WO2018047429A1 - 光センサ及び電子機器 - Google Patents

光センサ及び電子機器 Download PDF

Info

Publication number
WO2018047429A1
WO2018047429A1 PCT/JP2017/021465 JP2017021465W WO2018047429A1 WO 2018047429 A1 WO2018047429 A1 WO 2018047429A1 JP 2017021465 W JP2017021465 W JP 2017021465W WO 2018047429 A1 WO2018047429 A1 WO 2018047429A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
circuit
pulse
light
receiving unit
Prior art date
Application number
PCT/JP2017/021465
Other languages
English (en)
French (fr)
Inventor
佐藤 秀樹
吉紀 生田
清水 隆行
卓磨 平松
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/328,531 priority Critical patent/US11175387B2/en
Priority to CN201780054790.3A priority patent/CN109690342B/zh
Priority to JP2018538031A priority patent/JP6657412B2/ja
Publication of WO2018047429A1 publication Critical patent/WO2018047429A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • H04N25/773Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4413Type
    • G01J2001/442Single-photon detection or photon counting

Definitions

  • the present invention relates to an optical sensor and an electronic device incorporating the optical sensor.
  • an avalanche photodiode using the avalanche amplification (avalanche) effect of a photodiode has been used as a light receiving element for detecting faint light at high speed in optical communication and time-of-flight measurement (TOF).
  • the avalanche photodiode operates in a linear mode when a reverse bias voltage lower than the breakdown voltage (breakdown voltage) is applied, and the output current varies so as to have a positive correlation with the amount of received light.
  • the avalanche photodiode operates as a Geiger mode when a reverse bias voltage equal to or higher than the breakdown voltage is applied.
  • the Geiger-mode avalanche photodiode causes an avalanche phenomenon even when a single photon is incident, so that a large output current can be obtained. For this reason, the Geiger mode avalanche photodiode is called a single photon avalanche diode (SPAD).
  • SBAD single photon avalanche diode
  • a pulse output synchronized with photon incidence can be obtained by adding a quenching resistor in series to a Geiger mode avalanche photodiode.
  • a Geiger mode avalanche photodiode As shown in FIG. 14, such a circuit includes a photodiode PD14, an active quenching resistor R14 (a resistance component of the MOS transistor), and a buffer BUF14.
  • the photodiode PD14 is a Geiger mode avalanche photodiode, and when a bias voltage higher than the breakdown voltage is applied, an avalanche phenomenon occurs with respect to incidence of a single photon, and a current flows.
  • the current flows through the active quenching resistor R14 connected in series with the photodiode PD14, whereby the voltage between the terminals of the active quenching resistor R14 increases, and the bias voltage of the photodiode PD14 decreases accordingly, and the avalanche The phenomenon stops.
  • the current due to the avalanche phenomenon disappears, the voltage across the active quenching resistor R14 decreases, and the photodiode PD14 returns to the state where a bias voltage higher than the breakdown voltage is applied again.
  • the buffer BUF14 a voltage change between the photodiode PD14 and the active quenching resistor R14 is extracted as a pulse output synchronized with photon incidence.
  • Patent Document 1 the above-described single photon avalanche diode (SPAD) is used to input reflected light and direct light from a light emitting element to two separate Delay Locked Loop circuits (DLL circuits), respectively.
  • DLL circuits Delay Locked Loop circuits
  • Patent Document 2 discloses a distance measurement method for realizing distance measurement at high speed and with high accuracy in a time-of-flight (TOF) type sensor.
  • TOF time-of-flight
  • the phase of the DLL circuit is converged to the pulse output position generated with a delay amount corresponding to the distance on the spatial light path of the detection target.
  • the pulse generation rate of the single photon avalanche diode is Therefore, a long measurement time is required to obtain a large number of pulses.
  • the measurement time is short and the number of pulses obtained is small, there is a problem that the convergence position cannot be reached and the distance value varies for each measurement, resulting in a decrease in accuracy.
  • a plurality of operating conditions such as the amount of received light, the amount of transmitted light, and the amplification factor at the time of transmission (position of distance 0) are stored in advance, and at the time of measurement. Only the data at the time of reception (distance on the spatial light path to the object to be detected) is acquired, the operating conditions at the time of transmission in a similar situation are selected from the memory, and the distance from the two data at the light reception time and the transmission time selected from the memory Is calculated.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical sensor that can shorten the measurement time while maintaining the accuracy.
  • an optical sensor includes a light-emitting element and a first photon-counting type light-receiving device that outputs a pulse synchronized with photon incidence by reflected light from a detection target.
  • a photon count type second light receiving unit disposed nearer to the light emitting element than the first light receiving unit, and a pulse synchronized with photon incidence by reflected light inside the sensor package, and the first light receiving unit
  • a time difference corresponding to a distance on a spatial light path is extracted, including a first DLL circuit that inputs a pulse output from the unit and a reference clock and a second DLL circuit that inputs a pulse output from the second light receiving unit and the reference clock.
  • a time setting circuit for providing an initial phase value to the first DLL circuit.
  • the time setting circuit adjusts each period of the reference clock.
  • Means for giving an initial phase value of the first DLL circuit in a region from the first region to the n-th region equally divided by n (n is an integer of 2 or more), and the first region to the n-th region A counter for counting the number of pulse outputs from the first light receiving unit; and a comparator for the count. The comparator is used to identify a region having the maximum counter value from the first region to the nth region. Then, the first DLL circuit is converged by giving the specified region as the initial phase value to the first DLL circuit.
  • the counter that counts the number of pulse outputs from the first light receiving unit in the first region to the nth region obtained by equally dividing each cycle of the reference clock by n (n is an integer of 2 or more).
  • An initial setting circuit that specifies a region having the maximum counter value from the first region to the n-th region by the comparator, and causes the first DLL circuit to converge in the specified region. Therefore, in the measurement, the convergence time of the first DLL circuit is advanced, and the measurement time can be shortened while maintaining the accuracy.
  • FIG. 4 is a waveform diagram for explaining the operation of the first DLL circuit shown in FIG. 3. It is a figure for demonstrating the operation state of the optical sensor which concerns on Embodiment 1 of this invention. It is a figure for demonstrating operation
  • FIG. 10 is a waveform diagram for explaining the operation of the first DLL circuit in the initial phase convergence period in the photosensor according to Embodiment 2 of the present invention.
