WO2018047955A1 - 肌焼鋼およびその製造方法ならびに歯車部品の製造方法 - Google Patents

肌焼鋼およびその製造方法ならびに歯車部品の製造方法 Download PDF

Info

Publication number
WO2018047955A1
WO2018047955A1 PCT/JP2017/032544 JP2017032544W WO2018047955A1 WO 2018047955 A1 WO2018047955 A1 WO 2018047955A1 JP 2017032544 W JP2017032544 W JP 2017032544W WO 2018047955 A1 WO2018047955 A1 WO 2018047955A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
case
hardened steel
mass
steel
Prior art date
Application number
PCT/JP2017/032544
Other languages
English (en)
French (fr)
Inventor
佳祐 安藤
岩本 隆
西村 公宏
克行 一宮
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2018538494A priority Critical patent/JP6468402B2/ja
Priority to US16/330,857 priority patent/US11332799B2/en
Priority to MX2019002741A priority patent/MX2019002741A/es
Priority to KR1020197009743A priority patent/KR102279838B1/ko
Priority to CN201780054506.2A priority patent/CN109689911B/zh
Publication of WO2018047955A1 publication Critical patent/WO2018047955A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a case hardening steel used as a material for machine structural parts such as automobiles and various industrial machines, a manufacturing method thereof, and a manufacturing method of gear parts.
  • the present invention relates to a case hardening steel suitable as a material for machine structural parts having high rotational bending fatigue strength and impact fatigue strength, and a method for producing the same.
  • gears used for mechanical structure parts for example, drive transmission parts such as automobiles
  • gears used for mechanical structure parts are required to be reduced in size as the vehicle weight is reduced due to energy saving. Therefore, improvement in durability is an issue.
  • the durability of a gear is determined by impact fatigue failure of a tooth, rotation bending fatigue failure of a tooth root, and surface pressure fatigue failure of a tooth surface.
  • impact fatigue failure of a tooth In particular, in automobile differential gears and the like that are subjected to impact stress, destruction may occur early due to high impact load, so various techniques for improving the impact fatigue strength of case-hardened steel as a material have been studied. ing.
  • Patent Document 1 Mo is added to improve the toughness of the carburized layer, and Mn, Cr, and P that lower the grain boundary strength of the carburized layer are reduced, and the lower limit of the value obtained by Mo / (10Si + 100P + Mn + Cr) is set. It is disclosed that the impact characteristics are improved by defining and defining the range of the depth of the carburized hardened layer.
  • Patent Document 2 discloses that the toughness is improved by controlling the quenching cooling rate range to an appropriate range according to the component composition so that the inside of the gear is a mixed structure of martensite and bainite.
  • Patent Document 3 the microstructure is defined in the same manner as Patent Document 2, and the microstructure is a mixed structure of martensite and troostite that improves internal toughness, and the range of addition amounts of Mn and Cr is defined. And the method of suppressing the fall of internal hardness by restrict
  • Patent Document 4 proposes a steel in which Mo is added to the component composition described in Patent Document 3.
  • Patent Document 5 proposes a steel material for bevel gears in which the composite additive amount of Mn, Cr, and Mo is limited in the component composition to suppress the hardness of the steel material and the impact characteristics are improved without impairing the cold forgeability. Yes.
  • the present invention provides a case-hardened steel suitable as a material for producing mechanical structural parts having high rotational bending fatigue strength and impact fatigue strength at a relatively low cost, and a method for producing the same.
  • the purpose is to do.
  • the present invention is based on the above findings, and the gist of the present invention is as follows.
  • C 0.15% to 0.30%
  • Si 0.50% to 1.50%
  • Mn 0.20% to 0.80%
  • P 0.003% to 0.020%
  • S 0.005% to 0.050%
  • Cr 0.30% to 1.20%
  • Mo 0.03% to 0.30%
  • B 0.0005% to 0.0050%
  • Ti 0.002% to less than 0.050%
  • N 0.0020% to 0.0150%
  • O 0.0003 %
  • % B 0.0005% to 0.0050%
  • Ti 0.002% to less than 0.050%
  • N 0.0020% to 0.0150%
  • O 0.0003 %
  • the case-hardened steel according to any one of [1] to [4] is subjected to machining or forging and subsequent machining to form a gear shape, and then carburizing the case-hardened steel.
  • a method for manufacturing a gear part comprising: quenching and tempering to obtain a gear part.
  • a gear part manufacturing method comprising: carburizing and tempering the case-hardened steel to obtain a gear part.
  • the case hardening steel suitable as a raw material for producing the machine structural components which have high rotational bending fatigue strength and impact fatigue strength at comparatively low cost, and its manufacturing method can be provided. That is, for example, when a gear is produced as a machine structural component using the steel of the present invention, it is possible to mass-produce gears that are excellent not only in the rotational bending fatigue characteristics of the tooth root but also in the impact fatigue characteristics of the tooth surface. It becomes possible.
  • C 0.15% or more and 0.30% or less
  • 0.15% or more of C is required.
  • the toughness of the core portion decreases, so the C content is limited to a range of 0.15% to 0.30%.
  • it is 0.15% or more and 0.25% or less of range.
  • Si 0.50% or more and 1.50% or less Si increases the resistance to temper softening in the temperature range of 200 to 300 ° C, which is expected to reach during rolling of gears, etc., and also causes residual austenite that causes a decrease in the hardness of the carburized surface layer. It is an element that improves hardenability while suppressing formation. In order to obtain steel having such an effect, addition of at least 0.50% is essential. However, on the other hand, Si is a ferrite stabilizing element, and excessive addition raises the Ac3 transformation point, and ferrite tends to appear in the core portion having a low carbon content in the normal quenching temperature range, resulting in a decrease in strength. .
  • the Si content when the Si content is 1.50% or less, the above-described adverse effects do not occur. From the above, the Si content was limited to the range of 0.50% to 1.50%. Preferably it is 0.80% or more and 1.20% or less of range.
  • Mn 0.20% or more and 0.80% or less
  • Mn is an element effective for improving the hardenability, and requires addition of at least 0.20% or more.
  • Mn tends to form an abnormal carburization layer, and excessive addition leads to a decrease in hardness due to an excessive amount of retained austenite, so the upper limit was made 0.80%.
  • it is 0.30% or more and 0.60% or less of range.
  • P 0.003% or more and 0.020% or less P is segregated at the grain boundary and causes the carburized layer and the internal toughness to be lowered. Therefore, the lower the amount of P, the better. Specifically, if it exceeds 0.020%, the above-mentioned adverse effects appear, so the P content is set to 0.020% or less. On the other hand, from the viewpoint of manufacturing cost, 0.003% was made the lower limit.
  • S 0.005% or more and 0.050% or less S forms a sulfide with Mn and has an effect of improving machinability, so is contained at least 0.005% or more.
  • the upper limit was made 0.050%.
  • it is 0.010% or more and 0.030% or less of range.
  • Cr 0.30% or more and 1.20% or less Cr is an element effective for improving hardenability, but if its content is less than 0.30%, its additive effect is poor. On the other hand, if it exceeds 1.20%, carburizing abnormal layer It becomes easy to form. Moreover, since hardenability becomes high too much, toughness will deteriorate and fatigue strength will fall. Therefore, the Cr content is limited to the range of 0.30% to 1.20%. Preferably it is 0.40% or more and 0.80% or less of range.
  • Mo 0.03% or more and 0.30% or less Mo is an element that has an effect of improving hardenability and toughness and refining the crystal grain size after carburizing treatment, and if less than 0.03%, its addition effect is poor. 0.03% was made the lower limit. On the other hand, if added in a large amount, the amount of retained austenite becomes excessive, which not only causes a decrease in hardness, but also increases the manufacturing cost, so 0.30% was made the upper limit. From the viewpoint of lowering the amount of retained austenite and production cost, the upper limit value is preferably 0.20%.
  • B 0.0005% or more and 0.0050% or less B is an element effective for ensuring hardenability by addition of a small amount, and requires addition of at least 0.0005%. On the other hand, if it exceeds 0.0050%, the effect is saturated, so the amount of B is limited to the range of 0.0005% to 0.0050%. Preferably it is 0.0010% or more and 0.0040% or less of range.
  • Ti 0.002% or more and less than 0.050%
  • Ti is the element most easily bonded to N and effective for securing the solid solution B, and requires addition of at least 0.002%. However, if it is added excessively, a large amount of hard and coarse TiN is formed, which becomes the starting point of impact fatigue and bending fatigue fracture, and lowers the strength. Since the effect becomes significant at 0.050% or more, the Ti content is limited to the range of 0.002% or more and less than 0.050%. Preferably it is 0.004% or more and less than 0.025% of range. More preferably, it is 0.005% or more and less than 0.025% of range.
  • N 0.0020% or more and 0.0150% or less N is an element that combines with Al to form AlN and contributes to the refinement of austenite crystal grains, and requires addition of at least 0.0020% or more. However, if added excessively, not only is it difficult to secure the solid solution B, but also bubbles are generated in the steel ingot during solidification and deterioration of forgeability is caused, so the upper limit is made 0.0150%. Preferably it is 0.0030% or more and 0.0070% or less of range.
  • O 0.0003% or more and 0.0025% or less
  • O is an element that exists as an oxide inclusion in steel and impairs fatigue strength. Accordingly, the lower the amount of O, the better, but 0.0025% is acceptable. Preferably it is 0.0015% or less. On the other hand, from the viewpoint of manufacturing cost, 0.0003% was made the lower limit.
  • the Al content is specified as follows in relation to the B, N, and Ti contents.
  • [% B]-[(10.8 / 14) x ⁇ [% N]-(14/48) [% Ti] ⁇ ] ⁇ 0.0003%: 0.010% ⁇ [% Al] ⁇ 0.100% Al is an element necessary as a deoxidizer, and at the same time, is an element necessary for ensuring solid solution B in the present invention.
  • [% B] ⁇ [(10.8 / 14) ⁇ ⁇ [% N] ⁇ (14/48) [% Ti] ⁇ ] is the balance obtained by subtracting the amount of B that is stoichiometrically bound to N B amount (hereinafter referred to as [B] amount).
  • the amount of [B] is 0.0003% or more, it is possible to secure the solid solution B necessary for improving the hardenability.
  • the Al content is less than 0.010%, deoxidation becomes insufficient, and the rotational bending fatigue strength and impact fatigue strength are reduced due to oxide inclusions.
  • the toughness is reduced due to the occurrence of nozzle clogging during continuous casting and the appearance of alumina cluster inclusions. Therefore, when the [B] amount is 0.0003% or more, the Al content is set to a range of 0.010% or more and 0.100% or less.
  • Al content is set to (27/14) x ⁇ [% N]-(14/48) [% Ti]-(14 / 10.8) [% B] +0.02 ⁇ % or more to improve hardenability. Ensure a solid solution B content of 0.0003% or more to contribute. Note that the upper limit of Al is 0.100% as described above.
