WO2021117243A1 - 時効硬化用鋼、鋼及び機械部品 - Google Patents

時効硬化用鋼、鋼及び機械部品 Download PDF

Info

Publication number
WO2021117243A1
WO2021117243A1 PCT/JP2019/049043 JP2019049043W WO2021117243A1 WO 2021117243 A1 WO2021117243 A1 WO 2021117243A1 JP 2019049043 W JP2019049043 W JP 2019049043W WO 2021117243 A1 WO2021117243 A1 WO 2021117243A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
amount
content
precipitation
Prior art date
Application number
PCT/JP2019/049043
Other languages
English (en)
French (fr)
Inventor
将人 祐谷
幹 高須賀
泰三 牧野
松本 斉
真志 東田
耕司 森田
登史政 伊藤
圭宏 谷村
朋光 福岡
正 西脇
Original Assignee
日本製鉄株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, 株式会社デンソー filed Critical 日本製鉄株式会社
Priority to PCT/JP2019/049043 priority Critical patent/WO2021117243A1/ja
Priority to JP2021563578A priority patent/JPWO2021117243A1/ja
Publication of WO2021117243A1 publication Critical patent/WO2021117243A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention is obtained from aging hardening steel that exhibits excellent strength and toughness by subjecting it to aging hardening treatment (hereinafter referred to as "aging treatment"), steel obtained by aging the steel, and automobiles and industries. It relates to mechanical parts used for machinery and construction machinery.
  • high fatigue strength is required for mechanical parts used in automobiles, industrial machines, construction machines, and the like. If the steel is provided with only fatigue strength, it can be easily achieved by appropriately adjusting the alloying elements and / or the heat treatment to increase the hardness of the steel. However, in general, these mechanical parts are formed by hot forging and then cut into a predetermined product shape. Therefore, the steel used as the material for the machine parts must have high fatigue strength and sufficient machinability at the same time.
  • Fatigue strength is generally better as the hardness of the material is higher.
  • the cutting resistance and the tool life tend to be inferior as the hardness of the material increases.
  • the hardness can be kept low at the molding stage where machinability is required, while the final product is subsequently subjected to aging treatment to require strength.
  • Techniques related to age hardening steel, which can increase the hardness at the stage, are disclosed.
  • Patent Document 1 states that by adjusting the content of each alloy element so as to satisfy a specific parameter formula, the hardness during cutting is kept low, and the amount of cementite and its morphology are controlled, thereby aging. Aged hardened steels that can have both high hardness and toughness after treatment have been proposed.
  • Patent Document 2 the content of each alloy element is adjusted so as to satisfy a specific parameter formula, so that the hardness during cutting is kept low and the structure is made finer, so that the content is high after the aging treatment.
  • Aged hardened steels that can provide hardness and toughness have been proposed.
  • Patent Document 3 proposes an aging hardening steel having a sufficient amount of C and N, maximizing the precipitation strengthening by V after aging, and having high fatigue strength and toughness after aging.
  • Patent Document 1 has the hardness, fatigue strength and toughness after aging while keeping the hardness before aging hardening low by optimizing the alloy composition of the steel and controlling the morphology of cementite. Is increasing. However, since it has not been sufficiently devised to increase the yield strength, it can be used for parts that require high dimensional accuracy and parts that momentarily apply stress that exceeds the stress that is constantly applied. I can't say I can.
  • Patent Document 2 optimizes the alloy composition of the steel, miniaturizes the structure, keeps the hardness before aging hardening low, and enhances the hardness, fatigue strength and toughness after aging. ing.
  • increasing the yield strength is not an issue, and when used for parts that require high dimensional accuracy or parts that momentarily apply stress greater than the stress that is constantly applied, tension is applied. It was necessary to adjust the strength particularly high.
  • Patent Document 3 contains a large amount of N in order to promote the precipitation of V-carbonitride during aging and increase the yield strength.
  • V may be fixed as a nitride and may not contribute to aging hardening, which is not preferable.
  • an object of the present invention is to provide an age hardening steel that satisfies the following ⁇ 1> to ⁇ 4>.
  • the hardness after hot forging which is related to cutting resistance and tool life, is low.
  • the hardness after hot forging is referred to as "hardness before aging treatment”.
  • an object of the present invention is that the hardness before the aging treatment is 370 HV or less, the fatigue strength evaluated by the test piece described later after the aging treatment exceeds 500 MPa, and the yield strength after the aging treatment is 800 MPa or more. It is an object of the present invention to provide a steel for aging hardening in which the value of Charpy impact value measured by a Charpy test piece with a V notch is 10 J / cm 2 or more.
  • the present inventors first conducted a survey using steels in which the amount of V and the amount of Mo were variously adjusted, and the hardness and yield strength, which are indicators of fatigue strength after aging, were used. And a method for combining toughness was examined. As a result, the present inventors obtained the following findings (a) to (d).
  • the ratio of the precipitation amount of Mo to the precipitation amount of V is in an appropriate range. Must be set to. Then, in order for the above ratio to be in an appropriate range, the Mo content, the V content, and the relationship between the V content and the Mo content in the steel component may be optimized.
  • the present invention has been made based on the above findings, and the gist thereof is as shown below.
  • the rest is Fe and impurities
  • the F1 represented by the formula (1) is 0.74 to 1.05
  • the F2 represented by the formula (2) is 0.15 or more
  • the F3 represented by the formula (3) is 0.40 or less.
  • a steel for age hardening which is characterized by having a chemical composition of.
  • F1 C + 0.1Si + 0.2Mn + 0.15Cr + 0.35V + 0.2Mo ...
  • F2 Mo-0.6V ⁇ ⁇ ⁇ (2)
  • F3 Mo-2.3V ⁇ ⁇ ⁇ (3)
  • the element symbols in the above equations (1), (2) and (3) mean the content (mass%) of the element.
  • the amount of V precipitation and the amount of Mo precipitation as carbonitoxide measured by electrolytic extraction residue measurement are 0.09% by mass or more, respectively.
  • Steel having 0.07% by mass or more and the ratio of the Mo precipitation amount to the V precipitation amount being 0.50 to 2.40.
  • the aging hardening steel of the present invention has a hardness of 370 HV or less before the aging treatment. Moreover, if the aging hardening steel of the present invention is used, the fatigue strength exceeding 500 MPa, the yield strength of 800 MPa or more, and the V notch in the fatigue test using the test piece described later by the aging treatment applied after the cutting process. A normal temperature impact value of 10 J / cm 2 or more can be obtained by the Charpy impact test with. Therefore, the age hardening steel of the present invention can be extremely suitably used as a material for mechanical parts such as automobiles, industrial machines, and construction machines.
  • age hardening steel ⁇ Steel for age hardening and steel obtained by subjecting it to age hardening (hereinafter referred to as "age hardening steel">
  • the age hardening steel of the present embodiment is characterized by the following composition and formulas F1 to F3.
  • Si 0.01-0.35%
  • Si is useful as a deoxidizing element during steelmaking, and at the same time, has an action of solid-solving in a matrix to improve the strength of steel.
  • the content of Si needs to be 0.01% or more.
  • the Si content was set to 0.01 to 0.35%.
  • the Si content is preferably 0.05% or more.
  • the Si content is preferably 0.30% or less, and more preferably 0.28% or less.
  • Mn 1.50 to 2.50%
  • Mn has the effect of improving hardenability and making the main phase of the structure bainite. Furthermore, by lowering the bainite transformation temperature, it also has the effect of refining the bainite structure and increasing the toughness of the matrix. Further, Mn has an action of forming MnS in steel to improve chip controllability at the time of cutting. In order to obtain these effects sufficiently, Mn needs to have a content of at least 1.50%. However, since Mn is an element that easily segregates during solidification of steel, if the content is too large, it is unavoidable that the variation in hardness in the parts after hot forging becomes large. Therefore, the Mn content was set to 1.50 to 2.50%.
  • the Mn content is preferably 1.60% or more, and more preferably 1.70% or more.
  • the Mn content is preferably 2.30% or less, and more preferably 2.10% or less.
  • S 0.005 to 0.035% Since S is combined with Mn in steel to form MnS and improves chip control during cutting, it is necessary to contain S in 0.005% or more. However, when the S content increases, the coarse MnS increases and the fatigue strength deteriorates. In particular, when the S content exceeds 0.035%, the fatigue strength is significantly adversely affected. Therefore, the S content was set to 0.005 to 0.035%.
  • the S content is preferably 0.010% or more.
  • the S content is preferably 0.030% or less, more preferably 0.025% or less, and even more preferably 0.020% or less.
  • Cr 0.90% to 1.80% Like Mn, Cr has the effect of enhancing hardenability and making the main phase of the structure bainite. Further, by lowering the bainite transformation temperature, the effect of refining the bainite structure and increasing the toughness of the matrix is great, so that it is essential to contain 0.90% or more. However, if the Cr content exceeds 1.80%, the hardenability becomes large, and depending on the size and portion of the part, the hardness before the aging treatment becomes too high, and the machinability deteriorates. Therefore, the Cr content was set to 0.90 to 1.80%.