  • FIG. 9 is a waveform diagram for explaining the operation of the first DLL circuit in the photosensor according to Embodiment 2 of the present invention. It is a figure for demonstrating operation
  • Embodiment 1 Hereinafter, embodiments of the present invention will be described in detail.
  • FIG. 1 is a diagram showing a circuit configuration of an optical sensor 101 according to Embodiment 1 of the present invention.
  • the optical sensor 101 outputs a pulse with respect to the incidence of the signal light to be measured, that is, outputs a pulse synchronized with the incidence of the photon due to the reflected light from the detection target S, and the first photon count type light reception
  • the first light receiving unit 11 outputs a pulse with respect to the reference light to be measured in parallel with the unit 11, that is, outputs a pulse synchronized with photon incidence by reflected light (including direct light) inside the sensor package.
  • Reference pulse generation for providing a reference pulse (TX) to the photon count type second light receiving unit 12 disposed closer to the light emitting element 15 than the unit 11 and the driver circuit 14 and also providing a reference clock (CLK) to the time difference extraction circuit 16
  • TX reference pulse
  • CLK reference clock
  • the distance to the detection object S is obtained as follows. That is, pulsed light is emitted from the light emitting element 15, reflected light from the detection target S is incident on the first light receiving unit 11, and reflected light (including direct light) from the inside of the sensor package is incident on the second light receiving unit 12. Then, pulses are output from the first light receiving unit 11 and the second light receiving unit 12 at a frequency according to the amount of light. This pulse output is input to the time difference extraction circuit 16 as a pulse output having a time difference corresponding to the difference in distance on the spatial light path.
  • the time difference extraction circuit 16 uses this two inputs (the pulse output of the first light receiving unit 11 and the second light receiving unit). 12) and a reference clock (CLK) output from the reference pulse generation circuit 13, a time difference corresponding to the distance on the spatial light path is extracted, and the distance to the detection object S (reflecting object) is calculated. Ask.
  • the time difference extracting circuit 16 is a Delay Locked Loop circuit.
  • the time difference extraction circuit 16 After using the first DLL circuit 17 and the second DLL circuit 18 and setting the initial phase value in the initial setting circuit 19 in the time difference extraction circuit 16 for the first DLL circuit 17, the first light receiving unit 11 and the second light receiving unit, respectively.
  • the time difference is extracted by locking the outputs of the first DLL circuit 17 and the second DLL circuit 18 at the center of the 12 light receiving widths.
  • FIG. 2 is a diagram illustrating a circuit configuration of the first light receiving unit 11 and the second light receiving unit 12.
  • the first light receiving unit 11 and the second light receiving unit 12 have the same configuration, the first light receiving unit 11 will be described as an example.
  • the first light receiving unit 11 includes a plurality of CELLs (CELL1 to CELL) each including a photodiode PD1, an active quenching resistor R1 (a resistance component of a MOS transistor), and a buffer BUF1,
  • the number is seven, but is not limited thereto.
  • the photodiode PD1 is a Geiger mode avalanche photodiode, and the amount of incident light is extracted as a pulse output by the active quenching resistor R1 and the buffer BUF1.
  • the output pulses of CELL 1 to 7 of the first light receiving unit 11 pass through the pulse width shaping circuits 21, 22, 23, and 24, and after the pulse width is shaped into a certain time width (t oc ), it is illustrated in FIG. OR operation is performed with OR1.
  • FIG. 3 is a block diagram of the first DLL circuit 17 and the second DLL circuit 18 provided in the time difference extraction circuit 16.
  • the first DLL circuit 17 and the second DLL circuit 18 have the same configuration, the first DLL circuit 17 will be described below.
  • the first DLL circuit 17 includes a phase detector 25, a voltage control delay circuit 26, and a capacitive element CDLL that holds the control voltage of the voltage control delay circuit 26.
  • the current IA flows from the capacitor CDLL.
  • the input voltage of the voltage control delay circuit 26 is determined by the voltage of the CDLL, and (C) a clock obtained by delaying the reference clock (CLK) by t delay is input to the DFF 1.
  • C a clock obtained by delaying the reference clock (CLK) by t delay
  • E DLL1_PULSE with (C) 1 ⁇ 2 frequency of the reference clock (CLK) frequency and 50% Duty is obtained.
  • the second DLL circuit 18 in the time difference extraction circuit 16 has the same configuration as the first DLL circuit 17.
  • FIG. 4 is a waveform diagram for explaining the operation of the first DLL circuit 17 shown in FIG.
  • the waveform obtained by integrating the randomly generated SPAD_SG1 waveform is equal to 2 with respect to the waveform when the first light receiving unit 11 receives light (light receiving waveform).
  • the integrated value of IB in the IB integral display in FIG. 4 coincides with the integrated value of IA in the IA integral display in FIG. It becomes a state.
  • FIG. 5 is a diagram for explaining the operation state of the optical sensor 101.
  • one period when the optical sensor 101 performs measurement includes an initial phase data acquisition period, an initial phase convergence period, and an actual measurement period.
  • the initial phase convergence period is after the data acquisition period
  • the actual measurement period is after the initial phase convergence period.
  • the measurement of the optical sensor 101 is periodically performed, and the initial phase data acquisition period, the initial phase convergence period, and the actual measurement period are repeated every period. It is.
  • each cycle of the reference clock is set to n, as will be described in detail later.
  • Counts the number of pulse outputs from the first light receiving unit 11 in each equally divided region (n ⁇ 2, n is an integer) (in this embodiment, n 4 and the first region to the fourth region) To do.
  • the initial phase value of the first DLL circuit 17 will be described in detail later. Set.
  • FIG. 6 is a diagram for explaining the operation of the initial setting circuit 19 provided in the optical sensor 101 shown in FIG.
  • the reference pulse generation circuit 13 provided in the optical sensor 101 illustrated in FIG. 1 supplies a reference pulse (TX) to the driver circuit 14 in the initial phase data acquisition period, and the light emitting element 15 emits pulses in the same manner as in the actual measurement period.
