CN107092044A - 减反射薄膜及其制备方法、其模具的制备方法 - Google Patents

减反射薄膜及其制备方法、其模具的制备方法 Download PDF

Info

Publication number
CN107092044A
CN107092044A CN201610825584.5A CN201610825584A CN107092044A CN 107092044 A CN107092044 A CN 107092044A CN 201610825584 A CN201610825584 A CN 201610825584A CN 107092044 A CN107092044 A CN 107092044A
Authority
CN
China
Prior art keywords
protrusion element
antireflection film
bulge
sub
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610825584.5A
Other languages
English (en)
Inventor
徐良衡
庄孝磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI TIANCHENG ANTICOUNTERFEIT TECHNOLOGY CO LTD
Shanghai Techsun Anti Counterfeiting Technology Holding Co Ltd
Original Assignee
SHANGHAI TIANCHENG ANTICOUNTERFEIT TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI TIANCHENG ANTICOUNTERFEIT TECHNOLOGY CO LTD filed Critical SHANGHAI TIANCHENG ANTICOUNTERFEIT TECHNOLOGY CO LTD
Priority to CN201610825584.5A priority Critical patent/CN107092044A/zh
Priority to PCT/CN2017/092750 priority patent/WO2018049898A1/zh
Publication of CN107092044A publication Critical patent/CN107092044A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明公开了一种减反射薄膜及其制备方法、其模具的制备方法。其中,所述减反射薄膜包括亚波长结构层,所述亚波长结构层上具有凸起结构。本发明的减反射薄膜包括亚波长结构层和凸起结构,凸起结构能对亚波长结构层起到保护作用,一方面避免油渍和细小尘埃吸附于亚波长结构的凹凸结构中,另一方面避免了亚波长结构层的凹凸结构与硬物接触和摩擦引起的凹凸结构损坏的现象,从而本发明的减反射薄膜的使用寿命大大延长。

