 31 protrudes downward from the lower surface of the plate portion 32a.
 フード30の内面は、基板Wの上方に配置される平面視円形の天井面41と、基板Wの外径よりも大きい直径を有する筒状面43と、天井面41の外縁から筒状面43の上縁に延びる環状のコーナー部42とを含む。天井面41は、基板Wの外径よりも大きい外径を有している。コーナー部42は、たとえば、L字状の鉛直断面を有している。 The inner surface of the hood 30 has a circular ceiling surface 41 in a plan view disposed above the substrate W, a cylindrical surface 43 having a diameter larger than the outer diameter of the substrate W, and the cylindrical surface 43 from the outer edge of the ceiling surface 41. And an annular corner portion 42 extending to the upper edge. The ceiling surface 41 has an outer diameter larger than the outer diameter of the substrate W. The corner part 42 has, for example, an L-shaped vertical cross section.
 天井面41は、基板Wの中心部を通る鉛直線A2と同軸で且つ水平な中央水平部41aと、中央水平部41aの外縁から斜め上に外方に延びる環状の中央傾斜部41bと、中央傾斜部41bの外縁から鉛直上方に延びる環状の中央鉛直部41cと、中央鉛直部41cの上端から外方に水平に延びる環状の外側水平部41dとを含む。コーナー部42は、外側水平部41dの外縁から筒状面43の上縁まで延びている。 The ceiling surface 41 has a central horizontal portion 41a that is coaxial and horizontal with the vertical line A2 passing through the central portion of the substrate W, an annular central inclined portion 41b that extends obliquely upward from the outer edge of the central horizontal portion 41a, An annular central vertical portion 41c extending vertically upward from the outer edge of the inclined portion 41b and an annular outer horizontal portion 41d extending horizontally outward from the upper end of the central vertical portion 41c are included. The corner portion 42 extends from the outer edge of the outer horizontal portion 41 d to the upper edge of the cylindrical surface 43.
 基板処理装置1は、加熱ユニット8の内部に気体を供給する給気ユニットと、加熱ユニット8内の気体を排出する排気ユニットとを含む。給気ユニットは、気体を吐出する複数の給気口46と、各給気口46に気体を案内する供給路47とを含む。排気ユニットは、複数の給気口46から吐出された気体が流入する排気口44と、排気口44内に流入した気体を加熱ユニット8の外に案内する排気路45とを含む。 The substrate processing apparatus 1 includes an air supply unit that supplies a gas into the heating unit 8 and an exhaust unit that discharges the gas in the heating unit 8. The air supply unit includes a plurality of air supply ports 46 that discharge gas and supply paths 47 that guide the gas to each air supply port 46. The exhaust unit includes an exhaust port 44 through which the gas discharged from the plurality of air supply ports 46 flows, and an exhaust path 45 that guides the gas that has flowed into the exhaust port 44 to the outside of the heating unit 8.
 排気口44は、フード30の内面に含まれる中央水平部41aで開口している。排気口44は、円形または楕円形である。排気口44は、空間だけを介して基板Wの上面に鉛直方向に対向する。排気口44は、給気口46よりも上方に配置されている。排気路45は、排気口44からフード30の外面まで延びている。排気路45は、中央ブロック31に設けられている。排気路45は、中央ブロック31を鉛直方向に貫通している。 The exhaust port 44 is opened at the central horizontal portion 41 a included in the inner surface of the hood 30. The exhaust port 44 is circular or elliptical. The exhaust port 44 faces the upper surface of the substrate W in the vertical direction only through the space. The exhaust port 44 is disposed above the air supply port 46. The exhaust passage 45 extends from the exhaust port 44 to the outer surface of the hood 30. The exhaust passage 45 is provided in the central block 31. The exhaust passage 45 penetrates the central block 31 in the vertical direction.
 給気口46は、フード30の内面に含まれる筒状面43で開口している。給気口46は、円形または楕円形である。給気口46は、周方向に延びるスロットであってもよい。複数の給気口46は、同じ高さに配置されている。給気口46は、基板Wの上面よりも上方で且つフード30の天井面41よりも下方の高さに配置されている。複数の給気口46は、ホットプレート21の周方向に等間隔で配列されている。 The air supply port 46 is opened by a cylindrical surface 43 included in the inner surface of the hood 30. The air supply port 46 is circular or elliptical. The air supply port 46 may be a slot extending in the circumferential direction. The plurality of air supply ports 46 are arranged at the same height. The air supply port 46 is disposed at a height above the upper surface of the substrate W and below the ceiling surface 41 of the hood 30. The plurality of air supply ports 46 are arranged at equal intervals in the circumferential direction of the hot plate 21.
 図4および図5に示すように、供給路47は、フード30の外面からフード30の内部に延びる複数の上流路47aと、各上流路47aに接続されており、鉛直線A2を取り囲む上流環状路47bと、上流環状路47bから下方に延びる複数の中間路47cと、各中間路47cに接続されており、鉛直線A2を取り囲む下流環状路47dと、下流環状路47dから複数の給気口46まで延びる複数の下流路47eとを含む。 As shown in FIGS. 4 and 5, the supply path 47 is connected to the plurality of upper flow paths 47 a extending from the outer surface of the hood 30 to the inside of the hood 30, and is connected to each upper flow path 47 a, and the upstream ring surrounding the vertical line A <b> 2. A passage 47b, a plurality of intermediate passages 47c extending downward from the upstream annular passage 47b, a downstream annular passage 47d connected to each intermediate passage 47c and surrounding the vertical line A2, and a plurality of air inlets from the downstream annular passage 47d A plurality of lower flow paths 47 e extending to 46.
 上流路47aおよび上流環状路47bは、上プレート32に設けられている。中間路47cは、板状シール33に設けられている。下流環状路47dおよび下流路47eは、下リング34に設けられている。上流環状路47bおよび下流環状路47dは、板状シール33によって互いに仕切られている。中間路47cは、上流環状路47bから下流環状路47dまで下方に延びている。図5に示すように、複数の中間路47cは、平面視で複数の上流路47aに重ならない位置に配置されている。 The upper flow path 47 a and the upstream annular path 47 b are provided in the upper plate 32. The intermediate path 47 c is provided in the plate-shaped seal 33. The downstream annular passage 47 d and the lower passage 47 e are provided in the lower ring 34. The upstream annular passage 47 b and the downstream annular passage 47 d are partitioned from each other by the plate-shaped seal 33. The intermediate passage 47c extends downward from the upstream annular passage 47b to the downstream annular passage 47d. As shown in FIG. 5, the plurality of intermediate paths 47c are arranged at positions that do not overlap the plurality of upper flow paths 47a in plan view.
 図4に示すように、下流路47eは、下流環状路47dの内側に配置されている。下流路47eは、下流環状路47dから給気口46まで水平に延びている。給気口46は、下流路47eから供給された気体を鉛直線A2に向かう水平な吐出方向D1に吐出する。平面視で基板Wの上面の中心部に向かう方向であれば、吐出方向D1は、水平面に対して上方または下方に傾いた斜め方向であってもよい。 As shown in FIG. 4, the lower flow path 47e is arranged inside the downstream annular path 47d. The lower flow path 47e extends horizontally from the downstream annular path 47d to the air supply port 46. The air supply port 46 discharges the gas supplied from the lower flow path 47e in the horizontal discharge direction D1 toward the vertical line A2. As long as it is a direction toward the center of the upper surface of the substrate W in plan view, the ejection direction D1 may be an oblique direction inclined upward or downward with respect to the horizontal plane.
 図7に示すように、基板Wの上面と天井面41との間隔、つまり、基板Wの上面から天井面41までの鉛直方向の距離は、基板Wの中心部で最も狭く、基板Wの外周部で最も広い。より具体的には、基板Wの上面の中心部での基板Wの上面と天井面41との間隔Gcは、基板Wの上面の外周部での基板Wの上面と天井面41との間隔Geよりも狭い。間隔Gcは、基板Wの厚みT1よりも広く、鉛直方向への給気口46の長さに相当する給気口46の直径D2よりも広い。間隔Gcは、給気口46の直径D2以下であってもよい。 As shown in FIG. 7, the distance between the upper surface of the substrate W and the ceiling surface 41, that is, the vertical distance from the upper surface of the substrate W to the ceiling surface 41 is the narrowest at the center of the substrate W, and the outer periphery of the substrate W The largest in the department. More specifically, the distance Gc between the upper surface of the substrate W and the ceiling surface 41 at the center of the upper surface of the substrate W is the distance Ge between the upper surface of the substrate W and the ceiling surface 41 at the outer periphery of the upper surface of the substrate W. Narrower than. The gap Gc is wider than the thickness T1 of the substrate W and wider than the diameter D2 of the air supply port 46 corresponding to the length of the air supply port 46 in the vertical direction. The interval Gc may be equal to or less than the diameter D2 of the air supply port 46.
