WO2018049898A1 - 减反射薄膜及其制备方法、其模具的制备方法 - Google Patents

减反射薄膜及其制备方法、其模具的制备方法 Download PDF

Info

Publication number
WO2018049898A1
WO2018049898A1 PCT/CN2017/092750 CN2017092750W WO2018049898A1 WO 2018049898 A1 WO2018049898 A1 WO 2018049898A1 CN 2017092750 W CN2017092750 W CN 2017092750W WO 2018049898 A1 WO2018049898 A1 WO 2018049898A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex
unit
raised
aluminum substrate
sub
Prior art date
Application number
PCT/CN2017/092750
Other languages
English (en)
French (fr)
Inventor
徐良衡
庄孝磊
Original Assignee
上海天臣防伪技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天臣防伪技术股份有限公司 filed Critical 上海天臣防伪技术股份有限公司
Publication of WO2018049898A1 publication Critical patent/WO2018049898A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures

Definitions

  • the invention relates to an antireflection film, a preparation method thereof and a preparation method of the mold.
  • Subwavelength structure anti-reflection films have very important significance and wide applications in optical devices such as photodetectors, semiconductor lasers and light-emitting diodes.
  • the anti-reflection effect of the anti-reflection film is mainly a concave-convex structure layer, but the concave-convex structure is easy to adsorb oil stains and fine dust, and oil stains and fine dust affect the optical effect of anti-reflection of the anti-reflection film, thereby affecting the light transmission of the device. rate.
  • the anti-reflection film is in contact with and rubbed by the hard object, the uneven structure is easily damaged, and the anti-reflection effect of the sub-wavelength structure anti-reflection film is also destroyed. It can be seen that the existing subwavelength structure antireflection film has a short service life.
  • the technical problem to be solved by the present invention is to overcome the prior art subwavelength structure anti-reflection film which is easy to damage due to the uneven structure, and is easy to adsorb oil stains and fine dust, so that the anti-reflection effect is weakened, thereby resulting in short life of the anti-reflection film.
  • the defect provides an antireflection film, a preparation method thereof, and a preparation method of the mold.
  • An anti-reflection film characterized in that the anti-reflection film comprises a sub-wavelength structure layer having a convex structure on the sub-wavelength structure layer.
  • the sub-wavelength structural layer in the present embodiment is a nano-scale uneven structure of the film surface layer, and the uneven structure functions to suppress light reflection. Since the nano-scale concave-convex structure is easy to adsorb oil stains and small dust, and its contact with hard objects and friction is easy to damage, the effect of suppressing light reflection is greatly weakened, and the convex structure in the present scheme can play a role on the sub-wavelength structural layer. Very good protection, thus extending the life of the anti-reflective film.
  • the shape of the convex structure vertically projected on the sub-wavelength structure layer is a mesh structure
  • the raised structure includes a plurality of raised cells, the raised cells are polygonal, and adjacent raised cells are joined to form the mesh structure.
  • the convex structure has a duty ratio of 5%-50%, and the duty ratio is a projected area and the anti-reflection thin The ratio of the area of the membrane;
  • the raised unit has an aspect ratio of 0.5-5;
  • the convex unit has a width of 1 ⁇ m to 20 ⁇ m
  • the raised unit has a height of 0.5 ⁇ m to 20 ⁇ m.
  • the convex structure has a duty ratio of 5%-20%
  • the raised unit has an aspect ratio of 1-3;
  • the convex unit has a width of 2 ⁇ m to 10 ⁇ m, and the convex unit has a height of 2 ⁇ m to 10 ⁇ m.
  • the convex structure comprises a plurality of convex units, the plurality of convex units are discretely arranged on the sub-wavelength structural layer, and a shape of the convex unit projected on the sub-wavelength structural layer is Line type.
  • the shape of the convex unit projected on the sub-wavelength structure layer is T-shaped.
  • the plurality of raised cells are randomly arranged.
  • the duty ratio of the convex structure is 3%-30%, and the duty ratio is a ratio of a projected area of the convex structure to an area of the anti-reflection film;
  • the raised unit has an aspect ratio of 0.5-5;
  • the convex unit has a width of 1 ⁇ m to 30 ⁇ m, and the raised unit has a height of 0.5 ⁇ m to 20 ⁇ m.
  • the convex structure has a duty ratio of 3%-20%;
  • the raised unit has an aspect ratio of 1-3;
  • the convex unit has a width of 2 ⁇ m to 20 ⁇ m, and the convex unit has a height of 2 ⁇ m to 10 ⁇ m.
  • the convex structure comprises a plurality of convex units, the plurality of convex units are dispersedly arranged in the sub-wavelength structural layer, and the convex units are columnar.
  • the protruding unit is one or more of a cylinder, a rectangular parallelepiped, a triangular prism, a hexagonal pillar, and a irregular polyhedron.
  • the plurality of raised cells are randomly arranged.
  • the duty ratio of the protruding structure is 1%-30%, and the duty ratio is a ratio of a projected area of the convex structure to an area of the anti-reflection film;
  • the raised unit has an aspect ratio of 0.5-5;
  • the convex unit has a width of 1 ⁇ m to 50 ⁇ m, and the raised unit has a height of 0.5 ⁇ m to 30 ⁇ m.
  • the convex structure has a duty ratio of 2%-20%;
  • the raised unit has an aspect ratio of 1-3;
  • the convex unit has a width of 2 ⁇ m to 30 ⁇ m, and the convex unit has a height of 2 ⁇ m to 20 ⁇ m.
  • the present invention also provides a method for preparing a mold for preparing an antireflection film as described above, characterized in that the preparation method comprises the following steps:
  • step S 100 further comprising the step of forming AAO template:
  • the aluminum substrate has a purity of from 97% to 99.999%.
  • step S001 the step of cleaning the aluminum substrate comprises:
  • the aluminum substrate is sequentially washed in absolute ethanol and deionized water;
  • the steps of polishing the aluminum substrate include:
  • the cleaned aluminum substrate was used as an anode, and graphite was used as a cathode, and constant voltage electrochemical polishing was performed in a mixed solution of a perchloric acid and absolute ethanol having a volume ratio of 0.2 at 0 ° C, a voltage of 23 V, and a polishing time of 5 minutes. , obtaining a polished aluminum substrate;
  • the step of performing an anodizing treatment on the surface of the aluminum substrate includes:
  • the polished aluminum substrate was immersed in a 0.3 mol/L aqueous oxalic acid solution, and anodized at a direct current of 40 V and a temperature of 16 ° C for 6 hours to obtain an aluminum template having an oxide film.
  • step S002 the step of removing the oxide film formed on the surface of the aluminum template comprises:
  • the steps of performing the anodizing treatment again include:
  • the aluminum substrate after removing the oxide film was immersed in a 0.3 mol/L aqueous solution of oxalic acid, and anodized for 20 seconds under a condition of direct current 40 V and a temperature of 16 ° C, and the aluminum substrate was immersed at a temperature of 32. Soak for 8 minutes in a 5% phosphoric acid aqueous solution at °C.
  • the preparation method further includes: repeating step S 002 .
  • the invention also provides a preparation method of an anti-reflection film, characterized in that the preparation method comprises the following steps:
  • the ultraviolet curable glue was subjected to ultraviolet imprinting using a mold manufactured by the above-described production method to form the reflective film.
  • the positive progressive effect of the present invention is that the anti-reflection film of the present invention comprises a sub-wavelength structural layer and a convex structure, and the convex structure can protect the sub-wavelength structural layer, and on the one hand, prevent oil stains and fine dust from being adsorbed to the sub-wavelength structure.
