WO2018053769A1 - 一种飞行控制方法、装置及智能终端 - Google Patents

一种飞行控制方法、装置及智能终端 Download PDF

Info

Publication number
WO2018053769A1
WO2018053769A1 PCT/CN2016/099769 CN2016099769W WO2018053769A1 WO 2018053769 A1 WO2018053769 A1 WO 2018053769A1 CN 2016099769 W CN2016099769 W CN 2016099769W WO 2018053769 A1 WO2018053769 A1 WO 2018053769A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
route
route data
prompt
control interface
Prior art date
Application number
PCT/CN2016/099769
Other languages
English (en)
French (fr)
Inventor
郭灼
谢卓
杨泽波
李文林
王磊
王定
李皓宇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202111320660.4A priority Critical patent/CN114115337A/zh
Priority to CN201680013429.1A priority patent/CN107636551B/zh
Priority to PCT/CN2016/099769 priority patent/WO2018053769A1/zh
Publication of WO2018053769A1 publication Critical patent/WO2018053769A1/zh
Priority to US16/361,659 priority patent/US20190221128A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present invention relates to the field of aircraft application technologies, and in particular, to a flight control method, device, and intelligent terminal.
  • the Unmanned Aerial Vehicle is an aircraft that uses a radio remote control device and a self-contained program control device to complete the flight control.
  • the UAV does not require the pilot to fly the aircraft in the cabin, and the entire flight process is controlled by the electronic device. It is completed, so it is widely used in the fields of investigation, disaster relief, observation of wildlife, surveying, news reporting, power inspection and other fields.
  • the embodiment of the invention provides a flight control method, device and intelligent terminal, which can control at least two aircraft at the same time.
  • an embodiment of the present invention provides a flight control method, including:
  • the intelligent terminal acquires at least two route data
  • the intelligent terminal associates at least one aircraft for each route data according to preset information of at least two aircrafts;
  • the smart terminal transmits each route data to at least one aircraft associated with the route data according to the association result.
  • the embodiment of the present invention further provides a flight control device, which is applied to a smart terminal, and includes:
  • An obtaining module configured to acquire at least two route data
  • Correlation processing module which is used for each navigation according to preset information of at least two aircraft
  • the line data is associated with at least one aircraft
  • a sending module configured to separately send each route data to at least one aircraft associated with the route data according to the association result.
  • an embodiment of the present invention further provides an intelligent terminal, where the smart terminal includes a user interface and a processor, the user interface is configured to process human-computer interaction data, and the processor is configured to acquire at least two The route data is associated with at least one aircraft for each route data according to the preset information of at least two aircrafts; and according to the correlation result, each route data is separately sent to at least one aircraft associated with the route data.
  • the smart terminal includes a user interface and a processor
  • the user interface is configured to process human-computer interaction data
  • the processor is configured to acquire at least two The route data is associated with at least one aircraft for each route data according to the preset information of at least two aircrafts; and according to the correlation result, each route data is separately sent to at least one aircraft associated with the route data.
  • the embodiment of the present invention can send different route data to multiple aircrafts as needed, and the route data may be multiple route data obtained by splitting one main route data, or may be multiple original independent route data.
  • the embodiment of the invention realizes the control of the one-to-many aircraft for the aircraft, improves the flight efficiency, and satisfies the user's automation and intelligent demand for the control of multiple aircrafts.
  • FIG. 1 is a schematic structural view of a flight control system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of another flight control system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of still another flight control system according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a flight control method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of another flight control method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a flight control device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an intelligent terminal according to an embodiment of the present invention.
  • one intelligent terminal can control multiple aircrafts separately or simultaneously, and send flight instructions to enable multiple aircraft to perform flight missions.
  • the smart terminal can be a smart terminal with wireless or wired communication functions such as a personal computer, a smart phone, and a tablet computer.
  • the intelligent terminal may respectively allocate at least one aircraft for each route data, and then send each route data to the allocated multiple aircrafts simultaneously or sequentially to realize flight control of multiple aircrafts at the same time.
  • FIG. 1 is a schematic structural diagram of a flight control system according to an embodiment of the present invention, including an intelligent terminal, a broadcast device, and a plurality of aircraft.
  • the smart terminal can control the plurality of aircraft through the broadcast device.
  • the smart terminal can connect to a broadcast device through the USB data line, and broadcast the respective route data to the corresponding aircraft through the broadcast device.
  • the route data and the aircraft identifier associated with the route data may be encapsulated into a broadcast message, and after the aircraft listens to each broadcast message, the aircraft compares the aircraft identifier in the broadcast message with the identifier of the aircraft itself, if the same, Extracting the route data in the broadcast message and executing the route data; if not, discarding the broadcast message.
  • FIG. 2 it is a schematic structural diagram of another flight control system according to an embodiment of the present invention, which includes an intelligent terminal, a plurality of remote controllers, and multiple aircrafts, and each remote controller can control one aircraft.
  • the smart terminal is connected to each remote controller by wireless transmission or by wired transmission of a USB data line, and sends commands such as route data to each remote controller, and then sent by the remote controller to the aircraft that can be controlled by the remote controller.
  • the intelligent terminal associates the aircraft with each route data, and then sends the route data to the corresponding remote controller for final transmission to the aircraft.
  • FIG. 3 it is a schematic structural diagram of still another flight control system according to an embodiment of the present invention, including an intelligent terminal and a plurality of aircrafts, and the intelligent terminal can directly communicate with each aircraft by means of wireless transmission, for example, the smart
  • the terminal itself is configured with a WiFi module, and multiple aircraft can access the WiFi module and receive commands such as route data sent by the intelligent terminal.
  • intersections between the routes indicated by the route data executed by the aircraft at which collisions may occur between different aircraft.
  • the intersection point refers to the route indicated by the two route data, the distance between the two waypoints is within a certain distance threshold, and the aircraft respectively performing the route data may fly to the corresponding waypoint at the same time,
  • the two waypoints are the intersections, or the dangerous locations.
  • FIG. 4 is a schematic flowchart of a flight control method according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be performed by an intelligent terminal.
  • the smart terminal may include a personal computer or a smart phone.
  • the method includes the following steps.
  • the smart terminal acquires at least two route data.
  • the at least two route data may be two or more route data obtained by the user on the smart terminal by editing the waypoint configuration.
  • the smart terminal includes a touch screen, and a responsive user interaction interface is displayed on the touch screen. The user completes the dot operation on the map displayed on the interface, and each point serves as a waypoint of the route, and sequentially connects each waypoint to obtain a route, and the route data is mainly Includes data such as coordinates of waypoints.
  • the at least two route data may also be sent from the other smart terminal to the smart terminal, for example, through multiple route data generated by other smart terminals with a large screen display, and sent to the smart phone.
  • the intelligent terminal such as an intelligent wearable device.
  • the smart terminal associates at least one aircraft for each route data according to preset information of at least two aircraft.
  • Information about an aircraft that has established a connection with the smart terminal or an aircraft that has been registered in the smart terminal is recorded in the smart terminal.
  • the information of the at least two aircrafts may include: an identification of each aircraft, a communication identifier of a remote controller corresponding to each aircraft, or a communication identifier of a wireless communication module provided in each aircraft.
  • the information of the aircraft mainly serves to distinguish between different aircraft and establish a communication connection between the intelligent terminal and different aircraft.
  • a user interaction interface can be provided to the user, facilitating the user to select an aircraft for each route.
  • the smart terminal can also make its own selection. There may be differences in the functions between the aircraft, and the functions registered in the smart terminals also differ. For example, some aircraft can perform longer routes, but the quality of the pictures taken by functional devices such as cameras may be relatively poor. Some aircraft have better shooting quality.
  • the intelligent terminal can intelligently select an aircraft for a certain route data, so as to best perform the flight task corresponding to the route data.
  • the relationship between the route data and the related information of the aircraft may be recorded in the form of a mapping table, for example, mapping storage on the mapping table. Route data and aircraft identification.
  • the smart terminal sends each route data to at least one aircraft associated with the route data according to the association result. According to the association relationship, the intelligent terminal can transmit the route data to the corresponding aircraft.
  • the sending, by the S403, the respective route data to the at least one aircraft associated with the route data may include: the smart terminal transmitting the acquired at least two route data to the route broadcast module, to trigger The route broadcast module broadcasts the at least two route data to at least two aircraft.
  • the route broadcast module is a separate broadcast device that broadcasts the route data included in each message and the aircraft identification associated with the route data. After the aircraft listens to the broadcasted message, the aircraft identifier is compared with its own identity. If it is the same, the corresponding route data in the broadcast message can be extracted and executed.
  • the sending, by the S403, the respective route data to the at least one aircraft associated with the route data may include: the smart terminal respectively determining a remote controller corresponding to each aircraft; The determined remote controller transmits route data associated with the aircraft corresponding to the remote controller to cause the remote controller to control the flight of the corresponding aircraft based on the received route data. That is to say, the mapping table can store the relationship between the route data and the remote controller identifier of the aircraft.