Description

减反射薄膜及其制备方法、其模具的制备方法
技术领域
本发明涉及一种减反射薄膜及其制备方法、其模具的制备方法。
背景技术
亚波长结构的减反射薄膜在光电探测器、半导体激光器以及发光二级管等光学器件上有着非常重要的意义和广泛的应用。该减反射膜中起减反射作用的主要为凹凸结构层,但是该凹凸结构容易吸附油渍和细小尘埃,而油渍和细小尘埃会影响减反射薄膜的减反射的光学效果,从而影响器件的光透率。减反射膜与硬物接触和摩擦,其凹凸结构容易损坏,同样会破坏亚波长结构的减反射薄膜的减反射效果。可见,现有的亚波长结构的减反射薄膜的使用寿命较短。
发明内容
本发明要解决的技术问题是为了克服现有技术的亚波长结构的减反射薄膜由于凹凸结构容易损坏、且容易吸附油渍和细小尘埃,致使减反射效果消弱,从而导致减反射薄膜使用寿命短的缺陷,提供一种减反射薄膜及其制备方法、其模具的制备方法。
本发明是通过下述技术方案来解决上述技术问题的:
一种减反射薄膜,其特点在于,所述减反射薄膜包括亚波长结构层,所述亚波长结构层上具有凸起结构。
本方案中的亚波长结构层即为薄膜表层的纳米级的凹凸结构,该凹凸结构起到抑制光反射的作用。由于纳米级的凹凸结构容易吸附油渍及小尘埃,且其与硬物接触、摩擦容易损坏,致使抑制光反射的效果大大消弱,而本方案中的凸起结构能够对亚波长结构层起到很好的保护效果,从而延长减反射薄膜的使用寿命。
较佳地,所述凸起结构垂直投影于所述亚波长结构层上的形状为网状结构;
所述凸起结构包括若干凸起单元,所述凸起单元为多边形,且相邻的凸起单元连接形成所述网状结构。
较佳地,所述凸起结构的占空比为5%-50%,所述占空比为投影面积与所述减反射薄膜的面积之比;
和/或,所述凸起单元的高宽比为0.5-5;
和/或,所述凸起单元的宽度为1μm-20μm,所述凸起单元的高度为0.5μm-20μm。
较佳地,所述凸起结构的占空比为5%-20%;
和/或,所述凸起单元的高宽比为1-3;
和/或,所述凸起单元的宽度为2μm-10μm,所述凸起单元的高度为2μm-10μm。
较佳地,所述凸起结构包括若干凸起单元,所述若干凸起单元分散地布置于所述亚波长结构层,且所述凸起单元投影于所述亚波长结构层上的形状为线条型。
较佳地,所述凸起单元投影于所述亚波长结构层上的形状为T形。
较佳地,所述若干凸起单元随机排布。
较佳地,所述凸起结构的占空比为3%-30%,所述占空比为所述凸起结构的投影面积与所述减反射薄膜的面积之比;
和/或,所述凸起单元的高宽比为0.5-5;
和/或,所述凸起单元的宽度为1μm-30μm,所述凸起单元的高度为0.5μm-20μm。
较佳地,所述凸起结构的占空比为3%-20%;
和/或,所述凸起单元的高宽比为1-3;
和/或,所述凸起单元的宽度为2μm-20μm,所述凸起单元的高度为2μm-10μm。
较佳地,所述凸起结构包括若干凸起单元,所述若干凸起单元分散地布置于所述亚波长结构层,且所述凸起单元为柱状。
较佳地,所述凸起单元为圆柱体、长方体、三角柱、六角柱和不规则多面体中的一种或多种。
较佳地,所述若干凸起单元随机排布。
较佳地,所述凸起结构的占空比为1%-30%,所述占空比为所述凸起结构的投影面积与所述减反射薄膜的面积之比;
和/或,所述凸起单元的高宽比为0.5-5;
和/或,所述凸起单元的宽度为1μm-50μm,所述凸起单元的高度为0.5μm-30μm。
较佳地,所述凸起结构的占空比为2%-20%;
和/或,所述凸起单元的高宽比为1-3;
和/或,所述凸起单元的宽度为2μm-30μm,所述凸起单元的高度为2μm-20μm。
本发明还提供一种用于制备如上所述的减反射薄膜的模具的制备方法,其特点在于,所述制备方法包括以下步骤:
S100、将具有亚波长结构层的阳极氧化铝模板清洗后,进行烘干;
S200、在所述亚波长结构层涂抹厚度均匀的光刻胶,并采用光掩膜版对光刻胶进行曝光、显影以及表面脱模处理后得到具有凸起结构的初始模具;
