WO2018051483A1 - 連続鋳造法 - Google Patents

連続鋳造法 Download PDF

Info

Publication number
WO2018051483A1
WO2018051483A1 PCT/JP2016/077415 JP2016077415W WO2018051483A1 WO 2018051483 A1 WO2018051483 A1 WO 2018051483A1 JP 2016077415 W JP2016077415 W JP 2016077415W WO 2018051483 A1 WO2018051483 A1 WO 2018051483A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
molten steel
continuous casting
mold
steel
Prior art date
Application number
PCT/JP2016/077415
Other languages
English (en)
French (fr)
Inventor
靖弘 江原
斎藤 俊
森田 一成
森川 広
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to KR1020197010796A priority Critical patent/KR102490142B1/ko
Priority to JP2016563227A priority patent/JP6129435B1/ja
Priority to BR112019003963-5A priority patent/BR112019003963B1/pt
Priority to EP16916264.1A priority patent/EP3513888B1/en
Priority to PCT/JP2016/077415 priority patent/WO2018051483A1/ja
Priority to CN201680089308.5A priority patent/CN110035844B/zh
Priority to US16/332,028 priority patent/US10751791B2/en
Priority to RU2019110786A priority patent/RU2718442C1/ru
Publication of WO2018051483A1 publication Critical patent/WO2018051483A1/ja
Priority to ZA2019/01507A priority patent/ZA201901507B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/186Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Definitions