  • the smart terminal finds the identifier of the remote controller associated with the route data, for example, the hardware address of the remote controller, and conveniently sends the route data directly based on the identifier of the remote controller.
  • the operation of transmitting the corresponding route data to the remote controller of the station can be completed.
  • the corresponding aircraft is controlled by each remote controller to perform a corresponding flight task.
  • the sending, by the S403, the respective route data to the at least one aircraft associated with the route data may include: the smart terminal respectively transmitting the corresponding to the flight control module configured in the aircraft associated with the route data.
  • Route data to enable the flight control module to control the flight of the corresponding aircraft based on the received route data.
  • the mapping table can store the association relationship between the route data and the communication module identifier of the aircraft.
  • the smart terminal finds the identifier of the communication module associated with the route data, such as the Bluetooth or WiFi address of the communication module, and conveniently sends the corresponding route data directly to the aircraft based on the identifier of the communication module. Control the corresponding aircraft to perform the corresponding mission.
  • the method of the embodiment of the present invention further includes: if the acquired at least two route data include a symbol
  • the route data that meets the split condition is preset, the route data that meets the split condition is split, and multiple sub-route data is obtained, and the split sub-route data is sent to at least one aircraft;
  • the route data that meets the preset splitting condition means that the length of the route indicated by the route data is greater than a preset length threshold, or the number of waypoints of the route indicated by the route data is greater than a preset number threshold, or with the route data.
  • the remaining capacity of the associated aircraft is less than the amount of power required to complete the route data.
  • the embodiment of the present invention can send different route data to multiple aircrafts as needed, and the route data may be multiple route data obtained by splitting one main route data, or may be multiple original independent route data.
  • the embodiment of the invention realizes the control of the one-to-many aircraft for the aircraft, improves the flight efficiency, and satisfies the user's automation and intelligent demand for the control of multiple aircrafts.
  • FIG. 5 is a schematic flowchart of another flight control method according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be performed by an intelligent terminal.
  • the smart terminal may include a personal computer and an intelligent device.
  • Smart terminals with wireless or wired transmission functions such as mobile phones and smart wearable devices.
  • the method includes the following steps.
  • S501 The smart terminal acquires at least two route data.
  • the smart terminal associates at least one aircraft for each route data according to preset information of at least two aircraft.
  • the smart terminal determines a route location point indicated by each route data, and determines an estimated arrival time value of each route location point; wherein the determining an estimated arrival time value of each route location point includes: The flight speed of the aircraft and the acquired route position point are calculated, and the estimated arrival time value of the aircraft reaching the corresponding route position is calculated.
  • the smart terminal determines, according to the route location point and the estimated arrival time value, whether the dangerous location point is included in the route location point indicated by each route data.
  • the dangerous location point refers to the route represented by the two route data, and the distance between the two waypoints is within a certain distance threshold, and the aircraft respectively performing the route data may fly to the corresponding waypoint at the same time.
  • the two corresponding waypoints on the two routes are dangerous points between each other.
  • the smart terminal triggers the route update processing according to the dangerous location point.
  • the update operation includes modification of the multi-hazard location point coordinates such that the distance between two mutually dangerous location points is greater than a preset threshold.
  • S506 The smart terminal sends each route data to at least one aircraft associated with the route data according to the association result.
  • the S503 to S505 may be performed at a certain time node between the transmission of the route data to the corresponding aircraft in the S506.
  • the S503 to S505 are verification steps. It is also possible that after the aircraft receives the route data, the intelligent terminal will perform a security check on the routes of the multiple aircrafts to ensure that the routes do not have the same height crossing.
  • the system assumes that all routes are executed at the same time, and pushes the position of the aircraft in the air according to the estimated speed and time, and then checks the possibility that the aircraft will reach the same position at the same time; when the inspection finds time and location At the coincident or close point, the smart terminal warns the user that the user can adjust the point at which the crossover (dangerous location point) may be sent. If the route is not executed in a unified time, the user can set the start execution time, and the intelligent terminal will verify the security of the route according to the start execution time.
  • the specific verification mode refers to the above description.
  • S508 The smart terminal detects a route execution state of each aircraft
  • the smart terminal controls the control interface according to a detection result of a route execution state.
  • the intelligent terminal will allow/disallow the user to continue the route related operation according to whether the selected aircraft is still in the same execution state logic.
  • the S509 includes: if the aircraft that does not execute the route data is determined according to the route execution state, sending a first prompt on the control interface, where the first prompt is used to prompt that the execution command cannot be received; Obtaining an identifier of the aircraft that does not execute the route data; issuing a second prompt on the control interface, the second prompt is used to prompt to wait to receive the execution command; if the execution command is received again on the control interface, the acquisition is not performed
  • the aircraft indicated by the identification of the aircraft of the route data Issue an execution instruction. Specifically, when some aircraft routes are not started: the start button is grayed out (first prompt), the aircraft that has started to execute the route is removed, and the route button is enabled (second prompt). After the enable, the user can start again. The command executed.
  • the S509 includes: if the aircraft that does not execute the route data is determined according to the route execution state, sending a third prompt on the control interface, where the third prompt is used to prompt that the flight control command cannot be received; Obtaining an identifier of the aircraft that has executed the route data; issuing a fourth prompt on the control interface, the fourth prompt is for prompting to receive a flight control command for the aircraft; if receiving a flight control command for the aircraft on the control interface, A flight control command is issued to the aircraft indicated by the acquired identification of the aircraft of the executed route data.
  • the pause and end buttons are grayed out (third prompt), remove the aircraft that has not started the execution of the route, and the pause and end route buttons are enabled (fourth prompt). After enabling, the user can Perform a flight of the command to pause and end the command.
  • the S509 includes: if it is determined that there is an aircraft that does not take off according to the route execution state, issuing a fifth prompt on the control interface, where the fifth prompt is used to prompt that the takeoff command for the aircraft cannot be received; Acquiring an aircraft identification of the aircraft that is not taken off; issuing a sixth prompt on the control interface, the sixth prompt is for prompting to receive a takeoff command for the aircraft; if receiving a takeoff command for the aircraft on the control interface, The aircraft indicated by the acquired untaken aircraft identification issues a flight control command.
  • the take-off button is grayed out (fifth prompt), remove the selected aircraft that has taken off, the take-off button is enabled (sixth prompt), after enabling, the user can trigger the aircraft that has not yet taken off to take off.
  • the S509 includes: if it is determined that there is an aircraft that does not take off according to the route execution state, issuing a seventh prompt on the control interface, where the seventh prompt is used to indicate that the return command to the aircraft cannot be received; Obtaining an aircraft identifier of the aircraft that has taken off; issuing an eighth prompt on the control interface, the eighth prompt being used to prompt to receive a return command to the aircraft; if receiving a return command to the aircraft on the control interface, The acquired aircraft indicated by the acquired aircraft logo is issued with a return command.
  • the landing and return buttons are grayed out (the seventh prompt), remove the aircraft that has not taken off, the landing and return button is enabled (eighth prompt), after enabling, the user can control the aircraft that has taken off to return or landing.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores a program, and the stored program is used to execute the flight control method of FIG. 4 or FIG. 5 when executed.
  • the embodiment of the present invention can send different route data to multiple aircrafts as needed, and the route data may be multiple route data obtained by splitting one main route data, or may be multiple original independent route data.
  • the embodiment of the invention realizes the control of the one-to-many aircraft for the aircraft, improves the flight efficiency, and satisfies the user's automation and intelligent demand for the control of multiple aircrafts. It also intelligently detects potential flight safety hazards and ensures flight safety under one-to-many control to a certain extent.
  • FIG. 6 it is a schematic structural diagram of a flight control device according to an embodiment of the present invention.
  • the device in the embodiment of the present invention may be applied to an intelligent terminal.
  • the smart terminal may include a personal computer or a smart phone.
  • Smart terminals with wireless or wired transmission capabilities such as smart wearable devices.
  • the device includes the following modules.
  • the obtaining module 101 is configured to acquire at least two route data.
  • the association processing module 102 is configured to associate at least one aircraft for each route data according to preset information of at least two aircraft.
  • the sending module 103 is configured to send each route data to at least one aircraft associated with the route data according to the association result.
  • the apparatus further includes: a first determining module 104, configured to determine a route location point indicated by each route data, and determine an estimated arrival time value of each route location point.
  • the second determining module 105 is configured to determine, according to the route location point and the estimated arrival time value, whether the dangerous location point is included in the route location point indicated by each route data.
  • the update processing module 106 is configured to trigger a route update process according to the dangerous location point if the dangerous location point is included.
  • the first determining 104 module is specifically configured to calculate an estimated arrival time value of the aircraft arriving at the corresponding route position according to the preset flight speed of the aircraft and the acquired route position point.
