WO2018047844A1 - 窒化ガリウム積層体の製造方法 - Google Patents

窒化ガリウム積層体の製造方法 Download PDF

Info

Publication number
WO2018047844A1
WO2018047844A1 PCT/JP2017/032040 JP2017032040W WO2018047844A1 WO 2018047844 A1 WO2018047844 A1 WO 2018047844A1 JP 2017032040 W JP2017032040 W JP 2017032040W WO 2018047844 A1 WO2018047844 A1 WO 2018047844A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
substrate
intermediate layer
single crystal
crystal layer
Prior art date
Application number
PCT/JP2017/032040
Other languages
English (en)
French (fr)
Inventor
渡邊 誠
晋也 秋山
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US16/324,691 priority Critical patent/US20190218684A1/en
Publication of WO2018047844A1 publication Critical patent/WO2018047844A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Definitions

  • the present invention relates to a method for manufacturing a gallium nitride laminate.
  • GaN gallium nitride
  • Patent Documents 1 and 2 As a method for depositing gallium nitride as a single crystal layer on a sapphire substrate or the like, for example, vapor phase growth methods disclosed in Patent Documents 1 and 2 are known.
  • the gallium nitride crystal manufactured by such vapor phase growth synthesizes the gallium nitride crystal directly from the raw material in a gaseous state and deposits it on the substrate, mismatching of the crystal lattice is likely to occur stochastically. For this reason, in the manufactured gallium nitride crystal, a large number of crystal defects are generated, and the characteristics when incorporated in the device are deteriorated. For example, the number of crystal defects may occur at a density of about 10 8 / cm 2 . Therefore, a method for producing a gallium nitride crystal with less crystal defects has been demanded.
  • Patent Document 3 proposes a method of forming a single crystal layer of gallium nitride on a substrate by a liquid phase epitaxial growth method as a method of manufacturing a gallium nitride crystal in which crystal defects are less likely to occur.
  • a single crystal layer of gallium nitride is directly formed on a substrate such as sapphire.
  • a single crystal layer of gallium nitride is directly formed on a substrate having a crystal plane index (001), whereby a single crystal layer having a crystal plane index (001) is formed on the substrate. That is, a single crystal layer having the same crystal orientation as that of the substrate is formed on the substrate by a so-called liquid phase heteroepitaxial growth method.
  • the number of crystal defects is reduced as compared with the vapor phase growth method.
  • this method still cannot sufficiently reduce crystal defects.
  • the lattice spacing of the substrate and the lattice spacing of the single crystal layer are often different.
  • these differences become very large.
  • regions having different crystal orientations are probabilistically generated in the single crystal layer.
  • a gallium nitride single crystal layer is grown on a sapphire substrate having a crystal plane index (001)
  • a region in which crystal growth is performed with another crystal plane index is mixed in a region in which crystal growth is performed with the crystal plane index (001).
  • discontinuous boundary surfaces are formed between regions having different crystal plane indices. This boundary surface is a kind of so-called crystal defect.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a new and improved gallium nitride laminate capable of producing a single crystal layer with few crystal defects. It is in providing the manufacturing method of.
  • an intermediate layer forming step of forming an intermediate layer of gallium nitride with random crystal orientation on a substrate, and gallium nitride by liquid phase epitaxial growth on the intermediate layer And a single crystal layer forming step of forming the single crystal layer.
  • the metal gallium and iron nitride are heated to a heating temperature exceeding 750 ° C. in a nitrogen atmosphere, and the intermediate layer is formed in the raw material melt. Dipping the formed substrate.
  • the iron nitride may include any one or more selected from the group consisting of tetrairon mononitride, triiron mononitride, and ferric mononitride.
  • the intermediate layer may be formed on the substrate by a liquid phase epitaxial growth method.
  • the intermediate layer forming step includes a step of producing a raw material melt by heating metal gallium and iron nitride to a heating temperature of 550 to 750 ° C. in a nitrogen atmosphere, and a step of placing the substrate in the raw material melt for 1 hour or more. Dipping step may be included.
  • the iron nitride may include any one or more selected from the group consisting of tetrairon mononitride, triiron mononitride, and ferric mononitride.
  • the thickness of the intermediate layer may be 150 nm or less.
  • an intermediate layer and a single crystal layer may be formed on both surfaces of the substrate.
  • the intermediate layer serving as a buffer layer is interposed between the substrate and the single crystal layer, the number of crystal defects in the single crystal layer can be reduced.
  • the intermediate layer is considered to have a function of mitigating the deviation between the lattice spacing of the single crystal layer and the lattice spacing of the substrate.
  • the gallium nitride laminate 10 according to the first embodiment includes a substrate 11, an intermediate layer 12, and a single crystal layer 13.
  • the type of the substrate 11 is not particularly limited and is not particularly limited as long as the intermediate layer 12 and the single crystal layer 13 according to the present embodiment can be stacked.
  • the substrate 11 may be applicable to a conventional gallium nitride laminate. More specifically, the substrate 11 may be a sapphire substrate, silicon carbide (SiC), zinc oxide (ZnO), or the like.
  • SiC silicon carbide
  • ZnO zinc oxide
  • the shape of the substrate 11 may be any shape, but may be, for example, a substantially flat plate shape, a substantially disk shape, or the like.
  • the intermediate layer 12 is interposed between the single crystal layer 13 and the substrate 11.
  • the intermediate layer 12 serves as a so-called buffer layer.
  • the intermediate layer 12 is made of a gallium nitride crystal having a random crystal orientation. That is, the intermediate layer 12 is a polycrystalline body of gallium nitride and is an aggregate of a plurality of crystal particles. The crystal orientations of the crystal grains are different from each other.
  • the number of crystal defects in the single crystal layer 13 can be reduced by interposing such an intermediate layer 12 between the single crystal layer 13 and the substrate 11.
  • the intermediate layer 12 is considered to have a function of relaxing the deviation between the lattice spacing of the single crystal layer 13 and the lattice spacing of the substrate 11.
  • the thickness of the intermediate layer 12 is not particularly limited, but is preferably 10 to 150 nm.
  • the thickness of the intermediate layer 12 is less than 10 nm, the function of the intermediate layer 12 may not be sufficiently exhibited. That is, crystal defects may occur in the single crystal layer 13.
  • the thickness of the intermediate layer 12 exceeds 150 nm, unevenness may occur in the thickness of the single crystal layer 13. Therefore, the thickness of the intermediate layer 12 is preferably less than 150 nm.
  • such an intermediate layer 12 is formed on the substrate 11 by a so-called liquid phase epitaxial growth method. That is, the intermediate layer 12 is formed on the substrate 11 by immersing the substrate 11 in the raw material melt.
  • the formation of the intermediate layer 12 can be confirmed by, for example, observing the cross section of the gallium nitride laminate 10 with a TEM.
  • FIG. 3 shows an example of a cross-sectional TEM photograph (magnification 2 million times) of the gallium nitride laminate 10. As is clear from FIG. 3, it can be confirmed that the intermediate layer 12 is formed between the substrate 11 (in this example, a sapphire substrate) and the single crystal layer 13.
  • this cross-sectional TEM photograph is a cross-sectional TEM photograph of Example 1 mentioned later.
  • the single crystal layer 13 is a single crystal layer of gallium nitride.
  • the single crystal layer 13 since the single crystal layer 13 is formed on the intermediate layer 12, it is a high-quality single crystal layer with a uniform crystal orientation. That is, there is no crystal defect in the single crystal layer 13 or even if it exists, the number thereof is extremely small as compared with the conventional case. For example, when the crystal plane of the substrate 11 is (001), the crystal plane of the single crystal layer 13 is also (001), and there are almost no crystal defects.
  • the thickness of the single crystal layer 13 is not particularly limited, and may be adjusted as appropriate according to the function required for the single crystal layer 13.
  • FIG. 2 shows an example of the XRD spectrum of the single crystal layer 13.
  • a large peak can be confirmed only around 34.6 °, and this peak corresponds to the (001) crystal plane.
  • This XRD spectrum is the XRD spectrum of Example 1 described later.
  • FIG. 9 shows an example of an XRD spectrum when a single crystal layer is formed directly on the substrate 11 (actually a very thin intermediate layer is formed). The XRD spectrum shown in FIG.
  • the single crystal layer is presumed to have the structure shown in FIG. That is, a single crystal layer includes a crystal region 501 having a crystal face of (001), (100) or - has a crystal region 502 having a crystal face of (10 10). Such a crystal orientation mismatch is considered to occur probabilistically due to a difference in lattice spacing between the substrate 11 and the single crystal layer. A discontinuous interface, that is, a crystal defect is formed between the crystal region 501 and the crystal region 502.
  • the XRD spectrum shown in FIG. 9 is an XRD spectrum of the comparative example 1 mentioned later.
  • FIG. 4 is a schematic diagram illustrating the configuration of the reaction apparatus 100 used for manufacturing the gallium nitride crystal.
  • the reactor 100 includes an electric furnace 113, a heater 114 provided on a side surface of the electric furnace 113, a gas inlet 131, a gas outlet 132, a lifting shaft 122, and a lifting shaft 122. And a sealing material 123 for ensuring airtightness between the electric furnaces 113.
  • a reaction vessel 111 containing the raw material melt 110 is placed on a stand 112 inside the electric furnace 113.
  • a holding tool 120 is provided at one end of the pulling shaft 122, and the substrate 11 is held by the holding tool 120.
  • the reactor 100 is an apparatus for epitaxially growing the gallium nitride intermediate layer 12 and the single crystal layer 13 on the substrate 11 immersed in the raw material melt 110.
  • the electric furnace 113 has a sealed structure and accommodates the reaction vessel 111 inside.
