WO2018054293A1 - 双驱压缩机切换控制方法、控制装置、控制系统以及车辆 - Google Patents

双驱压缩机切换控制方法、控制装置、控制系统以及车辆 Download PDF

Info

Publication number
WO2018054293A1
WO2018054293A1 PCT/CN2017/102322 CN2017102322W WO2018054293A1 WO 2018054293 A1 WO2018054293 A1 WO 2018054293A1 CN 2017102322 W CN2017102322 W CN 2017102322W WO 2018054293 A1 WO2018054293 A1 WO 2018054293A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
driven compressor
rotational speed
electrically driven
pulley
Prior art date
Application number
PCT/CN2017/102322
Other languages
English (en)
French (fr)
Inventor
杨其海
陈雪峰
杨志芳
黄克军
储从川
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610840548.6A external-priority patent/CN107839438B/zh
Priority claimed from CN201610839318.8A external-priority patent/CN107839427B/zh
Priority claimed from CN201610839319.2A external-priority patent/CN107839437B/zh
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018054293A1 publication Critical patent/WO2018054293A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3223Cooling devices using compression characterised by the arrangement or type of the compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3216Control means therefor for improving a change in operation duty of a compressor in a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/002Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for driven by internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3238Cooling devices information from a variable is obtained related to the operation of the compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor

Definitions

  • the present disclosure relates to a vehicle compressor, and in particular to a dual drive compressor switching control method, a control device, a control system, and a vehicle.
  • the dual-drive compressor for a vehicle refers to two compressors of a hybrid vehicle, one driven by the engine and the other powered by a power battery. Since the air conditioning system requires piping pressure, only one compressor can be used for cooling when the air conditioner is turned on. At present, the driving force of the double-drive compressor is switched to: when the electric drive compressor is completely stopped, the engine is started, and the engine drives the mechanical drive compressor to operate; when the mechanical drive compressor is completely stopped, the whole vehicle is subjected to high voltage, thereby switching to electric drive compression. machine.
  • the shortcoming of this method is that the short-term air conditioning function is lost or weakened, which affects the user experience.
  • a first object of the present disclosure is to provide a dual-drive compressor switching control method to solve the problem that the air-conditioning function is weakened or lost when the dual-drive compressor is powered.
  • a second object of the present disclosure is to provide a dual-drive compressor switching control device to solve the problem that the air-conditioning function is weakened or lost when the dual-drive compressor is powered.
  • a third object of the present disclosure is to provide a dual-drive compressor switching control system to solve the problem that the air-conditioning function is weakened or lost when the dual-drive compressor is powered.
  • a fourth object of the present disclosure is to provide a vehicle using a two-drive compressor switching control system provided in accordance with the present disclosure.
  • the present disclosure provides a two-drive compressor switching control method, the dual-drive compressor including an electrically driven compressor and a mechanically driven compressor, the method comprising: receiving power information of a power battery; The power information transmission switching instruction is used to indicate a manner of switching between the mechanically driven compressor and the electrically driven compressor; and before the currently operating compressor is not completely stopped, Transmitting the electromagnetic clutch state change command to change the state of the electromagnetic clutch to switch the mechanically-driven compressor and The electric drive compressor is described.
  • the switching instruction is further configured to instruct the electrically driven compressor and the mechanically driven compressor to operate at the same target rotational speed.
  • an electromagnetic clutch state change command is sent to switch the mechanically driven compressor and the electrically driven compressor by changing the state of the electromagnetic clutch.
  • the transmitting information based on the power amount information includes: transmitting an instruction to cause the electrically driven compressor to decrease the speed at a preset rate of decrease; and transmitting the engine to start instruction.
  • transmitting an electromagnetic clutch state change command includes: acquiring a rotational speed of the electrically-driven compressor and a rotation speed of the pulley; and when the difference between the rotation speed of the electric drive compressor and the rotation speed of the pulley is less than or equal to a first preset value, transmitting an instruction to make the rotation speed of the electric drive compressor zero and sucking The instruction of the electromagnetic clutch is combined.
  • transmitting an electromagnetic clutch state change command includes: acquiring a rotational speed of the electrically-driven compressor and a rotational speed of the pulley; and, when the rotational speed of the electrically driven compressor and the rotational speed of the pulley are equal, transmitting a command to zero the rotational speed of the electrically driven compressor and an instruction to pull the electromagnetic clutch.
  • the method further includes: when the rotational speed of the pulley is not acquired within a first preset time from when the rotational speed of the electrically driven compressor decreases to a first preset rotational speed, An instruction to stop the electrically driven compressor is sent when a predetermined time expires.
  • the power-based information transmission switching instruction includes: transmitting an instruction to acquire a rotational speed of the pulley; and acquiring the starting based on the acquired rotational speed of the pulley The starting current required to electrically drive the compressor.
  • transmitting an electromagnetic clutch state change command includes: transmitting an instruction to disconnect the electromagnetic clutch; And transmitting an instruction to cause the electrically driven compressor to start with the starting current.
  • a dual drive compressor switching control apparatus configured to transmit a instruction to display that the mechanically driven compressor and the electrically driven compressor have been switched.
  • the dual drive compressor including an electrically driven compressor and a mechanically driven compressor, the apparatus comprising: a receiving module for receiving a power battery a power consumption information; a switching instruction sending module, configured to send a switching instruction based on the power amount information, the switching instruction is used to indicate a manner of switching between the mechanically driven compressor and the electrically driven compressor; and switching a control module, configured to send an electromagnetic clutch state change command when the rotational speed of the pulley of the mechanically-driven compressor and the rotational speed of the electrically-driven compressor satisfy a preset condition before the currently operating compressor is not completely stopped The mechanically driven compressor and the electrically driven compressor are switched to change the state of the electromagnetic clutch.
  • the switching instruction is further configured to instruct the electrically driven compressor and the mechanically driven compressor to operate at the same target rotational speed.
  • the switching control module can be used to drive the pulley of the mechanically driven compressor when the driving force of the currently operating compressor is cut off and the inertia is maintained and the driving force for the compressor that is not currently operating is provided.
  • an electromagnetic clutch state change command is transmitted to change the state of the electromagnetic clutch to switch the mechanically driven compressor and the electrically driven compressor.
  • the switching instruction sending module includes: a falling speed command transmitting submodule, configured to send the electric driving compressor to reduce the rotating speed at a preset falling rate when the currently running compressor is an electrically driven compressor And an engine start command transmitting submodule for transmitting an engine start command when the currently operating compressor is an electrically driven compressor.
  • the switching control module includes: a first rotation speed acquisition submodule, configured to acquire a rotation speed of the electric drive compressor and a rotation speed of the pulley; and a first switching control submodule for being currently running
  • the compressor is an electric drive compressor
  • the difference between the rotational speed of the electrically driven compressor and the rotational speed of the pulley is less than or equal to a first predetermined value, the rotational speed of the electrically driven compressor is zero. Commanding and commanding the electromagnetic clutch.
  • the switching control module includes: a second speed acquiring submodule, configured to acquire a speed of the electrically driven compressor and a speed of the pulley; and a second switching control submodule for currently operating
  • the compressor is an electric drive compressor
  • the rotational speed of the electrically driven compressor and the rotational speed of the pulley are equal, a command for zeroing the rotational speed of the electrically driven compressor and activating the electromagnetic clutch are transmitted. instruction.
  • the apparatus further includes: a first electrically driven compressor shutdown command transmitting submodule for decreasing the rotational speed of the compressor from the electrically driven compressor when the currently operating compressor is an electrically driven compressor
  • a first electrically driven compressor shutdown command transmitting submodule for decreasing the rotational speed of the compressor from the electrically driven compressor when the currently operating compressor is an electrically driven compressor
  • the switching instruction sending module includes: a first pulley rotation speed acquisition command sending submodule, configured to send an instruction for acquiring the rotation speed of the pulley when the currently running compressor is a mechanically driven compressor;
  • the compressor start current acquisition submodule is configured to obtain a starting current required to start the electrically driven compressor based on the acquired rotational speed of the pulley when the currently operating compressor is the mechanically driven compressor.
  • the switching control module includes: a first electromagnetic clutch disconnection command transmitting submodule, configured to send an instruction to disconnect the electromagnetic clutch when the currently operating compressor is the mechanically driven compressor; And a first electrically driven compressor start command transmitting submodule for transmitting an instruction to cause the electrically driven compressor to start with the starting current when the currently operating compressor is the mechanically driven compressor.
  • the apparatus further comprises: a display instruction transmitting module for transmitting an instruction to display that the mechanically driven compressor and the electrically driven compressor have been switched.
  • the device is an air conditioning control system.
  • a dual drive compressor switching control system including an electrically driven compressor and a mechanically driven compressor, the system comprising: a power battery power detecting device for detecting The power consumption information of the power battery; the double-drive compressor switching control device according to the second aspect of the present disclosure; the engine control device for controlling the motion of the engine under the control of the dual-drive compressor switching control device, so as to control the The engine drives the rotational speed of the pulley; the rotational speed detecting means for detecting the rotational speed of the pulley and the rotational speed of the electrically driven compressor; and the electromagnetic clutch state changing means for changing based on the electromagnetic clutch state change command The state of the electromagnetic clutch.
  • system further includes display means for displaying the mechanically driven compressor and the electrically driven compression The information that the machine has switched.
  • the rotation speed detecting device detects the rotation speed of the pulley and the rotation speed of the electrically driven compressor by one of: (1) detecting by a rotation speed detecting sensor; and (2) collecting three-phase electromotive force It is then detected based on the acquired three-phase electromotive force.
  • a vehicle comprising the dual drive compressor switching control system provided by the third aspect of the present disclosure.
  • the driving form of the compressor is first determined by the amount of power of the power battery in the vehicle to switch between the mechanically driven compressor and the electrically driven compressor, and before the currently operating compressor is not completely stopped,
  • the power switching can be performed, which can solve the problem that the air conditioning function is weakened or lost when the dual-drive compressor is switched, and the user experience is improved.
  • FIG. 1 is a flow chart of a two-drive compressor switching control method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a two-drive compressor switching control method according to another embodiment of the present disclosure
  • FIG. 3 is a flowchart of a two-drive compressor switching control method according to another embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a dual drive compressor switching control method according to another embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a dual-drive compressor switching control method according to another embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a two-drive compressor switching control method according to another embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a two-drive compressor switching control method according to another embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a dual-drive compressor switching control method according to another embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a two-drive compressor switching control method according to another embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a two-drive compressor switching control method according to another embodiment of the present disclosure.
  • FIG. 11 is a block diagram of a dual drive compressor switching control device according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a dual-drive compressor switching control device according to another embodiment of the present disclosure.
  • FIG. 13 is a block diagram of a dual-drive compressor switching control device according to another embodiment of the present disclosure.
  • FIG. 14 is a block diagram of a dual drive compressor switching control device according to another embodiment of the present disclosure.
  • 15 is a block diagram of a dual-drive compressor switching control device according to another embodiment of the present disclosure.
  • 16 is a block diagram of a dual drive compressor switching control system in accordance with an embodiment of the present disclosure.
  • 17 is a front elevational view of a dual drive compressor in accordance with an embodiment of the present disclosure.
  • Figure 18 is a cross-sectional view of the dual drive compressor of Figure 17 taken along line A-A;
  • FIG. 19 is a schematic structural view of a dual drive compressor according to another embodiment of the present disclosure.
  • the dual-drive compressor for vehicles is mainly used in the air conditioning system of hybrid vehicles.
  • BMS Battery Management System
  • ACCS Air-Condition Control System
  • ACC Air-Condition Compressor
  • ECM Engine Control Module
  • INS Instrument
  • BMS, ACCS, ACC, ECM, INS, etc. are electrically connected through the vehicle CAN (Controller Area Network) bus to achieve signal interaction.
  • the dual drive compressor may generally include a scroll assembly and a crankshaft for driving the scroll assembly, the crankshaft being driven either by a motor or by an engine.
  • the electric drive compressor is turned on by means of a motor drive, and the open mechanical drive compressor is driven by an engine.
  • the dual drive compressor includes a casing assembly 1000, a crankshaft 2000 located inside the casing assembly 1000, a scroll assembly 3000, and a motor assembly 5000, mounted on the casing.
  • the external electronic control assembly 6000 is 1000, and the clutch assembly 4000 is connected to the crankshaft 2000.
  • a portion of the crankshaft 2000 that extends out of the housing assembly 1000 is coupled to the electromagnetic clutch 4000.
  • the dual drive compressor in the present disclosure is exemplified by a scroll compressor.
  • the scroll assembly 3000 includes a stationary plate 3100 and a moving plate 3200.
  • the rotation of the crankshaft 2000 drives the movable disc 3200 to perform eccentric motion.
  • the moving disc type line and the static disc type line form a crescent cavity with a gradually decreasing volume (ie, a compression chamber of the scroll compressor).
  • the refrigerant entering the compression chamber from the air inlet is continuously compressed in the process, and the finally formed high-temperature and high-pressure gas is discharged from the exhaust port, thereby completing the compression of the refrigerant.
  • crankshaft 2000 can be driven by the motor assembly 5000, that is, the electric drive mode, or the electromagnetic clutch 4000 can transmit the drive force, that is, the mechanical drive mode.
  • the electromagnetic clutch 4000 mainly includes a pulley 4300, a coil 4100, and a drive plate 4200.
  • the pulley 4300 is rotatably mounted on the front end cover 1400 of the cabinet assembly 1000 by bearings.
  • the drive plate 4200 is rotatably coupled to the crankshaft 2000.
  • the coil 4100 in the electromagnetic clutch 4000 is energized to generate electromagnetic attraction, causing the pulley 4300 and the drive plate 4200 to engage, so that the pulley 4300 can drive the crankshaft 2000 to rotate, driving the compressor to operate.
  • the pulley 4300 generates a driving force by being coupled to the vehicle engine drive wheel, and the dual drive compressor in the mechanical drive mode is the same as the conventional mechanical compressor drive mode, the specific drive form of which is well known to those skilled in the art, Do not make a detailed description.
  • another driving mode of the dual drive compressor provided by the present disclosure is electrically driven by a motor assembly 5000 disposed in the casing assembly 1000, wherein the motor assembly 5000 includes a total positioning of the casing.
  • a stator assembly 5100 having an inner wall of 1000 and a rotor assembly 5200 mounted on the crankshaft 2000, wherein as shown in FIG. 19, the stator assembly 5100 can be positioned by a stepped surface 1001 formed on an inner wall of the casing assembly 1000, the rotor assembly 5200 in the pass After the electric drive, the crankshaft 1000 is rotated, thereby driving the scroll assembly 3000 to complete the compression of the refrigerant.
  • the electronic control assembly 6000 converts the direct current flowing from the high voltage harness into an alternating current into the stator assembly 5100, and the stator assembly 5100 forms a varying magnetic field, and the rotor assembly 5200 located inside the stator assembly 5100 acts as a magnetic field.
  • the lower drive crankshaft 2000 rotates together.
  • the present disclosure provides a dual-drive compressor switching control method. As shown in FIG.