  • the concave-convex structure on the other hand, the phenomenon that the uneven structure of the sub-wavelength structural layer is damaged by the contact between the hard object and the frictional structure caused by the friction is avoided, so that the service life of the anti-reflection film of the present invention is greatly prolonged.
  • FIG. 1 is a schematic view showing the structure of an antireflection film according to Embodiment 1 of the present invention.
  • FIG. 2 is a first projection structural view of the convex structure of the anti-reflection film of FIG. 1.
  • FIG. 3 is a schematic view showing a second projection structure of the convex structure of the anti-reflection film of FIG. 1.
  • FIG. 4 is a schematic view showing a third projection structure of the convex structure of the anti-reflection film of FIG. 1.
  • FIG. 5 is a fourth projection structural view of the convex structure of the anti-reflection film of FIG. 1.
  • FIG. 6 is a fifth projection structural view of the convex structure of the anti-reflection film of FIG. 1.
  • Fig. 7 is a perspective view of an antireflection film according to Embodiment 1 of the present invention.
  • Fig. 8 is a schematic structural view of an antireflection film according to Embodiment 2 of the present invention.
  • FIG. 9 is a first projection structural view of the convex structure of the anti-reflection film of FIG. 8.
  • FIG. 10 is a schematic view showing a second projection structure of the convex structure of the anti-reflection film of FIG. 8.
  • FIG. 10 is a schematic view showing a second projection structure of the convex structure of the anti-reflection film of FIG. 8.
  • Figure 11 is a first projection structural view showing a convex structure of an anti-reflection film according to Embodiment 3 of the present invention.
  • Figure 12 is a schematic view showing a second projection structure of a convex structure of an anti-reflection film according to Embodiment 3 of the present invention.
  • Figure 13 is a flow chart showing a method of preparing a mold for preparing an antireflection film according to Example 4 of the present invention.
  • FIG. 14 is a schematic view showing the structure of an anodized aluminum oxide template having a subwavelength structure obtained after the step 400 in FIG.
  • Figure 15 is a first schematic diagram of the final template produced by the process flow of Figure 13.
  • Figure 16 is a second schematic view of the final template produced by the process flow of Figure 13.
  • the invention is further illustrated by the following examples, which are not intended to limit the invention.
  • a person skilled in the art can obtain a linearly varying duty ratio (ie, a ratio of a projected area of a convex structure to an area of an anti-reflection film) and a corresponding structure by changing structural parameters, which are embodied in the embodiment. It is a superior value and/or a classical value with reference significance.
  • the anti-reflection film of this embodiment includes a sub-wavelength structure layer 1 having a convex structure 2 on the sub-wavelength structure layer, which has a protective effect on the sub-wavelength structure layer.
  • the anti-reflection film of the present embodiment may further include a protective layer 3 between the protective layer 3 and the sub-wavelength structure layer 1.
  • the protective layer needs to be torn off to avoid affecting the anti-reflection function of the film.
  • the shape of the convex structure vertically projected on the sub-wavelength structure layer is a mesh structure.
  • the raised structure further includes a plurality of convex units 21 which are polygonal and adjacent convex units are connected to form a mesh structure.
  • the polygon may be a regular polygonal structure, that is, the mesh of the mesh structure may be a regular hexagon as shown in FIG. 2, or may be a square, a diamond, an ellipse, a circle, or other regular graphics. A narrative. Of course, the polygons can also be irregular shapes (see Figure 4-6). Since most of the current displays are LCDs (liquid crystal displays), the pixel units of the LCD are also periodically arranged, that is, rectangular cells of a regular shape.
  • the superposition of the regular mesh structure and the pixel unit of the regular LCD generates a moire phenomenon, thereby affecting the display effect of the LCD.
  • the lines of the irregular mesh structure shown in Fig. 4-6 are randomly and uniformly distributed at various angles, which can well avoid the occurrence of the moire phenomenon.
  • the duty ratio of the raised structure has the most direct influence on the performance of the anti-reflection film.
  • the duty ratio refers to the ratio of the projected area of the convex structure to the area of the anti-reflection film.
  • the greater the duty cycle the better the protection of the anti-reflective nanostructures, but the more the anti-reflection capability is reduced.
  • the smaller the density of the raised cells that is, the smaller the duty cycle, the worse the protection of the anti-reflective nanostructures, and the less the anti-reflective ability is reduced.
  • the arrangement density of the convex structure is directly related to the aspect ratio of the convex unit, wherein the aspect ratio refers to the height and width of the convex unit (the width of the shape in which the convex unit is vertically projected on the sub-wavelength structural layer)
  • the ratio is shown in Figure 7, which is h/w.
  • the duty ratio of the convex structure is 5%-50%, preferably 5%-20%; the aspect ratio of the convex unit is 0.5-5, preferably 1-3;
  • the width w is from 1 ⁇ m to 20 ⁇ m, preferably from 2 ⁇ m to 10 ⁇ m; the height h of the convex unit is from 0.5 ⁇ m to 20 ⁇ m, preferably from 2 ⁇ m to 10 ⁇ m.
  • the anti-reflection performance will be described below with a convex unit as shown in FIG. 2 as a specific example.
  • the width w is 5 ⁇ m
  • the aspect ratio of the convex unit is 2
  • the duty ratio of the convex structure is 9.75%.
  • the anti-reflection performance of the conventional sub-wavelength anti-reflection film is 99% or more, which is 99%. If the transmittance of the film on one side is 96%, the transmittance of the anti-reflection film under this structure is 98.71%.
  • the mesh line of the mesh structure may be a fold line or a curve in addition to the straight line type.
  • a projection unit having a line angle of 60° is equal to a long line.
  • It may also be a structure as shown in FIG. 6.
  • the joint portion of the convex unit adopts a smooth transition, so that the strength of the convex structure can be improved, and the plate making is easy to be made, and the convex unit can be appropriately reduced under the premise of ensuring the same protective effect.
  • the width w reduces the duty ratio and increases the transmittance of the anti-reflection film.
  • Embodiment 2 is substantially the same as Embodiment 1, as shown in FIGS. 8-10, except that the convex unit 21 of the present embodiment is columnar and dispersedly arranged in the subwavelength structure layer, and the projection thereof is a columnar structure.
  • the protruding unit may be one or more of a cylinder, a rectangular parallelepiped, a triangular prism, a hexagonal pillar, and a irregular polyhedron, that is, the specific projection shape of the convex unit may be a circle, a rectangle, a diamond, a triangle, or a sixth. Any shape design such as an angular shape or an irregular shape.
  • the convex units may be arranged in a regular manner (see FIG. 9), or may be randomly arranged at random (see FIG. 10), if the convex units are arranged in a regular manner (may be arranged in a square, an equilateral triangle, a diamond shape or other regular periods) It is also possible to set the distance between adjacent convex units to be 30 ⁇ m to 50 ⁇ m, that is, the center distance is 30 ⁇ m to 50 ⁇ m. Similarly, the regular arrangement of the columnar structure also faces the problem of moiré when applied to the LCD surface, and the randomly arranged columnar structure can solve this problem.
  • the aspect ratio and duty cycle of the columnar structure also have a direct impact on the performance of the antireflection film.