  • the sending module 105 is specifically configured to: send the acquired at least two route data to the route broadcast module, to trigger the route broadcast module to broadcast the at least two aircraft to the at least two aircraft Two route data.
  • the sending module 105 is specifically configured to respectively determine a remote controller corresponding to each aircraft, and send route data associated with the aircraft corresponding to the remote controller to the determined remote controller to enable remote control.
  • the aircraft controls the flight of the corresponding aircraft based on the received route data.
  • the sending module 105 is specifically configured to separately send corresponding route data to a flight control module configured in an aircraft associated with the route data, so that the flight control module root The flight of the corresponding aircraft is controlled according to the received route data.
  • the device further includes: a split processing module 107, configured to: if the acquired at least two route data includes route data that meets a preset splitting condition, The route data of the split condition is split and processed to obtain a plurality of sub-route data; in this case, the sending module 103 is further configured to send the split sub-route data to the at least one aircraft; wherein, the preset is met;
  • the route data of the split condition means that the length of the route indicated by the route data is greater than a preset length threshold, or the number of waypoints of the route indicated by the route data is greater than a preset number threshold.
  • the device further includes: the sending module 103 is further configured to: if an execution command is received on the preset control interface, issue an execution instruction to the corresponding aircraft that receives the route data, where The execution instruction is used to trigger each aircraft to execute corresponding route data; and the detection module 108 is configured to detect a route execution state of each aircraft.
  • the control module 109 is configured to control the control interface according to the detection result of the route execution state.
  • control module 109 is specifically configured to: if an aircraft that does not execute route data is determined according to a route execution state, send a first prompt on the control interface, where the a prompt for prompting that the execution command cannot be received; obtaining an identifier of the aircraft that does not execute the route data; issuing a second prompt on the control interface, the second prompt for prompting to receive the execution command; if receiving the control interface again Executing a command to issue an execution instruction to the aircraft indicated by the acquired identifier of the aircraft that does not execute the route data.
  • control module 109 is specifically configured to: if the aircraft that does not execute the route data is determined according to the route execution state, issue a third prompt on the control interface, where the third prompt is used Notifying that the flight control command cannot be received; acquiring the identifier of the aircraft that has executed the route data; issuing a fourth prompt on the control interface, the fourth prompt being used to prompt to receive the flight control command for the aircraft; if receiving on the control interface To the flight control command to the aircraft, a flight control command is issued to the aircraft indicated by the acquired aircraft identification of the executed route data.
  • control module 109 is specifically configured to: if it is determined that there is an aircraft that does not take off according to the route execution state, issue a fifth prompt on the control interface, where the fifth prompt is used for prompting Unable to receive the takeoff command for the aircraft; acquire the aircraft identification of the aircraft that has not taken off; issue a sixth prompt on the control interface, the sixth prompt is used to prompt to receive the takeoff command for the aircraft; if the pair is received on the control interface The takeoff command of the aircraft, the untaken flight obtained The aircraft indicated by the aircraft identification issues a flight control command.
  • control module 109 is specifically configured to: if it is determined that there is an aircraft that does not take off according to the route execution state, issue a seventh prompt on the control interface, where the seventh prompt is used for prompting Cannot receive a return command to the aircraft; acquire an aircraft identifier of the aircraft that has taken off; issue an eighth prompt on the control interface, the eighth prompt is used to prompt to receive a return command to the aircraft; if the pair is received on the control interface The return command of the aircraft issues a return command to the aircraft indicated by the acquired taken-off aircraft identification.
  • the embodiment of the present invention can send different route data to multiple aircrafts as needed, and the route data may be multiple route data obtained by splitting one main route data, or may be multiple original independent route data.
  • the embodiment of the invention realizes the control of the one-to-many aircraft for the aircraft, improves the flight efficiency, and satisfies the user's automation and intelligent demand for the control of multiple aircrafts. It also intelligently detects potential flight safety hazards and ensures flight safety under one-to-many control to a certain extent.
  • FIG. 7 is a schematic structural diagram of an intelligent terminal according to an embodiment of the present invention.
  • the smart terminal in the embodiment of the present invention may be a terminal such as a smart phone, a tablet computer, or a personal computer.
  • the smart terminal includes: a power supply, a communication interface, and physical buttons, a casing, and the like, and further includes: a user interface 201, a processor 202, and a memory 203.
  • the user interface 201 mainly includes components such as a touch screen for performing data processing interaction with the user. For example, the interactive interface is displayed, the user interaction data is received, the corresponding prompt is sent to the user, and the like.
  • the memory 203 may include a volatile memory; the memory 203 may also include a non-volatile memory; the memory 203 may also include a combination of the above types of memory.
  • the processor 202 can be a central processing unit (CPU).
  • the processor 202 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 203 is further configured to store program instructions.
  • the processor 202 can invoke the program instructions to implement a flight control method as shown in the embodiments of Figures 4 and 5 of the present application.
  • the processor 202 calls the program instruction to perform the following steps:
  • the instruction acquires at least two route data
  • each route data is separately transmitted to at least one aircraft associated with the route data.
  • the processor 202 calls the program instruction to perform the following steps:
  • the route update process is triggered according to the dangerous location point.
  • the processor 202 invokes the program instruction to perform the step of determining an estimated arrival time value of each route position point, specifically performing: calculating according to a preset flight speed of the aircraft and the acquired route position point Get the estimated arrival time value of the aircraft arriving at the corresponding route location.
  • the processor 202 invokes the program instruction to perform the step of separately transmitting each route data to at least one aircraft associated with the route data, specifically executing: acquiring At least two route data are sent to the route broadcast module to trigger the route broadcast module to broadcast the at least two route data to at least two aircraft.
  • the processor 202 invokes the program instruction to perform the step of separately transmitting each route data to at least one aircraft associated with the route data, specifically performing: separately determining each aircraft Corresponding remote controller, and transmitting route data associated with the aircraft corresponding to the remote controller to the determined remote controller, so that the remote controller controls the flight of the corresponding aircraft according to the received route data.
  • the processor 202 invokes the program instruction to perform the step of separately transmitting each route data to at least one aircraft associated with the route data, specifically performing: separately and route data
  • the flight control module configured in the associated aircraft transmits corresponding route data to enable the flight control module to control the flight of the corresponding aircraft based on the received route data.
  • the processor 202 calls the program instruction to perform the following steps:
  • the route data that meets the splitting condition is split, and the plurality of sub-route data is obtained, and at least one is obtained.
  • the aircraft sends the data of each sub-route after the split processing;
  • the route data that meets the preset splitting condition means that the length of the route indicated by the route data is greater than a preset length threshold, or the number of waypoints of the route indicated by the route data is greater than a preset number threshold.
  • the processor 202 calls the program instruction to perform the following steps:
  • an execution instruction is sent to the corresponding aircraft that receives the route data, and the execution instruction is used to trigger each aircraft to execute the corresponding route data;
  • the control interface is controlled according to the detection result of the route execution state.
  • the processor 202 invokes the program instruction to perform the step of controlling the control interface according to the detection result of the route execution state, specifically:
  • the first prompt is sent on the control interface, and the first prompt is used to prompt that the execution command cannot be received;
  • a third prompt is issued on the control interface, and the third prompt is used to prompt that the flight control command cannot be received;
  • a flight control command to the aircraft is received on the control interface, a flight control command is issued to the aircraft indicated by the acquired aircraft identification of the executed route data.
  • the processor 202 invokes the program instruction to perform the step of controlling the control interface according to the detection result of the route execution state, specifically:
  • a fifth prompt is issued on the control interface, and the fifth prompt is used to indicate that the takeoff command for the aircraft cannot be received;
  • a takeoff command to the aircraft is received on the control interface, a flight control command is issued to the aircraft indicated by the acquired untaken aircraft identification.
  • the processor 202 invokes the program instruction to perform the step of controlling the control interface according to the detection result of the route execution state, specifically:
  • a seventh prompt is issued on the control interface, and the seventh prompt is used to indicate that the return command to the aircraft cannot be received;
  • An eighth prompt is issued on the control interface, the eighth prompt is used to prompt to receive a return command to the aircraft;
  • a return command to the aircraft is received on the control interface, a return command is issued to the aircraft indicated by the acquired taken-off aircraft identification.
  • the embodiment of the present invention can send different route data to multiple aircrafts as needed, and the route data may be multiple route data obtained by splitting one main route data, or may be multiple original independent route data.
  • the embodiment of the invention realizes the control of the one-to-many aircraft for the aircraft, improves the flight efficiency, and satisfies the user's automation and intelligent demand for the control of multiple aircrafts. It also intelligently detects potential flight safety hazards and ensures flight safety under one-to-many control to a certain extent.
  • the machine can be read into a storage medium, and when executed, the program can include the flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