 基板Wの上面の中心部での基板Wの上面と天井面41との間隔Gcは、基板Wの上面から排気口44までの鉛直方向の距離と等しい。間隔Gcは、排気口44の直径D3よりも狭く、中央ブロック31の突出量、つまり、外側水平部41dから中央水平部41aまでの鉛直方向の距離G1よりも狭い。中央ブロック31の半径R1、つまり、鉛直線A2から中央傾斜部41bの外端(上端)までの径方向の距離R1は、中央傾斜部41bの外端から筒状面43までの径方向の距離R2よりも短い。これらの寸法は、単なる具体例であり、これに限られるものではない。 The distance Gc between the upper surface of the substrate W and the ceiling surface 41 at the center of the upper surface of the substrate W is equal to the vertical distance from the upper surface of the substrate W to the exhaust port 44. The interval Gc is narrower than the diameter D3 of the exhaust port 44 and narrower than the protruding amount of the central block 31, that is, the vertical distance G1 from the outer horizontal portion 41d to the central horizontal portion 41a. The radius R1 of the central block 31, that is, the radial distance R1 from the vertical line A2 to the outer end (upper end) of the central inclined portion 41b is the radial distance from the outer end of the central inclined portion 41b to the cylindrical surface 43. Shorter than R2. These dimensions are merely specific examples and are not limited thereto.
 図8は、加熱ユニット8に気体を供給する給気ユニットと加熱ユニット8から気体を排出する排気ユニットとを示す模式図である。 FIG. 8 is a schematic diagram showing an air supply unit that supplies gas to the heating unit 8 and an exhaust unit that discharges gas from the heating unit 8.
 給気ユニットは、複数の給気口46から吐出される気体を案内する第1共通配管55と、第1共通配管55から供給された気体を供給路47に案内する複数の第2共通配管56とを含む。 The air supply unit includes a first common pipe 55 that guides gas discharged from the plurality of air supply ports 46, and a plurality of second common pipes 56 that guide the gas supplied from the first common pipe 55 to the supply path 47. Including.
 排気ユニットは、排気口44に排出された気体を案内する第1排気配管60と、第1排気配管60から供給された気体を案内する第2排気配管61と、第2排気配管61を流れる気体に含まれるオゾンを除去するオゾンフィルター62とを含む。 The exhaust unit includes a first exhaust pipe 60 that guides the gas discharged to the exhaust port 44, a second exhaust pipe 61 that guides the gas supplied from the first exhaust pipe 60, and a gas that flows through the second exhaust pipe 61. And an ozone filter 62 for removing ozone contained in the atmosphere.
 給気ユニットは、オゾンガス生成ユニット51で生成されたオゾンガスを案内する第1オゾンガス配管52と、第1オゾンガス配管52から供給されたオゾンガスを第1共通配管55に案内する第2オゾンガス配管53と、第2オゾンガス配管53に介装されたオゾンガス供給バルブ54とを含む。 The air supply unit includes a first ozone gas pipe 52 that guides the ozone gas generated by the ozone gas generation unit 51, a second ozone gas pipe 53 that guides the ozone gas supplied from the first ozone gas pipe 52 to the first common pipe 55, And an ozone gas supply valve 54 interposed in the second ozone gas pipe 53.
 給気ユニットは、さらに、窒素ガス供給源から供給された窒素ガスを案内する第1窒素ガス配管57と、第1窒素ガス配管57から供給された窒素ガスを第1共通配管55に案内する第2窒素ガス配管58と、第2窒素ガス配管58に介装された窒素ガス供給バルブ59とを含む。 The air supply unit further includes a first nitrogen gas pipe 57 that guides nitrogen gas supplied from a nitrogen gas supply source, and a first nitrogen pipe that guides nitrogen gas supplied from the first nitrogen gas pipe 57 to the first common pipe 55. 2 a nitrogen gas pipe 58 and a nitrogen gas supply valve 59 interposed in the second nitrogen gas pipe 58.
 図示はしないが、オゾンガス供給バルブ54は、流路を形成するバルブボディと、流路内に配置された弁体と、弁体を移動させるアクチュエータとを含む。他のバルブについても同様である。アクチュエータは、空圧アクチュエータまたは電動アクチュエータであってもよいし、これら以外のアクチュエータであってもよい。制御装置3は、アクチュエータを制御することにより、オゾンガス供給バルブ54を開閉させる。 Although not shown, the ozone gas supply valve 54 includes a valve body that forms a flow path, a valve element disposed in the flow path, and an actuator that moves the valve element. The same applies to the other valves. The actuator may be a pneumatic actuator or an electric actuator, or may be an actuator other than these. The control device 3 opens and closes the ozone gas supply valve 54 by controlling the actuator.
 オゾンガス生成ユニット51は、基板Wの処理に適した高濃度のオゾンガスを生成するユニットである。オゾンガスに含まれるオゾンの濃度の具体例は、250~300g/mである。オゾンガス生成ユニット51は、基板処理装置1の中に配置されていてもよいし、基板処理装置1の外に配置されていてもよい。後者の場合、オゾンガス生成ユニット51は、基板処理装置1のまわりに配置されていてもよいし、基板処理装置1が設置されるクリーンルームの下(地下)に配置されていてもよい。 The ozone gas generation unit 51 is a unit that generates high-concentration ozone gas suitable for processing the substrate W. A specific example of the concentration of ozone contained in the ozone gas is 250 to 300 g / m 3 . The ozone gas generation unit 51 may be disposed in the substrate processing apparatus 1 or may be disposed outside the substrate processing apparatus 1. In the latter case, the ozone gas generation unit 51 may be disposed around the substrate processing apparatus 1 or may be disposed below (under the ground) a clean room where the substrate processing apparatus 1 is installed.
 オゾンガス供給バルブ54が開かれると、オゾンガス生成ユニット51で生成されたオゾンガスが、第1オゾンガス配管52、第2オゾンガス配管53、第1共通配管55、および第2共通配管56をこの順に介して加熱ユニット8に供給され、複数の給気口46から吐出される。同様に、窒素ガス供給バルブ59が開かれると、窒素ガスが、第1窒素ガス配管57、第2窒素ガス配管58、第1共通配管55、および第2共通配管56をこの順に介して、加熱ユニット8に供給され、複数の給気口46から吐出される。 When the ozone gas supply valve 54 is opened, the ozone gas generated by the ozone gas generation unit 51 is heated through the first ozone gas pipe 52, the second ozone gas pipe 53, the first common pipe 55, and the second common pipe 56 in this order. It is supplied to the unit 8 and discharged from the plurality of air supply ports 46. Similarly, when the nitrogen gas supply valve 59 is opened, the nitrogen gas is heated through the first nitrogen gas pipe 57, the second nitrogen gas pipe 58, the first common pipe 55, and the second common pipe 56 in this order. It is supplied to the unit 8 and discharged from the plurality of air supply ports 46.
 オゾンガスは、加熱ユニット8が閉じられている状態、つまり、フード30が下位置に位置している状態で、複数の給気口46から吐出される。複数の給気口46から吐出されたオゾンガスは、排気口44を介して第1排気配管60に排出される。第1排気配管60内のオゾンガスは、第2排気配管61に流れ、オゾンフィルター62を通過する。これにより、第2排気配管61を流れる気体に含まれるオゾンの濃度が低下する。オゾンフィルター62を通過した気体は、基板処理装置1が設置される工場に設けられた排気設備に向けて案内される。 Ozone gas is discharged from the plurality of air supply ports 46 in a state where the heating unit 8 is closed, that is, in a state where the hood 30 is located at the lower position. The ozone gas discharged from the plurality of air supply ports 46 is discharged to the first exhaust pipe 60 through the exhaust port 44. The ozone gas in the first exhaust pipe 60 flows into the second exhaust pipe 61 and passes through the ozone filter 62. Thereby, the density | concentration of the ozone contained in the gas which flows through the 2nd exhaust pipe 61 falls. The gas that has passed through the ozone filter 62 is guided toward an exhaust facility provided in a factory where the substrate processing apparatus 1 is installed.
