SYSTÈME D'ÉLECTROLYSE RÉVERSIBLE DE L'EAU À HAUTE TEMPÉRATURE COMPORTANT UN RÉSERVOIR D'HYDRURES COUPLÉ À L'ÉLECTROLYSEUR
DESCRIPTION DOMAINE TECHNIQUE
La présente invention se rapporte au domaine général de l'électrolyse de l'eau à haute température (EHT), en particulier l'électrolyse de la vapeur d'eau à ha ute température (EVHT), respectivement désignées par les appellations anglaises « High Température Electrolysis » (HTE) et « High Température Steam Electrolysis » (HTSE).
Elle concerne également le domaine des piles à combustibles à oxyde solide, désignées habituellement par l'acronyme SOFC pour « Solid Oxide Fuel Cells » en anglais.
Plus précisément, l'invention concerne le stockage de l'électricité et sa restitution, ou déstockage, par le biais d'une électrolyse réversible de l'eau, entraînant la production et/ou la consommation d'hydrogène.
Ainsi, l'invention propose un système d'électrolyse réversible de l'eau à haute température comportant un dispositif formant électrolyseur réversible et un réservoir d'hydrures couplé thermiquement à cet électrolyseur, ainsi qu'un procédé d'électrolyse réversible associé.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE Pour réaliser l'électrolyse de l'eau, il est avantageux de la réaliser à ha ute température, typiquement entre 600 et 950°C, car il est plus avantageux d'électrolyser de la vapeur que de l'eau liquide (15 %) et qu' une partie de l'énergie nécessaire à la réaction peut être apportée par de la cha leur, moins chère que l'électricité.
Pour mettre en œuvre l'électrolyse de l'eau à ha ute température (EHT), il est connu d'utiliser un électrolyseur à oxyde solide à haute température du type SOEC (pour « Solide Oxide Electrolyzer Cell » en anglais), constitué d'un empilement de motifs élémentaires comportant chacun une cellule d'électrolyse à oxyde solide, constituée de trois couches anode/électrolyte/cathode superposées l'une sur l'autre, et de plaques
d'interconnexion en alliages métalliques, aussi appelées plaques bipolaires ou interconnecteurs. Une pile à combustible à oxyde solide (SOFC) est constituée du même type d'empilement de motifs élémentaires.
Il est à noter que les dispositifs d'interconnexion, électrique et fluidique, aussi appelés interconnecteurs ou encore plaques d'interconnexion, sont les dispositifs qui assurent la connexion en série d'un point de vue électrique de chaque cellule électrochimique de motif élémentaire dans l'empilement de motifs élémentaires des électrolyseurs à oxyde solide à haute température (SOEC) ou des piles à combustibles à oxyde solide (SOFC), et en parallèle d'un point de vue fluidique, combinant ainsi la production de chacune des cellules. Les interconnecteurs assurent ainsi les fonctions d'amenée et de collecte de courant électrique et délimitent des compartiments de circulation des gaz, pour la distribution et/ou la collecte.
Plus précisément, les interconnecteurs ont pour fonction d'assurer à la fois le passage du courant électrique et la circulation des gaz au voisinage de chaque cellule (à savoir : vapeur d'eau injectée, hydrogène et oxygène extraits pour l'électrolyse EHT ; air et combustible dont l'hydrogène injecté et eau extraite pour une pile SOFC), et de séparer les compartiments anodiques et cathodiques qui sont les compartiments de circulation des gaz du côté respectivement des anodes et des cathodes des cellules.
Pour réaliser l'électrolyse de la vapeur d'eau à haute température (EHT), on injecte de la vapeur d'eau (H20) dans le compartiment cathodique. Sous l'effet du courant électrique appliqué à la cellule, la dissociation des molécules d'eau sous forme de vapeur est réalisée à l'interface entre l'électrode à hydrogène (cathode) et l'électrolyte : cette dissociation produit du gaz dihydrogène (H2) et des ions oxygène (O2 ). Le dihydrogène (H2) est collecté et évacué en sortie de compartiment à hydrogène. Les ions oxygène (O2 ) migrent à travers l'électrolyte et se recombinent en dioxygène (02) à l'interface entre l'électrolyte et l'électrode à oxygène (anode). Un gaz drainant, tel que de l'air, peut circuler au niveau de l'anode et ainsi collecter l'oxygène généré sous forme gazeuse à l'anode.
Pour assurer le fonctionnement d'une pile à combustible à oxyde solide (SOFC), on injecte de l'air (oxygène) dans le compartiment cathodique de la pile et de
l'hydrogène dans le compartiment anodique. L'oxygène de l'air va se dissocier en ions 02~. Ces ions vont migrer dans l'électrolyte de la cathode vers l'anode pour oxyder l'hydrogène et former de l'eau avec une production simultanée d'électricité. En pile SOFC, tout comme en électrolyse SOEC, la vapeur d'eau se trouve dans le compartiment de dihydrogène (H2). Seule la polarité est inversée.
A titre d'illustration, la figure 1 représente une vue schématique montrant le principe de fonctionnement d'un électrolyseur à oxyde solide à haute température (SOEC). Un tel électrolyseur est un dispositif électrochimique de production d'hydrogène (et d'oxygène) sous l'effet d'un courant électrique. Dans ces électrolyseurs, l'électrolyse de l'eau à haute température est réalisée à partir de vapeur d'eau. Ainsi, la fonction d'un tel électrolyseur est de transformer la vapeur d'eau en hydrogène et en oxygène selon la réaction électrochimique suivante :
2 H20 ^ 2 H2 + 02.
Cette réaction est réalisée par voie électrochimique dans les cellules de l'électrolyseur. Comme schématisée sur la figure 1, chaque cellule d'électrolyse élémentaire 1 est formée d'une cathode 2 et d'une anode 4, placées de part et d'autre d'un électrolyte solide 3. Les deux électrodes (cathode et anode) 2 et 4 sont des conducteurs électroniques et/ou ioniques, en matériau poreux, et l'électrolyte 3 est étanche au gaz, isolant électronique et conducteur ionique. L'électrolyte 3 peut être en particulier un conducteur anionique, plus précisément un conducteur anionique des ions O2- et l'électrolyseur est alors dénommé électrolyseur anionique, par opposition aux électrolytes protoniques (H+).
Les réactions électrochimiques se font à l'interface entre chacun des conducteurs électroniques et le conducteur ionique.
A la cathode 2, la demi-réaction est la suivante :
2 H20 + 4 e - ^ 2 H2 + 2 02".
A l'anode 4, la demi-réaction est la suivante:
2 02 02 + 4 e\
L'électrolyte 3, intercalé entre les deux électrodes 2 et 4, est le lieu de migration des ions O2- sous l'effet du champ électrique créé par la différence de potentiel
imposée entre l'anode 4 et la cathode 2.
Comme illustré entre parenthèses sur la figure 1, la vapeur d'eau en entrée de cathode peut être accompagnée d'hydrogène H2 et l'hydrogène produit et récupéré en sortie peut être accompagné de vapeur d'eau. De même, comme illustré en pointillés, un gaz drainant, tel que l'air, peut en outre être injecté en entrée pour évacuer l'oxygène produit. L'injection d'un gaz drainant a pour fonction supplémentaire de jouer le rôle de régulateur thermique.
Un électrolyseur, ou réacteur d'électrolyse, élémentaire est constitué d'une cellule élémentaire telle que décrite ci-dessus, avec une cathode 2, un électrolyte 3, et une anode 4, et de deux connecteurs mono-polaires qui assurent les fonctions de distribution électrique, hydraulique et thermique.
Pour augmenter les débits d'hydrogène et d'oxygène produits, il est connu d'empiler plusieurs cellules d'électrolyse élémentaires les unes sur les autres en les séparant par des dispositifs d'interconnexion, usuellement appelés interconnecteurs ou plaques d'interconnexion bipolaires. L'ensemble est positionné entre deux plaques d'interconnexion d'extrémité qui supportent les alimentations électriques et des alimentations en gaz de l'électrolyseur (réacteur d'électrolyse).
Un électrolyseur à oxyde solide à haute température (SOEC) comprend ainsi au moins une, généralement une pluralité de cellules d'électrolyse empilées les unes sur les autres, chaque cellule élémentaire étant formée d'un électrolyte, d'une cathode et d'une anode, l'électrolyte étant intercalé entre l'anode et la cathode.
Comme indiqué précédemment, les dispositifs d'interconnexion fluidique et électrique qui sont en contact électrique avec une ou des électrodes assurent en général les fonctions d'amenée et de collecte de courant électrique et délimitent un ou des compartiments de circulation des gaz.
Ainsi, un compartiment dit cathodique a pour fonction la distribution du courant électrique et de la vapeur d'eau ainsi que la récupération de l'hydrogène à la cathode en contact.
Un compartiment dit anodique a pour fonction la distribution du courant électrique ainsi que la récupération de l'oxygène produit à l'anode en contact,
éventuellement à l'aide d'un gaz drainant.
La figure 2 représente une vue éclatée de motifs élémentaires d'un électrolyseur à oxyde solide à haute température (SOEC) selon l'art antérieur. Cet électrolyseur comporte une pluralité de cellules d'électrolyse élémentaires Cl, C2, de type à oxyde solide (SOEC), empilées alternativement avec des interconnecteurs 5. Chaque cellule Cl, C2 est constituée d'une cathode 2.1, 2.2 et d'une anode (seule l'anode 4.2 de la cellule C2 est représentée), entre lesquelles est disposé un électrolyte (seul l'électrolyte 3.2 de la cellule C2 est représenté).
L'interconnecteur 5 est un composant en alliage métallique qui assure la séparation entre les compartiments cathodique 50 et anodique 51, définis par les volumes compris entre l'interconnecteur 5 et la cathode adjacente 2.1 et entre l'interconnecteur 5 et l'anode adjacente 4.2 respectivement. Il assure également la distribution des gaz aux cellules. L'injection de vapeur d'eau dans chaque motif élémentaire se fait dans le compartiment cathodique 50. Le collectage de l'hydrogène produit et de la vapeur d'eau résiduelle à la cathode 2.1, 2.2. est effectué dans le compartiment cathodique 50 en aval de la cellule Cl, C2 après dissociation de la vapeur d'eau par celle-ci. Le collectage de l'oxygène produit à l'anode 4.2 est effectué dans le compartiment anodique 51 en aval de la cellule Cl, C2 après dissociation de la vapeur d'eau par celle-ci. L'interconnecteur 5 assure le passage du courant entre les cellules Cl et C2 par contact direct avec les électrodes adjacentes, c'est-à-dire entre l'anode 4.2 et la cathode 2.1.
La figure 3 représente une vue éclatée de motifs élémentaires d'une pile à combustible à oxyde solide (SOFC) selon l'art antérieur. Les mêmes motifs élémentaires que ceux de la figure 2 sont mis en œuvre pour une pile à combustible SOFC avec des cellules de piles élémentaires Cl, C2 et des interconnecteurs 5. Les cathodes 2.1, 2.2 de l'électrolyseur décrit précédemment en référence à la figure 2 sont alors utilisées en tant qu'anodes pour une pile SOFC et les anodes 4.1, 4.2 en tant que cathodes. Ainsi, pour un fonctionnement en mode pile SOFC, l'injection de l'air contenant l'oxygène dans chaque motif élémentaire se fait dans le compartiment devenu cathodique 51. Le collectage de l'eau produite à l'anode est effectué dans le compartiment devenu anodique 50 en aval
de la cellule Cl, C2, après recombinaison en eau du dihydrogène H2 injecté à l'anode 2.2 dans chaque compartiment anodique 50 en amont de la cellule Cl, C2 avec les ions 02~ ayant transité à travers l'électrolyte 3.2. Le courant produit lors de la recombinaison de l'eau est collecté par les interconnecteurs 5.
