WO2018047536A1 - 機器温調装置の製造方法および作動流体の充填方法 - Google Patents

機器温調装置の製造方法および作動流体の充填方法 Download PDF

Info

Publication number
WO2018047536A1
WO2018047536A1 PCT/JP2017/028060 JP2017028060W WO2018047536A1 WO 2018047536 A1 WO2018047536 A1 WO 2018047536A1 JP 2017028060 W JP2017028060 W JP 2017028060W WO 2018047536 A1 WO2018047536 A1 WO 2018047536A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
filling
circuit
cooling
refrigerant
Prior art date
Application number
PCT/JP2017/028060
Other languages
English (en)
French (fr)
Inventor
康光 大見
山中 隆
加藤 吉毅
義則 毅
竹内 雅之
功嗣 三浦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2018538299A priority Critical patent/JP6604441B2/ja
Priority to CN201780055157.6A priority patent/CN109690220B/zh
Priority to DE112017004545.2T priority patent/DE112017004545T5/de
Publication of WO2018047536A1 publication Critical patent/WO2018047536A1/ja
Priority to US16/293,877 priority patent/US10906141B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/09Heat pipes

Definitions

  • the present disclosure relates to a method of manufacturing a device temperature control device that adjusts the temperature of a device.
  • Patent Document 1 discloses a temperature control device that adjusts the temperature of a battery mounted on a vehicle.
  • This temperature control device includes a circuit of a working fluid constituting a loop type thermosiphon heat pipe. This circuit has an evaporating part where the working fluid evaporates due to heat absorption from the battery, and a condensing part where the working fluid evaporated in the evaporating part is cooled and condensed.
  • Patent Document 1 does not describe a filling method in which the working fluid is filled in the circuit after assembling each component constituting the circuit.
  • the refrigeration cycle apparatus for vehicles uses a refrigerant that evaporates at room temperature.
  • the refrigerant filling port of the refrigerant circuit of the refrigeration cycle apparatus is connected to the container containing the refrigerant.
  • the refrigerant filling port of the refrigerant circuit of the refrigeration cycle apparatus is connected to the container containing the refrigerant.
  • the gas-phase refrigerant flows into the refrigerant circuit.
  • the inside of the refrigerant circuit is decompressed by operating the compressor. Thereby, the internal pressure of a refrigerant circuit is made lower than the internal pressure of a container.
  • the refrigerant circuit is filled with a specified amount of refrigerant.
  • the temperature control device of Patent Document 1 does not include a compressor. For this reason, the inside of the circuit cannot be decompressed, and the inside of the circuit cannot be filled with a specified amount of working fluid. Also, the circuit cannot be filled with a specified amount of working fluid simply by reducing the pressure inside the circuit with a vacuum pump and allowing the gas-phase working fluid to flow in.
  • a method of filling the working fluid there is a method of pressurizing the working fluid in the container using a special pressurizing device.
  • a method of heating the container and pressurizing the working fluid there is a method of heating the container and pressurizing the working fluid.
  • heating the container is not preferable for safety because there is a risk of rupture of the container or accidental blowout of the working fluid.
  • Such a problem also occurs in a device temperature control device that is installed in a place other than a vehicle or adjusts the temperature of a device other than a battery. Such a problem also occurs in a device temperature control apparatus including a working fluid circuit constituting a thermosiphon heat pipe that is not a loop type.
  • An object of the present disclosure is to provide a method for manufacturing an apparatus temperature control apparatus that can easily and safely fill a vapor phase working fluid into the apparatus temperature control apparatus after assembling each component of the apparatus temperature control apparatus.
  • Another object of the present disclosure is to provide a method of filling a working fluid that can easily and safely fill a gas-phase working fluid to an apparatus temperature control device.
  • thermosiphon heat pipe is constructed, and a circuit through which the working fluid circulates is provided.
  • Circuit An evaporating part in which the working fluid evaporates due to heat absorption from the device;
  • a condensing unit that cools and condenses the working fluid evaporated in the evaporating unit;
  • a device temperature control device manufacturing method having a filling port for filling a working fluid, Connecting a filling port and a container containing a working fluid in a gas phase, and filling the working fluid inside the circuit, In filling, the working fluid inside the circuit is cooled by a cooling source, and the internal temperature of the circuit is made lower than the internal temperature of the container, so that the internal pressure of the circuit becomes lower than the internal pressure of the container.
  • the gas phase working fluid inside the container can be caused to flow into the circuit using the pressure difference between the inside of the circuit and the inside of the container. Therefore, after assembling each component of the device temperature control device, the device temperature control device can be easily and safely filled with the gas phase working fluid.
  • thermosiphon heat pipe is constructed, and a circuit through which the working fluid circulates is provided.
  • Circuit An evaporating part in which the working fluid evaporates due to heat absorption from the device;
  • a condensing unit that cools and condenses the working fluid evaporated in the evaporating unit;
  • the gas phase working fluid inside the container can be caused to flow into the circuit using the pressure difference between the inside of the circuit and the inside of the container. Therefore, it is possible to easily and safely fill the gas temperature working fluid into the device temperature control device.
  • FIG. 1st Embodiment It is a schematic diagram which shows the structure of the apparatus temperature control apparatus in 1st Embodiment. It is sectional drawing of the fluid circuit for apparatuses in FIG. It is a flowchart which shows the manufacturing process of the apparatus temperature control apparatus in 1st Embodiment. It is a schematic diagram of the apparatus temperature control apparatus in 1st Embodiment in the state where the gas can was connected. It is a saturation temperature curve of R134a refrigerant. It is a figure which shows the relationship between the refrigerant
  • the apparatus temperature control apparatus 1 of this embodiment shown in FIG. 1 adjusts the battery temperature of the assembled battery BP as a temperature adjustment object apparatus by cooling the assembled battery BP mounted in the vehicle.
  • a vehicle on which the device temperature control device 1 is mounted an electric vehicle or a hybrid vehicle that can be driven by a traveling electric motor (not shown) that uses the assembled battery BP as a power source is assumed.
  • the assembled battery BP is composed of a stacked body in which a plurality of rectangular parallelepiped battery cells BC are stacked.
  • the plurality of battery cells BC constituting the assembled battery BP are electrically connected in series.
  • Each battery cell BC constituting the assembled battery BP is configured by a chargeable / dischargeable secondary battery (for example, a lithium ion battery or a lead storage battery).
  • the battery cell BC is not limited to a rectangular parallelepiped shape, and may have another shape such as a cylindrical shape.
  • the assembled battery BP may include a battery cell BC electrically connected in parallel.
  • the assembled battery BP is connected to a power converter and a motor generator (not shown).
  • the power conversion device is a device that converts, for example, a direct current supplied from an assembled battery into an alternating current, and supplies (that is, discharges) the converted alternating current to various electric loads such as a traveling electric motor.
  • the motor generator is a device that reversely converts the traveling energy of the vehicle into electric energy during regeneration of the vehicle and supplies the reversely converted electric energy as regenerative power to the assembled battery BP via an inverter or the like.
  • the assembled battery BP may become excessively hot due to self-heating when power is supplied while the vehicle is running.
  • the assembled battery BP becomes excessively high in temperature, not only the input / output characteristics of the assembled battery BP are deteriorated, but also the deterioration of the battery cell BC is promoted. Therefore, a cooling means for maintaining the temperature below a predetermined temperature is required. Become.
  • the power storage device including the assembled battery BP is often disposed under the floor of the vehicle or under the trunk room, and the battery temperature of the assembled battery BP gradually increases not only when the vehicle is running but also during parking in summer. As a result, the battery temperature may become excessively high. If the battery pack BP is left in a high temperature environment, the battery life will be significantly reduced due to the progress of deterioration. Therefore, the battery temperature of the battery pack BP should be kept below a predetermined temperature even during parking of the vehicle. Is desired.
  • the assembled battery BP is composed of a plurality of battery cells BC.
  • the temperature of each battery cell BC varies, the degree of progress of deterioration of each battery cell is biased, and the entire assembled battery is inserted.
  • the output characteristics will deteriorate.
  • the assembled battery BP includes battery cells connected in series, so that the input / output characteristics of the entire assembled battery are determined according to the battery characteristics of the battery cell BC that has been most deteriorated among the battery cells BC. Because. For this reason, in order to make the assembled battery BP exhibit desired performance for a long period of time, it is important to equalize the temperature of the battery cells BC to reduce temperature variation.
  • an air-cooling cooling means using a blower and a cooling means utilizing the cold heat of a vapor compression refrigeration cycle are generally used.
  • the air-cooled cooling means using the blower only blows air or the like in the passenger compartment to the assembled battery, a cooling capacity sufficient to sufficiently cool the assembled battery BP may not be obtained.
  • the cooling means using the cold heat of the refrigeration cycle has a high cooling capacity of the assembled battery BP, it is necessary to drive a compressor or the like that consumes a large amount of power while the vehicle is parked. This is undesirable because it leads to an increase in power consumption and an increase in noise.
  • the apparatus temperature control apparatus 1 of the present embodiment employs a thermosiphon system that adjusts the battery temperature of the assembled battery BP not by forced circulation of the refrigerant by the compressor but by natural circulation of the working fluid.
  • the device temperature control device 1 includes a device fluid circuit 10 through which a working fluid circulates.
  • a working fluid circulates as the working fluid circulating in the device fluid circuit 10.
  • refrigerants for example, R134a, R1234yf
  • a vapor compression refrigeration cycle are employed.
  • the fluid circuit for equipment 10 is a heat pipe that performs heat transfer by evaporation and condensation of the working fluid, and is configured to be a thermosiphon type in which the working fluid is naturally circulated by gravity. Furthermore, the fluid circuit for equipment 10 is configured to be a loop type in which a flow path through which a gaseous working fluid flows and a flow path through which a liquid working fluid flows are separated. That is, the fluid circuit for equipment 10 constitutes a loop-type thermosiphon heat pipe.
  • the device fluid circuit 10 is formed by connecting a device heat exchanger 12, a first condenser 14, a second condenser 15, a gas passage portion 16, and a liquid passage portion 18 to each other. Has been.
  • the device fluid circuit 10 is a closed annular fluid circuit. A predetermined amount of working fluid is sealed inside the device fluid circuit 10.
  • the equipment heat exchanger 12 is a heat exchanger that functions as an evaporation section that absorbs heat from the assembled battery BP and evaporates the liquid working fluid when the assembled battery BP is cooled.
  • the equipment heat exchanger 12 has a thin, rectangular parallelepiped shape.
  • the equipment heat exchanger 12 is disposed at a position facing the bottom surface side of the assembled battery BP. That is, the assembled battery BP is arranged on the upper surface of the equipment heat exchanger 12.
  • the equipment heat exchanger 12 is disposed below the first condenser 14 and the second condenser 15. As a result, the liquid working fluid accumulates in the lower portion of the equipment fluid circuit 10 including the equipment heat exchanger 12 by gravity.
  • the first condenser 14 and the second condenser 15 are heat exchangers that condense the gaseous working fluid evaporated in the equipment heat exchanger 12.
  • the 1st condenser 14 and the 2nd condenser 15 comprise the apparatus condensation part 13 which condenses a working fluid.
  • One of the first condenser 14 and the second condenser 15 condenses the working fluid.
  • a second condenser 15 is connected to the downstream side of the first condenser 14 via a communication path portion 17.
  • the communication path part 17 is comprised by piping in which the flow path through which a working fluid distribute
  • the first condenser 14 is an air-cooled condenser that cools the working fluid by exchanging heat between air and the working fluid.
  • the apparatus temperature control device 1 has a blower 20 that sends air to the first condenser 14.
  • the second condenser 15 is a condenser that cools the working fluid by heat exchange with the refrigerant of the refrigeration cycle device 21 for air conditioning mounted on the vehicle.
  • the refrigeration cycle apparatus 21 constitutes a part of the vehicle air conditioner.
  • the refrigeration cycle apparatus 21 includes a refrigerant circuit 22 through which refrigerant flows.
  • the second condenser 15 has a working fluid side heat exchanging portion 15a through which the working fluid of the device fluid circuit 10 flows, and a refrigerant side heat exchanging portion 15b through which the refrigerant of the refrigerant circuit 22 flows.
  • the working fluid side heat exchanging portion 15a and the refrigerant side heat exchanging portion 15b are thermally connected so that heat exchange between the working fluid and the refrigerant is possible.
  • the refrigerant circuit 22 constitutes a vapor compression refrigeration cycle. Specifically, the refrigerant circuit 22 is formed by connecting a compressor 24, an air conditioning condenser 26, a first expansion valve 28, an air conditioning evaporator 30 and the like by piping.
  • the refrigeration cycle apparatus 21 includes a blower 27 that sends air to the air conditioning condenser 26 and a blower 31 that forms an air flow toward the vehicle interior space.
  • Compressor 24 compresses and discharges the refrigerant.
  • the air conditioning condenser 26 is a heat radiator that condenses the refrigerant flowing out of the compressor 24 by heat exchange with heat.
  • the first expansion valve 28 depressurizes the refrigerant flowing out of the air conditioning condenser 26.
  • the air conditioning evaporator 30 evaporates the refrigerant flowing out of the first expansion valve 28 by heat exchange with the air traveling toward the vehicle interior space, and cools the air traveling toward the vehicle interior space.
  • the refrigerant circuit 22 has a second expansion valve 32 and a refrigerant side heat exchange unit 15b connected in parallel with the refrigerant flow with respect to the first expansion valve 28 and the air conditioning evaporator 30.
  • the second expansion valve 32 decompresses the refrigerant flowing out of the air conditioning condenser 26.
  • the refrigerant side heat exchange unit 15b is an evaporation unit that evaporates the refrigerant by heat exchange with the working fluid flowing through the working fluid side heat exchange unit 15a.
  • the refrigerant circuit 22 has an open / close valve 34 that opens and closes a refrigerant flow path through which the refrigerant flows toward the refrigerant-side heat exchange unit 15b.
  • a first refrigerant circuit is formed in which the refrigerant flows in the order of the compressor 24, the air conditioning condenser 26, the first expansion valve 28, and the air conditioning evaporator 30.
  • a second refrigerant circuit is formed in which the refrigerant flows in the order of the compressor 24, the air conditioning condenser 26, the second expansion valve 32, and the refrigerant side heat exchange unit 15b.
  • the blower 20 When the outside air temperature is lower than the predetermined temperature or the battery temperature is lower than the predetermined temperature, the blower 20 is activated.
  • the refrigeration cycle apparatus 21 is in a stopped state. Thereby, the working fluid is cooled and condensed in the first condenser 14 by heat exchange with the blown air.
  • the on-off valve 34 is opened. At this time, at least the compressor 24 and the blower 27 are operated. Thereby, the working fluid is cooled and condensed by heat exchange with the refrigerant flowing through the refrigerant side heat exchange unit 15b in the working fluid side heat exchange unit 15a of the second condenser 15. As described above, in the equipment condensing unit 13, the working fluid is cooled by operating the refrigeration cycle device 21.
  • the gas passage section 16 guides the gaseous working fluid evaporated in the equipment heat exchanger 12 to the equipment condensation section 13.
  • the gas passage portion 16 is a first flow path through which the working fluid flows from the equipment heat exchanger 12 as the evaporation section toward the equipment condensation section 13 as the condensation section.
  • the gas passage portion 16 has a lower end connected to the equipment heat exchanger 12 and an upper end connected to the first condenser 14.
  • the gas passage part 16 of this embodiment is comprised by piping in which the flow path through which a working fluid distribute
  • the gas passage portion 16 is provided with a filling port 36 for filling the working fluid.
  • the filling port 36 may be provided in a portion other than the gas passage portion 16 in the device fluid circuit 10. However, it is preferable that the filling port 36 is provided in a portion where the gas-phase working fluid exists in the fluid circuit 10 for equipment.
  • the liquid passage part 18 guides the liquid working fluid condensed in the equipment condensing part 13 to the equipment heat exchanger 12. That is, the liquid passage portion 18 is a second flow path through which the working fluid flows from the device condensing unit 13 as the condensing unit toward the device heat exchanger 12 as the evaporation unit.
  • the liquid passage portion 18 has a lower end connected to the equipment heat exchanger 12 and an upper end connected to the second condenser 15.
  • the liquid passage portion 18 of the present embodiment is configured by a pipe in which a flow path through which a working fluid flows is formed.