 図9A~図9Fは、図2に示すドライ処理工程(ステップS2)が行われているときの加熱ユニット8の状態の一例を示す模式図である。 9A to 9F are schematic views showing an example of the state of the heating unit 8 when the dry processing step (step S2) shown in FIG. 2 is performed.
 図9Aに示すように、ドライ処理ユニット2Dに基板Wを搬入するときは、シャッター開閉アクチュエータ63がシャッター5を開位置に位置させ、フード昇降アクチュエータ29およびリフト昇降アクチュエータ26がフード30および複数のリフトピン24を上位置に位置させる。この状態で、センターロボットCRは、ハンドHで基板Wを支持しながら、ハンドHをドライチャンバー4内に進入させる。その後、デバイス形成面である表面が上に向けられた基板Wが複数のリフトピン24上に置かれる。基板Wは、センターロボットCRのハンドHによって複数のリフトピン24上に置かれてもよいし、室内搬送機構6(図1参照)によって複数のリフトピン24上に置かれてもよい。 As shown in FIG. 9A, when the substrate W is loaded into the dry processing unit 2D, the shutter opening / closing actuator 63 positions the shutter 5 in the open position, and the hood lift actuator 29 and the lift lift actuator 26 are the hood 30 and a plurality of lift pins. 24 is positioned in the upper position. In this state, the center robot CR advances the hand H into the dry chamber 4 while supporting the substrate W with the hand H. Thereafter, the substrate W having the device forming surface facing upward is placed on the plurality of lift pins 24. The substrate W may be placed on the plurality of lift pins 24 by the hand H of the center robot CR, or may be placed on the plurality of lift pins 24 by the indoor transport mechanism 6 (see FIG. 1).
 センターロボットCRは、ハンドH上の基板Wをドライ処理ユニット2Dに渡した後、ハンドHをドライチャンバー4の外に移動させる。その後、シャッター開閉アクチュエータ63がシャッター5を閉位置に移動させ、ドライチャンバー4の搬入搬出口を閉じる。さらに、図9Bに示すように、リフト昇降アクチュエータ26が、複数のリフトピン24を下位置に移動させ、フード昇降アクチュエータ29が、フード30を下位置に移動させる。これにより、基板Wがホットプレート21に支持される。ホットプレート21は、基板Wがホットプレート21に支持される前から室温よりも高い温度(たとえば、100℃以上)に維持されている。基板Wがホットプレート21に支持されると、基板Wの加熱が開始される。 The center robot CR moves the substrate H on the hand H to the dry processing unit 2D and then moves the hand H out of the dry chamber 4. Thereafter, the shutter opening / closing actuator 63 moves the shutter 5 to the closed position, and closes the loading / unloading exit of the dry chamber 4. Further, as shown in FIG. 9B, the lift raising / lowering actuator 26 moves the plurality of lift pins 24 to the lower position, and the hood raising / lowering actuator 29 moves the hood 30 to the lower position. Thereby, the substrate W is supported by the hot plate 21. The hot plate 21 is maintained at a temperature higher than room temperature (for example, 100 ° C. or higher) before the substrate W is supported by the hot plate 21. When the substrate W is supported by the hot plate 21, heating of the substrate W is started.
 次に、図9Cに示すように、オゾンガス供給バルブ54が開かれ、複数の給気口46がオゾンガスの吐出を開始する。オゾンガスは、複数の給気口46から基板Wの中心に向かって基板Wの上面に沿って流れる。これにより、基板Wの上面の外周から基板Wの上面の中心に向かって流れる複数の気流が形成される。密閉空間SP内の空気は、オゾンガスによって排気口44の方に導かれ、排気口44を介して密閉空間SPの外に排出される。これにより、密閉空間SPがオゾンガスで満たされる。 Next, as shown in FIG. 9C, the ozone gas supply valve 54 is opened, and the plurality of air supply ports 46 start discharging ozone gas. The ozone gas flows along the upper surface of the substrate W from the plurality of air supply ports 46 toward the center of the substrate W. Thereby, a plurality of airflows flowing from the outer periphery of the upper surface of the substrate W toward the center of the upper surface of the substrate W are formed. The air in the sealed space SP is guided toward the exhaust port 44 by ozone gas and is discharged out of the sealed space SP through the exhaust port 44. Thereby, the sealed space SP is filled with ozone gas.
 さらに、密閉空間SP内のオゾンガスは、後から吐出されたオゾンガスによって排気口44の方に導かれ、排気口44を介して密閉空間SPの外に排出される。したがって、密閉空間SPは、複数の給気口46から吐出された直後のオゾンガスで満たされ続ける。給気口46から吐出されたオゾンガスは、短時間で濃度が大幅に低下し易い。したがって、濃度の低下が小さいオゾンガス、つまり、活性が高いオゾンガスが基板Wの上面に供給され続ける。 Furthermore, the ozone gas in the sealed space SP is guided toward the exhaust port 44 by the ozone gas discharged later, and is discharged out of the sealed space SP through the exhaust port 44. Therefore, the sealed space SP is continuously filled with ozone gas immediately after being discharged from the plurality of air supply ports 46. Concentration of the ozone gas discharged from the air supply port 46 is likely to decrease significantly in a short time. Therefore, ozone gas with a low concentration decrease, that is, ozone gas with high activity is continuously supplied to the upper surface of the substrate W.
 図10は、基板Wの上面に沿って基板Wの外周から基板Wの中心に流れる気体の流れについて説明するための模式的な断面図である。給気口46から吐出されたオゾンガスは、フード30の外側水平部41dと基板Wの上面の外周部の間を内方に流れる。その後、オゾンガスは、フード30の中央傾斜部41bによって基板Wの上面の方に案内されながら、基板Wの上面とフード30の内面との間を内方に流れる。続いて、オゾンガスは、フード30の中央水平部41aと基板Wの上面との間を内方に流れ、排気口44に排出される。 FIG. 10 is a schematic cross-sectional view for explaining the flow of gas flowing from the outer periphery of the substrate W to the center of the substrate W along the upper surface of the substrate W. The ozone gas discharged from the air supply port 46 flows inward between the outer horizontal portion 41d of the hood 30 and the outer peripheral portion of the upper surface of the substrate W. Thereafter, the ozone gas flows inward between the upper surface of the substrate W and the inner surface of the hood 30 while being guided toward the upper surface of the substrate W by the central inclined portion 41 b of the hood 30. Subsequently, the ozone gas flows inward between the central horizontal portion 41 a of the hood 30 and the upper surface of the substrate W and is discharged to the exhaust port 44.
 このように、基板Wの上面から排気口44までの距離が短いので、オゾンガスは、基板Wの上面の中心部に沿って流れた後、排気口44に排出される。そのため、基板Wの上面の中心部で気体が滞留し難く、ここに存在するオゾンガスが新しいオゾンガスに置換され易い。さらに、中央傾斜部41bおよび中央水平部41aでは、基板Wの上面から上方に離れた位置を流れるオゾンガス、つまり、オゾンガスとレジストとの反応やオゾンガスの温度上昇に起因する活性の低下が小さいオゾンガスが、基板Wの方に案内されるので、基板Wの上面の中心部での処理速度をさらに高めることができる。 Thus, since the distance from the upper surface of the substrate W to the exhaust port 44 is short, the ozone gas flows along the center of the upper surface of the substrate W and is then discharged to the exhaust port 44. Therefore, it is difficult for gas to stay in the center of the upper surface of the substrate W, and the ozone gas present here is easily replaced with new ozone gas. Further, in the central inclined portion 41b and the central horizontal portion 41a, ozone gas flowing upward from the upper surface of the substrate W, that is, ozone gas with a small decrease in activity due to the reaction between the ozone gas and the resist and the temperature increase of the ozone gas is small. Since it is guided toward the substrate W, the processing speed at the center of the upper surface of the substrate W can be further increased.
 オゾンガス供給バルブ54が開かれてから所定時間が経過すると、オゾンガス供給バルブ54が閉じられ、オゾンガスの吐出が停止される。その後、図9Dに示すように、窒素ガス供給バルブ59が開かれ、複数の給気口46が窒素ガスの吐出を開始する。密閉空間SP内のオゾンガスは、窒素ガスによって排気口44の方に導かれ、排気口44を介して密閉空間SPの外に排出される。これにより、密閉空間SP内のオゾンガスが、窒素ガスで置換される。窒素ガス供給バルブ59が開かれてから所定時間が経過すると、窒素ガス供給バルブ59が閉じられ、窒素ガスの吐出が停止される。 When a predetermined time has elapsed since the ozone gas supply valve 54 was opened, the ozone gas supply valve 54 is closed and the discharge of ozone gas is stopped. Thereafter, as shown in FIG. 9D, the nitrogen gas supply valve 59 is opened, and the plurality of air supply ports 46 start to discharge nitrogen gas. The ozone gas in the sealed space SP is guided to the exhaust port 44 by the nitrogen gas and is discharged out of the sealed space SP through the exhaust port 44. Thereby, the ozone gas in the sealed space SP is replaced with nitrogen gas. When a predetermined time elapses after the nitrogen gas supply valve 59 is opened, the nitrogen gas supply valve 59 is closed and the discharge of nitrogen gas is stopped.