  • TX reference pulse
  • CLK reference clock
  • the light reception waveform of the first light receiving unit 11 is such that the light emission delay of the light emitting element 15 due to the reception delay of the reference pulse (TX) and the light from the light emitting element 15 bounces off the detection target S. Since there is a delay corresponding to the distance on the spatial light path until it returns, the waveform is delayed by a certain time with respect to the reference clock (CLK).
  • Each period (first period, second period, third period, fourth period,...) Of the reference pulse (TX) that is the same signal as the reference clock (CLK) obtained from the reference pulse generation circuit 13 is 4 etc.
  • a T1 waveform in which the first region becomes a high voltage a T2 waveform in which the second region becomes a high voltage
  • a T3 waveform in which the third region becomes a high voltage a T1 waveform in which the first region becomes a high voltage
  • the output pulse (SPAD_SG1) from the first light receiving unit 11 in each region is counted by Counters 1 to 4 using the T4 waveform in which the fourth region becomes a high voltage.
  • the output pulse (SPAD_SG1) from the first light receiving unit 11 is a pulse synchronized with the light reception waveform of the first light receiving unit 11 (from the detection target S by the light emitting element 15).
  • the output pulse (SPAD_SG1) from the first light receiving unit 11 generated by disturbance light or a thermally generated carrier is A noise pulse that is not synchronized with the light reception waveform of the first light receiving unit 11 is also included.
  • FIG. 7 is a histogram of counter values in the initial setting circuit 19 provided in the optical sensor 101.
  • this histogram shows counter values in each of the first to fourth areas in the initial phase data acquisition period.
  • the initial setting circuit 19 includes the above-described count comparator, and specifies an area where the count value is maximum in each area.
  • the noise pulse is generated uniformly in each region in both the region where the light reception waveform is obtained and the region where the light reception waveform is not obtained. Since the pulse synchronized with the received light waveform is generated only in the region where the received light waveform is obtained, the region where the counter value becomes the maximum value is known as the region closest to the position of the received light waveform. In the present embodiment, since the region where the counter value becomes the maximum value is the second region, the initial phase of the first DLL circuit 17 is matched with the second region in the initial phase convergence period described later in detail.
  • the initial phase data acquisition period in one cycle shown in FIGS. 5A and 5B is about 2 ms, and the light reception waveform of the first light receiving unit 11 has the cycle. 15 ns, and the initial phase data acquisition period includes about 133,000 cycles.
  • the waveform generation frequency of the output pulse (SPAD_SG1) from the first light receiving unit 11 is written many times, and the number of pulse generations actually generated in synchronization with the received light waveform is the detection object S. Depending on the distance, the number of occurrences is about several thousand counts in the initial phase data acquisition period of 2 ms.
  • the initial setting circuit 19 is the area closest to the position of the received light waveform of the first light receiving unit 11 obtained in the initial phase data acquisition period (second area in the present embodiment). Any one of waveforms T1 to T4 (T2 in this embodiment) that becomes a high voltage at the time is output as a phase setting pulse signal to the first DLL circuit 17, and the first DLL circuit 17 receives the light reception waveform of the first light receiving unit 11. (In FIG. 3, the phase setting pulse signal is input to (D) SPAD_SG1).
  • FIG. 8 is a waveform diagram for explaining the operation of the first DLL circuit 17 during the initial phase convergence period.
  • the initial phase value of the first DLL circuit 17 is set to a position close to the light reception waveform of the first light receiving unit 11, that is, a position close to a pulse generation region due to light reflected from the detection target S by the light emitting element 15.
  • the phase of the first DLL circuit 17 is started from a state close to that in the actual measurement period, and the change amount of the Phase Detector output voltage value is reduced in the actual measurement period as shown in FIG.
  • FIG. 9 is a diagram showing the voltage control delay circuit characteristics in the first DLL circuit 17 when the counter value in the second region is the largest in the initial phase data acquisition period.
  • the final phase convergence position in the actual measurement period that is, the light from the light emitting element 15 is detected from the detection target S. Since the amount of change up to a delay position (a position where DLL_PULSE1 in FIG. 4 equally divides the integral display of SPAD_SG1 into two) corresponding to the distance on the spatial optical path until it bounces back is small, it can be reached in a short time. Measurement time can be shortened without dropping the value.
  • the initial phase can always be determined immediately before the actual measurement period.
  • the measurement time can be shortened.
  • FIG. 10 is a diagram showing a circuit configuration of the optical sensor 202.
  • the number of pulse outputs from the first light receiving unit 11 in the first to fourth areas obtained by dividing each period of the reference clock (CLK) into four equal parts is counted.
  • each period of the reference clock (CLK) may be divided into n equal parts (n ⁇ 2, n is an integer).
  • the optical sensor 202 is different from the optical sensor 101 already described in the first embodiment in that the optical sensor 202 includes the pulse width increasing circuit 30.
  • the output of the phase setting pulse signal from the initial setting circuit 19 is input to the pulse width increasing circuit 30.
  • FIG. 11 is a waveform diagram for explaining the operation of the first DLL circuit 17 in the initial phase convergence period in the optical sensor 202.
  • the pulse width increasing circuit 30 increases by the same width as the pulse width t oc (see FIG. 2) obtained by the pulse shaping circuits 21, 22, 23, and 24 in the first light receiving unit 11 and the second light receiving unit 12,
  • the rising edge of DLL1_PULSE comes to a position that is input to the first DLL circuit 17 and the waveform of the increased pulse width is equally divided into two after reaching the pulse width (t p + t oc )
  • the integrated value of IB in the IB integral display coincides with the integrated value of IA in the IA integral display in FIG. 11, this state is a locked state.
  • the phase of DLL1_PULSE converges at a position shifted backward by (1/2) ⁇ t oc compared to the case without the pulse width increasing circuit 30 (the first embodiment described above).
  • the exact position of the light receiving waveform is not known. Is assumed to be the center of the second region, but the error from the actual position is minimized.
  • FIG. 12 is a waveform diagram for explaining the operation of the first DLL circuit 17 provided in the optical sensor 202.