  • the method includes: Step S101: Receiving information about the power battery S102, transmitting a switching instruction based on the power amount information, the switching instruction is used to indicate a mode of switching between the mechanically driven compressor and the electrically driven compressor; and S103, when switching between the compressors, the compression currently in operation Before the machine is not completely stopped, when the rotational speed of the pulley of the mechanically driven compressor and the rotational speed of the electrically driven compressor satisfy the preset condition, an electromagnetic clutch state change command is sent to change the state of the electromagnetic clutch to switch the mechanically driven compressor and Electric drive compressor.
  • the manner of switching between the mechanically driven compressor and the electrically driven compressor can be set correspondingly according to different switching directions.
  • the electromagnetic clutch has two states of suction and disconnection.
  • the electromagnetic clutch When the electromagnetic clutch is in the suction state, the mechanical drive compressor is used for cooling, and the vehicle engine drives the pulley to rotate, thereby driving the mechanical drive compressor to operate;
  • the electromagnetic clutch When the electromagnetic clutch is in the off state, the electric drive compressor is used for cooling, the above pulley loses control of the mechanically driven compressor, and the electrically driven compressor operates under the action of high voltage.
  • step S102 based on the power amount information transmission switching instruction, it is first determined whether or not to perform power switching based on the power amount information of the power battery. Specifically, during the operation of the electrically driven compressor, when it is detected that the high-voltage electric power of the whole vehicle is low, and only when the electric drive compressor is operated for a short time, the mechanical drive compressor is switched; during the mechanical drive compressor operation In the case, when it is detected that the high-voltage power of the whole vehicle is sufficient, it is switched to the electric drive compressor.
  • the preset condition required for transmitting the electromagnetic clutch state change command may be set in various manners, wherein the preset condition may be that the rotational speed of the electrically driven compressor is the same as or approximately the same as the rotational speed of the pulley, so that when power switching is performed, It will cause problems with loss or attenuation of air conditioning.
  • transmitting the switching instruction based on the power amount information further includes: transmitting to electrically drive An instruction to reduce the speed of the compressor at a preset rate of descent; and an engine start command is sent.
  • Controlling the rotational speed of the electrically driven compressor to uniformly decrease, and switching the power at a lower rotational speed can prevent damage to the compressor caused by high-speed switching, especially the electromagnetic clutch and the pulley.
  • the above-mentioned transmission and the transmission of the engine start command for the electric drive compressor to reduce the rotation speed at the preset lowering rate may be performed simultaneously or separately.
  • the timing of the two embodiments is not specifically limited.
  • step S1031a the rotational speed of the electrically driven compressor and the rotational speed of the pulley are acquired; in step S1032a, when the difference between the rotational speed of the electrically driven compressor and the rotational speed of the pulley is less than or equal to a first predetermined value, transmitting the electrically driven compressor The command of zero speed and the command to pull the electromagnetic clutch. Since the speed of the electrically driven compressor drops uniformly at a preset rate of decrease, the engine After starting, the speed of the pulley increases from zero. Before the power is switched, the speed of the electric drive compressor is always greater than the speed of the pulley.
  • the speed of the electric drive compressor and the pulley are guaranteed to ensure the power switching.
  • the command to make the speed of the electrically driven compressor zero and the command to pull the electromagnetic clutch can be sent when the speed of the pulley is about to reach the speed of the electrically driven compressor, so that the power can be switched.
  • the difference between the rotational speed of the electrically driven compressor and the rotational speed of the pulley is less than or equal to the first preset value, since the preset descending rate is the amount of change in the rotational speed per unit time, the electric drive is compressed in the next unit time, for example, one second.
  • the first preset value may be set to the preset falling rate, or may be 2 times or 0.5 times of the preset falling rate.
  • step S103 includes: acquiring the rotational speed of the electrically driven compressor and the rotational speed of the pulley; and electrically driving When the rotational speed of the compressor and the rotational speed of the pulley are equal, a command to make the rotational speed of the electrically driven compressor zero and a command to pull the electromagnetic clutch are transmitted to ensure that the rotational speed of the electrically driven compressor and the rotational speed of the pulley are the same when the power is switched.
  • the dual-drive compressor switching control method of the present embodiment further includes: when the speed of the pulley is not acquired within a first preset time period from when the rotational speed of the electrically driven compressor is decreased to the first preset rotational speed, An instruction to stop the electrically driven compressor is stopped when the first predetermined time expires.
  • the first preset speed is set to the optimal switching speed of the compressor according to the empirical value, and the electric drive compressor will remain the first when the speed of the electrically driven compressor drops to the first preset speed at the preset decreasing rate.
  • the preset speed is running and the timing starts. If the speed information of the pulley is not obtained within the first preset time from the start of the timer, the engine is not successfully started. Considering the shortage of power, when the timing reaches the first predetermined time, the electric drive compressor is turned off, and the first The preset time may be an empirical value set according to the first preset speed.
  • step S102a2 transmitting the switching command based on the electric quantity information includes: transmitting an instruction to acquire the rotational speed of the pulley; and based on the acquired The rotational speed of the pulley takes the starting current required to start the electrically driven compressor.
  • transmitting the electromagnetic clutch state change command includes: transmitting an instruction to disconnect the electromagnetic clutch; and transmitting the electric power
  • the compressor is driven to start the current start command, thereby ensuring that the speed of the electrically driven compressor and the speed of the pulley are the same when the power is switched, and the air conditioning function is prevented from being weakened or lost when the power is switched.
  • the starting current can be calculated by the ACC and fed back to the ACCS, or can be directly calculated by the ACCS.
  • the switching instruction may further include indicating that the electrically driven compressor and the mechanically driven compressor need to operate at the same target rotational speed, and accordingly, in step S103b.
  • an electromagnetic clutch state change command is sent to change the state of the electromagnetic clutch.
  • Electromagnetic clutch state change The predetermined condition required may be that the rotational speed of the pulley of the mechanically driven compressor and the rotational speed of the electrically driven compressor both reach the target rotational speed before the currently operating compressor is not completely stopped.
  • transmitting the switching command based on the power amount information includes: transmitting an instruction to cause the electrically driven compressor to operate at the second predetermined rotational speed, and second The preset speed is lower than the current speed of the electrically driven compressor; and an instruction to cause the pulley to operate at the second predetermined speed.
  • the above-mentioned command for transmitting the electrically driven compressor at the second preset rotational speed and the transmitting the command for operating the pulley at the second predetermined rotational speed may be performed simultaneously or separately.
  • the timing is not specifically limited.
  • an electromagnetic clutch state change command is transmitted, that is, an instruction to switch from the open state to the pull-in state.
  • the electromagnetic clutch state change command is sent, which may specifically include: S1031b, obtaining electric drive The rotational speed of the compressor and the rotational speed of the pulley; and S1032b, when the rotational speed of the electrically driven compressor and the rotational speed of the pulley are equal to the second preset rotational speed, transmitting a command to make the rotational speed of the electrically driven compressor zero and the electromagnetic clutch The command ensures that the speed of the electrically driven compressor and the speed of the pulley are the same when the power is switched.
  • the dual-drive compressor switching control method in this embodiment further includes: when the rotational speed of the pulley is not acquired in the second preset time when the electrically driven compressor is operated at the second preset rotational speed, at the second preset When the time expires, an instruction to stop the electric drive compressor is sent. If the speed information of the pulley is not obtained in the second preset time when the timing is started, the engine is not successfully started, and in consideration of the shortage of power, when the timing reaches the second predetermined time, the electric drive compressor is turned off, wherein the second predetermined The time may be an empirical value set according to the second preset rotational speed.
  • transmitting the switching command based on the electric quantity information includes: transmitting an instruction to acquire the rotational speed of the pulley; and acquiring After the speed of the pulley, an instruction is sent to cause the electrically driven compressor to start and operate at the acquired pulley speed. That is, when switching from mechanical drive to electric drive, the pulley drives the mechanical drive compressor to maintain the original speed operation, and after starting the electric drive compressor, the electric drive compressor is driven to start normally to reach the rotational speed of the mechanically driven compressor. As shown in FIG.
  • transmitting the electromagnetic clutch state change command includes: obtaining the rotational speed of the electrically driven compressor and the pulley a speed; and an instruction to disconnect the electromagnetic clutch when the obtained rotational speed of the electrically driven compressor is equal to the acquired pulley speed; and an engine stop command is sent after the electromagnetic clutch is turned off, thereby ensuring electric drive when the power is switched.
  • the speed of the compressor is the same as the speed of the pulley, so that the air conditioning function is weakened or lost when the power is switched.
  • step S103c the driving force of the compressor currently being operated is cut off and the coasting operation is maintained and the drive for the compressor that is not currently operating is provided.
  • the electromagnetic clutch state is transmitted when the rotational speed of the pulley of the mechanically driven compressor is the same as the rotational speed of the electrically driven compressor.
  • the command is changed to change the state of the electromagnetic clutch to switch between the mechanically driven compressor and the electrically driven compressor.
  • the preset condition required for the electromagnetic clutch state change command may be that, in the case where the driving force of the currently operating compressor is cut off and the coasting is maintained and the driving force for the compressor that is not currently operating is provided, the machine
  • the rotational speed of the pulley that drives the compressor is the same as the rotational speed of the electrically driven compressor, that is, the power source of the currently operating compressor is cut off for a short period of time before the power switching, so that the currently operating compressor can maintain inertia.
  • the speed is reduced, and the power source of the compressor that is not currently running has output the driving force, but the compressor that is not currently operating has not yet functioned, that is, the air conditioning system has not been cooled by the compressor that is not currently running.
  • transmitting the switching command based on the power amount information includes: transmitting an engine start command, and transmitting an electric drive compressor off command.
  • the sending engine start command and the electric drive compressor closing command may be performed simultaneously or separately.
  • the present disclosure does not specifically limit the timing of the two, and only needs to ensure that the electromagnetic clutch is closed when the electric drive compressor is turned off. There is no suction, that is, one time before the power switching, the electric driving force stops, and the electric drive compressor maintains the inertia deceleration operation. At this time, the engine has started and drives the pulley to run, but the electromagnetic clutch has not yet been engaged, that is, the mechanical driving force.
  • an electromagnetic clutch state change command that is, an instruction to switch from the open state to the pull-in state, is transmitted, so that the compressor is started to be cooled by the mechanical drive.
  • transmitting the switching command based on the power amount information may further include: transmitting an instruction to cause the electrically driven compressor to operate at the third preset speed, wherein the third pre The rotational speed is lower than the current rotational speed of the electrically driven compressor; and the information that the electrically driven compressor is operated at the third predetermined rotational speed is received.
  • transmitting an instruction to cause the electrically driven compressor to operate at the third preset speed wherein the third pre The rotational speed is lower than the current rotational speed of the electrically driven compressor
  • the information that the electrically driven compressor is operated at the third predetermined rotational speed is received.
  • firstly reduce the speed of the electrically driven compressor to a third preset speed then turn off the electric drive compressor, and electrically drive the compressor because of inertia.
  • the third preset rotational speed begins to decrease. When the descending rotational speed is the same as the pulley rotational speed, the electromagnetic clutch is engaged, the mechanical drive compressor is operated, and thus the mechanically driven compressor is started to be cooled.
  • transmitting the electromagnetic clutch state change command may include: S1031c, obtaining the rotational speed of the electrically driven compressor And the speed of the pulley; and S1032c, when the speed of the electrically driven compressor and the speed of the pulley are the same, send a command to pull the electromagnetic clutch to ensure that the speed of the electrically driven compressor and the speed of the pulley are the same when the power is switched.
  • step S102c2 transmitting the switching command based on the electric quantity information includes: transmitting the electric drive compressor start command and the engine stop operation command.
  • the sending engine stop running command and the electric driving compressor starting command may be performed simultaneously or separately.
  • the present disclosure does not specifically limit the timing of the two, and only needs to ensure a period of time before the electromagnetic clutch is disconnected.
  • the engine stops outputting the driving force so that the mechanical driving compressor is inertially decelerating, and at this time, the electric driving compressor has started but has not yet functioned, that is, the air conditioning system has not yet passed the electric driving compressor.
  • step S103c2 when the rotational speed of the pulley of the mechanically driven compressor and the rotational speed of the electrically driven compressor are the same, transmitting the electromagnetic clutch state change command includes: acquiring the rotational speed of the electrically driven compressor and the pulley Speed; and when the speed of the electrically driven compressor and the speed of the pulley are the same, send a command to disconnect the electromagnetic clutch, thereby ensuring that the speed of the electrically driven compressor and the speed of the pulley are the same when the power is switched, and the air conditioning function is prevented from being weakened when the power is switched or Lost.
  • a plurality of beneficial effects can be achieved, for example, the compressor is changed from electric drive to mechanical drive, and mechanical drive to electric drive. Strong; when converting from electric drive to mechanical drive, firstly reduce the speed of the electric drive compressor, have sufficient stability, avoid the long-term switching of the electromagnetic clutch and the pulley at high speed; the whole process of the switching process In operation, the loss of air conditioning function during switching is avoided.
  • the method further includes: S104, transmitting an instruction to display that the mechanically-driven compressor and the electrically-driven compressor have been switched, for example, "the battery is sufficient,” The cooling demand has stopped the engine, "the power is insufficient, the cooling demand has started the engine” and so on. It should be noted that this step may be after the electromagnetic clutch state change command is sent after the switching instruction is sent, or after the electromagnetic clutch state change command is sent.
