WO2018050067A1 - 一种耐高温多层复合锂离子电池隔膜及其涂覆装置和制备方法 - Google Patents

一种耐高温多层复合锂离子电池隔膜及其涂覆装置和制备方法 Download PDF

Info

Publication number
WO2018050067A1
WO2018050067A1 PCT/CN2017/101564 CN2017101564W WO2018050067A1 WO 2018050067 A1 WO2018050067 A1 WO 2018050067A1 CN 2017101564 W CN2017101564 W CN 2017101564W WO 2018050067 A1 WO2018050067 A1 WO 2018050067A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
base film
coating
reel
ion battery
Prior art date
Application number
PCT/CN2017/101564
Other languages
English (en)
French (fr)
Inventor
徐锋
袁海朝
邓云飞
马文献
Original Assignee
河北金力新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610817987.5A external-priority patent/CN106129312B/zh
Priority claimed from CN201610817965.9A external-priority patent/CN106207052B/zh
Application filed by 河北金力新能源科技股份有限公司 filed Critical 河北金力新能源科技股份有限公司
Priority to US16/320,474 priority Critical patent/US11223089B2/en
Priority to JP2019526359A priority patent/JP6851478B2/ja
Priority to EP17850269.6A priority patent/EP3514855A4/en
Priority to KR1020197002536A priority patent/KR102205116B1/ko
Publication of WO2018050067A1 publication Critical patent/WO2018050067A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/08Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/08Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
    • B05C1/086Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line a pool of coating material being formed between a roller, e.g. a dosing roller and an element cooperating therewith
    • B05C1/0865Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line a pool of coating material being formed between a roller, e.g. a dosing roller and an element cooperating therewith the cooperating element being a roller, e.g. a coating roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • B05C13/02Means for manipulating or holding work, e.g. for separate articles for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and particularly relates to a high temperature resistant multilayer composite lithium ion battery separator, a coating device for preparing the high temperature resistant multilayer composite lithium ion battery separator, and the high temperature resistant multilayer composite lithium A method of preparing an ion battery separator.
  • the basic function of the battery separator in the lithium battery is to separate the positive and negative electrodes, and the adsorption of the electrolyte allows lithium ions to pass.
  • 3C products include Computer, Communication and Consumer Electronics, which are the main areas of lithium battery applications.
  • PP diaphragm and PE diaphragm can be used, and the performance can be better satisfied.
  • the performance of lithium batteries must be further improved to meet the requirements of electric vehicles, such as safety, charge and discharge performance, cycle performance and rate, etc., lithium batteries for electric vehicles are more than 3C products.
  • Lithium batteries have more stringent requirements.
  • the main research direction is the diaphragm coating treatment, that is, coating a layer of ceramic material on the surface of the diaphragm.
  • the ceramic coated diaphragm is the most effective way to improve the safety of the lithium battery. After coating the ceramic, the heat shrinkage resistance, safety, thermal stability and mechanical strength of the separator can be effectively improved, thereby prolonging the service life of the separator.
  • Non-woven fabrics have many types of substrates, including PP nonwoven fabrics, cellulose nonwoven fabrics, PET nonwoven fabrics, etc.
  • PET nonwoven fabrics have the best heat resistance and mechanical properties, so they are suitable for PET.
  • the product can not meet the requirements, and the combination of PET non-woven fabric and ceramic coated diaphragm can greatly improve the heat resistance stability and heat shrinkage rate of the lithium battery separator, thereby improving the market competitiveness, but There is no more mature method of preparing the composite membrane in the prior art.
  • the present invention provides a high temperature resistant multilayer composite lithium ion battery separator, the high temperature resistant multilayer composite lithium ion battery separator coating device, and the high temperature resistant multilayer composite lithium A method of preparing an ion battery separator.
  • the battery separator of the invention has better high temperature resistance and high temperature shrinkage resistance, and has greatly improved safety, and is suitable for use in a lithium battery for an electric vehicle.
  • the coating device can be provided with a composite film on both sides of the base film, and can form a multilayer composite structure separator after bonding and heat drying, and the composite structure is relatively stable and the production efficiency is high.
  • the preparation method of the invention using the coating device saves time and labor, has high production efficiency, and has high product quality and good stability.
  • a high temperature resistant multilayer composite lithium ion battery separator comprising a base film having a coating slurry adhered to both end faces thereof, wherein the both ends of the base film are coated with a coating slurry
  • the composite material is bonded to the composite layer, and the composite layer comprises one, two or more composite membranes, and a coating slurry is disposed between the composite membranes for bonding and fixing.
  • the present invention provides a coating apparatus for the high temperature resistant multilayer lithium ion battery separator, which comprises a base film reel, a rubberizing roller, and a heating and drying mechanism which are sequentially disposed. And a winding reel on which a base film is wound, and one end of the base film protrudes from the base film and is wound on a reel, and the surface of the applicator roll is provided with a coating slurry, wherein A composite film unwinding mechanism wound with a composite film is disposed between the rubberizing roller and the heating and drying mechanism, and the rubberizing roller and the composite film unwinding mechanism are disposed in a one-to-one correspondence on the same side of the base film to form the composite film
  • the bonding unit is two sets disposed on both sides of the base film, and the composite film unwinding mechanism comprises a composite film discharge reel and a pressing shaft, and the composite film protrudes from the composite film and passes through the reel After the shaft is pressed, it is attached to the base film,
  • the present invention provides a method for preparing the high temperature resistant multilayer composite lithium ion battery separator, which is carried out by means of the coating device, and is resistant by the coating device of the above structure.
  • the preparation of the high temperature multilayer composite lithium ion battery separator comprises the following steps:
  • the base film unwinding the base film release reel releases the base film, the base film moves toward the take-up reel, and the unwinding tension of the base film reel to the base film is 15-30N;
  • Base film coating the base film passes through the rubberizing rollers on both sides, and the coating roller is pressed against the corresponding end surface of the base film, and the coating slurry is adhered to the corresponding end surface of the base film to form Coating the membrane;
  • Multi-layer composite the coated membrane passes through the composite film unwinding mechanism disposed on both sides thereof, the composite film discharge reel rotates and releases the composite film, and the unwinding tension of the composite film discharge reel to the composite film is 15-30N, composite film After pressing the shaft, the end surface corresponding to the coating diaphragm is attached, and the top of the shaft is tightly fitted to form a multilayer composite diaphragm;
  • the multi-layer composite lithium ion battery separator is wound up by winding the reel, and the tension of the winding is 4-12N.
  • the invention adheres the composite film to the base film by means of the coating slurry to form a multi-layer composite lithium ion battery separator, which has the high safety of the ceramic coated diaphragm and is resistant to the battery.
  • High temperature reduces the shrinkage of the diaphragm under high temperature conditions and increases the overall life of the battery.
  • the invention provides a mature and stable coating device for the high temperature resistant multi-layer composite lithium ion battery separator.
  • the device has a simple structure, and each component unit is a relatively common device, and the cost is low.
  • the shaping device is finalized. The finished product is of high quality and stable.
  • the traditional high-temperature resistant multi-layer composite diaphragm needs to be coated with a slurry such as alumina on a common diaphragm to form a high-temperature resistant separator, and then the desired composite film is formed with high temperature resistance by the use of an adhesive.
  • Layer composite diaphragm adopts the preparation method of the coating device because the base film is coated with the ceramic slurry, and the desired composite separator is directly bonded together by the adhesiveness of the slurry, and is directly formed after drying in an oven.
  • the high-temperature resistant multi-layer composite lithium ion separator can complete the processes of coating, bonding and compounding in one process, and the production efficiency is greatly improved.
  • the preparation method of the invention provides a relatively mature and efficient process for preparing a high temperature resistant multilayer lithium ion battery separator, and has a high degree of automation during operation, and can stably and continuously provide a diaphragm raw material for battery processing, and finally obtain a multilayer composite diaphragm.
  • the finished product has high quality and stable performance, especially in the lithium ion battery used in electric vehicles.
  • the diaphragm can withstand higher temperatures, and the diaphragm shrinkage rate is significantly higher than that of the existing ceramic coated diaphragm.
  • the lowering of the battery life is significantly extended, the safety is greatly improved, and the convenience, safety, and stability of the electric vehicle are also improved.
  • FIG. 1 is a schematic structural view of a coating apparatus for a high temperature resistant multilayer lithium ion battery separator of the present invention
  • Figure 2 is a schematic illustration of a supply apparatus for coating a slurry of the present invention.
  • a high temperature resistant multilayer composite lithium ion battery separator as shown in FIG. 1, the battery separator comprising a base film 12 having a coating slurry adhered to both end faces thereof, wherein The two ends of the base film 12 are bonded with a composite layer by means of a coating slurry, and the composite layer comprises one, two or more layers of composite film 13, and the composite film 13 is provided with a coating slurry for adhesion. The knot is fixed.
  • the base film 12 and the composite film 13 are each selected from the group consisting of a PP separator, a PE separator, a nonwoven fabric or a fiber.
  • the coating slurry comprises an Al 2 O 3 ceramic slurry, a PVDF slurry, a ZrO 2 ceramic slurry or a SiO 2 slurry, and further, the coating slurry is further added with a glue.
  • Adhesives, dispersants, gels, plasticizers, anti-aging agents, cross-linking agents, and deionized water are examples of Adhesives, dispersants, gels, plasticizers, anti-aging agents, cross-linking agents, and deionized water.
  • the percentage of the Al 2 O 3 ceramic slurry, the PVDF slurry, the ZrO 2 ceramic slurry or the SiO 2 slurry is 20-40% by weight, and the adhesive is 3-6%, dispersant is 0.2-0.5%, gelling agent is 0.2-0.5%, plasticizer is 0.05-0.2%, anti-aging agent is 0.05-0.2%, cross-linking agent is 0.05-0.2%, and the rest Part is deionized water.
  • the coating slurry also contains a combination of two or more of an Al 2 O 3 ceramic slurry, a PVDF slurry, a ZrO 2 ceramic slurry, and a SiO 2 slurry.
  • the invention relates to the adhesive, dispersant, gel, plasticizer, anti-aging agent and cross-linking agent It is not particularly limited and can be selected with reference to the prior art.
  • the adhesive is selected, for example, from a polyacrylate aqueous binder.
  • the dispersant is selected from the group consisting of ammonium polyacrylate and/or polyamide.
  • the gelling agent is, for example, agarose.
  • the plasticizer is, for example, a phthalic acid diester.
  • the anti-aging agent is, for example, 2-hydroxy-4-n-octyloxybenzophenone.
  • the crosslinking agent is, for example, trimethylolpropane tripropionate.
  • the multilayer composite lithium ion battery separator of the invention has high high temperature resistance: the conventional wet or dry coated membrane is severely deformed at 200 ° C, and the battery separator of the invention can maintain a good shape at 200 ° C. : The shrinkage after 1 h at 200 ° C is MD ⁇ 2.0, TD ⁇ 1.5, and the thermal performance is significantly better than that of the conventional coated separator.