  • the present invention relates to a steel continuous casting method using electromagnetic stirring (EMS).
  • EMS electromagnetic stirring
  • a technique of injecting molten steel into a mold (mold) using an immersion nozzle having two discharge holes is widely adopted. Bubbles and non-metallic particles are inevitably mixed in the molten steel discharged from the immersion nozzle. Typical gas bubbles include argon gas bubbles. Argon is blown into the molten steel in the refining process of VOD or AOD, used as a tundish seal gas, or intentionally added into the molten steel flow path to prevent nozzle clogging. Since it hardly dissolves in the mold, it tends to be mixed into the mold as bubbles.
  • Non-metallic particles mainly consist of slag for smelting, deoxidation products generated during the smelting process, refractories that are components of ladle and tundish, and powder that was present on the surface of tundish. It is wound in the molten steel and flows into the mold together with the molten steel from the immersion nozzle. On the other hand, mold powder is added on the surface of the molten steel in the mold. Mold powder usually floats on the surface of the molten metal and covers the surface of the molten steel, and has functions such as lubrication of the slab and mold, heat retention, and oxidation prevention, and also functions to trap non-metallic particles that have floated on the surface of the molten metal. There is also.
  • Bubbles and non-metallic particles that have flowed into the molten steel in the mold float in the mold along with the molten steel flow, but those with a relatively large size tend to float near the molten metal surface, and these are formed in the initial stage. May be taken into the solidified shell (the surface layer of the slab).
  • mold powder on the molten metal surface may also enter the initial solidified shell.
  • substances such as bubbles, non-metallic particles and mold powder in molten steel that can be taken into the solidified shell, or those substances that have already been taken into the solidified shell are referred to as “foreign substances”.
  • the mixing of foreign matter into the solidified shell becomes a factor for forming a defect (soot) on the surface of the steel sheet through a hot rolling process or a cold rolling process.
  • electromagnetic stirrer In continuous casting of steel, electromagnetic stirrer (EMS) is effective and widely used as a measure for suppressing foreign matter contamination in the solidified shell (for example, Patent Document 1). It has been empirically confirmed that foreign matters are hardly trapped in the solidified shell by forcibly flowing the molten steel near the solidified shell in the mold by electromagnetic stirring.
  • the initial solidified shell is likely to be formed with a non-uniform thickness over time due to the effect of heat removal from the molten metal surface at the position where the molten metal surface and the mold contact. It is done.
  • This non-uniform initial solidified shell descends along the mold surface while exhibiting a claw-like cross section, and this causes an increase in foreign matter entrainment in the solidified shell. Therefore, maintaining the temperature of the hot water surface high is also effective in suppressing foreign matter from entering the solidified shell.
  • Patent Document 2 describes that the discharge angle of the immersion nozzle is in the range of 5 to 30 degrees horizontally upward (Patent Document 2, paragraph 0013).
  • Patent Document 2 paragraph 0013 describes that the discharge angle of the immersion nozzle is in the range of 5 to 30 degrees horizontally upward.
  • the casting speed is as low as about 0.9 m / min or less, the reversal flow from the short side to the immersion nozzle is small (same paragraph 0021), so the temperature of the molten steel near the meniscus should be kept high in normal hot water supply. I can't. Therefore, the problem is solved by encouraging the supply of heat to the meniscus by setting the nozzle discharge angle upward with respect to the horizontal direction (same paragraph 0022).
  • Patent Document 2 electromagnetic stirring in the same direction is performed on the long side surfaces on both sides when the casting speed is about 0.9 to 1.3 m / min, or when the casting speed is about 1.3 m / min or more.
  • a technique is disclosed in which the molten steel temperature in the vicinity of the meniscus is maintained at a high temperature by accelerating or decelerating the reverse flow from the short side (paragraphs 0025 to 0029).
  • the discharge angle may be relatively small (same paragraph 0029), and an upward angle of 5 ° is adopted in the embodiment (same table 2).
  • the angle is 5 ° upward, the discharge flow from the immersion nozzle goes to the short side surface of the mold, and the reverse flow from the short side flows on the molten metal surface.
  • Patent Document 2 it is said that a slab excellent in surface cleanliness and free from surface cracks can be obtained by making the molten steel discharge angle from the immersion nozzle upward during continuous casting and performing appropriate electromagnetic stirring. .
  • the present inventors have found that surface defects that are manifested at the stage of processing into a cold-rolled steel sheet, even when the surface properties are considered good at the stage of the slab. It has been experienced that it is not always possible to stably reduce significantly.
  • the solidified shell is obtained.
  • Surface defects in cold-rolled steel sheets due to foreign matter contamination may not be sufficiently reduced, and the quality of steel sheets and yield are not necessarily improved.
  • the discharge angle of the immersion nozzle is increased to, for example, about 30 degrees horizontally upward, and electromagnetic stirring (EMS) is used in combination, the surface defects in the cold-rolled steel sheet due to foreign matter mixing are also stable and remarkable. It has been found that it cannot always be reduced.
  • the molten steel is stainless steel
  • a stainless steel plate there are many uses that place an emphasis on a beautiful surface appearance as compared with a normal steel plate, and the requirements for improving surface properties are generally high. This is also considered to be one of the factors that make it difficult to obtain a sufficient improvement effect in stainless steel only by applying the conventional technology.
  • the present invention provides a continuous casting technique capable of stably and remarkably reducing surface defects in cold-rolled steel sheets caused by foreign matter mixing into solidified shells even when applied to continuous casting of molten stainless steel. It is to provide.
  • the inner wall surfaces of the two molds constituting the long side of the rectangle are defined as the “long side surface” and the short side is configured.
  • the two mold inner wall surfaces are called “short side surfaces”
  • the horizontal direction parallel to the long side surfaces is called “long side direction”
  • the horizontal direction parallel to the short side surfaces is called “short side direction”
  • An immersion nozzle having two discharge holes is installed at the center in the long side direction and short side direction in the mold, and molten steel is discharged from the discharge holes into the mold under the following conditions (A) and (B), respectively.
  • an electromagnetic force is applied to the molten steel in a depth region where the thickness of the solidified shell is 5 to 10 mm at least at the center position in the long-side direction so that the long-side flows in opposite directions occur on both long sides.
  • EMS continuous casting method of steel with stirring
  • each of the two discharge holes of the immersion nozzle has an exit opening area of 950 to 3500 mm 2 as viewed from the discharge direction.
  • the method of the present invention When the method of the present invention is applied, it is possible to stably and significantly reduce the contamination of the solidified shell, which is inevitably generated in continuous casting of steel.
  • argon gas When argon gas is used as a tundish seal gas or a nozzle blockage prevention gas, it is possible to significantly reduce the mixing of argon gas bubbles as foreign matter. Therefore, according to the present invention, it is possible to obtain a high-quality cold-rolled steel sheet having very few surface defects due to the above-mentioned foreign matter without performing special mechanical or chemical removal processing on the surface of the slab or hot-rolled steel sheet. Can do.
  • the continuous casting method of the present invention is particularly effective when applied to stainless steel where a beautiful surface appearance is desired.
  • Sectional drawing which illustrated typically the cross-sectional structure cut
  • Sectional drawing which illustrated typically the cross-sectional structure cut
  • vertical to the casting direction about the continuous cast slab of the ferritic stainless steel according to this invention obtained by the method using electromagnetic stirring.
  • the metal structure photograph of the section perpendicular to the casting direction about the continuous casting slab of ferritic stainless steel obtained by the method which does not use electromagnetic stirring.
  • FIG. 1 schematically illustrates a cross-sectional structure of a continuous casting apparatus applicable to the present invention, cut along a horizontal plane at the molten steel surface height of molten steel in a mold.
  • the “hot surface” is the liquid surface of the molten steel.
  • a layer of mold powder is usually formed on the hot water surface.
  • An immersion nozzle 30 is installed in the center of a region surrounded by two sets of molds (11A, 11B) and (21A, 22B) facing each other.
  • the immersion nozzle has two discharge holes below the molten metal surface, and the molten steel 40 is continuously supplied into the mold from these discharge holes, and a molten metal surface is formed at a predetermined height position in the mold.
  • the contour shape of the inner wall surface of the mold cut along the horizontal plane is a rectangle.
  • “long side surfaces” constituting the long sides of the rectangle are denoted by reference numerals 12A and 12B
  • “short side surfaces” constituting the short sides are denoted by reference numerals. Displayed as 22A and 22B.
  • the horizontal direction parallel to the long side surface is referred to as “long side direction”
  • the horizontal direction parallel to the short side surface is referred to as “short side direction”.
  • the long side direction is indicated by reference numeral 10
  • the short side direction is indicated by reference numeral 20 by white arrows.
  • the distance between the long side surfaces 12A and 12B is, for example, 150 to 300 mm, and the distance between the short side surfaces 22A and 22B (W in FIG. 2 described later) is, for example, 600 to 2000 mm.
  • Electromagnetic stirrers 70A and 70B are installed on the back surfaces of the molds 11A and 11B, respectively, and at least in the depth region where the thickness of the solidified shell formed along the surfaces of the long side surfaces 12A and 12B is 5 to 10 mm.
  • the flowing force in the long side direction can be applied to the molten steel.
  • depth is a depth based on the height position of the hot water surface.
  • the molten metal surface fluctuates somewhat, but in this specification, the average molten metal surface height is defined as the position of the molten metal surface.
  • the depth region where the thickness of the solidified shell is 5 to 10 mm generally depends on the casting speed and the heat removal speed from the mold, but generally the depth from the molten metal surface is in the range of 300 mm or less. Therefore, the electromagnetic stirrers 70A and 70B are installed at positions where a fluid force can be applied to the molten steel from the molten metal surface to a depth of about 300 mm.
  • the molten steel flow direction in the vicinity of the long side surface generated by the electromagnetic force of the electromagnetic stirring devices 70A and 70B in the depth region where the thickness of the solidified shell is 5 to 10 mm is indicated by the black arrows 60A and 60B, respectively. It is shown.
  • the flow trend by electromagnetic stirring is such that long side flows in opposite directions occur on both long sides. In this case, in the depth region until the thickness of the solidified shell reaches about 10 mm, the horizontal flow of the molten steel contacting the already formed solidified shell becomes a flow that draws a vortex in the mold.
  • FIG. 2 schematically illustrates a cross-sectional structure of a continuous casting apparatus applicable to the present invention, which is cut along a plane passing through the center position of the opposed long side surfaces.
  • the long side direction is indicated by reference numeral 10 by a white arrow. Since the cross-sectional structure is symmetrical with respect to the center position of the immersion nozzle 30, a portion including the immersion nozzle 30 and one short side mold 21B is shown.
  • W in FIG. 2 means the distance in the molten metal surface height of the opposing short side surface. The distance between the center position of the immersion nozzle and one short side surface 22B is 0.5W.
  • the immersion nozzle 30 has discharge holes 31 on both sides in the long side direction.
  • the discharge hole 31 is formed such that the discharge direction 51 of the molten steel is upward with respect to the horizontal plane.
  • An angle ⁇ formed by the horizontal plane and the discharge direction 51 is referred to as a discharge angle.
  • the molten steel discharge flow that exits from the outlet opening 32 of the discharge hole 31 travels through the molten steel 40 while spreading to some extent.
  • the center of the discharge flux at the position of the outlet opening 32 is referred to as a “discharge flow central axis”.
  • the direction in which the molten steel of the flow center axis faces can be defined as the “discharge direction”.
  • a straight line extending in the discharge direction from the center point of the discharge flux at the position of the outlet opening 32 is defined as an “extension line of the discharge flow center axis”.
  • discharge extension line an extension line of the discharge flow central axis is referred to as a “discharge extension line”.
  • discharge extension line is denoted by reference numeral 52.
  • point P an intersection of the discharge extension line 52 and the hot water surface 41 is defined as a point P.
  • the molten steel is discharged from the immersion nozzle discharge hole upward from the horizontal so that the position of the intersection P between the discharge extension line 52 and the molten metal surface 41 satisfies the following expression (1).
  • W is the distance (mm) at the height of the hot water surface of the opposing short sides
  • M is the long side direction distance (mm) from the central position in the long side direction to the point P between the opposing short sides.
  • the position of the point P in FIG. 2 is in a range where M is 0.15 W or more and 0.45 W or less.
  • the heat from the discharged molten steel can be efficiently distributed over the entire molten metal surface, and the temperature of the entire molten metal surface can be maintained high.
  • fills (1) Formula does not obstruct formation of the above-mentioned vortex
  • the average temperature of the entire hot water surface also decreases. Furthermore, the flow of the discharge flow toward the short side surface becomes a factor that disturbs the vortex generated by the electromagnetic stirring. In this case, the electromagnetic stirring flow becomes locally unstable, and foreign matter restraint tends to occur on the surface of the solidified shell at the place where the flow becomes stagnant.
  • any of the two discharge holes 31 it is important to discharge molten steel from the immersion nozzle discharge hole so as to satisfy the following expression (2).
  • L is the distance (mm) from the center position of the outlet opening of the submerged nozzle discharge hole to the point P
  • Vi is the discharge speed (mm / s) of the molten steel at the outlet opening of the discharge hole.
  • the center position of the outlet opening is the center point of the discharge flux at the position of the outlet opening 32, that is, the starting point of the discharge extension line.
  • the molten steel discharge amount per unit time (mm 3 / s) from the discharge hole is divided by the area (mm 2 ) of the outlet opening as viewed from the discharge direction (direction of the discharge extension line).