Les conditions de fonctionnement d'un électrolyseur à oxyde solide à haute température (SOEC) étant très proches de celles d'une pile à combustible à oxyde solide (SOFC), les mêmes contraintes technologiques se retrouvent, à savoir principalement la tenue mécanique aux températures et cycles thermiques d'un empilement de matériaux différents (céramiques et alliage métallique), le maintien de l'étanchéité des compartiments anodiques et cathodiques, la tenue en vieillissement des interconnecteurs métalliques et la minimisation des pertes ohmiques à diverses interfaces de l'empilement.
Une contrainte importante est de gérer au mieux les régimes de fonctionnement thermiques d'une pile à combustible à oxyde solide (SOFC) au sein de laquelle la réaction d'oxydation de l'hydrogène est très exothermique, ou d'un électrolyseur d'eau à haute température (EHT) où la réaction globale peut être soit exothermique, soit endothermique, soit globalement isotherme (fonctionnement autotherme) selon le potentiel de fonctionnement.
En particulier pour la réaction très exothermique d'une pile à combustible à oxyde solide (SOFC), il est nécessaire de prévoir des moyens de refroidissement du système. Ainsi, pour permettre un refroidissement et limiter le gradient de température dans l'empilement, sans nuire au taux d'utilisation en combustible (défini comme le pourcentage de réactifs entrants consommés par la réaction au sein de l'empilement), la principale variable d'ajustement possible est le débit d'air côté cathode, par rapport au besoin de la réaction électrochimique. Si cette technique reste relativement acceptable à faible pression, la surconsommation des compresseurs de gaz, résultant de l'augmentation de la quantité de gaz à comprimer en amont de la pile SOFC, devient vite rédhibitoire pour le rendement énergétique global à plus forte pression.
Des solutions alternatives ont déjà été envisagées dans l'art antérieur pour ce type de technologie, et notamment pour permettre un tel refroidissement du système lors de la réaction exothermique d'oxydation de l'hydrogène dans une pile SOFC.
Ainsi, plusieurs documents brevets existent déjà au niveau de l'objet électrolyseur afin de maintenir la température dans les limites acceptables du système. On peut ainsi noter des documents brevets mettant en avant l'échange thermique entre le stack et l'enceinte le contenant, comme la demande de brevet US 2006/0105213 Al qui propose d'allonger les plaques interconnecteurs afin de former des ailettes d'échange thermique, ou encore la demande internationale WO 2013/060869 Al qui présente des plaques interconnecteurs épaisses profilées de sorte à améliorer les tranferts thermiques par radiation. D'autres documents brevets mettent en avant la possibilité d'utiliser un fluide caloporteur, distinct des gaz de cathode et d'anode, directement au sein de l'empilement afin d'évacuer la chaleur produite, tel que la demande de brevet GB 2 151 840.
Pour la gestion thermique d'un empilement au niveau système, la demande de brevet américain US 2009/0263680 Al décrit quant à elle l'utilisation, dans un système embarqué, d'un fluide caloporteur non réactif (air, vapeur, ...) injecté à travers la pile SOFC afin d'apporter de l'inertie thermique aux cellules, et ainsi évacuer facilement de la chaleur de réaction. Le but recherché est d'obtenir un refroidissement efficace de la pile, avec la possibilité de produire de l'électricité supplémentaire grâce à une turbine aval tirant profit du chauffage du fluide caloporteur. En outre, un recyclage d'une partie du fluide caloporteur vers l'entrée de la pile est prévu, pour permettre un préchauffage du gaz entrant.
Cependant, cette demande de brevet US 2009/0263680 Al ne prévoit pas de valoriser la chaleur excédentaire produite par la pile SOFC autrement que par le biais de la turbine aval produisant de l'électricité. De plus, elle n'indique pas par quel moyen le fluide caloporteur évacue la chaleur au sein de la pile. L'invention concernée dans ce document est par ailleurs propre aux systèmes embarqués, donc de faible puissance, à l'opposé de systèmes stationnaires de puissance moyenne et/ou forte. En outre, le système embarqué décrit dans la demande de brevet US 2009/0263680 Al n'est pas
prévu pour fonctionner à pressions élevées, mais au contraire utilise de l'air ambiant faiblement pressurisé ou de l'air pressurisé par écoulement de l'air autour de la pile.
En outre, la demande de brevet US 2004/0081859 Al décrit encore une pile SOFC capable de stocker de la chaleur utilisée dans un matériau de stockage de chaleur en mode décharge, puis de l'utiliser pour chauffer l'eau à électrolyser en mode charge.
Par ailleurs, plusieurs publications traitent de tests de systèmes de pile à hydrogène. A titre d'exemple, l'article intitulé « Coupling and thermal intégration of a solid oxide fuel cell with a magnésium hydride tank », B. Delhomme, A. Lanzini, International journal of hydrogen energy, 2013, 38, 4740-4747, envisage le couplage d'une pile à hydrogène avec un réservoir d'hydrure, tout en prévoyant une recirculation totale de l'hydrogène non consommé après condensation de l'eau créée par la réaction électrochimique au sein de la pile. Il semble ainsi possible d'avoir un taux de conversion système de l'hydrogène proche de 100 %.
Néanmoins, cette solution n'a été pensée que pour un fonctionnement à basse pression, et ne se préoccupe pas d'un travail de recompression de l'hydrogène recirculé. L'intégration thermique y est succincte. Un montage est prévu pour permettre une récupération de chaleur pour la désorption, mais elle met en jeu la combustion de l'hydrogène non réagi en sortie de pile, plutôt que de viser un taux de conversion de 100 %.
II existe encore un besoin pour améliorer la gestion des régimes de fonctionnement thermique d'un électrolyseur d'eau à haute température (EHT) et d'une pile à combustible à oxyde solide (SOFC), notamment afin de pallier l'exothermicité des réactions envisagées, notamment lors d'un fonctionnement sous pression.
EXPOSÉ DE L'INVENTION L'invention a pour but de remédier au moins partiellement aux besoins mentionnés précédemment et aux inconvénients relatifs aux réalisations de l'art antérieur.
L'invention a ainsi pour objet, selon l'un de ses aspects, un système d'électrolyse réversible de l'eau à haute température, caractérisé en ce qu'il comporte :
- un dispositif formant électrolyseur réversible haute température, configuré pour fonctionner selon un mode d'électrolyseur à oxyde solide du type SOEC, pour la production d'hydrogène et ainsi le stockage d'électricité, et/ou selon un mode de pile à combustible à oxyde solide du type SOFC, pour la consommation d'hydrogène et ainsi le déstockage d'électricité, ledit électrolyseur réversible étant configuré pour fonctionner sous une pression comprise entre 2 et 15 bars, notamment entre 8 et 12 bars,
- un réservoir d'hydrures, thermiquement couplé avec ledit électrolyseur réversible, configuré pour stocker l'hydrogène sous forme d'hydrures en mode d'électrolyseur à oxyde solide du type SOEC dudit électrolyseur réversible et/ou pour libérer l'hydrogène en mode de pile à combustible à oxyde solide du type SOFC dudit électrolyseur réversible,
le système étant configuré pour permettre, lorsque l'électrolyseur réversible est configuré pour fonctionner selon un mode d'électrolyseur à oxyde solide du type SOEC, une récupération de la chaleur dégagée par le réservoir d'hydrures lors de l'absorption de l'hydrogène pour produire la vapeur d'eau sous pression destinée à entrer dans l'électrolyseur réversible, et pour permettre, lorsque l'électrolyseur réversible est configuré pour fonctionner selon un mode de pile à combustible à oxyde solide du type SOFC, une récupération de la chaleur dégagée par le ou les flux sortants de l'électrolyseur réversible pour permettre la désorption de l'hydrogène du réservoir d'hydrures.
De façon avantageuse, le fonctionnement du système selon l'invention permet de limiter les travaux de compression des gaz, notament de l'hydrogène, car seule de l'eau liquide est comprimée. Le système selon l'invention peut en outre comporter un compresseur destiné à comprimer l'eau liquide. Cela permet ainsi d'améliorer les rendements par rapport à un système faisant fonctionner l'électrolyseur réversible à pression atmosphérique. Le fonctionnement de l'électrolyseur sous pression permet également d'améliorer ses performances, notamment en diminuant les phénomènes de limite de diffusion des espèces réactives au sein des cellules.
Le système d'électrolyse réversible selon l'invention peut en outre comporter l'une ou plusieurs des caractéristiques suivantes prises isolément ou suivant toutes combinaisons techniques possibles.
Par les expressions « électrolyse réversible » et « électrolyseur réversible », on entend respectivement que la réaction électrochimique d'électrolyse de l'eau à haute température (EHT) peut être réalisée dans un sens et/ou dans l'autre, à savoir qu'elle peut permettre la production d'hydrogène et/ou la consommation d'hydrogène en fonction du mode de fonctionnement du système, et que l'électrolyseur réversible peut fonctionner selon un mode de stockage et/ou un mode de déstockage. Plus précisément, dans le mode de stockage, il permet la production d'hydrogène et donc le stockage d'énergie électrique. A l'inverse, dans le mode de déstockage, il permet la consommation d'hydrogène et donc le déstockage (ou encore la restitution) d'énergie électrique.
De plus, dans toute la description, les termes « amont » et « aval » sont à considérer par rapport au sens d'écoulement du flux considéré, à savoir de l'amont vers l'aval.
Bien entendu, le système selon l'invention peut être de conception modulaire. En particulier, il peut comporter une pluralité d'électrolyseurs réversibles et/ou de réservoirs d'hydrures. Ainsi, tout ou partie de ces électrolyseurs et/ou réservoirs d'hydrures peut être activée, en fonction notamment de la gamme de puissance souhaitée.
L'électrolyseur réversible peut tout particulièrement comporter un empilement de cellules électrochimiques élémentaires à oxydes solides formées chacune d'une cathode, d'une anode et d'un électrolyte intercalé entre la cathode et l'anode, et une pluralité d'interconnecteurs électriques et fluidiques agencés chacun entre deux cellules élémentaires adjacentes.
Chaque interconnecteur peut être classique comme décrit dans l'art antérieur ou du type dit « à trois flux ». En particulier, chaque interconnecteur peut intégrer une architecture de stack permettant l'échange thermique entre les gaz de cathode et d'anode avec un troisième fluide distinct ayant le rôle de fluide caloporteur. Ce fluide caloporteur peut circuler dans l'enceinte, à condition que le stack présente une architecture permettant un échange thermique convenable, comme proposé, entre autres, dans la demande de brevet US 2006/0105213 Al ou la demande internationale WO 2013/060869 Al, décrites précédemment. Ce fluide caloporteur peut également
circuler au sein du stack dans des canaux distincts, comme proposé dans la demande de brevet GB 2 151 840 A, décrite précédemment. Il est en outre à noter que l'enceinte permet de travailler en pression, celle-ci respectant notamment la Directive DESP97/23/CE pour permettre de travailler entre 2 et 15 bars.
En outre, l'électrolyseur réversible peut être configuré pour fonctionner selon un mode d'électrolyseur à oxyde solide du type SOEC, et le système peut alors comporter un générateur de vapeur d'eau, destiné à produire la vapeur d'eau à destination de l'électrolyseur réversible par le biais de la chaleur dégagée par le réservoir d'hydrures, lors de l'absorption de l'hydrogène, et amenée au générateur de vapeur d'eau par le biais d'un fluide caloporteur.
Le système peut en outre comporter un ou plusieurs échangeurs de chaleur permettant un préchauffage de l'eau d'entrée du système et/ou un surchauffage de la vapeur d'eau entrant dans l'électrolyseur réversible, par le biais des flux d'hydrogène et d'oxygène sortants de l'électrolyseur réversible. Le système peut notamment comporter des échangeurs de chaleur en amont et en aval du générateur de vapeur d'eau pour respectivement permettre le préchauffage de l'eau d'entrée du système et le surchauffage de la vapeur d'eau entrant dans l'électrolyseur réversible, par le biais des flux d'hydrogène et d'oxygène sortants de l'électrolyseur réversible.