  • the components in steel in the present invention include the above components, and the balance includes Fe and inevitable impurities, but the following selected components are added for the purpose of imparting other characteristics and the like within a range that does not impair the effects of the present invention. I can do it.
  • Nb 0.050% or less
  • Nb is a carbonitride-forming element and contributes to improvement of surface pressure fatigue strength and impact bending fatigue strength by refining the austenite grain size during carburizing. In order to effectively exhibit such an action, when added, the content is preferably 0.005% or more. On the other hand, if it exceeds 0.050%, there is a risk of lowering the coarsening suppression ability and deterioration of fatigue strength due to coarse precipitation of NbC, so the upper limit is preferably made 0.050%. More preferably, it is 0.005% or more and less than 0.025%.
  • V 0.050% or less
  • V is a carbonitride-forming element like Nb, and contributes to improving fatigue strength by refining the austenite grain size during carburizing. It also has the effect of reducing the grain boundary oxide layer depth. In order to effectively exhibit such an action, when added, the content is preferably 0.005% or more. On the other hand, the effect is saturated at 0.050%, and if added excessively, coarse carbonitrides are formed, and conversely, the fatigue strength is lowered, so the upper limit is preferably made 0.050%. More preferably, it is 0.005% or more and 0.030% or less of range.
  • Sb 0.035% or less
  • Sb has a strong tendency to segregate to grain boundaries, and suppresses grain boundary oxidation of Si, Mn, Cr, etc., which contributes to improving hardenability during carburizing treatment, thereby preventing abnormal carburization in the extreme surface layer of steel.
  • the content is preferably 0.003% or more.
  • adding excessively not only leads to an increase in cost, but also reduces toughness, so 0.035% or less is preferable. More preferably, it is 0.005% or more and 0.020% or less of range.
  • Cu 1.0% or less
  • Cu is an element that contributes to the improvement of hardenability.
  • the Cu content is preferably 0.01% or more.
  • the upper limit is preferably 1.0%. More preferably, it is 0.10% or more and 0.50% or less of range.
  • Ni 1.0% or less Ni contributes to improving hardenability and is an element useful for improving toughness.
  • the Ni content is preferably 0.01% or more.
  • the upper limit is preferably 1.0%. More preferably, it is 0.10% or more and 0.50% or less of range.
  • Ca 0.0050% or less Ca is a useful element for controlling the form of sulfide and improving machinability.
  • the Ca content is preferably 0.0005% or more.
  • the upper limit may be made 0.0050%. preferable. More preferably, it is 0.0005% or more and 0.0020% or less of range.
  • Sn 0.50% or less
  • Sn is an effective element for improving the corrosion resistance of the steel surface.
  • the Sn content is preferably 0.003% or more.
  • the upper limit is preferably 0.50%. More preferably, it is 0.010% or more and 0.050% or less of range.
  • Se 0.30% or less Se combines with Mn and Cu and is dispersed as precipitates in the steel. Se precipitates exist stably in the carburizing heat treatment temperature range with little precipitate growth, and austenite grain coarsening is suppressed by the pinning effect. For this reason, the addition of Se is effective in preventing coarsening of crystal grains. In order to obtain this effect, it is preferable to add at least 0.001% of Se. On the other hand, even if added over 0.30%, the effect of preventing coarsening of crystal grains is saturated. For this reason, the upper limit is preferably set to 0.30%. More preferably, it is 0.005% or more and 0.100% or less.
  • Ta 0.10% or less Ta forms carbides in steel and suppresses the austenite grain coarsening during the carburizing heat treatment by the pinning effect. In order to obtain this effect, it is preferable to add at least 0.003% Ta. On the other hand, if added over 0.10%, cracking is likely to occur during casting solidification, and there is a concern that wrinkles may remain after rolling and forging, so the upper limit is preferably made 0.10%. More preferably, it is 0.005% or more and 0.050% or less of range.
  • Hf 0.10% or less Hf forms carbides in the steel and suppresses the coarsening of austenite grains during the carburizing heat treatment by the pinning effect. In order to obtain this effect, it is preferable to add at least 0.003% of Hf. On the other hand, if added over 0.10%, coarse precipitates are produced during casting solidification, which may lead to a decrease in coarsening suppression ability and fatigue strength, so the upper limit is preferably made 0.10%. More preferably, it is 0.005% or more and 0.050% or less of range. As for the component composition of the case hardening steel of this invention, it is preferable that remainder other than the element demonstrated above consists of Fe and an unavoidable impurity.
  • the above equation (1) indicates a factor that affects the grain boundary oxide layer depth. If the value on the left side is less than 0.50, the effect of reducing the grain boundary oxide layer depth is poor.
  • the depth of the carburized grain boundary oxide layer and the low-hardness carburized abnormal layer formed around the grain boundary oxide layer can be reduced. In addition, impact fatigue strength can be improved.
  • the size of oxide inclusions located on the fracture surface of the test piece after the rotating bending fatigue test is larger than a certain value. Further, it has been found that the rotational bending fatigue strength and the impact fatigue strength are reduced due to the oxide inclusions, and thus there is a problem of showing early fatigue failure. Therefore, it is important that the case-hardened steel of the present invention satisfies the following formula (2) after carburizing and quenching.
  • the value of the left side ⁇ I of the following formula (2) is more preferably 60 or less, and further preferably 40 or less. ⁇ I ⁇ 80 (2)
  • I on the left side of the above equation (2) is an index indicating the size of the largest oxide inclusions that are the starting points of fatigue fracture, and is obtained as follows. Seven test pieces are collected from the case-hardened steel (bar or wire). The test piece was taken from a position with a diameter of 1/2 in parallel with the drawing direction by hot working (that is, the rolling direction in the case of hot rolling and the drawing direction in forging in the case of hot forging), and is shown in FIG. The parallel part diameter is 8 mm x the parallel part length is 16 mm.
  • the test piece is subjected to carburizing and tempering under the conditions shown in FIG. 2, and then a double swing Ono type rotating bending fatigue test is performed to cause fish eye fracture.
  • the test conditions are that after carburizing, the surface is polished 0.1 mm, the load stress is 1000 MPa, and the rotational speed is 3500 rpm.
  • the internal origin failure that is, the failure starting from inclusions is the main rather than the surface layer failure, and therefore, fish eye failure is observed after the test.
  • the fracture surface was observed with a scanning electron microscope, and the oxide inclusions located in the center of the fish eye, that is, the largest oxide inclusions The area is measured by image analysis and is defined as I.
  • the conventional method for measuring the size, quantity, or density of oxide inclusions in the test area cannot measure the state of oxide inclusions in a large volume, which affects fatigue life. It is not possible to evaluate inclusions that affect In the above-described evaluation method for inclusions in the present invention, the size of oxide inclusions that have actually become the starting point of fatigue fracture of steel in a large volume of 5349 mm 3 can be evaluated. More improved.
  • the slab In order to obtain the case-hardened steel that satisfies the formula (2), in addition to adjusting the component composition of the slab to the above range including the formula (1) in the manufacturing process, the slab On the other hand, it is necessary to perform hot working by hot forging and / or hot rolling at a cross-section reduction rate that satisfies the following expression (3) to form a steel bar or wire.
  • S1 is the cross-sectional area (mm 2 ) of the slab in the cross section orthogonal to the drawing direction during hot working
  • S2 is the cross-sectional area of the steel bar or wire in the cross section orthogonal to the drawing direction during hot working. (Mm 2 ).
  • the left side of the above equation (3) is an index indicating the cross-sectional reduction rate when hot working is performed on the slab.
  • the hot working may be hot forging or hot rolling. Furthermore, both hot forging and hot rolling may be performed.
  • the index shown on the left side of the above equation (3) is less than 0.960, the rotary bending fatigue strength and the impact fatigue strength are reduced due to the large oxide inclusions, resulting in early fatigue failure.
  • the left side of the above formula (3) is 0.970 or more, and more preferably 0.985 or more. In this way, when hot working is performed on a steel slab satisfying the composition of the present invention at a cross-sectional reduction rate that satisfies the above formula (3), the above (2) after carburizing quenching and tempering described later. ) Case-hardened steel satisfying the formula can be obtained.
  • the case-hardened steel (steel bar or wire) of the present invention produced as described above is subjected to machining such as cutting, with or without hot forging or cold forging, to obtain a component shape (for example, a gear). Shape). Then, a desired part (for example, a gear) is obtained by subjecting this part shape to carburizing quenching and tempering. Further, this part may be subjected to processing such as shot peening.
  • hot forging or cold forging is performed during processing, the size of oxide inclusions changes, but it does not change in the direction of worsening fatigue life. Even if it is a case where it becomes a component, it is effective to use the case hardening steel of this invention.
  • the carburizing quenching / tempering conditions for case-hardened steel are not particularly limited, and may be known or arbitrary conditions.
  • the carburizing temperature is 900 ° C. or higher and 1050 ° C. or lower
  • the quenching temperature is 800 ° C. or higher.
  • the temperature can be set to 900 ° C. or lower for 10 minutes to 120 minutes, and the tempering temperature 120 ° C. to 250 ° C. for 30 minutes to 180 minutes.
  • Steel slabs having the composition shown in Table 1 (the content of each element is in mass% and the balance is Fe and inevitable impurities) are hot-rolled at the cross-sectional reduction ratios shown in Table 2, and various dimensions are obtained. A round steel bar was obtained.
  • Steel Nos. 1 to 29 shown in Table 1 are compatible steels whose component compositions satisfy the present invention, and Steel Nos. 30 to 52 are comparative steels whose component compositions do not satisfy the present invention.
  • No. 51 is a comparative example in which the cross-section reduction rate deviates from the regulation value of the present invention.
  • the case hardening steel suitable as a raw material for producing the machine structural components which have high rotational bending fatigue strength and impact fatigue strength at comparatively low cost, and its manufacturing method can be provided. .