  • the electric furnace 113 may have a cylindrical structure having an inner diameter (diameter) of about 200 mm and a height of about 800 mm.
  • the heater 114 is disposed on a side surface in the longitudinal direction of the electric furnace 113 and heats the inside of the electric furnace 113.
  • the gas inlet 131 is provided below the electric furnace 113 and introduces atmospheric gas (for example, N 2 gas) into the electric furnace 113.
  • the gas discharge port 132 is provided above the electric furnace 113 and discharges atmospheric gas from the electric furnace 113.
  • the gantry 112 supports the reaction vessel 111. Specifically, the gantry 112 supports the reaction vessel 111 so that the reaction vessel 111 is evenly heated by the heater 114.
  • the height of the gantry 112 may be such a height that the reaction vessel 111 is positioned at the center of the heater 114.
  • the reaction vessel 111 is a vessel for holding the raw material melt 110 in which the reaction material is melted by heating.
  • the reaction vessel 111 may be, for example, a cylindrical vessel having an outer diameter (diameter) of about 100 mm, a height of about 90 mm, and a thickness of about 5 mm.
  • the material of the reaction vessel 111 is preferably a material that does not react with metal gallium.
  • the material of the reaction vessel 111 is more preferably boron nitride or graphite so that impurities such as oxygen are not mixed into the raw material melt 110.
  • the raw material melt 110 is a liquid in which a reaction material is melted.
  • the raw material melt 110 is a liquid obtained by heating and melting a mixed powder of metal gallium and iron nitride, which is a reaction material, with a heater 114.
  • high-purity metal gallium for example, commercially available metal gallium having a purity of about 99.99% or more can be used.
  • iron nitride is tetrairon mononitride (Fe 4 N), triiron mononitride (Fe 3 N), diiron mononitride (Fe 2 N), or a mixture of two or more thereof. Can be used. Moreover, it is preferable to use a high purity iron nitride, and a commercially available product having a purity of about 99.9% or more can be used.
  • Iron atoms in iron nitride are mixed with metal gallium and heated to function as a catalyst, and generate active nitrogen from nitrogen atoms in the melt or nitrogen molecules in the atmosphere gas. Since the generated active nitrogen easily reacts with metallic gallium, the synthesis of the gallium nitride crystal can be promoted. That is, since iron nitride functions as a catalyst, the concentration of iron nitride in the reaction material is not particularly limited, and iron nitride only needs to be contained in at least the reaction material.
  • the iron nitride reacts with metal gallium by the nitriding action of tetrairon mononitride to produce a gallium nitride crystal (Reaction Formula 1).
  • reaction Formula 2 the nitrogen molecules dissolved in the melt from the nitrogen atmosphere react with metal gallium by the iron atoms functioning as a catalyst to generate gallium nitride crystals.
  • the mixing ratio of metal gallium and iron nitride is, for example, such that the ratio of the number of moles of iron element in iron nitride to the total number of moles of metal gallium and iron nitride is from 0.1% to 50%.
  • the ratio may be.
  • the ratio of the iron element is less than 0.1%, the amount of iron element as a catalyst is small, and the growth rate of the gallium nitride crystal becomes slow.
  • gallium oxide or the like is generated in addition to gallium nitride, and the growth of the gallium nitride crystal may be hindered.
  • the ratio of the number of moles of metal gallium to tetrairon mononitride is approximately 99 in order to satisfy the above-described ratio of the number of moles of iron in the iron nitride. 97: 0.03 to 80:20.
  • the above-mentioned molar ratio may be converted according to the ratio of the iron element and the nitrogen element in the iron nitride.
  • the ratio of the number of moles of metal gallium to triiron mononitride may be approximately 99.96: 0.04 to 75:25.
  • ferric mononitride as the iron nitride
  • the ratio of the number of moles of metal gallium and diiron mononitride may be approximately 99.94: 0.06 to 67.5: 32.5.
  • the lifting shaft 122 immerses the substrate 11 in the raw material melt 110 and pulls up the substrate 11 from the raw material melt 110.
  • the lifting shaft 122 is provided through the upper surface of the electric furnace 113.
  • a holding tool 120 that holds the substrate 11 is provided at one end of the pulling shaft 122 in the electric furnace 113.
  • the lifting shaft 122 may be provided so as to be rotatable about the shaft. In such a case, by rotating the pulling shaft 122, the substrate 11 can be rotated and the raw material melt 110 can be stirred. Thereby, since the nitrogen concentration distribution in the raw material melt 110 can be made more uniform, a more uniform gallium nitride single crystal layer 13 can be grown.
  • the holder 120 includes a frame body 120a and a plurality of shelf boards 120b held in the frame body 120a.
  • the material of the holder 120 is preferably a material that does not react with metal gallium. Specifically, the same material as that of the reaction vessel, that is, boron nitride or graphite is preferable.
  • the frame body 120a is connected to the lifting shaft 122.
  • the substrate 11 is installed on the shelf plate 120b. Thereby, the intermediate layer 12 and the single crystal layer 13 are sequentially formed on the exposed surface of the substrate 11. Note that the exposed surface of the substrate 11 is mirror-polished in advance.
  • the sealing material 123 is provided between the pulling shaft 122 and the electric furnace 113 to ensure airtightness in the electric furnace 113. Since the sealing material 123 can prevent the atmosphere outside the electric furnace 113 from flowing into the electric furnace 113, the reactor 100 can be configured to provide a gas atmosphere (for example, a gas atmosphere introduced into the electric furnace 113 from the gas inlet 131. , Nitrogen atmosphere).
  • a gas atmosphere for example, a gas atmosphere introduced into the electric furnace 113 from the gas inlet 131. , Nitrogen atmosphere.
  • the reactor 100 can immerse the substrate 11 in the raw material melt 110 by moving the pulling shaft 122 up and down, and sequentially form the gallium nitride intermediate layer 12 and the single crystal layer 13 on the substrate 11. it can.
  • middle layer 12 and the single crystal layer 13 can be formed on the board
  • middle layer 12 and the single crystal layer 13 can be adjusted by adjusting heating temperature and immersion time.
  • the iron nitride preferably includes at least one selected from the group consisting of tetrairon mononitride, triiron mononitride, and diiron mononitride.
  • nitrogen gas is introduced into the electric furnace 113 from the gas inlet 131, and the electric furnace 113 is filled with a nitrogen atmosphere.
  • an intermediate layer forming step for forming the intermediate layer 12 on the substrate 11 is performed. Specifically, the mixed raw material in the reaction vessel 111 is heated by the heater 114. Since the nitrogen gas introduced into the electric furnace 113 is discharged from the gas discharge port 132, the inside of the electric furnace 113 is maintained at almost normal pressure.
  • the mixed raw material in the reaction vessel 111 is heated to a heating temperature of 550 to 750 ° C.
  • the melt of the mixed raw material that is, the raw material melt 110 is generated.
  • the reaction temperature of the mixed raw material is less than 550 ° C.
  • gallium nitride crystals hardly precipitate on the substrate 11.
  • the heating temperature of the mixed raw material exceeds 750 ° C.
  • the single crystal layer 13 is directly formed on the substrate 11.
  • the heating temperature is preferably maintained at 550 to 750 ° C. while the intermediate layer 12 is formed on the substrate 11.
  • the heating temperature need not be constant and may vary as long as it is within the range of 550 to 750 ° C. Further, the temperature rising rate of the mixed raw material is not particularly limited.
  • the substrate 11 held by the holder 120 is immersed in the raw material melt 110 by operating the pulling shaft 122.
  • the intermediate layer 12 is formed on the substrate 11 immersed in the raw material melt 110.
  • the thickness of the intermediate layer 12 can be adjusted by adjusting the heating temperature of the raw material melt 110 and the immersion time of the substrate 11. As an example, when the heating temperature is 700 ° C. and the immersion time is 6 hours, the thickness of the intermediate layer 12 is approximately 15 nm. In addition, it is preferable that immersion time is 1 hour or more. This is because if the immersion time is too short, the intermediate layer 12 having a sufficient thickness may not be formed.
  • a single crystal layer forming step is performed. Specifically, the raw material melt 110 is heated to a heating temperature exceeding 750 ° C.
  • the upper limit of the heating temperature is not particularly limited, but is preferably 1000 ° C. or lower. This is because, when the heating temperature of the raw material melt 110 exceeds 1000 ° C., a mass decrease that is considered to be caused by evaporation of metal gallium from the raw material melt 110 occurs.
  • the single crystal layer 13 is formed on the intermediate layer 12.
  • the single crystal layer 13 since the single crystal layer 13 is formed on the intermediate layer 12, the number of crystal defects in the single crystal layer 13 can be reduced. That is, the crystal orientation of the single crystal layer 13 can be made more uniform.
  • the crystal orientation of the single crystal layer 13 matches the crystal orientation of the substrate 11.
  • the heating temperature is maintained within the above-described heating temperature range (that is, more than 750 ° C., and the upper limit is preferably 1000 ° C. or less). It is preferable. Note that the heating temperature does not have to be constant and may vary as long as it is within the range of the heating temperature described above. Moreover, the temperature increase rate of the raw material melt 110 is not particularly limited. Here, the thickness of the single crystal layer 13 can be adjusted by adjusting the heating temperature of the raw material melt 110 and the immersion time of the substrate 11.
  • the gallium nitride laminate 10 is manufactured through the above steps.
  • the produced gallium nitride laminate 10 is pulled up from the raw material melt and cooled to room temperature.
  • the gallium nitride laminate 10 obtained in the above process may contain byproducts such as an intermetallic compound of iron and gallium. Therefore, the following purification process may be further performed on the gallium nitride laminate 10.
  • the purification step is performed, for example, by washing the gallium nitride laminate 10 with an acid such as aqua regia.