  • a conventional double-coated film having a thickness of about 22 ⁇ m (for example, 20 to 24 ⁇ m) generally has a gas permeability value of less than 380 s/100 mL, and the battery separator of the present invention generally has a gas permeability value of less than 300 s/100 mL.
  • the value of the gas permeability value is the time required for a certain area of the membrane to pass a certain amount of gas under a certain pressure.
  • the internal resistance of the battery separator is significantly smaller than that of a conventional coated diaphragm.
  • the liquid absorption rate of the battery separator of the invention is significantly improved compared with the conventional coated membrane, and the amount of the electrolyte absorbed per unit volume is relatively high, so that the ionic conductivity of the battery is higher, and the charge and discharge performance of the battery is better.
  • the coating apparatus includes a base film reel 1 and a coating which are sequentially disposed. a rubber roller 2, a heating and drying mechanism, and a take-up reel 6, wherein the base film reel 1 is wound with a base film 12, and one end of the base film 12 protrudes from the base film reel 1 and is wound on a take-up reel 6, which is coated
  • the surface of the rubber roller 2 is provided with the coating slurry;
  • a composite film unwinding mechanism wound with the composite film 13 is additionally disposed between the rubberizing roller 2 and the heating and drying mechanism, and the rubberizing roller 2 and the composite film unwinding mechanism are formed in one-to-one correspondence on the same side of the base film 12.
  • a laminating unit of the composite film 13 the bonding unit being two sets disposed on both sides of the base film 12
  • the composite film unwinding mechanism comprising a composite film discharge reel 3 and a pressing shaft 4
  • the composite film 13 is extended from the composite film discharge reel 3 and passed through the pressing shaft 4 to be adhered to the base film 12, and the applicator roller 2 and the pressing shaft 4 are pressed against the end surface of the base film 12 on the corresponding side.
  • the coating slurry may be the coating slurry of the first aspect of the invention.
  • the base film 12 and the composite film 13 are each a PP separator, a PE separator, a nonwoven fabric or a fiber.
  • a tensioning shaft 11 is disposed between the base film take-up reel 1 and the applicator roll 2, in which case, after the base film release reel 1 releases the base film 12, the base film 12 may be tensioned first. The tensioning of the shaft 11 is then passed through the applicator roll 2.
  • a plurality of sets of rubberized rolls 2 and composite film can be disposed on both sides of the coated ceramic coated separator in the coating device.
  • the winding mechanism, each of the rubberizing rollers 2 and the corresponding composite film unwinding mechanism can realize the coating and bonding of a composite film, and can form a double-sided composite, three-sided composite or more composite battery separator.
  • the rubber roller 2 is uniformly arranged with grooves of a certain depth, number of lines, shapes and angles.
  • the depth of the groove is 10-120 ⁇ m
  • the number of lines of the groove (LPI) is generally 100-1400
  • the shape of the groove may be a honeycomb type, a diamond shape, a Gulf flow type or a diagonal line type, preferably a diagonal line type.
  • the angle of the diagonal line may be 30°, 45° or 60°.
  • the composite film unwinding mechanism is provided with a tension speed control device and a correcting device.
  • the power of the composite film discharge reel 3 is derived from a unwinding servo motor
  • the tension speed control device is a tension sensor mounted on the composite film discharge reel 3, and the information input end of the tension sensor and the composite film release reel 3 connected, the output end thereof is connected to the unwinding servo motor, the tension sensor can detect and feed back the speed and tension of the composite film discharge reel 3, and when the detected value is different from the set value, the unwinding
  • the servo motor is adjusted accordingly to change the torque and speed of the motor to ensure that the actual tension and speed are consistent with the set value.
  • the rectifying device is a rectifying device commonly used in the existing strip production line.
  • the tension speed controlling device can ensure the line speed of the composite film reel 3 and the base film 12 to be maintained. Consistent and capable of controlling the unwinding tension of the composite film take-up reel 3, the correcting device can It is sufficient to ensure a higher degree of coincidence when the composite film 13 is bonded to the end faces of the ceramic coated separator, and a multilayer composite separator is formed after bonding.
  • the heating and drying mechanism may include a plurality of ovens connected in series, and the specific number of ovens may be selected according to the diaphragm conveying speed in production.
  • the heating and drying mechanism comprises three ovens 5 connected in series.
  • the three ovens 5 can be respectively provided with an inlet fan and an exhaust fan.
  • the three ovens 5 are arranged in a vertical corner shape, and the intermediate shaft 14 is disposed in the oven at the corners, and the base film 12 passes through the intermediate shaft 14 and sequentially passes through three ovens 5.
  • Both sides of the multilayer composite membrane need to be composited, and the multilayer composite membrane does not contact any roller surface before entering the heating and drying mechanism, and is suspended and has a long distance before drying, and the multilayer composite membrane is subjected to
  • the influence of gravity is large, and the multi-layer composite diaphragm changes direction through the intermediate shaft 14 after the second oven is basically dried and shaped, which can reduce the influence of the gravity of the multilayer composite diaphragm and make the equipment more compact.
  • the length of the heating and drying mechanism is related to the linear velocity (i.e., conveying speed) of the base film discharge reel 1 during operation, and the conveying speed and the length of the heating and drying mechanism can be positive
  • the correlation that is, the faster the conveying speed, the longer the length of the heating and drying mechanism, the linear speed is generally 5-30 m/min.
  • the base film discharge reel 1 has a linear velocity of 5-15 m/min and the heating and drying mechanism has a length of 9 m.
  • the base film take-up reel 1 has a linear velocity of 15-30 m/min and the heating and drying mechanism has a length of 18 m.
  • a flattening roller 9 and a tensioning roller 10 are sequentially added, and the flattening roller 9 is located at the output end of the heating and drying mechanism.
  • the flattening roller 9 can flatten the multi-layer composite diaphragm, and after being flattened, it is held by the tension of the tension roller 10, and a relatively flat multilayer diaphragm can be obtained.
  • the coating apparatus in order to supply the coating slurry to the coating roller 2, the coating apparatus further includes the coating apparatus for coating the slurry shown in Fig. 2.
  • Supply of the coating slurry The device comprises a feed pump 7, a glue application tank 8, a raw material tank 16, and a recovery tank 17, wherein the input end of the rubber feed pump 7 is sucked by the coating slurry by connecting the raw material barrel 16, and through the output end thereof
  • the coating slurry 8 conveys a coating slurry, and the open end of the coating tank 8 is provided with two scraping blades 15, and the two scraping blades 15 are parallel to the opening and contact with the outer surface of the rubberizing roller 2 to form a closed cavity.
  • the coating roller 2 rotates and adheres the coating slurry through the coating tank 8, and the squeegee of the two scrapers 15 is also passed through the process to make the coating slurry on the rubberizing roller 2 have a uniform thickness;
  • the tank 8 is also provided with an overflow port 18, and when the rotation speed of the glue pump 7 is excessively large, the supplied coating slurry overflows along the overflow port 18, and the overflow coating slurry can be stored in the recovery tank 17 Recycling in the middle.
  • the appropriate rotation speed of the glue pump 7 can be generally selected according to the amount of glue applied and the production speed. The thicker the glue is, the faster the production speed is, and the larger the amount of glue required is, and the glue is sufficient when the glue is sufficient. When the glue amount is too high, the excess glue can be collected and reused through the overflow port 18. Therefore, the rotation speed of the glue pump 7 can be adjusted at any time according to the overflow condition of the overflow port 18 during the operation.
  • the feed pump 7 may have a rotational speed of 15-45 rpm and a rubber roller speed ratio of 50-90%.
  • the coating device of the invention has simple structure and provides a relatively mature device for preparing the multilayer composite battery separator, can greatly improve the production efficiency of the lithium ion battery separator, and the quality of the produced diaphragm product is relatively stable.
  • the present invention provides a method for producing a high temperature resistant multilayer composite lithium ion battery separator according to the first aspect of the present invention, which is carried out by the coating apparatus according to the second aspect of the present invention.
  • the preparation device of the high temperature resistant multilayer lithium ion battery separator is prepared by using the coating device of the above structure, and the preparation method comprises the following steps:
  • the base film unwinding the base film release reel 1 releases the base film 12, the base film 12 moves in the direction of the take-up reel 6, the unwinding tension of the base film reel 1 to the base film 12 is 15-30N;
  • Base film coating the base film 12 passes through the rubberizing rolls 2 on both sides, and the applicator roll 2 is pressed against the end surface of the corresponding side of the base film 12 while the coating slurry is adhered to the base film 12 Forming a coated diaphragm on the corresponding end surface;
  • Multi-layer composite the coated membrane passes through a composite film unwinding mechanism disposed on both sides thereof, and the composite film The reel 3 rotates and releases the composite film 13, and the unwinding tension of the composite film reel 3 to the composite film 13 is 15-30 N, and the composite film 13 passes through the pressing shaft 4, and is attached to the end surface of the coating film, and is pressed.
  • the shaft 4 is tightly fitted to the top to form a multi-layer composite diaphragm;
  • the finished product of the multi-layer composite lithium ion battery separator is wound by the reel 6 and the tension of the winding is 4-12N.
  • a tensioning shaft 11 is disposed between the base film reel 1 and the applicator roll 2, and after the base film reel 1 releases the base film 12, the base film 12 passes through the tensioning axis. The tension of 11 is then applied to the rubber roller.
  • step CD when the composite film 13 is selected from a non-woven fabric, since the non-woven fabric membrane has a strong liquid absorption rate, the coating layer is absorbed by the non-woven fabric without exhibiting the thickness of the coating layer during the compounding process, thereby making it possible to manufacture A thinner multi-layer composite lithium ion battery separator.
  • the heating and drying mechanism comprises three ovens 5 connected in sequence, three ovens 5 are arranged in a vertical corner shape, and an intermediate shaft 14 is arranged in the oven at the corner, the plurality of layers
  • the composite membrane passes through the intermediate shaft and is sequentially dried and shaped through three ovens 5.
  • the temperatures of the three ovens 5 are sequentially set to 50-60 ° C, 60-70 ° C, and 50-60 ° C.
  • the inlet and exhaust fans in the three ovens 5 are set to 12-25 Hz in each of the three ovens 5.
  • step F a flattening roller 9 and a tensioning roller 10 are sequentially added between the output end of the heating and drying mechanism and the take-up reel 6, and the flattening roller 9 will heat the multi-layer composite diaphragm
  • the finished product is flattened, flattened and held by the tension roller 10, and finally the relatively flat multi-layer composite diaphragm finished product is wound up by the take-up reel 6.
  • the distance between the pressing shaft 4 and the rubberizing roller 2 is as close as possible, so that the conveying time can be shortened, and the distance between the pressing shaft 4 and the heating and drying mechanism can be appropriately long. It is ensured that the composite film 13 and the base film 12 are adhered to a transport time of 0.2 s to 0.5 s, and then reach the heating and drying mechanism, and the transport time of 0.2-0.5 s can ensure the composite film 13 and the coating slurry.