  • the Cr content is preferably 1.00% or more, and more preferably 1.10% or more.
  • the Cr content is preferably 1.7% or less, more preferably 1.60% or less.
  • Al 0.005 to 0.050%
  • Al is an element having a deoxidizing action, and the content needs to be 0.005% or more in order to obtain this effect. However, if Al is excessively contained, coarse oxides will be produced, and fatigue strength and toughness will decrease. Therefore, the Al content was set to 0.005 to 0.050%.
  • the Al content is preferably 0.045% or less, and more preferably 0.040% or less.
  • V 0.15 to 0.35%
  • V is the most important element in the steel of the present invention.
  • V has the effect of increasing fatigue strength by combining with C to form fine carbides during the aging treatment.
  • Mo when Mo is contained in the steel, V also has an effect of being compounded with Mo and precipitated by the aging treatment to further enhance the aging hardening ability.
  • V needs to have a content of 0.15% or more.
  • the V content was set to 0.15 to 0.35%.
  • the V content is preferably 0.30% or less, more preferably 0.25% or less, and even more preferably less than 0.25%.
  • the V content is preferably 0.18% or more, and more preferably 0.20% or more.
  • Mo is an important element that controls the morphology of V-carbonitride by combining with V and precipitating as carbonitride, and weakens the toughness deterioration effect of V-carbonitride after aging. In order to obtain this effect sufficiently, the Mo content needs to exceed at least 0.30%. However, if the Mo content exceeds 1.00%, Mo 2 C is likely to be formed during aging. The steel in which Mo 2 C is precipitated has a lower yield strength than the steel reinforced only with V carbonitride. Moreover, Mo 2 C may become coarse and deteriorate the toughness. Therefore, the Mo content was set to more than 0.30 to 1.00%.
  • the Mo content is preferably 0.35% or more, and more preferably 0.40% or more.
  • the Mo content is preferably 0.90% or less, and more preferably 0.80% or less.
  • P 0.030% or less
  • P is contained as an impurity and is an unfavorable element in the present invention. That is, P reduces toughness by segregating at grain boundaries. Therefore, the P content was set to 0.030% or less.
  • the content of P is preferably 0.025% or less.
  • Ti Less than 0.005% Ti is contained as an impurity and is a particularly unfavorable element in the present invention. That is, Ti binds to N and / or C to form TiN and / or TiC, which causes a decrease in toughness, and particularly when the content thereof is 0.005% or more, the toughness is significantly deteriorated. Therefore, the Ti content was set to less than 0.005%. In order to ensure good toughness, the Ti content is preferably 0.003% or less, and more preferably 0.002% or less.
  • O Less than 0.0030% O is contained as an impurity and is a particularly unfavorable element in the present invention. That is, O forms coarse alumina by combining with Al, and particularly when the content thereof is 0.0030% or more, the toughness and fatigue strength of the steel deteriorate. Therefore, the O content was set to less than 0.0030%. In order to secure good toughness and fatigue strength, the O content is preferably 0.0025% or less, and more preferably 0.0020% or less.
  • N Less than 0.0080% N is contained as an impurity, and in the present invention, V is an unfavorable element that can be fixed as a nitride. That is, since V precipitated as a nitride does not contribute to age hardening, the content of N must be low in order to suppress the precipitation of the nitride. For that purpose, the content of N needs to be less than 0.0080%.
  • the content of N is preferably less than 0.0075%, more preferably less than 0.0070%, and even more preferably less than 0.0065%.
  • the balance is Fe and impurities.
  • the impurities are those mixed from ore, scrap, manufacturing environment, etc. as raw materials when industrially manufacturing steel for age hardening, and adversely affect the steel for age hardening of the present embodiment. Means what is allowed within the range that does not give.
  • impurities include Mg, Co, As, Zr, Sb, W, REM (elements with atomic numbers 57 to 71), Hf, Ta, La, Ce, Ca, In, Sn, Pb, Bi, Te, And Zn and the like, Mg: 0.02% or less, Co and As: 0.1% or less, Sb, W, REM, Hf, Ta, La and Ce: 0.01% or less, Ca, In. , Zr, Te, Bi, Pb, Sn and Zn: It is desirable to limit to 0.01% or less.
  • the age hardening steel of the present embodiment may optionally contain Cu and / or Ni in addition to the above-mentioned elements. Both Cu and Ni have the effect of increasing fatigue strength. Therefore, when it is desired to obtain a larger fatigue strength, these elements may be contained in the range described below.
  • Cu 0 to 0.30% Cu has an action of improving fatigue strength. Therefore, Cu may be contained if necessary. However, as the Cu content increases, the hot workability decreases. Therefore, the amount of Cu to be contained was set to 0.30% or less. The amount of Cu to be contained is preferably 0.25% or less.
  • the amount of Cu contained is 0.10% or more.
  • Ni 0 to 0.30% or less
  • Ni has an action of improving fatigue strength. Further, Ni also has an action of suppressing a decrease in hot workability due to Cu. Therefore, Ni may be contained if necessary. However, as the Ni content increases, the above effects are saturated in addition to the increased cost. Therefore, the amount of Ni when contained was set to 0.30% or less.
  • the amount of Ni to be contained is preferably 0.25% or less.
  • the amount of Ni contained is 0.10% or more.
  • the above Cu and Ni can be contained in only one of them or in a composite of two.
  • the total content of the above elements when contained may be 0.60% when the contents of Cu and Ni are the upper limits of each.
  • Formula F1 [Formula F1 to Formula F3 based on the content of each element] (Formula F1: 0.74 to 1.05) Formula F1 can be expressed as follows.
  • the element symbol in the following formula means the content (mass%) of the element.
  • F1 C + 0.1Si + 0.2Mn + 0.15Cr + 0.35V + 0.2Mo ... (1)
  • F1 is an index showing the hardness before aging treatment. That is, when F1 exceeds 1.05, the hardness before the aging treatment becomes too high. If F1 is less than 0.74, the hardness before aging becomes too low, and sufficiently high fatigue strength cannot be obtained even by aging. Therefore, the range of F1 was set to 0.74 to 1.05.
  • F1 is preferably 1.00 or less, and more preferably 0.98 or less. Further, F1 is preferably 0.78 or more, and more preferably 0.80 or more.
  • Formula F2 can be expressed as follows.
  • the element symbol in the following formula means the content (mass%) of the element.
  • F2 Mo-0.6V ... (5)
  • F2 is an index for obtaining a composite carbonitride containing both V and Mo. That is, when F2 is less than 0.15, V carbonitride containing no Mo is formed, and the adverse effect on toughness becomes large.
  • F2 is preferably 0.20 or more, and more preferably 0.25 or more.
  • F3 is an index for suppressing the precipitation of Mo 2 C. That is, when F3 exceeds 0.40, Mo 2 C is generated, the yield strength commensurate with the hardness cannot be obtained, and the toughness also deteriorates.
  • F3 is preferably 0.35 or less, and more preferably 0.30 or less.
  • the aging hardening steel of this embodiment is a steel that satisfies the above composition and formula values.
  • Aged hardened steel can be obtained by sequentially performing the treatment. Further, the cutting process can be performed not only before the aging process but also after the aging process.
  • the amount of V-precipitation and the amount of Mo-precipitation as carbonitide measured by the measurement of the electrolytic extraction residue, and the amount of V-precipitation of the amount of Mo-precipitation The ratio can be in the following range (actions 1 to 3).
  • V precipitation amount 0.09% or more (action 1)
  • the amount of V precipitation as a carbonitride measured by the measurement of the electrolytic extraction residue is 0.09% or more.
  • the precipitate containing V causes age hardening, and the hardness, yield strength and fatigue strength of the steel can be improved.
  • Ratio of Mo precipitation amount to V precipitation amount 0.50 to 2.40 (Action 3)
  • the ratio of the Mo precipitation amount to the V precipitation amount as the carbonitride measured by the electrolytic extraction residue measurement is 0.50 to 2.40.
  • this ratio is 0.50 or more, a composite carbonitride containing both Mo and V can be obtained.
  • this ratio is 2.40 or less, it is possible to prevent the formation of Mo 2 C, suppress the decrease in toughness, and realize excellent yield strength.
  • the above-mentioned action 1 for the amount of V precipitation As described above, according to the aging hardening steel of the present embodiment having a predetermined component composition and the formulas F1 to F3, the above-mentioned action 1 for the amount of V precipitation, the above-mentioned action 2 for the amount of Mo precipitation, and the amount of V precipitation Combined with the above-mentioned action 3 regarding the ratio of the amount of Mo precipitation to the amount of Mo precipitation, excellent performance can be realized not only in the hardness before the aging treatment but also in the fatigue strength, the yield strength and the Charpy impact value after the aging treatment.
  • the hardness before the aging treatment can be 370 HV or less
  • the fatigue strength evaluated by the test piece after the aging treatment can be more than 500 MPa
  • the yield strength after the aging treatment can be 800 MPa.
  • the value of the Charpy impact value measured by the Charpy test piece with a V notch after the aging treatment can be set to 10 J / cm 2 or more.
  • a material to be used for hot forging (hereinafter referred to as "material for hot forging") is prepared from steel whose chemical composition has been adjusted to the above range.
  • the hot forging material referred to here corresponds to the above-mentioned age hardening steel.