Abstract

高い回転曲げ疲労強度および衝撃疲労強度を有する機械構造用部品を、比較的安価なコストで作製するための素材として適した肌焼鋼およびその製造方法を提供する。 質量%で、C、Si、Mn、P、S、Cr、Mo、B、Ti、N、およびOを所定の関係の下で含み、AlをB、N、Ti含有量との関係で所定量以上含み、残部はFeおよび不可避不純物からなる成分組成を有し、さらに√I≦80(ただし、Iは、肌焼鋼に浸炭焼入れおよび焼戻しを施し、その後回転曲げ疲労試験を行った後の破面における、フィッシュアイ中心部に位置する酸化物系介在物の面積(μm2)を示す。)を満足することを特徴とする肌焼鋼。

Description

肌焼鋼およびその製造方法ならびに歯車部品の製造方法
 本発明は、自動車や各種産業機械等の機械構造用部品の素材として用いられる肌焼鋼およびその製造方法、ならびに歯車部品の製造方法に関するものである。特に、高い回転曲げ疲労強度および衝撃疲労強度を有する機械構造用部品の素材として適した肌焼鋼およびその製造方法に関するものである。
 機械構造用部品、例えば自動車等の駆動伝達部品に用いられている歯車は、近年、省エネルギー化による車体重量の軽量化に伴って、その小型化が要求される一方、エンジンの高出力化により負荷が増大しているため、耐久性の向上が課題とされている。
 一般的に、歯車の耐久性は、歯の衝撃疲労破壊、歯元の回転曲げ疲労破壊および歯面の面圧疲労破壊によって決定される。特に、衝撃的な応力が負荷される、自動車のデファレンシャルギア等では、高い衝撃荷重により破壊が早期に起こる場合があるため、素材となる肌焼鋼の衝撃疲労強度を向上する技術が種々検討されている。
 特許文献1には、浸炭層の靭性を向上するためにMoを添加し、浸炭層の粒界強度を低下させるMn、Cr、Pを少なくすること、Mo/(10Si+100P+Mn+Cr)により求まる値の下限を規定すること、および、浸炭硬化層深さの範囲を規定することにより、衝撃特性を向上させることが開示されている。
 特許文献2には、焼入れの冷却速度範囲を成分組成に応じた適正範囲に制御することにより、歯車の内部をマルテンサイトとベイナイトの混合組織として靭性を向上させることが開示されている。
 特許文献3には、特許文献2と同様にミクロ組織を規定するもので、ミクロ組織をマルテンサイトと、内部の靭性を向上させるトルースタイトの混合組織とし、MnとCrの添加量の範囲を規定し、Mo添加量を規制してトルースタイトの量を制限することで内部硬度の低下を抑える方法が開示されている。
 特許文献4には、特許文献3に記載の成分組成にMoを添加した鋼が提案されている。特許文献5には成分組成においてMn、Cr、Moの複合添加量を制限して鋼材の硬さを抑え、冷間鍛造性を損なうこと無く衝撃特性を向上させた傘歯車用鋼材が提案されている。
特公平7-100840号公報 特許第3094856号公報 特許第3329177号公報 特許第3733504号公報 特許第3319648号公報
 しかしながら、特許文献1に記載の方法では、衝撃特性を向上できたとしても、高価な合金であるMoを多量に添加させるか、Moを多く入れない場合には浸炭時間を大幅に延長させることが必要で、製品コストまたは製造コストの大幅な増加を招いてしまう。
 特許文献2に記載の方法では、ミクロ組織中にベイナイト組織を含むので靭性を向上させて衝撃値を高めることは可能である。しかし、鋼の内部領域にベイナイト組織が含まれると、内部硬さが低下するため歯車が衝撃で変形しやすくなり、衝撃力が繰り返されると破損することが懸念される。
 特許文献3に記載の方法では、MnとCrの複合添加量を指定し、Mo添加量を規制するので、表層付近で発生する粒界酸化が多くなり、Mn、Crの酸化物が形成されるために焼入れ性が低下し、表層に不完全焼入れ層が形成される。そのため、内部硬度が確保できたとしても、表層の硬さ低下による表層からの破壊が発生しやすくなり、結果的に衝撃疲労を含むすべての疲労強度が低下してしまう。
 特許文献4に記載の方法の場合、Moを添加してもトルースタイトにより歯車内部の硬度低下が発生するため、衝撃特性が向上したとしても内部起因の曲げ疲労などの疲労強度が低下する。特許文献5に記載の方法の場合、歯車を熱間鍛造で成型する場合は硬度が低く、衝撃以外の疲労強度が低下する。
 そこで本発明は、上記課題に鑑み、高い回転曲げ疲労強度および衝撃疲労強度を有する機械構造用部品を、比較的安価なコストで作製するための素材として適した肌焼鋼およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するため、浸炭焼入れ・焼戻し後の疲労特性に及ぼす、成分、浸炭後諸特性および介在物の影響について鋭意検討を行った。その結果、以下の(A)~(C)の事項を見出すに到った。
 (A)衝撃疲労および曲げ疲労の亀裂の起点となり得る粒界酸化層については、Si、Mn、CrおよびMoを所定量以上添加することにより、粒界酸化層の成長方向が深さ方向から表面の密度増加方向に変わる。従って、上記起点となるような深さ方向に成長した酸化層がなくなるため、疲労亀裂の起点となり難くなる。
 (B)上記(A)で述べたとおり、Si、Mn、CrおよびMoは、粒界酸化層の制御に有効であるが、一方で、過剰に添加すると、残留オーステナイト量が多くなり、疲労亀裂の生成を助長する。そのため、Si、Mn、CrおよびMoについて、その含有量を厳密に制御する必要がある。
 (C)粒界強化に寄与する固溶Bの含有量を、焼入れ性に効果のある3ppm以上確保するため、鋼中におけるTi-Al-B-Nの化学平衡に基づき、各元素の含有量を厳密に制御する必要がある。
 本発明は、上記知見に立脚するものであり、その要旨構成は、以下のとおりである。
 [1]質量%で、C:0.15%以上0.30%以下、Si:0.50%以上1.50%以下、Mn:0.20%以上0.80%以下、P:0.003%以上0.020%以下、S:0.005%以上0.050%以下、Cr:0.30%以上1.20%以下、Mo:0.03%以上0.30%以下、B:0.0005%以上0.0050%以下、Ti:0.002%以上0.050%未満、N:0.0020%以上0.0150%以下およびO:0.0003%以上0.0025%以下を、下記(1)式を満足する範囲の下で含み、
 Alを、[%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]≧0.0003%の場合には、0.010%≦[%Al]≦0.100%にて含み、[%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]<0.0003%の場合には、(27/14)×{[%N]-(14/48)[%Ti]-(14/10.8)[%B]+0.02}≦[%Al]≦0.100%にて含み、
 残部はFeおよび不可避不純物からなる成分組成を有し、
 さらに、下記(2)式を満足することを特徴とする肌焼鋼。
                  記
1.8×[%Si]+1.5×[%Mo]-([%Mn]+[%Cr])/2 ≧ 0.50  ・・・(1)
√I≦80  ・・・(2)
 ただし、[%M]はM元素の含有量(質量%)を示し、Iは、前記肌焼鋼に浸炭焼入れおよび焼戻しを施し、その後回転曲げ疲労試験を行った後の破面における、フィッシュアイ中心部に位置する酸化物系介在物の面積(μm)を示す。
 [2]前記成分組成が、質量%でさらに、Nb:0.050%以下、V:0.050%以下、およびSb:0.035%以下のうちから選んだ1種以上を含む上記[1]に記載の肌焼鋼。
 [3]前記成分組成が、質量%でさらに、Cu:1.0%以下、およびNi:1.0%以下のうちから選んだ1種以上を含む上記[1]または[2]に記載の肌焼鋼。
 [4]前記成分組成が、質量%でさらに、Ca:0.0050%以下、Sn:0.50%以下、Se:0.30%以下、Ta:0.10%以下、Hf:0.10%以下のうちから選んだ1種以上を含む上記[1]~[3]のいずれか一項に記載の肌焼鋼。