S300、在初始模具涂布紫外固化胶水层,所述紫外固化胶水层的厚度大于所述凸起结构的高度;使紫外固化胶水层固化,剥离所述初始模具,并去除残留的光刻胶得到减反射薄膜的最终模具。
较佳地,在步骤S100之前,还包括制作阳极氧化铝模板的步骤:
S001、将铝基片清洗和抛光后,对铝基片的表面进行一次阳极氧化处理形成具有氧化覆膜的铝模板;
S002、去除铝模板表面形成的氧化覆膜,并再次进行阳极氧化处理以得到具有亚波长结构层的阳极氧化铝模板。
较佳地,所述铝基片的纯度为97%-99.999%。
较佳地,在步骤S001中,将铝基片进行清洗的步骤包括:
将铝基片依次置于无水乙醇和去离子水中进行清洗;
将铝基片进行抛光的步骤包括:
将清洗后的铝基片作为阳极,石墨作为阴极,在0℃的高氯酸和无水乙醇的体积比值为0.2的混合溶液中进行恒定电压电化学抛光,电压为23V,抛光时间为5分钟,得到抛光后的铝基片;
对铝基片的表面进行一次阳极氧化处理的步骤包括:
将抛光后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行6小时的阳极氧化处理,得到具有氧化覆膜的铝模板。
较佳地,在步骤S002中,去除铝模板表面形成的氧化覆膜的步骤包括:
将具有氧化覆膜的铝模板浸泡在含6%的磷酸和1.8%的铬酸的水溶液中;
再次进行阳极氧化处理的步骤包括:
将去除氧化覆膜后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行20秒的阳极氧化处理,又将铝基片浸泡在温度为32℃的5%磷酸水溶液中浸泡8分钟。
较佳地,所述制备方法还包括:重复执行步骤S002
本发明还提供一种减反射薄膜的制备方法,其特点在于,所述制备方法包括以下步骤:
在一基材上涂抹紫外固化胶水;
使用如上所述的制备方法制造出的模具对所述紫外固化胶水进行紫外压印,形成所述反射薄膜。
本发明的积极进步效果在于:本发明的减反射薄膜包括亚波长结构层和凸起结构,凸起结构能对亚波长结构层起到保护作用,一方面避免油渍和细小尘埃吸附于亚波长结构的凹凸结构中,另一方面避免了亚波长结构层的凹凸结构与硬物接触和摩擦引起的凹凸结构损坏的现象,从而本发明的减反射薄膜的使用寿命大大延长。
附图说明
图1为本发明实施例1的减反射薄膜的结构示意图。
图2为图1中的减反射薄膜的凸起结构的第一投影结构示意图。
图3为图1中的减反射薄膜的凸起结构的第二投影结构示意图。
图4为图1中的减反射薄膜的凸起结构的第三投影结构示意图。
图5为图1中的减反射薄膜的凸起结构的第四投影结构示意图。
图6为图1中的减反射薄膜的凸起结构的第五投影结构示意图。
图7为本发明实施例1的减反射薄膜的立体图。
图8为本发明实施例2的减反射薄膜的结构示意图。
图9为图8中的减反射薄膜的凸起结构的第一投影结构示意图。
图10为图8中的减反射薄膜的凸起结构的第二投影结构示意图。
图11为本发明实施例3的减反射薄膜的凸起结构的第一投影结构示意图。
图12为本发明实施例3的减反射薄膜的凸起结构的第二投影结构示意图。
图13为本发明实施例4的制备减反射薄膜的模具的制备方法的流程图。
图14为图13中步骤400之后得到的具有亚波长结构的阳极氧化铝模板的结构示意图。
图15为经过图13中的方法流程制得的最终模板的第一结构示意图。
图16为经过图13中的方法流程制得的最终模板的第二结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。本领域技术人员通过阅读下述内容,可以通过变化结构参数,得到线性变化的占空比(即凸起结构的投影面积与减反射薄膜的面积之比)及对应结构,实施例中所体现的是较优值和/或具有参考意义的经典数值。
实施例1
如图1-6所示,本实施例的减反射薄膜包括亚波长结构层1,该亚波长结构层上具有凸起结构2,该凸起结构对亚波长结构层起保护作用。为了避免在运输、储存过程中对减反射薄膜的损坏,本实施例的减反射薄膜还可包括保护层3,凸起结构3位于保护层3和亚波长结构层1之间。当然,在使用减反射薄膜时,需将该保护层撕去,以避免其影响薄膜的减反射功能。