一种飞行控制方法、装置及智能终端,其中,所述方法包括:智能终端获取至少两条航线数据(S401);所述智能终端根据预置的至少两台飞行器的信息,分别为每一条航线数据关联至少一台飞行器(S402);所述智能终端根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器(S403)。实现了针对飞行器的一对多飞行器的控制,提高了飞行效率,也满足了用户对多台飞行器控制的自动化、智能化需求。

Description

一种飞行控制方法、装置及智能终端
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或该专利披露。
技术领域
本发明涉及飞行器应用技术领域,尤其涉及一种飞行控制方法、装置及智能终端。
背景技术
无人驾驶飞行器(Unmanned Aerial Vehicle,简称UAV)是一种利用无线电遥控设备和自备的程序控制装置完成飞行操纵的飞行器,UAV不需要飞行员在机舱内驾驶飞行器,飞行全过程在电子设备的控制下完成,因此,被大量应用在侦查、灾难救援、观察野生动物、测绘、新闻报道、电力巡检等领域。
目前,在对UAV进行飞行控制方面,一般一个用户通过遥控器只能对单个无人机进行控制,控制效率较低。
发明内容
本发明实施例提供了一种飞行控制方法、装置及智能终端,可同时对至少两个飞行器进行控制。
一方面,本发明实施例提供了一种飞行控制方法,包括:
智能终端获取至少两条航线数据;
所述智能终端根据预置的至少两台飞行器的信息,分别为每一条航线数据关联至少一台飞行器;
所述智能终端根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器。
相应地,本发明实施例还提供了一种飞行控制装置,应用于智能终端,于,包括:
获取模块,用于获取至少两条航线数据;
关联处理模块,用于根据预置的至少两台飞行器的信息,分别为每一条航 线数据关联至少一台飞行器;
发送模块,用于根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器。
相应地,本发明实施例还提供了一种智能终端,所述智能终端包括用户接口和处理器,所述用户接口,用于处理人机交互数据,所述处理器,用于获取至少两条航线数据;根据预置的至少两台飞行器的信息,分别为每一条航线数据关联至少一台飞行器;根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器。
本发明实施例能够根据需要将不同的航线数据发送给多台飞行器执行,所述的航线数据可以是有一条主航线数据拆分得到的多条航线数据,也可以是多条原本独立的航线数据,本发明实施例实现了针对飞行器的一对多飞行器的控制,提高了飞行效率,也满足了用户对多台飞行器控制的自动化、智能化需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种飞行控制系统的结构示意图;
图2是本发明实施例的另一种飞行控制系统的结构示意图;
图3是本发明实施例的再一种飞行控制系统的结构示意图;
图4是本发明实施例的一种飞行控制方法的流程示意图;
图5是本发明实施例的另一种飞行控制方法的流程示意图;
图6是本发明实施例的一种飞行控制装置的结构示意图;
图7是本发明实施例的一种智能终端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中,一台智能终端可以分别或者同时对多台飞行器进行控制,发送飞行指令分别使多台飞行器执行飞行任务。所述智能终端可以为个人电脑、智能手机以及平板电脑等带无线或者有线通信功能的智能终端。智能终端在获取到多个航线数据时,可以分别为每一个航线数据分配至少一个飞行器,然后同时或者先后将各个航线数据发送给分配的多个飞行器,实现同时对多个飞行器的飞行控制。
如图1所示,是本发明实施例的一种飞行控制系统的结构示意图,包括智能终端、广播设备以及多台飞行器。所述智能终端可以通过所述广播设备控制所述多台飞行器。在发送航线数据时,智能终端可以通过USB数据线连接到一台广播设备,通过该广播设备将各个航线数据广播给对应的飞行器。具体的,可以将航线数据和与航线数据关联的飞行器标识封装为一条广播消息,飞行器在收听到每一条广播消息后,将广播消息中的飞行器标识与飞行器本身的标识进行比较,如果相同,则提取该条广播消息中的航线数据,并执行该条航线数据;而如果不相同,则丢弃该条广播消息即可。
如图2所示,是本发明实施例的另一种飞行控制系统的结构示意图,包括智能终端、多个遥控器、多台飞行器,每一个遥控器可以控制一台飞行器。所述智能终端通过无线传输或者通过USB数据线的有线传输方式,与各遥控器相连,向各遥控器发送航线数据等命令,再由遥控器发送给其能够控制的飞行器。智能终端为每一个航线数据关联飞行器,然后再将航线数据发送给对应的遥控器,以最终发送给飞行器。
如图3所示,是本发明实施例的再一种飞行控制系统的结构示意图,包括智能终端和多台飞行器,智能终端可以通过无线传输的方式与各个飞行器直接进行通信,例如,所述智能终端本身为一个配置有WiFi模块,多台飞行器可以接入到WiFi模块中,接收该智能终端发送的航线数据等命令。
另外,当智能终端需要同时控制多台飞行器飞行时,飞行器执行的航线数据所表示的航线之间可能存在交叉点,在这些交叉点上,不同的飞行器之间可能会发生碰撞。所说的交叉点是指两条航线数据所表示的航线上,存在两个航点之间的距离在一定的距离阈值以内,且分别执行航线数据的飞行器可能会同时飞行到相应航点,该两个航点即为交叉点,或者称之为危险位置点。当检测 到存在危险位置点时,会对相互之间存在交叉点的两个航线数据进行更新调整。以避免相应飞行器执行飞行任务时相互之间产生碰撞的可能。
具体请参见图4,是本发明实施例的一种飞行控制方法的流程示意图,本发明实施例的所述方法可以由智能终端来执行,具体的,所述智能终端可以包括个人电脑、智能手机、智能可穿戴设备等带无线或有线传输功能的智能终端。所述方法包括如下步骤。
S401:智能终端获取至少两条航线数据。所述至少两条航线数据可能是用户在智能终端上通过编辑航点配置得到的两条或者多条航线数据。智能终端包括触摸屏,在触摸屏上会显示响应的用户交互界面,用户在该界面上显示的地图上完成打点操作,每一个点作为航线的航点,依次连接各个航点即得到航线,航线数据主要包括航点的坐标等数据。所述至少两条航线数据也可能是从由其他智能终端发送给所述智能终端的,例如通过其他带大屏显示屏的智能终端进行航线编辑后生成的多条航线数据,发送给智能手机、智能可穿戴设备等所述智能终端。
S402:所述智能终端根据预置的至少两台飞行器的信息,分别为每一条航线数据关联至少一台飞行器。已经建立与所述智能终端的连接的飞行器或者已经在所述智能终端中登记的飞行器的相关信息被记录到所述智能终端中。所述至少两台飞行器的信息可以包括:各个飞行器的标识,各个飞行器所对应的遥控器的通信标识,或者各个飞行器中设置的无线通信模块的通信标识等信息。飞行器的信息主要起到区别不同的飞行器及建立所述智能终端与不同飞行器之间的通信连接的作用。
可以提供一个用户交互界面给用户,方便用户为每一个航线选择一个飞行器。当然,所述智能终端也可以自行进行选择。飞行器之间的功能可能存在差异,在所述智能终端中登记的功能也存在差异。例如,某些飞行器可以执行较长的航线,但摄像头等挂载的功能设备所拍摄画面的画质可能相对较差。而某些飞行器则具有较好的拍摄画质。基于不同的飞行器具备的特长和各条航线数据的需求,所述智能终端可以智能地为某条航线数据选择飞行器,以便于最好地执行航线数据所对应的飞行任务。
在为每一条航线数据关联至少一台飞行器后,可以通过映射表的形式记录航线数据以及飞行器的相关信息之间的关联关系,例如,映射表上映射存储的 航线数据和飞行器的标识。
S403:所述智能终端根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器。根据关联关系,智能终端可以将航线数据发送给对应的飞行器。
具体可选地,所述S403中将各条航线数据分别发送给与航线数据关联的至少一台飞行器具体可以包括:所述智能终端将获取的至少两条航线数据发送给航线广播模块,以触发所述航线广播模块向至少两个飞行器广播所述至少两条航线数据。航线广播模块为一个单独的广播设备,其广播的每一条消息中包括的航线数据以及与该航线数据关联的飞行器标识。飞行器在收听到该广播的消息后,将飞行器标识与自身的标识进行比较,如果相同,则可以提取并执行该条广播消息中对应的航线数据。
具体可选地,所述S403中将各条航线数据分别发送给与航线数据关联的至少一台飞行器具体可以包括:所述智能终端分别确定每一个飞行器所对应的遥控器;所述智能终端向所述确定的遥控器发送与遥控器所对应飞行器关联的航线数据,以使遥控器根据接收到的航线数据控制对应飞行器的飞行。也即是说,所述的映射表中可以存储航线数据与飞行器的遥控器标识的关联关系。所述智能终端在发送某条航线数据时,找到该航线数据关联的遥控器的标识,例如该遥控器的硬件地址,方便直接基于该遥控器的标识发送该条航线数据。同理可以完成向对台遥控器发送对应航线数据的操作。通过各遥控器控制对应的飞行器执行相应的飞行任务。
具体可选地,所述S403中将各条航线数据分别发送给与航线数据关联的至少一台飞行器具体可以包括:所述智能终端分别向与航线数据关联的飞行器中配置的飞行控制模块发送对应的航线数据,以使飞行控制模块根据接收到的航线数据控制对应飞行器的飞行。也即是说,所述的映射表中可以存储航线数据与飞行器的通信模块标识的关联关系。所述智能终端在发送某条航线数据时,找到该航线数据关联的通信模块的标识,例如通信模块的蓝牙或WiFi地址等,方便直接基于该通信模块的标识向飞行器直接发送对应的航线数据,控制对应的飞行器执行相应的飞行任务。