 [5]質量%で、C:0.15%以上0.30%以下、Si:0.50%以上1.50%以下、Mn:0.20%以上0.80%以下、P:0.003%以上0.020%以下、S:0.005%以上0.050%以下、Cr:0.30%以上1.20%以下、Mo:0.03%以上0.30%以下、B:0.0005%以上0.0050%以下、Ti:0.002%以上0.050%未満、N:0.0020%以上0.0150%以下およびO:0.0003%以上0.0025%以下を、下記(1)式を満足する範囲の下で含み、
 Alを、[%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]≧0.0003%の場合には、0.010%≦[%Al]≦0.100%にて含み、[%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]<0.0003%の場合には、(27/14)×{[%N]-(14/48)[%Ti]-(14/10.8)[%B]+0.02}≦[%Al]≦0.100%にて含み、
 残部はFeおよび不可避不純物からなる成分組成を有する鋼の鋳片を、下記(3)式を満足する断面減少率にて熱間鍛造および/または熱間圧延による熱間加工を施して、棒鋼または線材である肌焼鋼を得ることを特徴とする肌焼鋼の製造方法。
                  記
1.8×[%Si]+1.5×[%Mo]-([%Mn]+[%Cr])/2 ≧ 0.50  ・・・(1)
(S1-S2)/S1≧0.960    ・・・(3)
 ただし、[%M]はM元素の含有量(質量%)を示し、S1は、熱間加工時の延伸方向と直交する断面における前記鋳片の断面積(mm)、S2は、熱間加工時の延伸方向と直交する断面における前記棒鋼または線材の断面積(mm)を示す。
 [6]前記成分組成が、質量%でさらに、Nb:0.050%以下、V:0.050%以下、およびSb:0.035%以下のうちから選んだ1種以上を含む上記[5]に記載の肌焼鋼の製造方法。
 [7]前記成分組成が、質量%でさらに、Cu:1.0%以下、およびNi:1.0%以下のうちから選んだ1種以上を含む上記[5]または[6]に記載の肌焼鋼の製造方法。
 [8]前記成分組成が、質量%でさらに、Ca:0.0050%以下、Sn:0.50%以下、Se:0.30%以下、Ta:0.10%以下、Hf:0.10%以下のうちから選んだ1種以上を含む上記[5]~[7]のいずれか一項に記載の肌焼鋼の製造方法。
 [9]上記[1]~[4]のいずれか一項に記載の肌焼鋼に、機械加工、または、鍛造とその後の機械加工を施して歯車形状とし、その後、前記肌焼鋼に浸炭焼入れおよび焼戻しを施して、歯車部品を得ることを特徴とする歯車部品の製造方法。
 [10]上記[5]~[8]のいずれか一項に記載の肌焼鋼の製造方法の工程に加えて、前記肌焼鋼に、機械加工、または、鍛造とその後の機械加工を施して歯車形状とし、その後、前記肌焼鋼に浸炭焼入れおよび焼戻しを施して、歯車部品を得ることを特徴とする歯車部品の製造方法。
 本発明によれば、高い回転曲げ疲労強度および衝撃疲労強度を有する機械構造用部品を、比較的安価なコストで作製するための素材として適した肌焼鋼およびその製造方法を提供することができる。すなわち、機械構造用部品として例えば歯車を、本発明鋼を用いて作製した場合に、その歯元の回転曲げ疲労特性のみならず、歯面の衝撃疲労特性にも優れた歯車を量産することが可能になる。
回転曲げ疲労試験片を示す図である。 浸炭焼入れ・焼戻し処理における熱処理条件を示す図である。 衝撃疲労試験片を示す図である。
 まず、本発明において、鋼の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は、特に断らない限り質量%を意味するものとする。
 C:0.15%以上0.30%以下
 浸炭処理後の焼入れにより中心部の硬度を高めるためには、0.15%以上のCを必要とする。一方、含有量が0.30%を超えると芯部の靭性が低下するため、C量は0.15%以上0.30%以下の範囲に限定した。好ましくは0.15%以上0.25%以下の範囲である。
 Si:0.50%以上1.50%以下
 Siは、歯車等が転動中に到達すると予想される200~300℃の温度域における焼戻し軟化抵抗を高めると共に、浸炭表層部の硬さ低下を引き起こす残留オーステナイトの生成を抑制しつつ、焼入れ性を向上させる元素である。このような効果を有する鋼を得るには、少なくとも0.50%以上の添加が不可欠である。しかしながら、一方でSiはフェライト安定化元素であり、過剰な添加はAc3変態点を上昇させ、通常の焼入れ温度範囲で炭素の含有量の低い芯部でフェライトが出現し易くなり強度の低下を招く。また、過剰な添加は浸炭を阻害し、浸炭表層部の硬さ低下を引き起こす。この点、Si量が1.50%以下であれば、上記のような弊害は生じない。以上より、Si量は0.50%以上1.50%以下の範囲に限定した。好ましくは0.80%以上1.20%以下の範囲である。
 Mn:0.20%以上0.80%以下
 Mnは、焼入れ性の向上に有効な元素であり、少なくとも0.20%以上の添加を必要とする。しかしながら、Mnは、浸炭異常層を形成し易く、また過剰な添加は残留オーステナイト量が過多となることにより硬さの低下を招くため、上限を0.80%とした。好ましくは0.30%以上0.60%以下の範囲である。
P:0.003%以上0.020%以下
 Pは、粒界に偏析し、浸炭層および内部の靭性を低下させる原因となるため、P量は、低いほど望ましい。具体的には、0.020%を超えると、上記弊害が現れるため、P量は0.020%以下とした。一方、製造コストの観点から、0.003%を下限とした。
 S:0.005%以上0.050%以下
 Sは、Mnと硫化物を形成し、被削性を向上させる作用を有するので、少なくとも0.005%以上含有させる。一方、過剰な添加は、部品の疲労強度および靭性を低下させるため、上限を0.050%とした。好ましくは0.010%以上0.030%以下の範囲である。
 Cr:0.30%以上1.20%以下
 Crは、焼入れ性の向上にも有効な元素であるが、含有量が0.30%に満たないとその添加効果に乏しく、一方、1.20%を超えると、浸炭異常層を形成し易くなる。また、焼入れ性が高くなりすぎるため、靭性が劣化し、疲労強度が低下することになる。従って、Cr量は0.30%以上1.20%以下の範囲に限定した。好ましくは0.40%以上0.80%以下の範囲である。
 Mo:0.03%以上0.30%以下
 Moは、焼入れ性および靭性を向上させると共に、浸炭処理後の結晶粒径を微細化する効果を有する元素であり、0.03%に満たないとその添加効果に乏しいため、0.03%を下限とした。一方、多量に添加すると、残留オーステナイト量が過多となることにより硬さの低下を招くだけではなく、製造コストを上昇させるため、0.30%を上限とした。なお、残留オーステナイト量および製造コストをより低くする観点から、上限値は0.20%とすることが好ましい。
 B:0.0005%以上0.0050%以下
 Bは、微量の添加により焼入れ性を確保するのに有効な元素であり、少なくとも0.0005%の添加を必要とする。一方、0.0050%を超えると、その効果が飽和するため、B量は0.0005%以上0.0050%以下の範囲に限定した。好ましくは0.0010%以上0.0040%以下の範囲である。
 Ti:0.002%以上0.050%未満
 TiはNと最も結合しやすく、固溶Bの確保に有効な元素であり、少なくとも0.002%の添加を必要とする。しかし、過剰に添加させると硬質で粗大なTiNが多く形成され、衝撃疲労や曲げ疲労破壊の起点となり、強度を低下させる。その影響は0.050%以上で顕著となるため、Ti量は0.002%以上0.050%未満の範囲に限定した。好ましくは0.004%以上0.025%未満の範囲である。更に好ましくは、0.005%以上0.025%未満の範囲である。