  • FIG. 11 is a block diagram of a dual compressor switching control apparatus 200 according to an exemplary embodiment, the apparatus includes: a receiving module 210, configured to receive power information about a power battery; and a switching instruction sending module 220, configured to The power information transmission switching instruction is used to indicate a manner of switching between the mechanically driven compressor and the electrically driven compressor; and the switching control module 230 is configured to perform compression at the current operation when switching between the compressors Before the machine is not completely stopped, when the rotational speed of the pulley of the mechanically driven compressor and the rotational speed of the electrically driven compressor satisfy the preset condition, an electromagnetic clutch state change command is sent to change the state of the electromagnetic clutch to switch the mechanically driven compressor and Electric drive compressor.
  • a receiving module 210 configured to receive power information about a power battery
  • a switching instruction sending module 220 configured to The power information transmission switching instruction is used to indicate a manner of switching between the mechanically driven compressor and the electrically driven compressor
  • the switching control module 230 is configured to perform compression at the current operation when switching between
  • FIG. 12 is a block diagram of a dual drive compressor switching control device in accordance with an embodiment of the present disclosure.
  • the switching instruction sending module 220 may include: a falling speed command transmitting sub-module 221a, configured to send the electrically driven compressor at a preset falling rate when the currently operating compressor is an electrically driven compressor An instruction to decrease the rotational speed; and an engine start command transmitting sub-module 222a for transmitting an engine start command.
  • the switching control module 230 may include: a first rotation speed acquiring sub-module 231a, configured to acquire a rotation speed of the electric driving compressor and a rotation speed of the pulley when the currently operating compressor is an electric driving compressor; And a first switching control sub-module 232a, configured to send a command to make the rotational speed of the electrically driven compressor zero and the electromagnetic clutch to be engaged when the difference between the rotational speed of the electrically driven compressor and the rotational speed of the pulley is less than or equal to a preset value instruction.
  • the switching control module 230 may further include: a second rotation speed acquisition sub-module (not shown) for acquiring the rotation speed of the electrically driven compressor and the rotation speed of the pulley; and a second switching control sub-module (not shown) For transmitting the command to make the rotational speed of the electrically driven compressor zero and the command of the electromagnetic clutch to be engaged when the rotational speed of the electrically driven compressor and the rotational speed of the pulley are equal.
  • a second rotation speed acquisition sub-module for acquiring the rotation speed of the electrically driven compressor and the rotation speed of the pulley
  • a second switching control sub-module (not shown) For transmitting the command to make the rotational speed of the electrically driven compressor zero and the command of the electromagnetic clutch to be engaged when the rotational speed of the electrically driven compressor and the rotational speed of the pulley are equal.
  • the switching control module 230 may further include: stopping the first electric drive compressor
  • the command transmission sub-module 235a is configured to: when the rotation speed of the pulley is not acquired within a preset time from when the rotation speed of the electrically driven compressor is decreased to the first preset rotation speed, when the first preset time expires, the transmission is performed. An instruction to electrically drive the compressor to stop running.
  • the switching instruction sending module 220 may include: a first pulley rotation speed acquisition instruction transmitting sub-module 223a, configured to send an instruction to acquire a rotation speed of the pulley when the currently operating compressor is a mechanically driven compressor; And an electrically driven compressor starting current acquisition sub-module 224a for obtaining a starting current required to start the electrically driven compressor based on the acquired rotational speed of the pulley.
  • the switching control module 230 may include: a first electromagnetic clutch disconnection command transmitting sub-module 233a, configured to send an instruction to disconnect the electromagnetic clutch when the currently operating compressor is a mechanically driven compressor; And a first electrically driven compressor start command transmitting sub-module 234a for transmitting an instruction to cause the electrically driven compressor to initiate current activation.
  • the apparatus further includes: a display instruction transmitting module 240, configured to send an instruction to display that the mechanically driven compressor and the electrically driven compressor have been switched.
  • a display instruction transmitting module 240 configured to send an instruction to display that the mechanically driven compressor and the electrically driven compressor have been switched.
  • the device is an air conditioning control system, ie ACCS.
  • the structure of the dual compressor switching control device 200 is similar to the structure shown in FIG. 11 , and includes: a receiving module 210 for receiving power information about the power battery; and a switching instruction sending module 220 for using Transmitting a switching command based on the power amount information, the switching instruction indicating that switching between the mechanically driven compressor and the electrically driven compressor is required, and the switching instruction further instructing the electrically driven compressor and the mechanically driven compressor to operate at the same target rotational speed;
  • the control module 230 is configured to send an electromagnetic clutch state change command when the rotational speed of the pulley of the mechanically driven compressor and the rotational speed of the electrically driven compressor reach the target rotational speed before the currently operating compressor is not completely stopped, so that the electromagnetic clutch state change command is sent The state of the electromagnetic clutch changes to switch between the mechanically driven compressor and the electrically driven compressor.
  • the switching instruction sending module 220 may include: a preset target speed transmitting sub-module 221b, configured to send the electric driving compressor to the second pre-commission when the currently running compressor is an electric driving compressor The command of the speed running is set, the second preset speed is lower than the current speed of the electrically driven compressor; and the pulley speed transmitting sub-module 222b is configured to send an instruction to operate the pulley at the second preset speed.
  • the switching control module 230 may include: a third rotation speed acquisition sub-module 231b, configured to acquire the rotation speed of the electric drive compressor and the rotation speed of the pulley when the currently operating compressor is an electric drive compressor; And a third switching control sub-module 232b, configured to send a command to make the rotational speed of the electrically driven compressor zero and an instruction to pull the electromagnetic clutch when the rotational speed of the electrically driven compressor and the rotational speed of the pulley are both equal to the second predetermined rotational speed. .
  • the switching control module 230 may further include: a second electric drive compressor stop operation transmission sub-module 236b, for a second pre-operation when the electric drive compressor is operated at the second preset rotation speed When the rotation speed of the pulley is not obtained within the set time, an instruction to stop the electric drive compressor is stopped when the second preset time expires.
  • the switching instruction sending module 220 may include: a second pulley rotation speed acquisition command transmitting sub-module 223b, configured to send the speed of acquiring the pulley when the currently running compressor is a mechanically driven compressor And a second electrically driven compressor start command transmitting submodule 224b for transmitting an instruction to cause the electrically driven compressor to start and operate at the acquired pulley speed after the rotational speed of the pulley is acquired.
  • the switching control module 230 may include: a fourth rotation speed acquisition sub-module 233b, configured to acquire the rotation speed of the electric drive compressor and the rotation speed of the pulley when the currently operating compressor is a mechanically driven compressor; And a second electromagnetic clutch disconnection command transmitting submodule 234b, configured to send an instruction to turn off the electromagnetic clutch when the obtained rotational speed of the electrically driven compressor is equal to the acquired pulley rotational speed; and an engine stop operation transmission submodule 235b For sending an engine stop command after the electromagnetic clutch is disconnected.
  • the apparatus further includes: a display instruction sending module 240, configured to send an instruction to display that the mechanically driven compressor and the electrically driven compressor have been switched.
  • a display instruction sending module 240 configured to send an instruction to display that the mechanically driven compressor and the electrically driven compressor have been switched.
  • the device is an air conditioning control system, ie ACCS.
  • the structure of the dual-compressor switching control device 200 is similar to the structure shown in FIG. 11 , and includes: a receiving module 210 for receiving power information of the power battery; and a switching instruction sending module 220 for Transmitting a command based on the power amount information, the switching command is for indicating a manner of switching between the mechanically driven compressor and the electrically driven compressor; and the switching control module 230 is configured to cut off the driving force of the currently operating compressor
  • the electromagnetic clutch state change command is transmitted when the rotational speed of the pulley of the mechanically driven compressor and the rotational speed of the electrically driven compressor are the same or less than a preset value, The mechanically driven compressor and the electrically driven compressor are switched to change the state of the electromagnetic clutch.
  • the switching instruction sending module 220 may include: a first switching instruction sending sub-module 221c, configured to send an engine start command and an electric drive compressor off when the currently running compressor is an electrically driven compressor instruction.
  • the switching instruction sending module 220 further includes: a preset speed transmitting sub-module (not shown), configured to send the first switching command sending sub-module 221c before sending the engine starting command and the electric driving compressor closing command An instruction to electrically drive the compressor to operate at a third predetermined rotational speed, the third predetermined rotational speed being lower than a current rotational speed of the electrically driven compressor; and a rotational speed information receiving sub-module (not shown) for receiving the electrically driven compressor The three preset speed operation information, so that after the electric drive compressor is operated at the third preset speed, the first switching command transmitting sub-module 221c can send an engine start command and an electric drive compressor close command.
  • a preset speed transmitting sub-module (not shown), configured to send the first switching command sending sub-module 221c before sending the engine starting command and the electric driving compressor closing command
  • the switching control module 230 may include: a fifth rotation speed acquisition sub-module 231c, configured to acquire the rotation speed of the electric drive compressor and the rotation speed of the pulley when the currently operating compressor is an electric drive compressor; And an electromagnetic clutch pull-in command transmitting sub-module 232c for transmitting an instruction to pull the electromagnetic clutch when the rotational speed of the electrically-driven compressor and the rotational speed of the pulley are the same.
  • the switching instruction sending module 220 may include: a second switching instruction sending sub-module 222c, configured to send an electric driving compressor starting command and an engine stop when the currently running compressor is a mechanically driven compressor Operation instruction.
  • the switching control module 230 may include: a sixth rotation speed acquisition sub-module 233c, configured to acquire the rotation speed of the electric drive compressor and the rotation speed of the pulley when the currently operating compressor is a mechanically driven compressor; And a third electromagnetic clutch disconnection command transmitting sub-module 234c for electrically driving the speed and belt of the compressor When the rotational speed of the wheel is the same, an instruction to disconnect the electromagnetic clutch is sent.
  • the apparatus further includes: a display instruction transmitting module 240, configured to send an instruction to display that the mechanically driven compressor and the electrically driven compressor have been switched.
  • a display instruction transmitting module 240 configured to send an instruction to display that the mechanically driven compressor and the electrically driven compressor have been switched.
  • the device is an air conditioning control system, ie ACCS.
  • the present disclosure also provides a dual drive compressor switching control system 300, wherein the dual drive compressor includes an electrically driven compressor and a mechanically driven compressor, the system comprising:
  • the power battery detecting device 310 is configured to detect power information of the power battery.
  • the device may be a BMS of the vehicle. After detecting the power information of the power battery, the BMS sends a signal to the ACCS and the ECM for subsequent operations;
  • Control device 200 which uses the dual-drive compressor switching control device provided in the present disclosure, and the dual-drive compressor switching control device may be an ACCS of the vehicle;
  • the rotation speed detecting device 330 is configured to detect the rotational speed of the pulley and the rotational speed of the electrically driven compressor, wherein the rotational speed detecting device passes the following One of the modes is to detect the rotational speed of the pulley and the rotational speed of the electrically driven compressor: (1) detected by the rotational speed detecting sensor; and (2) detected by collecting the three-phase electromotive force and
  • the sensor detection is detected by a sensor capable of detecting the speed, such as a resolver or a Hall sensor, and these sensors can directly collect the specific rotational speed and transmit the rotational speed information to the switching control device.
  • Sensorless detection can calculate the specific speed value by collecting three-phase electromotive force.
  • U, V, W respectively represent the voltage value of the three-phase circuit of the compressor.
  • the difference of the motor speed will result in different voltage values of the three-phase electric motor.
  • the three-phase voltage values are all in the range of several hundred volts, and the switching control device can collect the voltage range between 0 and 5V.
  • the proportional voltage can be divided by the resistor combination to enable the switching device to collect the three-phase voltage of the motor.
  • the algorithm is then processed to calculate the specific rotational speed; the electromagnetic clutch state changing device 340 is configured to change the state of the electromagnetic clutch based on the electromagnetic clutch state change command, wherein the electromagnetic clutch state changing device may be the ECM or ACC of the vehicle.
  • the dual-drive compressor switching control system may further include a display device 350 for displaying information about that the mechanically-driven compressor and the electrically-driven compressor have been switched, the display device may be an INS of the vehicle, and the INS may display, for example, “a sufficient amount of power The cooling demand has stopped the engine, "the power is insufficient, the cooling demand has started the engine” and so on.
  • the first preset rotational speed, the second preset rotational speed, and the third preset rotational speed may be the same or different, and the first preset time and the first The two preset times can be the same or different.
  • first pulley rotational speed acquisition command transmitting submodule 223a and the second pulley rotational speed obtaining command transmitting submodule 223b may be separate modules or may be integrated;
  • first rotational speed acquiring submodule 231a, the second The speed acquisition sub-module, the third rotation speed acquisition sub-module 231b, the fourth rotation speed acquisition sub-module 233b, the fifth rotation speed acquisition sub-module 231c, and the sixth rotation speed acquisition sub-module 233c may be separate modules, or may be integrated;
  • a first switching control submodule 232a, a second switching control submodule, and a third switching control submodule 232b may be a separate module or may be integrated;
  • a first electromagnetic clutch disconnect command transmitting submodule 233a, a second electromagnetic clutch disconnect command transmitting submodule 234b, and a third electromagnetic clutch disconnect command transmitting submodule 234c It can be a separate module or it can be integrated.
  • the present disclosure also provides a vehicle including the above-described dual drive compressor switching control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种双驱压缩机切换控制方法,双驱压缩机包括电驱动压缩机和机械驱动压缩机,其中,该控制方法包括:接收动力电池的电量信息;基于电量信息发送切换指令,切换指令用于指示在机械驱动压缩机和电驱动压缩机之间进行切换的方式;以及在当前正在运转的压缩机未完全停止运转之前,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速满足预设条件时,发送电磁离合器(4000)状态改变指令,以使电磁离合器(4000)的状态改变来切换机械驱动压缩机和电驱动压缩机。在当前正在运转的压缩机未完全停止运转之前进行动力切换,可以解决双驱压缩机动力切换时空调功能减弱或丢失的问题,提高用户体验。本申请还提供一种双驱压缩机切换控制装置、控制系统以及车辆。