  • the columnar structure has a smaller footprint than the mesh structure, so it has a smaller duty cycle.
  • the duty ratio of the convex structure is 1%-30%, preferably 2%-20%; the aspect ratio of the convex unit is 0.5-5, preferably 1-3;
  • the height is from 0.5 ⁇ m to 30 ⁇ m, preferably from 2 ⁇ m to 20 ⁇ m; the width of the convex unit is from 1 ⁇ m to 50 ⁇ m, preferably from 2 ⁇ m to 30 ⁇ m.
  • the transmittance was 98.08%.
  • the convex unit of the columnar structure can have a small duty ratio, the influence on the anti-reflection performance of the anti-reflection film is small, but due to its own structural characteristics, it is also more likely to be dumped during the external force contact friction process.
  • the protection function is relatively weaker than the convex structure of the mesh structure and the line structure.
  • Embodiment 3 is substantially the same as Embodiment 1, as shown in FIGS. 11-12, except that each of the convex units 21 is independent of each other, and the shape vertically projected on the sub-wavelength structural layer is a line type, that is, not connected. grid.
  • the shape of the convex unit can also be arbitrarily set. As shown in FIG. 11, the projection shape of the convex unit is a single line type; as shown in FIG. 12, the projection shape of the convex unit is a T-shaped line.
  • the line structure has stronger friction resistance than the columnar structure, especially the T-line structure shown in FIG. This line structure has better stability, making it more stable during external contact friction.
  • the width w of the linear structure convex unit is 1-30 ⁇ m, preferably 2-20 ⁇ m; the height of the convex unit is 0.5-20 ⁇ m, preferably 2-10 ⁇ m; the aspect ratio of the convex unit It is from 0.5 to 5, preferably from 1 to 3; the duty ratio of the convex structure is from 3% to 30%, preferably from 3% to 20%.
  • the duty ratio is 5.6%
  • the transmittance of the anti-reflection film in this structure is 98.83%.
  • the aspect ratio of the unit is 2, the duty ratio of the designed convex structure is 7.2%, and the transmittance of the anti-reflection film under the structure is 98.78%.
  • the convex structure of FIG. 12 is taken as an example.
  • the width w 5 ⁇ m
  • the height ratio of the protruding unit is 1.
  • the duty ratio was 30.5%
  • the transmittance of the anti-reflection film under this structure was 98.09%.
  • the duty ratio plays a vital role in the protection function regardless of the shape of the convex unit.
  • the convex unit which is connected to each other to form a closed mesh structure has the strongest protection function because the mesh structure itself is the strongest.
  • the mesh structure belongs to the surface contact to a certain extent, and the external force can be well dispersed, so that the wear of the convex unit can be reduced.
  • the present embodiment provides a method for preparing a mold for preparing the antireflection film of Embodiment 1 or Embodiment 2 or Embodiment 3, the preparation method comprising the following steps:
  • Step 100 Prepare an aluminum substrate, clean the aluminum substrate, and polish the surface. Specifically, the aluminum substrate is sequentially washed in absolute ethanol and deionized water, and the washed aluminum substrate is used as an anode, and graphite is used as a cathode.
  • the volume ratio of perchloric acid to absolute ethanol at 0 ° C is 0.2.
  • a constant voltage electrochemical polishing was carried out in the mixed solution at a voltage of 23 V and a polishing time of 5 minutes to obtain a polished aluminum substrate.
  • the purity of the aluminum substrate that is, the ratio of aluminum to the total mass of the aluminum substrate is preferably from 97% to 99.999%, more preferably from 99.5% to 99.999%.
  • the subwavelength structure of the size which scatters visible light or the regularity of the pores obtained by anodization is reduced by segregation of impurities during anodic oxidation.
  • Step 200 performing an anodizing treatment on the surface of the aluminum substrate to form an aluminum template having an oxide film.
  • the polished aluminum substrate was immersed in an aqueous solution of 0.3 mol/L of oxalic acid, and anodized at a direct current of 40 V and a temperature of 16 ° C for 6 hours to obtain an aluminum template having an oxide film.
  • Step 300 removing the oxide film formed on the surface of the aluminum template after the treatment of the step 200, and performing anodizing again to obtain an anodized aluminum oxide template having a subwavelength structure layer.
  • an aluminum template having an oxide film was immersed in an aqueous solution containing 6% phosphoric acid and 1.8% chromic acid to remove the oxide film.
  • the aluminum substrate after removing the oxide film was immersed in a 0.3 mol/L aqueous solution of oxalic acid, and anodized for 20 seconds under a condition of direct current 40 V and a temperature of 16 ° C, and the aluminum substrate was immersed at a temperature of 32. Soak for 8 minutes in a 5% phosphoric acid aqueous solution at °C.
  • Step 400 step 300 is repeated, typically 4 times, to obtain a final anodized aluminum template having a subwavelength structure layer 1 as shown in FIG.
  • Step 500 applying a uniform thickness of the photoresist on the sub-wavelength structure layer, and exposing, developing, and surface releasing the photoresist by using a photomask to obtain a convex similar to that shown in FIG. 1 or 8.
  • the initial mold of the structure, wherein the shape of the raised structure is determined by a photomask.
  • Step 600 coating a UV-curable glue layer on the initial mold, the thickness of the UV-curable glue layer is greater than the height of the protrusion; curing the UV-curable glue layer, peeling off the initial mold, and removing residual photoresist
  • the final mold of the antireflection film as shown in Fig. 15 or 16.
  • the fabricated anodized aluminum oxide template having a conical pore (ie, a sub-wavelength structural layer) having an average interval of 100 nm and a depth of 200 nm is sufficiently dried, and then coated with a thickness of 10 ⁇ m on the surface thereof.
  • Glue the photoresist is SU-8 series manufactured by MicroChem Corp. of the United States.
  • the photomask was covered on the surface of the photoresist, and exposed to ultraviolet light of 365 wavelengths for 30 seconds, wherein the light-transmissive region of the photomask was as shown in FIG.
  • the width was 5 ⁇ m according to the pitch of 70 ⁇ m.
  • the photoresist is fully developed with a photoresist developer to completely clean the photoresist that has not been exposed. Since the SU-8 series glue is a negative glue, the exposed photoresist will be cross-linked without being washed away by the developer, so after sufficient development, a width of 5 ⁇ m will remain on the anodized aluminum template.
  • the anodized aluminum plate having the convex unit obtained above was subjected to a release treatment.
  • the thickness of the glue should completely cover the convex unit, and then press a transparent film substrate on the surface of the glue while using a high-pressure mercury lamp or LED (lighting)
  • the diode is irradiated with UV light to completely cure the UV-curable glue.
  • the mold was peeled off to obtain a polymer film comprising a subwavelength structure and a convex structure, and the remaining SU-8 glue was removed to obtain a final mold.
  • the embodiment provides a method for preparing an anti-reflection film.
  • the preparation method uses the mold prepared in Example 4 (see FIG. 15 and FIG. 16) to prepare an anti-reflection film, specifically, a UV-curable glue on a substrate;
  • the mold produced by the preparation method of Example 4 was wrapped on a plate roll, and the UV-curable glue was subjected to ultraviolet imprint to form the reflective film.
  • the antireflection film of Example 1 or 2 or 3 can be mass-produced by using the mold.
  • the material of the substrate may be PET (polyethylene terephthalate), PP (polypropylene), PE (polyethylene), PMMA (polymethyl methacrylate), PC (polycarbonate), wherein PP is preferably BOPP (biaxially oriented polypropylene film).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