  • the contact time allows the composite film 13, the coating slurry, and the base film 12 to be sufficiently wetted, which facilitates adhesion between the base film 12 and the composite film 13.
  • the coating device employed in the preparation method is the coating device of the second aspect of the invention, and therefore, in addition to the description in the third aspect of the invention, other descriptions of the coating device are as in the invention The second aspect is not repeated here.
  • the preparation method provided by the invention provides a relatively mature and stable production process for producing a high temperature resistant multi-layer composite lithium ion battery separator, wherein the arrangement of the various processes for the high temperature multilayer lithium ion ion mechanism is performed, and the interval between the processes Time can make the final product quality and stable.
  • the adhesive used is a polyacrylate aqueous binder
  • the dispersant is polyamide
  • the gelling agent is agar
  • the plasticizer is phthalic acid.
  • the formic acid diester the anti-aging agent is 2-hydroxy-4-n-octyloxybenzophenone
  • the crosslinking agent is trimethylolpropane tripropionate
  • the coating thickness refers to the designed dry film thickness.
  • the heating and drying mechanism is three ovens 5, three ovens 5 are arranged in a vertical corner shape, the oven is a vertical infrared heating oven, and the oven at the corner is provided with a rotating shaft 14, the length of each oven Set to 3m, the total length of the three ovens 5 is 9m, and the three ovens 5 are equipped with an inlet fan and an exhaust fan.
  • the composite film unwinding mechanism is provided with a tension speed control device and a rectifying device, and the specific description of the tension speed control device and the rectifying device As described above.
  • the air permeability of the battery separator was tested according to ISO 5636 using a Gurley 4340 gas permeability meter; the heat shrinkage rate was tested according to ISO 14616.
  • the base film used in this embodiment is a PE separator having a thickness of 6 ⁇ m; the composite film is a PET nonwoven separator, and each layer has a thickness of 9 ⁇ m.
  • composition of the coating slurry is: PVDF slurry + alumina (mass ratio: 3:7) 22%, adhesive 5%, dispersant 0.4%, gelling agent 0.3%, plasticizer 0.1%, anti-aging The agent was 0.1%, the cross-linking agent was 0.1%, and the rest was deionized water.
  • the preparation of the multilayer composite lithium ion battery separator comprises the following steps:
  • the base film release reel 1 releases the base film 12, and the base film 12 moves in the direction of the take-up reel 6.
  • the line speed of the base film release reel 1, the composite film discharge reel 3 and the take-up reel 6 is the same, and the linear velocity is selected to be 10 m/min.
  • a tensioning shaft 11 is further disposed between the film discharge reel 1 and the applicator roller 2.
  • the tensioning shaft 11 also serves as a tension detecting roller for detecting the tension.
  • the thickness, width and moving linear velocity of the base film 12 jointly affect the unwinding. Tension, adjust the tensioning shaft 11 so that the unwinding tension of the base film reel 1 to the base film 12 is 20N;
  • the tensioned base film 12 passes through the rubberized rolls 2 on both sides, and the applicator roll 2 abuts the end faces of the corresponding ones of the base films 12 while adhering the coating slurry to the corresponding end faces of the base film 12.
  • the coating thickness of the coating slurry on each end surface is 2.0 ⁇ m
  • the coating roller 2 is evenly arranged with grooves
  • the coating roller 2 is evenly arranged with grooves
  • the groove depth is 50 ⁇ m
  • the number LPI is 180
  • the shape of the groove is oblique
  • the line type, the angle of the oblique line is 30°
  • the rubber roller 2 continuously supplies the coating slurry by the glue pump 7 and the glue application tank 8.
  • the rotation speed of the glue pump 7 is set to 30 rpm, and the speed of the rubber roller is set. Set to 70%;
  • the coating membrane passes through a composite film unwinding mechanism disposed on both sides thereof, the composite film discharge reel 3 rotates and releases the composite film 13, the unwinding tension is 25N, and the composite film 13 passes through the pressing shaft 4 and corresponds to the coating film.
  • the surface is bonded, and the pressing shaft 4 is tightly attached to the top to form a multi-layer composite diaphragm.
  • the conveying time is 0.4 s, and then the next step is performed. Since the conveying speed is 10 m/min, it is calculated and compacted.
  • the distance from the shaft 4 to the heating and drying mechanism is 1/15m;
  • the multi-layer composite diaphragm enters the heating and drying mechanism, and the time of transporting through the heating and drying mechanism is 0.9 min, the tension of the multi-layer composite diaphragm in the oven is 10 N, and the temperatures of the three ovens 5 are set to 55 ° C, 65 ° C, and At 55 °C, the inlet and exhaust frequencies of the oven were set to 20 Hz, and the multilayer composite membrane was baked and shaped to obtain a multilayer composite lithium ion battery separator;
  • a flattening roller 9 and a tensioning roller 10 are sequentially added between the oven 5 and the take-up reel 6, and the multilayer composite diaphragm is flattened by the direction of the flattening roller 9, and the multilayer composite diaphragm is completed through two corners.
  • the process of first going up and down finally reaches the tension roller 10 and the take-up reel 6, and the flattened shape is stabilized.
  • a relatively flat multi-layer composite lithium ion battery separator is collected on the take-up reel 6, and the tension of the winding is 10N.
  • the base film used in this embodiment is a PE separator having a thickness of 6 ⁇ m; the composite film is a PET nonwoven separator, and each layer has a thickness of 9 ⁇ m.
  • composition of the coating slurry is: Al 2 O 3 ceramic slurry 30%, adhesive 5%, dispersant 0.3%, gelling agent 0.4%, plasticizer 0.1%, anti-aging agent 0.1%, cross-linking 0.1% of the agent, the rest is deionized water.
  • the preparation of the multilayer composite lithium ion battery separator comprises the following steps:
  • the base film release reel 1 releases the base film 12, and the base film 12 moves in the direction of the take-up reel 6.
  • the line speed of the base film release reel 1, the composite film discharge reel 3 and the take-up reel 6 is the same, and the linear velocity is selected to be 10 m/min.
  • a tensioning shaft 11 is further disposed between the film discharge reel 1 and the applicator roller 2.
  • the tensioning shaft 11 also serves as a tension detecting roller for detecting the tension.
  • the thickness, width and moving linear velocity of the base film 12 jointly affect the unwinding. Tension, adjust the tensioning shaft 11 so that the unwinding tension of the base film reel 1 to the base film 12 is 22N;
  • the tensioned base film 12 passes through the rubberized rolls 2 on both sides, and the applicator roll 2 abuts the end faces of the corresponding ones of the base films 12 while adhering the coating slurry to the corresponding end faces of the base film 12.
  • the coating thickness of the coating slurry on each end surface is 2.0 ⁇ m
  • the coating roller 2 is evenly arranged with grooves
  • the groove depth is 55 ⁇ m
  • the groove line number LPI is 170
  • the groove shape is oblique.
  • the angle of the oblique line is 60°
  • the rubber roller 2 carries on the continuous supply of the coating slurry by the glue pump 7 and the glue application tank 8, and the rotation speed of the glue pump 7 is set to 30 rpm, and the speed of the rubber roller is set. 70%;
  • the coating membrane passes through a composite film unwinding mechanism disposed on both sides thereof, the composite film discharge reel 3 rotates and releases the composite film 13, the unwinding tension is 22N, and the composite film 13 passes through the pressing shaft 4 and corresponds to the coating film.
  • the surface is bonded, and the pressing shaft 4 is tightly attached to the top to form a multi-layer composite diaphragm.
  • the conveying time is 0.4 s, and then the next step is performed. Since the conveying speed is 10 m/min, it is calculated and compacted.
  • the distance from the shaft 4 to the heating and drying mechanism is 1/15m;
  • the multi-layer composite membrane passes through the intermediate shaft 14 in sequence and passes through three ovens 5, and the time of transporting through the heating and drying mechanism is 0.9 min, the tension of the multilayer composite membrane in the oven is 10 N, and the temperatures of the three ovens 5 are sequentially set to 55 ° C, 65 ° C and 55 ° C, the inlet and exhaust frequency of the oven is set to 18 Hz, the multilayer composite membrane is baked and shaped to obtain a multilayer composite lithium ion battery separator;
  • a flattening roller 9 and a tensioning roller 10 are sequentially added between the oven 5 and the take-up reel 6, and the multilayer composite diaphragm is flattened by the direction of the flattening roller 9, and the multilayer composite diaphragm is completed through two corners.
  • the process of first going up and down finally reaches the tensioning roller 10 and the take-up reel 6, and the flattened shape is stabilized.
  • a relatively flat multi-layer composite lithium ion separator is collected on the take-up reel 6, and the tension of the winding is 8N.
  • This comparative example provides a method of preparing a conventional wet coated separator.
  • the base film was a PE separator having a thickness of 20 ⁇ m, and the separator was prepared by the coating apparatus of the above example, except that the coating apparatus was not provided with a composite film unwinding mechanism for winding the composite film.
  • the base film release reel 1 releases the base film 12, and the base film 12 moves in the direction of the take-up reel 6.
  • the line speed of the base film release reel 1, the composite film discharge reel 3 and the take-up reel 6 is the same, and the linear velocity is selected to be 10 m/min.
  • a tensioning shaft 11 is further disposed between the film discharge reel 1 and the applicator roller 2.
  • the tensioning shaft 11 also serves as a tension detecting roller for detecting the tension.
  • the thickness, width and moving linear velocity of the base film 12 jointly affect the unwinding. Tension, adjust the tensioning shaft 11 so that the unwinding tension of the base film reel 1 to the base film 12 is 22N;
  • the tensioned base film 12 passes through the rubberized rolls 2 on both sides, and the applicator roll 2 abuts the end faces of the corresponding ones of the base films 12 while adhering the coating slurry to the corresponding end faces of the base film 12.
  • the coating thickness per side is 2.0 ⁇ m
  • the coating roller 2 is evenly arranged with grooves
  • the groove depth is 55 ⁇ m
  • the groove line number LPI is 180
  • the shape of the groove is oblique
  • the angle of the oblique line is 60°
  • the rubber roller 2 carries on the continuous supply of the coating slurry by the glue pump 7 and the glue application tank 8, the rotation speed of the glue pump 7 is set to 30 rpm, and the speed ratio of the rubber roller is set to 70%;
  • the single-layer coated separator passes through the intermediate shaft 14 in sequence and passes through three ovens 5, and the time of transporting through the heating and drying mechanism is 0.9 min, the tension of the single-layer coated separator in the oven is 10 N, and the temperatures of the three ovens 5 are sequentially set.
  • a flattening roller 9 and a tensioning roller 10 are sequentially added between the oven 5 and the take-up reel 6, and the finished coating film is flattened by the direction of the flattening roller 9, and the coated diaphragm is completed by two corners.
  • the subsequent process finally reaches the tensioning roller 10 and the take-up reel 6, and the flattened shape is stabilized.
  • a relatively flat lithium ion coated membrane is collected on the take-up reel 6, and the winding tension is 8N.
  • Example 1-2 Comparing Example 1-2 with Comparative Example 1, it can be seen from the data of Table 1, that the multilayer composite lithium ion battery separator of Example 1-2 has higher heat resistance, less internal resistance, and absorbs electrolyte per unit volume. The higher amount makes the battery charge and discharge performance better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种耐高温多层复合锂离子电池隔膜及其涂覆装置和制备方法,该电池隔膜包括两端面粘附有涂覆浆料的基膜(12),基膜(12)两端面借助涂覆浆料粘结有复合层,复合层中包括一层、两层或者多层复合膜(13),复合膜(13)之间借助涂覆浆料粘结固定,制备时借助涂覆装置进行实施,涂覆装置包括依次设置的基膜放卷轴(1)、涂胶辊(2)、复合膜放卷机构、加热烘干机构及收卷轴(6),涂胶辊(2)和复合膜放卷机构一一对应设置且为基膜(12)两侧的两组,复合膜放卷机构包括复合膜放卷轴(3)和压紧轴(4),复合膜(13)经过压紧轴(4)后与基膜(12)相贴合,形成多层复合隔膜,再经过加热干燥定型,得到隔膜成品,该隔膜成品具备较高的耐热稳定性和耐热收缩率。