 N:0.0020%以上0.0150%以下
 Nは、Alと結合してAlNを形成し、オーステナイト結晶粒の微細化に寄与する元素であり、少なくとも0.0020%以上の添加を必要とする。しかし、過剰に添加すると、固溶Bの確保が困難になるだけでなく、凝固時の鋼塊に気泡が発生したり、鍛造性の劣化を招くため、上限を0.0150%とする。好ましくは0.0030%以上0.0070%以下の範囲である。
 O:0.0003%以上0.0025%以下
 Oは、鋼中において酸化物系介在物として存在し、疲労強度を損なう元素である。従って、O量は低いほど望ましいが、0.0025%までは許容される。好ましくは0.0015%以下である。一方、製造コストの観点から、0.0003%を下限とした。
 Al含有量は、B、N、Ti含有量との関係で次のとおりに規定する。
 [%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]≧0.0003%の場合:0.010%≦[%Al]≦0.100%
 Alは、脱酸剤として必要な元素であると同時に、本発明においては固溶Bを確保するためにも必要な元素である。ここで、[%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]は、Bが化学量論的にNと結合する量を差し引いた残部のB量(以下[B]量と表記する。)を表している。この[B]量が0.0003%以上であれば、焼入れ性向上に必要な固溶Bの確保が可能となる。この場合において、Al含有量が0.010%未満であると、脱酸が不十分になり、酸化物系介在物による回転曲げ疲労強度および衝撃疲労強度の低下を招くことになる。一方、0.100%を超えてAlを添加すると、連続鋳造時のノズル詰まりの発生や、アルミナクラスター介在物の発現により靱性の低下を招く。よって、[B]量が0.0003%以上のとき、Al含有量は0.010%以上0.100%以下の範囲とする。
 [%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]<0.0003%の場合:(27/14)×{[%N]-(14/48)[%Ti]-(14/10.8)[%B]+0.02}≦[%Al]≦0.100%
 一方、上式から計算される[B]量が0.0003%未満の場合は、Nと比較的結合し易いAlの量を増やし、焼入れ性向上に寄与する固溶B量を確保する必要がある。そのために、Al含有量を(27/14)×{[%N]-(14/48)[%Ti]-(14/10.8)[%B]+0.02}%以上として、焼入れ性向上に寄与する0.0003%以上の固溶B量を確保する。なお、Alの上限は、上記と同様に0.100%とする。
 本発明における鋼中成分は、上記成分を含み、残部はFeおよび不可避不純物を含むが、本発明の作用効果を損なわない範囲で、他の特性付与等を目的として、以下の選択成分を添加することが出来る。
 Nb:0.050%以下
 Nbは、炭窒化物形成元素であり、浸炭時のオーステナイト粒径を微細化して面圧疲労強度および衝撃曲げ疲労強度の向上に寄与する。このような作用を有効に発揮させるため、添加する場合は、0.005%以上とすることが好ましい。一方、0.050%を超えると、粗大なNbCの析出による粗粒化抑制能の低下や疲労強度の劣化を招くおそれがあるため、上限を0.050%とすることが好ましい。より好ましくは、0.005%以上0.025%未満の範囲である。
 V:0.050%以下
 Vは、Nbと同じく炭窒化物形成元素であり、浸炭時のオーステナイト粒径を微細化して、疲労強度の向上に寄与する。また、粒界酸化層深さを低減させる効果も有している。このような作用を有効に発揮させるため、添加する場合は、0.005%以上とすることが好ましい。一方、その効果は0.050%で飽和し、かつ過剰に添加すると、粗大な炭窒化物が生成し、逆に上記疲労強度の低下を招くため、上限は0.050%とすることが好ましい。より好ましくは0.005%以上0.030%以下の範囲である。
 Sb:0.035%以下
 Sbは、粒界への偏析傾向が強く、浸炭処理時に焼入れ性向上に寄与するSi、Mn、Cr等の粒界酸化を抑制することで、鋼の極表層における浸炭異常層の発生を低減させ、結果として回転曲げ疲労強度および衝撃疲労強度を向上させる効果がある。このような作用を有効に発揮させるため、添加する場合は、0.003%以上とすることが好ましい。しかしながら、過剰に添加するとコストの増加につながるだけでなく、靭性を低下させるため、0.035%以下とすることが好ましい。より好ましくは0.005%以上0.020%以下の範囲である。
 Cu:1.0%以下
 Cuは、焼入性の向上に寄与する元素であり、また、Seととともに添加することにより、鋼中でSeと結合し、結晶粒の粗大化防止効果を示す有用な元素である。これらの効果を得るためには、Cu含有量は0.01%以上とすることが好ましい。一方、Cu含有量が1.0%を超えると、圧延材の表面肌が荒れてしまい、疵として残存する懸念がある。そこで、上限は1.0%とすることが好ましい。より好ましくは0.10%以上0.50%以下の範囲である。
 Ni:1.0%以下
 Niは、焼入性の向上に寄与するとともに、靱性の向上に有用な元素である。これらの効果を得るためには、Ni含有量は0.01%以上とすることが好ましい。一方、1.0%を超えて含有されても、上記の効果が飽和する。よって、上限は1.0%とすることが好ましい。より好ましくは0.10%以上0.50%以下の範囲である。
 Ca:0.0050%以下
 Caは、硫化物の形態を制御し、被削性の向上に有用な元素である。これらの効果を得るためには、Ca含有量は0.0005%以上とすることが好ましい。一方、Ca含有量が0.0050%を超えると、上記の効果が飽和するだけでなく、疲労破壊の起点となる粗大な酸化物系介在物の生成を助長するため、上限は0.0050%とすることが好ましい。より好ましくは0.0005%以上0.0020%以下の範囲である。
 Sn:0.50%以下
 Snは、鋼材表面の耐食性を向上させるために有効な元素である。耐食性向上の観点から、Sn含有量は0.003%以上とすることが好ましい。一方、過剰な添加は鍛造性を劣化させることから、上限は0.50%とすることが好ましい。より好ましくは0.010%以上0.050%以下の範囲である。
 Se:0.30%以下
 Seは、MnやCuと結合し、鋼中に析出物として分散する。Se析出物は浸炭熱処理温度域で析出物成長がほとんど起こらず安定に存在しており、オーステナイト粒の粗大化をピン止め効果により抑制する。このため、Se添加は結晶粒の粗大化防止に有効である。この効果を得るためには、少なくとも0.001%のSeを添加することが好ましい。一方、0.30%を超えて添加しても、結晶粒の粗大化防止効果は飽和する。このため、上限は0.30%とすることが好ましい。より好ましくは0.005%以上0.100%以下の範囲である。
 Ta:0.10%以下
 Taは、鋼中で炭化物を形成し、浸炭熱処理時のオーステナイト粒の粗大化をピン止め効果により抑制する。この効果を得るためには、少なくとも0.003%のTaを添加することが好ましい。一方、0.10%を超えて添加すると、鋳造凝固時に割れを生じやすくなり、圧延および鍛造後でも疵が残存してしまう懸念があるため、上限は0.10%とすることが好ましい。より好ましくは0.005%以上0.050%以下の範囲である。
 Hf:0.10%以下
 Hfは、鋼中で炭化物を形成し、浸炭熱処理時のオーステナイト粒の粗大化をピン止め効果により抑制する。この効果を得るためには、少なくとも0.003%のHfを添加することが好ましい。一方、0.10%を超えて添加すると、鋳造凝固時に粗大な析出物を生成し、粗粒化抑制能の低下や疲労強度の劣化を招くおそれがあるため、上限は0.10%とすることが好ましい。より好ましくは0.005%以上0.050%以下の範囲である。