  • the basic operation of the device temperature control apparatus 1 of the present embodiment will be described with reference to FIG. Note that the arrow DRg shown in FIG. 2 indicates the direction in which the vertical line extends, that is, the vertical direction.
  • the apparatus temperature control apparatus 1 when the battery temperature Tb of the assembled battery BP rises due to self-heating during traveling of the vehicle, the heat of the assembled battery BP moves to the apparatus heat exchanger 12.
  • the equipment heat exchanger 12 a part of the liquid working fluid WF evaporates by absorbing heat from the assembled battery BP.
  • the assembled battery BP is cooled by the latent heat of vaporization of the working fluid WF existing inside the equipment heat exchanger BP, and the temperature thereof decreases.
  • the gaseous working fluid WF evaporated in the equipment heat exchanger 12 flows out from the equipment heat exchanger 12 to the gas passage section 16 and passes through the gas passage section 16 as indicated by an arrow F11 in FIG. It moves to the condensing part 13 for apparatuses.
  • the gaseous working fluid WF is condensed by the heat radiation of the gaseous working fluid WF in the first condenser 14 or the second condenser 15.
  • the condensed liquid working fluid WF descends due to gravity.
  • the liquid working fluid WF condensed in the device condensing unit 13 flows out from the device condensing unit 13 to the liquid passage unit 18, and the device passes through the liquid passage unit 18 as indicated by an arrow F ⁇ b> 12 in FIG. 2. It moves to the heat exchanger 12 for work.
  • a part of the flowing liquid working fluid WF is evaporated by absorbing heat from the assembled battery BP.
  • the device temperature control apparatus 1 circulates between the device heat exchanger 12 and the device condensing unit 13 while the working fluid WF changes between a gas state and a liquid state, and the device heat exchanger
  • the assembled battery BP is cooled by transporting heat from 12 to the apparatus condensing unit 13.
  • the equipment temperature control device 1 has a configuration in which the working fluid WF naturally circulates inside the equipment fluid circuit 10 without the driving force required for circulating the working fluid by a compressor or the like. For this reason, the apparatus temperature control apparatus 1 can implement
  • Step S2 is performed. Even at the time of market service, the assembly process S1 of the device fluid circuit 10 is performed after the device fluid circuit 10 is disassembled at a repair shop or the like. After the assembly step S1, a filling step S2 is performed. Performing the filling step S2 corresponds to a working fluid filling method.
  • the components 12, 14, 15, 16, 17, and 18 of the fluid circuit for equipment 10 are connected to each other in a state of being mounted on the vehicle. Thereby, the fluid circuit 10 for apparatuses before being filled with a working fluid is formed.
  • the gauge manifold 40 is a filling device used when filling a refrigerant in a general refrigeration cycle apparatus for air conditioning.
  • the gauge manifold 40 includes a low pressure valve 41, a high pressure valve 42, and a charge valve 43.
  • a vacuum pump 44 or a gas can 45 is connected to the charge valve 43 via a hose 43a.
  • the gas can 45 is a container in which a specified amount of gaseous refrigerant is accommodated.
  • R134a which is the same type of refrigerant as that used in the air-conditioning refrigeration cycle apparatus 21 is charged as the working fluid. Therefore, the gaseous refrigerant described below corresponds to a gas phase working fluid.
  • a hose 46 is connected to the low pressure valve 41. This hose 46 is connected to the filling port 36.
  • the hose 43a connected to the charge valve 43 is connected to the vacuum pump 44 as indicated by a broken line in FIG.
  • the filling port 36 and the vacuum pump 44 are connected.
  • the inside of the device fluid circuit 10 is evacuated by the vacuum pump 44.
  • the inside of the fluid circuit for equipment 10 is decompressed.
  • the hose 43a connected to the charge valve 43 is replaced with the gas can 45 as shown by the solid line in FIG.
  • the valve 45a of the gas can 45 is opened.
  • a purge valve (not shown) of the gauge manifold 40 is opened.
  • the air contained between the gauge manifold 40 and the gas can 45 is purged.
  • the charge valve 43 is opened.
  • the filling port 36 and the gas can 45 are connected.
  • a part of the gaseous refrigerant inside the gas can 45 is sucked into the fluid circuit 10 for equipment.
  • the inside of the device fluid circuit 10 is mainly filled with a gaseous refrigerant.
  • the charging amount of the refrigerant inside the device fluid circuit 10 does not reach the specified amount.
  • a dedicated switch 35 shown in FIG. 4 for opening the on-off valve 34 is operated by an operator.
  • the dedicated switch 35 is an operation unit that is manually operated by an operator in the filling step S2.
  • the dedicated switch 35 is an operation unit for filling the working fluid.
  • an air conditioner switch (not shown) for operating the refrigeration cycle apparatus 21 is operated by an operator.
  • the refrigeration cycle apparatus 21 operates. That is, the compressor 24, the blower 27, etc. operate.
  • the gaseous refrigerant inside the device fluid circuit 10 is cooled and condensed by the second condenser 15.
  • the refrigerant can further flow into the device fluid circuit 10.
  • the internal temperature of the device fluid circuit 10 is lower than the outside air temperature.
  • the internal temperature and the external temperature of the gas can 45 are the same. For this reason, the internal temperature of the fluid circuit for equipment 10 is lower than the internal temperature of the gas can 45.
  • the relationship between the temperature of the R134a refrigerant and the saturation pressure is as shown in the saturation temperature curve of FIG. That is, as the refrigerant temperature decreases, the saturation pressure of the refrigerant decreases. Therefore, when the internal temperature of the device fluid circuit 10 becomes lower than the internal temperature of the gas can 45, the internal pressure of the device fluid circuit 10 becomes lower than the internal pressure of the gas can 45.
  • the gaseous refrigerant inside the gas can 45 flows into the inside of the device fluid circuit 10. Thereby, a specified amount of refrigerant can be filled.
  • FIG. 6 shows the relationship between the refrigerant filling time and the refrigerant filling amount after the filling port 36 and the gas can 45 are connected after the inside of the device fluid circuit 10 is evacuated.
  • the refrigerant filling amount did not reach the specified amount. . That is, when the inside of the device fluid circuit 10 is not cooled, the refrigerant cannot be charged up to a specified amount.
  • the specified amount of refrigerant can be filled in about 25 minutes. It was. Furthermore, when the internal temperature of the device fluid circuit 10 was 10 ° C. lower than the internal temperature of the gas can 45, that is, when the temperature difference was 10 ° C., the specified amount of refrigerant could be charged in about 12 minutes.
  • the device temperature control device 1 includes the refrigeration cycle device 21 as a cooling device that cools the inside of the device fluid circuit 10. And in a filling process, the refrigerating-cycle apparatus 21 is operated and the refrigerant
  • the inside of the fluid circuit 10 for apparatuses is used using the gauge manifold and gas can which are used for refrigerant
  • the same kind of refrigerant as that used in the air-conditioning refrigeration cycle apparatus 21 can be used as the working fluid of the device fluid circuit 10.
  • the gas can 45 is used in the filling process, but a gas cylinder 47 may be used as shown in FIG.
  • the gas cylinder 47 is a container that contains more gaseous refrigerant than the gas can 45.
  • the gaseous refrigerant is sucked into the device fluid circuit 10 while the weight of the gaseous refrigerant is measured using the refrigerant collection and filling device 48.
  • the refrigerant recovery and charging device 48 is a general device used for refrigerant recovery and refrigerant charging of a refrigeration cycle device for air conditioning in market service. As described above, according to the present embodiment, since the existing service infrastructure can be used, there is an advantage that the cost is excellent and the market service is easy.
  • the same type of refrigerant as that used in the air-conditioning refrigeration cycle apparatus 21 is used as the working fluid, but a working fluid different from the refrigerant used in the refrigeration cycle apparatus 21 may be used.
  • the working fluid it is preferable to use a fluid that becomes a gas at normal temperature and pressure.
  • the working fluid circuit 10 can be filled with a gaseous working fluid by the same method as in the present embodiment.
  • a filling device such as a gauge manifold used for refrigerant filling of the air conditioning device can be used by changing the joint part.
  • the similar goods of filling devices such as a gauge manifold used for refrigerant filling of an air conditioner, can be used.
  • the operator in the filling step S2, the operator operates the dedicated switch 35 before operating the refrigeration cycle apparatus 21. Thereby, the second refrigerant circuit is formed. Thereafter, the operator operates the air conditioner switch. Thereby, the working fluid is cooled by the refrigeration cycle apparatus 21.
  • the working fluid is cooled by the refrigeration cycle apparatus 21 and the working fluid is cooled by the refrigeration cycle apparatus 21 in order to fill the working fluid in the equipment fluid circuit 10.
  • the purpose of operating the refrigeration cycle apparatus 21 is different from the case where it is performed. For this reason, a dedicated switch 35 for filling the working fluid is required as in the present embodiment. In the filling step S2, the operator operates the dedicated switch 35, so that the refrigeration cycle apparatus 21 can be operated to fill the working fluid.
  • a method in which the dedicated switch 35 is operated by an operator is employed as an operation method for opening the on-off valve 34 in the filling step S2, but other methods may be employed.
  • an operator (not shown) may be connected to the operation connector of the on-off valve 34 by an operator, and the connected operation unit may be operated by the operator.
  • the operation unit is operated by the operator to close the on-off valve. Thereafter, the connector of the operation unit is removed by the worker.
  • an operation method in which an operator long-presses a button with another function may be employed. In this case, a button having another function is operated by an operator and constitutes an operation unit for filling the working fluid.
  • the operation for opening the on-off valve 34 in the filling process can be performed only when the vehicle is stopped. For this reason, an operator can operate at the time of market service. On the other hand, the occupant cannot operate when the vehicle is running. Thereby, the supercooling at the time of driving
  • the refrigerant When necessary when the outside air temperature is higher than the predetermined temperature and the battery temperature is higher than the predetermined temperature, the refrigerant is supplied to the second condenser 15, and when unnecessary, the refrigerant is supplied to the second condenser 15. Can be avoided. As a result, overcooling of the battery during traveling of the vehicle can be avoided. Further, when the compressor is electric, it is possible to avoid the deterioration of the fuel consumption of the vehicle due to unnecessary power consumption. In addition, a lack of air conditioning capability can be avoided.
  • the present embodiment is different from the first embodiment in the apparatus condensing unit 13.
  • the other structure of the apparatus temperature control apparatus 1 is the same as 1st Embodiment.
  • the equipment temperature control device 1 includes an air-cooled condenser 14 as the equipment condensing unit 13.
  • the condenser 14 is a heat exchanger that exchanges heat between the working fluid and the air blown to the condenser 14.
  • the condenser 14 selectively blows outside air and cold air having a temperature lower than that of outside air as blowing air.
  • the cold air is generated by the refrigeration cycle apparatus 21.
  • the cold air is cooling air that cools the working fluid.
  • the device temperature control device 1 includes a switching device 51 that selectively switches between outside air and cold air as the blown air blown to the condenser 14.
  • the switching device 51 includes an air flow path through which air flows, and includes a duct 511 having an outside air inlet 51a and a cold air inlet 51b.
  • the switching device 51 includes a switching door 512 that selectively opens and closes the outside air inlet 51a and the cold air inlet 51b.
  • the refrigeration cycle apparatus 21 has a second expansion valve 32 and a cold air evaporator 52 connected in parallel with the refrigerant flow with respect to the first expansion valve 28 and the air conditioning evaporator 30.
  • the cold-air evaporator 52 corresponds to the refrigerant-side heat exchange unit 15b of the first embodiment.
  • the apparatus temperature control device 1 has a blower 53 that passes through the cold air evaporator 52 and blows air to the condenser 14.
  • the cold wind evaporator 52 is a heat exchanger that cools the blown air to generate cold wind and evaporates the refrigerant by heat exchange between the blown air from the blower 53 and the refrigerant from the second expansion valve 32.
  • Other configurations of the refrigeration cycle apparatus 21 are the same as those in the first embodiment.
  • the opening / closing valve 34 of the refrigerant circuit 22 is opened, so that in addition to the first refrigerant circuit, the refrigerant in the order of the compressor 24, the air conditioning condenser 26, the second expansion valve 32, and the cold air evaporator 52.
  • a second refrigerant circuit is formed.
  • the cooling mode of the condenser 14 is set to the outside air cooling mode in which the working fluid is cooled with the outside air. That is, the switching device 51 is in a state where the outside air inlet 51a is opened. The blower 20 is activated. Thereby, the working fluid is cooled and condensed in the condenser 14 by heat exchange with the blown air from the blower 20.
  • the cooling mode of the condenser 14 is set to the cold air cooling mode in which the working fluid is cooled by the cold air. That is, the on-off valve 34 is opened.
  • the blower 53 is activated. Further, the compressor 24 and the blower 27 of the refrigeration cycle apparatus 21 are operated. As a result, the refrigerant flows through the second refrigerant circuit.
  • the condenser 14 the working fluid is cooled and condensed by heat exchange with the cold air from the cold air evaporator 52.
  • the basic operation of the device temperature controller 1 is the same as that of the first embodiment.
  • the manufacturing method of the device temperature control device 1 is basically the same as that of the first embodiment.
  • the inside of the device fluid circuit 10 is evacuated by a vacuum pump and switched to a state in which the filling port 36 and the gas can 45 are connected, and then the cooling mode of the condenser 14 is switched.
  • the cold air cooling mode is executed as follows.
  • the condenser 14 cools the gaseous refrigerant inside the device fluid circuit 10.
  • the gaseous refrigerant is sucked into the device fluid circuit 10.
  • the device temperature control device 1 includes the refrigeration cycle device 21 as a cooling device for cooling the inside of the device fluid circuit 10.
  • the refrigeration cycle apparatus 21 is operated to generate cooling air having a temperature lower than that of the outside air around the gas can 45. Using this cooling air, the refrigerant inside the device fluid circuit 10 is cooled. Thereby, the internal temperature of the fluid circuit 10 for apparatuses is made lower than the internal temperature of the gas can 45. Also in the present embodiment, a prescribed amount of working fluid can be filled for the reason described in the first embodiment.
  • the refrigeration cycle apparatus 21 includes the cold air evaporator 52, but may not include the cold air evaporator 52.
  • a duct for guiding the cooling air cooled by the air conditioning evaporator 30 to the condenser 14 is provided.
  • the refrigerant in the device fluid circuit 10 may be cooled through the duct using the cooling air cooled by the air conditioning evaporator 30.
  • the present embodiment is different from the first embodiment in the apparatus condensing unit 13.
  • the other structure of the apparatus temperature control apparatus 1 is the same as 1st Embodiment.
  • the apparatus temperature control apparatus 1 includes a water-cooled condenser 61 as the apparatus condensing unit 13 and a cooling water circuit 62 in which cooling water circulates.
  • the cooling water is a cooling liquid containing water.
  • the cooling liquid is a liquid heat medium for transporting heat.
  • As the cooling water for example, an antifreeze or water is used.
  • the condenser 61 is a heat exchanger that condenses the working medium of the device fluid circuit 10 by heat exchange with the cooling water of the cooling water circuit 62.
  • the condenser 61 has a working fluid side heat exchanging portion 61a through which the working fluid of the device fluid circuit 10 flows, and a cooling water side heat exchanging portion 61b through which the cooling water of the cooling water circuit 62 flows.
  • the working fluid side heat exchange unit 61a and the cooling water side heat exchange unit 61b are thermally connected so that heat exchange between the working fluid and the cooling water is possible.
  • the cooling water circuit 62 is basically formed by connecting a water pump 63, a radiator 64, and a cooling water side heat exchange unit 61b.
  • the device temperature adjustment device 1 has a blower 65.
  • the water pump 63 discharges the sucked cooling water to form a cooling water flow.
  • the radiator 64 is a heat exchanger that radiates cooling water by heat exchange with the air blown by the blower 65, that is, outside air.
  • the cooling water side heat exchanging part 61b receives heat from the working fluid to the cooling water by exchanging heat with the working fluid flowing through the working fluid side heat exchanging part 61a.
  • the cooling water circuit 62 further includes a bypass channel 66 and a switching valve 67.
  • the bypass flow channel 66 is a flow channel in which cooling water flows around the radiator 64.
  • the switching valve 67 switches between a cooling water flow that flows through the radiator 64 and a cooling water flow that flows through the bypass passage 66.
  • One end side of the bypass flow channel 66 is connected to a branch portion 68 located on the downstream side of the water pump 63 and the upstream side of the radiator 64.
  • a switching valve 67 is installed in the branch portion 68.
  • the other end side of the bypass flow channel 66 is connected to a merging portion 69 located on the downstream side of the radiator 64.
  • the cooling water circuit 62 has a cooler 70.
  • the cooler 70 is a heat exchanger that cools the cooling water by heat exchange with the refrigerant of the refrigeration cycle apparatus 21.
  • the cooler 70 is connected between the confluence
  • the cooler 70 includes a cooling water side heat exchanging unit 70a through which cooling water flows and a refrigerant side heat exchanging unit 70b through which the refrigerant in the refrigerant circuit 22 flows.