一种减反射薄膜及其制备方法、其模具的制备方法,其中,减反射薄膜包括亚波长结构层(1),亚波长结构层(1)上具有凸起结构(2),凸起结构(2)能对亚波长结构层(2)起到保护作用,一方面避免油渍和细小尘埃吸附于亚波长结构的凹凸结构(2)中,另一方面避免了亚波长结构层(1)的凹凸结构与硬物接触和摩擦引起的凹凸结构损坏的现象,从而减反射薄膜的使用寿命大大延长。

Description

减反射薄膜及其制备方法、其模具的制备方法
本申请要求申请日为2016年9月14日的中国专利申请CN201610825584.5的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种减反射薄膜及其制备方法、其模具的制备方法。
背景技术
亚波长结构的减反射薄膜在光电探测器、半导体激光器以及发光二级管等光学器件上有着非常重要的意义和广泛的应用。该减反射膜中起减反射作用的主要为凹凸结构层,但是该凹凸结构容易吸附油渍和细小尘埃,而油渍和细小尘埃会影响减反射薄膜的减反射的光学效果,从而影响器件的光透率。减反射膜与硬物接触和摩擦,其凹凸结构容易损坏,同样会破坏亚波长结构的减反射薄膜的减反射效果。可见,现有的亚波长结构的减反射薄膜的使用寿命较短。
发明内容
本发明要解决的技术问题是为了克服现有技术的亚波长结构的减反射薄膜由于凹凸结构容易损坏、且容易吸附油渍和细小尘埃,致使减反射效果消弱,从而导致减反射薄膜使用寿命短的缺陷,提供一种减反射薄膜及其制备方法、其模具的制备方法。
本发明是通过下述技术方案来解决上述技术问题的:
一种减反射薄膜,其特点在于,所述减反射薄膜包括亚波长结构层,所述亚波长结构层上具有凸起结构。
本方案中的亚波长结构层即为薄膜表层的纳米级的凹凸结构,该凹凸结构起到抑制光反射的作用。由于纳米级的凹凸结构容易吸附油渍及小尘埃,且其与硬物接触、摩擦容易损坏,致使抑制光反射的效果大大消弱,而本方案中的凸起结构能够对亚波长结构层起到很好的保护效果,从而延长减反射薄膜的使用寿命。
较佳地,所述凸起结构垂直投影于所述亚波长结构层上的形状为网状结构;
所述凸起结构包括若干凸起单元,所述凸起单元为多边形,且相邻的凸起单元连接形成所述网状结构。
较佳地,所述凸起结构的占空比为5%-50%,所述占空比为投影面积与所述减反射薄 膜的面积之比;
和/或,所述凸起单元的高宽比为0.5-5;
和/或,所述凸起单元的宽度为1μm-20μm,所述凸起单元的高度为0.5μm-20μm。
较佳地,所述凸起结构的占空比为5%-20%;
和/或,所述凸起单元的高宽比为1-3;
和/或,所述凸起单元的宽度为2μm-10μm,所述凸起单元的高度为2μm-10μm。
较佳地,所述凸起结构包括若干凸起单元,所述若干凸起单元分散地布置于所述亚波长结构层,且所述凸起单元投影于所述亚波长结构层上的形状为线条型。
较佳地,所述凸起单元投影于所述亚波长结构层上的形状为T形。
较佳地,所述若干凸起单元随机排布。
较佳地,所述凸起结构的占空比为3%-30%,所述占空比为所述凸起结构的投影面积与所述减反射薄膜的面积之比;
和/或,所述凸起单元的高宽比为0.5-5;
和/或,所述凸起单元的宽度为1μm-30μm,所述凸起单元的高度为0.5μm-20μm。
较佳地,所述凸起结构的占空比为3%-20%;
和/或,所述凸起单元的高宽比为1-3;
和/或,所述凸起单元的宽度为2μm-20μm,所述凸起单元的高度为2μm-10μm。
较佳地,所述凸起结构包括若干凸起单元,所述若干凸起单元分散地布置于所述亚波长结构层,且所述凸起单元为柱状。
较佳地,所述凸起单元为圆柱体、长方体、三角柱、六角柱和不规则多面体中的一种或多种。
较佳地,所述若干凸起单元随机排布。
较佳地,所述凸起结构的占空比为1%-30%,所述占空比为所述凸起结构的投影面积与所述减反射薄膜的面积之比;
和/或,所述凸起单元的高宽比为0.5-5;
和/或,所述凸起单元的宽度为1μm-50μm,所述凸起单元的高度为0.5μm-30μm。
较佳地,所述凸起结构的占空比为2%-20%;
和/或,所述凸起单元的高宽比为1-3;
和/或,所述凸起单元的宽度为2μm-30μm,所述凸起单元的高度为2μm-20μm。
本发明还提供一种用于制备如上所述的减反射薄膜的模具的制备方法,其特点在于,所述制备方法包括以下步骤:
S100、将具有亚波长结构层的阳极氧化铝模板清洗后,进行烘干;
S200、在所述亚波长结构层涂抹厚度均匀的光刻胶,并采用光掩膜版对光刻胶进行曝光、显影以及表面脱模处理后得到具有凸起结构的初始模具;
S300、在初始模具涂布紫外固化胶水层,所述紫外固化胶水层的厚度大于所述凸起结构的高度;使紫外固化胶水层固化,剥离所述初始模具,并去除残留的光刻胶得到减反射薄膜的最终模具。
较佳地,在步骤S100之前,还包括制作阳极氧化铝模板的步骤:
S001、将铝基片清洗和抛光后,对铝基片的表面进行一次阳极氧化处理形成具有氧化覆膜的铝模板;
S002、去除铝模板表面形成的氧化覆膜,并再次进行阳极氧化处理以得到具有亚波长结构层的阳极氧化铝模板。
较佳地,所述铝基片的纯度为97%-99.999%。
较佳地,在步骤S001中,将铝基片进行清洗的步骤包括:
将铝基片依次置于无水乙醇和去离子水中进行清洗;
将铝基片进行抛光的步骤包括:
将清洗后的铝基片作为阳极,石墨作为阴极,在0℃的高氯酸和无水乙醇的体积比值为0.2的混合溶液中进行恒定电压电化学抛光,电压为23V,抛光时间为5分钟,得到抛光后的铝基片;
对铝基片的表面进行一次阳极氧化处理的步骤包括:
将抛光后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行6小时的阳极氧化处理,得到具有氧化覆膜的铝模板。
较佳地,在步骤S002中,去除铝模板表面形成的氧化覆膜的步骤包括:
将具有氧化覆膜的铝模板浸泡在含6%的磷酸和1.8%的铬酸的水溶液中;
再次进行阳极氧化处理的步骤包括:
将去除氧化覆膜后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行20秒的阳极氧化处理,又将铝基片浸泡在温度为32℃的5%磷酸水溶液中浸泡8分钟。
较佳地,所述制备方法还包括:重复执行步骤S002
本发明还提供一种减反射薄膜的制备方法,其特点在于,所述制备方法包括以下步骤:
在一基材上涂抹紫外固化胶水;
使用如上所述的制备方法制造出的模具对所述紫外固化胶水进行紫外压印,形成所述反射薄膜。
本发明的积极进步效果在于:本发明的减反射薄膜包括亚波长结构层和凸起结构,凸起结构能对亚波长结构层起到保护作用,一方面避免油渍和细小尘埃吸附于亚波长结构的凹凸结构中,另一方面避免了亚波长结构层的凹凸结构与硬物接触和摩擦引起的凹凸结构损坏的现象,从而本发明的减反射薄膜的使用寿命大大延长。
附图说明
图1为本发明实施例1的减反射薄膜的结构示意图。