Description

一种耐高温多层复合锂离子电池隔膜及其涂覆装置和制备方法 技术领域
本发明属于锂离子电池技术领域,具体涉及一种耐高温多层复合锂离子电池隔膜,制备所述耐高温多层复合锂离子电池隔膜采用的涂覆装置,以及所述耐高温多层复合锂离子电池隔膜的制备方法。
背景技术
电池隔膜在锂电池中的基本作用为隔开正负极,并且吸附电解液允许锂离子通过。3C产品包括计算机(Computer)、通信(Communication)和消费类电子产品(Consumer Electronics),是锂电池应用的主要领域。对于3C产品的锂电池,仅使用PP隔膜和PE隔膜,其性能就能得到较好的满足。但是,随着电动汽车的不断发展,锂电池的性能必须进一步提升才能满足电动汽车的要求,比如在安全性、充放电性能、循环性能及倍率性等方面,电动汽车用锂电池就比3C产品用锂电池有更加严格的要求。目前,在提高锂电池隔膜性能方面的发展研究以改善隔膜表面性质和调整隔膜基体材料为主。在改善隔膜表面性质方面,主要的研究方向是隔膜涂布处理,即在隔膜表面涂覆一层陶瓷材料,就目前情况来看,陶瓷涂布隔膜是提高锂电池安全性的最有效方式,隔膜涂布陶瓷后可有效地提高隔膜的耐热收缩性、安全性、热稳定性以及改善隔膜的机械强度,从而延长隔膜的使用寿命。
为了进一步使电池隔膜的性能满足动力锂电池的要求,新型锂电池隔膜的制备方法,如无纺布与涂布膜复合得到越来越多的关注。无纺布的基材种类很多,包括PP无纺布、纤维素无纺布、PET无纺布等,上述无纺布中以PET无纺布的耐热性和力学性能最好,因此针对PET无纺布的研究较多。就目前来说,陶瓷涂布隔膜的耐高温性以及耐热收缩率在一定温度条 件下不能够满足要求,而采用PET无纺布和陶瓷涂布隔膜复合的方式,能使锂电池隔膜的耐热稳定性、耐热收缩率得到较大的提高,从而提升市场竞争力,但现有技术中还没有较为成熟的制备该复合隔膜的方法。
发明内容
为了弥补了现有技术的不足,本发明提供了一种耐高温多层复合锂离子电池隔膜,所述耐高温多层复合锂离子电池隔膜的涂覆装置,以及所述耐高温多层复合锂离子电池隔膜的制备方法。
本发明的电池隔膜的耐高温性和耐高温收缩率性能较好,安全性大大提高,适用于电动汽车用锂电池中。所述涂覆装置能在基膜两侧设置复合膜,可经过粘合、热烘后形成多层复合结构的隔膜,复合结构较为稳定,生产效率较高。采用所述涂覆装置的本发明的制备方法省时省力,生产效率较高,产品的质量高且稳定性较好。
根据本发明的第一方面,本发明提供了一种耐高温多层复合锂离子电池隔膜,包括两端面粘附有涂覆浆料的基膜,其中,所述基膜两端面借助涂覆浆料粘结有复合层,所述复合层中包括一层、两层或者多层复合膜,所述复合膜之间设置有涂覆浆料进行粘结固定。
根据本发明的第二方面,本发明提供了所述耐高温多层复合锂离子电池隔膜的涂覆装置,所述涂覆装置包括依次设置的基膜放卷轴、涂胶辊、加热烘干机构和收卷轴,所述基膜放卷轴上缠绕有基膜,基膜一端伸出基膜放卷轴并卷绕在收卷轴上,所述涂胶辊表面设置有涂覆浆料,其中,所述涂胶辊和加热烘干机构之间增设卷绕有复合膜的复合膜放卷机构,所述涂胶辊和复合膜放卷机构在所述基膜同一侧一一对应设置形成所述复合膜的贴合单元,所述贴合单元为设置在基膜两侧的两组,所述复合膜放卷机构包括复合膜放卷轴和压紧轴,所述复合膜伸出复合膜放卷轴并经过压紧轴后与基膜相贴合,所述涂胶辊和压紧轴顶紧相对应一侧的基膜端面。
根据本发明的第三方面,本发明提供了所述耐高温多层复合锂离子电池隔膜的制备方法,该制备方法借助所述的涂覆装置来实施,利用上述结构的涂覆装置来进行耐高温多层复合锂离子电池隔膜的制备,制备方法包括以下步骤:
A、基膜放卷:基膜放卷轴释放基膜,基膜向收卷轴方向移动,基膜放卷轴对基膜的放卷张力为15-30N;
B、基膜涂布:基膜经过两侧的涂胶辊,涂胶辊顶紧基膜中相对应一侧的端面,同时将涂覆浆料粘附在基膜的相对应端面上,形成涂布隔膜;
C、多层复合:涂布隔膜经过设置在其两侧的复合膜放卷机构,复合膜放卷轴转动并释放复合膜,复合膜放卷轴对复合膜的放卷张力为15-30N,复合膜经过压紧轴后与涂布隔膜相对应端面相贴合,压紧轴顶紧贴合位置,形成多层复合隔膜;
D、多次复合:当涂布隔膜端面上的复合膜每多一层时,需要重复进行步骤B和C一次,最外层的复合膜贴合后经过0.2-0.5s的输送时间后进入下一工序;
E、烘烤定型:多层复合隔膜进入加热烘干机构,输送经过加热烘干机构的时间为0.6-1.8min,多层复合隔膜在加热烘干机构中的张力保持在7-15N,多层复合隔膜经烘烤定型,得到多层复合锂离子电池隔膜成品;
F、成品收卷:通过收卷轴对多层复合锂离子电池隔膜成品进行收卷,收卷的张力为4-12N。
本发明借助涂覆浆料将复合膜粘附在基膜上,形成多层复合的锂离子电池隔膜,该电池隔膜既具备陶瓷涂覆隔膜对电池带来的较高安全性,同时又能够耐高温,减小高温条件下隔膜的收缩率,增加电池的整体寿命。
本发明为耐高温多层复合锂离子电池隔膜提供了一种成熟稳定的涂覆装置,该装置结构简单,各个组成单元均为较为常见的设备,成本较低,经过粘合、热烘后定型,最终制备的成品品质较高且稳定。
传统的耐高温多层复合隔膜需要先在普通隔膜基础上涂覆氧化铝等浆料制成耐高温隔膜,然后再将所需的复合膜利用胶黏剂在复合机的帮助下形成耐高温多层复合隔膜。而本发明采用所述涂覆装置的制备方法因为在基膜涂覆陶瓷浆料的同时,利用浆料的粘结性直接将所需复合的隔膜粘接在一起,经过烘箱烤干后直接形成耐高温多层复合锂离子隔膜,一道工序同时完成涂覆、粘接、复合等工序,生产效率大大提高。
本发明的制备方法为耐高温多层复合锂离子电池隔膜制备提供了较为成熟高效的工艺,操作时自动化程度较高,能够为电池加工稳定持续地提供隔膜原材料,最后加工得到的多层复合隔膜成品的品质较高且性能较为稳定,尤其是应用在电动汽车所用锂离子电池中,在电动汽车工作过程中,隔膜能够耐受较高温度,隔膜收缩率较之现有陶瓷涂覆隔膜有显著降低,使电池整体寿命显著延长,安全性大大提高,电动车的使用便利性、安全性和稳定性也随之提高。
附图说明
图1是本发明的耐高温多层复合锂离子电池隔膜的涂覆装置的结构示意图;
图2是本发明的一种涂覆浆料的供给装置的示意图。
附图标记说明
1       基膜放卷轴             2      涂胶辊
3       复合膜放卷轴           4      压紧轴
5       烘箱                   6      收卷轴
7       进胶泵                 8      涂胶槽
9       展平辊                 10     张紧辊
11      张紧轴                 12     基膜
13      复合膜                 14     中转轴
15      刮刀                   16     原料桶
17      回收桶                 18     溢流口
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
根据本发明的第一方面,本发明提供了一种耐高温多层复合锂离子电池隔膜,如图1所示,所述电池隔膜包括两端面粘附有涂覆浆料的基膜12,其中,所述基膜12两端面借助涂覆浆料粘结有复合层,复合层中包括一层、两层或者多层复合膜13,所述复合膜13之间设置有涂覆浆料进行粘结固定。
按照本发明的第一方面,所述基膜12和复合膜13各自选自PP隔膜、PE隔膜、无纺布或者纤维。
按照本发明的第一方面,所述涂覆浆料包含Al2O3陶瓷浆料、PVDF浆料、ZrO2陶瓷浆料或SiO2浆料,此外,所述涂覆浆料还添加有胶黏剂、分散剂、凝胶剂、增塑剂、抗老化剂、交联剂以及去离子水。
以重量百分比计,在所述涂覆浆料中,所述Al2O3陶瓷浆料、PVDF浆料、ZrO2陶瓷浆料或SiO2浆料的百分比为20-40%,胶黏剂为3-6%,分散剂为0.2-0.5%,胶凝剂为0.2-0.5%,增塑剂为0.05-0.2%,抗老化剂为0.05-0.2%,交联剂为0.05-0.2%,其余部分为去离子水。
本发明中,所述涂覆浆料也包含Al2O3陶瓷浆料、PVDF浆料、ZrO2陶瓷浆料和SiO2浆料中两种以上的组合。
本发明对所述胶黏剂、分散剂、凝胶剂、增塑剂、抗老化剂和交联剂 没有特别的限定,均可参照现有技术进行选择。通常地,所述胶黏剂例如选自聚丙烯酸酯水性粘合剂。所述分散剂选自聚丙烯酸铵和/或聚酰胺。所述凝胶剂例如为琼胶素。所述增塑剂例如为邻苯二甲酸二酯。所述抗老化剂例如为2-羟基-4正辛氧基二苯甲酮。所述交联剂例如为三羟甲基丙烷三丙酸酯。