在发送各条航线数据之前,还可以判断是否对航线数据进行拆分。具体的,本发明实施例的所述方法还包括:若所述获取到的至少两个航线数据中包括符 合预设的拆分条件的航线数据时,则对该符合拆分条件的航线数据进行拆分处理,得到多个子航线数据,并向至少一台飞行器发送拆分处理后的各个子航线数据;符合预设的拆分条件的航线数据是指:航线数据所表示的航线的长度大于预设的长度阈值、或者航线数据所表示的航线的航点数量大于预设的数量阈值、或者与航线数据关联的飞行器的剩余电量小于完成所述航线数据是需要的电量。
本发明实施例能够根据需要将不同的航线数据发送给多台飞行器执行,所述的航线数据可以是有一条主航线数据拆分得到的多条航线数据,也可以是多条原本独立的航线数据,本发明实施例实现了针对飞行器的一对多飞行器的控制,提高了飞行效率,也满足了用户对多台飞行器控制的自动化、智能化需求。
再请参见图5,是本发明实施例的另一种飞行控制方法的流程示意图,本发明实施例的所述方法可以由智能终端来执行,具体的,所述智能终端可以包括个人电脑、智能手机、智能可穿戴设备等带无线或有线传输功能的智能终端。所述方法包括如下步骤。
S501:所述智能终端获取至少两条航线数据。
S502:所述智能终端根据预置的至少两台飞行器的信息,分别为每一条航线数据关联至少一台飞行器。
S503:所述智能终端确定各航线数据所指示的航线位置点,并确定各航线位置点的预估到达时间值;其中,所述确定各航线位置点的预估到达时间值,包括:根据预置的飞行器的飞行速度和获取的航线位置点,计算得到飞行器到达对应的航线位置的预估到达时间值。
S504:所述智能终端根据航线位置点和预估到达时间值,确定各航线数据所指示的航线位置点中是否包括危险位置点。所述危险位置点是指两条航线数据所表示的航线上,存在两个航点之间的距离在一定的距离阈值以内,且分别执行航线数据的飞行器可能会同时飞行到相应航点。该两条航线上对应的两个航点彼此之间为危险位置点。
S505:若包括危险位置点,所述智能终端则根据危险位置点触发航线更新处理。更新操作包括多危险位置点坐标的修改,使两个彼此互为危险位置点的距离大于预设的阈值。
当不包括危险位置点或者完成了存在危险位置点的航线的更新后,执行下 述的S506。
S506:所述智能终端根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器。
需要说明的是,所述的S503~S505也可以是在所述S506将航线数据发送给对应的飞行器之间的某个时间节点执行。
所述S503~S505为校验步骤。也可以当飞行器接收到航线数据之后,智能终端会对多台飞行器的航线会进行安全校验,确保航线不会有同一高度上的交叉。当发现航线交叉后,系统会假设所有航线同一时间执行,并根据估算的速度和时间推送飞行器在空中的位置,进而检验在同一时间内飞行器到达同一位置的可能性;当检验发现有时间和位置上的重合点或接近点时,智能终端会向用户发出警告,使得用户对可能发送交叉(危险位置点)的点进行调整。而假如航线不在统一时间执行,用户可以设置开始执行时间,智能终端将根据开始执行时间来校验航线的安全性,具体的校验方式参考上述的描述。
S507:若在预设的控制界面上接收到执行命令,所述智能终端则向对应的各接收到航线数据的飞行器发出执行指令,所述执行指令用于触发各飞行器执行对应的航线数据。
S508:所述智能终端检测各飞行器的航线执行状态;
S509:所述智能终端根据航线执行状态的检测结果对所述控制界面进行控制。
当用户上传航线给所有飞行器后,可以同时选择多台飞行器,点击开始执行航线。假如所有飞行器都成功开始执行,则飞行器将同时起飞并开始执行航线。由于不同飞行系统之间存在不同的反馈时间,或者系统发送执行命令时通信被干扰,航线开始执行的命令有可能会失败。这时,智能终端会根据所有选中的飞行器是否仍处于同一执行状态的逻辑允许/不允许用户继续进行航线相关操作。
其中可选地,所述S509包括:若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第一提示,所述第一提示用于提示不能接收执行命令;获取未执行航线数据的飞行器的标识;在控制界面上发出第二提示,所述第二提示用于提示等待接收执行命令;若再次在控制界面上接收到执行命令,向所述获取的未执行航线数据的飞行器的标识所指示的飞行器 发出执行指令。具体的,当有部分飞行器航线没有开始执行:开始按钮置灰(第一提示),去掉选择已开始执行航线的飞行器,开始航线按钮使能(第二提示),使能后用户可以再次发出开始执行的命令。
其中具体的,所述S509包括:若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第三提示,所述第三提示用于提示不能接收飞行控制命令;获取已执行航线数据的飞行器的标识;在控制界面上发出第四提示,所述第四提示用于提示等待接收对飞行器的飞行控制命令;若在控制界面上接收到对飞行器的飞行控制命令,向所述获取的已执行航线数据的飞行器的标识所指示的飞行器发出飞行控制指令。当有部分飞行器航线没有开始执行:暂停和结束按钮置灰(第三提示),去掉选择未开始执行航线的飞行器,暂停和结束航线按钮使能(第四提示),使能后用户可以对已经执行命令的飞行进行暂停和结束命令。
其中具体的,所述S509包括:若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第五提示,所述第五提示用于提示不能接收对飞行器的起飞命令;获取未起飞的飞行器的飞行器标识;在控制界面上发出第六提示,所述第六提示用于提示等待接收对飞行器的起飞命令;若在控制界面上接收到对飞行器的起飞命令,向所述获取的未起飞的飞行器标识所指示的飞行器发出飞行控制指令。当有部分飞行器没有起飞:起飞按钮置灰(第五提示),去掉选择已起飞的飞行器,起飞按钮使能(第六提示),使能后用户可以触发还未起飞的飞行器起飞。
其中具体的,所述S509包括:若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第七提示,所述第七提示用于提示不能接收对飞行器的返回命令;获取已起飞的飞行器的飞行器标识;在控制界面上发出第八提示,所述第八提示用于提示等待接收对飞行器的返回命令;若在控制界面上接收到对飞行器的返回命令,向所述获取的已起飞的飞行器标识所指示的飞行器发出返回指令。当有部分飞行器没有起飞:降落和返航按钮置灰(第七提示),去掉选择未起飞的飞行器,降落和返航按钮使能(第八提示),使能后用户可以控制已经起飞的飞行器返航或者降落。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有程序,所存储的程序在执行时,用于执行上述图4或图5的飞行控制方法。
本发明实施例能够根据需要将不同的航线数据发送给多台飞行器执行,所述的航线数据可以是有一条主航线数据拆分得到的多条航线数据,也可以是多条原本独立的航线数据,本发明实施例实现了针对飞行器的一对多飞行器的控制,提高了飞行效率,也满足了用户对多台飞行器控制的自动化、智能化需求。并且还能够智能地检测到潜在的飞行安全隐患,在一定程度上保证了在一对多控制下的飞行安全。
再请参见图6,是本发明实施例的一种飞行控制装置的结构示意图,本发明实施例的所述装置可以应用于智能终端,具体的,所述智能终端可以包括个人电脑、智能手机、智能可穿戴设备等带无线或有线传输功能的智能终端。所述装置包括如下模块。
获取模块101,用于获取至少两条航线数据。关联处理模块102,用于根据预置的至少两台飞行器的信息,分别为每一条航线数据关联至少一台飞行器。发送模块103,用于根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器。
具体实现中,可选地,该装置还包括:第一确定模块104,用于确定各航线数据所指示的航线位置点,并确定各航线位置点的预估到达时间值。第二确定模块105,用于根据航线位置点和预估到达时间值,确定各航线数据所指示的航线位置点中是否包括危险位置点。更新处理模块106,用于若包括危险位置点,则根据危险位置点触发航线更新处理。
具体实现中,所述第一确定104模块具体用于:根据预置的飞行器的飞行速度和获取的航线位置点,计算得到飞行器到达对应的航线位置的预估到达时间值。
具体实现中,在一种实施方式中,所述发送模块105具体用于:将获取的至少两条航线数据发送给航线广播模块,以触发所述航线广播模块向至少两个飞行器广播所述至少两条航线数据。
在另一种实施方式中,所述发送模块105,具体用于分别确定每一个飞行器所对应的遥控器,向所述确定的遥控器发送与遥控器所对应飞行器关联的航线数据,以使遥控器根据接收到的航线数据控制对应飞行器的飞行。
在又一种实施方式中,所述发送模块105,具体用于分别向与航线数据关联的飞行器中配置的飞行控制模块发送对应的航线数据,以使飞行控制模块根 据接收到的航线数据控制对应飞行器的飞行。
具体实现中,可选地,该装置还包括:拆分处理模块107,用于若所述获取到的至少两个航线数据中包括符合预设的拆分条件的航线数据时,则对该符合拆分条件的航线数据进行拆分处理,得到多个子航线数据;此情况下,所述发送模块103还用于向至少一台飞行器发送拆分处理后的各个子航线数据;其中,符合预设的拆分条件的航线数据是指:航线数据所表示的航线的长度大于预设的长度阈值、或者航线数据所表示的航线的航点数量大于预设的数量阈值。