图2为图1中的减反射薄膜的凸起结构的第一投影结构示意图。
图3为图1中的减反射薄膜的凸起结构的第二投影结构示意图。
图4为图1中的减反射薄膜的凸起结构的第三投影结构示意图。
图5为图1中的减反射薄膜的凸起结构的第四投影结构示意图。
图6为图1中的减反射薄膜的凸起结构的第五投影结构示意图。
图7为本发明实施例1的减反射薄膜的立体图。
图8为本发明实施例2的减反射薄膜的结构示意图。
图9为图8中的减反射薄膜的凸起结构的第一投影结构示意图。
图10为图8中的减反射薄膜的凸起结构的第二投影结构示意图。
图11为本发明实施例3的减反射薄膜的凸起结构的第一投影结构示意图。
图12为本发明实施例3的减反射薄膜的凸起结构的第二投影结构示意图。
图13为本发明实施例4的制备减反射薄膜的模具的制备方法的流程图。
图14为图13中步骤400之后得到的具有亚波长结构的阳极氧化铝模板的结构示意图。
图15为经过图13中的方法流程制得的最终模板的第一结构示意图。
图16为经过图13中的方法流程制得的最终模板的第二结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。本领域技术人员通过阅读下述内容,可以通过变化结构参数,得到线性变化的占空比(即凸起结构的投影面积与减反射薄膜的面积之比)及对应结构,实施例中所体现的是较优值和/或具有参考意义的经典数值。
实施例1
如图1-6所示,本实施例的减反射薄膜包括亚波长结构层1,该亚波长结构层上具有凸起结构2,该凸起结构对亚波长结构层起保护作用。为了避免在运输、储存过程中对减反射薄膜的损坏,本实施例的减反射薄膜还可包括保护层3,凸起结构3位于保护层3和亚波长结构层1之间。当然,在使用减反射薄膜时,需将该保护层撕去,以避免其影响薄膜的减反射功能。
本实施例中,如图2-6所示,凸起结构垂直投影于亚波长结构层上的形状为网状结构。凸起结构又包括若干凸起单元21,凸起单元21为多边形,且相邻的凸起单元连接形成网状结构。其中,多边形可以为规则的多边形结构,也即网状结构的网孔可以是如图2所示的正六边形,也可以为正方形、菱形、椭圆、圆形或其它规则图形,在此不一一赘述。当然,多边形也可以是不规则的形状(参见图4-6)。由于目前绝大多数的显示器均为LCD(液晶显示器),而LCD的像素单元也是周期排布,也即形状规则的矩形单元。规则的网状结构与规则的LCD的像素单元间叠加会产生莫尔条纹现象,从而影响到LCD的显示效果。而如图4-6所示的不规则的网状结构的线条在各个角度上是随机均匀分布的,可以很好的避免莫尔条纹现象的产生。
经过多次试验可知,凸起结构的占空比对减反射膜的性能有最直接的影响,占空比是指凸起结构的投影面积与减反射薄膜的面积之比。占空比越大,其对减反射纳米结构的保护越好,但减反射能力降低的就越多。相反,凸起单元排布密度越小,也即占空比越小,其对减反射纳米结构的保护就越差,而其减反射能力降低的就越少。而凸起结构的排布密度又与凸起单元的高宽比有直接关系,其中高宽比是指凸起单元的高度和宽度(凸起单元垂直投影于亚波长结构层上的形状的宽度)的比值,如图7所示,也即h/w。高宽比越大,相同宽度情况下,凸起结构就越高,其排布密度就可以越小。因此,合理的选择凸起结构的尺寸和排布密度至关重要。本实施例中,凸起结构的占空比为5%-50%,优选的为5%-20%;凸起单元的高宽比为0.5-5,优选的为1-3;凸起单元的宽度w为1μm-20μm,优选的为2μm-10μm;凸起单元的高度h为0.5μm-20μm,优选的为2μm-10μm。
下面以如图2所示的凸起单元为具体实例说明其减反射性能。该正六边形结构的凸起单元的高度h=10μm,宽度w=5μm,凸起单元高宽比为2,凸起结构的占空比为9.75%。常规亚波长减反射膜的减反射性能均在99%以上,以99%为准,若光膜单面的透过率为96%,则该结构下减反射膜的透过率为98.71%。
又以图3所示的凸起单元为具体实例说明其减反射性能。若该正方形结构的凸起单元的高度h=10μm,宽度w=5μm,正方形边长a=70μm,凸起单元的高宽比为2,凸起结 构的占空比为13.78%,则该结构下减反射膜的透过率为98.59%。若该正方形结构的凸起单元的高度h=10μm,宽度w=5μm,边长a=200μm,此时凸起单元的高宽比为2,凸起结构的占空比为4.94%,则该结构下减反射膜的透过率为98.85%。若该正方形结构的凸起单元的高度h=5μm,宽度w=5μm,边长a=30μm,则凸起单元的高宽比为1,凸起结构的占空比为30.56%,则该结构下减反射膜的透过率为98.08%。
需要说明的是,网状结构的网状线除了直线型,还可以是折线、或者曲线。例如,如图5所示,线条夹角为60°等长的折线的凸起单元。也可以是如图6所示的结构,凸起单元的结合部采用圆滑过渡,这样可以提高凸起结构的强度,同时易于制版,在保证同样保护效果的前提下,可以适当降低凸起单元的宽度w以降低占空比,提高减反射膜的透过率。由此可以看出,合理地选择凸起结构的排布方式和占空比,在达到保护亚波长结构的基础上,并不会过多地降低减反射膜的减反射性能。从而,本实施例的减反射薄膜的使用寿命大大延长。
实施例2
实施例2与实施例1基本相同,如图8-10所示,不同之处在于,本实施例的凸起单元21为柱状,且分散地布置于亚波长结构层,则其投影为柱状结构。具体地,凸起单元可以为圆柱体、长方体、三角柱、六角柱和不规则多面体中的一种或多种,也即凸起单元的具体投影形状可以为圆形、矩形、菱形、三角形、六角形、不规则形状等任意形状设计。
其中,凸起单元可以按规则排列(参见图9),也可以随机任意排列(参见图10),若凸起单元按规则排布(可以是按正方形,正三角形,菱形或其它规则周期排布),还可以设置相邻的凸起单元之间的距离为30μm-50μm,即中心距为30μm-50μm。同样,按规则排布的柱状结构应用在LCD表面时同样会面临莫尔条纹的问题,而随机排布的柱状结构可以解决这个问题。
柱状结构的高宽比和占空比同样对减反射膜性能有直接的影响。经过多次试验可知,柱状结构相比较网状结构占用面积较小,因此它具有更小的占空比。本实施例中,凸起结构的占空比为1%-30%,优选的为2%-20%;凸起单元的高宽比为0.5-5,优选的为1-3;凸起单元的高度为0.5μm-30μm,优选的为2μm-20μm;凸起单元的宽度为1μm-50μm,优选的为2μm-30μm。
下面以如图9所示的凸起单元为具体实例说明其减反射性能。此时凸起单元为柱状,且以正方形排列,若凸起单元的高度h=10μm,直径d=5μm,间距l=30μm,此时凸起单元的高宽比(高为h,宽度为凸起单元的投影形状的宽度,本实施例的凸起单元的投影形 状为圆形,则其高宽比为h/d,其中d为圆形的直径)为2,凸起结构的占空比仅为2.2%,该结构下减反射膜的透过率为98.93%。若凸起单元的高度h=5μm,直径d=5μm,间距l=8μm,此时凸起单元的高宽比为1,凸起结构的占空比为30.66%,该结构下减反射膜的透过率为98.08%。若凸起单元的高度d=10μm,直径d=5μm,间距l=44μm,此时凸起单元的高宽比为2,凸起结构的占空比为1.01%,该结构下减反射膜透过率为98.97%。