  • the material for hot forging may be any material such as a billet obtained by slab-rolling an ingot, a billet obtained by slab-rolling a continuous cast material, or a steel bar obtained by hot-rolling or hot-forging these billets. Absent.
  • the above hot forging material is hot forged and further cut to finish it into a predetermined part shape.
  • hot forging for example, a material for hot forging is heated at 1100 to 1350 ° C. for 0.1 to 300 minutes, and then forged so that the surface temperature after finish forging becomes 900 ° C. or higher, and then 800. Cool to room temperature with an average cooling rate of 10 to 90 ° C./min in the temperature range of up to 400 ° C. Then, after such cooling, further cutting is performed to finish the part into a predetermined shape.
  • aging treatment is applied to obtain mechanical parts such as automobiles, industrial machines, and construction machines that have the desired characteristics.
  • the treatment is performed in a temperature range of 540 to 650 ° C., preferably a temperature range of 580 to 640 ° C.
  • the holding time of the aging treatment is appropriately adjusted according to the size (mass) of the mechanical parts, for example, 30 to 1000 minutes.
  • the aging temperature is lowered, the aging time is lengthened, and when the aging temperature is high, the aging time is shortened, so that the precipitation of the carbonitride containing V is promoted and the fatigue strength and the yield strength are improved.
  • the mechanical parts obtained by subjecting the aging treatment in this manner can be used as, for example, a common rail or as a mechanical part for a fuel injection device.
  • the average value of the V precipitation amount is 0.09% or more and the average value of the Mo precipitation amount in the region from the surface receiving the internal pressure (for example, the inner wall surface of the common rail) to the depth of 50 ⁇ m. Is 0.07% or more.
  • the ratio of the average value of the Mo precipitation amount to the average value of the V precipitation amount is 0.50 or more.
  • Steels 1 to 28 having the chemical compositions shown in Table 1 were melted in vacuum and cast into an ingot.
  • Steels 1 to 16 in Table 1 are steels whose chemical composition is within the range specified in the present invention.
  • the steels 17 to 28 are steels whose chemical composition does not meet the conditions specified in the present invention.
  • each steel was heated at 1250 ° C., and then hot forged into a steel bar having a diameter of 60 mm.
  • Each hot forged steel bar was once allowed to cool in the atmosphere and cooled to room temperature. After that, it was further heated at 1250 ° C. for 30 minutes, and the surface temperature of the forged material at the time of finishing was set to 950 to 1100 ° C., assuming forging to the shape of the part, and hot forging was performed on a steel bar having a diameter of 35 mm. After hot forging, all were allowed to cool in the air and cooled to room temperature.
  • the cooling rate when allowed to cool in the atmosphere is near R / 2 at the center of the hot forged steel bar in the length direction under the above conditions (R is the maximum radius, and the R / 2 part is the maximum diameter.
  • R is the maximum radius, and the R / 2 part is the maximum diameter.
  • a thermocouple was embedded in the half position), the temperature was raised to a temperature near the finishing temperature of hot forging again, and then the temperature was allowed to cool in the air for measurement.
  • the average cooling rate in the temperature range of 800 to 400 ° C. after forging measured in this way was about 50 ° C./min.
  • the remainder of the hot forged steel bars is subjected to an aging treatment of holding at 500 to 640 ° C. for 15 to 180 minutes, both ends of the steel bars are cut off by 100 mm, and then the test is performed from the remaining central part. A piece was cut out and the hardness after aging treatment was investigated. In addition, for each test number, test pieces were cut out from steel bars and the yield strength after aging treatment was investigated.
  • Hardness measurement was carried out as follows. First, a test piece was prepared by crossing the steel bar, filling it with resin so that the cut surface was the surface to be inspected, and mirror-polishing it. Next, in accordance with the "Vickers hardness test-test method" in JIS Z 2244 (2009), the R / 2 part of the surface to be inspected (R is the maximum radius, and the R / 2 part is half of the maximum diameter). The hardness was measured at 10 points in the vicinity with a test force of 9.8 N. The values of the above 10 points were arithmetically averaged to obtain Vickers hardness. When the hardness before the aging treatment was 370 HV or less, it was judged that the hardness was low, that is, the machinability was good, and this was set as the target.
  • the hardness after aging is a value that is an index of fatigue strength after aging, and is described as a reference.
  • the amount of change in hardness before and after the aging treatment is a value that is an index of the effect of the aging treatment, and is described as a reference. If the fatigue strength is high, there is no problem even if the hardness after aging is low, but in order to obtain good fatigue strength, the hardness after aging is preferably 310 HV or more. Further, if the amount of change in hardness before and after the aging treatment is increased by 20 points or more in Vickers hardness, it is considered that the effect of the aging treatment is obtained.
  • the yield strength was measured as follows. A tensile test was conducted using a JIS No. 14A tensile test piece having a parallel portion with a diameter of 6 mm and a length of 40 mm, and the specified plastic strain amount was set to 0.2%, and the 0.2% proof stress was obtained by the offset method. , The yield strength is equal to the proof stress. When the yield strength is 800 MPa or more and the ratio of the yield strength value in MPa unit to the Vickers hardness value exceeds 2.40, it is judged that the yield strength is sufficiently high, and this is determined. I made it a goal. In order to obtain good fatigue strength, the yield strength is preferably 800 MPa or more.
  • the toughness is a Charpy impact test conducted based on JIS Z2242 (2016) using a standard test piece with a V notch having a notch depth (depth of a sudden change in cross-sectional shape) of 2 mm and a notch bottom radius of 0.25 mm.
  • a V notch having a notch depth (depth of a sudden change in cross-sectional shape) of 2 mm and a notch bottom radius of 0.25 mm.
  • the fatigue strength was investigated by preparing an Ono-type rotary bending fatigue test piece having a parallel portion having a diameter of 8 mm and a length of 80 mm. That is, the above test pieces are collected so that the center of the fatigue test piece is the R / 2 part of the steel bar, the number of tests is 8, and the Ono type rotation is performed under the condition that the stress ratio is -1 at room temperature and in the atmosphere. A bending fatigue test was performed. The maximum value of the stress amplitude of the test piece that did not break up to 1.0 ⁇ 10 7 times was defined as the fatigue strength. When the fatigue strength exceeded 500 MPa, it was judged that the fatigue strength was sufficiently high, and this was set as a target.
  • the amount of V precipitation and the amount of Mo precipitation after aging were determined as follows.
  • a cylinder having a diameter of 10 mm and a length of 50 mm was prepared from the vicinity of R / 2 of the steel bar.
  • the prepared cylinder was energized in a 10% AA-based electrolytic solution, and 0.4 g of the surface layer was electrolyzed.
  • the electrolytic solution was filtered through a filter having a mesh roughness of 0.2 ⁇ m, and the residue remaining on the filter was analyzed by inductively coupled plasma (ICP) emission spectroscopic analysis to determine the amount of V precipitation and the amount of Mo precipitation.
  • ICP inductively coupled plasma
  • Tables 2-1 to 2-2 show the results of each of the above surveys.
  • FIG. 1 shows the relationship between the V content and the Mo content and the toughness and yield strength.
  • a Charpy impact value of 10 J or less is defined as "toughness: inferior”
  • a yield strength of 800 MPa or less or a ratio of yield strength to hardness of 2.40 or less is defined as "yield strength: inferior”.
  • the toughness and yield strength of the age-hardened steel in which the Mo amount, V amount, F2, and F3 are appropriately controlled are obtained by subjecting the age-hardened steel to the age-hardened steel under appropriate conditions. Both are possible.
  • Test numbers B1 to B5 and B7 to B10 have low yield strength or fatigue strength because F2 or F3 is not appropriate.
  • the test number B6 has a high hardness before aging because F1 is not appropriate.
  • Test number B11 has a high Ti and therefore a low impact value
  • test number B16 has a high N and therefore a low yield strength.
  • Test numbers A1, A17, A18, B12, B13 and B14 are tests using the same steel type, and differ only in the Mo precipitation amount, the V precipitation amount, and the ratio of the Mo precipitation amount to the V precipitation amount.
  • B12 to B15 in which the precipitation amounts of Mo and V do not satisfy the provisions of the present invention clearly have lower yield strength and fatigue strength than the examples of the invention.
  • the steels used for B12 to B15 are the aging hardening steels of the present invention, but the Mo precipitation amount and the V precipitation amount do not fall within an appropriate range because the aging treatment conditions are not appropriate, and the aging of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明によれば、時効処理前の硬さ、時効処理後の疲労強度、時効処理後の降伏強度、及びシャルピー衝撃値の値が所定の範囲である、時効硬化用鋼を提供できる。本発明の時効硬化用鋼は、所定の成分組成を有するとともに、下記の、(1)式で表わされるF1が0.74~1.05、(2)式で表わされるF2が0.15以上及び(3)式で表わされるF3が0.40以下である化学組成を有する。 F1=C+0.1Si+0.2Mn+0.15Cr+0.35V+0.2Mo・・(1) F2=Mo-0.6V ・・・(2) F3=Mo-2.3V ・・・(3) 上記の(1)、(2)、(3)式中の元素記号は、その元素の質量%での含有量を意味する。