  • the cooling water side heat exchange unit 70a and the refrigerant side heat exchange unit 70b are thermally connected so that heat exchange between the cooling water and the refrigerant is possible.
  • the refrigerant circuit 22 has a second expansion valve 32 and a refrigerant side heat exchange unit 70b connected in parallel with the refrigerant flow with respect to the first expansion valve 28 and the air conditioning evaporator 30.
  • the refrigerant side heat exchange unit 70b corresponds to the refrigerant side heat exchange unit 15b of the first embodiment.
  • the refrigerant side heat exchange unit 70b is an evaporation unit that evaporates the refrigerant by exchanging heat with cooling water.
  • Other configurations of the refrigeration cycle apparatus 21 are the same as those in the first embodiment.
  • the compressor 24, the air conditioning condenser 26, the second expansion valve 32, and the refrigerant side heat exchange unit 70b are arranged in this order.
  • a second refrigerant circuit through which the refrigerant flows is formed.
  • the cooling water radiation mode is set to the outside air radiation mode in which heat is radiated from the cooling water to the outside air. That is, the switching valve 67 is in a state in which the cooling water flows through the radiator 64. The water pump 63 and the blower 65 are activated. The refrigeration cycle apparatus 21 is in a stopped state. Alternatively, when the refrigeration cycle apparatus 21 is operating for air conditioning, the on-off valve 34 is closed. Thereby, in the cooling water circuit 62, the cooling water circulates between the condenser 61 and the radiator 64 as shown by arrows F21a, 21b, and 21c in FIG. Then, in the condenser 61, the working fluid is cooled and condensed by heat exchange with the cooling water.
  • the heat dissipation mode of the cooling water is set to the refrigerant heat dissipation mode for releasing heat from the cooling water to the refrigerant of the refrigeration cycle apparatus 21. That is, the switching valve 67 is in a state in which the cooling water flows through the bypass channel 66.
  • the water pump 63 is activated. Accordingly, in the cooling water circuit 62, the cooling water circulates between the condenser 61 and the cooler 70 as indicated by arrows F22a, 22b, and 22c in FIG. Furthermore, the on-off valve 34 of the refrigeration cycle apparatus 21 is opened. The compressor 24 and the blower 27 of the refrigeration cycle apparatus 21 are operated.
  • the refrigerant flows through the second refrigerant circuit.
  • the cooling water radiates heat by heat exchange with the refrigerant. That is, the cooling water is cooled.
  • the condenser 61 the working fluid is cooled and condensed by heat exchange with the cooling water cooled by the cooler 70.
  • the condensing part of the fluid circuit for equipment 10 and the evaporation part of the refrigerant circuit 22 are thermally connected via the cooling water circuit 62.
  • the basic operation of the device temperature controller 1 is the same as that of the first embodiment.
  • the manufacturing method of the device temperature control device 1 is basically the same as that of the first embodiment.
  • the cooling water radiation mode is set.
  • the refrigerant heat release mode is executed.
  • the condenser 71 cools the gaseous refrigerant inside the device fluid circuit 10.
  • the gaseous refrigerant is sucked into the device fluid circuit 10.
  • the device temperature control device 1 includes the refrigeration cycle device 21 as a cooling device for cooling the inside of the device fluid circuit 10.
  • the refrigeration cycle apparatus 21 is operated to generate cooling water having a temperature lower than that of the outside air around the gas can 45.
  • the coolant inside the device fluid circuit 10 is cooled using this cooling water.
  • the internal temperature of the fluid circuit 10 for apparatuses is made lower than the internal temperature of the gas can 45.
  • a prescribed amount of working fluid can be filled for the reason described in the first embodiment.
  • the cooling water that is, the cooling liquid containing water is used, but a cooling liquid not containing water may be used.
  • the present embodiment is different from the first embodiment in the apparatus condensing unit 13.
  • the other structure of the apparatus temperature control apparatus 1 is the same as 1st Embodiment.
  • the apparatus temperature control apparatus 1 includes a first condenser 14 and a second condenser 81 as the apparatus condensing unit 13.
  • the second condenser 81 includes a working fluid side heat exchange part 81a through which the working fluid flows and a Peltier element 82 that cools the working fluid.
  • the second condenser 81 is a heat exchanger that cools and condenses the working fluid flowing through the working fluid side heat exchange section 81a by the Peltier element 82.
  • the Peltier element 82 is a thermoelectric element that converts electric energy into heat energy.
  • the Peltier element 82 has a cooling surface 82a and a heat radiating surface 82b.
  • the cooling surface 82a is thermally connected to the working fluid side heat exchange part 81a.
  • the heat radiation surface 82b is provided with heat radiation fins 83 that promote heat radiation.
  • the apparatus temperature control apparatus 1 includes a blower 84 that forms a wind flow that passes through the heat radiation fins 83. The heat radiation from the heat radiation fins 83 is promoted by the air blown by the blower 84.
  • the blower 20 When the outside air temperature is lower than the predetermined temperature or the battery temperature is lower than the predetermined temperature, the blower 20 is activated.
  • the Peltier element 82 is in a stopped state. Thereby, the working fluid is cooled and condensed in the first condenser 14 by heat exchange with the blown air.
  • the Peltier element 82 and the blower 84 are activated. Accordingly, the working fluid is cooled and condensed by the Peltier element 82 in the working fluid side heat exchange section 81a of the second condenser 81. In this way, in the apparatus condensing unit 13, the working fluid is cooled by the operation of the Peltier element 82.
  • the basic operation of the device temperature controller 1 is the same as that of the first embodiment.
  • the manufacturing method of the device temperature control device 1 is basically the same as that of the first embodiment.
  • the inside of the device fluid circuit 10 is evacuated by a vacuum pump, and the filling port 36 and the gas can 45 are switched to a connected state.
  • the dedicated switch 85 for operating the Peltier element 82 and the blower 84 is operated by an operator.
  • the dedicated switch 85 is an operation unit that is manually operated by an operator in the filling step S2.
  • the dedicated switch 85 is an operation unit for filling the working fluid.
  • the second condenser 81 the gaseous refrigerant inside the device fluid circuit 10 is cooled. As a result, the gaseous refrigerant is sucked into the device fluid circuit 10.
  • the device temperature control device 1 includes the Peltier element 82 as a cooling device for cooling the inside of the device fluid circuit 10. And in a filling process, the Peltier device 82 is operated and the refrigerant
  • the operator in the filling process S2, the operator operates the dedicated switch 85 before operating the Peltier element 82. Thereby, the working fluid is cooled by the Peltier element 82.
  • the operator in the filling step S2, the operator operates the dedicated switch 85, so that the Peltier element 82 can be operated for filling the working fluid.
  • a method in which the dedicated switch 85 is operated by the worker is employed as an operation method for operating the Peltier element 82 in the filling step S2, but other methods may be employed.
  • an operation method in which an operator long-presses a button with another function may be employed.
  • a button having another function is operated by an operator and constitutes an operation unit for filling the working fluid.
  • This embodiment is different from the first embodiment in that a cooling substance such as ice or dry ice is used as a cooling source for cooling the working fluid inside the device fluid circuit 10 in the filling step.
  • a cooling substance such as ice or dry ice
  • the apparatus temperature control apparatus 1 includes a container 91 that can store ice or dry ice therein.
  • the container 91 is a holding unit that holds ice or dry ice.
  • the container 91 is provided in the liquid passage portion 18.
  • the container 91 has a cylindrical shape having a bottom 91a on one side in the axial direction.
  • the container 91 is attached to the pipe 181 so that the pipe 181 passes through the bottom 91a. For this reason, the outer surface of the pipe 181 faces the internal space of the container 91.
  • movement of the apparatus temperature control apparatus 1 are the same as 1st Embodiment.
  • the manufacturing method of the apparatus temperature control apparatus 1 is basically the same as that of the first embodiment.
  • the inside of the device fluid circuit 10 is evacuated by a vacuum pump and switched to a state in which the filling port 36 and the gas can 45 are connected. Ice 92 or dry ice 93 is placed. Thereby, the gaseous refrigerant inside the device fluid circuit 10 is cooled by the ice 92 or the dry ice 93. As a result, the gaseous refrigerant is sucked into the device fluid circuit 10.
  • a removing step for removing the ice 92 or the dry ice 93 is performed.
  • the ice 92 is used, the remaining ice 92 and the water in which the ice 92 is melted are removed.
  • dry ice 93 is used, the remaining dry ice 93 is removed.
  • the removal process is completed when all of the dry ice 93 is sublimated.
  • the same effect as that of the first embodiment can be obtained by cooling with a cooling material that is previously lower than the outside air temperature without using the cooling device.
  • ice 92 or dry ice 93 is used as a cooling substance, but a regenerator pack 94 may be used as a cooling substance as shown in FIG.
  • the cool storage agent pack 94 is a pack in which a cool storage agent is accommodated in a container such as a bag.
  • the cold storage agent is generally used for cooling food or the like, and is also called a cold storage agent.
  • the cool storage agent is a mixture of water, a water-absorbing resin (that is, a gel agent), a preservative, and the like.
  • the apparatus temperature control device 1 includes a holding unit 95 for holding the cold storage agent pack 94 therebetween.
  • the regenerator pack 94 is sandwiched between the holding portions 95. Thereby, you may cool the gaseous refrigerant
  • the pipe 181 may be sandwiched by a regenerator pack 96 having a shape obtained by dividing a cylinder into two parts. In this way, the regenerator pack 96 may be attached without using the holding unit 95.
  • ice 92 or dry ice 93 is placed in a dedicated container 91 for storing ice 92 or dry ice 93.
  • the present invention is not limited to this.
  • ice 92 or dry ice 93 may be placed inside a duct 97 that constitutes a passage of air flowing through the air-cooled condenser 14.
  • the ice 92 or the dry ice 93 is preferably brought into contact with the condenser 14.
  • a cool storage agent may be disposed inside the duct 97.
  • the gaseous refrigerant inside the device fluid circuit 10 may be cooled by using cooling water 98 as a cooling substance that has been previously cooled to a temperature lower than the outside air.
  • a part of the pipe 181 is a double pipe 99.
  • the double pipe 99 has an inner pipe 99a through which a working fluid flows and an outer pipe 99b through which cooling water flows.
  • cooling water 98 having a temperature lower than that of the outside air is caused to flow through the outer pipe 99b.
  • the operator in the filling step S2, the operator operates the dedicated switch 35 for opening the on-off valve 34 for cooling the working fluid by the refrigeration cycle apparatus 21, and the operator operates the air conditioner switch.
  • the air conditioner switch instead of the air conditioner switch, an operator may operate a dedicated switch for operating the compressor when the working fluid is filled.
  • the dedicated switch for operating the compressor is an operation unit for filling the working fluid.
  • the first condenser 14 and the second condenser 15 constituting the equipment condensing unit 13 are arranged in series with respect to the working fluid flow.
  • the present invention is not limited to this.
  • the 1st condenser 14 and the 2nd condenser 15 may be arrange
  • the gas passage portion 16 has a branch portion 16a and two passage portions 16b and 16c connected to the branch portion 16a on the device condensing portion 13 side.
  • One of the two passage portions of the gas passage portion 16 is connected to the first condenser 14.
  • the other passage portion 16 c is connected to the second condenser 15.
  • the liquid passage portion 18 has a branch portion 18a and two passage portions 18b and 18c connected to the branch portion 18a on the apparatus condensing portion 13 side.
  • One of the two passage portions of the liquid passage portion 18 is connected to the first condenser 14.
  • the other passage portion 18 c is connected to the second condenser 15.
  • the working fluid is cooled in at least one of the first condenser 14 and the second condenser 15 according to the outside air temperature and the battery temperature.
  • the saturation pressure of the working fluid decreases.
  • the internal pressure of one condenser becomes lower than the internal pressure of the other condenser. Therefore, the working fluid flowing through the gas passage portion 16 flows preferentially in the first condenser 14 and the second condenser 15 in which the working fluid is cooled and the temperature of the working fluid is lowered.
  • the first condenser 14 and the second condenser 81 that constitute the device condensing unit 13 are arranged in series with respect to the working fluid flow.
  • the present invention is not limited to this.
  • the first condenser 14 and the second condenser 81 may be arranged in parallel to the working fluid flow.
  • the refrigerant-side heat exchange unit 15b of the second condenser 15 is connected in parallel to the air conditioning evaporator 30, but the present invention is not limited to this.
  • the refrigerant side heat exchanger 15b of the second condenser 15 may be connected in series to the downstream side of the refrigerant flow of the air conditioning evaporator 30.
  • the cold air evaporator 52 is connected in parallel to the air conditioning evaporator 30, but the present invention is not limited to this.
  • the cold air evaporator 52 may be connected in series to the downstream side of the refrigerant flow of the air conditioning evaporator 30.
  • the refrigerant side heat exchange unit 70 b of the cooler 70 is connected in parallel to the air conditioning evaporator 30, but is not limited thereto.
  • the refrigerant side heat exchange part 70b of the cooler 70 may be connected in series to the downstream side of the refrigerant flow of the air conditioning evaporator 30.
  • the refrigeration cycle apparatus 21 is used for the equipment temperature control apparatus 1 and the vehicle air conditioner, but is not limited thereto. You may use the refrigeration cycle apparatus for exclusive use of the apparatus temperature control apparatus 1.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the equipment heat exchanger 12 has only a cooling function for cooling the assembled battery BP.
  • the equipment heat exchanger 12 is heated to heat the battery in addition to the cooling function. It may have a function. That is, the apparatus temperature control apparatus 1 may adjust the battery temperature of the assembled battery BP by cooling or heating the assembled battery BP.
  • the object to be cooled by the device temperature control device 1 is a battery, but is not limited thereto.
  • the cooling object may be an electronic device mounted on a vehicle other than the battery. Further, the object to be cooled is not limited to the electronic device installed in the vehicle. The cooling object may be an electronic device installed in a place other than the vehicle.
  • the device fluid circuit 10 is configured to be a loop type in which the flow path through which the gaseous working fluid flows and the flow path through which the liquid working fluid flows are separated. It does not have to be a loop type.
  • the method for manufacturing the device temperature control device includes filling the working fluid into the circuit constituting the thermosiphon heat pipe. Prepare. In filling, the working fluid inside the circuit is cooled by a cooling source, and the internal temperature of the circuit is made lower than the internal temperature of the container, so that the internal pressure of the circuit becomes lower than the internal pressure of the container.
  • the working fluid is cooled in the condensing unit by operating the cooling device.
  • a working fluid is cooled by using a cooling device as a cooling source and operating the cooling device.
  • a cooling device can be used as a cooling source.
  • an operator in filling, an operator operates an operation unit for filling the working fluid before operating the cooling device.
  • the purpose of operating the cooling device is different between the case where the working fluid is cooled by the cooling device to cool the device and the case where the working fluid is cooled by the cooling device to fill the working fluid.
  • the working fluid can be cooled by the cooling device for filling the working fluid by the operator operating the operating portion for filling the working fluid.
  • the cooling device is a refrigeration cycle device.
  • a refrigeration cycle apparatus can be used as the cooling apparatus.
  • a cooling material that is previously cooled to a temperature lower than the outside air temperature around the container is used as a cooling source.
  • a cooling substance can be used as a cooling source.
  • the working fluid filling method includes filling the working fluid into a circuit constituting the thermosiphon heat pipe.
  • the working fluid inside the circuit is cooled by a cooling source, and the internal temperature of the circuit is made lower than the internal temperature of the container, so that the internal pressure of the circuit becomes lower than the internal pressure of the container.
  • the working fluid is cooled in the condensing unit by operating the cooling device.
  • a working fluid is cooled by using a cooling device as a cooling source and operating the cooling device.
  • a cooling device can be used as a cooling source.
  • an operator in filling, an operator operates an operation unit for filling the working fluid before operating the cooling device.
  • the purpose of operating the cooling device is different between the case where the working fluid is cooled by the cooling device to cool the device and the case where the working fluid is cooled by the cooling device to fill the working fluid.
  • the working fluid can be cooled by the cooling device for filling the working fluid by the operator operating the operating portion for filling the working fluid.
  • the cooling device is a refrigeration cycle device.
  • a refrigeration cycle apparatus can be used as the cooling apparatus.
  • a cooling substance that is previously cooler than the outside air temperature around the container is used as a cooling source.
  • a cooling substance can be used as a cooling source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Secondary Cells (AREA)