  • a fixed average discharge speed (mm / s) can be employed.
  • the mold for continuous casting may be tapered so that the cross-sectional dimension of the inner surface slightly decreases from the upper end to the lower end in consideration of solidification shrinkage. Even in such a case, when the molten steel discharge amount per unit time is obtained from the casting speed and the mold dimension in order to calculate Vi, there is no problem in adopting the mold dimension at the molten metal surface height.
  • the discharge angle of the immersion nozzle and the immersion depth of the immersion nozzle may be controlled. Further, in order to adjust the discharge conditions satisfying the expression (2) or the expression (2) ′, the discharge speed Vi may be further controlled.
  • the discharge speed Vi depends on the size of the discharge opening (the area of the outlet opening as viewed from the discharge direction) and the molten steel discharge amount per unit time.
  • the size of the outlet opening of the submerged nozzle discharge hole not only affects the discharge speed Vi but also affects how the discharge flux spreads.
  • by using an immersion nozzle having a discharge hole with a small size of the outlet opening it is possible to increase the discharge speed Vi in securing the same discharge flow rate, and in addition, the discharge flux It turned out to be advantageous in suppressing the spread of The smaller the spread of the discharge flow velocity, the less likely it is to interfere with the molten steel flow generated by electromagnetic stirring, and the smaller the electric power for electromagnetic stirring necessary to form a stable vortex. Therefore, using an immersion nozzle with a small exit opening size is extremely effective in expanding the degree of freedom in setting electromagnetic stirring conditions.
  • an immersion nozzle having two discharge holes whose exit opening area is 950 to 3500 mm 2 as viewed from the discharge direction (the direction of the discharge extension line). It is more effective to be 950 to 3000 mm 2 .
  • the area of the outlet opening is less than 950, troubles such as nozzle clogging are likely to occur.
  • L in the above formula (2) (distance from the center position of the outlet opening of the submerged nozzle discharge hole to the point P) becomes longer, the influence of the spread of the discharge flow tends to increase.
  • L is preferably 200 mm or more. It is even more effective to use an immersion nozzle in which the area of the outlet opening is adjusted as described above, and to set the L to 450 mm or less.
  • the discharge speed increases accordingly, and it has been difficult to increase the upward discharge angle and directly discharge it toward the molten metal surface.
  • the discharge conditions satisfy the expression (2), a sufficient discharge amount can be ensured within a range where the undulation of the molten metal surface does not become intense. For this reason, even when the casting speed is high, it is possible to remarkably prevent foreign matter from being caught in the solidified shell by increasing the temperature of the molten metal and making it uniform.
  • the present invention exhibits an excellent effect even at a casting speed at which the casting speed is 0.90 m / min or more or exceeds 0.90 m / min.
  • the upper limit of the casting speed depends on the equipment capacity, it is usually set to 1.80 m / min or less and may be controlled to 1.60 m / min or less.
  • the average flow velocity in the long side direction of the molten steel in contact with the solidified shell surface is, for example, 100 to 600 mm / mm in the depth region where the thickness of the solidified shell is 5 to 10 mm at the center in the long side direction. s may be used. You may manage so that it may become 200-400 mm / s.
  • the flow velocity in the long side direction of the molten steel with which the solidified shell surface is in contact can be confirmed by examining the metal structure of the cross section perpendicular to the casting direction for the molten slab.
  • FIG. 3 illustrates a metallographic photograph of a cross section perpendicular to the casting direction of a continuously cast slab of ferritic stainless steel according to the present invention obtained by a method using electromagnetic stirring.
  • the upper end surface of the photograph is a surface obtained by contacting the long side surface of the mold (the surface of the end portion in the casting slab thickness direction), and the lateral direction of the photograph corresponds to the long side direction during casting.
  • the observation sample was collected from near the center in the long side direction.
  • One scale of the scale is 1 mm. It is known that when the molten metal is flowing with respect to the mold, the solidification of the crystal proceeds with an inclination toward the upstream side of the flow, and the inclination angle of crystal growth increases as the flow velocity increases.
  • FIG. 3 illustrates a metallographic photograph of a cross section perpendicular to the casting direction of a continuously cast slab of ferritic stainless steel according to the present invention obtained by a method using electromagnetic stirring.
  • the upper end surface of the photograph is a
  • the growth direction of the columnar crystals is inclined to the right. Therefore, it can be seen that the molten steel in contact with the solidified shell was flowing from the right to the left in the photograph.
  • the relationship between the flow rate of molten steel in contact with the solidified shell and the inclination angle of crystal growth can be known, for example, by a solidification experiment using a rotating rod-shaped heat removal body. Based on data obtained in advance by laboratory experiments, it is possible to estimate the flow rate of the molten steel with which the solidified shell is in contact during continuous casting. In the example of FIG.
  • the average flow velocity in the long side direction of the molten steel contacting the solidified shell surface in the depth region where the thickness of the solidified shell is 5 to 10 mm is It is estimated to be about 300 mm / s.
  • the flow rate of the molten steel with which the solidified shell surface comes into contact can be evaluated by reading the inclination angle of the dendrite primary arm.
  • FIG. 4 illustrates a metallographic photograph of a cross section perpendicular to the casting direction of a ferritic stainless steel continuous cast slab obtained by a method that does not use electromagnetic stirring.
  • the observation position of the sample is the same as in FIG.
  • One scale of the scale is 1 mm. In this case, no inclination is observed in the growth direction of the columnar crystals. That is, it can be seen that the portion of the slab where the solidified shell thickness is 5 to 10 mm is solidified in a state where no flow in the long side direction of the molten steel occurs.
  • a conventional continuous casting method can be applied except that the discharge conditions from the immersion nozzle are controlled to the above-described conditions and the electromagnetic stirring (EMS) is performed as described above.
  • EMS electromagnetic stirring
  • another electromagnetic stirrer may be installed in the lower region in the mold to apply a technique for generating a vertically upward molten steel flow. In that case, the effect of further reducing the mixing of foreign matter into the solidified shell can be expected.
  • the continuous casting method of the present invention is effective for various steel types that are conventionally manufactured by applying the continuous casting method. In particular, it is more effective when applied to stainless steel, which often requires a beautiful surface appearance.
  • the stainless steel is an alloy steel having a C content of 0.12% by mass or less and a Cr content of 10.5% or more as defined in JIS G0203: 2009 number 3801. An excessive Cr content causes a decrease in manufacturability and an increase in cost, so the Cr content is desirably 32.0% by mass or less. More specific examples of standard steel types of stainless steel include various types shown in JIS G4305: 2012.
  • Specific component compositions include, for example, mass%, C: 0.001 to 0.080%, Si: 0.01 to 1.00%, Mn: 0.01 to 1.00%, Ni: 0 to 0.60%, Cr: 10.5 to 32.0%, Mo: 0 to 2.50%, N: 0.001 to 0.080%, Ti: 0 to 1.00%, Nb: 0 to 1 0.00%, V: 0 to 1.00%, Zr: 0 to 0.80%, Cu: 0 to 0.80%, Al: 0 to 0.30%, B: 0 to 0.010%, balance
  • An example is ferritic stainless steel made of Fe and inevitable impurities.
  • ferritic single-phase steel types in which the C content is limited to 0.001 to 0.030 mass% and the N content is limited to 0.001 to 0.025 mass%.
  • the application of the present invention is extremely useful.
  • operating conditions are adopted such that the molten steel in the tundish is not in contact with the nitrogen component as much as possible, but as a means for avoiding contact with the nitrogen component, the gas phase in the tundish is used. Even when the operation of sealing the part with argon gas is performed, the argon gas bubbles brought into the mold can be effectively prevented from being caught in the solidified shell.
  • Example 1 A slab was manufactured by casting ferritic stainless steel having the chemical composition shown in Table 1 with a continuous casting apparatus.
  • the length of the molten metal surface was set to a short side length of 200 mm, and the long side length (W in FIG. 2) was set within a range of 700 to 1650 mm.
  • the dimension at the lower end of the mold is slightly smaller than the above in consideration of solidification shrinkage.
  • the casting speed was set in the range of 0.50 to 1.50 m / min.
  • Electromagnetic stirrers are installed on the mold backs of both opposing long sides, and electromagnetic stirrer is applied so as to apply a flow force in the long side direction to the molten steel from the depth position near the molten metal surface in the mold to a depth position of about 200 mm. Went. As shown in FIG. 1, the flow directions are opposite in the opposite long sides.
  • the electromagnetic stirring force was the same.
  • the average flow velocity in the long side direction of the molten steel contacting the surface of the solidified shell is set to about 300 mm / s at the center position in the long side direction on both long side surfaces. .
  • the immersion nozzle having two ejection holes on both sides in the long side direction was installed at the center position in the long side direction and the short side direction.
  • the outer diameter of the immersion nozzle is 105 mm.
  • the two discharge holes are symmetrical with respect to a plane that passes through the nozzle center and is parallel to the short side surface.
  • the discharge angle ( ⁇ in FIG. 2) was set in the range of 5 to 45 ° upward.
  • the area of the outlet opening of one discharge hole viewed from the discharge direction is 2304 mm 2 (common to each example).
  • the discharge extension line (reference numeral 52 in FIG. 2) is on a plane passing through the center position of the opposing long side surface.
  • the radius from the center of the immersion nozzle to the starting point of the discharge extension line (R in FIG. 2) is 52.5 mm.
  • Tables 2A and 2B show the main continuous casting conditions.
  • the example numbers in Table 2A and Table 2B correspond to the steel numbers in Table 1.
  • an example of operation using argon gas as a seal gas in the gas phase portion of the tundish is illustrated (common to each example).
  • the outlet opening depth of the immersion nozzle discharge hole H in FIG. 2, ie, the depth from the molten metal surface at the center position of the outlet opening
  • “Mold size” in Table 2 is the size at the level of the hot water surface.
  • Electromagnetic stirring flow velocity in Tables 2A and 2B is an average flow velocity in the long side direction at the center in the long side direction of the molten steel in contact with the surface of the solidified shell in the depth region where the thickness of the solidified shell is 5 to 10 mm. .
  • the geometric distance M is “from the central position in the long side direction between the opposing short sides. "Long-side direction distance to the intersection of the horizontal plane including the discharge extension line” and “the distance from the center position of the outlet opening of the immersion nozzle discharge hole to the horizontal plane including the molten metal surface” as the geometric distance L It is.
  • the geometric distance M in Tables 2A and 2B corresponds to M in FIG. 2 described above (the distance in the long side direction from the center position in the long side direction between the opposing short sides to the point P).
  • the geometric distance L corresponds to L in FIG.
  • the obtained slab (continuous casting slab) is advanced to the manufacturing process (hot rolling, annealing, pickling, cold rolling, annealing, pickling) of a general ferritic stainless steel sheet, and cold rolled with a thickness of 1 mm
  • An annealed steel sheet coil was manufactured. A surface inspection of the entire width of one side surface was performed over the entire length of the coil, and it was examined whether or not a surface defect exists in each section divided for each 1 m in the longitudinal direction of the coil.
  • the section is defined as a “section where a surface defect exists”, and the ratio of the number of “sections where a surface defect exists” in the total number of sections of the entire coil length
  • the defect occurrence rate (%) of the coil was used.
  • Surface defects are detected by irradiating the entire width of the coil surface in the plate with laser light to detect surface shape anomalies and visual observation, and the same standard for all coils to be inspected. I went there. This technique can accurately detect surface defects caused by foreign matters (non-metallic particles, bubbles, powder, etc.) taken into the solidified shell during continuous casting.
  • the ferritic stainless steel cold-rolled and annealed steel sheet having a defect occurrence rate of 2.5% or less can be expected to have a significant improvement in product yield even in applications where the surface appearance is important. Therefore, the defect occurrence rate of 2.5% or less was determined to be acceptable ( ⁇ evaluation), and the others were determined to be unacceptable (x evaluation). The results are shown in Table 2A and Table 2B.
  • both are cold-rolled annealed steel plates. It was confirmed that the defect occurrence rate was kept low and the phenomenon that foreign matter in molten steel was caught in the solidified shell during continuous casting could be stably and remarkably suppressed.
  • Nos. 13 to 18 have a discharge direction such that M / W exceeds 0.45, and L-0.17 Vi is excessive, so that the molten metal surface temperature cannot be maintained sufficiently high. It was. As a result, foreign matter entrainment increased and the defect occurrence rate in the cold-rolled annealed steel sheet was high. In No. 19, since the immersion depth of the immersion nozzle was shallow, the discharge direction was such that the M / W was less than 0.15, and the temperature of the molten metal surface was greatly reduced near the short side. As a result, foreign matter entrainment increased. In Nos.
  • Example 2 The influence of electromagnetic stirring on the effect of suppressing the entrainment of foreign matters was examined using some of the melt charge shown in Table 2A.
  • Table 3 shows the continuous casting conditions and the occurrence of defects in the cold-rolled annealed steel sheet.
  • the display items are the same as in Table 2A.
  • Example No. Corresponds to the numbers of Example No. in Table 2A, and the examples where the numbers are the same are the same melt charge.
  • Only the electromagnetic stirring conditions were changed stepwise with the same melting charge, and the coil of the cold-rolled annealed steel sheet was manufactured in the same manner as in Example 1 using the cast pieces (continuous cast slabs) manufactured under the respective electromagnetic stirring conditions.
  • a surface inspection was performed.
  • the inspection method is the same as that in the first embodiment.
  • the example in which the magnetic stirring speed in Table 3 is 300 mm / s is a reprint of the example shown in Table 2A.
  • An example in which the magnetic stirring flow rate is 0 mm / s means that electromagnetic stirring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