 本発明の肌焼鋼の成分組成は、以上説明した元素以外の残部はFeおよび不可避的不純物からなることが好ましい。
 本発明者らは、上記成分組成を有する肌焼鋼において、以下の(1)式を満足する場合に、当該肌焼鋼に浸炭焼入れおよび焼戻しを施して製造した機械構造用部品が、従来に無い優れた曲げ疲労強度および衝撃疲労強度を発揮することを見出した。
1.8×[%Si]+1.5×[%Mo]-([%Mn]+[%Cr])/2 ≧ 0.50  ・・・(1)
 ただし、〔%M〕はM元素の含有量(質量%)を示す。
 上記(1)式は、粒界酸化層深さに影響を与える因子を示し、左辺の値が0.50未満では、粒界酸化層深さの低減効果に乏しい。本発明では、上記(1)式を満たすことによって、浸炭処理後の粒界酸化層およびその周囲に形成される低硬度の浸炭異常層の深さを低減させることができるため、回転曲げ疲労強度および衝撃疲労強度を向上させることができる。
 しかしながら、各々の元素が、上記(1)式を満足している場合であっても、回転曲げ疲労試験後の試験片の破面に位置する酸化物系介在物のサイズがある値よりも大きいと、この酸化物系介在物に起因して回転曲げ疲労強度および衝撃疲労強度が低下するため、早期疲労破壊を示すといった問題があることがわかった。そこで、本発明の肌焼鋼は、浸炭焼入れ及び焼戻し後に以下の(2)式を満足することが重要である。下記(2)式の左辺√Iの値は、より好ましくは60以下であり、さらに好ましくは40以下である。
√I≦80  ・・・(2)
 上掲(2)式の左辺のIは、疲労破壊の起点となる最大の酸化物系介在物のサイズを示す指標であり、以下のようにして求める。肌焼鋼(棒鋼または線材)から、7本の試験片を採取する。試験片は、熱間加工による延伸方向(すなわち熱間圧延による場合には圧延方向、熱間鍛造による場合には鍛造による延伸方向)と平行に、直径1/2位置より採取し、図1に示す平行部直径8mm×平行部長さ16mmの寸法とする。
 試験片に対して、図2に示す条件で浸炭焼入れ及び焼戻しを施し、その後、両振り小野式回転曲げ疲労試験を行って、フィッシュアイ破壊を生じさせる。試験条件は、浸炭後に表面を0.1mm研摩し、負荷応力1000MPa、回転数3500rpmとする。このように表層を研磨して行う疲労試験では、表層破壊よりも内部起点破壊すなわち、介在物を起点とする破壊が主となり、このため、試験後にフィッシュアイ破壊が観察される。そして、7本の試験片のうち最低疲労寿命のものについて、破面を走査型電子顕微鏡で観察し、フィッシュアイ中心部に位置する酸化物系介在物、すなわち、最大の酸化物系介在物の面積を画像解析にて測定し、Iとする。
 本発明における、このような介在物の大きさの求め方によれば、3.14×(7.8mm÷2)2×16mm×7=5349mm3の体積中の最大酸化物系介在物の大きさを評価できる。従来の被検面積中に存在する酸化物系介在物の大きさ、数量または密度の測定法では、このような大体積中の酸化物系介在物の状態の測定はできず、疲労寿命に影響を及ぼす介在物の評価は行えない。本発明における上記の介在物の評価手法では、5349mm3という大体積中で、実際に鋼の疲労破壊の起点となった酸化物系介在物の大きさを評価できるので、疲労寿命の予測精度がより向上する。
 次に、本発明に係る肌焼鋼の製造方法について説明する。
 上記(2)式を満足する肌焼鋼を得るためには、その製造工程において、鋳片の成分組成を上記(1)式を含めて上記の範囲に調整することに加えて、当該鋳片に対して、次の(3)式を満足する断面減少率にて熱間鍛造および/または熱間圧延による熱間加工を施して、棒鋼または線材とする必要がある。
(S1-S2)/S1≧0.960    ・・・(3)
 但し、S1は、熱間加工時の延伸方向と直交する断面における鋳片の断面積(mm2)であり、S2は、熱間加工時の延伸方向と直交する断面における棒鋼または線材の断面積(mm2)である。
 上記(3)式の左辺は、鋳片に熱間加工を施す際の断面減少率を示す指標である。ここで、熱間加工は、熱間鍛造であってもよく、また熱間圧延であってもよい。さらに、熱間鍛造と熱間圧延との両方を行ってもよい。上記(3)式の左辺で示される指標が0.960未満では、サイズの大きな酸化物系介在物に起因して回転曲げ疲労強度および衝撃疲労強度が低下し、結果として早期疲労破壊を示す。より好ましくは、上記(3)式の左辺が0.970以上であり、さらに好ましくは、0.985以上である。このように、本発明の成分組成を満足する鋼の鋳片に対して、上記(3)式を満足する断面減少率にて熱間加工を施すと、後述する浸炭焼入れ及び焼戻し後に上記(2)式を満足する肌焼鋼を得ることができる。
 以上のようにして製造された本発明の肌焼鋼(棒鋼または線材)は、熱間鍛造または冷間鍛造を施すか施さずに、その後切削等の機械加工を施して、部品形状(例えば歯車形状)に成型する。その後、この部品形状に対して、浸炭焼入れ・焼戻し処理を施すことにより所望の部品(例えば歯車)を得る。さらに、この部品に対して、ショットピーニング等の加工を施してもよい。なお、加工にあたり、熱間鍛造や冷間鍛造を施した場合には、酸化物系介在物のサイズが変化するが、疲労寿命を悪化させる方向に変化することはないので、これらの鍛造が施されて部品となる場合であっても、本発明の肌焼鋼を用いることは有効である。肌焼鋼に対する浸炭焼入れ・焼戻しの条件は特に限定されず、公知または任意の条件とすればよく、例えば、浸炭温度900℃以上1050℃以下で60分以上600分以下とし、焼入れ温度800℃以上900℃以下で10分以上120分以下とし、焼戻し温度120℃以上250℃以下で30分以上180分以下とすることができる。
 以下、実施例に従って、本発明の構成および作用効果をより具体的に説明する。しかし、本発明は下記の実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲内にて適宜変更することも可能であり、これらは何れも本発明の技術的範囲に含まれる。
 表1に示す成分組成(各元素の含有量の単位は質量%、残部はFeおよび不可避不純物)の鋼の鋳片を、表2に示す断面減少率にて熱間圧延し、種々の寸法の丸棒鋼を得た。表1中に示す鋼No.1~29は成分組成が本発明を満足する適合鋼であり、鋼No.30~52は成分組成が本発明を満足しない比較鋼であり、表2中の試験No.51は、断面減少率が本発明の規制値から外れた比較例である。
 (評価方法)
 各適合鋼および比較鋼において、以下の評価を行った。
 (1)回転曲げ疲労強度およびIの評価
 適合鋼および比較鋼から得た丸棒鋼の各々の直径1/2の位置より、既述の方法で試験片を7本採取し、既述の方法でIを求めた。画像解析には、Media-Cybernetics社製Image-Pro#PLUSを用いた。この手順における両振り小野式回転曲げ疲労試験において、破断までの繰り返し数(7本のうちの最短疲労寿命)を表2に示す。なお、最短疲労寿命が100,000回以上の場合に、優れた回転曲げ疲労強度を有するとみなすことができる。
 (2)衝撃疲労強度の評価
 適合鋼および比較鋼から得た丸棒鋼の各々の直径1/2の位置より、図3に示す10×10×110mmの試験片を採取し、衝撃疲労試験片とした。得られた試験片に対して、図2に示す浸炭焼入れ・焼戻し処理を行った。その後、落錘型衝撃疲労試験機により、繰返し数1000回で破壊する衝撃エネルギーを調査した。本試験において、3.5J以上の衝撃疲労強度を有する場合、優れた衝撃疲労強度を有するとみなすことができる。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、高い回転曲げ疲労強度および衝撃疲労強度を有する機械構造用部品を、比較的安価なコストで作製するための素材として適した肌焼鋼およびその製造方法を提供することができる。