具体实现中,可选地,该装置还包括:所述发送模块103还用于若在预设的控制界面上接收到执行命令,则向对应的各接收到航线数据的飞行器发出执行指令,所述执行指令用于触发各飞行器执行对应的航线数据;检测模块108,用于检测各飞行器的航线执行状态。控制模块109,用于根据航线执行状态的检测结果对所述控制界面进行控制。
具体实现中,在一种实施方式中,所述控制模块109,具体用于若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第一提示,所述第一提示用于提示不能接收执行命令;获取未执行航线数据的飞行器的标识;在控制界面上发出第二提示,所述第二提示用于提示等待接收执行命令;若再次在控制界面上接收到执行命令,向所述获取的未执行航线数据的飞行器的标识所指示的飞行器发出执行指令。
在另一种实施方式中,所述控制模块109,具体用于若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第三提示,所述第三提示用于提示不能接收飞行控制命令;获取已执行航线数据的飞行器的标识;在控制界面上发出第四提示,所述第四提示用于提示等待接收对飞行器的飞行控制命令;若在控制界面上接收到对飞行器的飞行控制命令,向所述获取的已执行航线数据的飞行器的标识所指示的飞行器发出飞行控制指令。
在又一种实施方式中,所述控制模块109,具体用于若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第五提示,所述第五提示用于提示不能接收对飞行器的起飞命令;获取未起飞的飞行器的飞行器标识;在控制界面上发出第六提示,所述第六提示用于提示等待接收对飞行器的起飞命令;若在控制界面上接收到对飞行器的起飞命令,向所述获取的未起飞 的飞行器标识所指示的飞行器发出飞行控制指令。
在又一种实施方式中,所述控制模块109,具体用于若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第七提示,所述第七提示用于提示不能接收对飞行器的返回命令;获取已起飞的飞行器的飞行器标识;在控制界面上发出第八提示,所述第八提示用于提示等待接收对飞行器的返回命令;若在控制界面上接收到对飞行器的返回命令,向所述获取的已起飞的飞行器标识所指示的飞行器发出返回指令。
本发明实施例所述装置的各个模块的具体实现可参考上述实施例中相关功能、步骤的描述,在此不赘述。
本发明实施例能够根据需要将不同的航线数据发送给多台飞行器执行,所述的航线数据可以是有一条主航线数据拆分得到的多条航线数据,也可以是多条原本独立的航线数据,本发明实施例实现了针对飞行器的一对多飞行器的控制,提高了飞行效率,也满足了用户对多台飞行器控制的自动化、智能化需求。并且还能够智能地检测到潜在的飞行安全隐患,在一定程度上保证了在一对多控制下的飞行安全。
请参见图7,是本发明实施例的一种智能终端的结构示意图,本发明实施例的所述智能终端可以为智能手机、平板电脑、个人电脑等终端。所述智能终端包括:供电电源,通信接口,以及物理按键、外壳等部件,还包括:用户接口201、处理器202以及存储器203。
所述用户接口201主要包括触摸屏等部件,用于进行与用户之间交互的数据处理。例如显示交互界面,接收用户交互数据,向用户发出相应提示等等处理。所述存储器203可以包括易失性存储器(volatile memory);存储器203也可以包括非易失性存储器(non-volatile memory);存储器203还可以包括上述种类的存储器的组合。所述处理器202可以是中央处理器(central processing unit,CPU)。所述处理器202还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
可选地,所述存储器203还用于存储程序指令。所述处理器202可以调用所述程序指令,实现如本申请图4和5实施例中所示的飞行控制方法。
具体地,所述处理器202调用所述程序指令执行如下步骤:
指令获取至少两条航线数据;
根据预置的至少两台飞行器的信息,分别为每一条航线数据关联至少一台飞行器;
根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器。
具体地,所述处理器202调用所述程序指令还执行如下步骤:
确定各航线数据所指示的航线位置点,并确定各航线位置点的预估到达时间值;
根据航线位置点和预估到达时间值,确定各航线数据所指示的航线位置点中是否包括危险位置点;
若包括危险位置点,则根据危险位置点触发航线更新处理。
具体地,所述处理器202调用所述程序指令执行所述确定各航线位置点的预估到达时间值的步骤时,具体执行:根据预置的飞行器的飞行速度和获取的航线位置点,计算得到飞行器到达对应的航线位置的预估到达时间值。
具体地,在一种实施方式中,所述处理器202调用所述程序指令执行所述将各条航线数据分别发送给与航线数据关联的至少一台飞行器的步骤时,具体执行:将获取的至少两条航线数据发送给航线广播模块,以触发所述航线广播模块向至少两个飞行器广播所述至少两条航线数据。
在另一种实施方式中,所述处理器202调用所述程序指令执行所述将各条航线数据分别发送给与航线数据关联的至少一台飞行器的步骤时,具体执行:分别确定每一个飞行器所对应的遥控器,并向所述确定的遥控器发送与遥控器所对应飞行器关联的航线数据,以使遥控器根据接收到的航线数据控制对应飞行器的飞行。
在又一种实施方式中,所述处理器202调用所述程序指令执行所述将各条航线数据分别发送给与航线数据关联的至少一台飞行器的步骤时,具体执行:分别向与航线数据关联的飞行器中配置的飞行控制模块发送对应的航线数据,以使飞行控制模块根据接收到的航线数据控制对应飞行器的飞行。
具体地,所述处理器202调用所述程序指令还执行如下步骤:
若所述获取到的至少两个航线数据中包括符合预设的拆分条件的航线数据时,则对该符合拆分条件的航线数据进行拆分处理,得到多个子航线数据,并向至少一台飞行器发送拆分处理后的各个子航线数据;
符合预设的拆分条件的航线数据是指:航线数据所表示的航线的长度大于预设的长度阈值、或者航线数据所表示的航线的航点数量大于预设的数量阈值。
具体地,所述处理器202调用所述程序指令还执行如下步骤:
若在预设的控制界面上接收到执行命令,则向对应的各接收到航线数据的飞行器发出执行指令,所述执行指令用于触发各飞行器执行对应的航线数据;
检测各飞行器的航线执行状态;
根据航线执行状态的检测结果对所述控制界面进行控制。
具体地,在一种实施方式中,所述处理器202调用所述程序指令执行所述根据航线执行状态的检测结果对所述控制界面进行控制的步骤时,具体执行:
若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第一提示,所述第一提示用于提示不能接收执行命令;
获取未执行航线数据的飞行器的标识;
在控制界面上发出第二提示,所述第二提示用于提示等待接收执行命令;
若再次在控制界面上接收到执行命令,向所述获取的未执行航线数据的飞行器的标识所指示的飞行器发出执行指令。
具体地,在另一种实施方式中,所述处理器202调用所述程序指令执行所述根据航线执行状态的检测结果对所述控制界面进行控制的步骤时,具体执行:
若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第三提示,所述第三提示用于提示不能接收飞行控制命令;
获取已执行航线数据的飞行器的标识;
在控制界面上发出第四提示,所述第四提示用于提示等待接收对飞行器的飞行控制命令;
若在控制界面上接收到对飞行器的飞行控制命令,向所述获取的已执行航线数据的飞行器的标识所指示的飞行器发出飞行控制指令。
具体地,在又一种实施方式中,所述处理器202调用所述程序指令执行所述根据航线执行状态的检测结果对所述控制界面进行控制的步骤时,具体执行:
若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第五提示,所述第五提示用于提示不能接收对飞行器的起飞命令;
获取未起飞的飞行器的飞行器标识;
在控制界面上发出第六提示,所述第六提示用于提示等待接收对飞行器的起飞命令;
若在控制界面上接收到对飞行器的起飞命令,向所述获取的未起飞的飞行器标识所指示的飞行器发出飞行控制指令。
具体地,在又一种实施方式中,所述处理器202调用所述程序指令执行所述根据航线执行状态的检测结果对所述控制界面进行控制的步骤时,具体执行:
若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第七提示,所述第七提示用于提示不能接收对飞行器的返回命令;
获取已起飞的飞行器的飞行器标识;
在控制界面上发出第八提示,所述第八提示用于提示等待接收对飞行器的返回命令;
若在控制界面上接收到对飞行器的返回命令,向所述获取的已起飞的飞行器标识所指示的飞行器发出返回指令。
本发明实施例所述智能终端的处理器的具体实现可参考上述实施例中相关功能、步骤的描述,在此不赘述。
本发明实施例能够根据需要将不同的航线数据发送给多台飞行器执行,所述的航线数据可以是有一条主航线数据拆分得到的多条航线数据,也可以是多条原本独立的航线数据,本发明实施例实现了针对飞行器的一对多飞行器的控制,提高了飞行效率,也满足了用户对多台飞行器控制的自动化、智能化需求。并且还能够智能地检测到潜在的飞行安全隐患,在一定程度上保证了在一对多控制下的飞行安全。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (36)