Description

時効硬化用鋼、鋼及び機械部品
 本発明は、時効硬化処理(以下、「時効処理」)を施すことで優れた強度と靱性を発現する時効硬化用鋼、その鋼を時効処理した鋼、及びその鋼から得られ、自動車、産業機械及び建設機械などに用いられる機械部品等に関するものである。
 エンジンの高出力化、燃費向上を目指した軽量化などの観点から、自動車、産業機械及び建設機械などに用いられる機械部品には、高い疲労強度が要求されている。鋼に疲労強度だけを具備させるのであれば、合金元素及び/又は熱処理を適宜調整して鋼の硬さを上げることで、容易に達成することができる。しかしながら、一般に、これらの機械部品は、熱間鍛造により成形され、その後、切削加工によって所定の製品形状に仕上げられる。このため、上記機械部品の素材となる鋼は、高い疲労強度とともに十分な被削性を同時に備えていなければならない。
 疲労強度は、一般的に、素材の硬さが高いほど優れる。一方で、被削性のうち、切削抵抗と工具寿命は、素材の硬さが高いほど劣る傾向にある。
 そこで、疲労強度と被削性とを両立させるために、被削性が要求される成形段階では硬さを低く抑えることができる一方、その後に時効処理を施して強度が要求される最終の製品段階では硬さを高くすることができる、時効硬化用鋼に関連する技術が開示されている。
 特許文献1には、各合金元素の含有量を、特定のパラメータ式を満たすように調整することで、切削加工時の硬さを低く抑えつつ、セメンタイト量とその形態を制御することで、時効処理後に高い硬さと靭性を兼ね備えることが可能な時効硬化鋼が提案されている。
 特許文献2には、各合金元素の含有量を、特定のパラメータ式を満たすように調整することで、切削加工時の硬さを低く抑えつつ、組織を微細化させることで、時効処理後に高い硬さと靭性を備えることが可能な時効硬化鋼が提案されている。
 特許文献3には、C量とN量を十分に確保し、時効後のVによる析出強化を最大限に活用し、時効後に高い疲労強度、靭性を有する時効硬化性鋼が提案されている。
特開2013-253265号公報 国際公開第2015-050152号 国際公開第2016/148206号
 高い応力が繰り返し付与されるような部品においては、部品に表面傷が発生した場合の疲労強度の低下量を小さくするために、高い靭性を備えていることが望ましい。靭性が低いと、疲労き裂が発生した際に、き裂が進展し易くなり、かつ破壊も大規模なものとなる。さらに、熱間鍛造で生じた歪を冷間加工で矯正しようとした場合、鋼の靭性が低いと、矯正時に割れが生じやすくなるといった問題もある。
 さらに、エンジンを構成する部品のうち、精密な形状の機械部品は、使用中に寸法が変化しないことが必要である。これらの精密な形状の機械部品には、使用環境によっては通常使用される程度の負荷と比べて高い負荷が瞬間的に加わることがあり得る。このため、このような負荷に対しても寸法を不変とするために降伏強度が必要である。
 時効処理によって鋼中に微細な二次相を析出させることで高い疲労強度と降伏強度を得ようとすると、鋼の靱性は劣化する。一方、鋼の靭性を高めるために、鋼中の可動転位密度を増やし、或いは微細な二次相を減らすと、高い降伏強度を得ることが困難になる。即ち、時効硬化鋼に、疲労強度と降伏強度と靭性とを高いレベルで兼ね備えさせることは容易ではない。
 特許文献1で開示された鋼は、鋼の合金成分を最適化すると共に、セメンタイトの形態を制御することで、時効硬化前の硬さを低く保ちつつ、時効後の硬さ、疲労強度及び靭性を高めている。しかしながら、降伏強度を高めるための工夫が十分になされていないため、高い寸法精度が必要となる部品や、定常的に負荷される応力以上の応力が瞬間的に加わるような部品には用いることができるとはいえない。
 特許文献2で開示された鋼は、鋼の合金成分を最適化すると共に、組織の微細化を図り、時効硬化前の硬さを低く保ちつつ、時効後の硬さ、疲労強度及び靭性を高めている。しかしながら、降伏強度を高めることは課題とされておらず、高い寸法精度が必要となる部品や、定常的に負荷される応力以上の応力が瞬間的に加わるような部品に用いる場合には、引張り強度を特に高く調整する必要があった。
 特許文献3で開示された鋼は、時効時のV炭窒化物の析出を促進させ降伏強度を高めるため、多量のNを含有する。しかしながら、時効前の鋼が多量のNを含有すると、Vを窒化物として固定し、時効硬化に寄与しなくするおそれがあり、好ましくない。
 このような背景に鑑みて、本発明の目的は、下記の<1>から<4>を満たす時効硬化性用鋼を提供することにある。
 <1>切削抵抗及び工具寿命と関係する熱間鍛造後の硬さが低いこと。なお、以下の説明においては、上記の熱間鍛造後の硬さを、「時効処理前の硬さ」という。
 <2>時効処理後の疲労強度が高いこと。
 <3>時効処理後の降伏強度が高いこと。
 <4>時効処理後の靭性が高いこと。
 具体的には、本発明の目的は、時効処理前の硬さが370HV以下であり、時効処理後の後述する試験片で評価した疲労強度が500MPaを超え、時効処理後の降伏強度が800MPa以上であり、Vノッチ付きのシャルピー試験片で測定したシャルピー衝撃値の値が10J/cm以上となる時効硬化用鋼を提供することである。
 本発明者らは、前記の課題を解決するために、まず、V量及びMo量を種々に調整した鋼を用いて調査を実施し、時効後の疲労強度の指標となる硬さ、降伏強度及び靭性を兼ね備えるための手法について検討した。その結果、本発明者らは下記(a)から(d)の知見を得た。
 (a)一般的には、鋼の硬さが高くなるほど、靭性は劣化する。V炭窒化物で鋼を強化すると硬さが増加して靭性が劣化するが、この時の靭性の劣化量は、硬さの増加に起因する量よりも大きい。即ち、V炭窒化物によって強化された鋼は他の手法によって強化された鋼よりも靭性が劣る。
 (b)Vと一緒にMoを含有させると、時効時に析出する炭窒化物が、VとMoを複合的に含有する複合炭窒化物となる。V炭窒化物と比べると、この複合炭窒化物は靭性への悪影響が小さくなる。これは、Moを複合することで、炭窒化物の結晶構造に変化が生じ、周囲に生成するひずみが緩和されるためであると推定される。
 (c)しかしながら、VとMoを複合的に含有させた鋼の降伏強度は、同程度の引張強度を有するVのみを含む鋼と比べて低下する。特にMo量が一定量を超えると、この傾向は顕著になる。これは、Mo量が増えると、V炭窒化物に加えてMoCが析出することによる。さらに、Moの含有量が多くなりすぎると、MoCの粗大化によって、靭性も劣化する。即ち、Moを含有させることによる靭性向上の効果を得つつ、高い降伏強度を得るためには、MoCの析出を抑制したうえで、VとMoを共に含有する複合炭窒化物を鋼中に分散させることが必要である。
 (d)MoCの析出を抑制したうえで、VとMoを共に含有する複合炭窒化物を鋼中に分散させるためには、Vの析出量に対するMoの析出量の割合を適切な範囲に設定する必要がある。そして、上記の割合が適切な範囲にあるためには、鋼成分中における、Moの含有量、Vの含有量、及びVの含有量とMoの含有量の関係を最適化すればよい。
 次に、本発明者らは、時効後の靭性をさらに高めるための手法について検討するために、合金元素量を種々に調整した鋼を用いて調査を実施した。その結果、下記(e)、(f)の知見を得た。
 (e)時効後の硬さを低下させることなく靭性を高めるために必要な要件の一つは、脆性破壊の起点となり得る、セメンタイト、Ti系介在物、アルミナ系介在物の含有量を減少させることである。この要件を満足するためには、鋼材に含まれるTi量、O量をできるだけ低減するとともに、時効時の微細炭化物の析出駆動力を過度に低下させない程度にC量を低減する必要がある。
 (f)時効後の硬さを低下させること無く靭性を高めるために必要な要件のもう一つは、組織を微細化させることである。この要件を満足するためには、鋼材に含まれるMn量、Cr量を一定量以上にする必要がある。
 本発明は、上記の知見を基にしてなされたもので、その要旨は、下記に示すとおりである。
 [1]質量%で、C:0.10~0.16%、Si:0.01~0.35%、Mn:1.50~2.50%、S:0.005~0.035%、Cr:0.90~1.80、Al:0.005~0.050%、V:0.15~0.35%、Mo:0.30超~1.00%、P:0.030%以下、Ti:0.005%未満、N:0.0080%未満、O:0.0030%未満、Cu:0~0.30%、Ni:0~0.30%を含み、
 残部がFe及び不純物であって、