可见,占空比越小,对减反射膜的减反射性能影响就越小。虽然柱状结构的凸起单元可以具有很小的占空比,对减反射膜的减反射性能影响也较小,但由于其本身的结构特征导致它在受外力接触摩擦过程中也更容易倾倒,使其保护功能较网状结构和线条型结构的凸起结构相对较弱。
实施例3
实施例3与实施例1基本相同,如图11-12所示,不同之处在于,各个凸起单元21相互独立,且垂直投影于亚波长结构层上的形状为线条型,即未连接成网状结构。其中凸起单元的形状也可任意设置,如图11所示,凸起单元的投影形状为单线条型;如图12所示,凸起单元的投影形状为T型线条。线条型结构相比较柱状结构具有更强的耐摩擦性,尤其是图12所示的T型线条结构。这种线条结构具有更好的稳定性,使其在外界接触摩擦过程中更能保持稳固。
本实施例中,线条型结构凸起单元的宽度w为1-30μm,优选的为2-20μm;凸起单元的高度为0.5-20μm,优选的为2-10μm;凸起单元的高宽比为0.5-5,优选的为1-3;凸起结构的占空比为3%-30%,优选的为3%-20%。
下面举两个具体的实例。
如图11所示,规则排布的单线条型结构的凸起单元,其高度h=10μm,宽度w=5μm,长度L=10μm,此时凸起单元的高宽比为2,凸起结构的占空比为5.6%,该结构下减反射膜的透过率为98.83%。若凸起单元的高度h=10μm,宽度w=5μm,长度L=10μm,此时凸起单元的高宽比为2,凸起结构的占空比为3.1%,该结构下减反射膜的透过率为98.91%。
如图12所示,无规则排布的T型线条结构的凸起单元,其具体尺寸为高度h=10μm,宽度w=5μm,T型横竖两线条长度相同均为L=10μm,此时凸起单元的高宽比为2,设计凸出结构的占空比为7.2%,结构下减反射膜的透过率为98.78%。同样以图12的凸出结构为例,此时凸起单元的高度h=5μm,宽度w=5μm,T型横竖两线条长度相同均为L=10μm,凸出单元高宽比为1,设计占空比为30.5%,该结构下减反射膜的透过率为98.09%。
通过以上实施例对比可知,不管凸起单元为何种形状的结构,占空比对其保护功能起到至关重要的影响,占空比越大,凸起单元越密集,其能起到的保护功能就越强。而在占空比相近的情况下,彼此连结成闭合网状结构的凸起单元的保护功能最强,因为这种网状结构本身最牢固。另一方面,当外物与凸起单元接触时,网状结构一定程度上属于面接触,可以很好地将外力分散开,这样可降低凸起单元的磨损。
实施例4
如图13所示,本实施例提供一种用于制备实施例1或实施例2或实施例3的减反射薄膜的模具的制备方法,该制备方法包括以下步骤:
步骤100、准备铝基片,将铝基片清洗、表面抛光。具体地,将铝基片依次置于无水乙醇和去离子水中进行清洗,将清洗后的铝基片作为阳极,石墨作为阴极,在0℃的高氯酸和无水乙醇的体积比值为0.2的混合溶液中进行恒定电压电化学抛光,电压为23V,抛光时间为5分钟,得到抛光后的铝基片。其中,铝基片的纯度,即铝相对于铝基片的总质量的比率优选为97%~99.999%,更优选为99.5%~99.999%。铝基片的纯度不足97%时,在阳极氧化时,由于杂质的偏析而形成使可见光散射的大小的亚波长结构、或阳极氧化得到的细孔的规则性降低。
步骤200、对铝基片的表面进行一次阳极氧化处理形成具有氧化覆膜的铝模板。具体地,将抛光后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行6小时的阳极氧化处理,得到具有氧化覆膜的铝模板。
步骤300、去除经过步骤200的处理后在铝模板表面形成的氧化覆膜,并再次进行阳极氧化处理以得到具有亚波长结构层的阳极氧化铝模板。具体地,将具有氧化覆膜的铝模板浸泡在含6%的磷酸和1.8%的铬酸的水溶液中以去除氧化覆膜。将去除氧化覆膜后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行20秒的阳极氧化处理,又将铝基片浸泡在温度为32℃的5%磷酸水溶液中浸泡8分钟。
步骤400、重复执行步骤300,一般为4次,得到如图14所示的最终的具有亚波长结构层1的阳极氧化铝模板。
步骤500、在所述亚波长结构层涂抹厚度均匀的光刻胶,并采用光掩膜版对光刻胶进行曝光、显影以及表面脱模处理后得到类似如图1或8所示的具有凸起结构的初始模具,其中,凸起结构的形状排布由光掩膜版确定。
步骤600、在初始模具涂布紫外固化胶水层,所述紫外固化胶水层的厚度大于所述凸起的高度;使紫外固化胶水层固化,剥离所述初始模具,并去除残留的光刻胶得到如图15或16所示的减反射薄膜的最终模具。
下面说明高度h=10μm,直径w=5μm的正方形排列的柱状结构的模具的制作过程。将制作完成的表面具有平均间隔100nm、深度200nm的圆锥形状细孔(也即亚波长结构层)的阳极氧化铝模板清洗后充分烘干,然后在其表面涂布一层厚度为10μm的光刻胶,所述光刻胶为美国MicroChem Corp.生产的SU-8系列。将光掩膜版覆盖于光刻胶表面,用365波长的紫外光对其进行曝光30秒,其中光掩膜版的透光区域为如图3所示的,宽度为5μm按照间距70μm正方形规则排列的网状图形。用光刻胶显影液对光刻胶进行充分显影,完全清洗掉没有经过曝光的光刻胶。由于SU-8系列胶水为负胶,经过曝光后的光刻胶会反生交联而不会被显影液洗掉,因此经充分显影后,在阳极氧化铝模板上就会留下宽度5μm,高度10μm,间距70μm正方形规则排列的网状凸起结构。将上述制得的具有凸起单元的阳极氧化铝模板进行脱模处理。向经脱模处理的模板表面涂布一层紫外固化型胶水,胶水的厚度要完全覆盖住凸起单元,然后在胶水表面压合一层透明薄膜基材,同时用高压汞灯或LED(发光二极管)紫外灯照射,使紫外固化胶水完全固化。随后,剥离模具,得到包含亚波长结构和凸起结构的聚合物薄膜,将残留的SU-8胶去除即可得到最终模具。
实施例5
本实施例提供一种减反射薄膜的制备方法,该制备方法采用实施例4制得的模具(参见图15和图16)制备减反射薄膜,具体地,在基材上涂抹紫外固化胶水;将实施例4的制备方法制造出的模具包裹在版辊上,并对所述紫外固化胶水进行紫外压印,形成所述反射薄膜。采用该模具即可批量生产实施例1或2或3中的减反射薄膜。其中基材的材质可以是PET(聚对苯二甲酸乙二醇酯)、PP(聚丙烯)、PE(聚乙烯)、PMMA(聚甲基丙烯酸甲酯)、PC(聚碳酸酯),其中PP优选BOPP(双向拉伸聚丙烯薄膜)。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (19)