本实施例中,如图2-6所示,凸起结构垂直投影于亚波长结构层上的形状为网状结构。凸起结构又包括若干凸起单元21,凸起单元21为多边形,且相邻的凸起单元连接形成网状结构。其中,多边形可以为规则的多边形结构,也即网状结构的网孔可以是如图2所示的正六边形,也可以为正方形、菱形、椭圆、圆形或其它规则图形,在此不一一赘述。当然,多边形也可以是不规则的形状(参见图4-6)。由于目前绝大多数的显示器均为LCD(液晶显示器),而LCD的像素单元也是周期排布,也即形状规则的矩形单元。规则的网状结构与规则的LCD的像素单元间叠加会产生摩尔条纹现象,从而影响到LCD的显示效果。而如图4-6所示的不规则的网状结构的线条在各个角度上是随机均匀分布的,可以很好的避免摩尔条纹现象的产生。
经过多次试验可知,凸起结构的占空比对减反射膜的性能有最直接的影响,占空比是指凸起结构的投影面积与减反射薄膜的面积之比。占空比越大,其对减反射纳米结构的保护越好,但减反射能力降低的就越多。相反,凸起单元排布密度越小,也即占空比越小,其对减反射纳米结构的保护就越差,而其减反射能力降低的就越少。而凸起结构的排布密度又与凸起单元的高宽比有直接关系,其中高宽比是指凸起单元的高度和宽度(凸起单元垂直投影于亚波长结构层上的形状的宽度)的比值,如图7所示,也即h/w。高宽比越大,相同宽度情况下,凸起结构就越高,其排布密度就可以越小。因此,合理的选择凸起结构的尺寸和排布密度至关重要。本实施例中,凸起结构的占空比为5%-50%,优选的为5%-20%;凸起单元的高宽比为0.5-5,优选的为1-3;凸起单元的宽度w为1μm-20μm,优选的为2μm-10μm;凸起单元的高度h为0.5μm-20μm,优选的为2μm-10μm。
下面以如图2所示的凸起单元为具体实例说明其减反射性能。该正六边形结构的凸起单元的高度h=10μm,宽度w=5μm,凸起单元高宽比为2,凸起结构的占空比为9.75%。常规亚波长减反射膜的减反性能均在99%以上,以99%为准,若光膜单面的透过率为96%,则该结构下减反射膜的透过率为98.71%。
又以图3所示的凸起单元为具体实例说明其减反射性能。若该正方形结构的凸起单元的高度h=10μm,宽度w=5μm,正方形边长a=70μm,凸起单元的高宽比为2,凸起结构的占空比为13.78%,该结构下减反射膜的透过率为98.59%。若该正方形结构的凸起单元的高度h=10μm,宽度w=5μm,边长a=200μm,此时凸起单元的高宽比为2,凸起结构的占空比为4.94%,则该结构下减反射膜的透过率为98.85%。若该正方形结构的凸起单元的高度h=5μm,宽度w=5μm,边长a=30μm,则凸起单元的高宽比为1,凸起结构的占空比为30.56%,则该结构下减反射膜的透过率为98.08%。
需要说明的是,网状结构的网状线除了直线型,还可以是折线、或者曲线。例如,如图5所示,线条夹角为60°等长的折线的凸起单元。也可以是如图6所示的结构,凸起单元的结合部采用圆滑过渡,这样可以提高凸起结构的强度,同时易于制版,在保证同样保护效果的前提下,可以适当降低凸起单元的宽度w以降低占空比,提高减反射膜的透光率。由此可以看出,合理的选凸起结构的排布方式和占空比,在达到保护亚波长结构的基础上,并不会过多的降低减反射膜的减反射性能。从而,本实施例的减反射薄膜的使用寿命大大延长。
实施例2
实施例2与实施例1基本相同,如图8-10所示,不同之处在于,本实施例的凸起单元21为柱状,且分散地布置于亚波长结构层,则其投影为柱状结构。具体的,凸起单元可以为圆柱体、长方体、三角柱、六角柱和不规则多面体中的一种或多种,也即凸起单元的具体投影形状可以为圆形、矩形、菱形、三角形、六角形、不规则形状等任意形状设计。