Le système peut en outre comporter un condenseur, couplé à un séparateur de phases, destiné à recevoir la vapeur d'eau non réagie dans l'électrolyseur réversible et le dihydrogène produit par l'électrolyseur réversible et à condenser l'eau non réagie pour permettre son recyclage au sein du système. Le dihydrogène produit peut alors être recueilli dans le séparateur de phases et envoyé vers le réservoir d'hydrures.
Le système peut encore comporter une pompe de compression, destinée à compresser l'eau d'entrée du système jusqu'à une pression comprise entre 2 et 15 bars, notamment 8 et 12 bars.
Le système peut aussi comporter un chauffant électrique en amont de l'électrolyseur réversible, assurant une surchauffe supplémentaire de la vapeur d'eau, notamment jusqu'à 800°C.
Le système peut également comporter un sécheur, en amont du réservoir d'hydrures et en aval du condenseur, destiné à permettre de supprimer l'humidité contenue dans le dihydrogène avant stockage dans le réservoir d'hydrures.
Le système peut encore comporter un groupe froid relié au condenseur, en amont du séparateur de phases, destiné à assurer la condensation de la vapeur d'eau non réagie provenant de l'électrolyseur réversible.
Par ailleurs, l'électrolyseur réversible peut encore être configuré pour fonctionner selon un mode de pile à combustible à oxyde solide du type SOFC sous pression, et le système peut alors comporter au moins un échangeur de chaleur, destiné à préchauffer au moins un flux entrant dans l'électrolyseur réversible par le biais d'au moins un flux sortant de l'électrolyseur réversible.
L'électrolyseur réversible peut être configuré pour fonctionner selon un mode de pile à combustible à oxyde solide du type SOFC, et le système peut encore comporter au moins un échangeur de chaleur, destiné à récupérer de la chaleur haute température provenant d'au moins un flux sortant de l'électrolyseur réversible par le biais d'au moins un fluide caloporteur, notamment pour permettre la désorption de l'hydrogène du réservoir d'hydrures.
De façon avantageuse, il n'existe pas de dépressurisation entre le mode de pile à combustible à oxyde solide du type SOFC et le mode d'électrolyseur à oxyde solide du type SOEC.
L'électrolyseur réversible peut être configuré pour fonctionner selon un mode de pile à combustible à oxyde solide du type SOFC, et le système peut être du type « système à recirculation d'air comprimé », consistant en un circuit de dihydrogène et un circuit primaire d'air.
L'électrolyseur réversible peut être configuré pour fonctionner selon un mode de pile à combustible à oxyde solide du type SOFC, et le système peut encore être du type « système trois flux », consistant en un circuit de dihydrogène, un circuit primaire d'air et un circuit de refroidissement utilisant un interconnecteur du type « à trois flux ».
Le circuit de dihydrogène peut comporter :
- des moyens de mélange de l'hydrogène provenant du réservoir d'hydrures avec le recyclage total de l'hydrogène non consommé dans l'électrolyseur réversible sur une gamme de pression de 2 à 15 bars,
- un échangeur de chaleur, destiné à préchauffer le flux de dihydrogène entrant dans l'électrolyseur réversible par le biais du flux de dihydrogène sortant de l'électrolyseur réversible,
- un échangeur de chaleur, formant récupérateur de chaleur, destiné à récupérer de la chaleur haute température provenant du flux de dihydrogène sortant de l'électrolyseur réversible par le biais d'au moins un fluide caloporteur.
Le système peut en outre comporter un échangeur de chaleur, destiné à refroidir le flux de dihydrogène sortant de l'échangeur de chaleur, formant récupérateur de chaleur, par le flux d'hydrogène sortant d'un séparateur de phases, permettant la récupération de l'eau produite.
Dans le cas d'un système du type « système à recirculation d'air comprimé », le circuit primaire d'air peut comporter :
- un compresseur d'air pour disposer d'air entre 2 et 15 bars,
- un échangeur de chaleur, destiné à préchauffer le flux d'air entrant dans l'électrolyseur réversible par le biais du flux d'air sortant de l'électrolyseur réversible,
- un échangeur de chaleur, formant récupérateur de chaleur, destiné à récupérer de la chaleur haute température provenant du flux d'air sortant de l'électrolyseur réversible par le biais d'au moins un fluide caloporteur.
Le système peut en outre comporter des moyens de mélange du flux d'air sortant de l'échangeur de chaleur, formant récupérateur de chaleur, avec un complément d'oxygène formant un flux total d'air entrant dans l'électrolyseur réversible à la pression de 2 à 15 bars.
Le système peut encore comporter :
- un échangeur de chaleur et un dispositif de refroidissement, permettant de refroidir le flux total d'air mélangé par les moyens de mélange,
- une pompe de compression, permettant de comprimer l'air sortant du dispositif de refroidissement avant injection dans l'échangeur de chaleur pour son
préchauffage. Cette pompe permet de compenser les pertes de charge du système et de réhausser la pression au bon niveau d'entrée (2 à 15 bars).
Dans le cas d'un système du type « à trois flux », le circuit primaire d'air peut comporter :
- un compresseur d'air pour disposer d'air entre 2 et 15 bars,
- un échangeur de chaleur, destiné à préchauffer le flux d'air comprimé entrant dans l'électrolyseur réversible par le biais du flux d'air sortant de l'électrolyseur réversible,
- un échangeur de chaleur, formant récupérateur de chaleur, destiné à récupérer de la chaleur haute température provenant du flux d'air sortant de l'électrolyseur réversible par le biais d'au moins un fluide caloporteur.
Dans le cas d'un système du type « à trois flux », le circuit de refroidissement peut en outre comporter :
- un échangeur de chaleur, destiné à préchauffer le flux de caloporteur sous pression entrant dans l'électrolyseur réversible par le biais du flux chaud sortant de l'électrolyseur réversible,
- un échangeur de chaleur, formant récupérateur de chaleur, destiné à récupérer de la chaleur haute température provenant du flux chaud sortant de l'électrolyseur réversible par le biais d'au moins un fluide caloporteur,
- un échangeur de chaleur et un dispositif de refroidissement, désigné encore par dispositif de sur-refroidissement, destiné à refroidir le flux chaud sortant de l'échangeur de chaleur,
- une pompe de compression, destinée à comprimer le flux sortant de l'échangeur de chaleur et du dispositif de sur-refroidissement, pour former un flux de fluide comprimé sur la gamme de 2 à 15 bars pour refroidir le flux chaud sortant de l'échangeur de chaleur. Cette pompe permet de compenser uniquement les pertes de charge du système et de réhausser la pression au bon niveau d'entrée (2 à 15 bars).
Par ailleurs, l'invention a encore pour objet, selon un autre de ses aspects, un procédé de stockage et/ou de déstockage d'électricité par électrolyse réversible de l'eau à haute température, caractérisé en ce qu'il est mis en œuvre au moyen d'un système
d'électrolyse réversible de l'eau à haute température tel que défini précédemment, et en ce qu'il comporte les étapes de :
- lorsque l'électrolyseur réversible sous pression fonctionne selon un mode d'électrolyseur à oxyde solide du type SOEC, récupération de la chaleur dégagée par le réservoir d'hydrures lors de l'absorption de l'hydrogène pour produire la vapeur d'eau sous pression destinée à entrer dans l'électrolyseur réversible, et
- lorsque l'électrolyseur réversible sous pression est configuré pour fonctionner selon un mode de pile à combustible à oxyde solide du type SOFC, récupération de la chaleur dégagée par le ou les flux sortants de l'électrolyseur réversible pour permettre la désorption de l'hydrogène du réservoir d'hydrures.
Le procédé peut être mis en œuvre selon un mode de stockage d'électricité, l'électrolyseur réversible haute température étant configuré pour fonctionner selon un mode d'électrolyseur à oxyde solide du type SOEC, et le procédé peut comporter l'étape de réalisation de la réaction d'électrolyse à haute température de la vapeur d'eau sous pression pour produire de l'hydrogène et ainsi stocker de l'électricité.
Le procédé peut particulièrement être mis en œuvre selon le mode stockage au moyen d'un système d'électrolyse réversible de l'eau à haute température, et peut comporter les étapes successives suivantes :
- introduction de l'eau totale du système, comprenant de l'eau d'injection et de l'eau recyclée issue du séparateur de phases, dans la pompe de compression jusqu'à une pression comprise entre 2 et 15 bars, notamment entre 8 et 12 bars,
- circulation de l'eau totale du système au travers d'échangeurs de chaleur pour permettre un préchauffage de l'eau d'entrée du système par le biais des flux d'hydrogène et d'oxygène sortants de l'électrolyseur réversible,
- introduction de l'eau d'entrée du système dans le générateur de vapeur d'eau, pour produire la vapeur d'eau sous pression à destination de l'électrolyseur réversible par le biais de la chaleur dégagée par le réservoir d'hydrures, lors de l'absorption de l'hydrogène, et amenée au générateur de vapeur par un fluide caloporteur,
- circulation de la vapeur d'eau au travers d'échangeurs de chaleur pour permettre un surchauffage de la vapeur d'eau avant son entrée dans l'électrolyseur réversible, par le biais des flux d'hydrogène et d'oxygène sortants de l'électrolyseur réversible,
- surchauffage complémentaire de la vapeur d'eau afin d'atteindre la température de travail de l'électrolyseur en utilisant un chauffant électrique,
- introduction de la vapeur d'eau sous pression dans l'électrolyseur réversible pour la production des flux d'hydrogène et d'oxygène,
- refroidissement des flux d'hydrogène et d'oxygène par le biais des échangeurs de chaleur,
- condensation de la vapeur d'eau sous pression non réagie dans le séparateur de phases pour produire de l'eau de recyclage réintroduite dans le système,
- stockage de l'hydrogène produit séché dans le réservoir d'hydrures.
De façon avantageuse, il n'y a pas de compression de l'hydrogène entre l'électrolyseur et le réservoir.
Le procédé peut encore être mis en œuvre selon un mode de déstockage d'électricité, l'électrolyseur réversible haute température étant configuré pour fonctionner selon un mode de pile à combustible à oxyde solide du type SOFC sous pression, et le procédé peut comporter l'étape de réalisation de la réaction inverse d'électrolyse à haute température de la vapeur d'eau pour consommer de l'hydrogène et ainsi déstocker de l'électricité.