  • the gallium nitride intermediate layer 12 and the single crystal layer 13 can be efficiently produced by liquid phase epitaxial growth under a low-pressure nitrogen atmosphere such as normal pressure. Moreover, since the intermediate layer 12 and the single crystal layer 13 can be formed on the substrate 11 only by adjusting the temperature of the raw material melt 110, the intermediate layer 12 and the single crystal layer 13 are easily formed on the substrate 11. be able to.
  • the intermediate layer 12 is formed on the substrate 11 by a liquid phase epitaxial growth method.
  • the intermediate layer 12 may be formed on the substrate 11 by another method, for example, a vapor phase epitaxial growth method.
  • the intermediate layer 12 and the single crystal layer 13 can be formed in a continuous process in the same reactor.
  • Second Embodiment> (2-1. Structure of gallium nitride laminate)
  • the gallium nitride laminate 20 includes a substrate 11, an intermediate layer 12 formed on both surfaces of the substrate 11, and a single crystal layer 13 formed on the surface of each intermediate layer 12.
  • the detailed structures of the intermediate layer 12 and the single crystal layer 13 are the same as those in the first embodiment.
  • the intermediate layer 12 and the single crystal layer 13 are formed only on one surface of the substrate 11, warpage due to a difference in thermal expansion coefficient between the substrate 11 and gallium nitride may occur.
  • the thermal expansion coefficient differs between gallium nitride and sapphire by 2 ⁇ 10 ⁇ 6 ° C. ⁇ 1 , and the magnitude of thermal shrinkage differs. For this reason, compressive stress is generated on the gallium nitride side, and deformation may occur so that the gallium nitride side is convex.
  • the substrate 11 since the intermediate layer 12 and the single crystal layer 13 are formed on both surfaces of the substrate 11, the substrate 11 has a symmetrical shape in the thickness direction.
  • the curvature of the gallium nitride laminated body 20 is reduced.
  • the flatness of the single crystal layer 13 is particularly strongly required. This is because there is a strong demand for creating a fine structure on the single crystal layer 13.
  • a large warp occurs in the single crystal layer 13
  • such a warp becomes a very large obstacle when performing fine processing.
  • the warpage increases as the size (diameter) of the substrate 11 increases. Therefore, it is very important to reduce the warp of the single crystal layer 13.
  • the holder 120 of the reaction apparatus in FIG. 4 is changed to a holder 221 shown in FIG.
  • the holder 221 is composed of a plurality of hook-shaped arm members, and holds the substrate 11 from the side surface. Furthermore, both front and back surfaces of the substrate 11 can be exposed to the raw material melt 110. Thereby, the intermediate layer 12 and the single crystal layer 13 can be formed on both the front and back surfaces of the substrate 11.
  • the manufacturing method of the gallium nitride laminate 20 is the same as that of the first embodiment except that the holder 120 is changed to the holder 221. However, both front and back surfaces of the substrate 11 are mirror-polished in advance. In addition, by mirror-polishing only one surface of the substrate 11, a gallium nitride laminate similar to that in the first embodiment can be produced. Thus, according to the second embodiment, the intermediate layer 12 and the single crystal layer 13 can be simultaneously formed on both surfaces of the substrate 11 by a very simple method. In addition, since the process of the second embodiment is almost the same as the process of the first embodiment, an increase in cost from the first embodiment can be suppressed extremely low.
  • Example shown below is one example of conditions for showing the feasibility and effect of 1st and 2nd embodiment, and this invention is not limited to a following example.
  • Example 1 corresponds to the example of the first embodiment.
  • the gallium nitride laminated body 10 was produced using the reactor 100 and the holder 120 described above.
  • a metal gallium reagent having a purity of 7N (manufactured by 5N Plus) was prepared as metal gallium, and a triiron nitride reagent having a purity of 99% or more (manufactured by Kojundo Chemical Co., Ltd.) was prepared as iron nitride.
  • a sapphire substrate having a diameter of about 2 inches and a thickness of about 0.4 mm with a crystal plane of (001) was prepared as the substrate 11.
  • the metal gallium and iron nitride powders were mixed and filled into the reaction vessel 111 described above, and the reaction vessel 111 was placed in the electric furnace 113.
  • the molar ratio of metal gallium and iron nitride was 99.9: 0.1.
  • the material of the reaction vessel 111 was graphite.
  • nitrogen gas having a purity of 99.99% was introduced into the electric furnace 113 from the gas inlet 131, and the inside of the electric furnace 113 was made a nitrogen atmosphere.
  • the flow rate of nitrogen gas was 5 liters per minute. Since the nitrogen gas introduced into the electric furnace 113 is discharged from the gas discharge port 132, the inside of the electric furnace 113 is maintained at almost normal pressure.
  • an intermediate layer forming step for forming the intermediate layer 12 on the substrate 11 was performed. Specifically, the mixed raw material in the reaction vessel 111 was heated to 700 ° C. at a heating rate of 300 ° C./hour by the heater 114. Thereby, the raw material melt 110 was produced
  • the substrate 11 held by the holder 120 was immersed in the raw material melt 110 by operating the pulling shaft 122.
  • the exposed surface of the substrate 11 was mirror-polished in advance.
  • the material of the holder 120 was graphite.
  • this state was maintained for 6 hours.
  • the intermediate layer 12 was formed on the substrate 11.
  • the substrate 11 was rotated at a speed of 5 times per minute.
  • a single crystal layer forming step was performed. Specifically, the raw material melt 110 was heated to 900 ° C. at a temperature increase rate of 300 ° C./hour while the substrate 11 was immersed in the raw material melt 110. Subsequently, this state was maintained for 48 hours. Thereby, the single crystal layer 13 was formed on the intermediate layer 12. That is, the gallium nitride laminate 10 was produced. Next, the produced gallium nitride laminate 10 was pulled up from the raw material melt 110 and cooled to room temperature. Next, the gallium nitride laminate 10 was purified. The temperature profile of the above process is shown in FIG.
  • the cross section of the gallium nitride laminate 10 was observed with a TEM (HF-3300 manufactured by Hitachi High-Technologies Corporation). .
  • the results are shown in FIG. As is clear from FIG. 3, it was confirmed that the intermediate layer 12 and the single crystal layer 13 were formed on the substrate 11.
  • Comparative Example 1 Next, for comparison with Example 1, the following Comparative Example 1 was performed.
  • the intermediate layer forming step was omitted from the step of Example 1. That is, a single crystal layer was formed directly on the substrate 11 (actually a very thin intermediate layer was formed). And the X-ray diffraction analysis of the obtained single crystal layer was conducted. The results are shown in FIG. The XRD spectrum shown in FIG. 9, not only the peak corresponding to GaN002, peaks and GaN10 corresponding to GaN200 - peaks corresponding to 10 was confirmed. Therefore, in Comparative Example 1, a crystal face other than (001) single-crystal layer (100) and - so that the crystal regions are mixed with (10 10). Therefore, it can be said that there are many lattice intervals in the single crystal layer.
  • the reactor used in this verification is roughly as follows.
  • the reaction apparatus has a tubular furnace extending in a lateral direction and an electric furnace disposed on a peripheral surface of the tubular furnace. The inside of the tubular furnace is heated by the electric furnace.
  • the mixed raw material used in Example 1 was filled in the crucible made of graphite. That is, this mixed raw material is a mixture of metal gallium and iron nitride.
  • Metal gallium is a metal gallium reagent having a purity of 7N (manufactured by 5N Plus), and iron nitride is a triiron nitride reagent having a purity of 99% or more (manufactured by High Purity Chemical Co., Ltd.).
  • the crucible filled with the mixed raw material was inserted into a tubular furnace, and the mixed raw material was held at a reaction temperature of 750 ° C., 775 ° C., 800 ° C., 850 ° C., or 875 ° C. for 6 hours. During the temperature maintenance, nitrogen gas was circulated through the tubular furnace at a flow rate of 5 liters per minute.
  • the residual raw material components that is, metal gallium, iron nitride, and an intermetallic compound of gallium and iron
  • the reaction product was subjected to X-ray diffraction analysis.
  • the lower limit of the temperature range was confirmed. Specifically, a crucible filled with the mixed raw material was inserted into a tubular furnace, and the mixed raw material was held at a reaction temperature of 550 ° C. for 6 hours. And the mass change of the mixed raw material (namely, raw material melt) currently hold
  • Example 2 corresponding to the second embodiment was performed.
  • Example 2 the same process as in Example 1 was performed except that the holder 120 used in Example 1 was changed to the holder 221 shown in FIG.
  • the amount of warpage deformation of the manufactured gallium nitride laminate 20 was measured with a non-contact type precision outer shape measuring apparatus (Form Talisurf PGI1250A manufactured by Ametech Taylor Hobson). The result is shown in FIG.
  • the horizontal axis represents the distance in the diameter direction, that is, the distance in the diameter direction from the measurement point to the outer edge of the gallium nitride laminate 20.
  • the vertical axis indicates the amount of displacement from a predetermined reference value.
  • a gallium nitride laminated body in which a gallium nitride single crystal layer is formed on only one side of a sapphire substrate having a diameter of 2 inches by a vapor phase growth method a so-called template substrate (a ⁇ 2 inch GaN template substrate manufactured by Ostend, USA) Prepared.
  • the thickness of the single crystal layer was substantially the same as the total thickness (total thickness on one side) of the intermediate layer 12 and the single crystal layer 13. Then, the amount of warpage deformation of the template substrate was measured by a non-contact type precision outer shape measuring apparatus. The result is shown in FIG.
  • the maximum deformation amount from the peripheral part to the central part of the substrate having a diameter of 2 inches is about 2 ⁇ m or less. I know that there is.
  • the radius of curvature of the gallium nitride laminate 20 according to Example 2 is about 156 m with a chord length of 50 mm and an arrow height of 0.002 mm, and the curvature radius of the sapphire substrate according to Comparative Example 2 is the same as in Example 2. When calculated, it is about 62 m. Therefore, it has become clear that the warpage is reduced by the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