  1. 一种减反射薄膜,其特征在于,所述减反射薄膜包括亚波长结构层,所述亚波长结构层上具有凸起结构。
  2. 如权利要求1所述的减反射薄膜,其特征在于,所述凸起结构垂直投影于所述亚波长结构层上的形状为网状结构;
    所述凸起结构包括若干凸起单元,所述凸起单元为多边形,且相邻的凸起单元连接形成所述网状结构。
  3. 如权利要求2所述的减反射薄膜,其特征在于,所述凸起结构的占空比为5%-50%,所述占空比为所述凸起结构的投影面积与所述减反射薄膜的面积之比;
    和/或,所述凸起单元的高宽比为0.5-5;
    和/或,所述凸起单元的宽度为1μm-20μm,所述凸起单元的高度为0.5μm-20μm。
  4. 如权利要求3所述的减反射薄膜,其特征在于,所述凸起结构的占空比为5%-20%;
    和/或,所述凸起单元的高宽比为1-3;
    和/或,所述凸起单元的宽度为2μm-10μm,所述凸起单元的高度为2μm-10μm。
  5. 如权利要求1所述的减反射薄膜,其特征在于,所述凸起结构包括若干凸起单元,所述若干凸起单元分散地布置于所述亚波长结构层,且所述凸起单元投影于所述亚波长结构层上的形状为线条型。
  6. 如权利要求5所述的减反射薄膜,其特征在于,所述凸起单元投影于所述亚波长结构层上的形状为T形;
    和/或,所述若干凸起单元随机排布。
  7. 如权利要求5或6所述的减反射薄膜,其特征在于,所述凸起结构的占空比为3%-30%,所述占空比为所述凸起结构的投影面积与所述减反射薄膜的面积之比;
    和/或,所述凸起单元的高宽比为0.5-5;
    和/或,所述凸起单元的宽度为1μm-30μm,所述凸起单元的高度为0.5μm-20μm。
  8. 如权利要求7所述的减反射薄膜,其特征在于,所述凸起结构的占空比为3%-20%;
    和/或,所述凸起单元的高宽比为1-3;
    和/或,所述凸起单元的宽度为2μm-20μm,所述凸起单元的高度为2μm-10μm。
  9. 如权利要求1所述的减反射薄膜,其特征在于,所述凸起结构包括若干凸起单元,所述若干凸起单元分散地布置于所述亚波长结构层,且所述凸起单元为柱状。
  10. 如权利要求9所述的减反射薄膜,其特征在于,所述凸起单元为圆柱体、长方 体、三角柱、六角柱和不规则多面体中的一种或多种;
    和/或,所述若干凸起单元随机排布。
  11. 如权利要求9或10所述的减反射薄膜,其特征在于,所述凸起结构的占空比为1%-30%,所述占空比为所述凸起结构的投影面积与所述减反射薄膜的面积之比;
    和/或,所述凸起单元的高宽比为0.5-5;
    和/或,所述凸起单元的宽度为1μm-50μm,所述凸起单元的高度为0.5μm-30μm。
  12. 如权利要求11所述的减反射薄膜,其特征在于,所述凸起结构的占空比为2%-20%;
    和/或,所述凸起单元的高宽比为1-3;
    和/或,所述凸起单元的宽度为2μm-30μm,所述凸起单元的高度为2μm-20μm。
  13. 一种用于制备如权利要求1-12中任意一项所述的减反射薄膜的模具的制备方法,其特征在于,所述制备方法包括以下步骤:
    S100、将具有亚波长结构层的阳极氧化铝模板清洗后,进行烘干;
    S200、在所述亚波长结构层涂抹厚度均匀的光刻胶,并采用光掩膜版对光刻胶进行曝光、显影以及表面脱模处理后得到具有凸起结构的初始模具;
    S300、在初始模具涂布紫外固化胶水层,所述紫外固化胶水层的厚度大于所述凸起结构的高度;使紫外固化胶水层固化,剥离所述初始模具,并去除残留的光刻胶得到减反射薄膜的最终模具。
  14. 如权利要求13所述的制备方法,其特征在于,在步骤S100之前,还包括制作阳极氧化铝模板的步骤:
    S001、将铝基片清洗和抛光后,对铝基片的表面进行一次阳极氧化处理形成具有氧化覆膜的铝模板;
    S002、去除铝模板表面形成的氧化覆膜,并再次进行阳极氧化处理以得到具有亚波长结构层的阳极氧化铝模板。
  15. 如权利要求14所述的制备方法,其特征在于,所述铝基片的纯度为97%-99.999%。
  16. 如权利要求14或15所述的制备方法,其特征在于,在步骤S001中,将铝基片进行清洗的步骤包括:
    将铝基片依次置于无水乙醇和去离子水中进行清洗;
    将铝基片进行抛光的步骤包括:
    将清洗后的铝基片作为阳极,石墨作为阴极,在0℃的高氯酸和无水乙醇的体积比值为0.2的混合溶液中进行恒定电压电化学抛光,电压为23V,抛光时间为5分钟,得到抛 光后的铝基片;
    对铝基片的表面进行一次阳极氧化处理的步骤包括:
    将抛光后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行6小时的阳极氧化处理,得到具有氧化覆膜的铝模板。
  17. 如权利要求14-16中至少一项所述的制备方法,其特征在于,在步骤S002中,去除铝模板表面形成的氧化覆膜的步骤包括:
    将具有氧化覆膜的铝模板浸泡在含6%的磷酸和1.8%的铬酸的水溶液中;
    再次进行阳极氧化处理的步骤包括:
    将去除氧化覆膜后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行20秒的阳极氧化处理,又将铝基片浸泡在温度为32℃的5%磷酸水溶液中浸泡8分钟。
  18. 如权利要求17所述的制备方法,其特征在于,所述制备方法还包括:重复执行步骤S002
  19. 一种减反射薄膜的制备方法,其特征在于,所述制备方法包括以下步骤:
    在一基材上涂抹紫外固化胶水;
    使用如权利要求13-18中任意一项所述的制备方法制造出的模具对所述紫外固化胶水进行紫外压印,形成所述反射薄膜。
PCT/CN2017/092750 2016-09-14 2017-07-13 减反射薄膜及其制备方法、其模具的制备方法 WO2018049898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610825584.5 2016-09-14
CN201610825584.5A CN107092044A (zh) 2016-09-14 2016-09-14 减反射薄膜及其制备方法、其模具的制备方法