Le procédé peut encore particulièrement être mis en œuvre selon le mode déstockage au moyen d'un système d'électrolyse réversible de l'eau à haute température du type « système à recirculation d'air comprimé », et peut comporter les étapes successives suivantes :
• pour le circuit de dihydrogène :
- mélange de l'hydrogène provenant du réservoir d'hydrures à la pression ciblée de 2 à 15 bars, avec le recyclage total de l'hydrogène non consommé dans l'électrolyseur réversible par le biais des moyens de mélange,
- injection de l'hydrogène total au travers de l'échangeur de chaleur permettant son préchauffage par le flux d'hydrogène sortant de l'électrolyseur réversible,
- injection de l'hydrogène total dans l'électrolyseur réversible pour sa consommation et la production d'eau, d'électricité et de chaleur,
- refroidissement du flux d'hydrogène sortant de l'électrolyseur réversible par l'échangeur de chaleur de préchauffage,
- refroidissement du flux d'hydrogène sortant de l'échangeur de chaleur de préchauffage par l'échangeur de chaleur, formant récupérateur de chaleur, permettant de récupérer la chaleur en l'échangeant avec un fluide caloporteur,
- séparation entre le flux d'hydrogène et le flux d'eau produite issue du condenseur,
- recyclage de l'hydrogène non consommé en le recomprimant uniquement de la valeur des pertes de charges,
• pour le circuit primaire d'air :
- injection de l'air sortant de l'électrolyseur réversible au travers de l'échangeur de chaleur de refroidissement pour être refroidi par l'air comprimé entrant dans l'électrolyseur réversible,
- injection de l'air sortant de l'échangeur de chaleur de refroidissement au travers de l'échangeur de chaleur, formant récupérateur de chaleur, traversé par un fluide caloporteur,
- mélange de l'air sortant de l'échangeur de chaleur, formant récupérateur de chaleur, par des moyens de mélange avec un flux complémentaire d'oxygène comprimé,
- injection de ce mélange dans un échangeur de chaleur, puis un dispositif de refroidissement, puis une pompe de compression pour compenser les pertes de charges et pour obtenir de l'air comprimé injecté dans cet échangeur de chaleur de refroidissement en aval des moyens de mélange,
- injection de l'air provenant de l'échangeur de chaleur de refroidissement dans l'échangeur de chaleur pour son préchauffage, puis injection dans l'électrolyseur réversible à la pression ciblée de 2 à 15 bars.
Le procédé peut encore particulièrement être mis en œuvre selon le mode déstockage au moyen d'un système d'électrolyse réversible sous pression de l'eau à haute température du type « système à trois flux », et peut comporter les étapes successives suivantes :
· pour le circuit de dihydrogène :
- mélange de l'hydrogène provenant du réservoir d'hydrures avec le recyclage total de l'hydrogène non consommé dans l'électrolyseur réversible par le biais des moyens de mélange,
- injection de l'hydrogène total à la pression ciblée de 2 à 15 bars au travers de l'échangeur de chaleur permettant son préchauffage par le flux d'hydrogène sortant de l'électrolyseur réversible,
- injection de l'hydrogène total à la pression ciblée de 2 à 15 bars dans l'électrolyseur réversible pour sa consommation et la production d'eau, d'électricité et de chaleur,
- refroidissement du flux d'hydrogène sortant de l'électrolyseur réversible par l'échangeur de chaleur de préchauffage,
- refroidissement du flux d'hydrogène sortant de l'échangeur de chaleur de préchauffage par l'échangeur de chaleur, formant récupérateur de chaleur, permettant de récupérer la chaleur en l'échangeant avec un fluide caloporteur,
- séparation entre le flux d'hydrogène et le flux d'eau produite issue du séparateur de phases,
- recyclage de l'hydrogène non consommé en le recomprimant uniquement de la valeur des pertes de charges du montage,
• pour le circuit primaire d'air :
- injection d'air ambiant dans une pompe de compression jusqu'à une pression comprise entre 2 et 15 bars, notamment entre 8 et 12 bars,
- préchauffage de l'air entrant dans l'échangeur de chaleur de préchauffage par le biais du flux d'air sortant de l'électrolyseur réversible,
- injection de l'air entrant préchauffé dans l'électrolyseur réversible à la pression cible,
- refroidissement de l'air sortant de l'électrolyseur réversible dans l'échangeur de chaleur de préchauffage,
- refroidissement de l'air sortant de l'échangeur de chaleur de préchauffage au travers de l'échangeur de chaleur, formant récupérateur de chaleur, pour obtenir de la chaleur par le biais d'au moins un fluide caloporteur,
- injection de l'air sortant de l'échangeur de chaleur, formant récupérateur de chaleur, dans une turbine à gaz pour éjecter l'air sortant,
• circuit de refroidissement :
- refroidissement du flux chaud sortant de l'électrolyseur réversible au travers de l'échangeur de chaleur de préchauffage par le fluide entrant dans l'électrolyseur réversible,
- refroidissement du flux sortant de l'échangeur de chaleur de préchauffage dans l'échangeur de chaleur, formant récupérateur de chaleur, par le biais d'au moins un fluide caloporteur,
- refroidissement total du flux sortant de l'échangeur de chaleur, formant récupérateur de chaleur, dans un échangeur de chaleur par le flux de fluide recomprimé,
- injection du flux sortant de l'échangeur de chaleur traversé par le flux de fluide recomprimé dans un dispositif de refroidissement, désigné encore par dispositif de sur-refroidissement, puis une pompe de compression,
- préchauffage du flux sortant de la pompe de compression par le flux sortant de l'électrolyseur réversible avant son entrée dans l'électrolyseur réversible à la pression cible de 2 à 15 bars, notamment 8 à 12 bars.
Le système d'électrolyse réversible sous pression et le procédé d'électrolyse selon l'invention peuvent comporter l'une quelconque des caractéristiques énoncées dans la description, prises isolément ou selon toutes combinaisons techniquement possibles avec d'autres caractéristiques.
BRÈVE DESCRIPTION DES DESSINS
L'invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d'exemples de mise en œuvre non limitatifs de celle-ci, ainsi qu'à l'examen des figures, schématiques et partielles, du dessin annexé, sur lequel :
- la figure 1 est une vue schématique montrant le principe de fonctionnement d'un électrolyseur à oxyde solide à haute température (SOEC),
- la figure 2 est une vue schématique éclatée d'une partie d'un électrolyseur à oxyde solide à haute température (SOEC) comprenant des interconnecteurs selon l'art antérieur,
- la figure 3 est une vue schématique éclatée d'une partie d'une pile à combustible à oxyde solide (SOFC) comprenant des interconnecteurs selon l'art antérieur,
- la figure 4 est un schéma-bloc représentant un exemple de système d'électrolyse réversible de l'eau à haute température conforme à l'invention, comportant un électrolyseur réversible haute température, fonctionnant selon un mode d'électrolyseur à oxyde solide du type SOEC,
- la figure 5 représente, sous forme graphique, l'évolution du rendement PCI d'un système conforme à l'invention fonctionnant en mode de production d'hydrogène et d'une valeur nominale de 116 kW AC, en fonction de la puissance électrique totale consommée,
- la figure 6 est un schéma-bloc représentant le circuit de dihydrogène d'un exemple de système dit « à recirculation d'air comprimé » d'électrolyse réversible de l'eau à haute température conforme à l'invention, comportant un électrolyseur réversible haute température, fonctionnant selon un mode de pile à combustible à oxyde solide du type SOFC,
- la figure 7 est un schéma-bloc représentant le circuit primaire d'air du système de la figure 6,
- la figure 8 représente, sous forme graphique, l'évolution du débit d'air d'un système conforme à l'invention en fonction de la puissance électrique nette du procédé correspondant aux figures 6 et 7, et d'une puissance nominale de 64 kW,
- la figure 9 représente, sous forme graphique, l'évolution du rendement PCI du procédé de la figure 8 en fonction de la puissance électrique nette du procédé,
- la figure 10 représente, sous forme graphique, l'évolution de la consommation en dihydrogène du procédé de la figure 8 en fonction de la puissance électrique nette du procédé,
- la figure 11 est un schéma-bloc représentant le circuit de dihydrogène d'un exemple de système dit « à trois flux » d'électrolyse réversible de l'eau à haute température conforme à l'invention, comportant un électrolyseur réversible haute température, fonctionnant selon un mode de pile à combustible à oxyde solide du type SOFC,
- la figure 12 est un schéma-bloc représentant le circuit primaire d'air du système de la figure 11,
- la figure 13 est un schéma-bloc représentant le circuit de refroidissement du système de la figure 11,
- la figure 14 représente, sous forme graphique, l'évolution des débits d'air primaire et d'air de refroidissement d'un système conforme à l'invention en fonction de la puissance électrique nette du procédé correspondant,
- la figure 15 représente, sous forme graphique, l'évolution du rendement PCI du procédé de la figure 14 en fonction de la puissance électrique nette du procédé (AC), et
- la figure 16 représente, sous forme graphique, l'évolution de la consommation en dihydrogène en fonction de la puissance nette du procédé de la figure 14.
Dans l'ensemble de ces figures, des références identiques peuvent désigner des éléments identiques ou analogues.
De plus, les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Les figures 1 à 3 ont déjà été décrites précédemment dans la partie relative à l'état de la technique antérieure et au contexte technique de l'invention.
Il est précisé que, pour l'ensemble des figures, les symboles et les flèches d'alimentation de vapeur d'eau H20, de distribution et de récupération de dihydrogène H2, d'oxygène 02, d'air et du courant électrique, sont montrés à des fins de clarté et de précision, pour illustrer le fonctionnement des dispositifs représentés.
De plus, il faut noter que tous les constituants (anode/électrolyte/cathode) d'une cellule d'électrolyse donnée sont des céramiques. La température de fonctionnement d'un électrolyseur haute température est par ailleurs typiquement comprise entre 600 et 1000°C.
En référence à la figure 4, on a représenté sous la forme d'un schéma-bloc un exemple de système 10 d'électrolyse réversible de l'eau à haute température conforme à l'invention, comportant un électrolyseur réversible haute température 11, fonctionnant selon un mode d'électrolyseur à oxyde solide du type SOEC pour la production d'hydrogène et ainsi le stockage d'électricité. De plus, le système 10 fonctionne sous une pression comprise entre 2 et 15 bars, voire entre 8 et 12 bars.
L'électrolyseur réversible 11 est couplé thermiquement à un réservoir d'hydrures 12, permettant de stocker l'hydrogène sous forme d'hydrures. Le principe de fonctionnement du système 10 conforme à l'invention représenté sur la figure 4 sera décrit par la suite dans la partie relative au mode stockage.
Le système 10 d'électrolyse réversible de l'eau à haute température selon l'invention peut présenter plusieurs possibilités d'utilisation.
En particulier, et de façon non limitative, le système 10 peut fonctionner selon un mode réversible, c'est-à-dire à la fois pour le stockage et le déstockage d'électricité. Dans ce cas, un stockage massif d'électricité peut être effectué avant sa restitution par réversibilité du procédé d'électrolyse.
Le système 10 peut encore fonctionner selon un mode non réversible, c'est-à- dire selon un fonctionnement tel qu'il soit dédié à un seul des deux sens possibles de la réaction électrochimique d'électrolyse.
Plus précisément, le système 10 peut ainsi fonctionner selon un mode stockage uniquement : alors, le système s'apparente à une station dédiée à la production d'hydrogène remplissant le réservoir d'hydrures 12 ainsi qu'à la fourniture d'oxygène ou d'air enrichi. Dans ce cas, le système peut par exemple servir de station de recharge pour un véhicule à hydrogène, tel qu'un engin de chantier.
Le système 10 peut encore fonctionner selon un mode déstockage uniquement : alors, le système s'apparente à une station dédiée à la production d'électricité, pouvant être alimentée en hydrogène provenant du réservoir d'hydrures 12 et/ou d'un autre procédé. Dans le cas d'utilisation d'hydrogène provenant d'un autre procédé, ce dernier peut être injecté via le réservoir d'hydrures, auquel cas celui-ci joue le rôle d'un réservoir tampon, ou directement en aval du réservoir d'hydrures. Dans le cas où l'on n'utilise pas de l'hydrogène provenant d'un stockage de type hydrures, la chaleur récupérée sur les échangeurs 31, 39 (cas du système à recirculation d'air, figures 6 et 7) ou 31, 42 et 91 (cas du système à 3 flux, figures 11, 12 et 13) doit être évacuée, et peut être utilisée dans d'autres procédés externes au système.
Lorsque le système 10 est utilisé selon un mode de fonctionnement non réversible, soit pour le stockage d'électricité, soit pour le déstockage d'électricité, certains éléments du système 10 peuvent ne pas être utilisés, notamment certains réseaux d'échangeurs.