Description

双驱压缩机切换控制方法、控制装置、控制系统以及车辆 技术领域
本公开涉及车用压缩机,具体地,涉及一种双驱压缩机切换控制方法、控制装置、控制系统以及车辆。
背景技术
车用双驱压缩机指的是混和动力车辆具备的两个压缩机,一个由发动机带动运转,另一个是由动力电池供电带动运转。由于空调系统对管路压力有要求,所以空调开启时只能由一个压缩机来进行制冷。目前双驱压缩机的驱动力切换为:当电驱动压缩机完全停止后启动发动机,由发动机带动机械驱动压缩机运转;当机械驱动压缩机完全停止后整车上高压,从而切换为电驱动压缩机。此种方式的缺陷是会造成短暂的空调功能丢失或减弱,影响用户体验。
发明内容
本公开的第一个目的是提供一种双驱压缩机切换控制方法,以解决双驱压缩机动力切换时空调功能减弱或丢失的问题。
本公开的第二个目的是提供一种双驱压缩机切换控制装置,以解决双驱压缩机动力切换时空调功能减弱或丢失的问题。
本公开的第三个目的是提供一种双驱压缩机切换控制系统,以解决双驱压缩机动力切换时空调功能减弱或丢失的问题。
本公开的第四个目的是提供一种车辆,使用根据本公开提供的双驱压缩机切换控制系统。
为了实现上述目的,本公开提供了一种双驱压缩机切换控制方法,所述双驱压缩机包括电驱动压缩机和机械驱动压缩机,该方法包括:接收动力电池的电量信息;基于所述电量信息发送切换指令,所述切换指令用于指示在所述机械驱动压缩机和所述电驱动压缩机之间进行切换的方式;以及在当前正在运转的压缩机未完全停止运转之前,在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令,以使所述电磁离合器的状态改变来切换所述机械驱动压缩机和所述电驱动压缩机。
可选地,所述切换指令还用于指示所述电驱动压缩机和所述机械驱动压缩机以相同的目标转速运转。
可选地,在当前正在运转的压缩机的驱动力被切断并保持惯性运转以及提供了用于当前未运转的压缩机的驱动力时,在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速相同时,发送电磁离合器状态改变指令,以使所述电磁离合器的状态改变来切换所述机械驱动压缩机和所述电驱动压缩机。
可选地,在当前正在运转的压缩机是电驱动压缩机时,所述基于电量信息发送切换指令包括:发送使所述电驱动压缩机以预设下降速率降低转速的指令;以及发送发动机启动指令。
可选地,所述在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令包括:获取所述电驱动压缩机的转速和所述皮带轮的转速;以及在所述电驱动压缩机的转速与所述皮带轮的转速的差值小于等于第一预设值时,发送使所述电驱动压缩机的转速为零的指令以及吸合所述电磁离合器的指令。
可选地,所述在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令包括:获取所述电驱动压缩机的转速和所述皮带轮的转速;以及在所述电驱动压缩机的转速和所述皮带轮的转速相等时,发送使所述电驱动压缩机的转速为零的指令以及吸合所述电磁离合器的指令。
可选地,该方法还包括:当在从所述电驱动压缩机的转速下降至第一预设转速开始计时的第一预设时间内没有获取到所述皮带轮的转速时,在所述第一预设时间期满时发送使所述电驱动压缩机停止运转的指令。
可选地,在当前正在运转的压缩机是机械驱动压缩机时,所述基于电量信息发送切换指令包括:发送获取所述皮带轮的转速的指令;以及基于所获取的皮带轮的转速获取启动所述电驱动压缩机所需的启动电流。
可选地,所述在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令包括:发送断开所述电磁离合器的指令;以及发送使所述电驱动压缩机以所述启动电流启动的指令。
可选地,在所述基于电量信息发送切换指令之后,该方法还包括:发送显示所述机械驱动压缩机和所述电驱动压缩机已切换的指令。根据本公开的第二个方面,提供了一种双驱压缩机切换控制装置,所述双驱压缩机包括电驱动压缩机和机械驱动压缩机,该装置包括:接收模块,用于接收动力电池的电量信息;切换指令发送模块,用于基于所述电量信息发送切换指令,所述切换指令用于指示在所述机械驱动压缩机和所述电驱动压缩机之间进行切换的方式;以及切换控制模块,用于在当前正在运转的压缩机未完全停止运转之前,在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令,以使所述电磁离合器的状态改变来切换所述机械驱动压缩机和所述电驱动压缩机。
可选地,所述切换指令还用于指示所述电驱动压缩机和所述机械驱动压缩机以相同的目标转速运转。
可选地,切换控制模块可用于在当前正在运转的压缩机的驱动力被切断并保持惯性运转以及提供了用于当前未运转的压缩机的驱动力时,在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速相同时,发送电磁离合器状态改变指令,以使所述电磁离合器的状态改变来切换所述机械驱动压缩机和所述电驱动压缩机。
可选地,所述切换指令发送模块包括:降转速指令发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,发送使所述电驱动压缩机以预设下降速率降低转速的指令;以及发动机启动指令发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,发送发动机启动指令。
可选地,所述切换控制模块包括:第一转速获取子模块,用于获取所述电驱动压缩机的转速和所述皮带轮的转速;以及第一切换控制子模块,用于在当前正在运转的压缩机是电驱动压缩机时,在所述电驱动压缩机的转速与所述皮带轮的转速的差值小于等于第一预设值时,发送使所述电驱动压缩机的转速为零的指令以及吸合所述电磁离合器的指令。
可选地,所述切换控制模块包括:第二转速获取子模块,用于获取所述电驱动压缩机的转速和所述皮带轮的转速;以及第二切换控制子模块,用于在当前正在运转的压缩机是电驱动压缩机时,在所述电驱动压缩机的转速和所述皮带轮的转速相等时,发送使所述电驱动压缩机的转速为零的指令以及吸合所述电磁离合器的指令。
可选地,该装置还包括:第一电驱动压缩机停止运转指令发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,当在从所述电驱动压缩机的转速下降至第一预设转速开始计时的预设时间内没有获取到所述皮带轮的转速时,在所述第一预设时间期满时发送使所述电驱动压缩机停止运转的指令。
可选地,所述切换指令发送模块包括:第一皮带轮转速获取指令发送子模块,用于在当前正在运转的压缩机是机械驱动压缩机时,发送获取所述皮带轮的转速的指令;以及电驱动压缩机启动电流获取子模块,用于在当前正在运转的压缩机是所述机械驱动压缩机时,基于所获取的皮带轮的转速获取启动所述电驱动压缩机所需的启动电流。
可选地,所述切换控制模块包括:第一电磁离合器断开指令发送子模块,用于在当前正在运转的压缩机是所述机械驱动压缩机时,发送断开所述电磁离合器的指令;以及第一电驱动压缩机启动指令发送子模块,用于在当前正在运转的压缩机是所述机械驱动压缩机时,发送使所述电驱动压缩机以所述启动电流启动的指令。
可选地,该装置还包括:显示指令发送模块,用于发送显示关于所述机械驱动压缩机和所述电驱动压缩机已切换的指令。
可选地,所述装置是空调控制系统。
根据本公开的第三个方面,提供一种双驱压缩机切换控制系统,所述双驱压缩机包括电驱动压缩机和机械驱动压缩机,该系统包括:动力电池电量检测装置,用于检测动力电池的电量信息;根据本公开第二个方面提供的双驱压缩机切换控制装置;引擎控制装置,用于在所述双驱压缩机切换控制装置的控制下控制发动机的动作,以便控制所述发动机带动所述皮带轮的转速;转速检测装置,用于检测所述皮带轮的转速和所述电驱动压缩机的转速;以及电磁离合器状态改变装置,用于基于所述电磁离合器状态改变指令来改变所述电磁离合器的状态。
可选地,该系统还包括显示装置,用于显示所述机械驱动压缩机和所述电驱动压缩 机已切换的信息。
可选地,所述转速检测装置通过以下方式之一来检测所述皮带轮的转速和所述电驱动压缩机的转速:(1)通过转速检测传感器来检测;以及(2)通过采集三相电动势然后基于采集的三相电动势进行计算来检测。
根据本公开的第四个方面,提供一种车辆,该车辆包括本公开第三个方面提供的双驱压缩机切换控制系统。
通过上述技术方案,首先通过车辆中动力电池的电量确定压缩机的驱动形式,以在机械驱动压缩机和电驱动压缩机之间切换,并且是在当前正在运转的压缩机未完全停止运转之前,当机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速满足预设条件时进行动力切换,可以解决双驱压缩机动力切换时空调功能减弱或丢失的问题,提高用户体验。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开的一个实施方式的双驱压缩机切换控制方法的流程图;
图2是根据本公开的另一个实施方式的双驱压缩机切换控制方法的流程图;
图3是根据本公开的另一个实施方式的双驱压缩机切换控制方法的流程图;
图4是根据本公开的另一个实施方式的双驱压缩机切换控制方法的流程图;
图5是根据本公开的另一个实施方式的双驱压缩机切换控制方法的流程图;
图6是根据本公开的另一个实施方式的双驱压缩机切换控制方法的流程图;
图7是根据本公开的另一个实施方式的双驱压缩机切换控制方法的流程图;
图8是根据本公开的另一个实施方式的双驱压缩机切换控制方法的流程图;
[根据细则91更正 01.12.2017] 
图9是根据本公开的另一个实施方式的双驱压缩机切换控制方法的流程图;
图10是根据本公开的另一个实施方式的双驱压缩机切换控制方法的流程图;
图11是根据本公开的一个实施方式的双驱压缩机切换控制装置的框图;
图12是根据本公开的另一个实施方式的双驱压缩机切换控制装置的框图;
图13是根据本公开的另一个实施方式的双驱压缩机切换控制装置的框图;
图14是根据本公开的另一个实施方式的双驱压缩机切换控制装置的框图;
图15是根据本公开的另一个实施方式的双驱压缩机切换控制装置的框图;
图16是根据本公开的一个实施方式的双驱压缩机切换控制系统的框图;
图17是根据本公开的一个实施方式的双驱动压缩机的主视图;
图18是图17中双驱动压缩机沿A-A线剖切后的剖面视图;
图19是根据本公开的另一个实施方式的双驱动压缩机的结构示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
车用双驱压缩机主要应用于混合动力汽车的空调系统。在整车电量充足时开启电驱动压缩机,在整车馈电时开启机械驱动压缩机。在本公开中,BMS(Battery Management System)指的是电池管理系统,ACCS(Air-Condition Control System)指的是空调控制系统,ACC(Air-Condition Compressor)指的是空调压缩机,ECM(Engine Control Module)指的是引擎控制模块,INS(Instrument)指的是仪表,BMS、ACCS、ACC、ECM、INS等通过车辆CAN(Controller Area Network)总线电连接,实现信号交互。
如本公开的一个实施例,所述双驱压缩机一般可以包括涡旋盘总成和用于驱动涡旋盘总成的曲轴,所述曲轴既可以通过电机驱动也可以通过发动机驱动,所述开启电驱动压缩机是采用电机驱动的方式,所述开启机械驱动压缩机是采用发动机驱动的方式。
如图17和图18所示,双驱动压缩机包括机壳总成1000,位于该机壳总成1000内部的曲轴2000、涡旋盘总成3000和电机总成5000,安装在该机壳总成1000外部的电控总成6000,以及连接到曲轴2000的离合器总成4000。曲轴2000伸出机壳总成1000的部分与电磁离合器4000连接。
本公开中的双驱动压缩机是以涡旋式压缩机为例。在这种压缩机中,涡旋盘总成3000包括静盘3100和动盘3200。压缩机在工作中,曲轴2000旋转带动动盘3200做偏心运动,在偏心转动下,动盘型线和静盘型线形成容积逐渐减小的月牙腔(即涡旋式压缩机的压缩腔),从进气口进入到压缩腔的冷媒在这个过程中不断被压缩,最终形成的高温高压气体从排气口排出,从而完成对冷媒的压缩作用。
本公开提供的双驱动压缩机中,曲轴2000既可以由电机总成5000驱动,即电驱动模式,也可以由电磁离合器4000传递驱动力,即机械驱动模式。
如图19所示,电磁离合器4000主要包括皮带轮4300、线圈4100和驱动盘4200。皮带轮4300通过轴承可自由转动地安装在机壳总成1000的前端盖1400上。驱动盘4200可同步转动地连接到曲轴2000上。在工作时,电磁离合器4000中的线圈4100通电产生电磁吸力,使皮带轮4300和驱动盘4200接合,从而皮带轮4300可以带动曲轴2000旋转,驱动压缩机工作。皮带轮4300通过与车辆发动机主动轮连接产生驱动力,在机械驱动模式下的双驱动压缩机,与传统的机械压缩机驱动模式相同,其具体的驱动形式为本领域普通技术人员所熟知,此处不做具体描述。
如图19所示,本公开提供的双驱动压缩机的另一种驱动模式是通过设置在机壳总成1000中的电机总成5000进行电力驱动,其中电机总成5000包括定位在机壳总成1000内壁的定子总成5100和安装在曲轴2000上的转子总成5200,其中如图19所示,定子总成5100可以通过形成在机壳总成1000内壁的台阶面1001定位,转子总成5200在通 电后带动曲轴1000旋转,从而驱动涡旋盘总成3000,完成对冷媒的压缩作用。具体地,电控总成6000将从高压线束流入的直流电转变为交流电流入到定子总成5100,定子总成5100中形成变化的磁场,位于定子总成5100内侧的转子总成5200在磁场的作用下驱动曲轴2000一同转动。为解决双驱压缩机动力切换时空调功能减弱或丢失的问题,本公开提供一种双驱压缩机切换控制方法,如图1所示,该方法包括:步骤S101,接收关于动力电池的电量信息;S102,基于电量信息发送切换指令,切换指令用于指示在机械驱动压缩机和电驱动压缩机之间进行切换的方式;以及S103,在压缩机之间进行切换时,在当前正在运转的压缩机未完全停止运转之前,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令,以使电磁离合器的状态改变来切换机械驱动压缩机和电驱动压缩机。
其中,在机械驱动压缩机和电驱动压缩机之间进行切换的方式可依据不同的切换方向而相应设定。
这里需要说明的是,电磁离合器有吸合和断开两种状态,当电磁离合器处于吸合状态时,使用机械驱动压缩机进行制冷,车辆发动机带动皮带轮旋转,进而带动机械驱动压缩机运转;当电磁离合器处于断开状态时,使用电驱动压缩机进行制冷,上述的皮带轮失去对机械驱动压缩机的控制,电驱动压缩机在高压电的作用下运转。
在步骤S102中,基于电量信息发送切换指令,首先根据动力电池的电量信息确定是否进行动力切换。具体地,在电驱动压缩机运转过程中,当检测到整车高压电量较低,只能维持电驱动压缩机运行较短的时间时,切换至机械驱动压缩机;在机械驱动压缩机运转过程中,当检测到整车高压电量充足时,切换至电驱动压缩机。
上述的发送电磁离合器状态改变指令所需的预设条件可以通过多种方式设置,其中预设条件可以为电驱动压缩机的转速与皮带轮的转速相同或近似相同,使得在进行动力切换时,不会带来空调功能丢失或减弱的问题。
例如,在本公开的第一个实施方式中,在当前正在运转的压缩机是电驱动压缩机时,如图2所示,在步骤S102a1,基于电量信息发送切换指令进一步包括:发送使电驱动压缩机以预设下降速率降低转速的指令;以及发送发动机启动指令。控制电驱动压缩机的转速均匀地下降,在一个较低的转速时进行动力切换,可以防止高速切换对压缩机的损伤,尤其是对电磁离合器以及皮带轮的磨损。这里需要说明的是,上述的发送使电驱动压缩机以预设下降速率降低转速的指令和发送发动机启动指令可以同时进行,也可以分别进行,本实施方式对二者的时序不做具体限定。在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令,即从断开状态切换到吸合状态的指令。
进一步地,如图2所示,在步骤S103中包括子步骤S1031a和S1032a。在步骤S1031a,获取电驱动压缩机的转速和皮带轮的转速;在步骤S1032a,在电驱动压缩机的转速与皮带轮的转速的差值小于等于第一预设值时,发送使电驱动压缩机的转速为零的指令以及吸合电磁离合器的指令。由于电驱动压缩机的转速以预设下降速率均匀地下降,发动机 启动后皮带轮的转速从零开始上升,在进行动力切换前,电驱动压缩机的转速始终大于皮带轮的转速,考虑到指令有传输时间,为保证进行动力切换时电驱动压缩机的转速和皮带轮的转速相同,可以在皮带轮转速即将达到电驱动压缩机的转速时发送使电驱动压缩机的转速为零的指令以及吸合电磁离合器的指令,实现动力切换。在电驱动压缩机的转速与皮带轮的转速的差值小于等于第一预设值时,由于预设下降速率是单位时间内转速的变化量,在下一个单位时间,例如一秒内,电驱动压缩机的转速下降,皮带轮的转速上升,从而可以在二者的转速接近相同时进行动力切换。其中,根据经验,第一预设值可以设置为上述的预设下降速率,也可以为预设下降速率的2倍或0.5倍等。
在另一种控制策略中,由于指令传输速度很快,因此也可以不考虑指令传输时间,在这种情况下,步骤S103包括:获取电驱动压缩机的转速和皮带轮的转速;以及在电驱动压缩机的转速和皮带轮的转速相等时,发送使电驱动压缩机的转速为零的指令以及吸合电磁离合器的指令,确保动力切换时电驱动压缩机的转速和皮带轮的转速相同。
进一步地,本实施方式中双驱压缩机切换控制方法还包括:当在从电驱动压缩机的转速下降至第一预设转速开始计时的第一预设时间内没有获取到皮带轮的转速时,在第一预设时间期满时发送使电驱动压缩机停止运转的指令。其中,第一预设转速根据经验值设置为压缩机的最佳切换转速,当电驱动压缩机的转速以预设下降速率下降至第一预设转速时,电驱动压缩机将保持该第一预设转速运转,并开始计时。在开始计时起的第一预设时间内若没有获取到皮带轮的转速信息,则说明发动机没有成功启动,考虑到电量不足,当计时达到第一预定时间时,关闭电驱动压缩机,其中第一预设时间可以为根据第一预设速度设定的经验值。
在本实施方式中,在当前正在运转的压缩机是机械驱动压缩机时,如图3所示,在步骤S102a2,基于电量信息发送切换指令包括:发送获取皮带轮的转速的指令;以及基于所获取的皮带轮的转速获取启动电驱动压缩机所需的启动电流。即从机械驱动切换到电驱动时,皮带轮带动机械驱动压缩机保持原速运转,基于该速度确定电驱动压缩机启动所需的电流,使得电驱动压缩机以同速旋转,进一步地,如图3所示,在步骤S103a,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令包括:发送断开电磁离合器的指令;以及发送使电驱动压缩机以启动电流启动的指令,从而确保动力切换时电驱动压缩机的转速和皮带轮的转速相同,避免动力切换时空调功能减弱或丢失。其中需要说明的是,基于所获取的皮带轮的转速获取启动电驱动压缩机所需的启动电流的步骤中,启动电流可以由ACC计算并反馈给ACCS,或者也可以由ACCS直接计算得出。