本发明的多层复合锂离子电池隔膜的耐高温性较高:普通的湿法或干法涂层隔膜在200℃下严重变形,而本发明的电池隔膜在200℃下仍可保持完好的形态:在200℃条件下保持1h后的收缩率为MD<2.0,TD<1.5,热性能明显优于普通涂布隔膜。厚度为22μm左右(例如20-24μm)的普通双面涂层隔膜透气值一般小于380s/100mL,而本发明的电池隔膜透气值一般小于300s/100mL。透气性数值的意义为一定面积的隔膜在一定压力下通过一定量气体需要的时间,透气值越大说明隔膜内阻越大,透气值小些内阻小,充放电速度更快,因此本发明的电池隔膜的内阻明显小于普通涂层隔膜。本发明的电池隔膜的吸液率较普通涂层隔膜有明显改善,单位体积内吸收电解液的量较高,使电池的离子电导率更高,电池的充放电性能更好。
根据本发明的第二方面,本发明提供了一种耐高温多层复合锂离子电池隔膜的涂覆装置,如图1所示,所述涂覆装置包括依次设置的基膜放卷轴1、涂胶辊2、加热烘干机构和收卷轴6,所述基膜放卷轴1上缠绕有基膜12,基膜12一端伸出基膜放卷轴1并卷绕在收卷轴6上,所述涂胶辊2表面设置有所述涂覆浆料;其中,
所述涂胶辊2和加热烘干机构之间增设卷绕有复合膜13的复合膜放卷机构,所述涂胶辊2和复合膜放卷机构在基膜12同一侧一一对应设置形成所述复合膜13的贴合单元,所述贴合单元为设置在基膜12两侧的两组,所述复合膜放卷机构包括复合膜放卷轴3和压紧轴4,所述复合膜13伸出复合膜放卷轴3并经过压紧轴4后与基膜12相贴合,所述涂胶辊2和压紧轴4顶紧相对应一侧的基膜12端面。
所述涂覆浆料可以是本发明第一方面所述的涂覆浆料。
优选地,所述基膜12和所述复合膜13各自为PP隔膜、PE隔膜、无纺布或者纤维。
优选地,所述基膜放卷轴1和涂胶辊2之间设置有张紧轴11,这种情况下,所述基膜放卷轴1释放基膜12后,基膜12可先经过张紧轴11的张紧作用,然后再经过涂胶辊2。
根据本发明的涂覆装置,为适应不同场合对于安全性和耐热性的需求,所述涂覆装置中涂胶后的陶瓷涂布隔膜两侧可以设置多组涂胶辊2和复合膜放卷机构,每个涂胶辊2和其相对应的复合膜放卷机构能够实现一层复合膜的涂胶和贴合,可以形成双面复合、三面复合或者更多面复合的电池隔膜。
为了精确控制涂胶厚度和均匀性,优选情况下,所述涂胶辊2上均匀排布有一定深度、线数、形状和角度的凹槽。其中,所述凹槽的深度为10-120μm,凹槽的线数(LPI)一般为100-1400,凹槽的形状可以是蜂巢型、菱形、湾流型或者斜线型,优选为斜线型,斜线的角度可以为30°、45°或60°。
按照一种优选的实施方式,所述复合膜放卷机构中设置有张力速度控制装置和纠偏装置。所述复合膜放卷轴3的动力来源于放卷伺服电机,所述张力速度控制装置为安装在所述复合膜放卷轴3上的张力传感器,所述张力传感器的信息输入端与复合膜放卷轴3相连,其输出端与所述放卷伺服电机相连,所述张力传感器能检测并反馈所述复合膜放卷轴3的速度和张力,当检测值与设定值存在差异时,所述放卷伺服电机做出相应调整,改变电机的扭矩和转速,保证实际的张力和速度与设定值一致。所述纠偏装置为现有条带式生产线上常用的纠偏装置,在所述复合膜13的输送过程中,所述张力速度控制装置能够保证复合膜放卷轴3与基膜12输送的线速度保持一致且能对复合膜放卷轴3的放卷张力进行控制,所述纠偏装置能 够保证复合膜13与陶瓷涂布隔膜端面贴合时的重合度更高,经贴合之后形成多层复合隔膜。
根据本发明的涂覆装置,所述加热烘干机构可包括依次相连的多个烘箱,烘箱的具体个数可根据生产中的隔膜输送速度进行选择。优选地,所述加热烘干机构包括依次相连的三个烘箱5。所述的三个烘箱5可分别设置有进风扇和排风扇。
更优选地,所述的三个烘箱5布置为竖向的拐角形状,拐角处的烘箱中设置有中转轴14,所述基膜12经过所述中转轴14并依次经过三个烘箱5。所述多层复合隔膜的两侧面均需要进行复合,多层复合隔膜在进入所述加热烘干机构之前不与任何辊面接触,干燥前为悬空的且距离较长,所多层复合隔膜受到自身重力影响较大,多层复合隔膜在出第二个烘箱基本干燥定型后通过中转轴14改变方向,可减小多层复合隔膜自身重力的影响,并使设备更紧凑。
根据本发明的涂覆装置,所述加热烘干机构的长度与所述基膜放卷轴1在运行时的线速度(即输送速度)有关,所述输送速度与加热烘干机构的长度可呈正相关关系,即输送速度越快,加热烘干机构的长度越长,所述线速度一般为5-30m/min。按照一种优选的实施方式,所述基膜放卷轴1的线速度为5-15m/min,加热烘干机构的长度为9m。按照另一种优选的实施方式,所述基膜放卷轴1的线速度为15-30m/min,加热烘干机构的长度为18m。
优选地,所述加热烘干机构的输出端和收卷轴6之间还依次增设有展平辊9和张紧辊10,所述展平辊9位于加热烘干机构的输出端。所述展平辊9可将多层复合隔膜进行展平,展平后经过张紧辊10的张紧保持,可得到较为平整的多层隔膜。
按照本发明的涂覆装置,为了将涂覆浆料供应至所述涂胶辊2上,所述涂覆装置还包括图2所示的涂覆浆料的供给装置。所述涂覆浆料的供给 装置包括进胶泵7、涂胶槽8、原料桶16、回收桶17,其中,所述进胶泵7的输入端通过连接原料桶16进行涂覆浆料的吸取,并通过其输出端向所述涂胶槽8中输送涂覆浆料,所述涂胶槽8的开口端设置有两个刮刀15,两个刮刀15与开口平行并且与涂胶辊2外表面接触形成封闭腔体,涂胶辊2转动经过涂胶槽8粘附所述涂覆浆料,该过程中还经过两个刮刀15的刮胶,使涂胶辊2上的涂覆浆料厚度均匀;所述涂胶槽8还设置有溢流口18,当所述进胶泵7的转速过大时,提供的涂覆浆料就会沿溢流口18溢出,溢出的涂覆浆料可储存在回收桶17中进行回收利用。
本发明中,通常可根据涂胶量和生产速度选择进胶泵7的合适转速,其中,涂胶越厚,生产速度越快,所需的进胶量越大,在进胶足够时才能保证涂胶厚度,当进胶量过高时,多余的胶可通过溢流口18收集回用,因此,操作过程中可以根据溢流口18的溢流情况随时调节进胶泵7的转速。通常地,所述进胶泵7的转速可以为15-45rpm,涂胶辊速比设定为50-90%。
本发明的涂覆装置结构简单,为多层复合电池隔膜的制备提供了较为成熟的装置,能大大提高锂离子电池隔膜的生产效率,生产的隔膜成品品质较为稳定。
根据本发明的第三方面,本发明提供了本发明第一方面所述的耐高温多层复合锂离子电池隔膜的制备方法,该制备方法借助本发明第二方面所述的涂覆装置来实施,利用上述结构的涂覆装置来进行耐高温多层复合锂离子电池隔膜的制备,制备方法包括以下步骤:
A、基膜放卷:基膜放卷轴1释放基膜12,基膜12向收卷轴6的方向移动,基膜放卷轴1对基膜12的放卷张力为15-30N;
B、基膜涂布:基膜12经过两侧的涂胶辊2,涂胶辊2顶紧基膜12中相对应一侧的端面,同时将所述涂覆浆料粘附在基膜12的相对应端面上,形成涂布隔膜;
C、多层复合:涂布隔膜经过设置在其两侧的复合膜放卷机构,复合膜 放卷轴3转动并释放复合膜13,复合膜放卷轴3对复合膜13的放卷张力为15-30N,复合膜13经过压紧轴4后与涂布隔膜相对应端面相贴合,压紧轴4顶紧贴合位置,形成多层复合隔膜;
D、多次复合:当涂布隔膜端面上的复合膜13每多一层时,需要重复进行步骤B和C一次,最外层的复合膜贴合后经过0.2-0.5s的输送时间后进入下一工序;
E、烘烤定型:多层复合隔膜进入加热烘干机构,输送经过加热烘干机构的时间为0.6-1.8min,多层复合隔膜在加热烘干机构中的张力保持在7-15N,多层复合隔膜经烘烤定型,得到多层复合锂离子电池隔膜成品;
F、成品收卷:通过收卷轴6对多层复合锂离子电池隔膜成品进行收卷,收卷的张力为4-12N。
优选情况下,步骤A中,所述基膜放卷轴1和涂胶辊2之间设置有张紧轴11,所述基膜放卷轴1释放基膜12后,基膜12先经过张紧轴11的张紧作用,然后再经过涂胶辊。
步骤C-D中,当所述复合膜13选自无纺布时,由于无纺布隔膜吸液率强,在复合过程中,涂层会被无纺布吸收而不显示涂层厚度,从而可制得更薄的多层复合锂离子电池隔膜。
优选情况下,步骤E中,所述加热烘干机构包括依次相连的三个烘箱5,三个烘箱5布置为竖向的拐角形状,拐角处的烘箱中设置有中转轴14,所述多层复合隔膜经过中转轴并依次经过三个烘箱5进行干燥定型。所述三个烘箱5的温度依次设定为50-60℃、60-70℃以及50-60℃。三个烘箱5中均设置有进风扇和排风扇,三个烘箱5中的进、排风频率设定为12-25Hz。
优选情况下,步骤F中,所述加热烘干机构的输出端和收卷轴6之间依次增设有展平辊9和张紧辊10,所述展平辊9将加热后的多层复合隔膜成品进行展平,展平后经过张紧辊10的张紧保持,最后将较为平整的多层复合隔膜成品通过收卷轴6进行收卷。
按照本发明的制备方法,所述压紧轴4与涂胶辊2之间的距离尽量靠近,这样可缩短输送时间,而压紧轴4和加热烘干机构之间的距离可以适当远一些,保证所述复合膜13与基膜12粘附后保持在0.2s-0.5s的输送时间,然后再到达加热烘干机构中,0.2-0.5s的输送时间可保证复合膜13和涂覆浆料的接触时间,使复合膜13、涂覆浆料和基膜12充分浸润,有利于基膜12与复合膜13之间的粘合。