On va maintenant décrire ci-après, en référence aux figures 4 à 16 les deux principaux modes de fonctionnement du système 10 selon l'invention, à savoir le mode stockage et le mode déstockage. Plus précisément, les figures 4 et 5 se rapportent au fonctionnement du système 10 selon le mode stockage, et les figures 6 à 16 se rapportent au fonctionnement du système 10 selon le mode déstockage.
Mode stockafie
Le mode stockage d'électricité du système 10 selon l'invention utilise l'électrolyseur réversible 11 dans une configuration de fonctionnement d'un électrolyseur
à oxyde solide du type SOEC. Comme représenté sur la figure 4 et conformément à la description précédente de ce type d'électrolyseur, l'électrolyseur SOEC 11 comporte un empilement de cellules électrochimiques élémentaires à oxydes solides formées chacune d'une cathode, lesquelles sont appelées globalement la cathode C de l'électrolyseur SOEC 11, d'une anode, lesquelles sont appelées globalement l'anode A de l'électrolyseur SOEC 11, d'un électrolyte intercalé entre la cathode et l'anode de chaque cellule, et une pluralité d'interconnecteurs électriques et fluidiques agencés chacun entre deux cellules élémentaires adjacentes, lesquels sont appelés globalement l'interconnecteur à trois flux F3 de l'électrolyseur SOEC 11. Toutefois, préférentiellement, cet interconnecteur à trois flux F3 n'est pas utilisé en mode stockage du système 10 selon l'invention. Aussi, les parties relatives au fonctionnement de l'interconnecteur à trois flux F3 sont représentées en traits pointillés sur la figure 4.
Les électrolyseurs à oxyde solide du type SOEC sont capables de fonctionner avec ou sans balayage d'air du côté de la production d'oxygène. Ils sont ainsi capables de fournir aussi bien de l'oxygène quasiment pur que de l'air enrichi, en fonction des besoins. Dans l'exemple de système 10 décrit ici, on considère qu'il n'y a pas de balayage d'air en mode stockage, ce qui évite la compression de ce gaz pour le fonctionnement en pression envisagé, et que donc la production d'oxygène comprimé et quasiment pur est obtenue.
Le mode stockage du système 10 selon l'invention a pour but de produire de l'hydrogène sous pression, qui est alors stocké dans le réservoir d'hydrures 12, à partir d'électricité.
De façon avantageuse, l'électrolyseur SOEC 11 est configuré pour fonctionner sous une pression allant de 2 à 15 bars, voire de 8 à 12 bars. En effet, travailler en pression dans l'électrolyseur SOEC 11 permet de limiter le travail de compression de l'hydrogène créé, car compresser de l'eau liquide requiert beaucoup moins d'énergie que de comprimer l'hydrogène.
Il est cependant envisageable de travailler sur l'électrolyseur à une pression différente de celle du stockage. Cette variante nécessiterait cependant un compresseur (cas où le stockage est à une pression supérieure à l'électrolyseur) ou une vanne de
détente (cas où le stockage est à une pression inférieure) entre l'électrolyseur et le stockage. La chaleur d'absorption de l'hydrogène dans l'hydrure serait dans tous les cas utilisée pour répondre aux besoins du générateur de vapeur.
Le fonctionnement en mode stockage est décrit ci-après. Ainsi, comme représenté sur la figure 4, l'eau déminéralisée H20, représentée par la flèche FH2O, est mélangée en M l avec l'eau de récupération H2Orécup du procédé, issue du séparateur de phases 13. Puis, la totalité H2Ototai de cette eau H20 + H2Orécup est compressée par une pompe de compression 14 jusqu'à la pression de travail, comprise entre 2 et 15 bars, voire 8 et 12 bars.
L'eau totale H2Ototai est ensuite séparée en deux flux fl et f2 par un séparateur
15, chaque flux fl, f2 étant respectivement préchauffé jusqu'à saturation par des échangeurs de chaleur 16 et 17 respectivement traversés par des flux d'oxygène 02 et d'hydrogène H2 tiédis.
L'eau préchauffée au travers des deux échangeurs de chaleur 16 et 17 est alors remélangée en M2, puis portée à ébullition dans un générateur de vapeur 18 par l'intermédiaire de la chaleur récupérée da ns le réservoir d'hydrures 12, lors de l'absorption de l'hydrogène (par exemple, environ 75 kJ/mole pour un hydrure de type hydrure de magnésium), par le biais d'un fluide caloporteur FC. I l convient d'ailleurs de choisir un hydrure métallique et une gamme de pression du système 10 tels que la chaleur dégagée par l'hydrure soit à une température supérieure à celle du point d'ébullition de l'eau à la pression considérée en entrée d'électrolyseur, par exemple l'hydrure de magnésium est à l'équilibre de sorption à 380°C à 10 bars.
La vapeur d'eau est ensuite séparée de nouveau en deux flux f3 et f4 par un séparateur 19, chaque flux f3, f4 étant respectivement surchauffé jusqu'à entre 670 et 750°C par des échangeurs de chaleur 20 et 21 respectivement traversés par des flux d'oxygène 02 et d'hydrogène H2 chauds, sortant de l'électrolyseur SOEC 11.
Les deux flux f3 et f4 de vapeur d'eau surcha uffée sont alors remélangés en M3, puis un chauffant électrique 22 assure la fin de la surchauffe de la vapeur jusqu'aux 700 à 800°C de fonctionnement de l'électrolyseur SOEC 11 avant d'y entrer.
L'oxygène 02 et l'hydrogène H2, respectivement issus de l'anode A et de la cathode C, sont refroidis d'abord respectivement par les échangeurs de chaleur 20 et 21 avec la vapeur d'eau d'entrée des flux f3 et f4, puis respectivement par les échangeurs de chaleur 16 et 17 avec l'eau des flux fl et f2.
En ce qui concerne alors l'oxygène 02, celui-ci est stocké ou évacué, représenté par la flèche Fo2.
En ce qui concerne l'hydrogène H2, un condenseur 23 assure la condensation de la vapeur non réagie, et cette eau est alors collectée dans le séparateur de phases 13 avant d'être envoyée vers le début du procédé en Ml pour son recyclage. L'hydrogène H2 finit d'être séché dans un sécheur 24 avant d'être envoyé dans le réservoir d'hydrures 12 pour y être stocké, ce qui produit alors de la chaleur récupérée par la boucle de fluide caloporteur FC pour le générateur de vapeur 18. Le sécheur 24 peut être de différents types, tels qu'un gel de silice ou un piège cryogénique. Toutefois, il doit pouvoir supprimer l'humidité présente dans l'hydrogène H2 avant son entrée dans le réservoir de stockage d'hydrures 12. En effet, ces composés réagissant fortement avec l'eau, cela pourrait endommager le réservoir 12 et créer un fort dégagement de chaleur.
Il est à noter que le système 10 peut également fonctionner avec un électrolyseur SOEC 11 en mode exothermique, à savoir que les gaz sortant des cellules sont plus chauds que ceux qui y rentrent, auquel cas le chauffant électrique 22 n'est pas nécessaire lors du fonctionnement de l'électrolyseur SOEC 11.
Il est à noter que le système 10 peut également fonctionner avec un électrolyseur SOEC 11 en mode endothermique, à savoir que les gaz sortant des cellules sont plus froids que ceux qui y rentrent, auquel cas le chauffant électrique 22 fonctionne à une puissance plus élevée pour compenser.
De façon avantageuse, le couplage thermique entre l'électrolyseur SOEC 11 et le réservoir d'hydrures 12 apporte plusieurs avantages. En particulier, il permet de fournir le besoin d'énergie du générateur de vapeur 18, et permet ainsi de ne pas avoir à recourir à une source extérieure au système 10, de type électrique ou par combustion de gaz, ce qui permet alors d'augmenter le rendement du procédé d'électrolyse en mode stockage. De plus, un tel couplage thermique permet également d'éviter d'avoir à évacuer de la
chaleur issue du réservoir d'hydrures 12, comme cela est le cas avec le couplage entre réservoir d'hydrures et électrolyse à basse température. Cela aurait autrement un coût non négligeable en énergie, ce qui peut baisser le rendement du procédé si aucun moyen de stockage de cette chaleur n'est employé, auquel cas une évacuation de chaleur, telle qu'une tour aéroréfrigérante, serait nécessaire. De façon avantageuse, l'électrolyse est réalisée sous pression pour éviter toute compression d'hydrogène avant stockage dans le réservoir.
Exemple de réalisation
L'électrolyseur réversible haute température 11 comprend une enceinte contenant les stacks.
On va maintenant décrire un exemple de réalisation d'un électrolyseur SOEC 11 couplé thermiquement à un réservoir d'hydrures 12 en mode stockage.
Les différentes valeurs citées dans l'exemple suivant sont issues de simulations réalisées sur le logiciel ProsimPlus à partir de modèles thermodynamiques de cellules d'électrolyse ainsi que d'auxiliaires (pompes, convertisseurs, etc.). Le but du système 10 de cet exemple est de fournir de l'hydrogène absorbé sur hydrure de magnésium Mghh. Le stockage des hydrures dans le réservoir d'hydrures 12 se fait à une pression de 10 bars. La plage de puissances du système en mode production est comprise entre 115 et 116.5 kW, et la plage de rendements système obtenus est comprise entre 86,4 et 87,5 % PCI (rapport entre le pouvoir calorifique inférieur de l'hydrogène gazeux créé et la consommation électrique du système). Le rendement de l'empilement électrolyseur seul est de 97,5% PCI.
Le système 10 comprend donc un stockage d'hydrogène par hydrures de type hydrure de magnésium Mghh. Il absorbe de l'hydrogène froid, à environ 35°C, sous une pression de 10 bars, ce qui libère une énergie de 75 kW/mole H2 sous forme de chaleur.
La chaleur dégagée par l'absorption de l'hydrogène est récupérée sur une boucle de fluide caloporteur FC, comprenant de l'huile, afin d'alimenter le générateur de vapeur 18. Le taux d'utilisation dans l'électrolyseur 11 est maintenu suffisamment élevé, supérieur à environ 60 %, pour que le stockage au réservoir d'hydrures 12 génère assez
de chaleur pour alimenter le générateur de vapeur 18 de façon complète, à savoir ébullition totale de l'eau avec surchauffe de 10°C.
L'électrolyseur 11 est piloté à la tension thermoneutre dans cet exemple, avec des débits dans les bornes acceptables des cellules, soit de 12 à 48 NmL/min/cm2. Il n'y a donc pas de balayage du côté de l'anode, l'oxygène produit étant sensiblement pur. Il n'y a pas de problème de refroidissement dans les cellules, le régime thermoneutre permettant l'obtention d'une température de sortie d'électrolyseur 11 égale à celle de l'entrée. Le troisième canal de l'interconnecteur à trois flux, représenté par F3 sur la figure 4, n'est ici pas utilisé. Le fait de se restreindre à la tension thermoneutre a pour effet de limiter la plage de puissance accessible au système en mode stockage par rapport à un fonctionnement en mode endothermique ou exothermique qui offrent une gamme accessible plus étendue.
Dans les calculs de rendement du système 10, il a été comparé la chaleur totale de combustion pouvant potentiellement être libérée par l'hydrogène produit avec (PCS) ou sans (PCI) condensation de l'eau générée avec l'énergie électrique (AC) requise pour sa production au niveau du système complet. Les pouvoirs calorifiques inférieur (PCI) et supérieur (PCS) de l'hydrogène sont respectivement 244 et 286 kJ/mol.
La figure 5 représente, sous forme graphique, l'évolution du rendement R du système 10 fonctionnant en mode de production d'hydrogène pour un système d'une valeur nominale de 116 kW AC, en fonction de la puissance électrique totale consommée De, exprimée en kW AC.
Le rendement R pour la courbe PCI est plus précisément calculé avec la formule suivante :
R = [débit de H2 créé * PCI] / Consommation électrique.