  1. 一种飞行控制方法,其特征在于,包括:
    智能终端获取至少两条航线数据;
    所述智能终端根据预置的至少两台飞行器的信息,分别为每一条航线数据关联至少一台飞行器;
    所述智能终端根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    确定各航线数据所指示的航线位置点,并确定各航线位置点的预估到达时间值;
    根据航线位置点和预估到达时间值,确定各航线数据所指示的航线位置点中是否包括危险位置点;
    若包括危险位置点,则根据危险位置点触发航线更新处理。
  3. 如权利要求2所述的方法,其特征在于,所述确定各航线位置点的预估到达时间值,包括:
    根据预置的飞行器的飞行速度和获取的航线位置点,计算得到飞行器到达对应的航线位置的预估到达时间值。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述智能终端将各条航线数据分别发送给与航线数据关联的至少一台飞行器,包括:
    所述智能终端将获取的至少两条航线数据发送给航线广播模块,以触发所述航线广播模块向至少两个飞行器广播所述至少两条航线数据。
  5. 如权利要求1-3任一项所述的方法,其特征在于,所述智能终端将各条航线数据分别发送给与航线数据关联的至少一台飞行器,包括:
    所述智能终端分别确定每一个飞行器所对应的遥控器;
    所述智能终端向所述确定的遥控器发送与遥控器所对应飞行器关联的航 线数据,以使遥控器根据接收到的航线数据控制对应飞行器的飞行。
  6. 如权利要求1-3任一项所述的方法,其特征在于,所述智能终端将各条航线数据分别发送给与航线数据关联的至少一台飞行器,包括:
    所述智能终端分别向与航线数据关联的飞行器中配置的飞行控制模块发送对应的航线数据,以使飞行控制模块根据接收到的航线数据控制对应飞行器的飞行。
  7. 如权利要求1-6任一项所述的方法,其特征在于,还包括:
    若所述获取到的至少两个航线数据中包括符合预设的拆分条件的航线数据时,则对该符合拆分条件的航线数据进行拆分处理,得到多个子航线数据,并向至少一台飞行器发送拆分处理后的各个子航线数据;
    符合预设的拆分条件的航线数据是指:航线数据所表示的航线的长度大于预设的长度阈值、或者航线数据所表示的航线的航点数量大于预设的数量阈值。
  8. 如权利要求1-7任一项所述的方法,其特征在于,还包括:
    若在预设的控制界面上接收到执行命令,则向对应的各接收到航线数据的飞行器发出执行指令,所述执行指令用于触发各飞行器执行对应的航线数据;
    检测各飞行器的航线执行状态;
    根据航线执行状态的检测结果对所述控制界面进行控制。
  9. 如权利要求8所述的方法,其特征在于,所述根据航线执行状态的检测结果对所述控制界面进行控制,包括:
    若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第一提示,所述第一提示用于提示不能接收执行命令;
    获取未执行航线数据的飞行器的标识;
    在控制界面上发出第二提示,所述第二提示用于提示等待接收执行命令;
    若再次在控制界面上接收到执行命令,向所述获取的未执行航线数据的飞行器的标识所指示的飞行器发出执行指令。
  10. 如权利要求8所述的方法,其特征在于,所述根据航线执行状态的检测结果对所述控制界面进行控制,包括:
    若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第三提示,所述第三提示用于提示不能接收飞行控制命令;
    获取已执行航线数据的飞行器的标识;
    在控制界面上发出第四提示,所述第四提示用于提示等待接收对飞行器的飞行控制命令;
    若在控制界面上接收到对飞行器的飞行控制命令,向所述获取的已执行航线数据的飞行器的标识所指示的飞行器发出飞行控制指令。
  11. 如权利要求8所述的方法,其特征在于,所述根据航线执行状态的检测结果对所述控制界面进行控制,包括:
    若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第五提示,所述第五提示用于提示不能接收对飞行器的起飞命令;
    获取未起飞的飞行器的飞行器标识;
    在控制界面上发出第六提示,所述第六提示用于提示等待接收对飞行器的起飞命令;
    若在控制界面上接收到对飞行器的起飞命令,向所述获取的未起飞的飞行器标识所指示的飞行器发出飞行控制指令。
  12. 如权利要求8所述的方法,其特征在于,所述根据航线执行状态的检测结果对所述控制界面进行控制,包括:
    若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第七提示,所述第七提示用于提示不能接收对飞行器的返回命令;
    获取已起飞的飞行器的飞行器标识;
    在控制界面上发出第八提示,所述第八提示用于提示等待接收对飞行器的返回命令;
    若在控制界面上接收到对飞行器的返回命令,向所述获取的已起飞的飞行器标识所指示的飞行器发出返回指令。
  13. 一种飞行控制装置,应用于智能终端,其特征在于,包括:
    获取模块,用于获取至少两条航线数据;
    关联处理模块,用于根据预置的至少两台飞行器的信息,分别为每一条航线数据关联至少一台飞行器;
    发送模块,用于根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器。
  14. 如权利要求13所述的装置,其特征在于,还包括:
    第一确定模块,用于确定各航线数据所指示的航线位置点,并确定各航线位置点的预估到达时间值;
    第二确定模块,用于根据航线位置点和预估到达时间值,确定各航线数据所指示的航线位置点中是否包括危险位置点;
    更新处理模块,用于若包括危险位置点,则根据危险位置点触发航线更新处理。
  15. 如权利要求14所述的装置,其特征在于,所述第一确定模块具体用于:根据预置的飞行器的飞行速度和获取的航线位置点,计算得到飞行器到达对应的航线位置的预估到达时间值。
  16. 如权利要求13-15任一项所述的装置,其特征在于,所述发送模块具体用于:将获取的至少两条航线数据发送给航线广播模块,以触发所述航线广播模块向至少两个飞行器广播所述至少两条航线数据。
  17. 如权利要求13-15任一项所述的装置,其特征在于,所述发送模块具体用于:分别确定每一个飞行器所对应的遥控器,向所述确定的遥控器发送与遥控器所对应飞行器关联的航线数据,以使遥控器根据接收到的航线数据控制对应飞行器的飞行。
  18. 如权利要求13-15任一项所述的装置,其特征在于,所述发送模块具 体用于分别向与航线数据关联的飞行器中配置的飞行控制模块发送对应的航线数据,以使飞行控制模块根据接收到的航线数据控制对应飞行器的飞行。
  19. 如权利要求13-18任一项所述的装置,其特征在于,还包括:
    拆分处理模块,用于若所述获取到的至少两个航线数据中包括符合预设的拆分条件的航线数据时,则对该符合拆分条件的航线数据进行拆分处理,得到多个子航线数据;
    所述发送模块还用于向至少一台飞行器发送拆分处理后的各个子航线数据;
    符合预设的拆分条件的航线数据是指:航线数据所表示的航线的长度大于预设的长度阈值、或者航线数据所表示的航线的航点数量大于预设的数量阈值。
  20. 如权利要求13-19任一项所述的装置,其特征在于,还包括:
    所述发送模块,还用于若在预设的控制界面上接收到执行命令,则向对应的各接收到航线数据的飞行器发出执行指令,所述执行指令用于触发各飞行器执行对应的航线数据;
    检测模块,用于检测各飞行器的航线执行状态;
    控制模块,用于根据航线执行状态的检测结果对所述控制界面进行控制。
  21. 如权利要求20所述的装置,其特征在于,所述控制模块具体用于:若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第一提示,所述第一提示用于提示不能接收执行命令;获取未执行航线数据的飞行器的标识;在控制界面上发出第二提示,所述第二提示用于提示等待接收执行命令;若再次在控制界面上接收到执行命令,向所述获取的未执行航线数据的飞行器的标识所指示的飞行器发出执行指令。
  22. 如权利要求20所述的装置,其特征在于,所述控制模块具体用于:若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第三提示,所述第三提示用于提示不能接收飞行控制命令;获取已执行 航线数据的飞行器的标识;在控制界面上发出第四提示,所述第四提示用于提示等待接收对飞行器的飞行控制命令;若在控制界面上接收到对飞行器的飞行控制命令,向所述获取的已执行航线数据的飞行器的标识所指示的飞行器发出飞行控制指令。
  23. 如权利要求20所述的装置,其特征在于,所述控制模块具体用于:若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第五提示,所述第五提示用于提示不能接收对飞行器的起飞命令;获取未起飞的飞行器的飞行器标识;在控制界面上发出第六提示,所述第六提示用于提示等待接收对飞行器的起飞命令;若在控制界面上接收到对飞行器的起飞命令,向所述获取的未起飞的飞行器标识所指示的飞行器发出飞行控制指令。
  24. 如权利要求20所述的装置,其特征在于,所述控制模块具体用于:若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第七提示,所述第七提示用于提示不能接收对飞行器的返回命令;获取已起飞的飞行器的飞行器标识;在控制界面上发出第八提示,所述第八提示用于提示等待接收对飞行器的返回命令;若在控制界面上接收到对飞行器的返回命令,向所述获取的已起飞的飞行器标识所指示的飞行器发出返回指令。
  25. 一种智能终端,其特征在于,所述智能终端包括用户接口和处理器;
    所述用户接口,用于处理人机交互数据;
    所述处理器,具体用于执行如下步骤;
    指令获取至少两条航线数据;
    根据预置的至少两台飞行器的信息,分别为每一条航线数据关联至少一台飞行器;
    根据所述关联结果,将各条航线数据分别发送给与航线数据关联的至少一台飞行器。
  26. 如权利要求25所述的智能终端,其特征在于,所述处理器还用于执行如下步骤:
    确定各航线数据所指示的航线位置点,并确定各航线位置点的预估到达时间值;
    根据航线位置点和预估到达时间值,确定各航线数据所指示的航线位置点中是否包括危险位置点;
    若包括危险位置点,则根据危险位置点触发航线更新处理。
  27. 如权利要求26所述的智能终端,其特征在于,所述处理器执行所述确定各航线位置点的预估到达时间值的步骤时,具体用于执行如下步骤:
    根据预置的飞行器的飞行速度和获取的航线位置点,计算得到飞行器到达对应的航线位置的预估到达时间值。
  28. 如权利要求26所述的智能终端,其特征在于,所述处理器执行所述将各条航线数据分别发送给与航线数据关联的至少一台飞行器的步骤时,具体用于执行如下步骤:
    将获取的至少两条航线数据发送给航线广播模块,以触发所述航线广播模块向至少两个飞行器广播所述至少两条航线数据。
  29. 如权利要求25-28任一项所述的智能终端,其特征在于,所述处理器执行所述将各条航线数据分别发送给与航线数据关联的至少一台飞行器的步骤时,具体用于执行如下步骤:
    分别确定每一个飞行器所对应的遥控器,并向所述确定的遥控器发送与遥控器所对应飞行器关联的航线数据,以使遥控器根据接收到的航线数据控制对应飞行器的飞行。
  30. 如权利要求25-28任一项所述的智能终端,其特征在于,所述处理器执行所述将各条航线数据分别发送给与航线数据关联的至少一台飞行器的步骤时,具体用于执行如下步骤:
    分别向与航线数据关联的飞行器中配置的飞行控制模块发送对应的航线数据,以使飞行控制模块根据接收到的航线数据控制对应飞行器的飞行。
  31. 如权利要求25-30任一项所述的智能终端,其特征在于,所述处理器还用于执行如下步骤:
    若所述获取到的至少两个航线数据中包括符合预设的拆分条件的航线数据时,则对该符合拆分条件的航线数据进行拆分处理,得到多个子航线数据,并向至少一台飞行器发送拆分处理后的各个子航线数据;
    符合预设的拆分条件的航线数据是指:航线数据所表示的航线的长度大于预设的长度阈值、或者航线数据所表示的航线的航点数量大于预设的数量阈值。
  32. 如权利要求25-31任一项所述的智能终端,其特征在于,所述处理器还用于执行如下步骤:
    若在预设的控制界面上接收到执行命令,则向对应的各接收到航线数据的飞行器发出执行指令,所述执行指令用于触发各飞行器执行对应的航线数据;
    检测各飞行器的航线执行状态;
    根据航线执行状态的检测结果对所述控制界面进行控制。
  33. 如权利要求32所述的智能终端,其特征在于,所述处理器执行所述根据航线执行状态的检测结果对所述控制界面进行控制的步骤时,具体用于执行如下步骤:
    若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第一提示,所述第一提示用于提示不能接收执行命令;
    获取未执行航线数据的飞行器的标识;
    在控制界面上发出第二提示,所述第二提示用于提示等待接收执行命令;
    若再次在控制界面上接收到执行命令,向所述获取的未执行航线数据的飞行器的标识所指示的飞行器发出执行指令。
  34. 如权利要求32所述的智能终端,其特征在于,所述处理器执行所述根据航线执行状态的检测结果对所述控制界面进行控制的步骤时,具体用于执行如下步骤:
    若根据航线执行状态确定出存在未执行航线数据的飞行器,则在所述控制界面上发出第三提示,所述第三提示用于提示不能接收飞行控制命令;
    获取已执行航线数据的飞行器的标识;
    在控制界面上发出第四提示,所述第四提示用于提示等待接收对飞行器的飞行控制命令;
    若在控制界面上接收到对飞行器的飞行控制命令,向所述获取的已执行航线数据的飞行器的标识所指示的飞行器发出飞行控制指令。
  35. 如权利要求32所述的智能终端,其特征在于,所述处理器执行所述根据航线执行状态的检测结果对所述控制界面进行控制的步骤时,具体用于执行如下步骤:
    若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第五提示,所述第五提示用于提示不能接收对飞行器的起飞命令;
    获取未起飞的飞行器的飞行器标识;
    在控制界面上发出第六提示,所述第六提示用于提示等待接收对飞行器的起飞命令;
    若在控制界面上接收到对飞行器的起飞命令,向所述获取的未起飞的飞行器标识所指示的飞行器发出飞行控制指令。
  36. 如权利要求32所述的智能终端,其特征在于,所述处理器执行所述根据航线执行状态的检测结果对所述控制界面进行控制的步骤时,具体用于执行如下步骤:
    若根据航线执行状态确定出存在未起飞的飞行器,则在所述控制界面上发出第七提示,所述第七提示用于提示不能接收对飞行器的返回命令;
    获取已起飞的飞行器的飞行器标识;
    在控制界面上发出第八提示,所述第八提示用于提示等待接收对飞行器的返回命令;
    若在控制界面上接收到对飞行器的返回命令,向所述获取的已起飞的飞行器标识所指示的飞行器发出返回指令。
PCT/CN2016/099769 2016-09-22 2016-09-22 一种飞行控制方法、装置及智能终端 WO2018053769A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202111320660.4A CN114115337A (zh) 2016-09-22 2016-09-22 一种飞行控制方法、装置及智能终端
CN201680013429.1A CN107636551B (zh) 2016-09-22 2016-09-22 一种飞行控制方法、装置及智能终端
PCT/CN2016/099769 WO2018053769A1 (zh) 2016-09-22 2016-09-22 一种飞行控制方法、装置及智能终端
US16/361,659 US20190221128A1 (en) 2016-09-22 2019-03-22 Flight control method, device, and smart terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099769 WO2018053769A1 (zh) 2016-09-22 2016-09-22 一种飞行控制方法、装置及智能终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/361,659 Continuation US20190221128A1 (en) 2016-09-22 2019-03-22 Flight control method, device, and smart terminal