 次に、図9Eに示すように、リフト昇降アクチュエータ26が、複数のリフトピン24を上位置に移動させ、フード昇降アクチュエータ29が、フード30を上位置に移動させる。さらに、図9Fに示すように、シャッター開閉アクチュエータ63がシャッター5を開位置に移動させる。ホットプレート21上の基板Wは、複数のリフトピン24によって持ち上げられる。センターロボットCRは、基板Wが冷却ユニット7(図1参照)で冷却された後、ハンドHで基板Wを受け取る。その後、センターロボットCRは、ハンドH上の基板Wをウェット処理ユニット2Wに搬入する。 Next, as shown in FIG. 9E, the lift elevating actuator 26 moves the plurality of lift pins 24 to the upper position, and the hood elevating actuator 29 moves the hood 30 to the upper position. Further, as shown in FIG. 9F, the shutter opening / closing actuator 63 moves the shutter 5 to the open position. The substrate W on the hot plate 21 is lifted by a plurality of lift pins 24. The center robot CR receives the substrate W with the hand H after the substrate W is cooled by the cooling unit 7 (see FIG. 1). Thereafter, the center robot CR carries the substrate W on the hand H into the wet processing unit 2W.
 以上のように本実施形態では、基板Wの上面の中心部での基板Wの上面と天井面41との間隔Gcが、基板Wの上面の外周部での基板Wの上面と天井面41との間隔Geよりも狭い。そのため、給気口46から吐出された気体は、天井面41によって基板Wの上面の中心部の方に案内される。これにより、気体の流動性が相対的に低い滞留域が排気口44の直下に発生することを抑制または防止でき、基板Wの処理の均一性を高めることができる。 As described above, in this embodiment, the distance Gc between the upper surface of the substrate W and the ceiling surface 41 at the center of the upper surface of the substrate W is such that the upper surface of the substrate W and the ceiling surface 41 at the outer periphery of the upper surface of the substrate W. It is narrower than the interval Ge. Therefore, the gas discharged from the air supply port 46 is guided toward the center of the upper surface of the substrate W by the ceiling surface 41. Thereby, it is possible to suppress or prevent the occurrence of a staying region having a relatively low gas fluidity directly under the exhaust port 44, and to improve the uniformity of processing of the substrate W.
 さらに、基板Wの上面と天井面41との間隔は、至る所で狭いのではなく、基板Wの上面の中心部だけで狭い。基板Wの上面と天井面41との間隔が至る所で狭いと、基板Wの上面と天井面41との間の空間に供給される気体に加わる抵抗が増加し、当該空間での円滑な気体の流れが阻害され得る。したがって、基板Wの上面と天井面41との間隔を局所的に狭くすることにより、気流の乱れの発生を抑制または防止しながら、滞留域が排気口44の直下に発生することを抑制または防止できる。 Furthermore, the distance between the upper surface of the substrate W and the ceiling surface 41 is not narrow everywhere, but only at the center of the upper surface of the substrate W. If the distance between the upper surface of the substrate W and the ceiling surface 41 is narrow, the resistance applied to the gas supplied to the space between the upper surface of the substrate W and the ceiling surface 41 increases, and the smooth gas in the space Flow can be inhibited. Therefore, by locally reducing the distance between the upper surface of the substrate W and the ceiling surface 41, it is possible to suppress or prevent the staying area from occurring immediately below the exhaust port 44 while suppressing or preventing the occurrence of turbulence. it can.
 また、気流を急に基板Wの上面の方に方向転換させると、気流の乱れが発生し得る。本実施形態では、基板Wの上面と天井面41との間の空間を内方に流れる気体が、基板Wの上面と天井面41との間隔が減少するにしたがって基板Wの上面の方に段階的または連続的に案内される。これにより、気流の乱れの発生を抑制または防止しながら、基板Wの中心に向かって流れる気流を基板Wの上面に徐々に近づけることができる。 Also, if the airflow is suddenly changed to the upper surface of the substrate W, the airflow may be disturbed. In the present embodiment, the gas flowing inward in the space between the upper surface of the substrate W and the ceiling surface 41 is stepped toward the upper surface of the substrate W as the distance between the upper surface of the substrate W and the ceiling surface 41 decreases. Guided continuously or continuously. Thereby, the airflow flowing toward the center of the substrate W can be gradually brought closer to the upper surface of the substrate W while suppressing or preventing the occurrence of turbulence of the airflow.
 本実施形態では、鉛直線A2に向かって斜め下方に延びる環状の中央傾斜部41bが、天井面41に設けられている。言い換えると、基板Wの上面と天井面41との間隔は、基板Wの上面の中心部に近づくにしたがって連続的に減少している。基板Wの上面と天井面41との間の空間を内方に流れる気体は、天井面41の中央傾斜部41bによって基板Wの上面の方に連続的に案内される。したがって、気流の乱れの発生を抑制または防止しながら、基板Wの中心に向かって流れる気体を基板Wの上面に徐々に近づけることができる。 In the present embodiment, an annular central inclined portion 41b extending obliquely downward toward the vertical line A2 is provided on the ceiling surface 41. In other words, the distance between the upper surface of the substrate W and the ceiling surface 41 continuously decreases as the center of the upper surface of the substrate W is approached. The gas flowing inward through the space between the upper surface of the substrate W and the ceiling surface 41 is continuously guided toward the upper surface of the substrate W by the central inclined portion 41 b of the ceiling surface 41. Accordingly, the gas flowing toward the center of the substrate W can be gradually brought closer to the upper surface of the substrate W while suppressing or preventing the occurrence of turbulence of the airflow.
 本実施形態では、基板Wの上面の中心部と天井面41との間隔Gcは、基板Wの上面の外周部と天井面41との間隔Geよりも狭いだけでなく、基板Wの厚みT1よりも広い。排気口44は、天井面41において基板Wの上面の中心部に対向する位置で開口している。基板Wの上面から排気口44までの鉛直方向の距離は、基板Wの厚みT1よりも広い。排気口44が基板Wの上面に近すぎると、排気口44と基板Wとの間に進入しようとする気体に大きな抵抗が加わる。したがって、排気口44を適度な距離だけ基板Wの上面から離すことにより、気流の乱れの発生を抑制または防止しながら、滞留域が排気口44の直下に発生することを抑制または防止できる。 In the present embodiment, the distance Gc between the center portion of the upper surface of the substrate W and the ceiling surface 41 is not only narrower than the distance Ge between the outer peripheral portion of the upper surface of the substrate W and the ceiling surface 41, but also from the thickness T1 of the substrate W. Is also wide. The exhaust port 44 is opened at a position facing the center of the upper surface of the substrate W on the ceiling surface 41. The vertical distance from the upper surface of the substrate W to the exhaust port 44 is larger than the thickness T1 of the substrate W. If the exhaust port 44 is too close to the upper surface of the substrate W, a large resistance is applied to the gas that is about to enter between the exhaust port 44 and the substrate W. Therefore, by separating the exhaust port 44 from the upper surface of the substrate W by an appropriate distance, it is possible to suppress or prevent the staying area from occurring immediately below the exhaust port 44 while suppressing or preventing the occurrence of air current turbulence.
 給気口46が気体を鉛直に吐出する場合、吐出された気体は、概ね90度方向転換した後、基板Wの中心に向かって内方に流れる。本実施形態では、給気口46が、基板Wの上面と天井面41との間の空間に水平に対向している。給気口46から吐出された気体は、大きな角度で方向転換することなく、基板Wの上面に沿って内方に流れる。したがって、給気口46が気体を鉛直に吐出する場合と比較して、基板Wの外周部での気流の乱れの発生を抑制または防止できる。 When the gas supply port 46 discharges the gas vertically, the discharged gas changes its direction approximately 90 degrees and then flows inward toward the center of the substrate W. In the present embodiment, the air supply port 46 is horizontally opposed to the space between the upper surface of the substrate W and the ceiling surface 41. The gas discharged from the air supply port 46 flows inward along the upper surface of the substrate W without changing its direction at a large angle. Therefore, compared with the case where the air supply port 46 discharges the gas vertically, it is possible to suppress or prevent the occurrence of turbulence of the airflow at the outer peripheral portion of the substrate W.