Claims (10)

  1.  質量%で、C:0.15%以上0.30%以下、Si:0.50%以上1.50%以下、Mn:0.20%以上0.80%以下、P:0.003%以上0.020%以下、S:0.005%以上0.050%以下、Cr:0.30%以上1.20%以下、Mo:0.03%以上0.30%以下、B:0.0005%以上0.0050%以下、Ti:0.002%以上0.050%未満、N:0.0020%以上0.0150%以下およびO:0.0003%以上0.0025%以下を、下記(1)式を満足する範囲の下で含み、
     Alを、[%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]≧0.0003%の場合には、0.010%≦[%Al]≦0.100%にて含み、[%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]<0.0003%の場合には、(27/14)×{[%N]-(14/48)[%Ti]-(14/10.8)[%B]+0.02}≦[%Al]≦0.100%にて含み、
     残部はFeおよび不可避不純物からなる成分組成を有し、
     さらに、下記(2)式を満足することを特徴とする肌焼鋼。
                      記
    1.8×[%Si]+1.5×[%Mo]-([%Mn]+[%Cr])/2 ≧ 0.50                             ・・・(1)
    √I≦80  ・・・(2)
     ただし、[%M]はM元素の含有量(質量%)を示し、Iは、前記肌焼鋼に浸炭焼入れお
    よび焼戻しを施し、その後回転曲げ疲労試験を行った後の破面における、フィッシュアイ中心部に位置する酸化物系介在物の面積(μm2)を示す。
  2.  前記成分組成が、質量%でさらに、Nb:0.050%以下、V:0.050%以下、およびSb:0.035%以下のうちから選んだ1種以上を含む請求項1に記載の肌焼鋼。
  3.  前記成分組成が、質量%でさらに、Cu:1.0%以下、およびNi:1.0%以下のうちから選んだ1種以上を含む請求項1または2に記載の肌焼鋼。
  4.  前記成分組成が、質量%でさらに、Ca:0.0050%以下、Sn:0.50%以下、Se:0.30%以下、Ta:0.10%以下、Hf:0.10%以下のうちから選んだ1種以上を含む請求項1~3のいずれか一項に記載の肌焼鋼。
  5.  質量%で、C:0.15%以上0.30%以下、Si:0.50%以上1.50%以下、Mn:0.20%以上0.80%以下、P:0.003%以上0.020%以下、S:0.005%以上0.050%以下、Cr:0.30%以上1.20%以下、Mo:0.03%以上0.30%以下、B:0.0005%以上0.0050%以下、Ti:0.002%以上0.050%未満、N:0.0020%以上0.0150%以下およびO:0.0003%以上0.0025%以下を、下記(1)式を満足する範囲の下で含み、
     Alを、[%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]≧0.0003%の場合には、0.010%≦[%Al]≦0.100%にて含み、[%B]-[(10.8/14)×{[%N]-(14/48)[%Ti]}]<0.0003%の場合には、(27/14)×{[%N]-(14/48)[%Ti]-(14/10.8)[%B]+0.02}≦[%Al]≦0.100%にて含み、
     残部はFeおよび不可避不純物からなる成分組成を有する鋼の鋳片を、下記(3)式を満足する断面減少率にて熱間鍛造および/または熱間圧延による熱間加工を施して、棒鋼または線材である肌焼鋼を得ることを特徴とする肌焼鋼の製造方法。
                      記
    1.8×[%Si]+1.5×[%Mo]-([%Mn]+[%Cr])/2 ≧ 0.50                             ・・・(1)
    (S1-S2)/S1≧0.960    ・・・(3)
     ただし、[%M]はM元素の含有量(質量%)を示し、S1は、熱間加工時の延伸方向と直交する断面における前記鋳片の断面積(mm2)、S2は、熱間加工時の延伸方向と直交する断面における前記棒鋼または線材の断面積(mm2)を示す。
  6.  前記成分組成が、質量%でさらに、Nb:0.050%以下、V:0.050%以下、およびSb:0.
    035%以下のうちから選んだ1種以上を含む請求項5に記載の肌焼鋼の製造方法。
  7.  前記成分組成が、質量%でさらに、Cu:1.0%以下、およびNi:1.0%以下のうちから選んだ1種以上を含む請求項5または6に記載の肌焼鋼の製造方法。
  8.  前記成分組成が、質量%でさらに、Ca:0.0050%以下、Sn:0.50%以下、Se:0.30%以下、Ta:0.10%以下、Hf:0.10%以下のうちから選んだ1種以上を含む請求項5~7のいずれか一項に記載の肌焼鋼の製造方法。
  9.  請求項1~4のいずれか一項に記載の肌焼鋼に、機械加工、または、鍛造とその後の機械加工を施して歯車形状とし、その後、前記肌焼鋼に浸炭焼入れおよび焼戻しを施して、歯車部品を得ることを特徴とする歯車部品の製造方法。
  10.  請求項5~8のいずれか一項に記載の肌焼鋼の製造方法の工程に加えて、前記肌焼鋼に、機械加工、または、鍛造とその後の機械加工を施して歯車形状とし、その後、前記肌焼鋼に浸炭焼入れおよび焼戻しを施して、歯車部品を得ることを特徴とする歯車部品の製造方法。
PCT/JP2017/032544 2016-09-09 2017-09-08 肌焼鋼およびその製造方法ならびに歯車部品の製造方法 WO2018047955A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018538494A JP6468402B2 (ja) 2016-09-09 2017-09-08 肌焼鋼およびその製造方法ならびに歯車部品の製造方法
US16/330,857 US11332799B2 (en) 2016-09-09 2017-09-08 Case hardening steel, method of producing the same, and method of producing gear parts
MX2019002741A MX2019002741A (es) 2016-09-09 2017-09-08 Acero de cementacion, metodo de produccion del mismo, y metodo de produccion de partes de engranajes.
KR1020197009743A KR102279838B1 (ko) 2016-09-09 2017-09-08 표면 경화강 및 그 제조 방법 그리고 기어 부품의 제조 방법
CN201780054506.2A CN109689911B (zh) 2016-09-09 2017-09-08 表面硬化钢及其制造方法以及齿轮部件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176918 2016-09-09
JP2016-176918 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047955A1 true WO2018047955A1 (ja) 2018-03-15