【課題】凝固シェルへの異物混入に起因する冷延鋼板での表面欠陥を安定して顕著に低減することが可能な連続鋳造技術を提供する。 【解決手段】浸漬ノズル30の吐出孔31から下記(A)および(B)の条件で溶鋼をモールド内に吐出するとともに、少なくとも長辺方向中央位置の凝固シェル厚さが5~10mmとなる深さ領域の溶鋼に、双方の長辺側で互いに逆方向の長辺方向流れが生じるように電磁撹拌(EMS)を行う、鋼の連続鋳造方法。 (A)浸漬ノズル吐出孔31からの吐出延長線52がモールド内の湯面41と点Pで交わり、前記点Pの位置が、0.15≦M/W≦0.45を満たす条件。 (B)0≦L-0.17Vi≦350を満たす条件。ここで、Lの単位はmm、Viは出口開口部32における溶鋼の吐出速度(mm/s)である。

Description

連続鋳造法
 本発明は、電磁撹拌(EMS)を利用した鋼の連続鋳造方法に関する。
 鋼の連続鋳造法としては、2つの吐出孔を有する浸漬ノズルを用いて、溶鋼をモールド(鋳型)の中に注入する手法が広く採用されている。浸漬ノズルから吐出される溶鋼中には気泡や非金属粒子などが不可避的に混入している。代表的な気泡としてはアルゴンガス気泡が挙げられる。アルゴンは、VODやAODの精錬工程で溶鋼中に吹き込まれたり、タンディッシュのシールガスとして使われたり、ノズル閉塞を防止するために意図的に溶鋼流路内に添加されたりするが、溶鋼中へほとんど溶解しないため、モールド内へ気泡として混入しやすい。非金属粒子は主として、精錬用スラグ、精錬過程で生成する脱酸生成物、取鍋やタンディッシュの構成材料である耐火物、タンディッシュの湯面上に存在していたパウダーなどの一部が溶鋼中に巻き込まれ、浸漬ノズルから溶鋼とともにモールド中に流入するものである。一方、モールド内の溶鋼の湯面上にはモールドパウダーが添加される。モールドパウダーは通常、湯面上に浮いて溶鋼表面を覆っており、鋳片とモールドの潤滑作用、保温、酸化防止等の機能を有するとともに、湯面に浮上してきた非金属粒子をトラップする働きもある。
 モールド内の溶鋼中に流入してきた気泡や非金属粒子は、溶鋼流に随伴してモールド内を浮遊するが、比較的サイズの大きいものは湯面近くに浮上しやすく、これらは初期に形成される凝固シェル(鋳片の表層部)の中に取り込まれることがある。また、湯面上のモールドパウダーも、初期の凝固シェル内に入り込むことがある。以下、これら凝固シェル内に取り込まれ得る溶鋼中の気泡、非金属粒子、モールドパウダーなどの物質、あるいは既に凝固シェル内に取り込まれたそれらの物質を、「異物」と呼ぶ。凝固シェル内への異物混入は、熱間圧延や冷間圧延の工程を経て鋼板の表面に欠陥(疵)を形成する要因となる。
 鋼の連続鋳造では、凝固シェルへの異物混入を抑制する措置として電磁撹拌(EMS;Electro-Magnetic Stirrer)が有効であり、広く利用されている(例えば特許文献1など)。電磁撹拌によりモールド内の凝固シェル近傍の溶鋼を強制的に流動させることで、凝固シェル内に異物が捕捉されにくくなることが経験的に確かめられている。
 また、モールド内の湯面温度が低下すると、湯面とモールドが接する位置で、初期の凝固シェルが湯面からの抜熱に影響されて経時的に不均一な厚さで形成されやすくなると考えられる。この不均一な初期の凝固シェルは爪状の断面を呈しながらモールド表面に沿って下降し、これが、凝固シェルへの異物巻き込みを増大させる要因となる。従って、湯面の温度を高く維持することも凝固シェル内への異物混入を抑制する上で有効である。
 特許文献2には、浸漬ノズルの吐出角度を水平上向き5度から30度の範囲とすることが記載されている(特許文献2段落0013)。鋳造速度がおよそ0.9m/min以下のように小さい場合には、短辺から浸漬ノズルに向かう反転流が小さいので(同段落0021)、通常の給湯ではメニスカス近傍の溶鋼温度を高温に保つことができない。そこで、ノズルの吐出角度を水平方向に対して上向きにしてメニスカスへの熱供給を促すことにより問題を解決している(同段落0022)。溶鋼が浸漬ノズルから上向きに吐出されれば直接メニスカスに向かう流れが生じ、鋳型によって冷却されない溶鋼がメニスカスに供給され、メニスカスの温度が上昇するという(同段落0023)。
 また特許文献2には、鋳造速度がおよそ0.9~1.3m/minの場合や、およそ1.3m/min以上というように大きい場合に、両側の長辺面で同一方向の電磁撹拌を行って、短辺からの反転流を加速または減速することにより、メニスカス近傍の溶鋼温度を高温に保つ手法が開示されている(同段落0025~0029)。この場合、吐出角度は比較的小さくしてよいと教示され(同段落0029)、実施例では上向き5°が採用されている(同表2)。上向き5°のときは、浸漬ノズルからの吐出流はモールドの短辺面へと向かい、湯面上には短辺からの反転流が流れ込む。
特開2004-98082号公報 特開平10-166120号公報
 特許文献2の開示によれば、連続鋳造時に浸漬ノズルからの溶鋼吐出角度を上向きにするとともに、適切な電磁撹拌を行うことによって、表面清浄性に優れ、表面割れのない鋳片が得られるという。しかしながら、本発明者らは多くの溶製実験の結果、鋳片の段階で表面性状が良好であると見なされる場合であっても、冷延鋼板にまで加工された段階で顕在化する表面欠陥を安定して顕著に低減できるとは限らないことを経験している。例えば、吐出角度を上向き5°程度にして電磁撹拌(EMS)を併用する方法では、鋳造速度が0.9m/mim以上と大きくても(すなわち吐出流量が比較的多くても)、凝固シェルへの異物混入に起因する冷延鋼板での表面欠陥は十分に低減しないことがあり、必ずしも鋼板の品質改善および歩留り改善には至らない。また、浸漬ノズルの吐出角度を例えば水平上向き30度程度にまで高め、かつ電磁撹拌(EMS)を併用したとしても、同様に、異物混入に起因する冷延鋼板での表面欠陥を安定して顕著に低減することができるとは限らないことがわかった。特に溶鋼がステンレス鋼である場合には、十分な改善効果を得ることは、より一層難しい。ステンレス鋼板の場合は普通鋼板と比べ美麗な表面外観を重視する用途が多く、表面性状の改善に対する要求基準も一般的に高い。そのことも、従来の技術の適用だけではステンレス鋼において十分な改善効果を得ることが難しい要因の一つとなっていると考えられる。
 本発明は、ステンレス溶鋼の連続鋳造に適用した場合であっても、凝固シェルへの異物混入に起因する冷延鋼板での表面欠陥を安定して顕著に低減することが可能な連続鋳造技術を提供しようというものである。
 鋼の連続鋳造において、一般にモールド内溶鋼の湯面の温度低下を防ぐことは、凝固シェルへの異物混入の低減に有効であることが知られている。しかし、それだけでは電磁撹拌を併用しても上記目的を実現することは難しい。発明者らは詳細な検討の結果、浸漬ノズルから溶鋼を直接湯面に向けて吐出する手法を利用して、浸漬ノズルから吐出された溶鋼流のうち、湯面に到達する前にモールド短辺面へと向かってしまう溶鋼流を厳しく制限することが、凝固シェルへの異物混入の抑制に極めて効果的であることを見いだした。その際、浸漬ノズルから吐出された溶鋼流が湯面に到達するまでの時間が長くなりすぎないように吐出条件を制御し、かつ電磁撹拌(EMS)を併用することが重要である。また、浸漬ノズルから吐出された溶鋼流ができるだけ広がらずに直接湯面へと収束して向かうようにすることが、湯面温度の確保には有利となる。
 ただし、鋼の連続鋳造において浸漬ノズルからの吐出流の方向を直接湯面に向けるような操業を、営業生産において実際に行うことは容易でない。そのような吐出方法だと湯面の波立ちが激しくなるので、凝固シェルの形成厚さが不均一になったりモールドパウダーを凝固シェルに巻き込んだりする弊害が顕著に現れる恐れがあるためである。その場合、吐出速度を低減すれば湯面の波立ちは抑えられる。しかし反面、吐出速度の低下は逆に湯面温度の低下に繋がりやすく、また、生産性の低下を招く要因となる。本発明者らは、上記弊害を防止しながら凝固シェルへの異物混入を顕著に低減できる手法を見いだした。
 すなわち上記目的を達成するために、以下の発明を開示する。
[1]水平面で切断したモールド内面の輪郭形状が長方形であるモールドを用いる鋼の連続鋳造において、前記長方形の長辺を構成する2つのモールド内壁面を「長辺面」、短辺を構成する2つのモールド内壁面を「短辺面」、長辺面に平行な水平方向を「長辺方向」、短辺面に平行な水平方向を「短辺方向」と呼ぶとき、
 2つの吐出孔を有する浸漬ノズルを、モールド内の長辺方向および短辺方向の中心に設置し、上記各吐出孔からそれぞれ下記(A)および(B)の条件で溶鋼をモールド内に吐出するとともに、少なくとも長辺方向中央位置の凝固シェル厚さが5~10mmとなる深さ領域の溶鋼に、双方の長辺側で互いに逆方向の長辺方向流れが生じるように電力を印加して電磁撹拌(EMS)を行う、鋼の連続鋳造方法によって達成される。
(A)浸漬ノズル吐出孔の出口開口部における溶鋼吐出流中心軸の延長線(以下「吐出延長線」という。)がモールド内の湯面と点Pで交わり、前記点Pの位置が下記(1)式を満たすように、浸漬ノズル吐出孔から溶鋼を水平より上向きに吐出する。
 0.15≦M/W≦0.45 …(1)
 ここで、Wは対向する短辺の湯面高さにおける距離(mm)、Mは対向する短辺間の長辺方向中央位置から上記点Pまでの長辺方向距離(mm)である。
(B)下記(2)式を満たすように、浸漬ノズル吐出孔から溶鋼を吐出する。
 0≦L-0.17Vi≦350 …(2)
 ここで、Lは浸漬ノズル吐出孔の出口開口部中心位置から前記点Pまでの距離(mm)、Viは当該吐出孔の出口開口部における溶鋼の吐出速度(mm/s)である。
[2]浸漬ノズルの2つの吐出孔は、吐出方向から見た出口開口部の面積がそれぞれ950~3500mmである上記[1]に記載の連続鋳造法。
[3]前記(2)式のLが450mm以下である上記[1]または[2]に記載の連続鋳造法。
[4]鋳造速度が0.90m/min以上である上記[1]~[3]のいずれかに記載の連続鋳造法。
[5]鋼が、C含有量0.12質量%以下、Cr含有量10.5~32.0質量%のステンレス鋼である上記[1]~[4]のいずれかに記載の連続鋳造法。
[6]鋼が、質量%で、C:0.001~0.080%、Si:0.01~1.00%、Mn:0.01~1.00%、Ni:0~0.60%、Cr:10.5~32.0%、Mo:0~2.50%、N:0.001~0.080%、Ti:0~1.00%、Nb:0~1.00%、V:0~1.00%、Zr:0~0.80%、Cu:0~0.80%、Al:0~0.30%、B:0~0.010%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼である上記[1]~[4]のいずれかに記載の連続鋳造法。
 本発明の手法を適用すると、鋼の連続鋳造で不可避的に発生する凝固シェルへの異物混入を、安定して顕著に低減することが可能となる。タンディッシュのシールガスやノズル閉塞防止用ガスとしてアルゴンガスを使用する場合には、アルゴンガス気泡が異物として混入することを顕著に低減できる。従って本発明によれば、鋳片や熱延鋼板の表面に特段の機械的または化学的除去加工を施すことなく、上記異物に起因する表面欠陥が極めて少ない高品質の冷間圧延鋼板を得ることができる。本発明の連続鋳造法は、美麗な表面外観が望まれるステンレス鋼に適用すると、特に効果的である。
本発明に適用できる連続鋳造装置について、モールド内溶鋼の湯面高さにおける水平面で切断した断面構造を模式的に例示した断面図。 本発明に適用できる連続鋳造装置について、対向する長辺面の中央位置を通る平面で切断した断面構造を模式的に例示した断面図。 電磁撹拌を使用した方法で得られた本発明に従うフェライト系ステンレス鋼の連続鋳造スラブについての鋳造方向に垂直な断面の金属組織写真。 電磁撹拌を使用しない方法で得られたフェライト系ステンレス鋼の連続鋳造スラブについての鋳造方向に垂直な断面の金属組織写真。