 さらに、下記の、(1)式で表わされるF1が0.74~1.05、(2)式で表わされるF2が0.15以上、及び(3)式で表わされるF3が0.40以下である化学組成を有することを特徴とする、時効硬化用鋼。
 F1=C+0.1Si+0.2Mn+0.15Cr+0.35V+0.2Mo・・(1)
 F2=Mo-0.6V                        ・・・(2)
 F3=Mo-2.3V                        ・・・(3)
 上記の(1)、(2)及び(3)式中の元素記号は、その元素の含有量(質量%)を意味する。
 [2]上記[1]に記載の時効硬化用鋼の成分組成を有し、電解抽出残渣測定によって測定される炭窒化物としてのV析出量とMo析出量がそれぞれ0.09質量%以上と0.07質量%以上であり、前記V析出量に対する前記Mo析出量の割合が0.50~2.40である、鋼。
 [3]上記[2]に記載の鋼を用いて形成され、内圧を受ける表面を有し、上記表面から深さ50μm位置までの領域において、V析出量の平均値が0.09質量%以上及びMo析出量の平均値が0.07質量%以上であり、上記V析出量の平均値に対する上記Mo析出量の平均値の割合が0.50以上であることを特徴とする機械部品。
 [4]前記機械部品はコモンレール又は燃料噴射装置用機械部品である、上記[3]に記載の機械部品。
 本発明の時効硬化性用鋼は、時効処理前の硬さが370HV以下となる。しかも、本発明の時効硬化性用鋼を用いれば、切削加工の後に施される時効処理によって、後述する試験片を用いた疲労試験において500MPaを超える疲労強度、800MPa以上の降伏強度、及びVノッチ付きのシャルピー衝撃試験で10J/cm以上の常温衝撃値が得られる。このため、本発明の時効硬化性用鋼は、自動車、産業機械、建設機械などの機械部品の素材として極めて好適に用いることができる。
試験番号A1~A21、B1~B4、B7~B10の調査結果を用いて、V含有量、Mo含有量と、靭性、降伏強度との関係を示す図である。
 以下、本発明に係る時効硬化用鋼、鋼及び機械部品についての、各構成要件について詳細に説明する。なお、以下では、各元素の含有量の「%」は「質量%」を意味する。
 <時効硬化用鋼、及びこれに時効処理を施して得られる鋼(以下「時効硬化鋼」という>
 本実施形態の時効硬化用鋼は、以下の成分組成及び数式F1~数式F3に特徴を有する。
 [成分組成]
 (必須元素)
 C:0.10~0.16%
 Cは、本発明において重要な元素である。Cは、Vと結合して炭化物を形成し、鋼を強化する。しかしながら、Cの含有量が0.10%未満では、V炭窒化物が析出し難くなるため、所望の強化効果が得られない。一方、Cの含有量が多くなりすぎると、時効前の硬さが高くなりすぎ、被削性が劣化する上に靭性が劣化する。したがって、Cの含有量を0.10~0.16%とした。Cの含有量は、0.11%以上とすることが好ましい。また、Cの含有量は0.15%以下とすることが好ましい。
 Si:0.01~0.35%
 Siは、製鋼時の脱酸元素として有用であると同時に、マトリックスに固溶して鋼の強度を向上させる作用を有する。これらの効果を十分に得るためには、Siは0.01%以上の含有量とする必要がある。しかしながら、Siの含有量が過剰になると、鋼の熱間加工性を低下させ、時効処理前の硬さが高くなる。したがって、Siの含有量を0.01~0.35%とした。Siの含有量は、0.05%以上とすることが好ましい。また、Siの含有量は、0.30%以下とすることが好ましく、0.28%以下とすることが一層好ましい。
 Mn:1.50~2.50%
 Mnは、焼入れ性を向上させ、組織の主相をベイナイトにする効果を持つ。さらに、ベイナイト変態温度を低下させることで、ベイナイト組織を微細化させて、マトリックスの靭性を高める効果も持つ。また、Mnは、鋼中でMnSを形成して切削時の切り屑処理性を向上させる作用を有する。これらの効果を十分に得るためには、Mnは少なくとも1.50%の含有量とする必要がある。しかしながら、Mnは鋼の凝固時に偏析しやすい元素であるため、含有量が多くなりすぎると、熱間鍛造後の部品内の硬さのばらつきが大きくなることを避けられない。したがって、Mnの含有量を1.50~2.50%とした。Mnの含有量は、1.60%以上とすることが好ましく、1.70%以上とすることが一層好ましい。また、Mnの含有量は、2.30%以下とすることが好ましく、2.10%以下とすることが一層好ましい。
 S:0.005~0.035%
 Sは、鋼中でMnと結合してMnSを形成し、切削時の切り屑処理性を向上させるので、0.005%以上含有させる必要がある。しかしながら、Sの含有量が多くなると、粗大なMnSが増加して疲労強度を劣化させ、特に、Sの含有量が0.035%を超えると、疲労強度への悪影響が著しくなる。したがって、Sの含有量を0.005~0.035%とした。Sの含有量は、0.010%以上とすることが好ましい。また、Sの含有量は、0.030%以下とすることが好ましく、0.025%以下とすることが一層好ましく、0.020%以下とすることが一層好ましい。
 Cr:0.90%~1.80%
 Crは、Mnと同様に焼入れ性を高め、組織の主相をベイナイトにする効果を持つ。さらに、ベイナイト変態温度を低下させることで、ベイナイト組織を微細化させてマトリックスの靭性を高める効果が大きいため、0.90%以上含有させることが必須である。しかしながら、Crの含有量が1.80%を超えると、焼入れ性が大きくなって、部品の大きさや部位によっては時効処理前の硬さが高くなりすぎ、被削性が劣化する。したがって、Crの含有量を0.90~1.80%とした。Crの含有量は、1.00%以上とすることが好ましく、1.10%以上とすることが一層好ましい。また、Crの含有量は、1.7%以下とすることが好ましく、1.60%以下とすることが一層好ましい。
 Al:0.005~0.050%
 Alは脱酸作用を有する元素であり、この効果を得るために0.005%以上の含有量とする必要がある。しかし、Alが過剰に含有すると、粗大な酸化物が生成するようになり、疲労強度と靱性が低下する。したがって、Alの含有量を0.005~0.050%とした。Alの含有量は、0.045%以下とすることが好ましく、0.040%以下とすることが一層好ましい。
 V:0.15~0.35%
 Vは、本発明の鋼における最も重要な元素である。Vは、時効処理の際にCと結合して微細な炭化物を形成することで、疲労強度を高める作用がある。また、鋼中にMoを含有した場合、Vには、時効処理によって、Moと複合して析出し、時効硬化能を一層高める効果もある。これらの効果を十分に得るためには、Vは0.15%以上の含有量とする必要がある。しかしながら、Vの含有量が過剰になると、時効処理によって析出したV炭窒化物がマトリックスを過度にひずませて、靭性を劣化させる。したがって、Vの含有量を0.15~0.35%とした。Vの含有量は、0.30%以下とすることが好ましく、0.25%以下とすることが一層好ましく、0.25%未満とすることが一層好ましい。また、Vの含有量は、0.18%以上とすることが好ましく、0.20%以上とすることが一層好ましい。
 Mo:0.30超~1.00%
 Moは、Vと複合して炭窒化物として析出することによりV炭窒化物の形態を制御し、V炭窒化物による時効後の靭性劣化作用を弱める重要な元素である。この効果を十分に得るためには、Moの含有量は少なくとも0.30%を超える必要がある。しかしながら、Moの含有量が1.00%を超えると、時効中にMoCが形成されやすくなる。MoCの析出した鋼は、V炭窒化物のみで強化された鋼と比べると降伏強度が低い。しかも、MoCが粗大化して靭性を劣化させることがある。したがって、Moの含有量を0.30超~1.00%とした。Moの含有量は、0.35%以上とすることが好ましく、0.40%以上とすることが一層好ましい。また、Moの含有量は、0.90%以下とすることが好ましく、0.80%以下とすることが一層好ましい。
 P:0.030%以下
 Pは、不純物として含有され、本発明において好ましくない元素である。即ち、Pは、粒界に偏析することで靱性を低下させる。したがって、Pの含有量を0.030%以下とした。Pの含有量は、0.025%以下とすることが好ましい。
 Ti:0.005%未満
 Tiは、不純物として含有され、本発明において特に好ましくない元素である。即ち、Tiは、N及び/又はCと結合することで、TiN及び/又はTiCを形成して靱性の低下を招き、特にその含有量が0.005%以上になると、大きく靱性を劣化させる。したがって、Tiの含有量を0.005%未満とした。良好な靱性を確保するためには、Tiの含有量は、0.003%以下とすることが好ましく、0.002%以下とすることが一層好ましい。