另外,所述制备方法采用的所述涂覆装置为本发明第二方面的涂覆装置,因此,除了在本发明的第三方面中的说明,对所述涂覆装置的其它描述如本发明第二方面所述,在此不再赘述。
本发明提供的制备方法为生产耐高温多层复合锂离子电池隔膜提供了较为成熟稳定的生产工艺,该生产工艺中针对高温多层复合锂离子的机构进行各个工序的布置,工序之间的间隔时间能够使得最终产品品质较高且稳定。
下面的实施例对本发明的特点做进一步的说明,但本发明的内容并不受实施例的限制。
以下实施例和对比例中,涂覆浆料中,所采用的胶黏剂为聚丙烯酸酯水性粘合剂,分散剂为聚酰胺,胶凝剂为琼胶素,增塑剂为邻苯二甲酸二酯,抗老化剂为2-羟基-4正辛氧基二苯甲酮,交联剂为三羟甲基丙烷三丙酸酯;涂覆厚度均指设计的干膜厚度。
以下实施例均结合图1所示的涂覆装置结合图2所示的涂覆浆料的供给装置来制备所述多层复合电池隔膜。其中,所述加热烘干机构为三个烘箱5,三个烘箱5布置为竖向的拐角形状,烘箱为立式的红外加热烘箱,拐角处的烘箱设有中转轴14,每个烘箱的长度设定为3m,三个烘箱5的总长度为9m,三个烘箱5均安装有进风扇和排风扇。复合膜放卷机构中设置有张力速度控制装置和纠偏装置,对张力速度控制装置和纠偏装置的具体描 述如上所述。
电池隔膜的透气度按照ISO 5636,采用Gurley4340型透气度仪测试;热收缩率按照ISO 14616测试。吸液率(EU)的测试方法是,将电池隔膜称重,记为W0(g);在充满氩气的手套箱中,将称重后的电池隔膜浸泡在1mol/L LiPF6/EC:DMC:DEC=1:1:1(v/v/v)中15分钟,取出后,用滤纸轻轻吸去隔膜表面多余的电解液,然后称重,记为W1(g),吸液率的计算公式为EU=(W0-W1)/W0×100%,每组隔膜测试10次,取平均值。
实施例1
本实施例采用的基膜为PE隔膜,厚度为6μm;复合膜为PET无纺布隔膜,每层厚度为9μm。
涂覆浆料的组成为:PVDF浆料+氧化铝(质量比为3:7)22%,胶黏剂5%,分散剂0.4%,胶凝剂0.3%,增塑剂0.1%,抗老化剂0.1%,交联剂0.1%,其余部分为去离子水。
多层复合锂离子电池隔膜的制备包括以下步骤:
A、基膜放卷
基膜放卷轴1释放基膜12,基膜12向收卷轴6方向移动,基膜放卷轴1、复合膜放卷轴3和收卷轴6转动后的线速度相同,线速度选择10m/min,基膜放卷轴1和涂胶辊2之间还设置有张紧轴11,张紧轴11同时还作为张力检测辊进行张力的检测,基膜12的厚度、幅宽及移动线速度共同影响放卷张力,调整张紧轴11使得基膜放卷轴1对基膜12的放卷张力为20N;
B、基膜涂布
张紧后的基膜12经过两侧的涂胶辊2,涂胶辊2顶紧基膜12中相对应一侧的端面,同时将涂覆浆料粘附在基膜12的相对应端面上,每个端面上涂覆浆料的涂覆厚度为2.0μm,涂胶辊2上均匀排布有凹槽,涂胶辊2上均匀排布有凹槽,凹槽深度为50μm,凹槽线数LPI为180,凹槽的形状为斜 线型,斜线的角度为30°,涂胶辊2借助进胶泵7和涂胶槽8进行涂覆浆料的持续供给,进胶泵7转速设定为30rpm,涂胶辊速比设定为70%;
C、多层复合
涂布隔膜经过设置在其两侧的复合膜放卷机构,复合膜放卷轴3转动并释放复合膜13,放卷张力为25N,复合膜13经过压紧轴4后与涂布隔膜相对应端面相贴合,压紧轴4顶紧贴合位置,形成多层复合隔膜,复合膜贴合后经过0.4s的输送时间后进入下一工序,由于输送速度为10m/min,经计算,压紧轴4至加热烘干机构的距离为1/15m;
E、烘烤定型
多层复合隔膜进入加热烘干机构,输送经过加热烘干机构的时间为0.9min,多层复合隔膜在烘箱中的张力为10N,三个烘箱5的温度依次设定为55℃、65℃以及55℃,烘箱的进、排风频率均设定为20Hz,多层复合隔膜经烘烤定型,得到多层复合锂离子电池隔膜成品;
F、成品收卷
烘箱5和收卷轴6之间还依次增设有展平辊9和张紧辊10,通过展平辊9的变向,对多层复合隔膜成品进行展平,多层复合隔膜通过两个拐角完成先上后下的过程最终到达张紧辊10和收卷轴6,展平的形状得到稳定,最后将较为平整的多层复合锂离子电池隔膜收集在收卷轴6上,收卷的张力为10N。
所制备的多层复合锂离子电池隔膜的性质如表1所示。
实施例2
本实施例采用的基膜为PE隔膜,厚度为6μm;复合膜为PET无纺布隔膜,每层厚度为9μm。
涂覆浆料的组成为:Al2O3陶瓷浆料30%,胶黏剂为5%,分散剂0.3%,胶凝剂0.4%,增塑剂0.1%,抗老化剂0.1%,交联剂0.1%,其余部分为去 离子水。
多层复合锂离子电池隔膜的制备包括以下步骤:
A、基膜放卷
基膜放卷轴1释放基膜12,基膜12向收卷轴6方向移动,基膜放卷轴1、复合膜放卷轴3和收卷轴6转动后的线速度相同,线速度选择10m/min,基膜放卷轴1和涂胶辊2之间还设置有张紧轴11,张紧轴11同时还作为张力检测辊进行张力的检测,基膜12的厚度、幅宽及移动线速度共同影响放卷张力,调整张紧轴11使得基膜放卷轴1对基膜12的放卷张力为22N;
B、基膜涂布
张紧后的基膜12经过两侧的涂胶辊2,涂胶辊2顶紧基膜12中相对应一侧的端面,同时将涂覆浆料粘附在基膜12的相对应端面上,每个端面上涂覆浆料的涂覆厚度为2.0μm,涂胶辊2上均匀排布有凹槽,凹槽深度为55μm,凹槽线数LPI为170,凹槽的形状为斜线型,斜线的角度为60°,涂胶辊2借助进胶泵7和涂胶槽8进行涂覆浆料的持续供给,进胶泵7转速设定为30rpm,涂胶辊速比设定为70%;
C、多层复合
涂布隔膜经过设置在其两侧的复合膜放卷机构,复合膜放卷轴3转动并释放复合膜13,放卷张力为22N,复合膜13经过压紧轴4后与涂布隔膜相对应端面相贴合,压紧轴4顶紧贴合位置,形成多层复合隔膜,复合膜贴合后经过0.4s的输送时间后进入下一工序,由于输送速度为10m/min,经计算,压紧轴4至加热烘干机构的距离为1/15m;
E、烘烤定型
多层复合隔膜依次经过中转轴14并通过三个烘箱5,输送经过加热烘干机构的时间为0.9min,多层复合隔膜在烘箱中的张力为10N,三个烘箱5的温度依次设定为55℃、65℃以及55℃,烘箱的进、排风频率设定为18Hz,多层复合隔膜经烘烤定型,得到多层复合锂离子电池隔膜成品;
F、成品收卷
烘箱5和收卷轴6之间还依次增设有展平辊9和张紧辊10,通过展平辊9的变向,对多层复合隔膜成品进行展平,多层复合隔膜通过两个拐角完成先上后下的过程最终到达张紧辊10和收卷轴6,展平的形状得到稳定,最后将较为平整的多层复合锂离子隔膜收集在收卷轴6上,收卷的张力为8N。
所制备的多层复合锂离子电池隔膜的性质如表1所示。
对比例1
本对比例提供了一种普通湿法涂布隔膜的制备方法。其中基膜为PE隔膜,厚度为20μm,采用以上实施例的涂覆装置制备该隔膜,所不同的是,涂覆装置不设有卷绕复合膜的复合膜放卷机构。
A、基膜放卷
基膜放卷轴1释放基膜12,基膜12向收卷轴6方向移动,基膜放卷轴1、复合膜放卷轴3和收卷轴6转动后的线速度相同,线速度选择10m/min,基膜放卷轴1和涂胶辊2之间还设置有张紧轴11,张紧轴11同时还作为张力检测辊进行张力的检测,基膜12的厚度、幅宽及移动线速度共同影响放卷张力,调整张紧轴11使得基膜放卷轴1对基膜12的放卷张力为22N;
B、基膜涂布
张紧后的基膜12经过两侧的涂胶辊2,涂胶辊2顶紧基膜12中相对应一侧的端面,同时将涂覆浆料粘附在基膜12的相对应端面上,每面涂覆厚度为2.0μm,涂胶辊2上均匀排布有凹槽,凹槽深度为55μm,凹槽线数LPI为180,凹槽的形状为斜线型,斜线的角度为60°,涂胶辊2借助进胶泵7和涂胶槽8进行涂覆浆料的持续供给,进胶泵7转速设定为30rpm,涂胶辊速比设定为70%;
C、烘烤定型
单层涂布隔膜依次经过中转轴14并通过三个烘箱5,输送经过加热烘干机构的时间为0.9min,单层涂布隔膜在烘箱中的张力为10N,三个烘箱5的温度依次设定为55℃、65℃以及55℃,烘箱的进、排风频率设定为18Hz,涂层隔膜经烘烤定型,得到锂离子电池涂层隔膜成品;
D、成品收卷
烘箱5和收卷轴6之间还依次增设有展平辊9和张紧辊10,通过展平辊9的变向,对涂层隔膜成品进行展平,涂层隔膜通过两个拐角完成先上后下的过程最终到达张紧辊10和收卷轴6,展平的形状得到稳定,最后将较为平整的锂离子涂层隔膜收集在收卷轴6上,收卷的张力为8N。
所制备的多层复合锂离子电池隔膜的性质如表1所示。
表1
Figure PCTCN2017101564-appb-000001
将实施例1-2与对比例1进行比较,结合表1的数据可见,实施例1-2的多层复合锂离子电池隔膜的耐热性更高,内阻小,单位体积内吸收电解液的量较高,使电池的充放电性能更好。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (16)