Les consommations électriques prises en compte dans les rendements comprennent la consommation des cellules d'électrolyses elles-mêmes, à laquelle s'ajoutent les consommations des auxiliaires (pompes, groupes chauds et froids et électronique de puissance).
Ainsi, le montage du système 10 en mode stockage permet de valoriser la chaleur d'absorption de l'hydrogène sur l'hydrure de façon efficace, en fournissant une
source de chaleur pour alimenter le générateur de vapeur 18, ce qui permet une économie sur la consommation électrique d'au moins 15% en comparaison aux procédés utilisant de l'électrolyse basse température (PEM, alcalin), qui doivent eux évacuer cette chaleur. Ceci, couplé avec le rendement électrique supérieur de l'électrolyse haute température en comparaison aux procédés basse température, explique les valeurs élevées indiquées des rendements.
Le rendement est également supérieur à un système classique car on produit un hydrogène qui est absorbé dans l'hydrure, ce qui libère de la chaleur utilisée pour alimenter le générateur de vapeur. Dans le cas d'un système sans chaleur fournie par l'hydrure, il faudrait fournir au système au moyen d'une utilité chaude la chaleur requise par le générateur de vapeur, ce qui baisserait les rendements PCI et PCS de respectivement 15 et 17 points environ.
Mode déstockafie
Le mode déstockage d'électricité du système 10 selon l'invention utilise l'électrolyseur réversible 11 dans une configuration de fonctionnement d'une pile à combustible à oxyde solide du type SOFC.
Dans ce mode déstockage, le but est de consommer de l'hydrogène dans la pile à combustible 11 sous une pression comprise entre environ 2 et 15 bars, avec pour objectifs de fournir de l'électricité avec un rendement élevé, et éventuellement de fournir de la chaleur à basse température permettant d'alimenter un réseau de chauffage, tel qu'une habitation, un séchoir agricole, entre autres.
Dans le mode déstockage, le système 10 peut prendre la forme de deux systèmes distincts, respectivement appelés système à recirculation d'air et système trois flux. Ils sont détaillés ci-après.
Système à recirculation d'air
Ce système 10 est illustré à l'aide des figures 6 et 7. Dans ce cas, le système 10 est dépourvu d'un interconnecteur du type trois flux. Comme on peut le voir sur les figures 6 et 7, la pile à combustible 11 comporte une anode A et une cathode C, comme décrit précédemment, mais pas de troisième canal de fluide caloporteur.
Dans ce système 10, le refroidissement de la pile à combustible 11 est uniquement assuré par le débit d'air comprimé du côté de la cathode, qui est par conséquent prévu pour être important du fait de l'exothermicité de la réaction d'oxydation de l'hydrogène. La désorption de l'hydrogène dans le réservoir hydrures est assurée par le recueil de la chaleur sur les fluides de sortie.
On détaille ci-après successivement le fonctionnement du circuit de dihydrogène H2, puis le fonctionnement du circuit primaire d'air.
Circuit de dihydroqène H2
Ce circuit est illustré en référence à la figure 6. Sur cette figure 6, les parties en traits pointillés se réfèrent au circuit primaire d'air détaillé par la suite en référence à la figure 7. De façon avantageuse, le circuit de dihydrogène H2 forme une boucle permettant le recyclage de l'hydrogène non consommé dans la pile à combustible 11. On obtient ainsi une conversion proche de 100 % de l'hydrogène.
Le fonctionnement du circuit de dihydrogène H2 en mode déstockage d'un système 10 à recirculation d'air est décrit ci-après. L'hydrogène H2, provenant du réservoir d'hydrures 12, sous une pression de 2 à 15 bars, voire de 8 à 12 bars, est mélangé en Ml avec le recyclage total de l'hydrogène H2résiduei non consommé dans la pile à combustible 11.
Le flux total d'hydrogène H2totai traverse alors un échangeur de chaleur 30 pour être préchauffé par les gaz de sortie H2 de la pile à combustible 11. Puis, il est injecté dans la pile à combustible 11 pour y être oxydé et produire de l'eau, de l'électricité et de la chaleur.
A la sortie de la pile à combustible 11, le flux d'hydrogène H2 est refroidi au travers de l'échangeur de chaleur 30 par les gaz d'entrée H2totai, puis il traverse un échangeur de chaleur 31, formant récupérateur de chaleur à plus de 400°C, permettant de récupérer la chaleur en l'échangeant avec un fluide caloporteur FC, tel que de l'huile, de l'air, de la vapeur, entre autres.
Le flux d'hydrogène H2 et de vapeur d'eau traverse un échangeur de chaleur 33 pour être refroidi par le flux d'hydrogène H2 sortant d'un séparateur de phases 34. Après avoir traversé l'échangeur de chaleur 33, le flux H2 traverse un condenseur 35, puis
le séparateur de phases 34 pour permettre la récupération de l'eau H20 produite, représentée par la flèche FH2O, et permettre son évacuation pour une possible valorisation.
En sortie du séparateur 34, l'hydrogène H2 sec, pouvant contenir quelques traces d'eau, est réchauffé par le flux entrant d'hydrogène H2 traversant l'échangeur de chaleur 33, puis est envoyé vers une pompe de compression 36 pour compenser les pertes de charge du circuit, avant d'être mélangé en M l à l'hydrogène issu du réservoir d'hydrures 12.
Le réservoir d'hydrures 12 peut présenter tout type de réservoir capable de restituer de l'hydrogène dans les gammes de température souhaitées, de l'ordre de 300 à 400°C, et dans les gammes de pression souhaitées, de l'ordre de 2 à une dizaine de bars. I l faut cependant que les hydrures aient une température d'absorption de l'hydrure suffisante pour servir le générateur de vapeur 18 en mode stockage et que la pile dégage suffisamment de chaleur pour permettre la désorption de la quantité d'hydrogène requise à son point de fonctionnement.
Le circuit de dihydrogène H2 peut également comporter une vanne de purge, afin de pouvoir éliminer les éventuels gaz neutres, tels que l'azote ou l'argon, éventuellement présents dans l'hydrogène du stockage.
Circuit primaire d'air
Ce circuit est illustré en référence à la figure 7. Sur cette figure 7, les pa rties en traits pointillés se réfèrent au circuit de dihydrogène H2 détaillé auparavant en référence à la figure 6. Le circuit primaire d'air comprimé a pour but d'assurer l'alimentation de la pile à combustible 11 en oxygène 02, ainsi que d'évacuer la chaleur produite par la pile 11.
Le fonctionnement du circuit primaire d'air comprimé en mode déstockage d'un système 10 à recirculation d'air est décrit ci-après. L'air sortant de la pile à combustible 11 traverse un échangeur de chaleur 38 pour être refroidi par l'air entrant dans la pile à combustible 11.
Puis, le flux d'air traverse un échangeur de chaleur 39, formant récupérateur de chaleur à plus de 400°C, lui-même traversé par un fluide caloporteur FC comprenant de l'huile.
L'air est alors mélangé en Ml à un flux d'oxygène 02, représenté par la flèche F02, puis refroidi au travers d'un échangeur de chaleur 40 avec de l'air recomprimé, et dans un deuxième dispositif de refroidissement 41 jusqu'à la température de recompression, puis comprimé dans une pompe de compression 42. La recompression n'est que de la valeur des pertes de charges et pas d'une recompression complète de 2 à 15 bars que l'on aurait si l'on ne faisait pas recirculer l'air, ce qui présente un gain substantiel à la base de l'invention.
L'air comprimé est alors mis à température d'entrée dans la pile à combustible 11 par passage au travers des échangeurs de chaleur 40 et 38, avant d'être injecté dans la cathode C.
Selon les hydrures utilisés, et les gammes de fonctionnement voulues, la chaleur récupérée pour la désorption peut être insuffisante. L'ajout d'un brûleur fonctionnant à l'hydrogène et permettant au fluide caloporteur FC de récupérer la chaleur manquante peut alors être envisagé. Un chauffant électrique d'appoint est également utilisable, mais moins efficace, car le coût de l'électricité peut être élevé lors du fonctionnement en mode déstockage, et cela va impacter le rendement du système.
Par ailleurs, en cas de besoin de chaleur supplémentaire à récupérer sur les échangeurs haute température 38 et 39 décrits précédemment, une partie de l'hydrogène peut être brûlée dans une chambre de combustion située en amont de l'échangeur considéré. Cette chambre de combustion peut par exemple être située en amont de l'échangeur de chaleur 39 du circuit primaire d'air, cela permettant de ne pas ajouter d'échangeur sur le circuit de fluide caloporteur FC, mais rend nécessaire la condensation de l'eau ainsi créée avant la recompression. Cette dernière étant réalisée à froid, cela peut poser des problèmes de conception limitée. La chambre de combustion peut encore être située sur un brûleur indépendant des circuits d'hydrogène et d'air, ce montage étant simple d'application mais moins efficace énergétiquement car l'air devra
être préchauffé sous peine de limiter la part de l'énergie de combustion recueillie par le fluide caloporteur FC.
De façon avantageuse, le système à recirculation d'air permet la production d'électricité, potentiellement décarbonée et/ou renouvelable selon l'origine de l'électricité pour produire l'hydrogène en mode stockage. De plus, il permet la production de chaleur à haute température, requise pour la désorption de l'hydrogène dans le réservoir d'hydrures 12, avec la possibilité de brûler un peu d'hydrogène si la pile à combustible 11 n'en fournit pas assez d'elle-même. Cela supprime le besoin d'une source de chaleur haute température extérieure au système 10. En outre, il permet une gamme de puissance électrique et/ou thermique atteignable qui soit large autour du nominal, soit ici de 75 à 100 %. Enfin, on obtient une légère amélioration du rendement par rapport à un système trois flux, décrit par la suite, du fait de la compression de l'air plus faible grâce à sa recirculation associée à un enrichissement en 02. Dans le système à trois flux, seule une partie de l'air est recyclée.
Exemple de réalisation
On va maintenant décrire un exemple de réalisation d'une pile à combustible SOFC 11 couplée thermiquement à un réservoir d'hydrures 12 en mode déstockage avec un système 10 à recirculation d'air. Les différentes valeurs citées dans l'exemple suivant sont issues de simulations réalisées sur le logiciel ProsimPlus à partir de modèles thermodynamiques de cellules de pile ainsi que d'auxiliaires (pompes, convertisseurs, etc.).
Le but du système 10 de cet exemple est de fournir de l'électricité avec un rendement élevé et une large plage de puissance. Le stockage des hydrures dans le réservoir d'hydrures 12 se fait à une pression de 10 bars. La plage de puissances de production d'électricité (AC, injectable sur réseau) est comprise entre 49,5 et 65,3 kW, étant comprise entre 51,2 et 68,2 kW pour la pile à combustible 11 (de rendement PCI variant de 72 % pour le fonctionnement à puissance minimale à 66 % pour son fonctionnement à puissance maximale), et la plage de rendements électriques obtenus pour le système est comprise entre 59,5 et 60,5 % PCI (pouvoir calorifique inférieur de l'hydrogène sorti du réservoir). Un brûleur H2 est utilisé en complément pour la chaleur
de désorption pour les régimes pour lesquels la cha leur recueillie sur la boucle huile n'est pas suffisante.
Le système 10 comprend donc un stockage d'hydrogène par hydrures de type hydrure de magnésium MgH2 à une pression de 10 bars et à 380°C, consommant 75 kJ par mole de H2 libéré. La chaleur haute température récupérée sur les échangeurs est utilisée pour désorber l'hydrogène, ainsi que pour pallier les pertes de chaleur sur le procédé. Le réservoir d'hydrures 12 requiert l'apport d'une énergie de désorption égale à 75 kJ/(mole de H2 désorbée) et à une température supérieure à 380°C. En prenant en compte le pincement da ns les échangeurs ha ute température, seule la chaleur du procédé supérieure à 400 °C peut être récupérée dans ce but. I l est également pris en compte des pertes de chaleur sur le procédé, sur la pile 11 et le réservoir 12, de 2,7 kW à compenser.