 O:0.0030%未満
 Oは、不純物として含有され、本発明において特に好ましくない元素である。即ち、Oは、Alと結合することで、粗大なアルミナを形成し、特にその含有量が0.0030%以上になると、鋼の靭性と疲労強度が劣化する。したがって、Oの含有量を0.0030%未満とした。良好な靭性と疲労強度を確保するためには、Oの含有量は、0.0025%以下とすることが好ましく、0.0020%以下とすることが一層好ましい。
 N:0.0080%未満
 Nは、不純物として含有され、本発明においては、Vを窒化物として固定し得る好ましくない元素である。即ち、窒化物として析出したVは時効硬化に寄与しなくなるため、窒化物の析出を抑制するために、Nの含有量は低くしなければならない。そのためには、Nの含有量は0.0080%未満とする必要がある。Nの含有量は、0.0075%未満とすることが好ましく、0.0070%未満とすることが一層好ましく、0.0065%未満とすることがより一層好ましい。
 (残部)
 残部は、Fe及び不純物である。ここで、不純物とは、時効硬化用鋼を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態の時効硬化用鋼に悪影響を与えない範囲で許容されるものを意味する。
 不純物として含有され得る元素の内、P、Ti、N、及びOについては、上述のとおり含有量を制限する必要がある。その他の不純物としては、Mg、Co、As、Zr、Sb、W、REM(原子番号57から71までの元素)、Hf、Ta、La、Ce、Ca、In、Sn、Pb、Bi、Te、及びZn等が挙げられ、それぞれ、Mg:0.02%以下、Co及びAs:0.1%以下、Sb、W、REM、Hf、Ta、La及びCe:0.01%以下、Ca、In、Zr、Te、Bi、Pb、Sn及びZn:0.01%以下に制限することが望ましい。
 (任意選択的元素)
 本実施形態の時効硬化用鋼は、上述した元素の他、任意選択的に、Cu及び/又はNiを含有してもよい。Cu及びNiは、いずれも、疲労強度を高める作用を有する。このため、より大きな疲労強度を得たい場合には、これらの元素を以下に述べる範囲で含有させてもよい。
 Cu:0~0.30%
 Cuは、疲労強度を向上させる作用を有する。このため、必要に応じてCuを含有させてもよい。しかしながら、Cuの含有量が多くなると、熱間加工性が低下する。したがって、含有させる場合のCuの量を0.30%以下とした。含有させる場合のCuの量は、0.25%以下とすることが好ましい。
 一方、前記したCuの疲労強度を高める効果を安定して得るためには、含有させる場合のCuの量は、0.10%以上とすることが望ましい。
 Ni:0~0.30%以下
 Niは、疲労強度を向上させる作用を有する。さらに、Niは、Cuによる熱間加工性の低下を抑制する作用も有する。このため、必要に応じてNiを含有させてもよい。しかしながら、Niの含有量が多くなると、コストが嵩むことに加えて上記の効果も飽和する。したがって、含有させる場合のNiの量を0.30%以下とした。含有させる場合のNiの量は、0.25%以下とすることが好ましい。
 一方、前記したNiの効果を安定して得るためには、含有させる場合のNiの量は、0.10%以上とすることが望ましい。
 上記のCu及びNiは、そのうちのいずれか1種のみ、又は、2種の複合で含有させることができる。含有させる場合の上記元素の合計含有量は、Cu及びNiの含有量がそれぞれの上限値である場合の0.60%であってもよい。
 [各元素の含有量に基づく数式F1~数式F3]
 (数式F1:0.74~1.05)
 数式F1は以下のように表すことができる。なお、下記式中の元素記号は、その元素の含有量(質量%)を意味する。
 F1=C+0.1Si+0.2Mn+0.15Cr+0.35V+0.2Mo・・(1)
 F1は、時効処理前の硬さを示す指標である。即ち、F1が1.05を超えると、時効処理前の硬さが高くなりすぎる。F1が0.74未満であれば、時効前の硬さが低くなりすぎ、時効によっても十分に高い疲労強度が得られない。したがって、F1の範囲を0.74~1.05とした。F1は、1.00以下であることが好ましく、0.98以下であることが一層好ましい。また、F1は、0.78以上であることが好ましく、0.80以上であれば一層好ましい。
 (数式F2:0.15以上)
 数式F2は以下のように表すことができる。なお、下記式中の元素記号は、その元素の含有量(質量%)を意味する。
 F2=Mo-0.6V・・・・・(5)
 F2は、VとMoを共に含む複合炭窒化物を得るための指標である。即ち、F2が0.15未満の場合、Moを含まないV炭窒化物が生成し、靭性への悪影響が大きくなる。F2は、0.20以上であることが好ましく、0.25以上であることが一層好ましい。
 (数式F3:0.40以下)
 数式F3は以下のように表すことができる。なお、下記式中の元素記号は、その元素の含有量(質量%)を意味する。
 F3=Mo-2.3V・・・・・(6)
 F3は、MoCの析出を抑制するための指標である。即ち、F3が0.40を超えると、MoCが生成し、硬さに見合った降伏強度が得られなくなり、靭性も劣化する。F3は、0.35以下であることが好ましく、0.30以下であることが一層好ましい。
 本実施形態の時効硬化用鋼は、以上のような成分組成及び数式の値を満たす鋼である。
 [作用効果]
 以下に、本実施形態の時効硬化用鋼(及びこれを用いて得られる時効硬化鋼)についての作用効果を詳述する。
 上述した成分組成及び数式の値を有する時効硬化用鋼を用いて、通常の熱間鍛造(又は熱間圧延)、切削加工、及び時効温度540~650℃、時効時間30分~1000分の時効処理を順次施すと、時効硬化鋼を得ることができる。また、切削加工については時効処理の前だけでなく、時効処理の後に行うこともできる。
 このように時効処理を施して得られる、本実施形態の時効硬化鋼では、電解抽出残渣測定によって測定される炭窒化物としてのV析出量及びMo析出量、並びにMo析出量のV析出量に対する割合を以下の範囲とすることができる(作用1~3)。
 V析出量:0.09%以上(作用1)
 本実施形態の時効硬化鋼では、電解抽出残渣測定によって測定される炭窒化物としてのV析出量が0.09%以上となる。これにより、Vを含む析出物が時効硬化を引き起こし、鋼の硬さと降伏強度と疲労強度を向上させることができる。これらの効果は、V析出量が0.10%以上となった場合にさらに大きく奏され、0.11%以上となった場合には極めて大きく奏される。
 Mo析出量:0.07%以上(作用2)
 また、本実施形態の時効硬化鋼では、電解抽出残渣測定によって測定される炭窒化物としてのMo析出量が0.07%以上となる。これにより、Vを含む炭化物と母相とのひずみが緩和され、Vを含む炭化物による靭性の劣化作用を低減することができる。この効果は、Mo析出量が0.08%以上となった場合にさらに大きく奏され、0.10%以上となった場合には極めて大きく奏される。
 V析出量に対するMo析出量の割合:0.50~2.40(作用3)
 さらに、本実施形態の時効硬化鋼では、電解抽出残渣測定によって測定される炭窒化物としてのV析出量に対するMo析出量の割合が0.50~2.40となる。この割合が0.50以上となることで、MoとVを共に含む複合炭窒化物を得ることができる。また、この割合が2.40以下となることで、MoCの生成を防止し、靭性の低下を抑制するとともに優れた降伏強度を実現することができる。これらの効果は、上記割合が0.60~2.00となった場合にさらに大きく奏され、0.70~1.80となった場合には極めて大きく奏される。
 以上により、所定の成分組成と数式F1~F3を具備する、本実施形態の時効硬化用鋼によれば、V析出量についての上記作用1、Mo析出量についての上記作用2、及びV析出量に対するMo析出量の割合についての上記作用3が相まって、時効処理前の硬さのみならず、時効処理後の疲労強度、降伏強度及びシャルピー衝撃値についても、優れた性能を実現することができる。具体的には、時効処理前の硬さを370HV以下とすることができるとともに、時効処理後の試験片で評価した疲労強度を500MPa超とすることができ、また時効処理後の降伏強度を800MPa以上とし、さらには、時効処理後のVノッチ付きのシャルピー試験片で測定したシャルピー衝撃値の値を10J/cm以上とすることができる。
 <時効硬化鋼を用いて得られる機械部品>