【課題】結晶欠陥の少ない単結晶層を作製することが可能な、新規かつ改良された窒化ガリウム積層体の製造方法を提供する。【解決手段】上記課題を解決するために、本発明のある観点によれば、基板(11)上に結晶方位がランダムな窒化ガリウムの中間層(12)を形成する中間層形成工程と、中間層(12)上に液相エピタキシャル成長法により窒化ガリウムの単結晶層(13)を形成する単結晶層形成工程と、を含む、窒化ガリウム積層体の製造方法が提供される。中間層(12)も液相エピタキシャル成長法によって形成されても良い。

Description

窒化ガリウム積層体の製造方法
 本発明は、窒化ガリウム積層体の製造方法に関する。
 近年、青色発光ダイオード、半導体レーザ、および高耐圧・高周波電源IC(Integrated Circuit)等を形成する半導体材料として、窒化ガリウム(GaN)が注目されている。
 窒化ガリウムをサファイア基板等の上に単結晶層として成膜させる方法として、例えば特許文献1、2に開示されている気相成長法が知られている。
 このような気相成長により製造された窒化ガリウム結晶は、気体状態の原料から直接窒化ガリウム結晶を合成して基板上に堆積させるため、結晶格子の不整合が確率的に生じやすい。このため、製造された窒化ガリウム結晶では、結晶欠陥が多数発生しており、デバイスに組み込んだ際の特性が低下していた。例えば、結晶欠陥の数は、10個/cm程度の密度で発生する場合があった。したがって、結晶欠陥の発生が少ない窒化ガリウム結晶の製造方法が求められていた。
 そこで、特許文献3では、結晶欠陥が発生しにくい窒化ガリウム結晶の製造方法として、液相エピタキシャル成長法により基板上に窒化ガリウムの単結晶層を形成する方法が提案されている。
特開平8-310900号公報 特開2000-269605号公報 特開2015-71529号公報
 ところで、特許文献3に開示された技術では、サファイア等の基板上に直接窒化ガリウムの単結晶層を形成する。例えば、結晶面指数(001)の基板上に直接窒化ガリウムの単結晶層を形成することで、結晶面指数(001)の単結晶層を基板上に形成する。つまり、いわゆる液相ヘテロエピタキシャル成長法により、基板の結晶方位と同じ結晶方位を有する単結晶層を基板上に形成する。
 特許文献3に開示された方法によれば、気相成長法に比べて結晶欠陥の数が低減される。しかし、この方法によっても、依然として結晶欠陥を十分に低減することができなかった。具体的には、基板の格子間隔と単結晶層の格子間隔とが異なることが多い。特に、基板がサファイア基板となる場合、これらの差が非常に大きくなる。そして、このような格子間隔の差に起因して、単結晶層内に結晶方位の異なる領域が確率的に発生する場合があった。例えば、結晶面指数(001)のサファイア基板上で窒化ガリウムの単結晶層を成長させる際に、結晶面指数(001)で結晶成長する領域内に他の結晶面指数で結晶成長する領域が混在する場合があった。そして、結晶面指数の異なる領域間では、不連続な境界面ができてしまう。この境界面は、いわゆる結晶欠陥の一種である。
 このような結晶欠陥が存在する単結晶層内では、電子およびホールの移動が欠陥部分で妨げられる。このため、結晶欠陥が存在する単結晶層は、期待通りの機能を発揮できない。さらに、このような結晶欠陥は、クラック、剥離等の原因にもなりうる。
 このため、例えば大面積の基板上に単結晶層を形成した、所謂テンプレート基板を作製する場合には、上記のような結晶欠陥が局所的に発生してしまうため、完成歩留りを低下させるという問題があった。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、結晶欠陥の少ない単結晶層を作製することが可能な、新規かつ改良された窒化ガリウム積層体の製造方法を提供することにある。
 上記課題を解決するために、本発明のある観点によれば、基板上に結晶方位がランダムな窒化ガリウムの中間層を形成する中間層形成工程と、中間層上に液相エピタキシャル成長法により窒化ガリウムの単結晶層を形成する単結晶層形成工程と、を含む、窒化ガリウム積層体の製造方法が提供される。
 ここで、単結晶層形成工程は、金属ガリウムおよび窒化鉄を窒素雰囲気中で750℃超の加熱温度まで加熱することで、原料融液を作製する工程と、原料融液中に中間層が形成された基板を浸漬する工程と、を含んでいてもよい。
 また、窒化鉄は、一窒化四鉄、一窒化三鉄、および一窒化二鉄からなる群から選択されるいずれか1種以上を含んでいてもよい。
 また、中間層形成工程は、基板上に液相エピタキシャル成長法により中間層を形成してもよい。
 また、中間層形成工程は、金属ガリウムおよび窒化鉄を窒素雰囲気中で550~750℃の加熱温度まで加熱することで、原料融液を作製する工程と、原料融液中に基板を1時間以上浸漬する工程と、を含んでいてもよい。
 また、窒化鉄は、一窒化四鉄、一窒化三鉄、および一窒化二鉄からなる群から選択されるいずれか1種以上を含んでいてもよい。
 また、中間層の厚さは150nm以下であってもよい。
 また、中間層および単結晶層を前記基板の両面に形成してもよい。
 以上説明したように本発明によれば、緩衝層となる中間層が基板と単結晶層との間に介在するので、単結晶層内の結晶欠陥の数を低減することができる。中間層は、単結晶層の格子間隔と基板の格子間隔とのずれを緩和する機能を有していると考えられる。
本発明の第1の実施形態に係る窒化ガリウム積層体の断面構造を示す模式図である。 第1の実施形態に係る単結晶層のXRD(X線回折)スペクトルを示すグラフである。 窒化ガリウム積層体の断面TEM(透過型電子顕微鏡)写真である。 窒化ガリウム積層体の製造に用いる反応装置の構成を説明する模式図である。 第2の実施形態に係る窒化ガリウム積層体の断面構造を示す模式図である。 第2の実施形態に係る窒化ガリウム積層体の製造に使用される治具の構成を示す模式図である。 実施例における加熱時の温度プロファイルを示すグラフである。 窒化ガリウム結晶のXRDスペクトルを加熱温度毎に示すグラフである。 比較例に係る単結晶層のXRDスペクトルを示すグラフである。 従来の液相エピタキシャル成長法で作製された単結晶層の表面構造を示す模式図である。 実施例に係る窒化ガリウム積層体の反り変形量を非接触式の精密外形測定装置によって測定した表面形状プロファイルである。 市販の窒化ガリウム積層体の反り変形量を非接触式の精密外形測定装置によって測定した表面形状プロファイルである。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 <1.第1の実施形態>
 (1-1.窒化ガリウム積層体の構造)
 まず、図1および図2に基づいて、第1の実施形態に係る窒化ガリウム積層体10の構造について説明する。
 第1の実施形態に係る窒化ガリウム積層体10は、基板11と、中間層12と、単結晶層13とを備える。基板11の種類は特に問われず、本実施形態に係る中間層12および単結晶層13を積層可能な基板であれば特に制限されない。例えば、基板11として、従来の窒化ガリウム積層体に適用可能なものが挙げられる。より具体的には、基板11は、サファイア基板、炭化珪素(SiC)、酸化亜鉛(ZnO)などであってもよい。特に、サファイア基板上に直接窒化ガリウムの単結晶層を形成した場合、上述した結晶欠陥が発生しやすい。したがって、基板11としてサファイア基板を使用した場合、第1の実施形態による効果をより好適に発揮することができる。
 なお、基板11の形状は、いかなる形状であってもよいが、例えば、略平板形状、略円板形状等であってもよい。
 中間層12は、単結晶層13と基板11との間に介在する。中間層12は、所謂緩衝層としての役割を果たす。中間層12は、結晶方位がランダムな窒化ガリウムの結晶で構成される。つまり、中間層12は、窒化ガリウムの多結晶体となっており、複数の結晶粒子の集合体となっている。そして、各結晶粒子の結晶方位は互いに異なっている。第1の実施形態では、このような中間層12を単結晶層13と基板11との間に介在させることで、単結晶層13内の結晶欠陥の数を低減することができる。中間層12は、単結晶層13の格子間隔と基板11の格子間隔とのずれを緩和する機能を有していると考えられる。
 中間層12の厚さは特に制限されないが、10~150nmであることが好ましい。中間層12の厚さが10nm未満となる場合、中間層12の機能が十分に発揮されない可能性がある。つまり、単結晶層13内に結晶欠陥が発生する可能性がある。一方、中間層12の厚さが150nmを超えた場合、単結晶層13の厚さにムラが発生する場合がある。したがって、中間層12の厚さは150nm未満であることが好ましい。