其中,凸起单元可以按规则排列(参见图9),也可以随机任意排列(参见图10),若凸起单元按规则排布(可以是按正方形,正三角形,菱形或其它规则周期排布),还可以设置相邻的凸起单元之间的距离为30μm-50μm。同样,按规则排布的柱状结构应用在LCD表面时同样会面临摩尔条纹的问题,而随机排布的柱状结构可以解决这个问题。
柱状结构的高宽比和占空比同样对减反射膜性能有直接的影响。经过多次试验可知,柱状结构相比较网状结构占用面积较小,因此它具有更小的占空比。本实施例中,凸起结构的占空比为1%-30%,优选的为2%-20%;凸起单元的高宽比为0.5-5,优选的为1-3;凸起单元的高度为0.5μm-30μm,优选的为2μm-20μm;凸起单元的宽度为1μm-50μm,优选的为2μm-30μm。
下面以如图9所示的凸起单元为具体实例说明其减反射性能。此时凸起单元为柱状,且以正方形排列,若凸起单元的高度h=10μm,直径d=5μm,间距l=30μm,此时凸起单元的高宽比(高为h,宽度为凸起单元的投影形状的宽度,本实施例的凸起单元的投影形状为圆形,则其高宽比为h/d,其中d为圆形的直径)为2,凸起结构的占空比仅为2.2%,该结构下减反射膜的透过率为98.93%。若凸起单元的高度h=5μm,直径d=5μm,间距l=8μm,此时凸起单元的高宽比为1,凸起结构的占空比为30.66%,该结构下减反射膜的透过率为98.08%。若凸起单元的高度d=10μm,直径d=5μm,间距l=44μm,此时凸起单元的高宽比为2,凸起结构的占空比为1.01%,该结构下减反射膜透过率为98.97%。
可见,占空比越小,对减反射膜的减反射性能影响就越小。虽然柱状结构的凸起单元可以具有很小的占空比,对减反射膜的减反射性能影响也较小,但由于其本身的结构特征导致它在受外力接触摩擦过程中也更容易倾倒,使其保护功能较网状结构和线条型结构的凸起结构相对较弱。
实施例3
实施例3与实施例1基本相同,如图11-12所示,不同之处在于,各个凸起单元21相互独立,且垂直投影于亚波长结构层上的形状为线条型,即未连接成网状结构。其中凸起单元的形状也可任意设置,如图11所示,凸起单元的投影形状为单线条型;如图12所示,凸起单元的投影形状为T型线条。线条型结构相比较柱状结构具有更强的耐摩擦性,尤其是图12所示的T型线条结构。这种线条结构具有更好的稳定性,使其在外界接触摩擦过程中更能保持稳固。
本实施例中,线条型结构凸起单元的宽度w为1-30μm,优选的为2-20μm;凸起单元的高度为0.5-20μm,优选的为2-10μm;凸起单元的高宽比为0.5-5,优选的为1-3;凸起结构的占空比为3%-30%,优选的为3%-20%。
下面举两个具体的实例。
如图11所示,规则排布的单线条型结构的凸起单元,其高度h=10μm,宽度w=5μm,长度L=10μm,此时凸起单元的高宽比为2,凸起结构的占空比为5.6%,该结构下减反射膜的透过率为98.83%。若凸起单元的高度h=10μm,宽度w=5μm,长度L=10μm,此时凸起单元的高宽比为2,凸起结构的占空比为3.1%,该结构下减反射膜的透过率为98.91%。
如图12所示,无规则排布的T型线条结构的凸起单元,其具体尺寸为高度h=10μm,宽度w=5μm,T型横竖两线条长度相同均为L=10μm,此时凸起单元的高宽比为2,设计凸出结构的占空比为7.2%,结构下减反射膜的透过率为98.78%。同样以图12的凸出结构为例,此时凸起单元的高度h=5μm,宽度w=5μm,T型横竖两线条长度相同均为L=10μm,凸出单元高宽比为1,设计占空比为30.5%,该结构下减反射膜的透过率为98.09%。
通过以上实施例对比可知,不管凸起单元为何种形状的结构,占空比对其保护功能起到至关重要的影响,占空比越大,凸起单元越密集,其能起到的保护功能就越强。而在占空比相近的情况下,彼此连结成闭合网状结构的凸起单元的保护功能最强,因为这种网状结构本身最牢固。另一方面,当外物与凸起单元接触时,网状结构一定程度上属于面接触,可以很好的将外力分散开,这样可降低凸起单元的磨损。
实施例4
如图13所示,本实施例提供一种用于制备实施例1或实施例2或实施3的减反射薄膜的模具的制备方法,该制备方法包括以下步骤:
步骤100、准备铝基片,将铝基片清洗、表面抛光。具体的,将铝基片依次置于无水乙醇和去离子水中进行清洗,将清洗后的铝基片作为阳极,石墨作为阴极,在0℃的高氯酸和无水乙醇的体积比值为0.2的混合溶液中进行恒定电压电化学抛光,电压为23V,抛光时间为5分钟,得到抛光后的铝基片。其中,铝基材的纯度,即铝相对于铝基材的总质量的比率优选为97%~99.999%,更优选为99.5%~99.999%。铝基材的纯度不足97%时,在阳极氧化时,由于杂质的偏析而形成使可见光散射的大小的亚波长结构、或阳极氧化得到的细孔的规则性降低。
步骤200、对铝基片的表面进行一次阳极氧化处理形成具有氧化覆膜的铝模板。具体的,将抛光后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行6小时的阳极氧化处理,得到具有氧化覆膜的铝模板。
步骤300、去除经过步骤200的处理后在铝模板表面形成的氧化覆膜,并再次进行阳极氧化处理以得到具有亚波长结构层的阳极氧化铝模板。具体的,将具有氧化覆膜的铝模板浸泡在含6%的磷酸和1.8%的铬酸的水溶液中以去除氧化覆膜。将去除氧化覆膜后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行20秒的阳极氧化处理,又将铝基片浸泡在温度为32℃的5%磷酸水溶液中浸泡8分钟。
步骤400、重复执行步骤300,一般为4次,得到如图14所示的最终的具有亚波长结构层1的阳极氧化铝模板。
步骤500、在所述亚波长结构层涂抹厚度均匀的光刻胶,并采用光掩膜版对光刻胶进行曝光、显影以及表面脱模处理后得到类似如图1或8所示的具有凸起结构的初始模具,其中,凸起结构的形状排布由光掩膜版确定。
步骤600、在初始模具涂布紫外固化胶水层,所述紫外固化胶水层的厚度大于所述凸起的高度;使紫外固化胶水层固化,剥离所述初始模具,并去除残留的光刻胶得到如图15或16所示的减反射薄膜的最终模具。
下面说明高度h=10μm,直径w=5μm的正方形排列的柱状结构的模具的制作过程。将制作完成的表面具有平均间隔100nm、深度200nm的圆锥形状细孔(也即亚波长结构层)的阳极氧化铝模板清洗后充分烘干,然后在其表面涂布一层厚度为10μm的光刻胶,所述光刻胶为美国MicroChem Corp.生产的SU-8系列。将光掩膜版覆盖于光刻胶表面,用365波长的紫外光对其进行曝光30秒,其中光掩膜版的透光区域为如图3所示的,宽度为5μm按照间距70μm正方形规则排列的网状图形。用光刻胶显影液对光刻胶进行充分显影,完全清洗掉没有经过曝光的光刻胶。由于SU-8系列胶水为负胶,经过曝光后的光刻胶会反生交联而不会被显影液洗掉,因此经充分显影后,在阳极氧化铝模板上就会留下宽度5μm,高度10μm,间距70μm正方形规则排列的网状凸起结构。将上述制得的具有凸起单元的阳极氧化铝模板进行脱模处理。向经脱模处理的模板表面涂布一层紫外固化型胶水,胶水的厚度要完全覆盖住凸起单元,然后在胶水表面压合一层透明薄膜基材,同时用高压汞灯或LED(发光二极管)紫外灯照射,使紫外固化胶水完全固化。随后,剥离模具,得到包含亚波长结构和凸起结构的聚合物薄膜,将残留的SU-8胶去除即可得到最终模具。
实施例5
本实施例提供一种减反射薄膜的制备方法,该制备方法采用实施例3制得的模具(参见图15和图16)制备减反射薄膜,具体的,在基材上涂抹紫外固化胶水;将实施例4的制备方法制造出的模具包裹在版辊上,并对所述紫外固化胶水进行紫外压印,形成所述反射薄膜。采用该模具即可批量生产实施例1或2中的减反射薄膜。其中基材的材质可以是PET(聚对苯二甲酸乙二醇酯)、PP(聚丙烯)、PE(聚乙烯)、PMMA(聚甲基丙烯酸甲酯)、PC(聚碳酸酯),其中PP优选BOPP(双向拉伸聚丙烯薄膜)。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (21)