Abstract

機器温調装置の製造方法は、回路(10)の充填口(36)と気相の作動流体が収容された容器(45)とを接続して、回路(10)の内部に作動流体を充填することを含む。回路(10)は、サーモサイフォン式のヒートパイプを構成し、作動流体が循環する。充填することにおいては、冷却源(21)によって回路(10)の内部の作動流体を冷却する。回路(10)の内部温度を容器(45)の内部温度よりも低くすることにより、回路(10)の内部圧力を容器(45)の内部圧力よりも低くする。

Description

機器温調装置の製造方法および作動流体の充填方法 関連出願への相互参照
 本出願は、2016年9月9日に出願された日本特許出願番号2016-176791号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、機器の温度を調節する機器温調装置の製造方法に関するものである。
 特許文献1に、車両に搭載された電池の温度を調節する温調装置が開示されている。この温調装置は、ループ型のサーモサイフォン式ヒートパイプを構成する作動流体の回路を備えている。この回路は、電池からの吸熱によって、作動流体が蒸発する蒸発部と、蒸発部で蒸発した作動流体が冷却されて凝縮する凝縮部とを有する。
特開2015-41418号公報
 ところで、一般的なウィック式ヒートパイプやサーモサイフォン式ヒートパイプを用いた従来の製品の多くは、小型である。このため、従来の製品は、設置場所に設置される前の段階で、回路の内部に作動流体が充填されている。
 これに対して、特許文献1の温調装置を車両に搭載する場合、蒸発部と凝縮部とは、互いに距離が離れた場所に配置される。温調装置の製造工場から車両組み立て工場へ出荷する前に、回路の内部に作動流体を充填する場合、輸送効率が悪くなるため、現実的ではない。このため、車両組み立て工場で、回路を構成する各構成部を車両へ組み付けた後に、回路の内部に作動流体を充填する必要がある。
 また、車両の修理工場などでの市場サービス時においても、回路の分解および再組付けが必要な場合がある。この場合、回路の分解時に作動流体を回収する作業が必要となる。回路の再組み付け後に、回路の内部に作動流体を充填する作業が必要となる。
 しかし、特許文献1には、回路を構成する各構成部を組み付けた後に、回路の内部に作動流体を充填する充填方法は記載されていない。
 ここで、車両用の冷凍サイクル装置は、常温で蒸発する冷媒を用いている。このため、車両用の冷凍サイクル装置に冷媒を充填する場合、安全と充填精度を考慮して気相の冷媒を充填している。このとき、冷凍サイクル装置の冷媒回路の冷媒充填口と冷媒が収容された容器とを接続する。冷媒回路の内部を減圧することにより、気相の冷媒を冷媒回路に流入させる。さらに、圧縮機を作動させることで、冷媒回路の内部を減圧させる。これにより、冷媒回路の内部圧力を容器の内部圧力よりも低くする。冷媒回路と容器の差圧を利用して、冷媒回路の内部に規定量の冷媒を充填する。
 しかしながら、特許文献1の温調装置は、圧縮機を備えていない。このため、回路の内部を減圧できず、回路の内部に規定量の作動流体を充填することができない。また、回路の内部を真空ポンプで減圧して、気相の作動流体を流入させるだけでは、回路の内部に規定量の作動流体を充填することができない。
 なお、作動流体の充填方法としては、特別な加圧装置を用いて容器の作動流体を加圧する方法がある。また、作動流体の他の充填方法としては、容器を加熱して作動流体を加圧する方法がある。しかし、市場サービスのしやすさを考慮すると、特別な加圧装置を用いることは好ましくない。また、容器を加熱することは、容器の破裂や作動流体の吹き出し事故の危険があるため、安全上、好ましくない。
 なお、このような問題は、車両以外の場所に設置されたり、電池以外の機器の温度を調整したりする機器温調装置においても生じる。また、このような問題は、ループ型ではないサーモサイフォン式ヒートパイプを構成する作動流体の回路を備えた機器温調装置においても生じる。
 本開示は、機器温調装置の各構成部の組み付け後に、機器温調装置に対して気相の作動流体を容易かつ安全に充填できる機器温調装置の製造方法を提供することを目的とする。また、本開示は、機器温調装置に対して気相の作動流体を容易かつ安全に充填できる作動流体の充填方法を提供することを他の目的とする。
 本開示の1つの観点によれば、
 サーモサイフォン式のヒートパイプを構成し、作動流体が循環する回路を備え、
 回路は、
 機器からの吸熱によって、作動流体が蒸発する蒸発部と、
 蒸発部で蒸発した作動流体が冷却されて凝縮する凝縮部と、
 作動流体を充填するための充填口とを有する機器温調装置の製造方法であって、
 充填口と気相の作動流体が収容された容器とを接続して、回路の内部に作動流体を充填することを備え、
 充填することにおいては、冷却源によって回路の内部の作動流体を冷却して、回路の内部温度を容器の内部温度よりも低くすることにより、回路の内部圧力を容器の内部圧力よりも低くする。
 これによれば、回路内部と容器内部の圧力差を利用して、容器内部の気相の作動流体を回路内部に流入させることができる。よって、機器温調装置の各構成部の組み付け後に、機器温調装置に対して気相の作動流体を容易かつ安全に充填することができる。
 また、本開示の別の観点によれば、
 サーモサイフォン式のヒートパイプを構成し、作動流体が循環する回路を備え、
 回路は、
 機器からの吸熱によって、作動流体が蒸発する蒸発部と、
 蒸発部で蒸発した作動流体が冷却されて凝縮する凝縮部と、
 作動流体を充填するための充填口とを有する機器温調装置における回路の内部への作動流体の充填方法であって、
 充填口と気相の作動流体が収容された容器とを接続して、回路の内部に作動流体を充填することを含み、
 充填することにおいては、冷却源によって回路の内部の作動流体を冷却して、回路の内部温度を容器の内部温度よりも低くすることにより、回路の内部圧力を容器の内部圧力よりも低くする。
 これによれば、回路内部と容器内部の圧力差を利用して、容器内部の気相の作動流体を回路内部に流入させることができる。よって、機器温調装置に対して気相の作動流体を容易かつ安全に充填することができる。
第1実施形態における機器温調装置の構成を示す模式図である。 図1中の機器用流体回路の断面図である。 第1実施形態における機器温調装置の製造工程を示すフローチャートである。 ガス缶が接続された状態の第1実施形態における機器温調装置の模式図である。 R134a冷媒の飽和温度曲線である。 機器用流体回路の内部とガス缶の内部との温度差を各温度としたときにおける冷媒充填量と冷媒充填時間との関係を示す図である。 ガスボンベが接続された状態の第1実施形態における機器温調装置の模式図である。 第2実施形態における機器温調装置の構成を示す模式図である。 第3実施形態における機器温調装置の構成を示す模式図である。 第4実施形態における機器温調装置の構成を示す模式図である。 第5実施形態における機器温調装置の構成を示す模式図である。 図11中の容器の斜視図である。 第5実施形態における蓄冷材パックが取り付けられた様子を示す図である。 第5実施形態における蓄冷材パックが取り付けられた様子を示す図である。 第5実施形態における氷などを保持する他の方法を説明する図である。 第5実施形態における冷却水で作動流体を冷却するための構造を説明する図である。 他の実施形態における機器温調装置の構成を示す模式図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 図1に示す本実施形態の機器温調装置1は、車両に搭載された組電池BPを冷却することによって、温調対象機器としての組電池BPの電池温度を調節する。機器温調装置1を搭載する車両としては、組電池BPを電源とする図示しない走行用電動モータによって走行可能な電気自動車、ハイブリッド自動車を想定している。
 組電池BPは、直方体形状の複数の電池セルBCを積層配置した積層体で構成されている。組電池BPを構成する複数の電池セルBCは、電気的に直列に接続されている。組電池BPを構成する各電池セルBCは、充放電可能な二次電池(例えば、リチウムイオン電池、鉛蓄電池)で構成されている。なお、電池セルBCは、直方体形状に限らず、円筒形状等の他の形状を有していてもよい。また、組電池BPは、電気的に並列に接続された電池セルBCを含んで構成されていてもよい。
 組電池BPは、図示しない電力変換装置およびモータジェネレータに接続されている。電力変換装置は、例えば、組電池から供給された直流電流を交流電流に変換し、変換した交流電流を走行用電動モータ等の各種電気負荷に対して供給(すなわち、放電)する装置である。また、モータジェネレータは、車両の回生時に、車両の走行エネルギを電気エネルギに逆変換し、逆変換した電気エネルギを回生電力としてインバータ等を介して組電池BPに対して供給する装置である。
 組電池BPは、車両の走行中の電力供給等を行うと自己発熱することで、組電池BPが過度に高温になることがある。組電池BPが過度に高温になると、組電池BPの入出力特性が低下するだけでなく、電池セルBCの劣化が促進されることから、所定の温度以下に維持するための冷却手段が必要となる。
 また、組電池BPを含む蓄電装置は、車両の床下やトランクルームの下側に配置されることが多く、車両の走行中に限らず、夏季における駐車中等にも組電池BPの電池温度が徐々に上昇して、電池温度が過度に高温となることがある。組電池BPが高温環境下で放置されると、劣化が進行することで電池寿命が大幅に低下することから、車両の駐車中等にも組電池BPの電池温度を所定の温度以下に維持することが望まれている。
 さらに、組電池BPは、複数の電池セルBCで構成されているが、各電池セルBCの温度にバラツキがあると、各電池セルの劣化の進行度合いに偏りが生じて、組電池全体の入出力特性が低下してしまう。これは、組電池BPが電池セルの直列接続体を含んでいることで、各電池セルBCのうち、最も劣化が進行した電池セルBCの電池特性に応じて組電池全体の入出力特性が決まるからである。このため、組電池BPを長期間、所望の性能を発揮させるためには、各電池セルBCの温度バラツキを低減させる均温化が重要となる。
 組電池BPを冷却する冷却手段としては、送風機による空冷式の冷却手段、蒸気圧縮式の冷凍サイクルの冷熱を利用した冷却手段が一般的となっている。
 ところが、送風機による空冷式の冷却手段は、車室内の空気等を組電池に送風するだけなので、組電池BPを充分に冷却するだけの冷却能力が得られないことがある。
 また、冷凍サイクルの冷熱を利用した冷却手段は、組電池BPの冷却能力が高いものの、車両の駐車中に、電力消費量の多い圧縮機等を駆動させることが必要となる。このことは、電力消費量の増大、騒音の増大等を招くことになるため好ましくない。
 そこで、本実施形態の機器温調装置1では、圧縮機による冷媒の強制循環ではなく、作動流体の自然循環によって組電池BPの電池温度を調整するサーモサイフォン方式を採用している。
 機器温調装置1は、作動流体が循環する機器用流体回路10を備えている。機器用流体回路10を循環する作動流体としては、蒸気圧縮式の冷凍サイクルで利用される冷媒(例えば、R134a、R1234yf)が採用される。
 機器用流体回路10は、作動流体の蒸発および凝縮により熱移動を行うヒートパイプであり、重力によって作動流体が自然循環するサーモサイフォン式となるように構成されている。さらに、機器用流体回路10は、ガス状の作動流体が流れる流路と液状の作動流体が流れる流路とが分離されたループ型となるように構成されている。すなわち、機器用流体回路10は、ループ型のサーモサイフォン式ヒートパイプを構成している。
 図1に示すように、機器用流体回路10は、機器用熱交換器12、第1凝縮器14、第2凝縮器15、ガス通路部16および液通路部18が互いに接続されることによって形成されている。機器用流体回路10は、閉じられた環状の流体回路である。機器用流体回路10の内部には、所定量の作動流体が封入されている。
 機器用熱交換器12は、組電池BPの冷却時に、組電池BPから吸熱させて液状の作動流体を蒸発させる蒸発部として機能する熱交換器である。機器用熱交換器12は、厚みの薄い扁平な直方体形状を有している。機器用熱交換器12は、組電池BPの底面部側に対向する位置に配置されている。すなわち、組電池BPは、機器用熱交換器12の上面に配置されている。
 機器用熱交換器12は、第1凝縮器14および第2凝縮器15よりも下方に配置されている。これにより、液状の作動流体が、重力によって、機器用熱交換器12を含む機器用流体回路10の下部に溜まるようになっている。
 第1凝縮器14および第2凝縮器15は、機器用熱交換器12にて蒸発したガス状の作動流体を凝縮させる熱交換器である。本実施形態では、第1凝縮器14と第2凝縮器15とが、作動流体を凝縮させる機器用凝縮部13を構成している。第1凝縮器14と第2凝縮器15の一方が、作動流体を凝縮させる。第1凝縮器14の下流側に、連通路部17を介して、第2凝縮器15が接続されている。連通路部17は、内部に作動流体が流通する流路が形成された配管で構成されている。
 第1凝縮器14は、空気と作動流体との熱交換によって作動流体を冷却する空冷式の凝縮器である。機器温調装置1は、第1凝縮器14に空気を送る送風機20を有している。