在本公开的第二个实施方式中,如图4所示,在步骤S102,切换指令还可以包括指示电驱动压缩机和机械驱动压缩机需要以相同的目标转速运转,相应地,在步骤S103b,在当前正在运转的压缩机未完全停止运转之前,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速均达到目标转速时,发送电磁离合器状态改变指令,以使电磁离合器的状态改变来切换机械驱动压缩机和电驱动压缩机。即电磁离合器状态改变指 令所需的预设条件可以是,在当前正在运转的压缩机未完全停止运转之前,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速均达到目标转速。
在当前正在运转的压缩机是电驱动压缩机时,如图5所示,在步骤S102b1,基于电量信息发送切换指令包括:发送使电驱动压缩机以第二预设转速运转的指令,第二预设转速低于电驱动压缩机的当前转速;以及发送使皮带轮以第二预设转速运转的指令。即为避免高速切换对压缩机的损伤,尤其是对皮带轮和电磁离合器的磨损,以及避免动力切换前电量严重不足,首先将电驱动压缩机的转速降低到第二预设转速,当皮带轮以第二预设转速运转时,在同速时切换。这里需要说明的是,上述的发送使电驱动压缩机以第二预设转速运转的指令以及发送使皮带轮以第二预设转速运转的指令可以同时进行,也可以分别进行,本公开对二者的时序不做具体限定。在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速均达到第二预设转速时,发送电磁离合器状态改变指令,即从断开状态切换到吸合状态的指令。
进一步地,如图5所示,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速均达到第二预设转速时,发送电磁离合器状态改变指令,具体可以包括:S1031b,获取电驱动压缩机的转速和皮带轮的转速;以及S1032b,在电驱动压缩机的转速和皮带轮的转速均等于第二预设转速时,发送使电驱动压缩机的转速为零的指令以及吸合电磁离合器的指令,确保动力切换时电驱动压缩机的转速和皮带轮的转速相同。
进一步地,本实施方式中双驱压缩机切换控制方法还包括:当在电驱动压缩机以第二预设转速运转的第二预设时间内没有获取到皮带轮的转速时,在第二预设时间期满时发送使电驱动压缩机停止运转的指令。在开始计时的第二预设时间内若没有获取到皮带轮的转速信息,则说明发动机没有成功启动,考虑到电量不足,当计时达到第二预定时间时,关闭电驱动压缩机,其中第二预定时间可以为根据第二预设转速设定的经验值。
在本实施方式中,在当前正在运转的压缩机是机械驱动压缩机时,如图6所示,在步骤S102b2,基于电量信息发送切换指令包括:发送获取皮带轮的转速的指令;以及在获取到皮带轮的转速之后,发送使电驱动压缩机启动并以所获取的皮带轮转速运转的指令。即从机械驱动切换到电驱动时,皮带轮带动机械驱动压缩机保持原速运转,启动电驱动压缩机后,驱使电驱动压缩机正常启动以达到机械驱动压缩机的转速。如图6所示,在步骤S103b2,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速均达到目标转速时,发送电磁离合器状态改变指令包括:获取电驱动压缩机的转速和皮带轮的转速;以及在所获取的电驱动压缩机的转速等于所获取的皮带轮转速时,发送断开电磁离合器的指令;以及在电磁离合器断开之后,发送发动机停止运转指令,从而确保动力切换时电驱动压缩机的转速和皮带轮的转速相同,避免动力切换时空调功能减弱或丢失。
在本公开的第三个实施方式中,如图7所示,在步骤S103c,在当前正在运转的压缩机的驱动力被切断并保持惯性运转以及提供了用于当前未运转的压缩机的驱动力时,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速相同时,发送电磁离合器状态 改变指令,以使电磁离合器的状态改变来切换机械驱动压缩机和电驱动压缩机。即电磁离合器状态改变指令所需的预设条件可以是,在当前正在运转的压缩机的驱动力被切断并保持惯性运转以及提供了用于当前未运转的压缩机的驱动力的情况下,机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速达到相同,即在动力切换前的一个短暂的时间内,当前正在运转的压缩机的动力源被切断,使得当前运转的压缩机可以保持惯性降速运转,而当前未运转的压缩机的动力源已经输出了驱动力,但当前未运转的压缩机尚未起作用,即空调系统尚未借助当前未运转的压缩机进行制冷。
在当前正在运转的压缩机是电驱动压缩机时,如图8所示,在步骤S102c1,基于电量信息发送切换指令包括:发送发动机启动指令,以及发送电驱动压缩机关闭指令。这里需要说明的是,发送发动机启动指令和电驱动压缩机关闭指令可以同时进行,也可以分别进行,本公开对二者的时序不作具体限定,只需保证在电驱动压缩机关闭时,电磁离合器还没有吸合,即保证动力切换前的一个时间内,电驱动力停止,电驱动压缩机保持惯性减速运转,此时发动机已经启动并带动皮带轮运转,但电磁离合器尚未吸合,即机械驱动力尚未作用于机械驱动压缩机。在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速相同时,发送电磁离合器状态改变指令,即从断开状态切换到吸合状态的指令,这样就开始由机械驱动压缩机进行制冷。
此外,在步骤S102c1,在发送发动机启动指令和电驱动压缩机关闭指令之前,基于电量信息发送切换指令还可以包括:发送使电驱动压缩机以第三预设转速运转的指令,其中第三预设转速低于电驱动压缩机的当前转速;以及接收电驱动压缩机以第三预设转速运转的信息。即为避免高速切换对压缩机的损伤,以及避免动力切换前电量严重不足,首先将电驱动压缩机的转速降低到第三预设转速,然后关闭电驱动压缩机,电驱动压缩机因为惯性从该第三预设转速开始下降,当下降后的转速与皮带轮转速相同时,电磁离合器吸合,机械驱动压缩机运转,这样就开始由机械驱动压缩机进行制冷。
进一步地,在步骤S103c,参见图8所示,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速相同时,发送电磁离合器状态改变指令可包括:S1031c,获取电驱动压缩机的转速和皮带轮的转速;以及S1032c,在电驱动压缩机的转速和皮带轮的转速相同时,发送吸合电磁离合器的指令,确保动力切换时电驱动压缩机的转速和皮带轮的转速相同。
在本实施方式中,在当前正在运转的压缩机是机械驱动压缩机时,如图9所示,在步骤S102c2,基于电量信息发送切换指令包括:发送电驱动压缩机启动指令和发动机停止运转指令。这里需要说明的是,发送发动机停止运转指令和电驱动压缩机启动指令可以同时进行,也可以分别进行,本公开对二者的时序不作具体限定,只需保证在电磁离合器断开之前的一段时间内,即动力切换前的一个时间内,发动机停止输出驱动力,使得机械驱动压缩机惯性降速运转,此时电驱动压缩机已经启动但尚未起作用,也即空调系统尚未通过电驱动压缩机进行制冷。在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速相同时,发送电磁离合器状态改变指令,即从吸合状态切换到断开状态的指令, 从而完成动力切换,使得开始由电驱动压缩机进行制冷。
进一步地,如图9所示,在步骤S103c2,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速相同时,发送电磁离合器状态改变指令包括:获取电驱动压缩机的转速和皮带轮的转速;以及在电驱动压缩机的转速和皮带轮的转速相同时,发送断开电磁离合器的指令,从而确保动力切换时电驱动压缩机的转速和皮带轮的转速相同,避免动力切换时空调功能减弱或丢失。
综上所示,在本公开的几种实施方式中可以实现诸多有益效果,例如,兼顾了压缩机从电力驱动转变为机械驱动,又从机械驱动转变为电力驱动的两种情况,适应性较强;在由电驱动转换为机械驱动时,首先对电驱动压缩机降速,有足够的平稳性,避免了长时间在高转速下切换对电磁离合器及皮带轮的磨损;整个切换过程压缩机都在运转,避免了切换时空调功能的丢失。
此外,如图10所示,在基于电量信息发送切换指令之后,该方法还包括:S104,发送显示关于机械驱动压缩机和电驱动压缩机已切换的指令,例如,可以显示例如“电量充足,制冷需求已停止发动机”、“电量不足,制冷需求已启动发动机”等。需要说明的是,该步骤可以在发送切换指令之后,发送电磁离合器状态改变指令之前,也可以在发送电磁离合器状态改变指令之后。
图11是根据一示例性实施例示出的一种双压缩机切换控制装置200的框图,该装置包括:接收模块210,用于接收关于动力电池的电量信息;切换指令发送模块220,用于基于电量信息发送切换指令,切换指令用于指示在机械驱动压缩机和电驱动压缩机之间进行切换的方式;以及切换控制模块230,用于在压缩机间进行切换时,在当前正在运转的压缩机未完全停止运转之前,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令,以使电磁离合器的状态改变来切换机械驱动压缩机和电驱动压缩机。
图12是根据本公开的实施方式的双驱压缩机切换控制装置的框图。
可选地,参考图12,切换指令发送模块220可包括:降转速指令发送子模块221a,用于在当前正在运转的压缩机是电驱动压缩机时发送使电驱动压缩机以预设下降速率降低转速的指令;以及发动机启动指令发送子模块222a,用于发送发动机启动指令。
可选地,参考图12,切换控制模块230可包括:第一转速获取子模块231a,用于在当前正在运转的压缩机是电驱动压缩机时获取电驱动压缩机的转速和皮带轮的转速;以及第一切换控制子模块232a,用于在电驱动压缩机的转速与皮带轮的转速的差值小于等于预设值时,发送使电驱动压缩机的转速为零的指令以及吸合电磁离合器的指令。
可选地,切换控制模块230还可以包括:第二转速获取子模块(未示出),用于获取电驱动压缩机的转速和皮带轮的转速;以及第二切换控制子模块(未示出),用于在电驱动压缩机的转速和皮带轮的转速相等时,发送使电驱动压缩机的转速为零的指令以及吸合电磁离合器的指令。
可选地,参考图12,该切换控制模块230还可以包括:第一电驱动压缩机停止运转 指令发送子模块235a,用于当在从电驱动压缩机的转速下降至第一预设转速开始计时的预设时间内没有获取到皮带轮的转速时,在第一预设时间期满时发送使电驱动压缩机停止运转的指令。
可选地,参考图12,切换指令发送模块220可包括:第一皮带轮转速获取指令发送子模块223a,用于在当前正在运转的压缩机是机械驱动压缩机时发送获取皮带轮的转速的指令;以及电驱动压缩机启动电流获取子模块224a,用于基于所获取的皮带轮的转速获取启动电驱动压缩机所需的启动电流。
可选地,参考图12,切换控制模块230可包括:第一电磁离合器断开指令发送子模块233a,用于在当前正在运转的压缩机是机械驱动压缩机时发送断开电磁离合器的指令;以及第一电驱动压缩机启动指令发送子模块234a,用于发送使电驱动压缩机以启动电流启动的指令。
可选地,参考图15,该装置还包括:显示指令发送模块240,用于发送显示关于机械驱动压缩机和电驱动压缩机已切换的指令。
可选地,该装置是空调控制系统,即ACCS。
根据本公开的另一个实施方式,双压缩机切换控制装置200的结构与图11所示的结构类似,包括:接收模块210,用于接收关于动力电池的电量信息;切换指令发送模块220,用于基于电量信息发送切换指令,切换指令指示需要在机械驱动压缩机和电驱动压缩机之间进行切换,而且切换指令还指示电驱动压缩机和机械驱动压缩机以相同的目标转速运转;以及切换控制模块230,用于在当前正在运转的压缩机未完全停止运转之前,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速均达到目标转速时,发送电磁离合器状态改变指令,以使电磁离合器的状态改变来切换机械驱动压缩机和电驱动压缩机。
可选地,参考图13,切换指令发送模块220可包括:预设目标转速发送子模块221b,用于在当前正在运转的压缩机是电驱动压缩机时发送使电驱动压缩机以第二预设转速运转的指令,第二预设转速低于电驱动压缩机的当前转速;以及皮带轮转速发送子模块222b,用于发送使皮带轮以第二预设转速运转的指令。
可选地,参考图13,切换控制模块230可包括:第三转速获取子模块231b,用于在当前正在运转的压缩机是电驱动压缩机时获取电驱动压缩机的转速和皮带轮的转速;以及第三切换控制子模块232b,用于在电驱动压缩机的转速与皮带轮的转速均等于第二预设转速时,发送使电驱动压缩机的转速为零的指令以及吸合电磁离合器的指令。
可选地,参考图13,该切换控制模块230还可以包括:第二电驱动压缩机停止运转指令发送子模块236b,用于当在电驱动压缩机以第二预设转速运转的第二预设时间内没有获取到皮带轮的转速时,在第二预设时间期满时发送使电驱动压缩机停止运转的指令。
可选地,参考图13,切换指令发送模块220可包括:第二皮带轮转速获取指令发送子模块223b,用于在当前正在运转的压缩机是机械驱动压缩机时发送获取皮带轮的转速 的指令;以及第二电驱动压缩机启动指令发送子模块224b,用于在获取到皮带轮的转速之后,发送使电驱动压缩机启动并以所获取的皮带轮转速运转的指令。
可选地,参考图13,切换控制模块230可包括:第四转速获取子模块233b,用于在当前正在运转的压缩机是机械驱动压缩机时获取电驱动压缩机的转速和皮带轮的转速;以及第二电磁离合器断开指令发送子模块234b,用于在所获取的电驱动压缩机的转速等于所获取的皮带轮转速时,发送断开电磁离合器的指令;以及发动机停止运转指令发送子模块235b,用于在电磁离合器断开之后,发送发动机停止运转指令。
可选地,如图15所示,该装置还包括:显示指令发送模块240,用于发送显示关于机械驱动压缩机和电驱动压缩机已切换的指令。
可选地,该装置是空调控制系统,即ACCS。
根据本公开的另一个实施方式,双压缩机切换控制装置200的结构与图11所示的结构类似,包括:接收模块210,用于接收动力电池的电量信息;切换指令发送模块220,用于基于电量信息发送切换指令,切换指令用于指示在机械驱动压缩机和电驱动压缩机之间进行切换的方式;以及切换控制模块230,用于在当前正在运转的压缩机的驱动力被切断并保持惯性运转以及提供了用于当前未运转的压缩机的驱动力时,在机械驱动压缩机的皮带轮的转速和电驱动压缩机的转速相同或小于预设值时,发送电磁离合器状态改变指令,以使电磁离合器的状态改变来切换机械驱动压缩机和电驱动压缩机。
可选地,参考图14,切换指令发送模块220可包括:第一切换指令发送子模块221c,用于在当前正在运转的压缩机是电驱动压缩机时发送发动机启动指令和电驱动压缩机关闭指令。
可选地,切换指令发送模块220还包括:预设转速发送子模块(未示出),用于在第一切换指令发送子模块221c发送发动机启动指令和电驱动压缩机关闭指令之前,发送使电驱动压缩机以第三预设转速运转的指令,第三预设转速低于电驱动压缩机的当前转速;以及转速信息接收子模块(未示出),用于接收电驱动压缩机以第三预设转速运转的信息,这样在电驱动压缩机以第三预设转速运转之后,第一切换指令发送子模块221c就可以发送发动机启动指令和电驱动压缩机关闭指令。
可选地,参考图14,切换控制模块230可包括:第五转速获取子模块231c,用于在当前正在运转的压缩机是电驱动压缩机时获取电驱动压缩机的转速和皮带轮的转速;以及电磁离合器吸合指令发送子模块232c,用于在电驱动压缩机的转速和皮带轮的转速相同时,发送吸合电磁离合器的指令。
可选地,参考图14,切换指令发送模块220可包括:第二切换指令发送子模块222c,用于在当前正在运转的压缩机是机械驱动压缩机时发送电驱动压缩机启动指令和发动机停止运转指令。
可选地,参考图14,切换控制模块230可包括:第六转速获取子模块233c,用于在当前正在运转的压缩机是机械驱动压缩机时获取电驱动压缩机的转速和皮带轮的转速;以及第三电磁离合器断开指令发送子模块234c,用于在电驱动压缩机的转速和皮带 轮的转速相同时,发送断开电磁离合器的指令。
可选地,参考图15,该装置还包括:显示指令发送模块240,用于发送显示关于机械驱动压缩机和电驱动压缩机已切换的指令。
可选地,该装置是空调控制系统,即ACCS。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图16所示,本公开还提供一种双驱压缩机切换控制系统300,其中双驱压缩机包括电驱动压缩机和机械驱动压缩机,该系统包括:
动力电池电量检测装置310,用于检测动力电池的电量信息,该装置可以是车辆的BMS,BMS检测到动力电池的电量信息后,发送信号给ACCS和ECM以进行后续操作;双驱压缩机切换控制装置200,该装置使用本公开中提供的双驱压缩机切换控制装置,而且该双驱压缩机切换控制装置可以是车辆的ACCS;引擎控制装置320,用于在双驱压缩机切换控制装置的控制下控制发动机的动作,以便控制发动机带动皮带轮的转速,该装置可以是车辆的ECM;转速检测装置330,用于检测所皮带轮的转速和电驱动压缩机的转速,其中转速检测装置通过以下方式之一来检测皮带轮的转速和电驱动压缩机的转速:(1)通过转速检测传感器来检测;以及(2)通过采集三相电动势并然后基于采集的三相电动势进行计算来检测。传感器检测通过能够检测速度的传感器来进行检测,比如旋转变压器、霍尔传感器,这些传感器都可以直接采集出具体的转速,并将转速信息发送至切换控制装置。无传感器检测可以通过采集三相电动势来计算具体的转速值,U、V、W分别代表压缩机三相电路的电压值,电机转速的不同会导致三相电的电压值不同,车上的电机三相电压值都是在几百伏左右,而切换控制装置可采集电压范围在0~5V之间,可以通过电阻组合进行比例分压,使切换装置采集到电机工作的三相电压。然后再进行算法处理,把具体的转速计算出来;电磁离合器状态改变装置340,用于基于电磁离合器状态改变指令来改变电磁离合器的状态,其中,电磁离合器状态改变装置可以是车辆的ECM或ACC。
此外,双驱压缩机切换控制系统还可以包括显示装置350,用于显示关于机械驱动压缩机和电驱动压缩机已切换的信息,该显示装置可以是车辆的INS,INS可以显示例如“电量充足,制冷需求已停止发动机”,“电量不足,制冷需求已启动发动机”等。
另外,在如上描述的根据本公开实施例的方法、装置和系统中,第一预设转速、第二预设转速、第三预设转速可以相同,也可以不同,第一预设时间和第二预设时间可以相同或不同。
需要说明的是,第一皮带轮转速获取指令发送子模块223a和第二皮带轮转速获取指令发送子模块223b可以是单独的模块,也可以是集成在一起的;第一转速获取子模块231a、第二转速获取子模块、第三转速获取子模块231b、第四转速获取子模块233b、第五转速获取子模块231c和第六转速获取子模块233c可以是单独的模块,也可以是集成在一起的;第一切换控制子模块232a、第二切换控制子模块和第三切换控制子模块 232b可以是单独的模块,也可以是集成在一起的;第一电磁离合器断开指令发送子模块233a、第二电磁离合器断开指令发送子模块234b和第三电磁离合器断开指令发送子模块234c可以是单独的模块,也可以是集成在一起的。
本公开还提供一种车辆,该车辆包括上述的双驱压缩机切换控制系统。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (49)