1.一种减反射薄膜,其特征在于,所述减反射薄膜包括亚波长结构层,所述亚波长结构层上具有凸起结构。
2.如权利要求1所述的减反射薄膜,其特征在于,所述凸起结构垂直投影于所述亚波长结构层上的形状为网状结构;
所述凸起结构包括若干凸起单元,所述凸起单元为多边形,且相邻的凸起单元连接形成所述网状结构。
3.如权利要求2所述的减反射薄膜,其特征在于,所述凸起结构的占空比为5%-50%,所述占空比为所述凸起结构的投影面积与所述减反射薄膜的面积之比;
和/或,所述凸起单元的高宽比为0.5-5;
和/或,所述凸起单元的宽度为1μm-20μm,所述凸起单元的高度为0.5μm-20μm。
4.如权利要求3所述的减反射薄膜,其特征在于,所述凸起结构的占空比为5%-20%;
和/或,所述凸起单元的高宽比为1-3;
和/或,所述凸起单元的宽度为2μm-10μm,所述凸起单元的高度为2μm-10μm。
5.如权利要求1所述的减反射薄膜,其特征在于,所述凸起结构包括若干凸起单元,所述若干凸起单元分散地布置于所述亚波长结构层,且所述凸起单元投影于所述亚波长结构层上的形状为线条型。
6.如权利要求5所述的减反射薄膜,其特征在于,所述凸起单元投影于所述亚波长结构层上的形状为T形。
7.如权利要求5所述的减反射薄膜,其特征在于,所述若干凸起单元随机排布。
8.如权利要求5-7中任意一项所述的减反射薄膜,其特征在于,所述凸起结构的占空比为3%-30%,所述占空比为所述凸起结构的投影面积与所述减反射薄膜的面积之比;
和/或,所述凸起单元的高宽比为0.5-5;
和/或,所述凸起单元的宽度为1μm-30μm,所述凸起单元的高度为0.5μm-20μm。
9.如权利要求8所述的减反射薄膜,其特征在于,所述凸起结构的占空比为3%-20%;
和/或,所述凸起单元的高宽比为1-3;
和/或,所述凸起单元的宽度为2μm-20μm,所述凸起单元的高度为2μm-10μm。
10.如权利要求1所述的减反射薄膜,其特征在于,所述凸起结构包括若干凸起单元,所述若干凸起单元分散地布置于所述亚波长结构层,且所述凸起单元为柱状。
11.如权利要求10所述的减反射薄膜,其特征在于,所述凸起单元为圆柱体、长方体、三角柱、六角柱和不规则多面体中的一种或多种。
12.如权利要求10所述的减反射薄膜,其特征在于,所述若干凸起单元随机排布。
13.如权利要求10-12中任意一项所述的减反射薄膜,其特征在于,所述凸起结构的占空比为1%-30%,所述占空比为所述凸起结构的投影面积与所述减反射薄膜的面积之比;
和/或,所述凸起单元的高宽比为0.5-5;
和/或,所述凸起单元的宽度为1μm-50μm,所述凸起单元的高度为0.5μm-30μm。
14.如权利要求13所述的减反射薄膜,其特征在于,所述凸起结构的占空比为2%-20%;
和/或,所述凸起单元的高宽比为1-3;
和/或,所述凸起单元的宽度为2μm-30μm,所述凸起单元的高度为2μm-20μm。
15.一种用于制备如权利要求1-14中任意一项所述的减反射薄膜的模具的制备方法,其特征在于,所述制备方法包括以下步骤:
S100、将具有亚波长结构层的阳极氧化铝模板清洗后,进行烘干;
S200、在所述亚波长结构层涂抹厚度均匀的光刻胶,并采用光掩膜版对光刻胶进行曝光、显影以及表面脱模处理后得到具有凸起结构的初始模具;
S300、在初始模具涂布紫外固化胶水层,所述紫外固化胶水层的厚度大于所述凸起结构的高度;使紫外固化胶水层固化,剥离所述初始模具,并去除残留的光刻胶得到减反射薄膜的最终模具。
16.如权利要求15所述的制备方法,其特征在于,在步骤S100之前,还包括制作阳极氧化铝模板的步骤:
S001、将铝基片清洗和抛光后,对铝基片的表面进行一次阳极氧化处理形成具有氧化覆膜的铝模板;
S002、去除铝模板表面形成的氧化覆膜,并再次进行阳极氧化处理以得到具有亚波长结构层的阳极氧化铝模板。
17.如权利要求16所述的制备方法,其特征在于,所述铝基片的纯度为97%-99.999%。
18.如权利要求16所述的制备方法,其特征在于,在步骤S001中,将铝基片进行清洗的步骤包括:
将铝基片依次置于无水乙醇和去离子水中进行清洗;
将铝基片进行抛光的步骤包括:
将清洗后的铝基片作为阳极,石墨作为阴极,在0℃的高氯酸和无水乙醇的体积比值为0.2的混合溶液中进行恒定电压电化学抛光,电压为23V,抛光时间为5分钟,得到抛光后的铝基片;
对铝基片的表面进行一次阳极氧化处理的步骤包括:
将抛光后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行6小时的阳极氧化处理,得到具有氧化覆膜的铝模板。
19.如权利要求16所述的制备方法,其特征在于,在步骤S002中,去除铝模板表面形成的氧化覆膜的步骤包括:
将具有氧化覆膜的铝模板浸泡在含6%的磷酸和1.8%的铬酸的水溶液中;
再次进行阳极氧化处理的步骤包括:
将去除氧化覆膜后的铝基片浸泡在0.3mol/L的草酸水溶液中,且在直流40V、温度16℃的条件下进行20秒的阳极氧化处理,又将铝基片浸泡在温度为32℃的5%磷酸水溶液中浸泡8分钟。
20.如权利要求19所述的制备方法,其特征在于,所述制备方法还包括:重复执行步骤S002
21.一种减反射薄膜的制备方法,其特征在于,所述制备方法包括以下步骤:
在一基材上涂抹紫外固化胶水;
使用如权利要求15-20中任意一项所述的制备方法制造出的模具对所述紫外固化胶水进行紫外压印,形成所述反射薄膜。
CN201610825584.5A 2016-09-14 2016-09-14 减反射薄膜及其制备方法、其模具的制备方法 Pending CN107092044A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610825584.5A CN107092044A (zh) 2016-09-14 2016-09-14 减反射薄膜及其制备方法、其模具的制备方法
PCT/CN2017/092750 WO2018049898A1 (zh) 2016-09-14 2017-07-13 减反射薄膜及其制备方法、其模具的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610825584.5A CN107092044A (zh) 2016-09-14 2016-09-14 减反射薄膜及其制备方法、其模具的制备方法