 第2凝縮器15は、車両に搭載された空調用の冷凍サイクル装置21の冷媒との熱交換によって作動流体を冷却する凝縮器である。冷凍サイクル装置21は、車両用空調装置の一部を構成している。冷凍サイクル装置21は、冷媒が循環して流れる冷媒回路22を備えている。
 第2凝縮器15は、機器用流体回路10の作動流体が流れる作動流体側熱交換部15aと、冷媒回路22の冷媒が流れる冷媒側熱交換部15bとを有する。作動流体と冷媒との熱交換が可能なように、作動流体側熱交換部15aと冷媒側熱交換部15bとは熱的に接続されている。
 冷媒回路22は、蒸気圧縮式の冷凍サイクルを構成している。具体的には、冷媒回路22は、圧縮機24、空調用凝縮器26、第1膨張弁28および空調用蒸発器30等が、配管によって接続されることで形成されている。冷凍サイクル装置21は、空調用凝縮器26に空気を送る送風機27と、車室内空間に向かう空気流れを形成する送風機31とを備えている。
 圧縮機24は、冷媒を圧縮して吐出する。空調用凝縮器26は、空気との熱交換によって圧縮機24から流出の冷媒を放熱させて凝縮させる放熱器である。第1膨張弁28は、空調用凝縮器26から流出の冷媒を減圧させる。空調用蒸発器30は、車室内空間に向かう空気との熱交換によって、第1膨張弁28から流出の冷媒を蒸発させるとともに、車室内空間に向かう空気を冷却する。
 さらに、冷媒回路22は、第1膨張弁28および空調用蒸発器30に対して、冷媒流れで並列に接続された第2膨張弁32および冷媒側熱交換部15bを有している。第2膨張弁32は、空調用凝縮器26から流出の冷媒を減圧させる。冷媒側熱交換部15bは、作動流体側熱交換部15aを流れる作動流体との熱交換によって、冷媒を蒸発させる蒸発部である。
 さらに、冷媒回路22は、冷媒側熱交換部15bに向かって冷媒が流れる冷媒流路を開閉する開閉弁34を有している。開閉弁34が閉じられることで、圧縮機24、空調用凝縮器26、第1膨張弁28、空調用蒸発器30の順に冷媒が流れる第1冷媒回路が形成される。開閉弁34が開くことで、第1冷媒回路に加えて、圧縮機24、空調用凝縮器26、第2膨張弁32、冷媒側熱交換部15bの順に冷媒が流れる第2冷媒回路が形成される。
 外気温度が所定温度よりも低い、または、電池温度が所定温度よりも低い場合、送風機20が作動する。冷凍サイクル装置21は、停止した状態である。これにより、第1凝縮器14で、送風された空気との熱交換によって、作動流体が冷却されて凝縮する。
 外気温度が所定温度よりも高く、かつ、電池温度が所定温度よりも高い場合、開閉弁34が開かれる。このとき、少なくとも圧縮機24、送風機27が作動する。これにより、第2凝縮器15の作動流体側熱交換部15aで、冷媒側熱交換部15bを流れる冷媒との熱交換によって、作動流体が冷却されて凝縮する。このように、機器用凝縮部13では、冷凍サイクル装置21が作動することによって、作動流体が冷却されるようになっている。
 ガス通路部16は、機器用熱交換器12にて蒸発したガス状の作動流体を機器用凝縮部13に導くものである。すなわち、ガス通路部16は、蒸発部としての機器用熱交換器12から凝縮部としての機器用凝縮部13へ向かって作動流体が流れる第1流路である。ガス通路部16は、下方側の端部が機器用熱交換器12に接続され、上方側の端部が第1凝縮器14に接続されている。本実施形態のガス通路部16は、内部に作動流体が流通する流路が形成された配管で構成されている。
 ガス通路部16には、作動流体を充填するための充填口36が設けられている。充填口36は、機器用流体回路10のうちガス通路部16以外の部分に設けられていてもよい。ただし、充填口36は、機器用流体回路10の内部のうち気相の作動流体が存在する部位に設けられることが好ましい。
 液通路部18は、機器用凝縮部13にて凝縮した液状の作動流体を機器用熱交換器12に導くものである。すなわち、液通路部18は、凝縮部としての機器用凝縮部13から、蒸発部としての機器用熱交換器12へ向かって作動流体が流れる第2流路である。液通路部18は、下方側の端部が機器用熱交換器12に接続され、上方側の端部が第2凝縮器15に接続されている。本実施形態の液通路部18は、内部に作動流体が流通する流路が形成された配管で構成されている。
 続いて、図2を用いて、本実施形態の機器温調装置1の基本作動について説明する。なお、図2に示す矢印DRgは、鉛直線の延びる方向、すなわち鉛直方向を示している。
 機器温調装置1では、車両の走行時の自己発熱等によって組電池BPの電池温度Tbが上昇すると、組電池BPの熱が機器用熱交換器12に移動する。機器用熱交換器12では、組電池BPから吸熱することで液状の作動流体WFの一部が蒸発する。組電池BPは、機器用熱交換器BPの内部に存する作動流体WFの蒸発潜熱によって冷却され、その温度が低下する。
 機器用熱交換器12にて蒸発したガス状の作動流体WFは、機器用熱交換器12からガス通路部16に流出し、図2の矢印F11で示すように、ガス通路部16を介して機器用凝縮部13へ移動する。
 機器用凝縮部13では、第1凝縮器14または第2凝縮器15でガス状の作動流体WFが放熱することで、ガス状の作動流体WFが凝縮する。凝縮した液状の作動流体WFは、重力によって下降する。これにより、機器用凝縮部13で凝縮した液状の作動流体WFは、機器用凝縮部13から液通路部18に流出し、図2の矢印F12で示すように、液通路部18を介して機器用熱交換器12へ移動する。そして、機器用熱交換器12では、流入した液状の作動流体WFの一部が組電池BPから吸熱することで蒸発する。
 このように、機器温調装置1は、作動流体WFがガス状態と液状態とに相変化しながら機器用熱交換器12と機器用凝縮部13との間を循環し、機器用熱交換器12から機器用凝縮部13に熱が輸送されることで組電池BPが冷却される。
 機器温調装置1は、圧縮機等による作動流体の循環に要する駆動力がなくても、機器用流体回路10の内部を作動流体WFが自然循環する構成となっている。このため、機器温調装置1は、冷凍サイクル等に比べて、電力消費量および騒音の双方を抑えた効率のよい組電池BPの温度調整を実現することができる。
 次に、機器温調装置1の製造方法について説明する。
 機器温調装置1の車両搭載時では、車両組み立て工場で、図3に示すように、機器用流体回路10を組み付ける組み付け工程S1の後に、機器用流体回路10の内部に作動流体を充填する充填工程S2が行われる。また、市場サービス時でも、修理工場などで、機器用流体回路10の分解後に、機器用流体回路10の組み付け工程S1が行われる。組み付け工程S1の後に、充填工程S2が行われる。充填工程S2を行うことが、作動流体の充填方法に相当する。
 組み付け工程S1においては、図4に示すように、機器用流体回路10の各構成部12、14、15、16、17、18が、車両に搭載された状態で、互いに接続される。これにより、作動流体が充填される前の機器用流体回路10が形成される。
 充填工程S2においては、図4に示すように、機器用流体回路10の充填口36と、ゲージマニホールド40が接続される。ゲージマニホールド40は、一般的な空調用の冷凍サイクル装置に冷媒を充填する際に用いられる充填機器である。ゲージマニホールド40は、低圧バルブ41と、高圧バルブ42と、チャージバルブ43とを有する。チャージバルブ43に、ホース43aを介して、真空ポンプ44が接続されたり、ガス缶45が接続されたりする。ガス缶45は、規定量のガス状の冷媒が収容された容器である。本実施形態では、作動流体として、空調用の冷凍サイクル装置21に用いられる冷媒と同じ種類の冷媒であるR134aが充填される。したがって、以下で説明するガス状の冷媒が気相の作動流体に対応する。低圧バルブ41にホース46が接続されている。このホース46が充填口36に接続される。
 そして、図4中の破線で示すように、チャージバルブ43に接続されたホース43aが、真空ポンプ44に接続される。これにより、充填口36と真空ポンプ44とが接続された状態とされる。その後、機器用流体回路10の内部が真空ポンプ44で真空引きされる。これにより、機器用流体回路10の内部が減圧される。
 続いて、チャージバルブ43が閉じられた状態で、図4中の実線で示すように、チャージバルブ43に接続されたホース43aが、ガス缶45に付け替えられる。ガス缶45のバルブ45aが開かれる。ゲージマニホールド40の図示しないパージバルブが開かれる。これにより、ゲージマニホールド40とガス缶45の間に入っている空気がパージされる。その後、チャージバルブ43が開かれる。これにより、充填口36とガス缶45とが接続された状態とされる。機器用流体回路10の内部に、ガス缶45の内部のガス状の冷媒の一部が吸入される。このとき、機器用流体回路10の内部が、主にガス状の冷媒で満たされる。しかし、機器用流体回路10の内部の冷媒の充填量は、規定量に到達しない。
 続いて、開閉弁34を開くための図4に示す専用スイッチ35が作業員によって操作される。専用スイッチ35は、充填工程S2で作業員が手動で操作する操作部である。専用スイッチ35は、作動流体を充填するための操作部である。これにより、開閉弁34が開く。
 さらに、冷凍サイクル装置21を作動させるための図示しないエアコンスイッチが作業員によって操作される。これにより、冷凍サイクル装置21が作動する。すなわち、圧縮機24、送風機27等が作動する。このため、第2凝縮器15で、機器用流体回路10の内部のガス状の冷媒が冷却されて凝縮する。冷媒が凝縮することで、機器用流体回路10の内部に冷媒をさらに流入することが可能となる。また、機器用流体回路10の内部温度は、外気温度よりも低くなる。このとき、ガス缶45の内部温度と外部温度は同じである。このため、機器用流体回路10の内部温度は、ガス缶45の内部温度よりも低くなる。
 ここで、R134a冷媒の温度と飽和圧力との関係は、図5の飽和温度曲線に示す通りである。すなわち、冷媒の温度が低下するにつれて、冷媒の飽和圧力が低下する。したがって、機器用流体回路10の内部温度が、ガス缶45の内部温度よりも低くなることによって、機器用流体回路10の内部圧力が、ガス缶45の内部圧力よりも低くなる。
 このため、機器用流体回路10の内部とガス缶45の内部の圧力差によって、ガス缶45の内部のガス状の冷媒が機器用流体回路10の内部に流入する。これにより、規定量の冷媒を充填することができる。
 図6は、機器用流体回路10の内部を真空状態にした後、充填口36とガス缶45とを接続したときからの冷媒充填時間と、冷媒充填量との関係を示している。本発明者の測定結果によると、図6に示すように、機器用流体回路10の内部とガス缶45の内部との温度差が0℃の場合、冷媒充填量は規定量に到達しなかった。すなわち、機器用流体回路10の内部を冷却しない場合、規定量まで冷媒を充填できなかった。
 これに対して、機器用流体回路10の内部温度をガス缶45の内部温度よりも5℃低くした場合、すなわち、温度差を5℃にした場合、25分程度で規定量の冷媒を充填できた。さらに、機器用流体回路10の内部温度をガス缶45の内部温度よりも10℃低くした場合、すなわち、温度差を10℃にした場合、12分程度で規定量の冷媒を充填できた。
 以上の説明の通り、本実施形態では、機器温調装置1は、機器用流体回路10の内部を冷却する冷却装置としての冷凍サイクル装置21を備える。そして、充填工程において、冷凍サイクル装置21を作動させて、外気温度よりも低温の冷媒を生成する。この低温の冷媒を用いて、機器用流体回路10の内部のガス状の冷媒を冷却する。このとき、ガス状の冷媒が低温になると、冷媒の飽和圧力が低下するという物理現象によって、機器用流体回路10の内部圧力がガス缶45の内部圧力よりも低くなる。この差圧を利用して、機器用流体回路10の内部にガス状の冷媒を吸入することができる。
 また、本実施形態の機器温調装置1の製造方法によれば、一般的な空調用の冷凍サイクル装置の冷媒充填に使用されるゲージマニホールドとガス缶を用いて、機器用流体回路10の内部にガス状の冷媒を充填することができる。このため、機器用流体回路10の作動流体として、空調用の冷凍サイクル装置21に用いられる冷媒と同じ種類の冷媒を用いることができる。
 なお、本実施形態では、充填工程において、ガス缶45を用いたが、図7に示すように、ガスボンベ47を用いてもよい。ガスボンベ47は、ガス缶45よりも多くのガス状の冷媒が収容された容器である。この場合、冷媒回収充填装置48を用いて、ガス状の冷媒の重量を計量しながら、機器用流体回路10の内部にガス状の冷媒を吸入する。冷媒回収充填装置48は、市場サービスにおいて、空調用の冷凍サイクル装置の冷媒回収および冷媒充填に使用される一般的な装置である。このように、本実施形態によれば、既存のサービスインフラが使用できるので、コストに優れ、市場サービスしやすいという利点がある。
 また、本実施形態では、作動流体として、空調用の冷凍サイクル装置21で用いられる冷媒と同じ種類の冷媒を用いたが、冷凍サイクル装置21で用いられる冷媒と異なる作動流体を用いてもよい。作動流体としては、常温常圧で気体となるものを用いることが好ましい。この場合でも、本実施形態と同様の方法によって、機器用流体回路10の内部にガス状の作動流体を充填することができる。この場合、空調用とは異なるガス缶やガスボンベを用いることになるが、ジョイント部の付替え程度で空調装置の冷媒充填に使用されるゲージマニホールドなどの充填装置を用いることができる。または、空調装置の冷媒充填に使用されるゲージマニホールド等の充填装置の類似品を用いることができる。