  • the phase converges to a position shifted backward by toc , and the pulse width increasing circuit 30 is used for the output of the phase setting pulse signal (selected waveform of T1 to T4) shown in FIG. Therefore, since the waveform increased to the pulse width (t p + t oc ) matches the phase convergence position when input to the first DLL circuit 17, the waveform of the first DLL circuit 17 is higher than that of the optical sensor 101 described in the first embodiment.
  • the position of the initial phase can be optimized.
  • the configuration of this embodiment is a configuration that reduces the number of counters used in the initial phase data acquisition period.
  • FIG. 13 is a diagram for explaining the operation of the initial setting circuit 19 provided in the photosensor according to the present embodiment.
  • the initial phase data acquisition period is divided into two, and in the first half period, each of the regions (first region,%) Divided into two equal periods of the reference pulse (TX) that is the same as the reference clock (CLK).
  • TX reference pulse
  • CLK reference clock
  • the number of pulse outputs from the first light receiving unit 11 in the second area is counted, and the maximum area of the count value is specified. Accordingly, two counters (Counter1 and Counter2) are used in the first half of the initial phase data acquisition period.
  • each area (FIG. 13B) is obtained by further dividing the specified count value within the maximum area (the first area in FIG. 13A) into two equal parts. In the first area and the second area). Therefore, two counters (Counter1 and Counter2) are used also in the latter half of the initial phase data acquisition period.
  • the optical sensor can be reduced in size by reducing the circuit chip size.
  • the electronic device may include each optical sensor described in the first to third embodiments.
  • Specific examples of such electronic devices include a camera, a robot cleaner, and a smartphone.
  • An optical sensor includes a light emitting element, a first photon count type light receiving unit that outputs a pulse synchronized with photon incidence by reflected light from a detection target, and reflected light inside the sensor package.
  • a photon count type second light receiving unit disposed closer to the light emitting element than the first light receiving unit, a pulse output from the first light receiving unit, and a reference clock.
  • a time difference extraction circuit that extracts a time difference corresponding to a distance on a spatial light path, and a first DLL circuit that inputs a pulse output from the second light receiving unit and a second DLL circuit that inputs the reference clock, and the first DLL
  • An initial setting circuit for giving an initial phase value to the circuit, wherein the initial setting circuit sets each period of the reference clock to n (n is an integer of 2 or more), etc.
  • a counter and a count comparator wherein the first to nth regions are identified by the comparator as to which region has the maximum counter value, and the identified region is used as the initial phase value.
  • the first DLL circuit is caused to converge by being applied to the first DLL circuit.
  • the counter that counts the number of pulse outputs from the first light receiving unit in the first region to the nth region obtained by equally dividing each cycle of the reference clock by n (n is an integer of 2 or more).
  • An initial setting circuit that specifies a region having the maximum counter value from the first region to the n-th region by the comparator, and causes the first DLL circuit to converge in the specified region. Therefore, in the measurement, the convergence time of the first DLL circuit is advanced, and the measurement time can be shortened while maintaining the accuracy.
  • the measurement cycle includes an initial phase data acquisition period, an initial phase convergence period, and an actual measurement period.
  • the initial setting circuit uses the comparator to identify a region having the maximum counter value from the first region to the nth region, and the initial setting circuit identifies the region during the initial phase convergence period.
  • the first DLL circuit is caused to converge in the region.
  • the measurement time can be shortened while maintaining the accuracy by increasing the convergence time of the first DLL circuit in the measurement.
  • the initial setting circuit periodically converts a signal that becomes a high voltage into a phase setting pulse signal in a region where the counter value is maximum.
  • the first DLL circuit may be converged in the specified region by outputting to the first DLL circuit.
  • the measurement time can be shortened while maintaining the accuracy by increasing the convergence time of the first DLL circuit in the measurement.
  • the initial setting circuit periodically converts a signal that becomes a high voltage in a region where the counter value is maximum into a phase setting pulse signal.
  • the pulse width increasing circuit outputs a signal obtained by adding a predetermined width to the width of the phase setting pulse signal to the first DLL circuit.
  • the first DLL circuit may be converged.
  • the initial phase value of the first DLL circuit is further optimized, and in the measurement, the convergence time of the first DLL circuit is further advanced, and the measurement time can be shortened while maintaining the accuracy.
  • the first light receiving unit and the second light receiving unit are provided with a pulse width shaping circuit, and the pulse width shaping circuit is The pulse output from one light receiving part and the pulse output from the second light receiving part may be shaped to the predetermined width.
  • the initial phase value of the first DLL circuit is further optimized, and in the measurement, the convergence time of the first DLL circuit is further advanced, and the measurement time can be shortened while maintaining the accuracy.
  • the initial setting circuit divides each cycle of the reference clock into (k / m) equal parts (k / m ⁇ 2 and From the counter value result of the counter that counts the number of pulse outputs from the first light receiving unit in the first region to the k / m region (where m ⁇ 2, k / m and m are integers), the counter value is The maximum region is specified by the comparator, and the number of pulse outputs from the first light receiving unit in the first region to the m-th region obtained by further dividing the region where the counter value is maximum into m equal parts is obtained.
  • a configuration in which a region where the counter value is maximum is specified by the comparator based on a counter value result of the counter to be counted may be employed.
  • the measurement time can be shortened while maintaining the accuracy by increasing the convergence time of the first DLL circuit in the measurement.
  • the initial setting circuit divides each cycle of the reference clock into (k / m) equal parts in the first half period of the initial phase data acquisition period (k / m ⁇ 2 and m ⁇ 2, k / m and m are integers).
  • the region where the counter value is maximum is specified by the comparator, and in the second half of the initial phase data acquisition period, the maximum region is further divided into m equal parts in the first region to the mth region, A configuration in which a region where the counter value is maximum is specified by the comparator based on a counter value result of a counter that counts the number of pulse outputs from the first light receiving unit.
  • the measurement time can be shortened while maintaining the accuracy by increasing the convergence time of the first DLL circuit in the measurement.
  • the initial setting circuit sets the counter to a larger value when the value of k / m is different from the value of m.
  • the number of any value may be provided.
  • the number of counters provided in the initial setting circuit can be reduced, and the photosensor can be downsized.
  • the time difference extraction circuit may include the initial setting circuit.