  1. 一种耐高温多层复合锂离子电池隔膜,包括两端面粘附有涂覆浆料的基膜(12),其特征在于:所述基膜(12)两端面借助涂覆浆料粘结有复合层,所述复合层中包括一层、两层或者多层复合膜(13),所述复合膜(13)之间设置有涂覆浆料进行粘结固定。
  2. 根据权利要求1所述的耐高温多层复合锂离子电池隔膜,其中,所述基膜(12)和所述复合膜(13)各自为PP隔膜、PE隔膜、无纺布或者纤维。
  3. 根据权利要求1所述的耐高温多层复合锂离子电池隔膜,其中,所述涂覆浆料包含Al2O3陶瓷浆料、PVDF浆料、ZrO2陶瓷浆料或SiO2浆料,所述涂覆浆料还添加有胶黏剂、分散剂、凝胶剂、增塑剂、抗老化剂、交联剂以及去离子水,Al2O3陶瓷浆料、PVDF浆料、ZrO2陶瓷浆料或SiO2浆料占涂覆浆料总质量的百分比为20-40%,胶黏剂为3-6%,分散剂为0.2-0.5%,胶凝剂为0.2-0.5%,增塑剂为0.05-0.2%,抗老化剂为0.05-0.2%,交联剂为0.05-0.2%,其余为去离子水。
  4. 一种耐高温多层复合锂离子电池隔膜的涂覆装置,所述涂覆装置包括依次设置的基膜放卷轴(1)、涂胶辊(2)、加热烘干机构和收卷轴(6),所述基膜放卷轴(1)上缠绕有基膜(12),基膜(12)一端伸出基膜放卷轴(1)并卷绕在收卷轴(6)上,所述涂胶辊(2)表面设置有涂覆浆料,其特征在于:所述涂胶辊(2)和加热烘干机构之间增设卷绕有复合膜(13)的复合膜放卷机构,所述涂胶辊(2)和复合膜放卷机构在基膜(12)同一侧一一对应设置形成所述复合膜(13)的贴合单元,所述贴合单元为设置 在基膜(12)两侧的两组,所述复合膜放卷机构包括复合膜放卷轴(3)和压紧轴(4),所述复合膜(13)伸出复合膜放卷轴(3)并经过压紧轴(4)后与基膜(12)相贴合,所述涂胶辊(2)和压紧轴(4)顶紧相对应一侧的基膜(12)端面。
  5. 根据权利要求4所述的耐高温多层复合锂离子电池隔膜的涂覆装置,其中,所述基膜(12)和所述复合膜(13)各自为PP隔膜、PE隔膜、无纺布或者纤维。
  6. 根据权利要求4所述的耐高温多层复合锂离子电池隔膜的涂覆装置,其中,所述基膜放卷轴(1)和涂胶辊(2)之间设置有张紧轴(11)。
  7. 根据权利要求4所述的耐高温多层复合锂离子电池隔膜的涂覆装置,其中,所述加热烘干机构包括依次相连的三个烘箱(5)。
  8. 根据权利要求7所述的耐高温多层复合锂离子电池隔膜的涂覆装置,其中,所述的三个烘箱(5)布置为竖向的拐角形状,拐角处的烘箱中设置有中转轴(14),所述基膜(12)经过中转轴(14)并依次经过三个烘箱(5)。
  9. 根据权利要求7或8所述的耐高温多层复合锂离子电池隔膜的涂覆装置,其中,三个烘箱(5)中均设置有进风扇和排风扇。
  10. 根据权利要求4所述的耐高温多层复合锂离子电池隔膜的涂覆装置,其中,所述加热烘干机构的输出端和收卷轴(6)之间还依次增设有展平辊(9)和张紧辊(10),所述展平辊(9)位于加热烘干机构的输出端。
  11. 根据权利要求4所述的耐高温多层复合锂离子电池隔膜的涂覆装置,其中,所述基膜放卷轴(1)的线速度为5-15m/min,加热烘干机构的长度为9m。
  12. 根据权利要求4所述的耐高温多层复合锂离子电池隔膜的涂覆装置,其中,所述基膜放卷轴(1)的线速度为15-30m/min,加热烘干机构的长度为18m。
  13. 权利要求1-3中任意一项所述耐高温多层复合锂离子电池隔膜的制备方法,该制备方法借助权利要求4所述的涂覆装置来实施,利用上述结构的涂覆装置来进行耐高温多层复合锂离子电池隔膜的制备,制备方法包括以下步骤:
    A、基膜放卷:基膜放卷轴(1)释放基膜(12),基膜(12)向收卷轴(6)的方向移动,基膜放卷轴(1)对基膜(12)的放卷张力为15-30N;
    B、基膜涂布:基膜(12)经过两侧的涂胶辊(2),涂胶辊(2)顶紧基膜(12)中相对应一侧的端面,同时将所述涂覆浆料粘附在基膜(12)的相对应端面上,形成涂布隔膜;
    C、多层复合:涂布隔膜经过设置在其两侧的复合膜放卷机构,复合膜放卷轴(3)转动并释放复合膜(13),复合膜放卷轴(3)对复合膜(13)的放卷张力为15-30N,复合膜(13)经过压紧轴(4)后与涂布隔膜相对应端面相贴合,压紧轴(4)顶紧贴合位置,形成多层复合隔膜;
    D、多次复合:当涂布隔膜端面上的复合膜(13)每多一层时,需要重复进行步骤B和C一次,最外层的复合膜贴合后,经过0.2-0.5s的输送时间后进入下一工序;
    E、烘烤定型:多层复合隔膜进入加热烘干机构,输送经过加热烘干机构的时间为0.6-1.8min,多层复合隔膜在加热烘干机构中的张力保持在 7-15N,多层复合隔膜经烘烤定型,得到多层复合锂离子电池隔膜成品;
    F、成品收卷:通过收卷轴(6)对多层复合锂离子电池隔膜成品进行收卷,收卷的张力为4-12N。
  14. 根据权利要求13所述的耐高温多层复合锂离子电池隔膜的制备方法,其中,步骤A中,所述基膜放卷轴(1)和涂胶辊(2)之间设置有张紧轴(11),基膜放卷轴(1)释放基膜(12)后,基膜(12)先经过张紧轴(11)的张紧作用,然后再经过涂胶辊(2)。
  15. 根据权利要求13所述的耐高温多层复合锂离子电池隔膜的制备方法,其中,步骤E中,所述加热烘干机构包括依次相连的三个烘箱(5),三个烘箱(5)布置为竖向的拐角形状,拐角处的烘箱(5)中设置有中转轴(14),多层复合隔膜经过中转轴(14)并依次经过三个烘箱(5)进行干燥定型;三个烘箱(5)的温度依次设定为50-60℃、60-70℃以及50-60℃,三个烘箱(5)中均设置有进风扇和排风扇,三个烘箱(5)中的进、排风频率设定为12-25Hz。
  16. 根据权利要求13所述的耐高温多层复合锂离子电池隔膜的制备方法,其中,步骤F中,所述加热烘干机构和收卷轴(6)之间还依次增设有展平辊(9)和张紧辊(10),所述展平辊(9)将加热后的多层复合隔膜成品进行展平,展平后经过张紧辊(10)的张紧保持,最后将较为平整的多层复合隔膜成品通过收卷轴(6)进行收卷。
PCT/CN2017/101564 2016-09-13 2017-09-13 一种耐高温多层复合锂离子电池隔膜及其涂覆装置和制备方法 WO2018050067A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/320,474 US11223089B2 (en) 2016-09-13 2017-09-13 Heat-resistant multi-layer composite lithium-ion battery separator, and coating device and manufacturing method for same
JP2019526359A JP6851478B2 (ja) 2016-09-13 2017-09-13 耐高温多層複合リチウムイオン電池セパレータのコーティング装置
EP17850269.6A EP3514855A4 (en) 2016-09-13 2017-09-13 HEAT-RESISTANT SEPARATOR MULTI-LAYER COMPOSITE FOR LITHIUM-ION BATTERY AND COATING DEVICE AND METHOD FOR THE PRODUCTION THEREOF
KR1020197002536A KR102205116B1 (ko) 2016-09-13 2017-09-13 내고온 다층 복합 리튬이온 배터리 격막 및 그 코팅장치와 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610817987.5A CN106129312B (zh) 2016-09-13 2016-09-13 一种耐高温多层复合锂离子电池隔膜的制备方法
CN201610817987.5 2016-09-13
CN201610817965.9 2016-09-13
CN201610817965.9A CN106207052B (zh) 2016-09-13 2016-09-13 一种耐高温多层复合锂离子电池隔膜的涂覆装置