 また、本実施形態の機器温調装置1の製造方法によれば、充填工程S2においては、冷凍サイクル装置21を作動させる前に、専用スイッチ35を作業員が操作する。これにより、第2冷媒回路が形成される。その後、エアコンスイッチを作業員が操作する。これにより、冷凍サイクル装置21によって作動流体を冷却する。
 ここで、組電池BPを冷却するために、冷凍サイクル装置21で作動流体を冷却する場合と、機器用流体回路10の内部に作動流体を充填するために、冷凍サイクル装置21で作動流体を冷却する場合とでは、冷凍サイクル装置21を作動させる目的が異なる。このため、本実施形態のように、作動流体を充填するための専用スイッチ35が必要となる。充填工程S2において、専用スイッチ35を作業員が操作するようになっていることで、作動流体の充填のために、冷凍サイクル装置21を作動させることができる。
 なお、本実施形態では、充填工程S2における開閉弁34を開くための操作方法として、専用スイッチ35が作業員によって操作される方法を採用したが、他の方法を採用してもよい。例えば、作業員によって開閉弁34の操作用コネクタに、図示しない操作部が接続され、接続された操作部が作業員に操作されるようにしてもよい。この場合、充填完了後に、作業員によって操作部が操作されて開閉弁が閉じられる。その後、作業員によって操作部のコネクタが外される。また、他の例として、作業員が別機能のボタンを長押しする等の操作方法を採用してもよい。この場合、別機能のボタンが、作業員によって操作され、作動流体を充填するための操作部を構成する。
 また、充填工程における開閉弁34を開くための操作は、車両停止時のみ可能とされる。このため、市場サービス時に作業員が操作できる。一方、車両走行時では乗員は操作できない。これにより、走行時の過冷却や燃費悪化を防止できる。
 外気温度が所定温度よりも高く、かつ、電池温度が所定温度よりも高い場合の必要な場合に、第2凝縮器15へ冷媒が供給され、不必要な場合に、第2凝縮器15へ冷媒が供給されることを回避できる。この結果、車両走行時の電池の過冷却を回避できる。また、圧縮機が電動である場合、不必要な電力消費による車両の燃費の悪化を回避できる。また、空調の能力不足を回避できる。
 (第2実施形態)
 図8に示すように、本実施形態は、機器用凝縮部13が第1実施形態と異なる。機器温調装置1のその他の構成は、第1実施形態と同じである。
 機器温調装置1は、機器用凝縮部13として空冷式の凝縮器14を備えている。凝縮器14は、作動流体と凝縮器14に送風される送風空気とを熱交換させる熱交換器である。凝縮器14は、送風空気として、外気と、外気よりも低温の冷風とが選択的に送風される。冷風は、冷凍サイクル装置21によって生成される。冷風は、作動流体を冷却する冷却風である。
 具体的には、機器温調装置1は、凝縮器14に送風される送風空気として、外気と、冷風とを選択的に切り替える切替装置51を備えている。切替装置51は、内部に空気が流れる空気流路を形成するとともに、外気導入口51aおよび冷風導入口51bを有するダクト511を備える。切替装置51は、外気導入口51aおよび冷風導入口51bを選択的に開閉する切替ドア512を備える。
 冷凍サイクル装置21は、第1膨張弁28および空調用蒸発器30に対して、冷媒流れで並列に接続された第2膨張弁32および冷風用蒸発器52を有している。冷風用蒸発器52は、第1実施形態の冷媒側熱交換部15bに対応している。機器温調装置1は、冷風用蒸発器52を通過して凝縮器14へ送風する送風機53を有している。冷風用蒸発器52は、送風機53からの送風空気と第2膨張弁32からの冷媒との熱交換によって、送風空気を冷却して冷風を生成するとともに、冷媒を蒸発させる熱交換器である。冷凍サイクル装置21の他の構成は、第1実施形態と同じである。
 本実施形態においても、冷媒回路22の開閉弁34が開くことで、第1冷媒回路に加えて、圧縮機24、空調用凝縮器26、第2膨張弁32、冷風用蒸発器52の順に冷媒が流れる第2冷媒回路が形成される。
 外気温度が所定温度よりも低い、または、電池温度が所定温度よりも低い場合、凝縮器14の冷却モードが、外気で作動流体を冷却する外気冷却モードとされる。すなわち、切替装置51は外気導入口51aを開いた状態となる。送風機20が作動する。これにより、凝縮器14で、送風機20からの送風空気との熱交換によって、作動流体が冷却されて凝縮する。
 外気温度が所定温度よりも高く、かつ、電池温度が所定温度よりも高い場合、凝縮器14の冷却モードが、冷風で作動流体を冷却する冷風冷却モードとされる。すなわち、開閉弁34が開かれる。送風機53が作動する。さらに、冷凍サイクル装置21の圧縮機24、送風機27が作動する。これにより、冷媒が第2冷媒回路を流れる。凝縮器14で、冷風用蒸発器52からの冷風との熱交換によって、作動流体が冷却されて凝縮する。
 機器温調装置1の基本作動は、第1実施形態と同じである。
 機器温調装置1の製造方法は、基本的には、第1実施形態と同じである。本実施形態では、充填工程において、機器用流体回路10の内部が真空ポンプで真空引きされて、充填口36とガス缶45とが接続された状態に切り替えられた後、凝縮器14の冷却モードとして冷風冷却モードが実行される。これにより、凝縮器14で、機器用流体回路10の内部のガス状の冷媒が冷却される。この結果、機器用流体回路10の内部へガス状の冷媒が吸入される。
 このように、本実施形態では、機器温調装置1は、機器用流体回路10の内部を冷却する冷却装置としての冷凍サイクル装置21を備える。そして、充填工程において、冷凍サイクル装置21を作動させて、ガス缶45の周囲の外気よりも低温の冷却風を生成する。この冷却風を用いて、機器用流体回路10の内部の冷媒を冷却する。これにより、機器用流体回路10の内部温度をガス缶45の内部温度より低くする。本実施形態においても、第1実施形態で説明した理由によって、規定量の作動流体を充填することができる。
 なお、本実施形態では、冷凍サイクル装置21が冷風用蒸発器52を備えていたが、冷風用蒸発器52を備えていなくてもよい。この場合、空調用蒸発器30で冷却された冷却風を凝縮器14に導くダクトを設ける。このダクトを介して、空調用蒸発器30で冷却された冷却風を用いて、機器用流体回路10の内部の冷媒を冷却してもよい。
 (第3実施形態)
 図9に示すように、本実施形態は、機器用凝縮部13が第1実施形態と異なる。機器温調装置1のその他の構成は、第1実施形態と同じである。
 機器温調装置1は、機器用凝縮部13としての水冷式の凝縮器61と、冷却水が循環する冷却水回路62とを備える。冷却水は、水を含む冷却液である。冷却液は、熱を輸送させるための液状の熱媒体である。冷却水としては、例えば、不凍液や水等が用いられる。凝縮器61は、冷却水回路62の冷却水との熱交換によって、機器用流体回路10の作動媒体を凝縮させる熱交換器である。凝縮器61は、機器用流体回路10の作動流体が流れる作動流体側熱交換部61aと、冷却水回路62の冷却水が流れる冷却水側熱交換部61bとを有している。作動流体と冷却水との熱交換が可能なように、作動流体側熱交換部61aと冷却水側熱交換部61bとは熱的に接続されている。
 冷却水回路62は、基本的には、水ポンプ63と、ラジエータ64と、冷却水側熱交換部61bとが接続されることによって形成されている。機器温調装置1は、送風機65を有している。
 水ポンプ63は、吸入した冷却水を吐出することで、冷却水流れを形成する。ラジエータ64は、送風機65によって送風された空気、すなわち、外気との熱交換によって、冷却水を放熱させる熱交換器である。冷却水側熱交換部61bは、作動流体側熱交換部61aを流れる作動流体との熱交換によって、作動流体から冷却水へ受熱させる。
 冷却水回路62は、さらに、バイパス流路66と、切替弁67とを有する。バイパス流路66は、冷却水がラジエータ64を迂回して流れる流路である。切替弁67は、ラジエータ64を流れる冷却水流れとバイパス流路66を流れる冷却水流れとを切り替える。バイパス流路66の一端側は、水ポンプ63の下流側かつラジエータ64の上流側に位置する分岐部68に接続されている。分岐部68には、切替弁67が設置されている。バイパス流路66の他端側は、ラジエータ64の下流側に位置する合流部69に接続されている。
 冷却水回路62は、冷却器70を有する。冷却器70は、冷凍サイクル装置21の冷媒との熱交換によって、冷却水を冷却する熱交換器である。冷却器70は、合流部69と冷却水側熱交換部61bとの間に接続されている。
 冷却器70は、冷却水が流れる冷却水側熱交換部70aと、冷媒回路22の冷媒が流れる冷媒側熱交換部70bとを有する。冷却水と冷媒との熱交換が可能なように、冷却水側熱交換部70aと冷媒側熱交換部70bとは熱的に接続されている。
 冷媒回路22は、第1膨張弁28および空調用蒸発器30に対して、冷媒流れで並列に接続された第2膨張弁32および冷媒側熱交換部70bを有している。冷媒側熱交換部70bは、第1実施形態の冷媒側熱交換部15bに対応する。冷媒側熱交換部70bは、冷却水との熱交換によって、冷媒を蒸発させる蒸発部である。冷凍サイクル装置21の他の構成は、第1実施形態と同じである。
 本実施形態においても、冷媒回路22の開閉弁34が開くことで、第1冷媒回路に加えて、圧縮機24、空調用凝縮器26、第2膨張弁32、冷媒側熱交換部70bの順に冷媒が流れる第2冷媒回路が形成される。
 外気温度が所定温度よりも低い、または、電池温度が所定温度よりも低い場合、冷却水の放熱モードが、冷却水から外気へ放熱する外気放熱モードとされる。すなわち、切替弁67は、冷却水がラジエータ64を流れる状態とする。水ポンプ63および送風機65が作動する。冷凍サイクル装置21は、停止した状態である。または、空調のために冷凍サイクル装置21が作動している場合、開閉弁34が閉じられる。これにより、冷却水回路62において、図9中の矢印F21a、21b、21cに示すように、冷却水が凝縮器61とラジエータ64との間を循環する。そして、凝縮器61で、冷却水との熱交換によって、作動流体が冷却されて凝縮する。
 外気温度が所定温度よりも高く、かつ、電池温度が所定温度よりも高い場合、冷却水の放熱モードが、冷却水から冷凍サイクル装置21の冷媒へ放熱する冷媒放熱モードとされる。すなわち、切替弁67は、冷却水がバイパス流路66を流れる状態とする。水ポンプ63が作動する。これにより、冷却水回路62において、図9中の矢印F22a、22b、22cに示すように、冷却水が凝縮器61と冷却器70との間を循環する。さらに、冷凍サイクル装置21の開閉弁34が開かれる。冷凍サイクル装置21の圧縮機24、送風機27が作動する。これにより、冷媒が第2冷媒回路を流れる。この結果、冷却器70で、冷媒との熱交換によって、冷却水が放熱する。すなわち、冷却水が冷却される。凝縮器61で、冷却器70で冷却された冷却水との熱交換によって、作動流体が冷却されて凝縮する。
 このように、本実施形態では、機器用流体回路10の凝縮部と、冷媒回路22の蒸発部とが、冷却水回路62を介して熱的に接続されている。
 機器温調装置1の基本作動は、第1実施形態と同じである。
 機器温調装置1の製造方法は、基本的には、第1実施形態と同じである。本実施形態では、充填工程において、機器用流体回路10の内部が真空ポンプで真空引きされて、充填口36とガス缶45とが接続された状態に切り替えられた後、冷却水の放熱モードとして冷媒放熱モードが実行される。これにより、凝縮器71で、機器用流体回路10の内部のガス状の冷媒が冷却される。この結果、機器用流体回路10の内部へガス状の冷媒が吸入される。
 このように、本実施形態では、機器温調装置1は、機器用流体回路10の内部を冷却する冷却装置としての冷凍サイクル装置21を備える。そして、充填工程において、冷凍サイクル装置21を作動させて、ガス缶45の周囲の外気よりも低温の冷却水を生成する。この冷却水を用いて、機器用流体回路10の内部の冷媒を冷却する。これにより、機器用流体回路10の内部温度をガス缶45の内部温度より低くする。本実施形態においても、第1実施形態で説明した理由によって、規定量の作動流体を充填することができる。
 なお、本実施形態では、冷却水、すなわち、水を含む冷却液を用いたが、水を含まない冷却液を用いてもよい。
 (第4実施形態)
 図10に示すように、本実施形態は、機器用凝縮部13が第1実施形態と異なる。機器温調装置1のその他の構成は、第1実施形態と同じである。
 機器温調装置1は、機器用凝縮部13として、第1凝縮器14と、第2凝縮器81とを備える。第2凝縮器81は、作動流体が流れる作動流体側熱交換部81aと、作動流体を冷却するペルチェ素子82とを有する。第2凝縮器81は、作動流体側熱交換部81aを流れる作動流体を、ペルチェ素子82によって冷却して凝縮させる熱交換器である。
 ペルチェ素子82は、電気エネルギを熱エネルギに変換する熱電素子である。ペルチェ素子82は、冷却面82aと放熱面82bとを有する。冷却面82aが、作動流体側熱交換部81aと熱的に接続されている。放熱面82bには、放熱を促進する放熱フィン83が設けられている。機器温調装置1は、放熱フィン83を通過する風流れを形成する送風機84を有する。送風機84による送風によって放熱フィン83からの放熱が促進される。
 外気温度が所定温度よりも低い、または、電池温度が所定温度よりも低い場合、送風機20が作動する。ペルチェ素子82は、停止した状態である。これにより、第1凝縮器14で、送風された空気との熱交換によって、作動流体が冷却されて凝縮する。