 詳細は後述するが、このような中間層12は、所謂液相エピタキシャル成長法により基板11上に形成される。すなわち、基板11を原料融液に浸漬させることで基板11上に中間層12が形成される。
 なお、中間層12が形成されていることは、例えば窒化ガリウム積層体10の断面をTEMで観察することで確認することができる。図3は、窒化ガリウム積層体10の断面TEM写真(倍率200万倍)の一例を示す。図3から明らかな通り、基板11(この例ではサファイア基板)と単結晶層13との間に中間層12が形成されていることが確認できる。なお、この断面TEM写真は、後述する実施例1の断面TEM写真である。
 単結晶層13は、窒化ガリウムの単結晶層である。第1の実施形態では、単結晶層13は中間層12上に形成されるため、結晶方位が揃った高品質の単結晶層となっている。すなわち、単結晶層13には結晶欠陥は存在しないか、存在したとしてもその数は従来に比べて極めて少ない。例えば、基板11の結晶面が(001)となる場合、単結晶層13の結晶面も(001)となり、結晶欠陥はほとんど存在しない。単結晶層13の厚さは特に制限されず、単結晶層13に要求される機能等に応じて適宜調整すれば良い。
 なお、単結晶層13に結晶欠陥がほとんど存在しないことはX線結晶構造解析により確認することができる。図2に単結晶層13のXRDスペクトルの一例を示す。この例から明らかな通り、単結晶層13のXRDスペクトルでは、34.6°近辺でのみ大きなピークが確認でき、このピークは(001)の結晶面に対応する。なお、このXRDスペクトルは後述する実施例1のXRDスペクトルである。比較のために、基板11上に直接(実際には非常に薄い中間層が形成されている)単結晶層を形成した場合のXRDスペクトルの例を図9に示す。図9に示すXRDスペクトルでは、GaN002に対応するピークのみならず、GaN200に対応するピークおよびGaN1010の結晶方位に対応するピークが確認できる。したがって、この例では、単結晶層は、図10に示す構造を有すると推定される。すなわち、単結晶層は、(001)の結晶面を有する結晶領域501と、(100)あるいは(1010)の結晶面を有する結晶領域502とを有する。なお、このような結晶方位の不整合は、基板11と単結晶層との格子間隔の違いによって確率的に発生すると考えられる。そして、結晶領域501と結晶領域502との間に不連続な境界面、すなわち結晶欠陥が形成される。なお、図9に示すXRDスペクトルは、後述する比較例1のXRDスペクトルである。
 (1-2.窒化ガリウム積層体の反応装置)
 続いて、図4を参照して、第1の実施形態に係る窒化ガリウム結晶の製造方法において用いられる反応装置100について説明する。図4は、窒化ガリウム結晶の製造に用いる反応装置100の構成を説明する模式図である。
 図4に示すように、反応装置100は、電気炉113と、電気炉113の側面に設けられたヒーター114と、ガス導入口131と、ガス排出口132と、引き上げ軸122と、引き上げ軸122および電気炉113の間の気密を確保するシール材123と、を備える。また、電気炉113の内部の架台112上には、原料融液110が入った反応容器111が静置される。引き上げ軸122の一端には、保持具120が設けられ、保持具120によって基板11が保持される。
 反応装置100は、原料融液110に浸漬された基板11上に窒化ガリウムの中間層12および単結晶層13をエピタキシャル成長させる装置である。
 電気炉113は、密閉された構造を有し、内部に反応容器111を収容する。例えば、電気炉113は、内径(直径)が約200mmであり、高さが約800mmである筒状構造であってもよい。また、ヒーター114は、電気炉113の長手方向の側面に配置され、電気炉113内部を加熱する。
 ガス導入口131は、電気炉113の下方に設けられ、電気炉113内に雰囲気ガス(例えば、Nガス)を導入する。また、ガス排出口132は、電気炉113の上方に設けられ、電気炉113内から雰囲気ガスを排出する。ガス導入口131およびガス排出口132により、電気炉113内は、ほぼ常圧(すなわち、大気圧)の雰囲気に保たれる。
 架台112は、反応容器111を支持する。具体的には、架台112は、反応容器111がヒーター114によって均等に加熱されるように反応容器111を支持する。例えば、架台112の高さは、反応容器111がヒーター114の中央部に位置するような高さであってもよい。
 反応容器111は、加熱により反応材料が溶融した原料融液110を保持する容器である。反応容器111は、例えば、外径(直径)が約100mmであり、高さが約90mmであり、厚みが約5mmである筒状容器であってもよい。反応容器111の材質は、金属ガリウムと反応しない材質であることが好ましい。特に、酸素等の不純物を原料融液110に混入させないためには、反応容器111の材質は、窒化ホウ素あるいはグラファイトであることがより好ましい。
 原料融液110は、反応材料が溶融した液体である。具体的には、原料融液110は、反応材料である金属ガリウムおよび窒化鉄の混合粉末をヒーター114によって加熱溶融した液体である。
 ここで、金属ガリウムは、高純度のものを使用することが好ましく、例えば、市販の純度約99.99%以上のものを使用することができる。
 また、窒化鉄は、具体的には、一窒化四鉄(FeN)、一窒化三鉄(FeN)、一窒化二鉄(FeN)、またはこれらの2種以上の混合物を使用することができる。また、窒化鉄は、高純度のものを使用することが好ましく、市販の純度約99.9%以上のものを使用することができる。
 窒化鉄中の鉄原子は、金属ガリウムと混合されて加熱されることにより、触媒として機能し、融液中の窒素原子または雰囲気ガス中の窒素分子から活性窒素を発生させる。発生した活性窒素は、金属ガリウムと容易に反応するため、窒化ガリウム結晶の合成を促進することができる。すなわち、窒化鉄は、触媒として機能するため、反応材料中の窒化鉄の濃度は、特に限定されず、窒化鉄は、少なくとも反応材料中に含まれていればよい。
 具体的には、窒化鉄として一窒化四鉄が使用される場合、窒化鉄は、一窒化四鉄の窒化作用によって金属ガリウムと反応し、窒化ガリウム結晶を生成する(反応式1)。
 FeN+13Ga→GaN+4FeGa ・・・反応式1
 また、窒素雰囲気中から融液中に溶解した窒素分子は、鉄原子が触媒として機能することで金属ガリウムと反応し、窒化ガリウム結晶を生成する(反応式2)。
 2Ga+N+Fe→2GaN+Fe ・・・反応式2
 なお、金属ガリウムと窒化鉄との混合比率は、例えば、金属ガリウムと窒化鉄の鉄元素との合計モル数に対する窒化鉄中の鉄元素のモル数の割合が0.1%以上50%以下となる比率であってもよい。鉄元素の割合が0.1%未満である場合、触媒である鉄元素が少なく、窒化ガリウム結晶の成長速度が遅くなる。また、鉄元素の割合が50%を超える場合、窒化ガリウム以外に酸化ガリウム等の生成が生じ、窒化ガリウム結晶の成長が阻害される可能性が生じる。
 例えば、窒化鉄として一窒化四鉄を使用する場合、上記の窒化鉄中の鉄元素のモル数の割合を満足するためには、金属ガリウムと一窒化四鉄とのモル数の比率をおおよそ99.97:0.03~80:20とすればよい。
 また、窒化鉄として一窒化三鉄または一窒化二鉄を使用する場合、窒化鉄中の鉄元素と窒素元素の割合に応じて、上述のモル数の比率を換算してもよい。例えば、窒化鉄として一窒化三鉄を使用する場合、金属ガリウムと一窒化三鉄とのモル数の比率をおおよそ99.96:0.04~75:25とすればよい。また、窒化鉄として一窒化二鉄を使用する場合、金属ガリウムと一窒化二鉄とのモル数の比率をおおよそ99.94:0.06~67.5:32.5とすればよい。
 引き上げ軸122は、基板11を原料融液110に浸漬し、また、基板11を原料融液110から引き上げる。具体的には、引き上げ軸122は、電気炉113の上面を貫通して設けられる。また、引き上げ軸122の電気炉113内の一端には、基板11を保持する保持具120が設けられる。
 なお、引き上げ軸122は、軸を中心に回転可能に設けられてもよい。このような場合、引き上げ軸122を回転させることで、基板11を回転させ、原料融液110を撹拌することができる。これにより、原料融液110中の窒素濃度分布をより均一にすることができるため、より均一な窒化ガリウムの単結晶層13を成長させることができる。
 保持具120は、枠体120aと、枠体120a内に保持される複数の棚板120bとを備える。保持具120の材質は、金属ガリウムと反応しない材質であることが好ましい。具体的には、反応容器と同様の材質、すなわち、窒化ホウ素あるいはグラファイトであることが好ましい。