Publications (1)

Publication Number Publication Date
WO2018053769A1 true WO2018053769A1 (zh) 2018-03-29

Family

ID=61113445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099769 WO2018053769A1 (zh) 2016-09-22 2016-09-22 一种飞行控制方法、装置及智能终端

Country Status (3)

Country Link
US (1) US20190221128A1 (zh)
CN (2) CN107636551B (zh)
WO (1) WO2018053769A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058268A1 (zh) 2016-09-27 2018-04-05 深圳市大疆创新科技有限公司 一种飞行控制方法及装置、控制设备
CN109828601A (zh) * 2019-01-11 2019-05-31 丰疆智慧农业股份有限公司 用于农用无人机的行进控制方法及其控制装置
WO2020206679A1 (zh) * 2019-04-12 2020-10-15 深圳市大疆创新科技有限公司 遥控可移动平台的控制方法、设备及计算机可读存储介质
CN112799416B (zh) * 2019-10-24 2024-04-12 广州极飞科技股份有限公司 航线生成方法、设备和系统、无人作业系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150269622A1 (en) * 2014-03-20 2015-09-24 Yahoo Japan Corporation Movement controller, movement control method, and movement control system
CN105225540A (zh) * 2015-10-21 2016-01-06 杨珊珊 无人飞行器的飞行区域监控装置及其监控方法
CN105700553A (zh) * 2016-01-28 2016-06-22 中国科学院自动化研究所 多无人机自主协同决策快速集成系统
CN105843254A (zh) * 2016-04-29 2016-08-10 乐视控股(北京)有限公司 一种无人机飞行控制方式切换方法、装置及其无人机
CN105867181A (zh) * 2016-04-01 2016-08-17 腾讯科技(深圳)有限公司 无人机的控制方法和装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477169B (zh) * 2009-01-16 2011-07-13 华北电力大学 巡检飞行机器人对电力线路的检测方法
US10241644B2 (en) * 2011-06-03 2019-03-26 Apple Inc. Actionable reminder entries
US8594932B2 (en) * 2010-09-14 2013-11-26 The Boeing Company Management system for unmanned aerial vehicles
CN201918032U (zh) * 2010-12-31 2011-08-03 同济大学 一种飞行器低空飞行防撞的装置
US20120215434A1 (en) * 2011-02-22 2012-08-23 General Electric Company Methods and systems for managing air traffic
CN102331783B (zh) * 2011-06-17 2013-03-13 沈阳航空航天大学 一种用于室内飞艇的自动驾驶仪
CN102930339B (zh) * 2012-09-28 2015-01-28 北京航空航天大学 一种飞行冲突解脱方法及装置
US9102406B2 (en) * 2013-02-15 2015-08-11 Disney Enterprises, Inc. Controlling unmanned aerial vehicles as a flock to synchronize flight in aerial displays
JP6476662B2 (ja) * 2013-09-20 2019-03-06 株式会社デンソーウェーブ ロボット操作装置、ロボットシステム、及びロボット操作プログラム
CN104468174B (zh) * 2013-09-25 2017-10-13 北京新媒传信科技有限公司 一种集群服务器执行任务的方法和装置
CN103687074A (zh) * 2013-11-11 2014-03-26 中国航天科技集团公司第五研究院第五一三研究所 一种集群飞行器通信系统
US10347140B2 (en) * 2014-03-11 2019-07-09 Textron Innovations Inc. Flight planning and communication
JP6429997B2 (ja) * 2014-09-03 2018-11-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Uav及びそれによる壁体洗浄方法、並びにこのuavを用いた壁体洗浄システム
US9821470B2 (en) * 2014-09-17 2017-11-21 Brain Corporation Apparatus and methods for context determination using real time sensor data
US9697737B2 (en) * 2014-09-30 2017-07-04 The Boeing Company Automatic real-time flight plan updates
CN105518415A (zh) * 2014-10-22 2016-04-20 深圳市大疆创新科技有限公司 一种飞行航线设置方法及装置
CN104578409A (zh) * 2014-12-16 2015-04-29 国家电网公司 智能变电站集群测控装置及具有该集群测控装置的系统
CN104615143B (zh) * 2015-01-23 2017-05-24 广州快飞计算机科技有限公司 无人机调度方法
US9547993B2 (en) * 2015-02-23 2017-01-17 Honeywell International Inc. Automated aircraft ground threat avoidance system
JP6118832B2 (ja) * 2015-02-26 2017-04-19 京セラドキュメントソリューションズ株式会社 ジョブ制御装置
CN104792313B (zh) * 2015-03-31 2017-10-03 深圳一电航空技术有限公司 无人侦查系统的测绘控制方法、装置及系统
CN104950903B (zh) * 2015-06-10 2017-08-25 杨珊珊 一种具有飞行任务模式的飞行器、飞行器控制方法及系统
CN105282328A (zh) * 2015-09-16 2016-01-27 阿里巴巴集团控股有限公司 通讯过程中的任务提示方法及装置
CN105426986B (zh) * 2015-10-30 2019-06-21 上海交通大学 多机器人系统中的高可靠性控制方法及系统
CN105610215B (zh) * 2015-12-01 2018-10-02 深圳市大疆创新科技有限公司 供电装置、供电控制方法及应用该供电装置的可移动装置
CN105912017B (zh) * 2016-04-20 2017-05-03 合肥工业大学 一种无人机编队管理方法和无人机的控制系统
CN105955294A (zh) * 2016-05-26 2016-09-21 北京大工科技有限公司 控制无人机植保作业的方法及装置
CN105867407A (zh) * 2016-06-12 2016-08-17 零度智控(北京)智能科技有限公司 无人机、无人机飞行控制装置及方法
CN105938371A (zh) * 2016-06-21 2016-09-14 深圳市博飞航空科技有限公司 无人飞行器飞行控制系统、方法及遥控器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150269622A1 (en) * 2014-03-20 2015-09-24 Yahoo Japan Corporation Movement controller, movement control method, and movement control system
CN105225540A (zh) * 2015-10-21 2016-01-06 杨珊珊 无人飞行器的飞行区域监控装置及其监控方法
CN105700553A (zh) * 2016-01-28 2016-06-22 中国科学院自动化研究所 多无人机自主协同决策快速集成系统
CN105867181A (zh) * 2016-04-01 2016-08-17 腾讯科技(深圳)有限公司 无人机的控制方法和装置
CN105843254A (zh) * 2016-04-29 2016-08-10 乐视控股(北京)有限公司 一种无人机飞行控制方式切换方法、装置及其无人机

Also Published As

Publication number Publication date
CN107636551A (zh) 2018-01-26
CN114115337A (zh) 2022-03-01
US20190221128A1 (en) 2019-07-18
CN107636551B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
US10692387B2 (en) Method and device for setting a flight route
US20180059659A1 (en) Delivery System and Delivery Method
WO2018053769A1 (zh) 一种飞行控制方法、装置及智能终端
KR102631147B1 (ko) 공항용 로봇 및 그의 동작 방법
US20170199053A1 (en) Method, device and system for processing a flight task
US20180046177A1 (en) Motion Sensing Flight Control System Based on Smart Terminal and Terminal Equipment
JP6212663B1 (ja) 無人航空機飛行制御アプリケーション及び無人航空機飛行制御方法
CN107735737B (zh) 一种航点编辑方法、装置、设备及飞行器
WO2018187889A1 (zh) 一种飞行处理方法及控制设备
CN105518487A (zh) 飞行器的位置提示方法及装置
US9367215B2 (en) Mobile devices and related methods for configuring a remote device
KR102547441B1 (ko) 차량 간 메시지 전송 장치 및 방법
CN105116917A (zh) 飞行设备降落方法及装置
CN105867420B (zh) 一种应用于无人机的快速模式切换系统及方法
CN110491178B (zh) 航点的操作方法、装置和系统、地面站和计算机可读存储介质
CN105739514A (zh) 无人机的操控方法及无人机系统
JP2017077878A (ja) 無人飛行体、飛行制御方法、飛行基本プログラム及び強制移動プログラム
WO2019127229A1 (zh) 监听数据的展示方法及装置及无人机监听系统
WO2019061224A1 (zh) 一种控制终端的控制方法及控制终端
WO2020087297A1 (zh) 一种无人机测试方法、设备及存储介质
CN106444825B (zh) 飞行器、控制终端、飞行器的控制方法及控制装置
US10832558B2 (en) Systems and methods for augmenting reality during a site survey using an unmanned aerial vehicle
WO2022166501A1 (zh) 无人机控制
WO2019000299A1 (zh) 检测无人机的定位设备的方法、无人机
CN106020238A (zh) 一种无人机搜救方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916508

Country of ref document: EP

Kind code of ref document: A1