 図1に、本発明に適用できる連続鋳造装置について、モールド内溶鋼の湯面高さにおける水平面で切断した断面構造を模式的に例示する。「湯面」は溶鋼の液面である。湯面上には通常、モールドパウダーの層が形成されている。対向する2組のモールド(11A、11B)、(21A、22B)に囲まれた領域の中央に浸漬ノズル30が設置されている。浸漬ノズルは湯面より下方に2つの吐出孔を有しており、それらの吐出孔から溶鋼40がモールド内部に連続供給され、モールド内の所定高さ位置に湯面が形成される。水平面で切断したモールド内壁面の輪郭形状は長方形であり、図1中には長方形の長辺を構成する「長辺面」を符号12A、12B、短辺を構成する「短辺面」を符号22A、22Bで表示している。また、長辺面に平行な水平方向を「長辺方向」、短辺面に平行な水平方向を「短辺方向」と呼ぶ。図1中には白抜き矢印により長辺方向を符号10、短辺方向を符号20で表示している。湯面高さにおいて、長辺面12Aと12Bの距離は例えば150~300mm、短辺面22Aと22Bの距離(後述図2のW)は例えば600~2000mmである。
 モールド11Aおよび11Bの背面にはそれぞれ電磁撹拌装置70Aおよび70Bが設置され、少なくとも長辺面12Aおよび12Bの表面に沿って形成される凝固シェルの厚さが5~10mmとなる深さ領域において、溶鋼に長辺方向の流動力を付与することができるようになっている。ここで、「深さ」は湯面の高さ位置を基準とした深さである。連続鋳造中、湯面は多少揺れ動くが、本明細書では平均湯面高さを湯面の位置とする。凝固シェルの厚さが5~10mmとなる深さ領域は、鋳造速度やモールドからの抜熱速度にも依るが、一般的には湯面からの深さが300mm以下の範囲内に存在する。従って、電磁撹拌装置70A、70Bは湯面から300mm深さ程度までの溶鋼に流動力を付与できる位置に設置してある。
 図1中には、凝固シェルの厚さが5~10mmとなる深さ領域において電磁撹拌装置70Aおよび70Bの電磁力によって生じる長辺面近傍の溶鋼流方向を、それぞれ黒の矢印60Aおよび60Bによって示してある。電磁撹拌による流動動向は、双方の長辺側で互いに逆方向の長辺方向流れが生じるようにする。この場合、凝固シェル厚さが10mm程度になるまでの深さ領域で、既に形成された凝固シェルに接触する溶鋼の水平方向流れが、モールド内で渦を描くような流れとなる。この渦流は、浸漬ノズルからの吐出流を後述するようにコントロールすることによって、停滞を生じることなく円滑に維持され、凝固シェルに拘束されそうになった溶鋼中の異物を再び溶鋼中へ洗い流す作用が長辺方向および短辺方向の全体にわたって顕著に発揮される。これにより、鋳造中の異物混入に起因する欠陥が非常に少ない鋼板製品を安定して製造することが可能になる。
 図2に、本発明に適用できる連続鋳造装置について、対向する長辺面の中央位置を通る平面で切断した断面構造を模式的に例示する。図2中には白抜き矢印により長辺方向を符号10で示してある。浸漬ノズル30の中心位置に対して左右対称の断面構造を有するため、浸漬ノズル30と一方の短辺側モールド21Bを含む部分を示した。図2中のWは対向する短辺面の湯面高さにおける距離を意味する。浸漬ノズルの中心位置と一方の短辺面22Bの距離は0.5Wである。浸漬ノズル30は、長辺方向の両側に吐出孔31を有している。吐出孔31は、溶鋼の吐出方向51が水平面に対して上向きとなるように作られている。この水平面と吐出方向51のなす角度θを吐出角と呼ぶ。吐出孔31の出口開口部32から出た溶鋼吐出流は、ある程度広がりながら溶鋼40中を進むが、出口開口部32の位置における吐出流束の中心を「吐出流中心軸」と呼ぶとき、吐出流中心軸の溶鋼が向かう方向を「吐出方向」として定めることができる。出口開口部32位置における吐出流束の中心点を出発点として、その出発点から吐出方向に伸びる直線を「吐出流中心軸の延長線」と定義する。以下、吐出流中心軸の延長線を「吐出延長線」と呼ぶ。図2中に吐出延長線を符号52で表している。また、吐出延長線52と湯面41の交点を点Pとする。
 本発明では、2つの吐出孔31のいずれにおいても、吐出延長線52と湯面41の交点Pの位置が下記(1)式を満たすように、浸漬ノズル吐出孔から溶鋼を水平より上向きに吐出する。
 0.15≦M/W≦0.45 …(1)
 ここで、Wは対向する短辺の湯面高さにおける距離(mm)、Mは対向する短辺間の長辺方向中央位置から上記点Pまでの長辺方向距離(mm)である。
 上記(1)式を満たすとき、図2において点Pの位置は、Mが0.15W以上0.45W以下となる範囲にある。このような吐出方向とした場合に、湯面全体に吐出溶鋼からの熱を効率的に行き渡らせることができ、湯面全体の温度を高く維持することが可能となる。また、(1)式を満たす吐出流は、電磁撹拌による上述の渦流の形成を阻害しにくいことがわかった。これにより円滑な渦流が維持され、凝固シェルへの異物の巻き込み抑制効果が顕著に向上する。M/Wが0.15より小さい場合(すなわちMが0.15Wより小さい場合)は、短辺面近傍の湯面に吐出流が届くまでの時間が長くなり、短辺面近傍で湯面温度が低下しやすい。湯面温度の低下は爪状の断面を有する不均一な初期凝固シェルの生成を招き、異物の巻き込みを増大させる要因となる。一方、M/Wが0.45を超えて大きい場合(すなわちMが0.45Wを超えて大きい場合)は、長辺方向中央付近の湯面温度が低下するだけでなく、浸漬ノズルからの吐出流のうち、直接湯面に到達せずに短辺面に向かう流れが増加することにより、湯面全体の平均温度も低下するようになる。さらに、短辺面に向かう吐出流の流れは、電磁撹拌によって生じる渦流を乱す要因となる。この場合、電磁撹拌流が局所的に不安定となり、その流れが停滞ぎみとなった箇所で凝固シェル表面での異物の拘束が生じやすくなる。
 なお、上記(1)式に代え、下記(1)’式を満たす条件を適用することが一層効果的である。
 0.20≦M/W≦0.40 …(1)’
 また、2つの吐出孔31のいずれにおいても、下記(2)式を満たすように、浸漬ノズル吐出孔から溶鋼を吐出することが重要である。
 0≦L-0.17Vi≦350 …(2)
 ここで、Lは浸漬ノズル吐出孔の出口開口部中心位置から前記点Pまでの距離(mm)、Viは当該吐出孔の出口開口部における溶鋼の吐出速度(mm/s)である。出口開口部中心位置は、出口開口部32位置における吐出流束の中心点、すなわち吐出延長線の出発点である。
 図2中にLを表示してある。Viについては、当該吐出孔からの単位時間当たりの溶鋼吐出量(mm/s)を、吐出方向(吐出延長線の方向)から見た出口開口部の面積(mm)で除することによって定まる平均吐出速度(mm/s)の値を採用することができる。連続鋳造用のモールドは凝固収縮を考慮して上端から下端へ向けて内面の断面寸法が僅かに小さくなるようにテーパーがつけられている場合もある。そのような場合でも、Viを算出するために鋳造速度とモールド寸法から単位時間当たりの溶鋼吐出量を求める際には、湯面高さでのモールド寸法を採用して問題ない。浸漬ノズルから吐出された溶鋼は、湯面に到達するまでの時間が長くなるほど、湯面到達時点での温度は低くなる。湯面に到達するまでの時間は、吐出孔の出口から湯面までの距離L、および吐出速度Viの他に、溶鋼中での減速の影響を加味して評価する必要がある。(2)式中のL-0.17Viは、上記各要因を考慮した温度低下指標である。発明者らは多くの溶製チャージを利用した実験結果に基づき、(2)式を満たす条件とすることで、湯面温度を安定して高く維持することができ、凝固シェルへの異物の巻き込みが安定して低減されることを見いだした。ただし、上記(1)式を満たす吐出方向とすることが(2)式を適用するための前提条件となる。
 (2)式中のL-0.17Vi値が小さいほど、湯面温度を高く維持するうえで有利となる。ただし、L-0.17Vi値が0より小さくなると吐出流が直接湯面に到達することに起因する湯面の波立ちが過大となり、湯面上に存在するモールドパウダーを凝固シェル中に異物として巻き込む可能性が急増する。一方、L-0.17Vi値が350を超えるような吐出条件では湯面に到達するまでに吐出流温度の低下が大きくなり、吐出方向が前記(1)式を満たす吐出方向であっても、湯面温度を高く維持することによる凝固シェルへの異物の巻き込み抑制効果が弱くなる。
 なお、上記(2)式に代え、下記(2)’式を満たす条件を適用することが一層効果的である。
 20≦L-0.17Vi≦300 …(2)’
 (1)式あるいは(1)’式を満たす吐出条件に調整するためには、浸漬ノズルの吐出角度、浸漬ノズルの浸漬深さをコントロールすればよい。また(2)式あるいは(2)’式を満たす吐出条件に調整するためには、さらに吐出速度Viをコントロールすればよい。吐出速度Viは吐出開口部のサイズ(吐出方向から見た出口開口部の面積)および単位時間当たりの溶鋼吐出量に依存する。
 浸漬ノズル吐出孔の出口開口部のサイズは、吐出速度Viに影響するだけでなく、吐出流束の広がり方にも影響する。発明者らの検討によれば、出口開口部のサイズが小さい吐出孔を有する浸漬ノズルを使うことによって、同じ吐出流量を確保するにあたっての吐出速度Viを大きくすることができることに加え、吐出流束の広がりを抑制するうえでも有利となることがわかった。吐出流速の広がりが小さいほど、電磁撹拌によって生じる溶鋼流と干渉しにくくなり、安定した渦流を形成するために必要な電磁撹拌の電力も小さくて済む。従って、出口開口部のサイズが小さい浸漬ノズルを使用することは、電磁撹拌条件の設定自由度を拡大するうえで極めて効果的である。種々検討の結果、吐出方向(吐出延長線の方向)から見た出口開口部の面積が950~3500mmである吐出孔を2個備えた浸漬ノズルを適用することがより好ましい。950~3000mmであることがより効果的である。出口開口部の面積が950未満になるとノズル閉塞等のトラブルが生じやすくなる。
 また、上記(2)式のL(浸漬ノズル吐出孔の出口開口部中心位置から前記点Pまでの距離)が長くなると、吐出流の広がりによる影響が大きくなりやすい。種々検討の結果、Lが450mm以下となる条件で吐出させた場合に、電磁撹拌によって形成される渦流への干渉が小さくなることによって、電磁撹拌流による異物の洗い流し効果がより顕著となり、冷延鋼板での表面欠陥の顕在化が一層効果的に抑制できることがわかった。ただし、Lが小さくなりすぎると(2)式を満たすための吐出速度Viの自由度が小さくなってしまう。Lは200mm以上を確保することが好ましい。出口開口部の面積が上述のように調整されている浸漬ノズルを用いて、かつ上記Lを450mm以下とすることがより一層効果的である。
 従来、鋳造速度が大きい場合には、それに伴って吐出速度も大きくなるため、上向きの吐出角度を大きくして直接湯面に向けて吐出することは困難であるとされてきた。しかし、(2)式を満たすような吐出条件とすれば、湯面の波立ちが激しくならない範囲で十分な吐出量を確保することができる。そのため、鋳造速度が大きい場合にも湯面温度の高温化・均一化によって凝固シェルへの異物巻き込みを顕著に抑止することができる。特に、本発明は鋳造速度が0.90m/min以上、あるいは0.90m/minを超えるような鋳造速度においても優れた効果を発揮する。鋳造速度の上限は設備能力に依存するが、通常、1.80m/min以下とすればよく、1.60m/min以下に管理してもよい。
 電磁撹拌による溶鋼流動速度については、長辺方向中央位置での凝固シェルの厚さが5~10mmとなる深さ領域において、凝固シェル表面が接する溶鋼の長辺方向平均流速が例えば100~600mm/sとなるようにすればよい。200~400mm/sとなるように管理してもよい。凝固シェル表面が接する溶鋼の長辺方向流速は、溶製された鋳片について、鋳造方向に垂直な断面の金属組織を調べることによって確認することができる。