  • a time difference extraction circuit including the initial setting circuit can be realized.
  • the measurement cycle is repeated a plurality of times.
  • the measurement time can be shortened even for a moving detection target whose distance changes for each measurement.
  • An optical sensor is the optical sensor according to any one of the first to tenth aspects, wherein the driver circuit that drives the light emitting element and the reference pulse are supplied to the driver circuit and are the same as the reference pulse.
  • a reference pulse generation circuit for supplying a reference clock may be provided.
  • an optical sensor including a reference pulse generation circuit that supplies a reference pulse to the driver circuit and supplies the reference clock that is the same as the reference pulse.
  • An electronic device includes the optical sensor according to any one of aspects 1 to 11.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

その精度を維持したまま、測定時間を短縮することができる光センサを実現する。初期設定回路(19)は、基準クロックの各周期をそれぞれn等分した第1領域から第n領域における、第1受光部(11)からのパルス出力の数をカウントするカウンタを備え、上記第1領域から上記第n領域の中でカウンタ値が最大となる領域を特定し、上記特定した領域に第1DLL回路(17)を収束動作させる。

Description

光センサ及び電子機器
 本発明は、光センサ及び光センサを内蔵した電子機器に関する。
 従来から、光通信や飛行時間計測(TOF)において、微弱光を高速に検出する受光素子として、フォトダイオードの雪崩増幅(アバランシェ)効果を利用したアバランシェフォトダイオードが用いられている。アバランシェフォトダイオードは、降伏電圧(ブレークダウン電圧)未満の逆バイアス電圧を印加すると、リニアモードとして動作し、受光量に対して正の相関を有するように出力電流が変動する。一方、アバランシェフォトダイオードは、降伏電圧以上の逆バイアス電圧を印加すると、ガイガーモードとして動作する。ガイガーモードのアバランシェフォトダイオードは、単一フォトンの入射であってもアバランシェ現象を起こすので、大きな出力電流が得られる。このため、ガイガーモードのアバランシェフォトダイオードは、シングルフォトンアバランシェダイオード(SPAD:Single Photon Avalanche Diode)と呼ばれる。
 ガイガーモードのアバランシェフォトダイオードに対し、クエンチング抵抗を直列に加えることで、フォトン入射に対して同期するパルス出力を得ることができる。このような回路は、図14に示すように、フォトダイオードPD14と、アクティブクエンチング抵抗R14(MOSトランジスタの抵抗成分)と、バッファーBUF14とで構成される。ここで、フォトダイオードPD14はガイガーモードのアバランシェフォトダイオードであり、降伏電圧以上のバイアス電圧印加において、単一フォトンの入射に対してアバランシェ現象を起こし電流が流れる。そして、フォトダイオードPD14に直列で接続されているアクティブクエンチング抵抗R14に電流が流れることで、アクティブクエンチング抵抗R14の端子間電圧が増加し、それに伴いフォトダイオードPD14のバイアス電圧が降下し、アバランシェ現象は停止する。アバランシェ現象による電流が無くなるとアクティブクエンチング抵抗R14の端子間電圧が低下し、フォトダイオードPD14には再び降伏電圧以上のバイアス電圧が印加される状態に戻る。バッファーBUF14により、フォトダイオードPD14とアクティブクエンチング抵抗R14間の電圧変化はフォトン入射に対して同期するパルス出力として取り出される。
 特許文献1には、上述したシングルフォトンアバランシェダイオード(SPAD)を用いて、発光素子からの反射光と直接光をそれぞれ別の2つのDelay Locked Loop回路(DLL回路)に入力し、この2つのDLL回路の出力パルス間の位相遅延量をデジタル値に変換する距離測定方法が開示されている。
 特許文献2には、飛行時間計測(TOF)方式のセンサにおいて、高速かつ高精度に距離測定を実現する距離測定方法が開示されている。
米国特許公開2014/0231631(2014年8月21日公開) 日本国公開特許公報「特開2001-108747号」公報(2001年4月20日公開)
 しかしながら、上記特許文献1に開示されている距離測定方法においては、検知対象物の空間光路上の距離に相当する遅延量を持って発生するパルス出力位置にDLL回路の位相を収束させるので、高精度な測定結果を得る為には、シングルフォトンアバランシェダイオードから一定数のパルス出力を得る必要があるが、検知対象物が遠い場合や反射率が低い場合において、シングルフォトンアバランシェダイオードのパルス発生率は低くなるため、多数のパルスを得るには、長い測定時間が必要になるという問題がある。また、測定時間が短く、得られるパルス数が少ない場合、収束位置まで到達できないことや測定毎に距離値がバラつくことがあり精度が低下するという問題がある。
 上記特許文献2に開示されている距離測定方法においては、事前に、送信時点(距離0の位置)での受光量、送信光量、増幅率などの複数の動作条件をメモリーしておき、測定時には受信時点(検知対象物までの空間光路上の距離)のデータのみ取得し、似通った状況の送信時点の動作条件をメモリーから選び、受光時点と、メモリーから選んだ送信時点の2つのデータから距離を算出する。