Publications (1)

Publication Number Publication Date
WO2018050067A1 true WO2018050067A1 (zh) 2018-03-22

Family

ID=61619323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101564 WO2018050067A1 (zh) 2016-09-13 2017-09-13 一种耐高温多层复合锂离子电池隔膜及其涂覆装置和制备方法

Country Status (5)

Country Link
US (1) US11223089B2 (zh)
EP (1) EP3514855A4 (zh)
JP (1) JP6851478B2 (zh)
KR (1) KR102205116B1 (zh)
WO (1) WO2018050067A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074925A1 (en) * 2017-10-09 2019-04-18 Optodot Corporation SEPARATOR FOR ELECTROCHEMICAL CELLS AND METHOD OF MANUFACTURING SAME
CN111785931A (zh) * 2020-07-29 2020-10-16 吉林大学 一种涂覆烘干压延机构
JP2020177818A (ja) * 2019-04-18 2020-10-29 住友化学株式会社 電池用セパレータの製造システム、及び電池用セパレータの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208797098U (zh) * 2018-11-09 2019-04-26 宁德时代新能源科技股份有限公司 极片辊压装置
CN112221852B (zh) * 2020-10-10 2022-04-05 湖南亿等新能源有限公司 一种锂电池极片涂布生产加工系统
CN112909428B (zh) * 2021-01-26 2023-04-21 南京捷纳思新材料有限公司 一种电池隔膜及其制备方法
CN114950878B (zh) * 2021-02-20 2024-07-12 吴江市盛和欣机械制造有限公司 一种托举式防漏胶的涂布台
CN114094278B (zh) * 2021-10-20 2023-06-16 中材锂膜有限公司 一种锂离子电池隔膜干燥装置
SE2151603A1 (en) * 2021-12-22 2023-06-23 Northvolt Ab Assembling device for a secondary cell
CN115832403B (zh) * 2023-01-06 2023-09-22 深圳市兴禾自动化股份有限公司 极片复合设备和电芯制造设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042384A (ja) * 1998-07-27 2000-02-15 Nitto Denko Corp シート状分離膜の製造法
CN103691626A (zh) * 2012-09-27 2014-04-02 天津力好科技发展有限公司 一种隔离膜涂布机
CN104022247A (zh) * 2014-06-24 2014-09-03 中国第一汽车股份有限公司 一种多元复合的锂离子电池隔膜及其制备
CN106129312A (zh) * 2016-09-13 2016-11-16 河北金力新能源科技股份有限公司 一种耐高温多层复合锂离子电池隔膜的制备方法
CN106207052A (zh) * 2016-09-13 2016-12-07 河北金力新能源科技股份有限公司 一种耐高温多层复合锂离子电池隔膜的涂覆装置
CN206022493U (zh) * 2016-09-13 2017-03-15 河北金力新能源科技股份有限公司 一种耐高温多层复合锂离子电池隔膜的涂覆装置
CN106953050A (zh) * 2017-02-13 2017-07-14 河北金力新能源科技股份有限公司 一种耐高温多层隔膜复合锂离子电池隔膜及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371227A (en) * 1976-12-07 1978-06-24 Seiko Instr & Electronics Method of manufacturing separator for alkaline battery
JPH0992254A (ja) * 1995-09-21 1997-04-04 Dainippon Printing Co Ltd 電池用セパレータ及びその製造方法
JP3996226B2 (ja) * 1996-08-02 2007-10-24 東燃化学株式会社 非水電池用セパレーター及びそれを用いた非水電池
JP3728162B2 (ja) * 1999-12-15 2005-12-21 三洋電機株式会社 非水電解質二次電池
JP2007048738A (ja) * 2005-07-14 2007-02-22 Tomoegawa Paper Co Ltd 電子部品用セパレータおよびその製造方法
JP4979217B2 (ja) * 2005-09-29 2012-07-18 日本バイリーン株式会社 非水電解質二次電池用セパレータ、非水電解質二次電池用セパレータの製造方法、及び非水電解質二次電池
JP2010146839A (ja) * 2008-12-18 2010-07-01 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
WO2013042661A1 (ja) * 2011-09-22 2013-03-28 三菱樹脂株式会社 積層多孔フィルムの製造方法及び積層多孔フィルム
JP2013245428A (ja) * 2012-05-29 2013-12-09 Shinshu Univ セパレーター、セパレーター製造方法及びセパレーター製造装置
JP2014194863A (ja) * 2013-03-28 2014-10-09 Hitachi High-Technologies Corp リチウムイオン電池の製造装置およびリチウムイオン電池の製造方法
JP2014225372A (ja) * 2013-05-16 2014-12-04 三菱製紙株式会社 電池用セパレータ
JP6425484B2 (ja) * 2014-09-30 2018-11-21 旭化成株式会社 電池用セパレータ
WO2017031159A1 (en) * 2015-08-17 2017-02-23 Celgard, Llc Improved battery separators and related methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042384A (ja) * 1998-07-27 2000-02-15 Nitto Denko Corp シート状分離膜の製造法
CN103691626A (zh) * 2012-09-27 2014-04-02 天津力好科技发展有限公司 一种隔离膜涂布机
CN104022247A (zh) * 2014-06-24 2014-09-03 中国第一汽车股份有限公司 一种多元复合的锂离子电池隔膜及其制备
CN106129312A (zh) * 2016-09-13 2016-11-16 河北金力新能源科技股份有限公司 一种耐高温多层复合锂离子电池隔膜的制备方法
CN106207052A (zh) * 2016-09-13 2016-12-07 河北金力新能源科技股份有限公司 一种耐高温多层复合锂离子电池隔膜的涂覆装置
CN206022493U (zh) * 2016-09-13 2017-03-15 河北金力新能源科技股份有限公司 一种耐高温多层复合锂离子电池隔膜的涂覆装置
CN106953050A (zh) * 2017-02-13 2017-07-14 河北金力新能源科技股份有限公司 一种耐高温多层隔膜复合锂离子电池隔膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3514855A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074925A1 (en) * 2017-10-09 2019-04-18 Optodot Corporation SEPARATOR FOR ELECTROCHEMICAL CELLS AND METHOD OF MANUFACTURING SAME
JP2020177818A (ja) * 2019-04-18 2020-10-29 住友化学株式会社 電池用セパレータの製造システム、及び電池用セパレータの製造方法
JP7262285B2 (ja) 2019-04-18 2023-04-21 住友化学株式会社 電池用セパレータの製造システム、及び電池用セパレータの製造方法
CN111785931A (zh) * 2020-07-29 2020-10-16 吉林大学 一种涂覆烘干压延机构
CN111785931B (zh) * 2020-07-29 2024-04-02 吉林大学 一种涂覆烘干压延机构

Also Published As

Publication number Publication date
JP6851478B2 (ja) 2021-03-31
KR102205116B1 (ko) 2021-01-20
KR20190023097A (ko) 2019-03-07
US11223089B2 (en) 2022-01-11
EP3514855A4 (en) 2020-04-01
US20190267598A1 (en) 2019-08-29
EP3514855A1 (en) 2019-07-24
JP2019522344A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
WO2018050067A1 (zh) 一种耐高温多层复合锂离子电池隔膜及其涂覆装置和制备方法
CN106129312B (zh) 一种耐高温多层复合锂离子电池隔膜的制备方法
WO2018145665A1 (zh) 一种耐高温多层隔膜复合锂离子电池隔膜及其制备方法
CN107093694B (zh) 一种水性pvdf涂布锂离子电池隔膜及其制备方法
US20120285036A1 (en) Electrode dryer and method for drying electrode
KR102112194B1 (ko) 이차전지 셀 파우치용 시트 제조장치
CN109174589A (zh) 一种低成本高品质锂离子电池隔膜涂覆工艺
CN103753936A (zh) 锂电池隔膜复合装置及其复合方法
JP5780226B2 (ja) 二次電池用電極の製造方法および電極製造装置
CN206022493U (zh) 一种耐高温多层复合锂离子电池隔膜的涂覆装置
CN207748623U (zh) 一种综合性高速隔膜涂覆设备
CN110165287B (zh) 一种电芯卷绕装置、电芯生产方法及动力电池
WO2023165204A1 (zh) 一种石墨烯散热膜卷材的制造工艺
CN111640991A (zh) 锂离子电池制备方法及锂离子电池
CN114464772A (zh) 一种极片及其制备方法
CN110176574A (zh) 一种锂离子电池负极极片的预锂方法
CN212648292U (zh) 膜电极的制备系统
CN208146336U (zh) 一种具有双向涂布功能的卷对卷涂布机
CN208392875U (zh) 一种热分布均匀的导热辊
CN212883317U (zh) 锂电池隔膜涂覆系统
WO2022089065A1 (zh) 一种电池隔膜及其涂布工艺、涂布系统和电池
CN220126691U (zh) 一种三段式连续性离子膜制膜设备
CN108649180A (zh) 锂离子电池极片的涂布方法及其制备的锂离子电池极片
CN220611102U (zh) 双面陶瓷涂层涂布系统
CN220753518U (zh) 一种电芯补锂装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002536

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019526359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017850269

Country of ref document: EP

Effective date: 20190415