Publications (1)

Publication Number Publication Date
WO2018049898A1 true WO2018049898A1 (zh) 2018-03-22

Family

ID=59648645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092750 WO2018049898A1 (zh) 2016-09-14 2017-07-13 减反射薄膜及其制备方法、其模具的制备方法

Country Status (2)

Country Link
CN (1) CN107092044A (zh)
WO (1) WO2018049898A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766649A (zh) * 2019-03-30 2020-10-13 华为技术有限公司 一种光学元件、摄像头模组、终端和光学元件的加工方法
WO2020216199A1 (zh) * 2019-04-26 2020-10-29 华为技术有限公司 一种减反射膜、光学元件、摄像头模组和终端
CN115616688B (zh) * 2022-09-08 2024-05-14 荣耀终端有限公司 减反射膜及其制造方法、电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315526A (ja) * 2002-04-26 2003-11-06 Konica Minolta Holdings Inc 回折光学素子及びその製造方法
CN101398618A (zh) * 2008-10-30 2009-04-01 上海交通大学 亚波长结构的减反射膜的制备方法
JP2011150186A (ja) * 2010-01-22 2011-08-04 Ricoh Optical Industries Co Ltd 反射防止光学素子およびレーザ光源装置
CN103364848A (zh) * 2012-03-29 2013-10-23 佳能株式会社 具有凹凸结构的光学部件及其制备方法
CN103668130A (zh) * 2012-09-25 2014-03-26 海洋王照明科技股份有限公司 一种金属纳米结构的制备方法
JP2015079274A (ja) * 2014-12-22 2015-04-23 王子ホールディングス株式会社 凹凸パターンシートの製造方法、及び光学シートの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257066B2 (ja) * 2008-12-26 2013-08-07 ソニー株式会社 光学素子、表示装置、反射防止機能付き光学部品、および原盤
CN104166173B (zh) * 2013-05-17 2016-08-24 群创光电股份有限公司 抗反射基板及包含其的显示设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315526A (ja) * 2002-04-26 2003-11-06 Konica Minolta Holdings Inc 回折光学素子及びその製造方法
CN101398618A (zh) * 2008-10-30 2009-04-01 上海交通大学 亚波长结构的减反射膜的制备方法
JP2011150186A (ja) * 2010-01-22 2011-08-04 Ricoh Optical Industries Co Ltd 反射防止光学素子およびレーザ光源装置
CN103364848A (zh) * 2012-03-29 2013-10-23 佳能株式会社 具有凹凸结构的光学部件及其制备方法
CN103668130A (zh) * 2012-09-25 2014-03-26 海洋王照明科技股份有限公司 一种金属纳米结构的制备方法
JP2015079274A (ja) * 2014-12-22 2015-04-23 王子ホールディングス株式会社 凹凸パターンシートの製造方法、及び光学シートの製造方法

Also Published As

Publication number Publication date
CN107092044A (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
JP4583506B2 (ja) 反射防止膜、および反射防止膜を備える光学素子、ならびに、スタンパ、およびスタンパの製造方法、ならびに反射防止膜の製造方法
WO2018049898A1 (zh) 减反射薄膜及其制备方法、其模具的制备方法
JP4677515B2 (ja) 型およびその製造方法
US9127371B2 (en) Mold and production method for same, and anti-reflection film
US9469056B2 (en) Mold, mold manufacturing method and method for manufacturing anti-reflection film using the mold
WO2011046114A1 (ja) 型および型の製造方法ならびに反射防止膜
JP5073050B2 (ja) 光学素子、ローラー型ナノインプリント装置及び金型ロールの製造方法
WO2010073636A1 (ja) 型の製造方法および型を用いた反射防止膜の製造方法
JP4916597B2 (ja) 型および型の製造方法ならびに反射防止膜
US9108351B2 (en) Method for forming anodized layer, method for producing mold and method for producing antireflective film
JP5506804B2 (ja) 陽極酸化層の形成方法、型の製造方法、反射防止膜の製造方法、型、および反射防止膜
JP5940662B2 (ja) 反射防止フィルムの製造方法
JP2008209867A (ja) スタンパおよび防眩性反射防止物品とその製造方法
JP6458051B2 (ja) 型および型の製造方法ならびに反射防止膜
JP5769957B2 (ja) 微細構造体
Khokhar et al. Nanofabrication of gallium nitride photonic crystal light-emitting diodes
KR20120018652A (ko) 광결정 패턴이 형성된 반도체 발광 소자 및 그 제조 방법
JP2013007905A (ja) 微細構造体
TW201643544A (zh) 具遮罩之基板,以及具凹凸構造之基板的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850101

Country of ref document: EP

Kind code of ref document: A1