 以上のように、上記特許文献2に開示されている距離測定方法においては、事前に測定した結果を利用することから、短時間で、発光素子や回路内制御信号の遅延量バラつきを無くすことができるが、メモリー結果を利用しても、受光時点(検知対象物までの空間光路上の距離)の特定を早めることはできない為、検知対象物が遠い場合や反射率が低い場合において、精度を得る為にはやはり、一定数の取得データが必要であり、長い測定時間が必要となる。
 したがって、その精度を維持したまま、測定時間を短縮することができる光センサが強く求められている。
 本発明は、上記の問題点に鑑みてなされたものであり、その精度を維持したまま、測定時間を短縮することができる光センサを提供することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る光センサは、発光素子と、検知対象物からの反射光によるフォトン入射に対して同期するパルスを出力するフォトンカウント型の第1受光部と、センサパッケージ内部の反射光によるフォトン入射に対して同期するパルスを出力する、上記第1受光部より上記発光素子に近く配置されたフォトンカウント型の第2受光部と、上記第1受光部からのパルス出力と基準クロックとを入力する第1DLL回路及び上記第2受光部からのパルス出力と上記基準クロックとを入力する第2DLL回路を含む、空間光路上の距離に相当する時間差を抽出する時間差抽出回路と、上記第1DLL回路に初期位相値を与える初期設定回路と、を備え、上記初期設定回路は、上記基準クロックの各周期をそれぞれn(nは2以上の整数)等分した第1領域から第n領域の領域内に、上記第1DLL回路の初期位相値を与える手段と、上記第1領域から上記第n領域における上記第1受光部からのパルス出力の数をカウントするカウンタと、上記カウントの比較器とを備え、上記第1領域から上記第n領域の中でカウンタ値が最大となる領域を上記比較器で特定し、上記特定した領域を、上記初期位相値として、上記第1DLL回路に与えることで、上記第1DLL回路を収束動作させることを特徴としている。
 上記構成によれば、上記基準クロックの各周期をそれぞれn(nは2以上の整数)等分した第1領域から第n領域における、上記第1受光部からのパルス出力の数をカウントするカウンタを備え、上記第1領域から上記第n領域の中でカウンタ値が最大となる領域を上記比較器で特定し、上記特定した領域に上記第1DLL回路を収束動作させる、初期設定回路を備えているので、測定において第1DLL回路の収束時間を早め、精度を維持した状態で測定時間の短縮が実現できる。
 本発明の一態様によれば、その精度を維持したまま、測定時間を短縮することができる光センサを実現できる。
本発明の実施形態1に係る光センサの回路構成を示す図である。 第1受光部及び第2受光部の回路構成を示す図である。 第1DLL回路及び第2DLL回路のブロック図である。 図3に示す第1DLL回路の動作を説明するための波形図である。 本発明の実施形態1に係る光センサの動作状態を説明するための図である。 本発明の実施形態1に係る光センサに備えられた初期設定回路の動作を説明するための図である。 本発明の実施形態1に係る光センサに備えられた初期設定回路におけるカウンタ値のヒストグラムである。 初期位相収束期間における第1DLL回路の動作を説明するための波形図である。 第1DLL回路内の電圧制御遅延回路特性を示す図である。 本発明の実施形態2に係る光センサの回路構成を示す図である。 本発明の実施形態2に係る光センサにおいて、初期位相収束期間における第1DLL回路の動作を説明するための波形図である。 本発明の実施形態2に係る光センサにおいて、第1DLL回路の動作を説明するための波形図である。 本発明の実施形態3に係る光センサに備えられた初期設定回路の動作を説明するための図である。 アバランシェフォトダイオードを含むフォトンカウンティング回路構成を示す図である。
 〔実施形態1〕
 以下、本発明の実施の形態について、詳細に説明する。
 (光センサの概要)
 図1は、本発明の実施形態1に係る光センサ101の回路構成を示す図である。
 光センサ101は、測定すべき信号光の入射に対してパルスを出力する、すなわち、検知対象物Sからの反射光によるフォトン入射に対して同期するパルスを出力する、フォトンカウント型の第1受光部11と、並行して測定すべき参照光に対してパルスを出力する、すなわち、センサパッケージ内部の反射光(直接光を含む)によるフォトン入射に対して同期するパルスを出力する、第1受光部11より発光素子15に近く配置されたフォトンカウント型の第2受光部12と、ドライバ回路14に基準パルス(TX)を与え、また時間差抽出回路16に基準クロック(CLK)を与える基準パルス生成回路13と、発光素子15をパルス駆動するドライバ回路14と、発光素子15と、第1受光部11及び第2受光部12からのパルス出力の時間差を抽出する時間差抽出回路16とを含む。
 上記構成の光センサ101では、以下のようにして、検知対象物S(反射物)までの距離を求める。すなわち、発光素子15からパルス光が照射され、検知対象物Sからの反射光が第1受光部11に、センサパッケージ内部からの反射光(直接光を含む)が第2受光部12に入射されると、光量に応じた頻度で、第1受光部11と第2受光部12からパルスが出力される。このパルス出力は、空間光路上の距離の差分に相当する時間差を持つパルス出力として時間差抽出回路16に入力される。第2受光部12から出力されるパルス出力は空間光路上の距離がほぼ0とみなすことができるので、時間差抽出回路16は、この2入力(第1受光部11のパルス出力、第2受光部12のパルス出力)と、基準パルス生成回路13から出力される基準クロック(CLK)とを用いて空間光路上の距離に相当する時間差を抽出し、検知対象物S(反射物)までの距離を求める。また、発光素子15からの受光に対して、第1受光部11、第2受光部12からのパルス出力は発光幅内でランダムに発生するため、時間差抽出回路16にはDelay Locked Loop回路である第1DLL回路17と第2DLL回路18とを使用し、第1DLL回路17に関して、時間差抽出回路16内の初期設定回路19で初期位相値を設定した後、それぞれ第1受光部11、第2受光部12の受光幅の中心に第1DLL回路17及び第2DLL回路18の出力をロックさせることで時間差を抽出する。
 (第1受光部11、第2受光部12の概要)
 図2は、第1受光部11及び第2受光部12の回路構成を示す図である。
 ここでは、第1受光部11と第2受光部12の構成は同じであるので、第1受光部11を例に説明する。
 第1受光部11は、図2に示すように、フォトダイオードPD1、アクティブクエンチング抵抗R1(MOSトランジスタの抵抗成分)、バッファーBUF1で構成されたCELLを複数(CELL1~7)有しており、本実施形態においては7個であるが、これに限定されることはない。