 枠体120aは、引き上げ軸122に連結される。棚板120b上には、基板11が設置される。これにより、基板11の露出面上に中間層12および単結晶層13が順次形成される。なお、基板11の露出面は、事前に鏡面研磨される。
 シール材123は、引き上げ軸122と電気炉113との間に設けられ、電気炉113内の気密性を確保する。シール材123によって電気炉113の外部の大気が電気炉113内に流入することを防止することができるため、反応装置100は、電気炉113内をガス導入口131から導入されるガス雰囲気(例えば、窒素雰囲気)にすることができる。
 以上の構成により、反応装置100は、引き上げ軸122を上下させることによって基板11を原料融液110に浸漬させ、基板11上に窒化ガリウムの中間層12および単結晶層13を順次形成することができる。なお、詳細は後述するが、原料の加熱温度を調整することで、基板11上に中間層12および単結晶層13を形成することができる。また、加熱温度および浸漬時間を調整することで、中間層12および単結晶層13の厚さを調整することができる。
 (1-3.窒化ガリウム積層体の製造方法)
 つぎに、窒化ガリウム積層体の製造方法について説明する。まず、金属ガリウムおよび窒化鉄の粉末を混合して上述の反応容器111に充填し、該反応容器111を電気炉113内に載置する。
 ここで、窒化鉄は、一窒化四鉄、一窒化三鉄、および一窒化二鉄からなる群から選択されるいずれか1種以上を含むことが好ましい。
 続いて、電気炉113内にガス導入口131から窒素ガスを導入し、電気炉113内を窒素雰囲気とする。
 ついで、基板11上に中間層12を形成する中間層形成工程を行う。具体的には、ヒーター114によって反応容器111内の混合原料を加熱する。なお、電気炉113内に導入された窒素ガスは、ガス排出口132から排出されるため、電気炉113内は、ほぼ常圧に保たれる。
 ここで、反応容器111内の混合原料は、550~750℃の加熱温度まで加熱される。これにより、混合原料の融液、すなわち、原料融液110が生成される。混合原料の反応温度が550℃未満となる場合、基板11上に窒化ガリウムの結晶がほとんど析出しない。一方、混合原料の加熱温度が750℃を超える場合、基板11上に単結晶層13が直接形成されてしまう。ここで、基板11上に中間層12が形成されている間は、加熱温度は550~750℃に保持されることが好ましい。なお、加熱温度は、550~750℃の範囲内に収まっていれば、一定である必要はなく、変動していてもよい。また、混合原料の昇温速度も特に制限されない。
 反応容器111内の反応材料が溶融し、原料融液110となった後、引き上げ軸122を操作することで、保持具120に保持された基板11を原料融液110中に浸漬する。これにより、原料融液110中に浸漬された基板11上に中間層12が形成される。ここで、原料融液110の加熱温度および基板11の浸漬時間を調整することで、中間層12の厚さを調整することができる。一例として、加熱温度を700℃とし、浸漬時間を6時間とした場合、中間層12の厚さは概ね15nm程度となる。なお、浸漬時間は、1時間以上であることが好ましい。浸漬時間が短すぎると、十分な厚さの中間層12が形成されない場合があるからである。
 続いて、単結晶層形成工程を行う。具体的には、原料融液110を750℃超の加熱温度まで加熱する。加熱温度の上限値は特に制限されないが、1000℃以下であることが好ましい。原料融液110の加熱温度が1000℃を超える場合、原料融液110からの金属ガリウムの蒸発に起因すると考えられる質量減少が生じるためである。これにより、中間層12上に単結晶層13が形成される。第1の実施形態では、中間層12上に単結晶層13を形成するので、単結晶層13内の結晶欠陥の数を低減することができる。すなわち、単結晶層13の結晶方位をより均一とすることができる。単結晶層13の結晶方位は、基板11の結晶方位に一致する。
 ここで、中間層12上に単結晶層13が形成されている間は、加熱温度は上述した加熱温度の範囲内(すなわち、750℃超。上限値は好ましくは1000℃以下)に保持されることが好ましい。なお、加熱温度は、上述した加熱温度の範囲内に収まっていれば、一定である必要はなく、変動していてもよい。また、原料融液110の昇温速度も特に制限されない。ここで、原料融液110の加熱温度および基板11の浸漬時間を調整することで、単結晶層13の厚さを調整することができる。
 以上の工程により、窒化ガリウム積層体10を作製する。作製された窒化ガリウム積層体10は、原料融液から引き上げられ、室温まで冷却される。なお、上記の工程にて得られた窒化ガリウム積層体10には、鉄とガリウムとの金属間化合物等の副生成物が含まれていることがある。そこで、窒化ガリウム積層体10に対して、さらに以下の精製工程を行ってもよい。精製工程は、例えば、窒化ガリウム積層体10を王水等の酸で洗浄することで行われる。
 以上の工程によれば、常圧等の低圧の窒素雰囲気下にて、液相エピタキシャル成長により効率的に窒化ガリウムの中間層12および単結晶層13を作製することができる。また、原料融液110の温度を調整するだけで基板11上に中間層12および単結晶層13を形成することができるので、容易に中間層12および単結晶層13を基板11上に形成することができる。
 なお、以上の工程では、中間層12を液相エピタキシャル成長法により基板11に形成するが、中間層12は、他の方法、例えば気相エピタキシャル成長法により基板11に形成してもよい。ただし、中間層12を液相エピタキシャル成長法により形成することで、中間層12および単結晶層13を同一反応装置内の連続した工程で形成することができる。
 <2.第2の実施形態>
 (2-1.窒化ガリウム積層体の構造)
 次に、図5に基づいて、第2の実施形態に係る窒化ガリウム積層体20の構造について説明する。窒化ガリウム積層体20は、基板11と、基板11の両面に形成された中間層12と、各中間層12の表面に形成された単結晶層13とを備える。中間層12および単結晶層13の詳細な構造は第1の実施形態と同様である。このように、第2の実施形態に係る窒化ガリウム積層体20は、厚さ方向に対称な構造を有しているので、反りが低減される。つまり、基板11の片面のみに中間層12および単結晶層13を形成した場合、基板11と窒化ガリウムとの熱膨張係数の相違に起因する反りが発生する場合がある。例えば、基板11がサファイア基板となる場合、窒化ガリウムとサファイアとで熱膨張係数が2×10-6-1ほど異なり、熱収縮の大きさが異なる。このため、窒化ガリウム側に圧縮応力が生じ、窒化ガリウム側が凸となるように変形が生じる可能性がある。第2の実施形態では、基板11の両面に中間層12および単結晶層13を形成するため、厚さ方向に対称な形状を有する。このため、窒化ガリウム積層体20の反りが低減される。窒化ガリウムの単結晶層13が使用される分野、特に半導体素子においては、単結晶層13の平坦性が特に強く求められる。単結晶層13上に微細な構造を作りこみたいという要望が非常に強いからである。単結晶層13に大きな反りが発生した場合、このような反りは微細加工を行う際に非常に大きな障害となる。さらに、反りの大きさは基板11のサイズ(直径)が大きくなるにしたがって増大する。したがって、単結晶層13の反りが低減することは非常に重要である。
 (2-2.窒化ガリウム積層体の反応装置)
 次に、窒化ガリウム積層体20の反応装置の構成について説明する。第2の実施形態に係る反応装置は、図4の反応装置の保持具120を図6に示す保持具221に変更したものである。保持具221は、複数の鉤状のアーム部材で構成され、基板11を側面から保持する。さらに、基板11の表裏両面を原料融液110に露出することができる。これにより、基板11の表裏両面に中間層12および単結晶層13を形成することができる。
 (2-3.窒化ガリウム積層体の製造方法)
 窒化ガリウム積層体20の製造方法は、保持具120を保持具221に変更した他は第1の実施形態と同様である。ただし、基板11の表裏両面は事前に鏡面研磨される。なお、基板11の片面のみ鏡面研磨することで、第1の実施形態と同様の窒化ガリウム積層体を作製することもできる。このように、第2の実施形態によれば、非常に簡易な方法で基板11の両面に同時に中間層12および単結晶層13を形成することができる。また、第2の実施形態の工程は第1の実施形態とほとんど同様の工程となることから、第1の実施形態からのコストの上昇を極めて低く抑えることができる。