 本実施形態では、基板Wに液体を供給することなく当該基板Wを処理するドライ処理工程が、ドライ処理ユニット2Dで実行される。その後、センターロボットCRが、基板Wをドライ処理ユニット2Dからウェット処理ユニット2Wに搬送する。ウェット処理ユニット2Wでは、基板Wに処理液を供給するウェット処理工程が実行される。したがって、同じ基板処理装置1で、ドライ処理工程およびウェット処理工程の両方を実行できる。さらに、ドライ処理工程およびウェット処理工が別々のユニットで実行されるので、各ユニットの複雑化を抑制または防止できる。 In this embodiment, the dry processing unit 2D performs the dry processing step of processing the substrate W without supplying the liquid to the substrate W. Thereafter, the center robot CR transports the substrate W from the dry processing unit 2D to the wet processing unit 2W. In the wet processing unit 2W, a wet processing step of supplying a processing liquid to the substrate W is executed. Therefore, both the dry processing step and the wet processing step can be executed by the same substrate processing apparatus 1. Furthermore, since the dry treatment process and the wet treatment process are performed in separate units, the complexity of each unit can be suppressed or prevented.
 オゾンガスは、基板Wと反応する反応ガスの一例である。本実施形態では、給気口46から吐出されたオゾンガスが基板Wの上面に供給される。レジストのパターンPRは、レジストとオゾンガスとの反応により気化または変質する。さらに、オゾンガスは、ヒーター22によって加熱されている基板Wの上面に供給される。これにより、レジストとオゾンガスとの反応を促進でき、レジストのパターンPRを均一に短時間でオゾンガスと反応させることができる。 Ozone gas is an example of a reactive gas that reacts with the substrate W. In the present embodiment, ozone gas discharged from the air supply port 46 is supplied to the upper surface of the substrate W. The resist pattern PR is vaporized or altered by the reaction between the resist and ozone gas. Further, the ozone gas is supplied to the upper surface of the substrate W heated by the heater 22. Thereby, the reaction between the resist and the ozone gas can be promoted, and the resist pattern PR can be uniformly reacted with the ozone gas in a short time.
 他の実施形態
 本発明は、前述の実施形態の内容に限定されるものではなく、種々の変更が可能である。
Other Embodiments The present invention is not limited to the contents of the above-described embodiments, and various modifications can be made.
 たとえば、図11に示すように、フード30の内面に含まれるコーナー部42の鉛直断面は、L字状に限らず、円弧状であってもよいし、これら以外の形状であってもよい。 For example, as shown in FIG. 11, the vertical cross section of the corner portion 42 included in the inner surface of the hood 30 is not limited to an L shape, and may be an arc shape or other shapes.
 コーナー部42の鉛直断面がL字状である場合、滞留域がコーナー部42に発生し得る。したがって、円弧状の鉛直断面を有するコーナー部42をフード30に設けることにより、このような滞留域の発生を抑制または防止できる。 When the vertical cross section of the corner portion 42 is L-shaped, a staying area may occur in the corner portion 42. Therefore, by providing the hood 30 with the corner portion 42 having an arcuate vertical cross section, the occurrence of such a stay zone can be suppressed or prevented.
 図12に示すように、上プレート32のプレート部32aの下面は、基板Wの上面と平行でなくてもよい。図12は、中央ブロック31が省略され、中央水平部41aと外側傾斜部41eとがプレート部32aの下面に設けられている例を示している。外側傾斜部41eは、フード30の天井面41の外縁から中央水平部41aの外縁まで斜め下方に延びている。 As shown in FIG. 12, the lower surface of the plate portion 32 a of the upper plate 32 may not be parallel to the upper surface of the substrate W. FIG. 12 shows an example in which the central block 31 is omitted and the central horizontal portion 41a and the outer inclined portion 41e are provided on the lower surface of the plate portion 32a. The outer inclined portion 41e extends obliquely downward from the outer edge of the ceiling surface 41 of the hood 30 to the outer edge of the central horizontal portion 41a.
 基板Wの上面の中心部での基板Wの上面と天井面41との間隔Gcが、基板Wの上面の外周部での基板Wの上面と天井面41との間隔Geよりも狭ければ、基板Wの上面と天井面41との間隔は、基板Wの上面の外周部で最も広くなくてもよい。 If the distance Gc between the upper surface of the substrate W and the ceiling surface 41 at the center of the upper surface of the substrate W is smaller than the distance Ge between the upper surface of the substrate W and the ceiling surface 41 at the outer periphery of the upper surface of the substrate W, The distance between the upper surface of the substrate W and the ceiling surface 41 may not be the widest at the outer peripheral portion of the upper surface of the substrate W.
 基板Wの上面の外周部での基板Wの上面と天井面41との間隔Geは、全周に亘って一定であってもよいし、周方向の位置に応じて変化していてもよい。中心部を除く基板Wの上面の他の部分での間隔についても同様である。 The distance Ge between the upper surface of the substrate W and the ceiling surface 41 at the outer peripheral portion of the upper surface of the substrate W may be constant over the entire circumference or may vary according to the position in the circumferential direction. The same applies to the distance between other portions of the upper surface of the substrate W excluding the central portion.
 給気口46は、平面視で基板Wの上面の中心部に向かう方向に限らず、給気口46から上方または下方に延びる鉛直方向に気体を吐出してもよい。つまり、吐出方向D1は、給気口46から上方または下方に延びる鉛直方向であってもよい。 The air supply port 46 is not limited to the direction toward the center of the upper surface of the substrate W in a plan view, and the gas may be discharged in a vertical direction extending upward or downward from the air supply port 46. That is, the discharge direction D1 may be a vertical direction extending upward or downward from the air supply port 46.
 給気口46から吐出される気体は、オゾンガス以外の気体であってもよい。たとえば、フッ化水素やIPA(イソプロピルアルコール)などの基板W(シリコンウエハ等の基板Wの母材および母材上に形成された薄膜を含む)と反応する物質を含む気体であってもよいし、ドライエアーやクリーンエアーであってもよい。 The gas discharged from the air supply port 46 may be a gas other than ozone gas. For example, a gas containing a substance that reacts with a substrate W (including a base material of a substrate W such as a silicon wafer and a thin film formed on the base material) such as hydrogen fluoride or IPA (isopropyl alcohol) may be used. Dry air or clean air may be used.
 オゾンガス、フッ化水素を含む気体、およびIPAを含む気体は、基板Wと反応する反応ガスの例であり、ドライエアーやクリーンエアーは、基板Wと反応しないガスの例である。フッ化水素を含む気体は、フッ化水素酸の蒸気であってもよいし、フッ化水素酸の蒸気またはミストとキャリアガス(たとえば、不活性ガス)とを含む気体であってもよい。IPAを含む気体についても同様である。 Ozone gas, gas containing hydrogen fluoride, and gas containing IPA are examples of reactive gases that react with the substrate W, and dry air and clean air are examples of gases that do not react with the substrate W. The gas containing hydrogen fluoride may be a hydrofluoric acid vapor or a gas containing hydrofluoric acid vapor or mist and a carrier gas (for example, an inert gas). The same applies to the gas containing IPA.
 ヒーター22が基板処理装置1から省略されてもよい。同様に、ウェット処理ユニット2Wが基板処理装置1から省略されてもよい。 The heater 22 may be omitted from the substrate processing apparatus 1. Similarly, the wet processing unit 2W may be omitted from the substrate processing apparatus 1.
 基板処理装置1は、円板状の基板Wを処理する装置に限らず、多角形の基板Wを処理する装置であってもよい。 The substrate processing apparatus 1 is not limited to an apparatus that processes a disk-shaped substrate W, and may be an apparatus that processes a polygonal substrate W.
 前述の全ての構成の2つ以上が組み合わされてもよい。前述の全ての工程の2つ以上が組み合わされてもよい。

 この出願は、2016年9月26日に日本国特許庁に提出された特願2016-187093号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。
Two or more of all the aforementioned configurations may be combined. Two or more of all the above steps may be combined.

This application corresponds to Japanese Patent Application No. 2016-187093 filed with the Japan Patent Office on September 26, 2016, the entire disclosure of which is incorporated herein by reference. Although the embodiments of the present invention have been described in detail, these are merely specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. The spirit and scope of the present invention should not be limited only by the appended claims.