En cas de manque de chaleur récupérée sur les échangeurs ha ute température, une partie de l'hydrogène désorbé est brûlé pour fournir le complément d'énergie.
Les débits des différents fluides ont été fixés de la façon suiva nte : pour l'hydrogène H2, le débit est constant et fixé à 12 NmL/min/(cm2 de cellule) ; et pour l'air primaire, le débit est suffisant pour limiter la ha usse de température dans la pile 11 à 150 °C.
Par ailleurs, la stratégie de refroidissement est la suivante : la température de l'hydrogène entrant dans la pile 11 est constante et égale à 700 °C ; la température de l'air entrant dans la pile 11 est constante et égale à 600 °C ; la température de sortie de pile est maintenue constante et égale à 850 °C pour les deux flux ; le débit d'air primaire est réglé pour maintenir la température en sortie de pile constante, jusqu'à un débit maximum de 48 NmL/min/(cm2 de cellule).
Les résultats obtenus sont représentés graphiquement sur la figure 8, qui montre l'évolution du débit d'air Da, exprimé en NmL/min/(cm2 de cellule), en fonction de la puissance électrique P du procédé, exprimée en kW, et également sur la figure 9, qui montre l'évolution du rendement électrique R du procédé en mode déstockage, exprimé en pourcentages, en fonction de la puissance nette P du procédé, exprimée en kW, et enfin sur la figure 10, qui montre l'évolution de la consommation CH2 en dihydrogène,
exprimée en g/h, en fonction de la puissance nette P du procédé, exprimée en kW. Sur cette figure 10, la courbe Ca représente la consommation totale en H2, et la courbe Cb représente la consommation en H2 brûlé pour complément de chaleur.
La puissance nette P du procédé est définie comme étant la production électrique AC de la pile 11 et de la turbine associée (circuit air primaire) à laquelle est retranchée la consommation des compresseurs et recirculateurs.
Le rendement R du procédé est défini de la façon suivante :
R = Puissance nette du procédé P en AC injecté sur le réseau / [PCI H2 * Débit de H2 consommé]
La puissance nette du procédé correspond à la puissance produite par la pile, à laquelle est retranchée la consommation des auxiliaires (compresseurs, groupes froids et électronique de puissance).
Le système 10 permet ainsi de fonctionner sur une plage large de puissance, tout en gardant un rendement électrique élevé.
Le procédé est ainsi capable de tirer profit du stockage du réservoir d'hydrures 12, qui a pour point fort une forte densité de stockage d'hydrogène (sur de l'hydrure de type MgH2, on atteint les 5 % massiques d'hydrogène), sans apport de chaleur extérieure pour désorber l'hydrogène, ce qu'un système classique, tel qu'un système de pile basse température (PEM, etc) ne peut pas faire.
Système trois flux
Ce système 10 est illustré à l'aide des figures 11, 12 et 13. Dans ce cas, la pile à combustible SOEC 11 du système 10 conforme à l'invention comporte un interconnecteur 5 du type trois flux (permettant l'échange thermique avec un fluide de refroidissement distinct des flux de cathode et d'anode) tel que décrit précédemment, dont la présence dans la pile à combustible 11 est symbolisée par la référence F3 sur les figures 11, 12 et 13. Pa r ailleurs, comme on peut le voir sur ces figures, la pile à combustible 11 comporte une anode A et une cathode C, comme décrit précédemment. Les fluides caloporteurs référencés ci-après sur les différents circuits des figures 11, 12 et 13 sont mutualisés afin d'assurer l'apport de chaleur nécessaire à la désorption de l'hydrogène depuis le réservoir d'hydrures 12.
On détaille ci-après successivement le fonctionnement du circuit de dihydrogène H2, puis le fonctionnement du circuit primaire d'air et enfin le fonctionnement du circuit de refroidissement réalisable grâce à l'interconnecteur à trois flux.
Circuit de dihydrogène H2
Ce circuit est illustré en référence à la figure 11. Sur cette figure 11, les parties en traits pointillés se réfèrent au circuit primaire d'air et au circuit de refroidissement détaillés par la suite en référence aux figures 12 et 13. De façon avantageuse, le circuit de dihydrogène H2 forme une boucle permettant le recyclage de l'hydrogène non consommé dans la pile à combustible 11. On obtient ainsi une conversion proche de 100 % de l'hydrogène.
Le fonctionnement du circuit de dihydrogène H2 en mode déstockage d'un système 10 à trois flux est avantageusement pratiquement semblable à celui décrit précédemment pour un système 10 à recirculation d'air.
Ainsi, il convient de se référer à la description précédente énoncée pour l'exemple de réalisation de la figure 6.
Circuit primaire d'air
Ce circuit est illustré en référence à la figure 12. Sur cette figure 12, les parties en traits pointillés se réfèrent au circuit de dihydrogène H2 et au circuit de refroidissement détaillés respectivement auparavant et ci-après en référence aux figures
11 et 13. Le circuit primaire d'air a pour but d'assurer l'alimentation de la pile à combustible 11 en oxygène 02.
Le fonctionnement du circuit primaire d'air en mode déstockage d'un système
10 à trois flux est décrit ci-après. De l'air ambiant, représenté par la flèche Fairi, est comprimé dans une pompe de compression 48 jusqu'à la pression de travail, comprise entre 2 et 15 bars, voire entre 8 et 12 bars. Puis, cet air est préchauffé au travers d'un échangeur de chaleur 47 par les gaz de sortie de la pile à combustible 11 avant d'être injecté dans la pile à combustible 11 au niveau de la cathode C.
L'air appauvri et réchauffé ressort de la pile à combustible 11, puis est refroidi par l'échangeur de chaleur 47 dans lequel circule l'air entrant dans la pile à combustible 11.
Puis l'air traverse un échangeur de chaleur 49, formant récupérateur de chaleur, pour récupérer la chaleur par le biais du fluide caloporteur FC.
L'air traverse alors une turbine 43 afin de récupérer un maximum du travail de compression initial, avant d'être renvoyé dans l'atmosphère, représenté par la flèche Fair2, après un possible refroidissement pour évacuer la chaleur restante.
La pompe de compression 48 et la turbine 43 peuvent comporter un axe commun pour maximiser la récupération d'énergie mécanique.
Par ailleurs, il est possible de mettre un brûleur associé à un piquage H2 situé entre l'échangeur de chaleur 47 et l'échangeur de chaleur 49 afin d'apporter un surplus de chaleur au cas où la chaleur fournie par la pile 11 n'est pas suffisante pour répondre aux besoins.
Circuit de refroidissement
Ce circuit est illustré en référence à la figure 13. Sur cette figure 13, les parties en traits pointillés se réfèrent au circuit de dihydrogène H2 et au circuit d'air primaire détaillés auparavant en référence aux figures 11 et 12. Le circuit de refroidissement par un gaz plus froid a aussi pour fonction de refroidir la pile 11. Il fonctionne en circuit fermé afin de limiter les besoins en compression.
Le fonctionnement du circuit de refroidissement en mode déstockage d'un système 10 à trois flux est décrit ci-après. Le flux chaud FChaud sort de la pile à combustible 11, puis est refroidi au travers d'un échangeur de chaleur 90 du type gaz/gaz par le fluide entrant Fentrant dans la pile à combustible 11. Puis, le flux traverse encore un autre échangeur de chaleur 91, formant récupérateur de chaleur, en charge de récupérer la chaleur par le biais d'un fluide caloporteur FC.
Le flux est ensuite complètement refroidi au travers d'un autre échangeur de chaleur 92 du type gaz/gaz par le fluide recomprimé l"co imprimé afin de lutter contre les pertes de charge du circuit, puis il traverse encore un dispositif de sur-refroidissement 93 avant d'être comprimé par la pompe de compression 94.
Ensuite, le fluide gazeux comprimé est préchauffé par le flux de sortie de la pile 11 au niveau des échangeurs de chaleur 92 et 90 avant d'être injecté dans la pile à combustible 11.
Il est à noter que le fluide utilisé en tant que troisième canal F3 peut être n'importe quel gaz non condensable dans les domaines de température et de pression du procédé considéré. Il doit également être non corrosif envers les différents matériaux du procédé avec lesquels il est en contact. L'air peut préférentiellement être choisi pour remplir ces conditions, présentant en outre l'avantage de ne pas requérir de stockage particulier.
II est également à noter que le troisième canal F3 peut soit représenter un échangeur de chaleur intégré au stack, de façon similaire à la demande de brevet GB 2 151 840 A, soit l'enceinte contenant les stacks dans le cas où l'on utilise des stacks optimisés pour l'échange avec l'enceinte par échange convectif, de façon similaire à la demande de brevet US 2006/105213 Al ou radiatif, de façon similaire à la demande internationale WO 2013/060869 Al.
Le système 10 peut en plus comporter un réservoir de fluide, lorsqu'il ne correspond pas à l'air, un compresseur permettant de rajouter du fluide à la bonne pression dans la boucle en cas d'augmentation du débit requis par le système 10, et une vanne de purge vers le réservoir de fluide , permettant de réduire le débit de fluide de refroidissement dans la boucle.
Le système 10 peut également, lorsque le fluide caloporteur est de l'air, comporter un compresseur permettant de rajouter de l'air à la bonne pression dans la boucle en cas d'augmentation du débit de fluide caloporteur requis par le système 10, et une vanne de purge vers l'atmosphère, permettant de réduire le débit d'air de refroidissement dans la boucle.
Par ailleurs, en cas de besoin de chaleur supplémentaire à récupérer sur les échangeurs de chaleur 31, 49 et 91 haute température, une partie de l'hydrogène issue du réservoir d'hydrures 12 peut être mélangée avec l'air du cycle primaire comme comburant afin d'être brûlée dans une chambre de combustion située en amont de l'échangeur considéré.
De façon avantageuse, le système trois flux permet la production d'électricité, potentiellement décarbonée et/ou renouvelable selon l'origine de l'électricité utilisée pour produire l'hydrogène. De plus, il permet la production de chaleur, requise pour la désorption de l'hydrogène dans le réservoir d'hydrures 12, avec la possibilité de brûler un peu d'hydrogène si la pile à combustible 11 n'en fournit pas assez d'elle-même. Cela supprime le besoin d'une source de chaleur haute température extérieure au système 10. En outre, il permet une gamme de puissance électrique et/ou thermique atteignable qui soit large autour du nominal (45-105 % dans l'exemple décrit ici).
Enfin, bien qu'on obtienne un rendement inférieur par rapport à un système à recirculation d'air, décrit précédemment, du fait de la compression de l'air de cathode qui augmente ainsi la consommation des compresseurs, cette solution ne requiert pas de stockage d'oxygène. Elle permet également une meilleure densité de courant maximale du fait du plus grand débit d'air maximum (air de cathode et fluide caloporteur) qui assure un meilleur refroidissement du système.
Exemple de réalisation
On va maintenant décrire un exemple de réalisation d'une pile à combustible SOFC 11 couplée thermiquement à un réservoir d'hydrures 12 en mode déstockage avec un système 10 trois flux. Les différentes valeurs citées dans l'exemple suivant sont issues de simulations réalisées sur le logiciel ProsimPlus à partir de modèles thermodynamiques de cellules de pile ainsi que d'auxiliaires (pompes, convertisseurs, etc.). Le but du système 10 de cet exemple est de fournir de l'électricité avec un rendement élevé et une large plage de puissance. Le stockage des hydrures dans le réservoir d'hydrures 12 se fait à une pression de 10 bars. La plage de puissances de production d'électricité est comprise entre 28 et 68 kW AC injectable sur le réseau, étant comprise entre 33,5 et 77,6 kW pour la pile combustible 11 (de rendement PCI variant de 83% pour le fonctionnement à puissance minimale à 63% pour son fonctionnement à puissance maximale), et la plage de rendements obtenus est comprise entre 50 et 54 % PCI (pouvoir calorifique inférieur de l'hydrogène introduit). Un brûleur H2 est utilisé en complément pour la chaleur de désorption. Le fluide de refroidissement choisi est de l'air.