 フォトダイオードPD1は、ガイガーモードのアバランシェフォトダイオードであり、アクティブクエンチング抵抗R1と、バッファーBUF1とにより、入射光量をパルス出力として取り出される。第1受光部11のCELL1~7の出力パルスは、パルス幅整形回路21・22・23・24を通過し、パルス幅が一定時間幅(toc)に整形された後、図1に図示されているOR1でOR演算が行われる。
 (第1DLL回路及び第2DLL回路の構成)
 図3は、時間差抽出回路16に備えられた第1DLL回路17及び第2DLL回路18のブロック図である。
 第1DLL回路17と第2DLL回路18とは、同じ構成であるので、以下では、第1DLL回路17について説明する。
 第1DLL回路17は、図3に示すように、位相検出器25と、電圧制御遅延回路26と、電圧制御遅延回路26の制御電圧を保持する容量素子CDLLとを有し、AND2による演算により、(E)DLL1_PULSE=1、(D)SPAD_SG1=1の時に(B)=1となり、図3に図示されている(B)=1の時に閉じるスイッチ素子が閉じることにより、電流IBが容量CDLLに流れる。一方、AND1とINV1の演算により、(E)DLL1_PULSE=0、(D)SPAD_SG1=1の時に(A)=1となり、図3に図示されている(A)=1の時に閉じるスイッチ素子が閉じることにより、電流IAが容量CDLLから流れる。
 上述の動作によって電圧制御遅延回路26の入力電圧がCDLLの電圧により決まり、(C)基準クロック(CLK)がtdelay分遅延したクロックがDFF1に入力される。DFF1の負出力がDFF1のDに入力されることにより、(C)基準クロック(CLK)周波数の1/2周波数でDutyが50%の(E)DLL1_PULSEとなる。Dutyが50%になることによって、(D)SPAD_SG1に発光素子15起因の受光以外の外乱光成分が一様に入っている場合、十分な時間積分では電流IA=IBとなるため、外乱光成分を除去できる。なお、時間差抽出回路16内の第2DLL回路18についても第1DLL回路17の構成と同様である。
 (第1DLL回路及び第2DLL回路の動作)
 ここでは、第1DLL回路17の動作と第2DLL回路18の動作とは同じであるので、第1DLL回路17の動作を例に説明する。
 図4は、図3に示す第1DLL回路17の動作を説明するための波形図である。
 図4に示すように、第1受光部11が受光したときの波形(受光波形)に対して、ランダムに発生したSPAD_SG1の波形を積分した波形(図4中のSPAD_SG1の積分表示)が等しく2分される位置に、DLL1_PULSEの立ち上がりエッジが来た場合に、図4中のIB積分表示におけるIBの積分値と図4中のIA積分表示におけるIAの積分値が一致するため、この状態がロック状態となる。
 (光センサの動作)
 図5は、光センサ101の動作状態を説明するための図である。
 図5の(a)に図示されているように、光センサ101が測定を行う際の1周期は、初期位相データ取得期間と、初期位相収束期間と、実測定期間とを含み、上記初期位相データ取得期間の後に上記初期位相収束期間があり、上記初期位相収束期間の後に上記実測定期間がある。
 図5の(b)に図示されているように、光センサ101の測定は周期的に行われ、上記初期位相データ取得期間と、上記初期位相収束期間と、上記実測定期間とは毎周期繰り返される。
 距離を測定する上記実測定期間の前であって、上記初期位相収束期間より前の期間である上記初期位相データ取得期間においては、詳しくは後述するが、基準クロック(CLK)の各周期をn等分(n≧2、nは整数)した各領域(本実施形態においては、n=4であり、第1領域から第4領域)における、第1受光部11からのパルス出力の数をカウントする。
 また、距離を測定する上記実測定期間の前であって、上記初期位相データ取得期間より後の期間である上記初期位相収束期間においては、詳しくは後述するが、第1DLL回路17の初期位相値を設定する。
 (初期位相データ取得期間の説明)
 以下、図6及び図7に基づいて、初期位相データ取得期間について説明する。
 図6は、図1に図示した光センサ101に備えられた初期設定回路19の動作を説明するための図である。
 図1に図示した光センサ101に備えられた基準パルス生成回路13は、初期位相データ取得期間において、基準パルス(TX)をドライバ回路14に与え、発光素子15を実測定期間と同様にパルス発光させる。なお、基準パルス生成回路13がドライバ回路14に出力する基準パルス(TX)と、基準パルス生成回路13が時間差抽出回路16に出力する基準クロック(CLK)とは、同一であってもよく、本実施形態においては、基準パルス(TX)と基準クロック(CLK)とは、同一信号を用いている。
 図6に図示されているように、第1受光部11の受光波形は、基準パルス(TX)の受信遅延による発光素子15の発光遅延と、発光素子15からの光が検知対象物Sから跳ね返って戻るまでの空間光路上の距離に相当する遅延がある為、基準クロック(CLK)に対して一定時間遅れた波形になる。
 基準パルス生成回路13から得られる、基準クロック(CLK)と同一信号である基準パルス(TX)の各周期(第1周期・第2周期・第3周期・第4周期・・・)を4等分した各領域(第1領域~第4領域)において、第1領域がHigh電圧になるT1波形と、第2領域がHigh電圧になるT2波形と、第3領域がHigh電圧になるT3波形と、第4領域がHigh電圧になるT4波形とを用い、各領域における、第1受光部11からの出力パルス(SPAD_SG1)をCounter1~4でカウントする。
 図6における第1周期及び第3周期においては、第1受光部11からの出力パルス(SPAD_SG1)は、第1受光部11の受光波形に同期したパルス(発光素子15による検知対象物Sからの反射光によるパルス)が得られるが、図6における第2周期及び第4周期においては、外乱光や熱的に発生したキャリアにより発生する、第1受光部11からの出力パルス(SPAD_SG1)が、第1受光部11の受光波形に同期しないノイズパルスも含まれる。
 図7は、光センサ101に備えられた初期設定回路19におけるカウンタ値のヒストグラムである。
 図示されているように、このヒストグラムは、初期位相データ取得期間における第1~4領域の各々におけるカウンタ値を示す。初期設定回路19は、上記カウントの比較器を備え、各領域の中でカウント値が最大となる領域を特定している。
 第1受光部11の受光波形に同期したパルスとノイズパルスと区別することはできないが、ノイズパルスは、受光波形が得られる領域、得られない領域共に、各領域に均等に発生するのに対し、受光波形に同期したパルスは、受光波形が得られる領域のみに発生する為、カウンタ値が最大値となる領域が、受光波形の位置に最も近い領域とわかる。本実施形態においては、カウンタ値が最大値となる領域は第2領域であるので、詳しくは後述する初期位相収束期間において、第2領域に第1DLL回路17の初期位相を合わせる。