 外気温度が所定温度よりも高く、かつ、電池温度が所定温度よりも高い場合、ペルチェ素子82および送風機84が作動する。これにより、第2凝縮器81の作動流体側熱交換部81aで、ペルチェ素子82によって作動流体が冷却されて凝縮する。このように、機器用凝縮部13では、ペルチェ素子82が作動することによって、作動流体が冷却されるようになっている。
 機器温調装置1の基本作動は、第1実施形態と同じである。
 機器温調装置1の製造方法は、基本的には、第1実施形態と同じである。本実施形態では、充填工程S2において、機器用流体回路10の内部が真空ポンプで真空引きされて、充填口36とガス缶45とが接続された状態に切り替えられる。その後、ペルチェ素子82および送風機84を作動させるための専用スイッチ85が、作業員によって操作される。専用スイッチ85は、充填工程S2で作業員が手動で操作する操作部である。専用スイッチ85は、作動流体を充填するための操作部である。これにより、ペルチェ素子82および送風機84が作動する。第2凝縮器81で、機器用流体回路10の内部のガス状の冷媒が冷却される。この結果、機器用流体回路10の内部へガス状の冷媒が吸入される。
 このように、本実施形態では、機器温調装置1は、機器用流体回路10の内部を冷却する冷却装置としてのペルチェ素子82を備える。そして、充填工程において、ペルチェ素子82を作動させて、機器用流体回路10の内部の冷媒を冷却する。これにより、機器用流体回路10の内部温度をガス缶45の内部温度より低くする。本実施形態においても、第1実施形態で説明した理由によって、規定量の作動流体を充填することができる。
 また、本実施形態の機器温調装置1の製造方法によれば、充填工程S2においては、ペルチェ素子82を作動させる前に、専用スイッチ85を作業員が操作する。これにより、ペルチェ素子82によって作動流体を冷却する。このように、充填工程S2において、専用スイッチ85を作業員が操作するようになっていることで、作動流体の充填のために、ペルチェ素子82を作動させることができる。
 なお、本実施形態では、充填工程S2においてペルチェ素子82を作動させるための操作方法として、専用スイッチ85が作業員によって操作される方法を採用したが、他の方法を採用してもよい。例えば、作業員が別機能のボタンを長押しする等の操作方法を採用してもよい。この場合、別機能のボタンが、作業員によって操作され、作動流体を充填するための操作部を構成する。
 (第5実施形態)
 本実施形態は、充填工程において、機器用流体回路10の内部の作動流体を冷却する冷却源として、氷やドライアイスなどの冷却物質を用いる点が、第1実施形態と異なる。
 図11に示すように、機器温調装置1は、氷またはドライアイスを内部に収容可能な容器91を備える。容器91は、氷またはドライアイスを保持する保持部である。容器91は、液通路部18に設けられている。
 図12に示すように、容器91は、軸心方向の片側に底部91aを有する円筒形状である。容器91は、配管181が底部91aを貫通するように、配管181に取り付けられている。このため、配管181の外面が容器91の内部空間に面する。なお、機器温調装置1の基本構成および基本作動は、第1実施形態と同じである。
 また、機器温調装置1の製造方法は、基本的には、第1実施形態と同じである。本実施形態では、充填工程S2において、機器用流体回路10の内部が真空ポンプで真空引きされて、充填口36とガス缶45とが接続された状態に切り替えられた後、容器91の内部に氷92またはドライアイス93が入れられる。これにより、氷92またはドライアイス93によって、機器用流体回路10の内部のガス状の冷媒が冷却される。この結果、機器用流体回路10の内部へガス状の冷媒が吸入される。
 充填工程S2の後、氷92またはドライアイス93を除去する除去工程が行われる。氷92を用いた場合、残った氷92や氷92が溶けた水が除去される。ドライアイス93を用いた場合、残ったドライアイス93が除去される。または、ドライアイス93を用いた場合、ドライアイス93の全部が昇華することで、除去工程が終了する。
 このように、冷却装置を用いずに、予め外気温度よりも低温とされた冷却物質で冷却しても、第1実施形態と同様の効果が得られる。
 なお、本実施形態では、冷却物質として氷92またはドライアイス93を用いたが、図13に示すように、冷却物質として蓄冷剤パック94を用いてもよい。蓄冷剤パック94は、蓄冷剤が袋などの容器に収容されたものである。蓄冷剤は、食品の冷却などに一般的に使用されるものであり、保冷剤とも呼ばれる。蓄冷剤は、水、吸水性樹脂(すなわち、ゲル剤)、防腐剤などが混合されたものである。
 機器温調装置1は、蓄冷剤パック94を挟んで保持するための保持部95を備える。充填工程において、保持部95に蓄冷剤パック94を挟む。これにより、蓄冷剤パック94によって、機器用流体回路10の内部のガス状の冷媒を冷却してもよい。
 また、図14に示すように、円筒を二分割した形状の蓄冷剤パック96で、配管181を挟んでもよい。このように、保持部95を用いずに、蓄冷剤パック96を取り付けてもよい。
 また、本実施形態では、氷92またはドライアイス93を収容する専用の容器91に、氷92またはドライアイス93を入れたが、これに限定されない。図15に示すように、充填工程において、空冷式の凝縮器14を通過して流れる空気の通路を構成するダクト97の内部に、氷92またはドライアイス93を入れてもよい。このとき、氷92またはドライアイス93を凝縮器14に接触させることが好ましい。なお、ダクト97の内部に、蓄冷剤を配置してもよい。
 また、図16に示すように、予め外気よりも低温とされた冷却物質として、冷却水98を用いて、機器用流体回路10の内部のガス状の冷媒を冷却してもよい。具体的には、図16に示すように、配管181の一部を二重管99とする。二重管99は、作動流体が流れる内管99aと、冷却水を流すための外管99bとを有する。充填工程において、外管99bに外気よりも低温とされた冷却水98を流す。
 (他の実施形態)
 (1)第1実施形態では、充填工程S2において、冷凍サイクル装置21による作動流体の冷却のために、開閉弁34を開くための専用スイッチ35を作業員が操作するとともに、エアコンスイッチを作業員が操作していた。しかし、エアコンスイッチの替わりに、作動流体を充填する際に、圧縮機を作動させるための専用スイッチを作業員が操作するようにしてもよい。この圧縮機を作動させるための専用スイッチは、作動流体を充填するための操作部である。
 (2)第1実施形態では、機器用凝縮部13を構成する第1凝縮器14と第2凝縮器15とが、作動流体流れに対して直列に配置されていたが、これに限定されない。図17に示すように、第1凝縮器14と第2凝縮器15とが、作動流体流れに対して並列に配置されていてもよい。
 図17に示す機器用流体回路10では、ガス通路部16は、機器用凝縮部13側に、分岐部16aと、分岐部16aに連なる2つの通路部16b、16cとを有する。ガス通路部16の2つの通路部のうち一方の通路部16bが、第1凝縮器14に接続されている。ガス通路部16の2つの通路部のうち他方の通路部16cが第2凝縮器15に接続されている。
 また、液通路部18は、機器用凝縮部13側に、分岐部18aと、分岐部18aに連なる2つの通路部18b、18cとを有する。液通路部18の2つの通路部のうち一方の通路部18bが、第1凝縮器14に接続されている。液通路部18の2つの通路部のうち他方の通路部18cが、第2凝縮器15に接続されている。
 この場合においても、第1実施形態と同様に、外気温度および電池温度に応じて、第1凝縮器14と第2凝縮器15との少なくとも一方で、作動流体が冷却される。第1凝縮器14と第2凝縮器15との一方の凝縮器で、作動流体が冷却されると、作動流体の飽和圧力が低下する。このため、一方の凝縮器の内部圧力が、他方の凝縮器の内部圧力よりも低くなる。したがって、ガス通路部16を流れる作動流体は、第1凝縮器14と第2凝縮器15とのうち作動流体が冷却されて作動流体の温度が低くなる方を優先的に流れる。
 同様に、第10実施形態では、機器用凝縮部13を構成する第1凝縮器14と第2凝縮器81とが、作動流体流れに対して直列に配置されていたが、これに限定されない。図示しないが、第1凝縮器14と第2凝縮器81とが、作動流体流れに対して並列に配置されていてもよい。
 (3)第1実施形態では、冷凍サイクル装置21において、第2凝縮器15の冷媒側熱交換部15bが、空調用蒸発器30に対して並列に接続されていたが、これに限定されない。第2凝縮器15の冷媒側熱交換部15bは、空調用蒸発器30の冷媒流れ下流側に直列に接続されていてもよい。
 同様に、第2実施形態では、冷凍サイクル装置21において、冷風用蒸発器52が、空調用蒸発器30に対して並列に接続されていたが、これに限定されない。冷風用蒸発器52は、空調用蒸発器30の冷媒流れ下流側に直列に接続されていてもよい。
 同様に、第3実施形態では、冷凍サイクル装置21において、冷却器70の冷媒側熱交換部70bが、空調用蒸発器30に対して並列に接続されていたが、これに限定されない。冷却器70の冷媒側熱交換部70bは、空調用蒸発器30の冷媒流れ下流側に直列に接続されていてもよい。
 (4)第1-第3実施形態では、冷凍サイクル装置21は、機器温調装置1と車両用空調装置の供用のものであったが、これに限定されない。機器温調装置1の専用の冷凍サイクル装置を用いてもよい。
 (5)上記各実施形態では、機器用熱交換器12が組電池BPを冷却する冷却機能のみを有していたが、機器用熱交換器12が冷却機能に加えて、電池を加熱する加熱機能を有していてもよい。すなわち、機器温調装置1は、組電池BPを冷却または加熱することによって、組電池BPの電池温度を調整してもよい。
 (6)上記各実施形態では、機器温調装置1の冷却対象物は電池であったが、これに限定されない。冷却対象物は、電池以外の車両に搭載される電子機器であってもよい。また、冷却対象物は、車両に設置される電子機器に限定されない。冷却対象物は、車両以外の場所に設置される電子機器であってもよい。
 (7)上記各実施形態では、機器用流体回路10は、ガス状の作動流体が流れる流路と液状の作動流体が流れる流路とが分離されたループ型となるように構成されていたが、ループ型でなくてもよい。
 (8)本開示は上記した実施形態に限定されるものではなく、請求の範囲に記載した範囲内において適宜変更が可能であり、様々な変形例や均等範囲内の変形をも包含する。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、機器温調装置の製造方法は、サーモサイフォン式のヒートパイプを構成する回路の内部に作動流体を充填することを備える。充填することにおいては、冷却源によって回路の内部の作動流体を冷却して、回路の内部温度を容器の内部温度よりも低くすることにより、回路の内部圧力を容器の内部圧力よりも低くする。
 また、第2の観点によれば、凝縮部では、冷却装置が作動することによって作動流体が冷却されるようになっている。充填することにおいては、冷却源として冷却装置を用い、冷却装置を作動させることによって、作動流体を冷却する。このように、冷却源として冷却装置を用いることができる。
 また、第3の観点によれば、充填することにおいては、冷却装置を作動させる前に、作動流体を充填するための操作部を作業員が操作する。機器を冷却するために冷却装置で作動流体を冷却する場合と、作動流体を充填するために冷却装置で作動流体を冷却する場合とでは、冷却装置を作動させる目的が異なる。このため、第3の観点のように、作動流体を充填するための操作部を作業員が操作することで、作動流体の充填のために冷却装置で作動流体を冷却することができる。
 また、第4の観点によれば、冷却装置は、冷凍サイクル装置である。このように、冷却装置として、冷凍サイクル装置を用いることができる。
 また、第5の観点によれば、充填することにおいては、冷却源として容器の周囲の外気温度よりも予め低温とされた冷却物質を用いる。このように、冷却源として冷却物質を用いることができる。
 また、第6の観点によれば、作動流体の充填方法は、サーモサイフォン式のヒートパイプを構成する回路の内部に作動流体を充填することを備える。充填することにおいては、冷却源によって回路の内部の作動流体を冷却して、回路の内部温度を容器の内部温度よりも低くすることにより、回路の内部圧力を容器の内部圧力よりも低くする。
 また、第7の観点によれば、凝縮部では、冷却装置が作動することによって作動流体が冷却されるようになっている。充填することにおいては、冷却源として冷却装置を用い、冷却装置を作動させることによって、作動流体を冷却する。このように、冷却源として冷却装置を用いることができる。
 また、第8の観点によれば、充填することにおいては、冷却装置を作動させる前に、作動流体を充填するための操作部を作業員が操作する。機器を冷却するために冷却装置で作動流体を冷却する場合と、作動流体を充填するために冷却装置で作動流体を冷却する場合とでは、冷却装置を作動させる目的が異なる。このため、第3の観点のように、作動流体を充填するための操作部を作業員が操作することで、作動流体の充填のために冷却装置で作動流体を冷却することができる。
 また、第9の観点によれば、冷却装置は、冷凍サイクル装置である。このように、冷却装置として、冷凍サイクル装置を用いることができる。
 また、第10の観点によれば、充填することにおいては、冷却源として容器の周囲の外気温度よりも予め低温とされた冷却物質を用いる。このように、冷却源として冷却物質を用いることができる。