 図3に、電磁撹拌を使用した方法で得られた本発明に従うフェライト系ステンレス鋼の連続鋳造スラブについて、鋳造方向に垂直な断面の金属組織写真を例示する。写真上部の端面がモールド長辺面に接触して得られた表面(鋳造スラブ厚さ方向端部の表面)であり、写真の横方向が鋳造時の長辺方向に相当する。観察試料は長辺方向中央部付近から採取した。スケールの1目盛りは1mmである。溶融金属が鋳型に対して流動している場合、流れの上流側に傾斜して結晶の凝固が進行し、流速が大きいほど結晶成長の傾斜角度は大きくなることが知られている。図3の例では柱状晶の成長方向が右側に傾斜している。従って、凝固シェルに接触する溶鋼は写真の右から左へと流れていたことがわかる。凝固シェルに接触する溶鋼の流動速度と結晶成長の傾斜角度の関係は、例えば回転する棒状の抜熱体を用いた凝固実験により知ることができる。予めラボ実験により求めたデータに基づいて、連続鋳造時の凝固シェルが接触する溶鋼の流速を推定することができる。図3の例では、表面から5~10mmの距離における柱状晶の平均傾斜角度から、凝固シェルの厚さが5~10mmとなる深さ領域において凝固シェル表面が接する溶鋼の長辺方向平均流速は約300mm/sであると推定される。なお、オーステナイト系ステンレス鋼の場合はデンドライト1次アームの傾斜角度を読みとることによって凝固シェル表面が接する溶鋼の流速を評価することができる。
 図4に、電磁撹拌を使用しない方法で得られたフェライト系ステンレス鋼の連続鋳造スラブについて、鋳造方向に垂直な断面の金属組織写真を例示する。試料の観察位置は図3と同様である。スケールの1目盛りは1mmである。この場合、柱状晶の成長方向に傾斜は見られない。すなわち、この鋳片の凝固シェル厚さが5~10mmである部分は、溶鋼の長辺方向流れが生じていない状態で凝固したものであることがわかる。
 浸漬ノズルからの吐出条件を上述の条件にコントロールすること、および上述のように電磁撹拌(EMS)を行うこと以外は、従来一般的な連続鋳造の手法を適用することができる。例えば、モールド内の下部領域に別の電磁撹拌装置を設置して、鉛直上向きの溶鋼流を生じさせる手法を適用することもできる。その場合、凝固シェルへの異物の混入を更に低減させる効果が期待できる。
 本発明の連続鋳造方法は、従来から連続鋳造法を適用して製造されている種々の鋼種に対して有効である。なかでも、美麗な表面外観を要求されることが多いステンレス鋼に適用すると、より効果的である。ステンレス鋼とは、JIS G0203:2009の番号3801に規定されるように、C含有量0.12質量%以下、Cr含有量10.5%以上の合金鋼である。過剰なCr含有は製造性の低下およびコスト上昇を招くので、Cr含有量は32.0質量%以下とすることが望ましい。より具体的なステンレス鋼の規格鋼種としては、例えばJIS G4305:2012に示されている種々のものを挙げることができる。
 具体的な成分組成として、例えば、質量%で、C:0.001~0.080%、Si:0.01~1.00%、Mn:0.01~1.00%、Ni:0~0.60%、Cr:10.5~32.0%、Mo:0~2.50%、N:0.001~0.080%、Ti:0~1.00%、Nb:0~1.00%、V:0~1.00%、Zr:0~0.80%、Cu:0~0.80%、Al:0~0.30%、B:0~0.010%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼を例示することができる。特に上記フェライト系ステンレス鋼のなかでも、C含有量が0.001~0.030質量%、N含有量が0.001~0.025質量%に制限されるような、いわゆるフェライト単相系鋼種には本発明の適用が極めて有用である。このような低C低Nのフェライト系鋼種では、タンディッシュの溶鋼ができるだけ窒素成分と接触しないような操業条件が採用されるが、窒素成分との接触を回避する手段としてタンディッシュ内の気相部をアルゴンガスでシールする操業を行ったときにも、モールド内に持ち来たされたアルゴンガス気泡が凝固シェルに巻き込まれることを効果的に抑止できる。
《実施例1》
 表1に示す化学組成のフェライト系ステンレス鋼を連続鋳造装置で鋳造して鋳片(スラブ)を製造した。
Figure JPOXMLDOC01-appb-T000001
 連続鋳造のモールドサイズについては、湯面高さにおいて、短辺長さは200mmとし、長辺長さ(図2のW)は700~1650mmの範囲内に設定した。モールド下端における寸法は凝固収縮を考慮して上記よりも僅かに小さくなっている。鋳造速度は0.50~1.50m/minの範囲で設定した。対向する両長辺のモールド背面にそれぞれ電磁撹拌装置を設置し、モールド内の湯面近傍の深さ位置から約200mm深さ位置までの溶鋼に長辺方向の流動力を付与するように電磁撹拌を行った。図1に示したように、対向する両長辺側で流動方向が逆方向となるようにした。各例において電磁撹拌力は同一とした。凝固シェルの厚さが5~10mmとなる深さ領域において凝固シェル表面が接する溶鋼の長辺方向平均流速は、両長辺面側とも長辺方向中央位置で約300mm/sとなるようにした。
 浸漬ノズルは、長辺方向の両側に2つの吐出孔を有するものを、長辺方向および短辺方向の中心位置に設置した。浸漬ノズルの外径は105mmである。2つの吐出孔は、ノズル中心を通り短辺面に平行な平面に対して対称形である。吐出角度(図2のθ)は上向き5~45°の範囲内に設定した。吐出方向から見た1つの吐出孔の出口開口部の面積は2304mmである(各例共通)。吐出延長線(図2の符号52)は、対向する長辺面の中央位置を通る平面上にある。浸漬ノズル中心から吐出延長線の出発点までの半径(図2のR)は52.5mmである。
 表2A、表2Bに主な連続鋳造条件を示してある。表2A、表2Bの例No.は表1の鋼No.と対応している。ここでは、タンディッシュの気相部にシールガスとしてアルゴンガスを用いた操業例を例示した(各例共通)。浸漬ノズルの浸漬深さを変えることによって、浸漬ノズル吐出孔の出口開口部深さ(図2のH、すなわち出口開口部中心位置の湯面からの深さ)を調整した。表2中の「モールドサイズ」は湯面高さにおけるサイズである。表2A、表2B中の「電磁撹拌流速」は、凝固シェルの厚さが5~10mmとなる深さ領域において凝固シェル表面が接する溶鋼の長辺方向中央位置での長辺方向平均流速である。
 吐出延長線が湯面と交わらない比較例もあること考慮して、表2A、表2B中には、幾何学的距離Mとして「対向する短辺間の長辺方向中央位置から、湯面を含む水平面と吐出延長線との交点までの長辺方向距離」を示し、また幾何学的距離Lとして「浸漬ノズル吐出孔の出口開口部中心位置から、湯面を含む水平面までの距離」を示してある。本発明例の場合は、表2A、表2B中の幾何学的距離Mが上述図2のM(対向する短辺間の長辺方向中央位置から点Pまでの長辺方向距離)に相当し、幾何学的距離Lが上述図2のL(浸漬ノズル吐出孔の出口開口部中心位置から点Pまでの距離)に相当する。また、表2A、表2B中には(1)式および(2)式を充足するか否かについて、それぞれ充足する場合を○印、充足しない場合を×印で示してある。なお、表2A、表2B中に記載したM/W値が0.50を超えるものは、吐出延長線が湯面と交わらないことを意味する。
 表2AのNo.1を例に、(1)式中のM/Wおよび(2)式中のL-0.17Viの算出例を示す。図2を参照するとわかりやすい。
〔(1)式M/Wの算出例〕
 表2AのNo.1の例では、出口開口部深さH=180mm、吐出角度θ=30°であるから、幾何学的距離MはR+180/tanθ=52.5+311.8=364.3mmである。幾何学的距離LはH/sinθ=180/0.5=360mmである。対向する短辺の湯面高さにおける距離Wは1250mmであるから、M/W=364.3/1250=0.291となる。これは上記(1)式を充足する。
〔(2)式L-0.17Viの算出例〕
 表2AのNo.1の例では、鋳造速度は1.00m/min=16.67mm/s、湯面高さでのモールド寸法は200mm×1250mm=250000mm、吐出孔の数は2個であるから、1つの吐出孔からの単位時間当たりの溶鋼吐出量は250000×16.67/2=2083750mm/sである。吐出方向(吐出延長線の方向)から見た出口開口部の面積は2304mmであるから、出口開口部における溶鋼の吐出速度Viは2083750/2304=904.2mm/sとなる。従って、L-0.17Vi=360-0.17×904.2=206.3となる。これは上記(2)式を充足する。
 得られた鋳片(連続鋳造スラブ)を、一般的なフェライト系ステンレス鋼板の製造工程(熱間圧延、焼鈍、酸洗、冷間圧延、焼鈍、酸洗)に進め、板厚1mmの冷延焼鈍鋼板のコイルを製造した。そのコイルの全長にわたって、片側表面全幅の表面検査を行い、コイルの長手方向1m毎に区分した各区間について、その区間内に表面欠陥が存在するか否かを調べた。長さ1mの区間内に1つでも表面欠陥が存在する場合、その区間を「表面欠陥が存在する区間」とし、コイル全長の区間総数に占める「表面欠陥が存在する区間」の数の割合を当該コイルの欠陥発生率(%)とした。表面欠陥の検出は、通板中のコイル表面の全幅にレーザー光を照射して表面形状の異常を検知する方法と、目視観察とを併用して、検査対象の全てのコイルに対して同一基準で行った。この手法では、連続鋳造時に凝固シェルに取り込まれた異物(非金属粒子、気泡、パウダーなど)に起因する表面欠陥を精度良く検出できる。上記の欠陥発生率が2.5%以下であるフェライト系ステンレス鋼冷延焼鈍鋼板は、表面外観が重視される用途においても、製品歩留まりの大きな向上効果が期待できる。従って、欠陥発生率が2.5%以下であるものを合格(○評価)、それ以外を不合格(×評価)とした。結果を表2A、表2Bに示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 電磁撹拌(EMS)を利用し、かつ上述(1)式および(2)式を満たすように浸漬ノズル吐出孔から水平上向きに溶鋼を吐出させた本発明例では、いずれも冷延焼鈍鋼板での欠陥発生率が低く抑えられ、連続鋳造時に溶鋼中の異物が凝固シェルに巻き込まれる事象を安定して顕著に抑制できる効果が確認された。
 これに対し、No.13~18はM/Wが0.45を超えるような吐出方向であり、またL-0.17Viが過大であったことから、湯面温度が十分に高く維持できなかった。その結果、異物巻き込みが多くなり冷延焼鈍鋼板での欠陥発生率が高かった。No.19は浸漬ノズルの浸漬深さが浅かったのでM/Wが0.15未満となるような吐出方向となり、短辺に近い箇所で湯面温度の低下が大きかった。その結果、異物巻き込みが多くなった。No.20、21は吐出速度Viが比較的低い割にはLが長く、L-0.17Viが過大となったため湯面温度が十分に高く維持できなかった。その結果、異物巻き込みが多くなった。No.24、25は吐出速度Viが比較的高い割にはLが短く、湯面の波立ちが大きかったので、モールドパウダーの巻き込みが多くなった。このうちNo.24はM/Wが0.15未満となるような吐出方向であったため、湯面温度の不均一さが増大し、異物の巻き込みが一層増大した。No.27はM/Wが0.45を超えるような吐出方向であったため、湯面温度が十分に高く維持できなかった。その結果、異物巻き込みが多くなった。
《実施例2》
 表2Aに示した一部の溶製チャージを利用して、異物巻き込み抑制効果に及ぼす電磁撹拌の影響を調べた。表3に、連続鋳造条件および冷延焼鈍鋼板の欠陥発生状況を示してある。表示項目は前述表2Aと同様である。ここで、表3中の例No.の数字部分が、表2A中の例No.の数字に対応しており、その数字が同じである例はいずれも同一溶製チャージである。同じ溶製チャージで電磁撹拌条件のみを段階的に変化させ、それぞれの電磁撹拌条件下で製造した鋳片(連続鋳造スラブ)を用いて実施例1と同様に冷延焼鈍鋼板のコイルを製造し、表面検査を行った。検査方法も実施例1と同じである。表3中の電磁撹拌流速が300mm/sの例は、表2Aに掲載した例の再掲である。電磁撹拌流速が0mm/sの例は、電磁撹拌を行っていないことを意味する。
Figure JPOXMLDOC01-appb-T000004
 前述の(1)式および(2)式を満たす条件を採用しても、電磁撹拌を行わない場合には、異物巻き込みの抑制効果が十分に発揮されないことがわかる。
 10  長辺方向
 11A、11B  モールド
 12A、12B  長辺面
 20  短辺方向
 21A、21B  モールド
 22A、22B  短辺面
 30  浸漬ノズル
 31  吐出孔
 32  吐出孔の出口開口部
 40  溶鋼
 41  湯面
 42  凝固シェル
 51  吐出方向
 52  吐出延長線
 60A、60B  電磁撹拌による溶鋼流方向
 70A、70B  電磁撹拌装置