1   :基板処理装置
2D  :ドライ処理ユニット
2W  :ウェット処理ユニット
8   :加熱ユニット
21  :ホットプレート
22  :ヒーター
23  :支持部材
30  :フード
41  :フードの天井面
41a :天井面の中央水平部
41b :天井面の中央傾斜部
41c :天井面の中央鉛直部
41d :天井面の外側水平部
41e :天井面の外側傾斜部
42  :フードのコーナー部
43  :フードの筒状面
44  :排気口
46  :給気口
51  :オゾンガス生成ユニット
52  :第1オゾンガス配管(反応ガス供給ユニット、オゾンガス供給ユニット)
53  :第2オゾンガス配管(反応ガス供給ユニット、オゾンガス供給ユニット)
54  :オゾンガス供給バルブ(反応ガス供給ユニット、オゾンガス供給ユニット)
55  :第1共通配管
56  :第2共通配管
60  :第1排気配管
61  :第2排気配管
62  :オゾンフィルター
A2  :鉛直線
CR  :センターロボット
D1  :吐出方向
Gc  :基板の上面の中心部と天井面との間隔
Ge  :基板の上面の外周部と天井面との間隔
IR  :インデクサロボット
PF  :薄膜のパターン
PR  :レジストのパターン
SH  :シャトル
T1  :基板の厚み
W   :基板
1: substrate processing apparatus 2D: dry processing unit 2W: wet processing unit 8: heating unit 21: hot plate 22: heater 23: support member 30: hood 41: ceiling surface 41a of hood: central horizontal portion 41b of ceiling surface: ceiling Central inclined portion 41c: Vertical vertical portion 41d of the ceiling surface: Horizontal horizontal portion 41e of the ceiling surface: Outer inclined portion 42 of the ceiling surface: Corner portion 43 of the hood 43: The cylindrical surface 44 of the hood: Exhaust port 46: Air supply Port 51: Ozone gas generation unit 52: First ozone gas pipe (reactive gas supply unit, ozone gas supply unit)
53: Second ozone gas pipe (reactive gas supply unit, ozone gas supply unit)
54: Ozone gas supply valve (reactive gas supply unit, ozone gas supply unit)
55: 1st common piping 56: 2nd common piping 60: 1st exhaust piping 61: 2nd exhaust piping 62: Ozone filter A2: Vertical line CR: Center robot D1: Discharge direction Gc: Center part and ceiling of the upper surface of a board | substrate Distance between surfaces Ge: Distance between the outer periphery of the upper surface of the substrate and the ceiling surface IR: Indexer robot PF: Thin film pattern PR: Resist pattern SH: Shuttle T1: Substrate thickness W: Substrate

Claims (20)

  1.  基板を水平に支持する支持部材と、
     前記支持部材に支持されている前記基板の上面に対向する天井面と、前記支持部材に支持されている前記基板を取り囲む筒状面とを含み、前記基板の上面の中心部での前記基板の上面と前記天井面との間隔が、前記基板の上面の外周部での前記基板の上面と前記天井面との間隔よりも狭くなるように形成されたフードと、
     前記支持部材に支持されている前記基板よりも外側に配置された給気口であって、前記支持部材に支持されている前記基板の中心部を通る鉛直線を取り囲む環状の給気口を含み、前記給気口から吐出された気体を、前記支持部材に支持されている前記基板の上面と前記天井面との間の空間に、当該空間のまわりから供給する給気ユニットと、
     前記天井面において前記基板の上面の中心部に対向する位置で開口する排気口を含み、前記基板の上面と前記天井面との間の気体を前記排気口を介して排出する排気ユニットとを備える、基板処理装置。
    A support member for horizontally supporting the substrate;
    A ceiling surface facing the upper surface of the substrate supported by the support member; and a cylindrical surface surrounding the substrate supported by the support member; and a center surface of the substrate at the center of the upper surface of the substrate. A hood formed such that the distance between the upper surface and the ceiling surface is narrower than the distance between the upper surface of the substrate and the ceiling surface at the outer periphery of the upper surface of the substrate;
    An air supply port disposed outside the substrate supported by the support member, and including an annular air supply port surrounding a vertical line passing through a central portion of the substrate supported by the support member An air supply unit for supplying the gas discharged from the air supply port to the space between the upper surface of the substrate supported by the support member and the ceiling surface from around the space;
    An exhaust unit that includes an exhaust port that opens at a position facing the center of the upper surface of the substrate on the ceiling surface, and that exhausts the gas between the upper surface of the substrate and the ceiling surface through the exhaust port. Substrate processing equipment.
  2.  前記基板の上面と前記天井面との間隔は、前記基板の上面の外周部から前記基板の上面の中心部まで前記鉛直線に近づくにしたがって段階的または連続的に減少する、請求項1に記載の基板処理装置。 The space between the upper surface of the substrate and the ceiling surface decreases stepwise or continuously as the distance from the outer peripheral portion of the upper surface of the substrate to the center of the upper surface of the substrate approaches the vertical line. Substrate processing equipment.
  3.  前記天井面は、前記鉛直線に向かって斜め下方に延びる環状の傾斜部を含む、請求項2に記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein the ceiling surface includes an annular inclined portion extending obliquely downward toward the vertical line.
  4.  前記フードは、円弧状の鉛直断面を有しており、前記天井面の外縁から前記筒状面の上縁に延びる環状のコーナー部をさらに含む、請求項1~3のいずれか一項に記載の基板処理装置。 The hood has an arcuate vertical cross section, and further includes an annular corner portion extending from an outer edge of the ceiling surface to an upper edge of the cylindrical surface. Substrate processing equipment.
  5.  前記基板の上面の中心部での前記基板の上面と前記天井面との間隔は、前記基板の上面の外周部での前記基板の上面と前記天井面との間隔よりも狭く、前記基板の厚みよりも広い、請求項1~4のいずれか一項に記載の基板処理装置。 The distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is narrower than the distance between the upper surface of the substrate and the ceiling surface at the outer peripheral portion of the upper surface of the substrate, and the thickness of the substrate The substrate processing apparatus according to any one of claims 1 to 4, which is wider than the substrate processing apparatus.
  6.  前記給気口は、前記支持部材に支持されている前記基板の上面よりも上方で且つ前記天井面よりも下方の高さに配置されており、平面視において、前記支持部材に支持されている前記基板の上面の中心部に向かう吐出方向に気体を吐出する、請求項1~5のいずれか一項に記載の基板処理装置。 The air supply port is disposed at a height above the upper surface of the substrate supported by the support member and below the ceiling surface, and is supported by the support member in plan view. The substrate processing apparatus according to any one of claims 1 to 5, wherein gas is discharged in a discharge direction toward a central portion of the upper surface of the substrate.
  7.  前記基板処理装置は、前記支持部材に支持されている前記基板の下方に配置されており、前記基板に供給される熱を発生するヒーターをさらに備え、
     前記給気ユニットは、前記基板と反応する反応ガスを前記給気口に供給する反応ガス供給ユニットを含む、請求項1~6のいずれか一項に記載の基板処理装置。
    The substrate processing apparatus is disposed below the substrate supported by the support member, and further includes a heater that generates heat supplied to the substrate,
    7. The substrate processing apparatus according to claim 1, wherein the supply unit includes a reaction gas supply unit that supplies a reaction gas that reacts with the substrate to the supply port.
  8.  前記基板処理装置は、処理液で前記基板を処理するウェット処理ユニットと、前記支持部材およびフードを含むドライ処理ユニットから前記ウェット処理ユニットに前記基板を搬送する搬送ユニットとをさらに備える、請求項1~7のいずれか一項に記載の基板処理装置。 The substrate processing apparatus further includes a wet processing unit that processes the substrate with a processing liquid, and a transport unit that transports the substrate from a dry processing unit including the support member and a hood to the wet processing unit. 8. The substrate processing apparatus according to any one of items 7 to 7.
  9.  前記基板処理装置は、前記基板と反応する反応ガスを前記基板に供給することにより、前記基板の上面に形成された薄膜のパターンの上に位置するレジストのパターンを除去する装置である、請求項1~8のいずれか一項に記載の基板処理装置。 The substrate processing apparatus is an apparatus for removing a resist pattern located on a thin film pattern formed on an upper surface of the substrate by supplying a reactive gas that reacts with the substrate to the substrate. 9. The substrate processing apparatus according to any one of 1 to 8.