 以下では、実施例を参照しながら、第1および第2の実施形態について、さらに具体的に説明する。なお、以下に示す実施例は、第1および第2の実施形態の実施可能性および効果を示すための一条件例であり、本発明が以下の実施例に限定されるものではない。
 <1.実施例1>
 次に、実施例1について説明する。実施例1は、第1の実施形態の実施例に相当する。実施例1では、上述した反応装置100および保持具120を用いて窒化ガリウム積層体10を作製した。
 具体的には、金属ガリウムとして純度7Nの金属ガリウム試薬(5N Plus社製)を準備し、窒化鉄として純度99%以上の窒化三鉄試薬(高純度化学株式会社製)を準備した。さらに、基板11として、結晶面が(001)となる直径約2インチ、厚さ約0.4mmのサファイア基板を用意した。
 そして、金属ガリウムおよび窒化鉄の粉末を混合して上述の反応容器111に充填し、該反応容器111を電気炉113内に載置した。ここで、金属ガリウムおよび窒化鉄のモル比を99.9:0.1とした。また、反応容器111の材質はグラファイトとした。
 続いて、電気炉113内にガス導入口131から純度99.99%の窒素ガスを導入し、電気炉113内を窒素雰囲気とした。窒素ガスの流量は毎分5リットルとした。なお、電気炉113内に導入された窒素ガスは、ガス排出口132から排出されるため、電気炉113内は、ほぼ常圧に保たれる。
 ついで、基板11上に中間層12を形成する中間層形成工程を行った。具体的には、ヒーター114によって反応容器111内の混合原料を700℃まで300℃/時の昇温速度で加熱した。これにより、原料融液110が生成された。
 ついで、引き上げ軸122を操作することで、保持具120に保持された基板11を原料融液110中に浸漬した。ここで、基板11の露出面を予め鏡面研磨した。保持具120の材質はグラファイトとした。ついで、この状態を6時間保持した。これにより、基板11上に中間層12を形成した。なお、中間層12および単結晶層13の形成中は、基板11を毎分5回の速度で回転させた。
 続いて、単結晶層形成工程を行った。具体的には、基板11を原料融液110に浸漬させたまま原料融液110を昇温速度300℃/時で900℃まで加熱した。ついで、この状態を48時間保持した。これにより、中間層12上に単結晶層13を形成した。すなわち、窒化ガリウム積層体10を作製した。ついで、作製された窒化ガリウム積層体10を原料融液110から引き上げ、室温まで冷却した。ついで、窒化ガリウム積層体10を精製した。以上の工程の温度プロファイルを図7に示す。
 ついで、窒化ガリウム積層体10が中間層12および単結晶層13を有していることを確認するために、窒化ガリウム積層体10の断面をTEM(日立ハイテクノロジーズ社製 HF-3300)で観察した。結果を図3に示す。図3から明らかな通り、基板11上に中間層12および単結晶層13が形成されていることが確認できた。
 ついで、単結晶層13の結晶方位を確認するために、XRD装置(株式会社リガク RINT2500)を用いて、単結晶層13のX線回折分析を行った。結果を図2に示す。図2から明らかな通り、単結晶層13のXRDスペクトルでは、34.6°近辺でのみ大きなピークが確認でき、このピークはGaN002に対応する。したがって、単結晶層13の結晶面は(001)で揃っており、結晶欠陥がほとんど存在しないことが確認できた。
 <2.比較例1>
 つぎに、実施例1との比較のために、以下の比較例1を行った。比較例1では、実施例1の工程から中間層形成工程を省略した。つまり、基板11上に直接(実際には非常に薄い中間層が形成される)単結晶層を形成した。そして、得られた単結晶層のX線回折分析を行った。結果を図9に示す。図9に示すXRDスペクトルでは、GaN002に対応するピークのみならず、GaN200に対応するピークおよびGaN1010に対応するピークが確認できた。したがって、比較例1では、単結晶層内に(001)以外の結晶面である(100)および(1010)を有する結晶領域が混在していることになる。したがって、単結晶層内には格子間隔が多数存在すると言える。
 <3.中間層を形成するための温度範囲の検証(実験例)>
 次に、中間層12が形成される温度範囲について検証した。本検証で使用した反応装置は概略以下の通りである。反応装置は、横向きに伸びる管状炉と、管状炉の周面に配置された電気炉とを有する。電気炉によって、管状炉の内部が加熱される。そして、本検証では、グラファイト製の坩堝に実施例1で使用した混合原料を充填した。つまり、この混合原料は、金属ガリウムと窒化鉄とを混合したものである。金属ガリウムは、純度7Nの金属ガリウム試薬(5N Plus社製)であり、窒化鉄は、純度99%以上の窒化三鉄試薬(高純度化学株式会社製)である。
 ついで、混合原料が充填された坩堝を管状炉内に挿入し、混合原料を750℃、775℃、800℃、850℃、875℃のいずれかの反応温度で6時間保持した。なお、温度保持中には、管状炉内を毎分5リットルの流量で窒素ガスを流通させた。ついで、坩堝を室温まで冷却したのち、坩堝内の残留原料成分(即ち、金属ガリウム、窒化鉄、およびガリウムと鉄との金属間化合物)を王水で除去することで反応生成物を分離した。ついで、反応生成物のX線回折分析を行った。結果を図8に示す。反応温度が750℃では、窒化ガリウム単結晶に由来するピークは観測されなかったが、775℃以上の反応温度では、GaN002に対応するピークが観測された。一方、750℃の反応温度では、目立ったピークは観測されなかった。ピークが観測されない場合、反応生成物は多結晶体であることを意味する。したがって、中間層12が形成される温度の上限値は750℃であることがわかった。
 ついで、温度範囲の下限値を確認した。具体的には、混合原料が充填された坩堝を管状炉内に挿入し、混合原料を550℃の反応温度で6時間保持した。そして、保持中の混合原料(すなわち原料融液)の質量変化を熱重量分析装置により測定した。この結果、反応温度が550℃に到達するまでは目立った質量変化は観測されなかったが、反応温度が550℃に到達した以降は、時間の経過に応じて質量が増加した。原料融液に雰囲気中の窒素ガスが取り込まれたために、質量が増加したと考えられる。さらに、原料融液の質量が直ちに飽和しなかったことから、吸収された窒素ガスは、金属ガリウムと反応して窒化ガリウムとなったと考えられる。なお、反応温度を550℃未満とした場合、このような現象は観測されなかった。この結果、中間層12を形成するための反応温度の下限値は550℃であることが明らかとなった。
 <4.実施例2>
 つぎに、第2の実施形態に対応する実施例2を行った。実施例2では、実施例1で使用した保持具120を図6に示す保持具221に変更した他は、実施例1と同様の処理を行った。ついで、作製された窒化ガリウム積層体20の反り変形量を非接触式の精密外形測定装置(アメテックテーラーホブソン社製 フォームタリサーフPGI1250A)によって測定した。この結果を図11に示す。横軸は直径方向の距離、すなわち、測定点から窒化ガリウム積層体20の外縁までの直径方向の距離を示す。縦軸は、所定の基準値からの変位量を示す。
 また、比較例2として、直径が2インチのサファイア基板の片面のみに気相成長法によって窒化ガリウム単結晶層を形成した窒化ガリウム積層体、いわゆるテンプレート基板(米国オステンド社製φ2インチGaNテンプレート基板)を用意した。単結晶層の厚さは中間層12および単結晶層13の総厚さ(片面側の総厚さ)と略同じとした。そして、このテンプレート基板の反り変形量を非接触式の精密外形測定装置によって測定した。この結果を図12に示す。
 図11および図12に示す表面形状プロファイルからわかるように、実施例2に係る窒化ガリウム積層体20では、直径2インチの基板の周辺部から中心部までの変形量の最大値が約2μm以下であることがわかる。一方、比較例2に係るテンプレート基板では、約5μmの反りが発生していることがわかる。したがって、実施例2に係る窒化ガリウム積層体20の曲率半径は、弦長50mm、矢高0.002mmとして、約156mであり、比較例2に係るサファイア基板の曲率半径は、実施例2と同様に計算すると、約62mである。したがって、第2の実施形態により反りが低減されることが明らかとなった。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 10、20  窒化ガリウム積層体
 12   中間層
 13   単結晶層
 100  反応装置
 110  原料融液
 111  反応容器
 112  架台
 113  電気炉
 114  ヒーター
 120  保持具
 122  引き上げ軸
 123  シール材
 131  ガス導入口
 132  ガス排出口
 