Claims (6)

  1.  水平面で切断したモールド内面の輪郭形状が長方形であるモールドを用いる鋼の連続鋳造において、前記長方形の長辺を構成する2つのモールド内壁面を「長辺面」、短辺を構成する2つのモールド内壁面を「短辺面」、長辺面に平行な水平方向を「長辺方向」、短辺面に平行な水平方向を「短辺方向」と呼ぶとき、
     2つの吐出孔を有する浸漬ノズルを、モールド内の長辺方向および短辺方向の中心に設置し、上記各吐出孔からそれぞれ下記(A)および(B)の条件で溶鋼をモールド内に吐出するとともに、少なくとも長辺方向中央位置の凝固シェル厚さが5~10mmとなる深さ領域の溶鋼に、双方の長辺側で互いに逆方向の長辺方向流れが生じるように電力を印加して電磁撹拌(EMS)を行う、鋼の連続鋳造方法。
    (A)浸漬ノズル吐出孔の出口開口部における溶鋼吐出流中心軸の延長線(以下「吐出延長線」という。)がモールド内の湯面と点Pで交わり、前記点Pの位置が下記(1)式を満たすように、浸漬ノズル吐出孔から溶鋼を水平より上向きに吐出する。
     0.15≦M/W≦0.45 …(1)
     ここで、Wは対向する短辺の湯面高さにおける距離(mm)、Mは対向する短辺間の長辺方向中央位置から上記点Pまでの長辺方向距離(mm)である。
    (B)下記(2)式を満たすように、浸漬ノズル吐出孔から溶鋼を吐出する。
     0≦L-0.17Vi≦350 …(2)
     ここで、Lは浸漬ノズル吐出孔の出口開口部中心位置から前記点Pまでの距離(mm)、Viは当該吐出孔の出口開口部における溶鋼の吐出速度(mm/s)である。
  2.  浸漬ノズルの2つの吐出孔は、吐出方向から見た出口開口部の面積がそれぞれ950~3500mmである請求項1に記載の連続鋳造法。
  3.  前記(2)式のLが450mm以下である請求項1に記載の連続鋳造法。
  4.  鋳造速度が0.90m/min以上である請求項1に記載の連続鋳造法。
  5.  鋼が、C含有量0.12質量%以下、Cr含有量10.5~32.0質量%のステンレス鋼である請求項1~4のいずれか1項に記載の連続鋳造法。
  6.  鋼が、質量%で、C:0.001~0.080%、Si:0.01~1.00%、Mn:0.01~1.00%、Ni:0~0.60%、Cr:10.5~32.0%、Mo:0~2.50%、N:0.001~0.080%、Ti:0~1.00%、Nb:0~1.00%、V:0~1.00%、Zr:0~0.80%、Cu:0~0.80%、Al:0~0.30%、B:0~0.010%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼である請求項1~4のいずれか1項に記載の連続鋳造法。
PCT/JP2016/077415 2016-09-16 2016-09-16 連続鋳造法 WO2018051483A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020197010796A KR102490142B1 (ko) 2016-09-16 2016-09-16 연속 주조법
JP2016563227A JP6129435B1 (ja) 2016-09-16 2016-09-16 連続鋳造法
BR112019003963-5A BR112019003963B1 (pt) 2016-09-16 2016-09-16 Método de lingotamento contínuo
EP16916264.1A EP3513888B1 (en) 2016-09-16 2016-09-16 Continuous casting method
PCT/JP2016/077415 WO2018051483A1 (ja) 2016-09-16 2016-09-16 連続鋳造法
CN201680089308.5A CN110035844B (zh) 2016-09-16 2016-09-16 连续铸造法
US16/332,028 US10751791B2 (en) 2016-09-16 2016-09-16 Continuous casting method
RU2019110786A RU2718442C1 (ru) 2016-09-16 2016-09-16 Способ непрерывной разливки
ZA2019/01507A ZA201901507B (en) 2016-09-16 2019-03-11 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077415 WO2018051483A1 (ja) 2016-09-16 2016-09-16 連続鋳造法