 次に、上記の時効硬化鋼を素材として得られる機械部品であって、自動車、産業機械及び建設機械などに用いられる機械部品について、その製造手順を含めて説明する。
 まず、化学組成を前述の範囲に調整した鋼から、熱間鍛造に供する材料(以下「熱間鍛造用素材」という)を作製する。なお、ここでいう熱間鍛造用素材は、上述した時効硬化用鋼に相当する。
 上記の熱間鍛造用素材としては、インゴットを分塊圧延したビレット、連続鋳造材を分塊圧延したビレット、あるいはこれらのビレットを熱間圧延又は熱間鍛造した棒鋼など、どのようなものでも構わない。
 次いで、上記の熱間鍛造用素材を熱間鍛造し、さらに切削加工して所定の部品形状に仕上げる。
 熱間鍛造では、例えば、熱間鍛造用素材を1100~1350℃で0.1~300分加熱した後、仕上げ鍛造後の表面温度が900℃以上となるようにして鍛造を行い、その後、800~400℃までの温度域での平均冷却速度を10~90℃/分として室温まで冷却する。そして、このような冷却後、さらに切削加工を施して、所定の部品形状に仕上げる。
 最後に、時効処理を施して、所望の特性を具備する自動車、産業機械、建設機械などの機械部品を得る。時効処理では、例えば、540~650℃の温度域、好ましくは580~640℃の温度域で処理を行う。時効処理の保持時間は、例えば、30~1000分とするなど、機械部品のサイズ(質量)によって適宜調整する。時効温度を低くする場合は、時効時間を長くし、時効温度が高い場合は時効時間を短くすれば、Vを含む炭窒化物の析出が促進され疲労強度と降伏強度が向上する。
 このように時効処理を施して得られた機械部品は、例えば、コモンレールとして使用することができ、また燃料噴射装置用機械部品として用いることができる。また、このような機械部品では、内圧を受ける表面(例えば、コモンレールの内壁面)から深さ50μm位置までの領域において、V析出量の平均値が0.09%以上及びMo析出量の平均値が0.07%以上となる。また、同様に、V析出量の平均値に対するMo析出量の平均値の割合が0.50以上となる。これらの結果から、この機械部品(特に、使用時に応力が加わる部分)については、疲労試験において500MPaを超える疲労強度、800MPa以上の降伏強度、及びVノッチ付きのシャルピー衝撃試験で10J/cm以上の常温衝撃値が得られる。
 表1に示す化学組成の鋼1~28を真空溶解し、インゴットに鋳造した。表1における鋼1~16は、化学組成が本発明で規定する範囲内にある鋼である。一方、鋼17~28は、化学組成が本発明で規定する条件から外れた鋼である。
Figure JPOXMLDOC01-appb-T000001
 次に、各鋼のインゴットを1250℃で加熱した後、直径60mmの棒鋼に熱間鍛造した。熱間鍛造した各棒鋼は、大気中で一旦放冷して室温まで冷却した。その後、さらに、1250℃で30分加熱し、部品形状への鍛造を想定して仕上げ時の鍛造材の表面温度を950~1100℃として、直径35mmの棒鋼に熱間鍛造した。熱間鍛造後は、いずれも大気中で放冷して室温まで冷却した。大気中で放冷した際の冷却速度は、上記の条件で熱間鍛造した棒鋼の長さ方向の中心のR/2付近(Rは最大半径であり、R/2部とはその最大径の半分の位置の部分をいう)に熱電対を埋め込んで、再度熱間鍛造の仕上げ温度付近の温度まで昇温してから、大気中で放冷して測定した。このようにして測定した鍛造後の800~400℃までの温度領域の平均冷却速度は約50℃/分であった。
 各鋼種番号の棒鋼について、熱間鍛造で上記の直径35mmに仕上げた後に室温まで冷却した棒鋼のうちの一部は、時効処理を施さない状態(即ち、冷却ままの状態)で、棒鋼の両端部を100mmずつ切り落とした後、残る中央部から試験片を切り出し、時効処理前の硬さを調査した。
 一方、各鋼種番号の棒鋼について、熱間鍛造した棒鋼の残りは、500~640℃で15~180分保持する時効処理を施し、棒鋼の両端部を100mmずつ切り落とした後、残る中央部から試験片を切り出し、時効処理後の硬さを調査した。また、各試験番号について、棒鋼から試験片を切り出し、時効処理後の降伏強度を調査した。
 硬さ測定は、次のようにして実施した。まず、棒鋼を横断し、切断面が被検面となるように樹脂埋めして鏡面研磨して試験片を準備した。次いで、JIS Z 2244(2009)における「ビッカース硬さ試験-試験方法」に準拠して、被検面のR/2部(Rは最大半径であり、R/2部とはその最大径の半分の位置の部分をいう。)付近10点について、試験力を9.8Nとして硬さ測定を実施した。上記10点の値を算術平均してビッカース硬さとした。時効処理前の硬さは370HV以下の場合に、硬さが低い、すなわち被削性が良好であると判断し、これを目標とした。
 時効後の硬さは時効後の疲労強度の指標となる値であり、参考として記載した。また、時効処理前後の硬さの変化量は、時効処理の効果の指標となる値であり、参考として記載した。疲労強度が高ければ時効後の硬さは低くても問題はないが、良好な疲労強度を得るためには、時効後の硬さが310HV以上であることが好ましい。また、時効処理前後の硬さの変化量がビッカース硬さで20ポイント以上増加していれば、時効処理の効果が得られていると考えられる。
 降伏強度の測定は、次のようにして実施した。直径が6mm、長さ40mmの平行部を持つJISの14A号の引張試験片を用いた引張試験を行い、規定の塑性ひずみ量を0.2%としてオフセット法にて0.2%耐力を求め、降伏強度は当該耐力に等しいとした。降伏強度が800MPa以上となった場合で、かつ、ビッカース硬さの数値に対するMPa単位の降伏強度の数値の割合が2.40を超えた場合に、降伏強度が十分に高いと判断し、これを目標とした。良好な疲労強度を得るためには、降伏強度が800MPa以上であることが好ましい。
 靱性は、JIS Z2242 (2018)に基づき、棒鋼のノッチ深さ(断面形状の急変部の深さ)2mm及びノッチ底半径0.25mmのVノッチ付きの標準試験片を用いて実施したシャルピー衝撃試験で評価した時効処理後の20℃での吸収エネルギーが10J以上の場合に、十分に高いと判断し、これを目標とした。
 疲労強度は、平行部の直径が8mm、長さが80mmの小野式回転曲げ疲労試験片を作製して調査した。即ち、疲労試験片の中心が棒鋼のR/2部となるように上記の試験片を採取し、試験数を8として、室温、大気中で、応力比が-1となる条件で小野式回転曲げ疲労試験を実施した。繰り返し数が1.0×107回まで破断しなかった試験片の応力振幅のうちの最大値を疲労強度とした。疲労強度が500MPaを超える場合に、疲労強度が十分高いと判断し、これを目標とした。
 時効後のV析出量とMo析出量は、次のようにして求めた。棒鋼のR/2付近から直径10mm、長さ50mmの円柱を作成した。作成した円柱を10%AA系電解液中で通電し、表層0.4gを電解した。電解液をメッシュ粗さが0.2μmのフィルターでろ過し、フィルター上に残った残渣を誘導プラズマ(ICP)発光分光分析にて分析し、V析出量とMo析出量を求めた。
 表2-1~2-2に、上記の各調査結果を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 また、時効硬化鋼におけるMo含有量、V含有量、F2、及びF3以外の各種パラメータが本発明の規定内である試験番号A1~A21、B1~B4、B7~B10の調査結果を用いて、V含有量、Mo含有量と、靭性、降伏強度との関係を図示したものを、図1に示す。同図中では、シャルピー衝撃値が10J以下のものを「靭性:劣」、降伏強度が800MPa以下、又は硬さに対する降伏強度の割合が2.40以下のものを「降伏強度:劣」としている。
 図1から明らかなように、Mo量、V量、F2、及びF3を適切に制御した時効硬化用鋼に、適切な条件で時効処理を施し時効硬化鋼とすることで、靭性と降伏強度の両立が可能となる。試験番号B1~B5、B7~B10は、F2あるいはF3が適切でないために、降伏強度あるいは疲労強度が低い。また、試験番号B6は、F1が適切でないため時効前の硬さが高い。試験番号B11はTiが高いため衝撃値が低く、試験番号B16はNが高いため降伏強度が低い。
 試験番号A1、A17、A18、B12、B13及びB14は、同一の鋼種を用いた試験であり、Mo析出量、V析出量、及びV析出量に対するMo析出量の割合のみが異なる。MoとVの析出量が本発明の規定を満たしていないB12~B15は、発明例と比べて明らかに降伏強度と疲労強度が低い。
 なお、B12~B15は、使用した鋼は本発明の時効硬化用鋼であるが、時効処理条件が適切でないために、Mo析出量、V析出量が適切な範囲とならず、本発明の時効硬化鋼が得られなかった比較例である。