 

Claims (8)

  1.  基板上に結晶方位がランダムな窒化ガリウムの中間層を形成する中間層形成工程と、
     前記中間層上に液相エピタキシャル成長法により窒化ガリウムの単結晶層を形成する単結晶層形成工程と、を含む、窒化ガリウム積層体の製造方法。
  2.  前記単結晶層形成工程は、
     金属ガリウムおよび窒化鉄を窒素雰囲気中で750℃超の加熱温度まで加熱することで、原料融液を作製する工程と、
     前記原料融液中に前記中間層が形成された基板を浸漬する工程と、を含む、請求項1記載の窒化ガリウム積層体の製造方法。
  3.  前記窒化鉄は、一窒化四鉄、一窒化三鉄、および一窒化二鉄からなる群から選択されるいずれか1種以上を含む、請求項2記載の窒化ガリウム積層体の製造方法。
  4.  前記中間層形成工程は、
     前記基板上に液相エピタキシャル成長法により前記中間層を形成する、請求項1~3の何れか1項に記載の窒化ガリウム積層体の製造方法。
  5.  前記中間層形成工程は、
     金属ガリウムおよび窒化鉄を窒素雰囲気中で550~750℃の加熱温度まで加熱することで、原料融液を作製する工程と、
     前記原料融液中に前記基板を1時間以上浸漬する工程と、を含む、請求項4記載の窒化ガリウム積層体の製造方法。
  6.  前記窒化鉄は、一窒化四鉄、一窒化三鉄、および一窒化二鉄からなる群から選択されるいずれか1種以上を含む、請求項5記載の窒化ガリウム積層体の製造方法。
  7.  前記中間層の厚さは150nm以下である、請求項1~6の何れか1項に記載の窒化ガリウム積層体の製造方法。
  8.  前記中間層および前記単結晶層を前記基板の両面に形成する、請求項1~7の何れか1項に記載の窒化ガリウム積層体の製造方法。
     
     
PCT/JP2017/032040 2016-09-12 2017-09-06 窒化ガリウム積層体の製造方法 WO2018047844A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/324,691 US20190218684A1 (en) 2016-09-12 2017-09-06 Method for producing gallium nitride stacked body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016177665A JP2018043891A (ja) 2016-09-12 2016-09-12 窒化ガリウム積層体の製造方法
JP2016-177665 2016-09-12

Publications (1)

Publication Number Publication Date
WO2018047844A1 true WO2018047844A1 (ja) 2018-03-15

Family

ID=61562824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032040 WO2018047844A1 (ja) 2016-09-12 2017-09-06 窒化ガリウム積層体の製造方法

Country Status (4)

Country Link
US (1) US20190218684A1 (ja)
JP (1) JP2018043891A (ja)
TW (1) TW201825723A (ja)
WO (1) WO2018047844A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549898B (zh) * 2021-08-13 2023-07-25 安徽泽众安全科技有限公司 一种二维氮化镓膜的限域模板制备方法、制得的二维氮化镓膜
CN114438596A (zh) * 2022-01-27 2022-05-06 西湖大学 一种易于剥离的晶圆级氮化镓外延生长方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184847A (ja) * 2008-02-04 2009-08-20 Ngk Insulators Ltd Iii族窒化物単結晶の製造方法
WO2015033975A1 (ja) * 2013-09-09 2015-03-12 デクセリアルズ株式会社 窒化ガリウム結晶の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) * 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US7063741B2 (en) * 2002-03-27 2006-06-20 General Electric Company High pressure high temperature growth of crystalline group III metal nitrides
KR101192061B1 (ko) * 2006-11-14 2012-10-17 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 GaN 결정의 제조 방법, GaN 결정, GaN 결정 기판, 반도체 장치 및 GaN 결정 제조 장치
CN103243389B (zh) * 2012-02-08 2016-06-08 丰田合成株式会社 制造第III族氮化物半导体单晶的方法及制造GaN衬底的方法
CN103526282A (zh) * 2013-10-22 2014-01-22 北京大学东莞光电研究院 一种生长氮化物单晶体材料的装置及方法
JP6688109B2 (ja) * 2016-02-25 2020-04-28 日本碍子株式会社 面発光素子、外部共振器型垂直面発光レーザー、および面発光素子の製造方法
CN107230737B (zh) * 2016-03-25 2019-03-08 松下知识产权经营株式会社 Iii族氮化物基板以及iii族氮化物结晶的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184847A (ja) * 2008-02-04 2009-08-20 Ngk Insulators Ltd Iii族窒化物単結晶の製造方法
WO2015033975A1 (ja) * 2013-09-09 2015-03-12 デクセリアルズ株式会社 窒化ガリウム結晶の製造方法

Also Published As

Publication number Publication date
TW201825723A (zh) 2018-07-16
JP2018043891A (ja) 2018-03-22
US20190218684A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
Galazka β-Ga2O3 for wide-bandgap electronics and optoelectronics
JP5706823B2 (ja) SiC単結晶ウエハーとその製造方法
CN101410950B (zh) 使用纳米结构柔性层和hvpe制造高质量化合物半导体材料的生长方法
CN107059116B (zh) 引晶的氮化铝晶体生长中的缺陷减少
JP5068423B2 (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
EP1806438A1 (en) Method of surface reconstruction for silicon carbide substrate
US7520930B2 (en) Silicon carbide single crystal and a method for its production
JP2006143581A (ja) 窒化ガリウム単結晶厚膜およびその製造方法
KR101152857B1 (ko) 탄화규소 단결정의 성장방법
EP2940196A1 (en) METHOD FOR PRODUCING n-TYPE SiC SINGLE CRYSTAL
WO2018047844A1 (ja) 窒化ガリウム積層体の製造方法
US9873955B2 (en) Method for producing SiC single crystal substrate in which a Cr surface impurity is removed using hydrochloric acid
EP2784191A1 (en) Low carbon group-III nitride crystals
EP1498518B1 (en) Method for the production of silicon carbide single crystal
JP2008285401A (ja) Iii族窒化物単結晶基板の製造方法、および該基板を積層した積層基板
JP5761264B2 (ja) SiC基板の製造方法
JP5428706B2 (ja) SiC単結晶の製造方法
Fan et al. A low-temperature evaporation route for ZnO nanoneedles and nanosaws
Boćkowski et al. Recent Progress in Crystal Growth of Bulk GaN
JP6742868B2 (ja) 窒化ガリウム結晶の製造方法
JP4817099B2 (ja) 炭化物単結晶とその製造方法
JP5491300B2 (ja) 窒化アルミニウム製造方法
JP2018188330A (ja) SiC単結晶基板の製造方法
JP2019151542A (ja) 半導体基板、窒化ガリウム単結晶及び窒化ガリウム単結晶の製造方法

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848783

Country of ref document: EP

Kind code of ref document: A1