Claims (10)

  1.  サーモサイフォン式のヒートパイプを構成し、作動流体が循環する回路(10)を備え、
     前記回路は、
     機器(BP)からの吸熱によって、作動流体が蒸発する蒸発部(12)と、
     前記蒸発部で蒸発した作動流体が冷却されて凝縮する凝縮部(13)と、
     作動流体を充填するための充填口(36)とを有する機器温調装置の製造方法であって、
     前記充填口と気相の作動流体が収容された容器(45、47)とを接続して、前記回路の内部に作動流体を充填すること(S1)を含み、
     前記充填することにおいては、冷却源(21、82、92、93、94、96、98)によって前記回路の内部の作動流体を冷却して、前記回路の内部温度を前記容器の内部温度よりも低くすることにより、前記回路の内部圧力を前記容器の内部圧力よりも低くする機器温調装置の製造方法。
  2.  前記凝縮部では、冷却装置(21、82)が作動することによって前記作動流体が冷却されるようになっており、
     前記充填することにおいては、前記冷却源として前記冷却装置を用い、前記冷却装置を作動させることによって、作動流体を冷却する請求項1に記載の機器温調装置の製造方法。
  3.  前記充填することにおいては、前記冷却装置を作動させる前に、前記作動流体を充填するための操作部(35、85)を作業員が操作する請求項2に記載の機器温調装置の製造方法。
  4.  前記冷却装置は、冷凍サイクル装置(21)である請求項2または3に記載の機器温調装置の製造方法。
  5.  前記充填することにおいては、前記冷却源として前記容器の周囲の外気温度よりも予め低温とされた冷却物質(92、93、94、96、98)を用いる請求項1に記載の機器温調装置の製造方法。
  6.  サーモサイフォン式のヒートパイプを構成し、作動流体が循環する回路(10)を備え、
     前記回路は、
     機器(BP)からの吸熱によって、作動流体が蒸発する蒸発部(12)と、
     前記蒸発部で蒸発した作動流体が冷却されて凝縮する凝縮部(13)と、
     作動流体を充填するための充填口(36)とを有する機器温調装置における前記回路の内部への作動流体の充填方法であって、
     前記充填口と気相の作動流体が収容された容器(45、47)とを接続して、前記回路の内部に作動流体を充填すること(S1)を含み、
     前記充填することにおいては、冷却源(21、82、92、93、94、96、98)によって前記回路の内部の作動流体を冷却して、前記回路の内部温度を前記容器の内部温度よりも低くすることにより、前記回路の内部圧力を前記容器の内部圧力よりも低くする作動流体の充填方法。
  7.  前記凝縮部では、冷却装置(21、82)が作動することによって前記作動流体が冷却されるようになっており、
     前記充填することにおいては、前記冷却源として前記冷却装置を用い、前記冷却装置を作動させることによって、作動流体を冷却する請求項6に記載の作動流体の充填方法。
  8.  前記充填することにおいては、前記冷却装置を作動させる前に、前記作動流体を充填するための操作部(35、85)を作業員が操作する請求項7に記載の作動流体の充填方法。
  9.  前記冷却装置は、冷凍サイクル装置(21)である請求項7または8に記載の作動流体の充填方法。
  10.  前記充填することにおいては、前記冷却源として前記容器の周囲の外気温度よりも予め低温とされた冷却物質(92、93、94、96、98)を用いる請求項6に記載の作動流体の充填方法。
PCT/JP2017/028060 2016-09-09 2017-08-02 機器温調装置の製造方法および作動流体の充填方法 WO2018047536A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018538299A JP6604441B2 (ja) 2016-09-09 2017-08-02 機器温調装置の製造方法および作動流体の充填方法
CN201780055157.6A CN109690220B (zh) 2016-09-09 2017-08-02 设备温度调节装置的制造方法以及工作流体的填充方法
DE112017004545.2T DE112017004545T5 (de) 2016-09-09 2017-08-02 Verfahren zur Herstellung einer Vorrichtungstemperatur-Steuervorrichtung und Verfahren zum Einfüllen vom Arbeitsfluid
US16/293,877 US10906141B2 (en) 2016-09-09 2019-03-06 Method for manufacturing device temperature control device and method for filling working fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-176791 2016-09-09
JP2016176791 2016-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/293,877 Continuation US10906141B2 (en) 2016-09-09 2019-03-06 Method for manufacturing device temperature control device and method for filling working fluid

Publications (1)

Publication Number Publication Date
WO2018047536A1 true WO2018047536A1 (ja) 2018-03-15

Family

ID=61562743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028060 WO2018047536A1 (ja) 2016-09-09 2017-08-02 機器温調装置の製造方法および作動流体の充填方法

Country Status (5)

Country Link
US (1) US10906141B2 (ja)
JP (1) JP6604441B2 (ja)
CN (1) CN109690220B (ja)
DE (1) DE112017004545T5 (ja)
WO (1) WO2018047536A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950909B2 (en) 2016-09-09 2021-03-16 Denso Corporation Device temperature regulator
US11029098B2 (en) 2016-09-09 2021-06-08 Denso Corporation Device temperature regulator
JP7429695B2 (ja) 2018-07-18 2024-02-08 フリント エンジニアリング リミテッド 熱管理システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838535B2 (ja) * 2017-09-21 2021-03-03 株式会社デンソー 冷凍サイクル装置
WO2020176781A1 (en) * 2019-02-27 2020-09-03 J R Thermal, LLC Two-orientation condenser for enhanced gravity driven film condensation
CN112797830B (zh) * 2019-11-13 2023-04-18 中国石化工程建设有限公司 一种高粘度重质油品的冷却方法及冷却装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942871A (ja) * 1995-08-01 1997-02-14 Mitsubishi Cable Ind Ltd ヒートパイプの作動液注入方法
JPH11201671A (ja) * 1998-01-14 1999-07-30 Fujine Sangyo:Kk 密閉型熱移動体の作動液充填密閉方法及びその装置
JP2003329380A (ja) * 2002-05-09 2003-11-19 Furukawa Electric Co Ltd:The ヒートパイプの製造方法及び製造装置
JP2015041418A (ja) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 電池温度調節装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216473B1 (en) 1998-01-17 2001-04-17 Tsuneo Arii Method of recovering a coolant, apparatus therefor, tool therefor and three-way valve for recovering a pressurized fluid
JP3345577B2 (ja) 1998-01-17 2002-11-18 恒男 有井 冷媒回収法およびそのための装置と工具
JP5123703B2 (ja) * 2008-03-19 2013-01-23 日立電線株式会社 ヒートパイプの製造方法及びヒートパイプ
CN101841072A (zh) * 2010-02-09 2010-09-22 北汽福田汽车股份有限公司 蓄电池的液冷系统以及蓄电池的液冷方法
JP5748000B2 (ja) * 2011-11-16 2015-07-15 トヨタ自動車株式会社 電気機器の冷却装置
JP2016176791A (ja) 2015-03-19 2016-10-06 日本精工株式会社 温度測定装置及びこれを用いた寸法測定装置
JP2019196840A (ja) 2016-09-09 2019-11-14 株式会社デンソー 機器温調装置
US20210280925A1 (en) 2016-09-09 2021-09-09 Denso Corporation Device temperature regulator
WO2018047531A1 (ja) 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
JP2019196841A (ja) 2016-09-09 2019-11-14 株式会社デンソー 機器温調システム
WO2018047537A1 (ja) 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
CN109690221B (zh) 2016-09-09 2020-12-29 株式会社电装 设备温度调节装置
CN109477695A (zh) 2016-09-09 2019-03-15 株式会社电装 设备温度调节装置
JP2019196842A (ja) 2016-09-09 2019-11-14 株式会社デンソー 機器温調装置
JP6610800B2 (ja) 2016-09-09 2019-11-27 株式会社デンソー 機器温調装置
WO2018047532A1 (ja) 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
CN109690223B (zh) 2016-09-09 2021-05-14 株式会社电装 设备温度调节装置
JP2019196839A (ja) 2016-09-09 2019-11-14 株式会社デンソー 機器温調装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942871A (ja) * 1995-08-01 1997-02-14 Mitsubishi Cable Ind Ltd ヒートパイプの作動液注入方法
JPH11201671A (ja) * 1998-01-14 1999-07-30 Fujine Sangyo:Kk 密閉型熱移動体の作動液充填密閉方法及びその装置
JP2003329380A (ja) * 2002-05-09 2003-11-19 Furukawa Electric Co Ltd:The ヒートパイプの製造方法及び製造装置
JP2015041418A (ja) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 電池温度調節装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950909B2 (en) 2016-09-09 2021-03-16 Denso Corporation Device temperature regulator
US11029098B2 (en) 2016-09-09 2021-06-08 Denso Corporation Device temperature regulator
JP7429695B2 (ja) 2018-07-18 2024-02-08 フリント エンジニアリング リミテッド 熱管理システム

Also Published As

Publication number Publication date
CN109690220B (zh) 2020-06-09
JPWO2018047536A1 (ja) 2019-02-28
JP6604441B2 (ja) 2019-11-13
US20190193213A1 (en) 2019-06-27
CN109690220A (zh) 2019-04-26
DE112017004545T5 (de) 2019-05-23
US10906141B2 (en) 2021-02-02

Similar Documents

Publication Publication Date Title
JP6604441B2 (ja) 機器温調装置の製造方法および作動流体の充填方法
US10557660B2 (en) Heat exchanger with a plurality of heat exchanging portions
US9643469B2 (en) Vehicle thermal management system
JP5755490B2 (ja) 冷却装置
JP5626194B2 (ja) 熱交換システム
EP2781380B1 (en) Device for cooling electrical apparatus
WO2015136768A1 (ja) 車載温調装置、車両用空調装置及びバッテリ温調装置
WO2018168276A1 (ja) 機器温調装置
CN109477696B (zh) 设备温度调节装置
JP6098121B2 (ja) 冷却装置
CN109690222B (zh) 设备温度调节装置
WO2018047533A1 (ja) 機器温調装置
WO2018047534A1 (ja) 機器温調装置
JP2019040731A (ja) 電池温調装置および外部熱源供給装置
WO2018066206A1 (ja) 機器温調装置
WO2018047537A1 (ja) 機器温調装置
WO2018047532A1 (ja) 機器温調装置
CN110506187B (zh) 设备温度调节装置
WO2018047538A1 (ja) 機器温調システム
JP5248692B1 (ja) 車両用空調装置
WO2020026894A1 (ja) サーモサイフォン式温調装置およびその組付方法
JP7070200B2 (ja) 保温装置
WO2019039129A1 (ja) 機器温調装置
WO2019097913A1 (ja) 機器温調装置
WO2018070182A1 (ja) 機器温調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018538299

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848481

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17848481

Country of ref document: EP

Kind code of ref document: A1