Claims (4)

  1.  質量%で、
      C :0.10~0.16%、
      Si:0.01~0.35%、
      Mn:1.50~2.50%、
      S :0.005~0.035%、
      Cr:0.90~1.80、
      Al:0.005~0.050%、
      V:0.15~0.35%、
      Mo:0.30超~1.00%、
      P :0.030%以下、
      Ti:0.005%未満、
      N :0.0080%未満、
      O :0.0030%未満、
      Cu:0~0.30%、
      Ni:0~0.30%
    を含み、残部がFe及び不純物であって、
     さらに、下記の、(1)式で表わされるF1が0.74~1.05、(2)式で表わされるF2が0.15以上、及び(3)式で表わされるF3が0.40以下である化学組成を有することを特徴とする、時効硬化用鋼。
     F1=C+0.1Si+0.2Mn+0.15Cr+0.35V+0.2Mo (1)
     F2=Mo-0.6V                          (2)
     F3=Mo-2.3V                          (3)
     上記の(1)、(2)及び(3)式中の元素記号は、その元素の含有量(質量%)を意味する。
  2.  請求項1に記載の時効硬化用鋼の成分組成を有し、
     電解抽出残渣測定によって測定される炭窒化物としてのV析出量とMo析出量がそれぞれ0.09質量%以上と0.07質量%以上であり、
     前記V析出量に対する前記Mo析出量の割合が0.50~2.40である、鋼。
  3.  請求項2に記載の鋼を用いて形成され、
     内圧を受ける表面を有し、
     前記表面から深さ50μm位置までの領域において、V析出量の平均値が0.09%以上及びMo析出量の平均値が0.07%以上であり、
     前記V析出量の平均値に対する前記Mo析出量の平均値の割合が0.50以上であることを特徴とする機械部品。
  4.  前記機械部品はコモンレール又は燃料噴射装置用機械部品である、請求項3に記載の機械部品。
PCT/JP2019/049043 2019-12-13 2019-12-13 時効硬化用鋼、鋼及び機械部品 WO2021117243A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/049043 WO2021117243A1 (ja) 2019-12-13 2019-12-13 時効硬化用鋼、鋼及び機械部品
JP2021563578A JPWO2021117243A1 (ja) 2019-12-13 2019-12-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049043 WO2021117243A1 (ja) 2019-12-13 2019-12-13 時効硬化用鋼、鋼及び機械部品

Publications (1)

Publication Number Publication Date
WO2021117243A1 true WO2021117243A1 (ja) 2021-06-17

Family

ID=76330136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049043 WO2021117243A1 (ja) 2019-12-13 2019-12-13 時効硬化用鋼、鋼及び機械部品

Country Status (2)

Country Link
JP (1) JPWO2021117243A1 (ja)
WO (1) WO2021117243A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154936A (ja) * 1990-10-16 1992-05-27 Aichi Steel Works Ltd 析出硬化型窒化用鋼
JP2013213254A (ja) * 2012-04-02 2013-10-17 Nippon Steel & Sumitomo Metal Corp 冷鍛窒化用鋼、冷鍛窒化用鋼材および冷鍛窒化部品
WO2015050152A1 (ja) * 2013-10-02 2015-04-09 新日鐵住金株式会社 時効硬化性鋼
WO2016148206A1 (ja) * 2015-03-16 2016-09-22 新日鐵住金株式会社 時効硬化性鋼及び時効硬化性鋼を用いた部品の製造方法
JP2017066460A (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 時効硬化性鋼
JP2019210530A (ja) * 2018-06-07 2019-12-12 大同特殊鋼株式会社 燃料噴射部品の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154936A (ja) * 1990-10-16 1992-05-27 Aichi Steel Works Ltd 析出硬化型窒化用鋼
JP2013213254A (ja) * 2012-04-02 2013-10-17 Nippon Steel & Sumitomo Metal Corp 冷鍛窒化用鋼、冷鍛窒化用鋼材および冷鍛窒化部品
WO2015050152A1 (ja) * 2013-10-02 2015-04-09 新日鐵住金株式会社 時効硬化性鋼
WO2016148206A1 (ja) * 2015-03-16 2016-09-22 新日鐵住金株式会社 時効硬化性鋼及び時効硬化性鋼を用いた部品の製造方法
JP2017066460A (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 時効硬化性鋼
JP2019210530A (ja) * 2018-06-07 2019-12-12 大同特殊鋼株式会社 燃料噴射部品の製造方法

Also Published As

Publication number Publication date
JPWO2021117243A1 (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
JP5079788B2 (ja) マルテンサイト型熱間鍛造用非調質鋼及び熱間鍛造非調質鋼部品
KR101965520B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
JP5620336B2 (ja) 高疲労強度、高靭性機械構造用鋼部品およびその製造方法
WO2016148037A1 (ja) 冷間加工性と浸炭熱処理後の靱性に優れる浸炭用鋼板
KR101750643B1 (ko) 시효 경화성 강
JP6794012B2 (ja) 耐結晶粒粗大化特性、耐曲げ疲労強度および耐衝撃強度に優れた機械構造用鋼
JP5655366B2 (ja) ベイナイト鋼
JP6468402B2 (ja) 肌焼鋼およびその製造方法ならびに歯車部品の製造方法
JP5152441B2 (ja) 機械構造用鋼部品およびその製造方法
JP2009013439A (ja) 高靭性高速度工具鋼
EP2420585A1 (en) Low-specific gravity steel for forging having excellent machinability
JP4797673B2 (ja) 非調質部品の熱間鍛造方法
JP6620490B2 (ja) 時効硬化性鋼
JP6465959B2 (ja) 時効硬化性鋼及び時効硬化性鋼を用いた部品の製造方法
JP5080708B2 (ja) 非調質鋼鍛造加工品及びその製法、並びにそれを用いた内燃機関用コンロッド部品
JPWO2012161322A1 (ja) 機械構造用鋼部品およびその製造方法
JP4938474B2 (ja) 耐衝撃疲労特性、面疲労強度に優れた歯車用鋼及びそれを用いた歯車
CN108699650B (zh) 轧制线材
JP2005336553A (ja) 熱間工具鋼
JP6390685B2 (ja) 非調質鋼およびその製造方法
JP2012077371A (ja) 熱間鍛造用圧延鋼材およびその製造方法
WO2021117243A1 (ja) 時効硬化用鋼、鋼及び機械部品
JP6791179B2 (ja) 非調質鋼およびその製造方法
JP5737152B2 (ja) 熱間鍛造用圧延棒鋼
KR101984041B1 (ko) 기소강

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956065

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021563578

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956065

Country of ref document: EP

Kind code of ref document: A1