  1. 一种双驱压缩机切换控制方法,所述双驱压缩机包括电驱动压缩机和机械驱动压缩机,其特征在于,该方法包括:
    接收动力电池的电量信息;
    基于所述电量信息发送切换指令,所述切换指令用于指示在所述机械驱动压缩机和所述电驱动压缩机之间进行切换的方式;以及
    在压缩机之间进行切换时,在当前正在运转的压缩机未完全停止运转之前,在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令,以使所述电磁离合器的状态改变来切换所述机械驱动压缩机和所述电驱动压缩机。
  2. 根据权利要求1所述的方法,其特征在于,在当前正在运转的压缩机是电驱动压缩机时,所述基于电量信息发送切换指令包括:
    发送使所述电驱动压缩机以预设下降速率降低转速的指令;以及
    发送发动机启动指令。
  3. 根据权利要求2所述的方法,其特征在于,所述在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令包括:
    获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    在所述电驱动压缩机的转速与所述皮带轮的转速的差值小于等于第一预设值时,发送使所述电驱动压缩机的转速为零的指令以及吸合所述电磁离合器的指令。
  4. 根据权利要求2所述的方法,其特征在于,所述在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令包括:
    获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    在所述电驱动压缩机的转速和所述皮带轮的转速相等时,发送使所述电驱动压缩机的转速为零的指令以及吸合所述电磁离合器的指令。
  5. 根据权利要求3或4所述的方法,其特征在于,该方法还包括:
    当在从所述电驱动压缩机的转速下降至第一预设转速开始计时的第一预设时间内没有获取到所述皮带轮的转速时,在所述第一预设时间期满时发送使所述电驱动压缩机停止运转的指令。
  6. 根据权利要求1所述的方法,其特征在于,在当前正在运转的压缩机是机械驱动压缩机时,所述基于电量信息发送切换指令包括:
    发送获取所述皮带轮的转速的指令;以及
    基于所获取的皮带轮的转速获取启动所述电驱动压缩机所需的启动电流。
  7. 根据权利要求6所述的方法,其特征在于,所述在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令包括:
    发送断开所述电磁离合器的指令;以及
    发送使所述电驱动压缩机以所述启动电流启动的指令。
  8. 根据权利要求1-7中任意一项所述的方法,其特征在于,在所述基于所述电量信息发送切换指令之后,该方法还包括:
    发送显示所述机械驱动压缩机和所述电驱动压缩机已切换的指令。
  9. 一种双压缩机切换控制方法,所述双压缩机包括电驱动压缩机和机械驱动压缩机,其特征在于,该方法包括:
    接收动力电池的电量信息;
    基于所述电量信息发送切换指令,所述切换指令用于指示在所述机械驱动压缩机和所述电驱动压缩机之间进行切换的方式,而且所述切换指令还用于指示所述电驱动压缩机和所述机械驱动压缩机以相同的目标转速运转;以及
    在压缩机之间进行切换时,在当前正在运转的压缩机未完全停止运转之前,在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速均达到所述目标转速时,发送电磁离合器状态改变指令,以使所述电磁离合器的状态改变来切换所述机械驱动压缩机和所述电驱动压缩机。
  10. 根据权利要求9所述的方法,其特征在于,在当前正在运转的压缩机是电驱动压缩机时,所述基于电量信息发送切换指令包括:
    发送使所述电驱动压缩机以第二预设转速运转的指令,所述第二预设转速低于所述电驱动压缩机的当前转速;以及
    发送使所述皮带轮以所述第二预设转速运转的指令。
  11. 根据权利要求10所述的方法,其特征在于,所述在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速均达到所述第二预设转速时,发送电磁离合器状态改变指令包括:
    获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    在所述电驱动压缩机的转速和所述皮带轮的转速均等于所述第二预设转速时,发送使所述电驱动压缩机的转速为零的指令以及吸合所述电磁离合器的指令。
  12. 根据权利要求11所述的方法,其特征在于,该方法还包括:
    当在所述电驱动压缩机以所述第二预设转速运转的第二预设时间内没有获取到所述皮带轮的转速时,在所述第二预设时间期满时发送使所述电驱动压缩机停止运转的指令。
  13. 根据权利要求9所述的方法,其特征在于,在当前正在运转的压缩机是机械驱动压缩机时,所述基于电量信息发送切换指令包括:
    发送获取所述皮带轮的转速的指令;以及
    在获取到所述皮带轮的转速之后,发送使所述电驱动压缩机启动并以所获取的皮带轮转速运转的指令。
  14. 根据权利要求13所述的方法,其特征在于,所述在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速均达到所述目标转速时,发送电磁离合器状态改变指令包括:
    获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    在所获取的电驱动压缩机的转速等于所获取的皮带轮转速时,发送断开所述电磁离合器的指令;以及
    在所述电磁离合器断开之后,发送发动机停止运转指令。
  15. 根据权利要求9-14中任意一项所述的方法,其特征在于,在所述基于电量信息发送切换指令之后,该方法还包括:
    发送显示所述机械驱动压缩机和所述电驱动压缩机已切换的指令。
  16. 一种双压缩机切换控制方法,所述双压缩机包括电驱动压缩机和机械驱动压缩机,其特征在于,该方法包括:
    接收动力电池的电量信息;
    基于所述电量信息发送切换指令,所述切换指令用于指示在所述机械驱动压缩机和所述电驱动压缩机之间进行切换的方式;以及
    在当前正在运转的压缩机的驱动力被切断并保持惯性运转以及提供了用于当前未运转的压缩机的驱动力时,在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速相同时,发送电磁离合器状态改变指令,以使所述电磁离合器的状态改变来切换所述机械驱动压缩机和所述电驱动压缩机。
  17. 根据权利要求16所述的方法,其特征在于,在当前正在运转的压缩机是电驱动压缩机时,所述基于电量信息发送切换指令包括:
    发送发动机启动指令和电驱动压缩机关闭指令。
  18. 根据权利要求17所述的方法,其特征在于,在所述发送发动机启动指令和电驱动压缩机关闭指令之前,所述基于电量信息发送切换指令还包括:
    发送使所述电驱动压缩机以第三预设转速运转的指令,所述第三预设转速低于所述电驱动压缩机的当前转速;以及
    接收所述电驱动压缩机以所述第三预设转速运转的信息。
  19. 根据权利要求17或18所述的方法,其特征在于,所述在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速相同时,发送电磁离合器状态改变指令包括:
    获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    在所述电驱动压缩机的转速和所述皮带轮的转速相同时,发送吸合所述电磁离合器的指令。
  20. 根据权利要求16所述的方法,其特征在于,在当前正在运转的压缩机是机械驱动压缩机时,所述基于电量信息发送切换指令包括:
    发送电驱动压缩机启动指令和发动机停止运转指令。
  21. 根据权利要求20所述的方法,其特征在于,所述在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速相同时,发送电磁离合器状态改变指令包括:
    获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    在所述电驱动压缩机的转速和所述皮带轮的转速相同时,发送断开所述电磁离合器的指令。
  22. 根据权利要求16-21中任意一项所述的方法,其特征在于,在所述基于电量信息发送切换指令之后,该方法还包括:
    发送显示所述机械驱动压缩机和所述电驱动压缩机已切换的指令。
  23. 一种双驱压缩机切换控制装置,所述双驱压缩机包括电驱动压缩机和机械驱动压缩机,其特征在于,该装置包括:
    接收模块,用于接收动力电池的电量信息;
    切换指令发送模块,用于基于所述电量信息发送切换指令,所述切换指令用于指示在所述机械驱动压缩机和所述电驱动压缩机之间进行切换的方式;以及
    切换控制模块,用于在当前正在运转的压缩机未完全停止运转之前,在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速满足预设条件时,发送电磁离合器状态改变指令,以使所述电磁离合器的状态改变来切换所述机械驱动压缩机和所述电驱动压缩机。
  24. 根据权利要求23所述的装置,其特征在于,所述切换指令发送模块包括:
    降转速指令发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,发送使所述电驱动压缩机以预设下降速率降低转速的指令;以及
    发动机启动指令发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,发送发动机启动指令。
  25. 根据权利要求24所述的装置,其特征在于,所述切换控制模块包括:
    第一转速获取子模块,用于获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    第一切换控制子模块,用于在当前正在运转的压缩机是电驱动压缩机时,在所述电驱动压缩机的转速与所述皮带轮的转速的差值小于等于第一预设值时,发送使所述电驱动压缩机的转速为零的指令以及吸合所述电磁离合器的指令。
  26. 根据权利要求24所述的装置,其特征在于,所述切换控制模块包括:
    第二转速获取子模块,用于获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    第二切换控制子模块,用于在当前正在运转的压缩机是电驱动压缩机时,在所述电驱动压缩机的转速和所述皮带轮的转速相等时,发送使所述电驱动压缩机的转速为零的指令以及吸合所述电磁离合器的指令。
  27. 根据权利要求25或26所述的装置,其特征在于,该装置还包括:
    第一电驱动压缩机停止运转指令发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,当在从所述电驱动压缩机的转速下降至第一预设转速开始计时的预设时间内没有获取到所述皮带轮的转速时,在所述第一预设时间期满时发送使所述电驱动压缩机停止运转的指令。
  28. 根据权利要求23所述的装置,其特征在于,所述切换指令发送模块包括:
    第一皮带轮转速获取指令发送子模块,用于在当前正在运转的压缩机是机械驱动压缩机时,发送获取所述皮带轮的转速的指令;以及
    电驱动压缩机启动电流获取子模块,用于在当前正在运转的压缩机是机械驱动压缩机时,基于所获取的皮带轮的转速获取启动所述电驱动压缩机所需的启动电流。
  29. 根据权利要求28所述的装置,其特征在于,所述切换控制模块包括:
    第一电磁离合器断开指令发送子模块,用于发送断开所述电磁离合器的指令;以及
    第一电驱动压缩机启动指令发送子模块,用于发送使所述电驱动压缩机以所述启动电流启动的指令。
  30. 根据权利要求23-29中任意一项所述的装置,其特征在于,该装置还包括:
    显示指令发送模块,用于发送显示所述机械驱动压缩机和所述电驱动压缩机已切换的指令。
  31. 一种双压缩机切换控制装置,所述双压缩机包括电驱动压缩机和机械驱动压缩机,其特征在于,该装置包括:
    接收模块,用于接收动力电池的电量信息;
    切换指令发送模块,用于基于所述电量信息发送切换指令,所述切换指令用于指示在所述机械驱动压缩机和所述电驱动压缩机之间进行切换的方式,而且所述切换指令还用于指示所述电驱动压缩机和所述机械驱动压缩机以相同的目标转速运转;以及
    切换控制模块,用于在当前正在运转的压缩机未完全停止运转之前,在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速均达到所述目标转速时,发送电磁离合器状态改变指令,以使所述电磁离合器的状态改变来切换所述机械驱动压缩机和所述电驱动压缩机。
  32. 根据权利要求31所述的装置,其特征在于,所述切换指令发送模块包括:
    预设目标转速发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,发送使所述电驱动压缩机以第二预设转速运转的指令,所述第二预设转速低于所述电驱动压缩机的当前转速;以及
    皮带轮转速发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,发送使所述皮带轮以所述第二预设转速运转的指令。
  33. 根据权利要求32所述的装置,其特征在于,所述切换控制模块包括:
    第三转速获取子模块,用于在当前正在运转的压缩机是电驱动压缩机时,获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    第三切换控制子模块,用于在当前正在运转的压缩机是电驱动压缩机时,在所述电驱动压缩机的转速与所述皮带轮的转速均等于所述第二预设转速时,发送使所述电驱动压缩机的转速为零的指令以及吸合所述电磁离合器的指令。
  34. 根据权利要求33所述的装置,其特征在于,该装置还包括:
    第二电驱动压缩机停止运转指令发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,当在所述电驱动压缩机以所述第二预设转速运转的第二预设时间内没有获取到所述皮带轮的转速时,在所述第二预设时间期满时发送使所述电驱动压缩机停止运转的指令。
  35. 根据权利要求31所述的装置,其特征在于,所述切换指令发送模块包括:
    第二皮带轮转速获取指令发送子模块,用于在当前正在运转的压缩机是机械驱动压缩机时,发送获取所述皮带轮的转速的指令;以及
    第二电驱动压缩机启动指令发送子模块,用于在当前正在运转的压缩机是机械驱动压缩机时,在获取到所述皮带轮的转速之后,发送使所述电驱动压缩机启动并以所获取的皮带轮转速运转的指令。
  36. 根据权利要求35所述的装置,其特征在于,所述切换控制模块包括:
    第四转速获取子模块,用于获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    第二电磁离合器断开指令发送子模块,用于在当前正在运转的压缩机是机械驱动压缩机时,在所获取的电驱动压缩机的转速等于所获取的皮带轮转速时,发送断开所述电磁离合器的指令;以及
    发动机停止运转指令发送子模块,用于在当前正在运转的压缩机是机械驱动压缩机时,在所述电磁离合器断开之后,发送发动机停止运转指令。
  37. 根据权利要求31-36中任意一项所述的装置,其特征在于,该装置还包括:
    显示指令发送子模块,用于发送显示所述机械驱动压缩机和所述电驱动压缩机已切换的指令。
  38. 一种双压缩机切换控制装置,所述双压缩机包括电驱动压缩机和机械驱动压缩机,其特征在于,该装置包括:
    接收模块,用于接收动力电池的电量信息;
    切换指令发送模块,用于基于所述电量信息发送切换指令,所述切换指令用于指示在所述机械驱动压缩机和所述电驱动压缩机之间进行切换的方式;以及
    切换控制模块,用于在当前正在运转的压缩机的驱动力被切断并保持惯性运转以及提供了用于当前未运转的压缩机的驱动力时,在所述机械驱动压缩机的皮带轮的转速和所述电驱动压缩机的转速相同时,发送电磁离合器状态改变指令,以使所述电磁离合器的状态改变来切换所述机械驱动压缩机和所述电驱动压缩机。
  39. 根据权利要求38所述的装置,其特征在于,所述切换指令发送模块包括:
    第一切换指令发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,发送发动机启动指令和电驱动压缩机关闭指令。
  40. 根据权利要求39所述的装置,其特征在于,所述切换指令发送模块还包括:
    预设转速发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,在所述第一切换指令发送子模块发送所述发动机启动指令和所述电驱动压缩机关闭指令之前,发送使所述电驱动压缩机以第三预设转速运转的指令,所述第三预设转速低于所述电驱动压缩机的当前转速;以及
    转速信息接收子模块,用于在当前正在运转的压缩机是电驱动压缩机时,接收所述电驱动压缩机以所述第三预设转速运转的信息。
  41. 根据权利要求39或40所述的装置,其特征在于,所述切换控制模块包括:
    第五转速获取子模块,用于获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    电磁离合器吸合指令发送子模块,用于在当前正在运转的压缩机是电驱动压缩机时,在所述电驱动压缩机的转速和所述皮带轮的转速相同时,发送吸合所述电磁离合器的指令。
  42. 根据权利要求38所述的装置,其特征在于,所述切换指令发送模块包括:
    第二切换指令发送子模块,用于在当前正在运转的压缩机是机械驱动压缩机时,发送电驱动压缩机启动指令和发动机停止运转指令。
  43. 根据权利要求42所述的装置,其特征在于,所述切换控制模块包括:
    第六转速获取子模块,用于获取所述电驱动压缩机的转速和所述皮带轮的转速;以及
    第三电磁离合器断开指令发送子模块,用于在当前正在运转的压缩机是机械驱动压缩机时,在所述电驱动压缩机的转速和所述皮带轮的转速相同时,发送断开所述电磁离合器的指令。
  44. 根据权利要求38-43中任意一项所述的装置,其特征在于,该装置还包括:
    显示指令发送子模块,用于发送显示所述机械驱动压缩机和所述电驱动压缩机已切换的指令。
  45. 根据权利要求23至44中任意一项所述的装置,其特征在于,所述装置是空调控制系统。
  46. 一种双驱压缩机切换控制系统,所述双驱压缩机包括电驱动压缩机和机械驱动压缩机,其特征在于,该系统包括:
    动力电池电量检测装置,用于检测动力电池的电量信息;
    根据权利要求23至44中任意一项所述的双驱压缩机切换控制装置;
    引擎控制装置,用于在所述双驱压缩机切换控制装置的控制下控制发动机的动作,以便控制所述发动机带动所述皮带轮的转速;
    转速检测装置,用于检测所述皮带轮的转速和所述电驱动压缩机的转速;以及
    电磁离合器状态改变装置,用于基于所述电磁离合器状态改变指令来改变所述电磁离合器的状态。
  47. 根据权利要求46所述的系统,其特征在于,该系统还包括显示装置,用于显示所述机械驱动压缩机和所述电驱动压缩机已切换的信息。
  48. 根据权利要求46所述的系统,其特征在于,所述转速检测装置通过以下方式之一来检测所述皮带轮的转速和所述电驱动压缩机的转速:
    (1)通过转速检测传感器来检测;以及
    (2)通过采集三相电动势然后基于采集的三相电动势进行计算来检测。
  49. 一种车辆,其特征在于,该车辆包括权利要求46至48中任意一项所述的系统。
PCT/CN2017/102322 2016-09-21 2017-09-19 双驱压缩机切换控制方法、控制装置、控制系统以及车辆 WO2018054293A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610840548.6A CN107839438B (zh) 2016-09-21 2016-09-21 双驱压缩机切换控制方法、控制装置、控制系统以及车辆
CN201610840548.6 2016-09-21
CN201610839318.8A CN107839427B (zh) 2016-09-21 2016-09-21 双驱压缩机切换控制方法、控制装置、控制系统以及车辆
CN201610839318.8 2016-09-21
CN201610839319.2 2016-09-21
CN201610839319.2A CN107839437B (zh) 2016-09-21 2016-09-21 双驱压缩机切换控制方法、控制装置、控制系统以及车辆