  10.  前記基板処理装置は、前記支持部材に支持されている前記基板の下方に配置されており、前記基板に供給される熱を発生するヒーターをさらに備え、
     前記給気ユニットは、オゾンガスを前記給気口に供給するオゾンガス供給ユニットを含む、請求項9に記載の基板処理装置。
    The substrate processing apparatus is disposed below the substrate supported by the support member, and further includes a heater that generates heat supplied to the substrate,
    The substrate processing apparatus according to claim 9, wherein the air supply unit includes an ozone gas supply unit that supplies ozone gas to the air supply port.
  11.  基板を支持部材で水平に支持する支持工程と、
     前記支持工程と並行して実行される工程であって、前記支持部材に支持されている前記基板の上面に対向する天井面と前記支持部材に支持されている前記基板を取り囲む筒状面とを含み、前記基板の上面の中心部での前記基板の上面と前記天井面との間隔が、前記基板の上面の外周部での前記基板の上面と前記天井面との間隔よりも狭くなるように形成されたフードの内部に前記支持部材に支持されている前記基板を配置するカバー工程と、
     前記支持工程と並行して実行される工程であって、前記支持部材に支持されている前記基板よりも外側に配置され、前記支持部材に支持されている前記基板の中心部を通る鉛直線を取り囲む環状の給気口から吐出された気体を、前記支持部材に支持されている前記基板の上面と前記天井面との間の空間に当該空間のまわりから供給する給気工程と、
     前記支持工程と並行して実行される工程であって、前記基板の上面と前記天井面との間の気体を、前記天井面において前記基板の上面の中心部に対向する位置で開口する排気口を介して排出する排気工程とを含む、基板処理方法。
    A supporting step of horizontally supporting the substrate with a supporting member;
    A step executed in parallel with the supporting step, wherein a ceiling surface facing an upper surface of the substrate supported by the supporting member and a cylindrical surface surrounding the substrate supported by the supporting member; And the distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is smaller than the distance between the upper surface of the substrate and the ceiling surface at the outer peripheral portion of the upper surface of the substrate. A cover step of disposing the substrate supported by the support member inside the formed hood;
    It is a process executed in parallel with the support process, and is arranged outside the substrate supported by the support member, and a vertical line passing through the center of the substrate supported by the support member An air supply step for supplying the gas discharged from the surrounding annular air supply port to the space between the upper surface of the substrate supported by the support member and the ceiling surface from around the space;
    An exhaust port that is a process that is executed in parallel with the supporting process and that opens a gas between the upper surface of the substrate and the ceiling surface at a position facing the center of the upper surface of the substrate on the ceiling surface. The substrate processing method including an exhaust process for discharging through the substrate.
  12.  前記基板の上面と前記天井面との間隔は、前記基板の上面の外周部から前記基板の上面の中心部まで前記鉛直線に近づくにしたがって段階的または連続的に減少する、請求項11に記載の基板処理方法。 The distance between the upper surface of the substrate and the ceiling surface decreases stepwise or continuously as the vertical line is approached from an outer peripheral portion of the upper surface of the substrate to a central portion of the upper surface of the substrate. Substrate processing method.
  13.  前記天井面は、前記鉛直線に向かって斜め下方に延びる環状の傾斜部を含む、請求項12に記載の基板処理方法。 The substrate processing method according to claim 12, wherein the ceiling surface includes an annular inclined portion extending obliquely downward toward the vertical line.
  14.  前記フードは、円弧状の鉛直断面を有しており、前記天井面の外縁から前記筒状面の上縁に延びる環状のコーナー部をさらに含む、請求項11~13のいずれか一項に記載の基板処理方法。 The hood has an arcuate vertical cross section, and further includes an annular corner portion extending from an outer edge of the ceiling surface to an upper edge of the cylindrical surface. Substrate processing method.
  15.  前記基板の上面の中心部での前記基板の上面と前記天井面との間隔は、前記基板の上面の外周部での前記基板の上面と前記天井面との間隔よりも狭く、前記基板の厚みよりも広い、請求項11~14のいずれか一項に記載の基板処理方法。 The distance between the upper surface of the substrate and the ceiling surface at the center of the upper surface of the substrate is narrower than the distance between the upper surface of the substrate and the ceiling surface at the outer peripheral portion of the upper surface of the substrate, and the thickness of the substrate The substrate processing method according to any one of claims 11 to 14, wherein the substrate processing method is wider.
  16.  前記給気口は、前記支持部材に支持されている前記基板の上面よりも上方で且つ前記天井面よりも下方の高さに配置されており、平面視において、前記支持部材に支持されている前記基板の上面の中心部に向かう吐出方向に気体を吐出する、請求項11~15のいずれか一項に記載の基板処理方法。 The air supply port is disposed at a height above the upper surface of the substrate supported by the support member and below the ceiling surface, and is supported by the support member in plan view. The substrate processing method according to any one of claims 11 to 15, wherein gas is discharged in a discharge direction toward a central portion of the upper surface of the substrate.
  17.  前記基板処理方法は、前記支持工程と並行して実行される工程であって、前記支持部材に支持されている前記基板の下方に配置されたヒーターが発生した熱で前記基板を加熱する加熱工程をさらに含み、
     前記給気工程は、前記基板と反応する反応ガスを前記給気口から吐出する工程を含む、請求項11~16のいずれか一項に記載の基板処理方法。
    The substrate processing method is a step that is performed in parallel with the supporting step, and the heating step of heating the substrate with the heat generated by a heater disposed below the substrate supported by the supporting member Further including
    The substrate processing method according to any one of claims 11 to 16, wherein the air supply step includes a step of discharging a reaction gas that reacts with the substrate from the air supply port.
  18.  前記支持工程、カバー工程、給気工程、および排気工程が実行されるドライ処理ユニットから、処理液で前記基板を処理するウェット処理ユニットに搬送ユニットで前記基板を搬送する搬送工程と、
     前記搬送工程が実行された後、前記ウェット処理ユニットで前記基板を処理するウェット処理工程とをさらに含む、請求項11~17のいずれか一項に記載の基板処理方法。
    A transport step of transporting the substrate by a transport unit from a dry processing unit in which the support step, the cover step, the air supply step, and the exhaust step are performed to a wet processing unit that treats the substrate with a processing liquid;
    The substrate processing method according to any one of claims 11 to 17, further comprising a wet processing step of processing the substrate by the wet processing unit after the carrying step is executed.
  19.  前記基板処理方法は、前記基板と反応する反応ガスを前記基板に供給することにより、前記基板の上面に形成された薄膜のパターンの上に位置するレジストのパターンを除去する方法である、請求項11~18のいずれか一項に記載の基板処理方法。 The substrate processing method is a method of removing a resist pattern located on a thin film pattern formed on an upper surface of the substrate by supplying a reactive gas that reacts with the substrate to the substrate. The substrate processing method according to any one of 11 to 18.
  20.  前記基板処理方法は、前記支持工程と並行して実行される工程であって、前記支持部材に支持されている前記基板の下方に配置されたヒーターが発生した熱で前記基板を加熱する加熱工程をさらに含み、
     前記給気工程は、オゾンガスを前記給気口から吐出する工程を含む、請求項19に記載の基板処理方法。
    The substrate processing method is a step that is performed in parallel with the supporting step, and the heating step of heating the substrate with the heat generated by a heater disposed below the substrate supported by the supporting member Further including
    The substrate processing method according to claim 19, wherein the air supply step includes a step of discharging ozone gas from the air supply port.