Family

ID=61562819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032544 WO2018047955A1 (ja) 2016-09-09 2017-09-08 肌焼鋼およびその製造方法ならびに歯車部品の製造方法

Country Status (6)

Country Link
US (1) US11332799B2 (ja)
JP (2) JP6468402B2 (ja)
KR (1) KR102279838B1 (ja)
CN (1) CN109689911B (ja)
MX (1) MX2019002741A (ja)
WO (1) WO2018047955A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021095627A (ja) * 2019-12-13 2021-06-24 愛知製鋼株式会社 ディファレンシャル・ハイポイドギヤ、ピニオンギヤ、およびこれらを組み合わせてなるハイポイドギヤ対
CN114855079A (zh) * 2022-04-22 2022-08-05 江苏沙钢集团淮钢特钢股份有限公司 一种冷挤压齿轮轴用钢及其制备方法
JP7368723B2 (ja) 2019-12-27 2023-10-25 日本製鉄株式会社 浸炭鋼部品用鋼材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025877A (zh) * 2019-12-24 2021-06-25 通用汽车环球科技运作有限责任公司 高性能压制硬化钢
CN112359278B (zh) * 2020-10-19 2021-08-24 中天钢铁集团有限公司 一种工程机械齿轮用钢的制备法及其锻件的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273574A (ja) * 1999-03-25 2000-10-03 Mitsubishi Seiko Muroran Tokushuko Kk 浸炭あるいは浸炭窒化処理用鋼
JP2005023360A (ja) * 2003-06-30 2005-01-27 Sumitomo Metal Ind Ltd 切り屑処理性に優れた肌焼鋼
JP2007332438A (ja) * 2006-06-16 2007-12-27 Nippon Steel Corp 低サイクル疲労特性に優れた浸炭焼入れ鋼材及び浸炭焼入れ部品
JP2010248630A (ja) * 2009-03-27 2010-11-04 Jfe Steel Corp 肌焼鋼およびその製造方法
JP2011063886A (ja) * 2010-11-05 2011-03-31 Nippon Steel Corp 低サイクル疲労特性に優れた浸炭焼入れ鋼材及び浸炭焼入れ部品
JP2016204752A (ja) * 2015-04-22 2016-12-08 Jfeスチール株式会社 肌焼鋼および肌焼鋼の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100840B2 (ja) 1987-10-22 1995-11-01 日産自動車株式会社 耐衝撃性に優れる歯車
JPH07100840A (ja) 1993-09-30 1995-04-18 Dainippon Printing Co Ltd 化粧板用賦形型の製造方法
JP3319648B2 (ja) 1994-03-29 2002-09-03 株式会社東芝 ミュート信号発生回路
JP3094856B2 (ja) 1995-08-11 2000-10-03 株式会社神戸製鋼所 高強度高靭性肌焼き用鋼
JP3329177B2 (ja) 1996-03-21 2002-09-30 住友金属工業株式会社 曲げ強度と衝撃特性に優れた浸炭部品
JP3733504B2 (ja) 1997-09-02 2006-01-11 住友金属工業株式会社 曲げ強度と衝撃特性に優れた浸炭部品
TW514291U (en) 2001-12-26 2002-12-11 Shin-Jeng Tu Improved structure of poster rack
JP5385656B2 (ja) * 2009-03-27 2014-01-08 株式会社神戸製鋼所 最大結晶粒の縮小化特性に優れた肌焼鋼
WO2010116555A1 (ja) 2009-04-06 2010-10-14 新日本製鐵株式会社 冷間加工性、切削性、浸炭焼入れ後の疲労特性に優れた肌焼鋼及びその製造方法
WO2011093070A1 (ja) 2010-01-27 2011-08-04 Jfeスチール株式会社 肌焼鋼および浸炭材
JP5432105B2 (ja) * 2010-09-28 2014-03-05 株式会社神戸製鋼所 肌焼鋼およびその製造方法
US20160060744A1 (en) 2013-04-18 2016-03-03 Nippon Steel & Sumitomo Metal Corporation Case-hardening steel and case-hardened steel member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273574A (ja) * 1999-03-25 2000-10-03 Mitsubishi Seiko Muroran Tokushuko Kk 浸炭あるいは浸炭窒化処理用鋼
JP2005023360A (ja) * 2003-06-30 2005-01-27 Sumitomo Metal Ind Ltd 切り屑処理性に優れた肌焼鋼
JP2007332438A (ja) * 2006-06-16 2007-12-27 Nippon Steel Corp 低サイクル疲労特性に優れた浸炭焼入れ鋼材及び浸炭焼入れ部品
JP2010248630A (ja) * 2009-03-27 2010-11-04 Jfe Steel Corp 肌焼鋼およびその製造方法
JP2011063886A (ja) * 2010-11-05 2011-03-31 Nippon Steel Corp 低サイクル疲労特性に優れた浸炭焼入れ鋼材及び浸炭焼入れ部品
JP2016204752A (ja) * 2015-04-22 2016-12-08 Jfeスチール株式会社 肌焼鋼および肌焼鋼の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021095627A (ja) * 2019-12-13 2021-06-24 愛知製鋼株式会社 ディファレンシャル・ハイポイドギヤ、ピニオンギヤ、およびこれらを組み合わせてなるハイポイドギヤ対
JP7123098B2 (ja) 2019-12-13 2022-08-22 愛知製鋼株式会社 ディファレンシャル・ハイポイドギヤ、ピニオンギヤ、およびこれらを組み合わせてなるハイポイドギヤ対
JP7368723B2 (ja) 2019-12-27 2023-10-25 日本製鉄株式会社 浸炭鋼部品用鋼材
CN114855079A (zh) * 2022-04-22 2022-08-05 江苏沙钢集团淮钢特钢股份有限公司 一种冷挤压齿轮轴用钢及其制备方法
CN114855079B (zh) * 2022-04-22 2023-10-20 江苏沙钢集团淮钢特钢股份有限公司 一种冷挤压齿轮轴用钢及其制备方法

Also Published As

Publication number Publication date
JP2019052376A (ja) 2019-04-04
US11332799B2 (en) 2022-05-17
JP6468402B2 (ja) 2019-02-13
MX2019002741A (es) 2019-05-27
CN109689911B (zh) 2021-10-12
US20190218633A1 (en) 2019-07-18
KR102279838B1 (ko) 2021-07-20
JPWO2018047955A1 (ja) 2018-12-06
JP6741060B2 (ja) 2020-08-19
CN109689911A (zh) 2019-04-26
KR20190045314A (ko) 2019-05-02

Similar Documents

Publication Publication Date Title
JP6468402B2 (ja) 肌焼鋼およびその製造方法ならびに歯車部品の製造方法
JP5231101B2 (ja) 疲労限度比と被削性に優れた機械構造用鋼
JP6344423B2 (ja) 肌焼鋼および肌焼鋼の製造方法
KR102165228B1 (ko) 기소강 및 그 제조 방법과 기어 부품의 제조 방법
JP5871085B2 (ja) 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼
JP6078008B2 (ja) 肌焼鋼および機械構造用部品の製造方法
JP5332410B2 (ja) 浸炭用鋼材の製造方法
WO2017209180A1 (ja) 肌焼鋼およびその製造方法ならびに歯車部品の製造方法
JP6390685B2 (ja) 非調質鋼およびその製造方法
JP5443277B2 (ja) 被削性に優れた高強度鋼、およびその製造方法
JP5445345B2 (ja) ステアリングラックバー用棒鋼およびその製造方法
JP6078007B2 (ja) 肌焼鋼および機械構造用部品の製造方法
JP6263390B2 (ja) 耐疲労性に優れた歯車用鋼および歯車
JP6825605B2 (ja) 浸炭部材
JP6791179B2 (ja) 非調質鋼およびその製造方法
CN107532252B (zh) 表面硬化钢
JP5526689B2 (ja) 浸炭用鋼
JP3823413B2 (ja) 高周波焼入用部品およびその製造方法
WO2021117243A1 (ja) 時効硬化用鋼、鋼及び機械部品
JP5454620B2 (ja) 粒径粗大化防止特性に優れた浸炭部品用鋼
JP2014198870A (ja) 肌焼鋼

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018538494

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009743

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17848893

Country of ref document: EP

Kind code of ref document: A1