Le système 10 comprend donc un stockage d'hydrogène par hydrures de type hydrure de magnésium MgH2 à une pression de 10 bars et à 380°C, consommant 75 kJ par mole de H2 libéré. La chaleur récupérée sur les échangeurs est utilisée pour désorber l'hydrogène, ainsi que pour pallier les pertes de chaleur sur le procédé. Le réservoir d'hydrures 12 requiert l'apport d'une énergie de désorption égale à 75 kJ/(mole de H2 désorbée) et à une température supérieure à 380°C. En prenant en compte le pincement dans les échangeurs haute température, seule la chaleur du procédé supérieure à 400 °C peut être récupérée dans ce but. Il est également pris en compte des pertes de chaleur sur le procédé, sur la pile 11 et le réservoir 12, de 2,7 kW à compenser.
En cas de manque de chaleur récupérée sur les échangeurs, une partie de l'hydrogène désorbé est brûlé en amont de l'échangeur de chaleur formant récupérateur de chaleur du circuit d'air primaire.
Les débits des différents fluides ont été fixés de la façon suivante : pour l'hydrogène H2, le débit est constant et fixé à 12 NmL/min/(cm2 de cellule) ; pour l'air primaire, le débit maximum est de 17 NmL/min/(cm2 de cellule) ; et pour l'air de refroidissement, le débit est compris entre 0 et 48 NmL/min/(cm2 de cellule).
Par ailleurs, la stratégie de refroidissement est la suivante : la température de l'hydrogène entrant dans la pile 11 est constante et égale à 700 °C ; la température de l'air primaire et de refroidissement entrant dans la pile 11 est constante et égale à 600 °C ; la température de sortie de pile est maintenue constante et égale à 850 °C ; à faible puissance, le débit d'air de refroidissement est coupé, et le débit d'air primaire est ajusté pour obtenir la bonne température de sortie de pile ; quand la puissance augmente, le débit d'air primaire est augmenté jusqu'à atteindre 17 NmL/min/(cm2 de cellule), et le débit d'air primaire est alors augmenté jusqu'à un débit maximum de 48 NmL/min/(cm2 de cellule).
Les résultats obtenus sont représentés graphiquement sur la figure 14, qui montre l'évolution des débits d'air primaire Dair primaire et d'air de refroidissement Dairrefroidissement, exprimés en NmL/min/(cm2 de cellule), en fonction de la puissance électrique nette (AC) P du procédé, exprimée en kW, et également sur la figure 15, qui montre l'évolution du rendement électrique R du procédé, exprimé en pourcentages, en
fonction de la puissance nette (AC) P du procédé, exprimée en kW, et enfin sur la figure 16, qui montre l'évolution de la consommation CH2 en dihydrogène, exprimée en kg/h, en fonction de la puissance nette P du procédé, exprimée en kW. Sur cette figure 16, la courbe Ca représente la consommation totale en H2, et la courbe Cb représente la consommation en H2 brûlé pour complément de chaleur.
La puissance nette P du procédé est définie comme étant la production électrique de la pile 11 et de la turbine associée (circuit air primaire) à laquelle est retranchée la consommation des com presseurs et recirculateurs. Le tout est comptabilisé à la sortie du système, donc en puissance AC.
Le rendement électrique R du procédé est défini de la façon suivante :
R = Puissance électrique nette du procédé P / [PCI H2 * Débit de H2 consommé]
La puissance nette procédé correspond à la production de la pile et de la turbine, à laquelle sont soustraites les consommations du système, à savoir celles des compresseurs, des utilités froides et de l'électronique de puissance.
Le système 10 propose bien une gamme de puissance élargie, car en prena nt l'optimum de rendement comme nominal (54,12 % à 63,9 kW électrique net), on obtient une gamme en puissance exploitable allant de 44 à 106 % du nominal.
Le procédé est ainsi capable de tirer profit du stockage du réservoir d'hydrures 12, qui a pour point fort une forte densité de stockage d'hydrogène (sur de l'hydrure de type MgH2, on atteint les 5 % massiques d'hydrogène), sans apport de chaleur extérieure pour désorber l'hydrogène, ce qu'un système plus classique, tel qu'un système de pile basse température (PEM, etc) ne peut pas faire.
I l est à noter que pour les systèmes à recirculation d'air et trois flux décrits précédemment, le taux d'utilisation d'hydrogène H2 (fraction de l'hydrogène entrant consommé par la pile 11) est de préférence inférieur à 80 % de sorte à limiter la dégradation des cellules de la pile 11. De plus, le débit d'air est préférentiellement choisi de sorte que le taux d'oxygène 02 en sortie de pile à combustible 11 soit d'au moins 10 %. En cas de besoin de refroidissement important, le débit d'air peut être augmenté, jusqu'à un maximum d'environ 48 N mL/min/(cm2 de cellule) en moyenne.
Par ailleurs, à la fois pour les systèmes à recirculation d'air et trois flux, la conduite du système 10 pour répondre à des besoins en puissance électrique fluctuants quant au choix du débit de dihydrogène H2 peut être réalisée de trois façons principales sur le circuit hydrogène H2, à savoir :
- un taux d'utilisation constant : le débit d'hydrogène est ajusté de telle façon que la fraction d'hydrogène consommée reste constante. Cette configuration est limitée par le débit maximum des différents gaz (hydrogène, air et fluide de refroidissement) acceptés par chaque canal de la pile combustible ;
- débit d'hydrogène H2 constant : le débit d'hydrogène entrant dans la pile combustible est gardé constant, ce qui a pour effet l'augmentation du taux d'utilisation avec la hausse de la puissance. Cette configuration est limitée par le taux d'utilisation maximal admissible par la cellule pour limiter les dégradations ;
- débit d'hydrogène H2 et puissance variables : le système modifie à la fois le débit d'hydrogène entrant dans la cellule et la fraction qui en est consommée. Cette configuration demande un contrôle commande poussée, notamment sur la conduite des flux d'air et de fluide de refroidissement, mais offre une gamme de réponse en puissance plus étendue que les deux modes présentés ci-dessus.
Quant au choix du débit d'air primaire, il dépend directement du régime utilisé. Il est préférentiellement maintenu de façon à garder l'élévation de température relativement constante, et inférieure à 150°C. Le débit d'air doit également assurer l'apport en oxygène, et reste prévu pour ne pas descendre en dessous des 10 % d'oxygène en sortie de la pile combustible.
Quant au choix du débit de fluide de refroidissement pour un système à trois flux, celui-ci est ajusté de façon à maintenir l'élévation de température dans la pile combustible en dessous de réchauffement maximum.
Par ailleurs, dans les exemples décrits précédemment relatifs au mode déstockage, le complément de chaleur nécessaire à désorber l'hydrogène, qui ne peut être fourni par simple récupération, est assuré en brûlant une partie de l'hydrogène. On peut également envisager un apport par chauffant électrique, même si l'électricité peut
être d'un prix élevé lors d'un fonctionnement en mode déstockage, et que cela va impacter le rendement du système.
En outre, le système 10 peut fonctionner selon un mode dégradé. En particulier, en mode stockage, l'hydrogène produit peut être utilisé pour d'autres utilisations que pour le stockage dans le réservoir d'hydrures 12. Cela requiert cependant une source de chaleur pour réaliser la vaporisation de l'eau et pour compenser l'absence de chaleur fournie par le réservoir qui n'absorbe pas l'hydrogène produit. Elle peut être de source électrique, entraînant une forte baisse du rendement du système, ou extérieure, issue par exemple d'un procédé annexe. En mode déstockage, en cas d'épuisement du réservoir d'hydrures 12, il est possible d'utiliser une autre source d'hydrogène, par exemple par stockage pression ou liquide. On a alors un excédent de chaleur qui doit être évacué. Il peut être sorti du système, par exemple par injection sur un réseau de chaleur urbain, par utilisation par un système tiers, entre autres, ou bien encore être éliminé par le procédé, auquel cas il y a besoin d'un système de refroidissement supplémentaire, par exemple un aéroréfrigérant.
Par ailleurs, dans le système à trois flux présenté précédemment, l'air de la cathode fonctionne en cycle ouvert afin de fournir l'oxygène nécessaire à la réaction. Il est cependant envisageable de fonctionner avec un recyclage d'air, similaire à celui décrit pour le système à recirculation d'air. Cela permettrait de réduire le travail de compression de l'air du côté de la cathode, et augmenterait ainsi légèrement le rendement. Cela permettrait également de travailler à densité de courant supérieure à celle obtenue dans les deux systèmes envisagés, le débit de fluide de refroidissement passant alors au double de 48 NmL/min/(cm2 de cellule). Toutefois, cela nécessiterait un stockage d'oxygène, pour assurer le complément de celui consommé par la réaction au niveau de la cathode.
Si l'on regarde le rendement électrique de stockage de l'installation, représenté par un cycle de stockage complet (rendement de conversion électricité vers hydrogène absorbé (PCI) optimal de 87 %), suivi d'un cycle de déstockage complet (rendement optimal de conversion hydrogène absorbé vers électricité de 54 % dans le cas de système à 3 flux, et de 60 % dans le cas d'un système à recirculation d'air), qui correspond au rendement de l'installation utilisée pour le stockage de l'énergie, on
obtient des rendements de stockage d'électricité de 47 % (système 3 flux) et 52 % (système à recirculation d'air). Cela est supérieur au rendement que l'on peut attendre d'une chaîne de stockage basse température (composé d'un électrolyseur de type PEM ou alcalin, et d'une pile PEM) qui affiche autour des 20 % d'efficacité système.
Bien entendu, l'invention n'est pas limitée aux exemples de réalisation qui viennent d'être décrits. Diverses modifications peuvent y être apportées par l'homme du métier.
L'invention trouve des applications dans plusieurs domaines techniques de l'industrie, et principalement pour le stockage d'énergie électrique sous forme d'hydrogène. Le dimensionnement du système 10, et notamment de l'électrolyseur 11 et du réservoir d'hydrures 12, est alors réalisé en fonction des besoins en puissance restituée et des ressources en électricité disponibles.
Le système 10 peut avantageusement être couplé avec des énergies renouvelables, par exemple du type photovoltaïque et/ou éolien, afin de réaliser une garantie de production d'électricité. Alors, un profil d'injection réseau peut être réalisé, en produisant de l'électricité lorsque la source initiale de production en énergie renouvelable est trop faible, par exemple la nuit pour du photovoltaïque, et en la stockant sous forme d'hydrogène lorsqu'un excédent de production se manifeste.
Il est possible de concevoir un système 10 dédié à la production d'hydrogène absorbé sur hydrures, avec remplacement du réservoir 12 lorsqu'il est plein, mais disposant tout de même de cette possibilité de produire de l'électricité, lorsque par exemple le prix de l'électricité sur un marché classique est élevé.
Par ailleurs, les modes stockage et déstockage décrits précédemment peuvent être exploités indépendamment et pour des applications différentes. Par exemple, l'hydrogène stocké sur hydrures constitue un mode de transport de l'hydrogène. Il est donc possible via ce procédé d'alimenter des consommateurs d'hydrogène par un procédé de production intégré et efficace, le déstockage de l'hydrogène sur un site client pouvant alors bénéficier d'apports de chaleur externes, comme de la chaleur fatale.