PCT/JP2017/031798 2016-09-26 2017-09-04 Substrate processing device and substrate processing method WO2018056039A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780045855.8A CN109478500B (en) 2016-09-26 2017-09-04 Substrate processing method and substrate processing apparatus
KR1020197001983A KR102168056B1 (en) 2016-09-26 2017-09-04 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016187093A JP6698489B2 (en) 2016-09-26 2016-09-26 Substrate processing apparatus and substrate processing method
JP2016-187093 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056039A1 true WO2018056039A1 (en) 2018-03-29

Family

ID=61690880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031798 WO2018056039A1 (en) 2016-09-26 2017-09-04 Substrate processing device and substrate processing method

Country Status (5)

Country Link
JP (1) JP6698489B2 (en)
KR (1) KR102168056B1 (en)
CN (1) CN109478500B (en)
TW (1) TWI660401B (en)
WO (1) WO2018056039A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326447A (en) * 2018-12-17 2020-06-23 圆益Ips股份有限公司 Substrate processing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102195903B1 (en) * 2019-04-11 2020-12-28 에스브이에스 주식회사 Wafer baking device
JP2022041077A (en) 2020-08-31 2022-03-11 株式会社Screenホールディングス Substrate processing method and substrate processing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126770A (en) * 1997-10-23 1999-05-11 Dainippon Screen Mfg Co Ltd Substrate treating apparatus
US5953827A (en) * 1997-11-05 1999-09-21 Applied Materials, Inc. Magnetron with cooling system for process chamber of processing system
JP2001237171A (en) * 2000-02-24 2001-08-31 Tokyo Electron Ltd Heat treatment equipment
JP2001274051A (en) * 2000-03-28 2001-10-05 Tokyo Electron Ltd Thermal processing device
JP2005109169A (en) * 2003-09-30 2005-04-21 Ngk Insulators Ltd Substrate-heating device and manufacturing method thereof
JP2008060303A (en) * 2006-08-31 2008-03-13 Dainippon Screen Mfg Co Ltd Heat treatment device
JP2013179354A (en) * 2013-06-05 2013-09-09 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2016115919A (en) * 2014-12-10 2016-06-23 東京エレクトロン株式会社 Thermal treatment apparatus, thermal treatment method and storage medium

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2871395B2 (en) * 1993-05-26 1999-03-17 大日本スクリーン製造株式会社 Substrate processing equipment
JP3234091B2 (en) * 1994-03-10 2001-12-04 株式会社日立製作所 Surface treatment equipment
JPH08306632A (en) * 1995-04-27 1996-11-22 Shin Etsu Handotai Co Ltd Vapor epitaxial growth equipment
JPH11186240A (en) * 1997-12-22 1999-07-09 Dainippon Screen Mfg Co Ltd Substrate processing device
JP3158276B2 (en) * 1998-03-11 2001-04-23 東京エレクトロン株式会社 Coating film processing equipment
KR100524204B1 (en) * 1998-01-07 2006-01-27 동경 엘렉트론 주식회사 Gas processor
JP2000223465A (en) * 1999-01-28 2000-08-11 Dainippon Screen Mfg Co Ltd Substrate processing system
TWI261875B (en) * 2002-01-30 2006-09-11 Tokyo Electron Ltd Processing apparatus and substrate processing method
JP4535499B2 (en) * 2005-04-19 2010-09-01 東京エレクトロン株式会社 Heating device, coating, developing device and heating method
JP2007165842A (en) * 2005-11-21 2007-06-28 Dainippon Screen Mfg Co Ltd Substrate processing method and its apparatus
JP4884136B2 (en) * 2006-08-30 2012-02-29 東京エレクトロン株式会社 Liquid processing apparatus and liquid processing method
JP4272230B2 (en) * 2006-12-22 2009-06-03 東京エレクトロン株式会社 Vacuum dryer
JP4753313B2 (en) * 2006-12-27 2011-08-24 東京エレクトロン株式会社 Substrate processing equipment
JP5109376B2 (en) * 2007-01-22 2012-12-26 東京エレクトロン株式会社 Heating device, heating method and storage medium
JP2009200193A (en) * 2008-02-21 2009-09-03 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2009260022A (en) * 2008-04-16 2009-11-05 Sokudo Co Ltd Substrate treatment unit, and substrate treatment apparatus
JP5006829B2 (en) * 2008-04-23 2012-08-22 大日本スクリーン製造株式会社 Substrate processing method and substrate processing apparatus
JP5123122B2 (en) * 2008-09-11 2013-01-16 芝浦メカトロニクス株式会社 Substrate processing apparatus and processing method
JP4927158B2 (en) * 2009-12-25 2012-05-09 東京エレクトロン株式会社 Substrate processing method, recording medium storing program for executing substrate processing method, and substrate processing apparatus
JP2011175998A (en) * 2010-02-23 2011-09-08 Renesas Electronics Corp Method of manufacturing semiconductor integrated circuit device
JP5410348B2 (en) * 2010-03-26 2014-02-05 株式会社豊田中央研究所 Surface treatment equipment
JP5693941B2 (en) * 2010-03-31 2015-04-01 株式会社東芝 Template surface treatment method and apparatus, and pattern formation method
JP5263284B2 (en) * 2010-12-28 2013-08-14 東京エレクトロン株式会社 Coating method, coating apparatus and storage medium
JP5726637B2 (en) * 2011-05-24 2015-06-03 東京エレクトロン株式会社 Liquid processing apparatus and liquid processing method
JP2013084895A (en) * 2011-09-29 2013-05-09 Mitsubishi Electric Corp Substrate processing apparatus, substrate processing method and solar cell manufacturing method
JP5956946B2 (en) * 2013-03-13 2016-07-27 東京エレクトロン株式会社 Liquid processing apparatus and liquid processing method
KR102267508B1 (en) * 2014-02-27 2021-06-22 가부시키가이샤 스크린 홀딩스 Substrate processing apparatus and substrate processing method
JP6555706B2 (en) * 2014-09-29 2019-08-07 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
US10217652B2 (en) * 2014-12-10 2019-02-26 Tokyo Electron Limited Heat treatment apparatus, heat treatment method, and storage medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126770A (en) * 1997-10-23 1999-05-11 Dainippon Screen Mfg Co Ltd Substrate treating apparatus
US5953827A (en) * 1997-11-05 1999-09-21 Applied Materials, Inc. Magnetron with cooling system for process chamber of processing system
JP2001237171A (en) * 2000-02-24 2001-08-31 Tokyo Electron Ltd Heat treatment equipment
JP2001274051A (en) * 2000-03-28 2001-10-05 Tokyo Electron Ltd Thermal processing device
JP2005109169A (en) * 2003-09-30 2005-04-21 Ngk Insulators Ltd Substrate-heating device and manufacturing method thereof
JP2008060303A (en) * 2006-08-31 2008-03-13 Dainippon Screen Mfg Co Ltd Heat treatment device
JP2013179354A (en) * 2013-06-05 2013-09-09 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2016115919A (en) * 2014-12-10 2016-06-23 東京エレクトロン株式会社 Thermal treatment apparatus, thermal treatment method and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326447A (en) * 2018-12-17 2020-06-23 圆益Ips股份有限公司 Substrate processing apparatus
CN111326447B (en) * 2018-12-17 2023-08-04 圆益Ips股份有限公司 Substrate processing apparatus

Also Published As

Publication number Publication date
JP2018056182A (en) 2018-04-05
JP6698489B2 (en) 2020-05-27
KR20190021364A (en) 2019-03-05
TWI660401B (en) 2019-05-21
CN109478500A (en) 2019-03-15
CN109478500B (en) 2022-11-08
TW201816842A (en) 2018-05-01
KR102168056B1 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
KR101168102B1 (en) Heating device, heating method, coating apparatus and storage medium
KR101528138B1 (en) Substrate processing apparatus, substrate supporting tool and method of manufacturing semiconductor device
US20170372926A1 (en) Substrate treating unit, baking apparatus including the same, and substrate treating method using baking apparatus
JP6600408B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
US11367633B2 (en) Heat treatment apparatus and heat treatment method
WO2018056039A1 (en) Substrate processing device and substrate processing method
JP5721219B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and heating apparatus
KR200482870Y1 (en) Thermal processing apparatus
KR20210000129A (en) Apparatus and Method for treatinf substrate
JP5765985B2 (en) Substrate processing method and substrate processing apparatus
KR20190012965A (en) Apparatus and Method for treating substrate
WO2006103978A1 (en) Substrate treating apparatus and semiconductor device manufacturing method
KR20210008549A (en) Buffer unit, Apparatus and Method for treating substrate with the unit
KR102403200B1 (en) Unit for supporting substrate, Apparatus for treating substrate, and Method for treating substrate
JP2004339566A (en) Substrate treatment apparatus
KR101909481B1 (en) Bake unit, Apparatus and method for treating substrate with the unit
JP2007088176A (en) Substrate treating device, and method for manufacturing semiconductor device
JP7377916B2 (en) Substrate processing equipment
KR102290913B1 (en) Apparatus for treating substrate
JP6241777B2 (en) Substrate processing apparatus and substrate processing method
JP7490692B2 (en) Organic Film Forming Equipment
KR101982832B1 (en) Buffer unit and Apparatus for treating a substrate with the unit
JP6077807B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
KR102315663B1 (en) Method and Apparatus for treating a substrate
KR20190007586A (en) Method and apparatus for heat processing of substrate, substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001983

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852816

Country of ref document: EP

Kind code of ref document: A1