Publications (1)

Publication Number Publication Date
WO2018051483A1 true WO2018051483A1 (ja) 2018-03-22

Family

ID=58714670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077415 WO2018051483A1 (ja) 2016-09-16 2016-09-16 連続鋳造法

Country Status (9)

Country Link
US (1) US10751791B2 (ja)
EP (1) EP3513888B1 (ja)
JP (1) JP6129435B1 (ja)
KR (1) KR102490142B1 (ja)
CN (1) CN110035844B (ja)
BR (1) BR112019003963B1 (ja)
RU (1) RU2718442C1 (ja)
WO (1) WO2018051483A1 (ja)
ZA (1) ZA201901507B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177409A (ja) * 2018-03-30 2019-10-17 日鉄日新製鋼株式会社 鋳塊、その製造方法および鋼板の製造方法
JPWO2018159821A1 (ja) * 2017-03-03 2019-12-26 日鉄ステンレス株式会社 連続鋳造方法および連続鋳造装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110270863A (zh) * 2018-03-16 2019-09-24 天津普信模具有限公司 一种汽车模具铸件机械加工中心的定位方法
CN114746195B (zh) * 2019-11-29 2024-07-12 杰富意钢铁株式会社 钢水的铸造方法、连续铸造铸片的制造方法以及轴承用钢材的制造方法
RU2763951C1 (ru) * 2020-08-31 2022-01-11 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Способ получения непрерывнолитых слябов прямоугольного сечения из высокоуглеродистой стали
CN115229149B (zh) * 2022-06-24 2024-03-01 攀钢集团攀枝花钢铁研究院有限公司 一种基于压下过程结晶器液位波动的连铸坯坯壳/液芯厚度与凝固终点确定方法
CN118204484B (zh) * 2024-05-17 2024-08-13 安徽新鑫金属科技有限公司 一种特种铝锭的铸造设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317916A (ja) * 1992-03-30 1993-12-03 Sumitomo Metal Ind Ltd S快削オーステナイトステンレス鋼の製造方法
JPH0852549A (ja) * 1994-08-10 1996-02-27 Nippon Steel Corp 表面性状の優れた鋳片の製造方法
JP2008246517A (ja) * 2007-03-29 2008-10-16 Jfe Steel Kk 鋼の連続鋳造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492724A (ja) * 1972-04-28 1974-01-11
JPS558265B2 (ja) * 1974-05-14 1980-03-03
JPS6352756A (ja) * 1986-08-21 1988-03-05 Nippon Steel Corp 連続鋳造用浸漬ノズル
UA18825A (uk) * 1990-03-26 1997-12-25 Донецький Політехнічний Інститут Спосіб безперервhої розливки сталі
DE4403049C1 (de) * 1994-01-28 1995-09-07 Mannesmann Ag Stranggießanlage und Verfahren zur Erzeugung von Dünnbrammen
JPH10166120A (ja) * 1996-12-06 1998-06-23 Sumitomo Metal Ind Ltd 溶融金属の連続鋳造方法
JP3324598B2 (ja) * 2000-07-04 2002-09-17 住友金属工業株式会社 スラブの連続鋳造方法と浸漬ノズル
RU2184009C1 (ru) * 2001-01-26 2002-06-27 Открытое акционерное общество "Северсталь" Способ непрерывной разливки стали
JP2004098082A (ja) 2002-09-05 2004-04-02 Nippon Steel Corp 電磁攪拌を行うステンレス溶鋼の鋳造方法
JP4301029B2 (ja) * 2004-02-16 2009-07-22 Jfeスチール株式会社 高Ti含有鋼の連続鋳造方法
JP4585504B2 (ja) * 2006-12-05 2010-11-24 新日本製鐵株式会社 溶融金属の連続鋳造方法
JP4505530B2 (ja) * 2008-11-04 2010-07-21 新日本製鐵株式会社 鋼の連続鋳造用装置
JP4807462B2 (ja) * 2009-11-10 2011-11-02 Jfeスチール株式会社 鋼の連続鋳造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317916A (ja) * 1992-03-30 1993-12-03 Sumitomo Metal Ind Ltd S快削オーステナイトステンレス鋼の製造方法
JPH0852549A (ja) * 1994-08-10 1996-02-27 Nippon Steel Corp 表面性状の優れた鋳片の製造方法
JP2008246517A (ja) * 2007-03-29 2008-10-16 Jfe Steel Kk 鋼の連続鋳造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3513888A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018159821A1 (ja) * 2017-03-03 2019-12-26 日鉄ステンレス株式会社 連続鋳造方法および連続鋳造装置
JP7044699B2 (ja) 2017-03-03 2022-03-30 日鉄ステンレス株式会社 連続鋳造方法および連続鋳造装置
JP2019177409A (ja) * 2018-03-30 2019-10-17 日鉄日新製鋼株式会社 鋳塊、その製造方法および鋼板の製造方法

Also Published As

Publication number Publication date
EP3513888B1 (en) 2022-01-05
US20190366423A1 (en) 2019-12-05
CN110035844B (zh) 2021-04-13
RU2718442C1 (ru) 2020-04-06
JPWO2018051483A1 (ja) 2018-09-20
BR112019003963A2 (pt) 2019-05-21
CN110035844A (zh) 2019-07-19
EP3513888A1 (en) 2019-07-24
JP6129435B1 (ja) 2017-05-17
EP3513888A4 (en) 2020-04-29
ZA201901507B (en) 2020-10-28
BR112019003963B1 (pt) 2022-01-18
KR102490142B1 (ko) 2023-01-19
US10751791B2 (en) 2020-08-25
KR20190064593A (ko) 2019-06-10

Similar Documents

Publication Publication Date Title
JP6129435B1 (ja) 連続鋳造法
KR102239946B1 (ko) 오스테나이트계 스테인리스강 슬라브의 제조 방법
JP4772798B2 (ja) 極低炭素鋳片の製造方法
EP3332889B1 (en) Continuous casting method for slab casting piece
JP6123549B2 (ja) 連鋳鋳片の製造方法
JP5245800B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
WO2011111858A1 (ja) 鋼の連続鋳造方法および鋼板の製造方法
JP2007021572A (ja) 連続鋳造鋳片およびその製造方法
JP4757661B2 (ja) 厚鋼板用大断面鋳片の垂直型連続鋳造方法
JP5044981B2 (ja) 鋼の連続鋳造方法
JP3583954B2 (ja) 連続鋳造方法
JP5206584B2 (ja) 連続鋳造用タンディッシュ及び連続鋳造方法
JP2007331003A (ja) 堰型湯溜り付浸漬ノズルを用いた低炭素鋼の連続鋳造方法
JP4998705B2 (ja) 鋼の連続鋳造方法
JP4714624B2 (ja) 鋳型内溶鋼の電磁撹拌方法
JP4448452B2 (ja) 鋼の連続鋳造方法
JP4983320B2 (ja) 鋼の連続鋳造方法及び装置
JP2010099704A (ja) 鋼鋳片の連続鋳造方法
JP2006255759A (ja) 鋼の連続鋳造方法
JP2024085133A (ja) 取鍋用注入ノズル及び連続鋳造方法
JP6287901B2 (ja) 鋼の連続鋳造方法
JP5458779B2 (ja) 鋼鋳片の連続鋳造方法
JP3238090B2 (ja) 鋼スラブの連続鋳造方法
JP2009090323A (ja) 連続鋳造装置及び連続鋳造方法
JP2001300705A (ja) 品質特性に優れた溶鋼の連続鋳造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016563227

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916264

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019003963

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010796

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016916264

Country of ref document: EP

Effective date: 20190416

ENP Entry into the national phase

Ref document number: 112019003963

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190226