Publications (1)

Publication Number Publication Date
WO2018054293A1 true WO2018054293A1 (zh) 2018-03-29

Family

ID=61689365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102322 WO2018054293A1 (zh) 2016-09-21 2017-09-19 双驱压缩机切换控制方法、控制装置、控制系统以及车辆

Country Status (1)

Country Link
WO (1) WO2018054293A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113700770A (zh) * 2021-07-30 2021-11-26 神龙汽车有限公司 一种发动机附件驱动系统二级变速的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2911553Y (zh) * 2006-05-22 2007-06-13 上海华普汽车有限公司 双驱动车用空调压缩机
US20090021202A1 (en) * 2007-04-20 2009-01-22 Marco Palma Motor control circuit and method with mechanical angle reconstruction
CN201568256U (zh) * 2009-12-15 2010-09-01 中国三江航天工业集团公司特种车辆技术中心 一种车载空调压缩机双动力驱动装置
CN102632802A (zh) * 2012-05-03 2012-08-15 陕西航天动力高科技股份有限公司 一种车用压缩机的双驱动装置
CN204488420U (zh) * 2014-12-30 2015-07-22 郑州宇通客车股份有限公司 一种混合动力车辆及其双动力驱动空调压缩机的空调系统
CN204877951U (zh) * 2015-08-18 2015-12-16 浙江春晖空调压缩机有限公司 一种电动和机械双驱动制冷压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2911553Y (zh) * 2006-05-22 2007-06-13 上海华普汽车有限公司 双驱动车用空调压缩机
US20090021202A1 (en) * 2007-04-20 2009-01-22 Marco Palma Motor control circuit and method with mechanical angle reconstruction
CN201568256U (zh) * 2009-12-15 2010-09-01 中国三江航天工业集团公司特种车辆技术中心 一种车载空调压缩机双动力驱动装置
CN102632802A (zh) * 2012-05-03 2012-08-15 陕西航天动力高科技股份有限公司 一种车用压缩机的双驱动装置
CN204488420U (zh) * 2014-12-30 2015-07-22 郑州宇通客车股份有限公司 一种混合动力车辆及其双动力驱动空调压缩机的空调系统
CN204877951U (zh) * 2015-08-18 2015-12-16 浙江春晖空调压缩机有限公司 一种电动和机械双驱动制冷压缩机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113700770A (zh) * 2021-07-30 2021-11-26 神龙汽车有限公司 一种发动机附件驱动系统二级变速的控制方法
CN113700770B (zh) * 2021-07-30 2023-08-29 神龙汽车有限公司 一种发动机附件驱动系统二级变速的控制方法

Similar Documents

Publication Publication Date Title
US8242725B2 (en) Method for operating sensorless and brushless motors
JP3506457B2 (ja) 空気調和機におけるコンプレッサの起動制御方法
CN100366902C (zh) 电动压缩机的驱动装置
EP2873865B1 (en) Motor-driven compressor
US10174980B2 (en) Method for braking a compressor, compressor of a refrigeration appliance, an air conditioning appliance or a heat pump, and refrigeration appliance, air conditioning appliance or heat pump having the compressor
WO2013171984A1 (ja) モータ制御システム、モータ制御装置およびブラシレスモータ
JP2003335126A (ja) 車両用空気調和機
WO2018054293A1 (zh) 双驱压缩机切换控制方法、控制装置、控制系统以及车辆
JP4069328B2 (ja) 冷凍サイクル装置
JP4686242B2 (ja) 電動圧縮機の制御方法および制御装置
CN107839427B (zh) 双驱压缩机切换控制方法、控制装置、控制系统以及车辆
JP2004011473A (ja) スクロール型電動圧縮機の制御装置
CN106440255A (zh) 风机控制方法、风机控制系统、风机及空调
WO2019097965A1 (ja) モータ制御装置及びこれを備えた電動圧縮機、移動体用の空気調和機、モータ制御方法及びモータ制御プログラム
US20040184926A1 (en) Control device for hybrid compressor
EP2447535B1 (en) Controller for a motor-driven compressor
JP2005207362A (ja) 電動圧縮機の駆動装置
JP2007162572A (ja) 電動圧縮機
CN107839438B (zh) 双驱压缩机切换控制方法、控制装置、控制系统以及车辆
EP1808317A2 (en) Method for controlling compressor clutch
CN107839437B (zh) 双驱压缩机切换控制方法、控制装置、控制系统以及车辆
US11628729B2 (en) Inverter controller and on-vehicle fluid machine
JP2016101827A (ja) 車両用エアコン制御装置
JP2737892B2 (ja) 圧縮機などの電動機器の起動の制御方法と装置
KR20150099907A (ko) 차량 냉방장치의 하이브리드 압축기 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852361

Country of ref document: EP

Kind code of ref document: A1