Publications (1)

Publication Number Publication Date
CN107092044A true CN107092044A (zh) 2017-08-25

Family

ID=59648645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610825584.5A Pending CN107092044A (zh) 2016-09-14 2016-09-14 减反射薄膜及其制备方法、其模具的制备方法

Country Status (2)

Country Link
CN (1) CN107092044A (zh)
WO (1) WO2018049898A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766649A (zh) * 2019-03-30 2020-10-13 华为技术有限公司 一种光学元件、摄像头模组、终端和光学元件的加工方法
WO2020216199A1 (zh) * 2019-04-26 2020-10-29 华为技术有限公司 一种减反射膜、光学元件、摄像头模组和终端
CN115616688A (zh) * 2022-09-08 2023-01-17 荣耀终端有限公司 减反射膜及其制造方法、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398618A (zh) * 2008-10-30 2009-04-01 上海交通大学 亚波长结构的减反射膜的制备方法
JP2011150186A (ja) * 2010-01-22 2011-08-04 Ricoh Optical Industries Co Ltd 反射防止光学素子およびレーザ光源装置
CN102282482A (zh) * 2008-12-26 2011-12-14 索尼公司 光学元件、显示装置、抗反射光学部件和母片
CN104166173A (zh) * 2013-05-17 2014-11-26 群创光电股份有限公司 抗反射基板及包含其的显示设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315526A (ja) * 2002-04-26 2003-11-06 Konica Minolta Holdings Inc 回折光学素子及びその製造方法
EP2645136B1 (en) * 2012-03-29 2017-01-18 Canon Kabushiki Kaisha Optical member having textured structure and method of producing same
CN103668130A (zh) * 2012-09-25 2014-03-26 海洋王照明科技股份有限公司 一种金属纳米结构的制备方法
JP5987894B2 (ja) * 2014-12-22 2016-09-07 王子ホールディングス株式会社 凹凸パターンシートの製造方法、及び光学シートの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398618A (zh) * 2008-10-30 2009-04-01 上海交通大学 亚波长结构的减反射膜的制备方法
CN102282482A (zh) * 2008-12-26 2011-12-14 索尼公司 光学元件、显示装置、抗反射光学部件和母片
JP2011150186A (ja) * 2010-01-22 2011-08-04 Ricoh Optical Industries Co Ltd 反射防止光学素子およびレーザ光源装置
CN104166173A (zh) * 2013-05-17 2014-11-26 群创光电股份有限公司 抗反射基板及包含其的显示设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766649A (zh) * 2019-03-30 2020-10-13 华为技术有限公司 一种光学元件、摄像头模组、终端和光学元件的加工方法
EP3933459A4 (en) * 2019-03-30 2022-06-01 Huawei Technologies Co., Ltd. OPTICAL ELEMENT, CAMERA MODULE, TERMINAL AND METHOD OF PROCESSING AN OPTICAL ELEMENT
WO2020216199A1 (zh) * 2019-04-26 2020-10-29 华为技术有限公司 一种减反射膜、光学元件、摄像头模组和终端
CN115616688A (zh) * 2022-09-08 2023-01-17 荣耀终端有限公司 减反射膜及其制造方法、电子设备
CN115616688B (zh) * 2022-09-08 2024-05-14 荣耀终端有限公司 减反射膜及其制造方法、电子设备

Also Published As

Publication number Publication date
WO2018049898A1 (zh) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6049979B2 (ja) 光学素子、および表示装置
CN107092044A (zh) 减反射薄膜及其制备方法、其模具的制备方法
RU2431161C1 (ru) Антиотражающая пленка, оптический элемент, содержащий антиотражающую пленку, штамп, способ изготовления штампа и способ производства антиотражающей пленки
ES2879687T3 (es) Planchas de impresión flexográfica
JP4368384B2 (ja) 反射防止材、光学素子、および表示装置ならびにスタンパの製造方法およびスタンパを用いた反射防止材の製造方法
JP6077194B2 (ja) 導電性光学素子ならびに情報入力装置および表示装置
KR101984350B1 (ko) 광학 필름의 제조 방법, 광학 필름 및 화상 표시 장치
TWI446368B (zh) A transparent conductive element, an input device, and a display device
CN102395905B (zh) 防反射膜、防反射膜的制造方法和显示装置
CN104115208B (zh) 显示装置
CN101680969A (zh) 防反射用光学元件以及原盘的制造方法
CN103460077B (zh) 印刷材料及照相材料
WO2011046114A1 (ja) 型および型の製造方法ならびに反射防止膜
CN102004273A (zh) 光学元件及其制造方法
TW201620692A (zh) 光學體、顯示裝置及光學體之製造方法
WO2007029944A1 (en) Method for preparing photochromic film or plate
JP5760566B2 (ja) 光学素子、光学系、撮像装置、光学機器、および原盤
JP5082097B2 (ja) 反射防止構造および該反射防止構造を有する発光素子
US20110278770A1 (en) Mold, mold manufacturing method and method for manufacturing anti-reflection film using the mold
KR102243425B1 (ko) 원통형 고분자 마스크 및 제작 방법
JP2010048902A (ja) 低反射透明板及びそれを用いた展示用ケース
WO2013191089A1 (ja) 反射防止フィルムの製造方法
WO2011065429A1 (ja) モスアイ用型、ならびに、モスアイ用型およびモスアイ構造の作製方法
WO2012124498A1 (ja) 金型、金型の製造方法、及び、ナノインプリントフィルムの製造方法
US20030044576A1 (en) Method and apparatus for an encased optical article

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170825

WD01 Invention patent application deemed withdrawn after publication