 なお、本実施形態においては、図5の(a)及び図5の(b)に図示する1周期中の初期位相データ取得期間は約2msで、第1受光部11の受光波形はその周期が15nsであり、期位相データ取得期間には、約133000周期が含まれる。
 図6においては説明の為、第1受光部11からの出力パルス(SPAD_SG1)の波形発生頻度を多く書いており、実際に受光波形に同期して発生するパルス発生数は、検知対象物Sとの距離に依存するが、2msの初期位相データ取得期間において数千カウント程度の発生数になる。
 (初期位相収束期間の説明)
 初期設定回路19は、初期位相収束期間において、初期位相データ取得期間で得た第1受光部11の受光波形の位置に最も近い領域(本実施形態においては第2領域)に対して、その領域でHigh電圧になるT1~T4のいずれかの波形(本実施形態においてはT2)を、位相設定用パルス信号として第1DLL回路17に出力し、第1DLL回路17を第1受光部11の受光波形の位置に最も近い領域に収束動作させる(具体的に、図3において、位相設定用パルス信号は(D)SPAD_SG1に入力される)。
 図8は、初期位相収束期間における第1DLL回路17の動作を説明するための波形図である。
 図示されているように、選択されたT1~T4の何れかの波形(本実施形態においてはT2)が、等しく2分される位置に、DLL1_PULSEの立ち上がりエッジが来た場合に、図8中のIB積分表示におけるIBの積分値と図8中のIA積分表示におけるIAの積分値が一致するため、この状態がロック状態となる。
 この動作により、第1DLL回路17の初期位相値は、第1受光部11の受光波形に近い位置、すなわち、発光素子15による検知対象物Sからの反射光によるパルス発生領域に近い位置に設定される。
 これにより実測定期間においては、第1DLL回路17の位相が近くまで合った状態から始められ、実測定期間内において、図3に図示されているようにPhaseDetector出力電圧値の変化量が少なくなる。
 図9は、初期位相データ取得期間において第2領域のカウンタ値が最も大きかった場合の第1DLL回路17内の電圧制御遅延回路特性を示す図である。
 図9に示すように、実測定期間開始時のPhaseDetector出力電圧値(第2領域の中央位置)から、実測定期間における最終位相収束位置、すなわち、発光素子15からの光が検知対象物Sから跳ね返って戻るまでの空間光路上の距離に相当する遅延位置(図4のDLL_PULSE1がSPAD_SG1の積分表示を等しく2分する位置)までの変化量が小さく、短い時間で到達することができる為、精度を落とすことなく測定時間を短縮することが可能となる。
 また、図5に示すように、毎周期初期位相データを取得することで、常に実測定期間の直前に初期位相を決定できることから、測定毎に距離が変化する、動きのある検知対象物Sに対しても、測定時間の短縮が可能である。
 〔実施形態2〕
 本発明の他の実施形態について説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図10は、光センサ202の回路構成を示す図である。
 なお、本実施形態においても、実施形態1と同様に、基準クロック(CLK)の各周期を4等分した第1領域から第4領域における、第1受光部11からのパルス出力の数をカウントする場合を一例に挙げて説明するが、これに限定されることはなく、基準クロック(CLK)の各周期をn等分(n≧2、nは整数)すればよい。
 光センサ202は、パルス幅増加回路30を備えている点において、実施形態1で既に説明した光センサ101とは異なる。
 図示されているように、初期設定回路19からの位相設定用パルス信号の出力は、パルス幅増加回路30に入力される。
 図11は、光センサ202において、初期位相収束期間における第1DLL回路17の動作を説明するための波形図である。
 図示されているように、初期位相収束期間においては、初期位相データ取得期間の結果によって選択された、パルス幅tを有するT1~T4の何れかの波形は、位相設定用パルス信号として、初期設定回路19からパルス幅増加回路30に入力される。
 パルス幅増加回路30においては、第1受光部11及び第2受光部12にあるパルス整形回路21・22・23・24によって得られるパルス幅toc(図2参照)と同じ幅だけ増加し、パルス幅(t+toc)となった後、第1DLL回路17に入力され、増加したパルス幅の波形が等しく2分される位置に、DLL1_PULSEの立ち上がりエッジが来た場合に、図11中のIB積分表示におけるIBの積分値と図11中のIA積分表示におけるIAの積分値が一致するため、この状態がロック状態となる。
 図示されているように、パルス幅増加回路30が無い場合(上述した実施形態1)に比べ、DLL1_PULSEは(1/2)×toc後ろにずれた位置に位相が収束する。
 初期位相データ取得期間のカウント値より、例えば、第2領域が最も第1受光部の受光波形に近い位置と判定された場合、受光波形の正確な位置までは分からない為、受光波形の中心位置は第2領域の中心と仮定するのが、もっとも実際位置からの誤差が少なくなる。
 図12は、光センサ202に備えられた第1DLL回路17の動作を説明するための波形図である。
 図示されているように、第1受光部11の受光波形が第2領域の中心にあった場合、DLL1_PULSEの波形は第2領域中心(=受光波形の推定位置の中心)から(1/2)×toc後ろにずれた位置に位相が収束することになり、図11に図示した位相設定用パルス信号(選択されたT1~T4いずれかの波形)の出力に対しパルス幅増加回路30を用いてパルス幅(t+toc)に増加させた波形を、第1DLL回路17に入力した場合の位相収束位置と一致することから、実施形態1で説明した光センサ101よりも第1DLL回路17の初期位相の位置を最適化できている。
 〔実施形態3〕
 本発明の他の実施形態について、説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1及び2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態の構成は、初期位相データ取得期間において使用するカウンタの数を低減する構成である。
 上述した実施形態1及び2の場合は、初期位相データ取得期間において使用する、初期設定回路19に備えられたカウンタの数が4個である場合を一例に挙げて説明したが、本実施形態においては、初期設定回路19に備えられたカウンタの数が2個である場合を一例に挙げて説明する。
 図13は、本実施形態に係る光センサに備えられた初期設定回路19の動作を説明するための図である。
 図示されているように、初期位相データ取得期間を2分割し、前半期間においては、基準クロック(CLK)と同一である基準パルス(TX)の周期を2等分した各領域(第1領域・第2領域)における、第1受光部11からのパルス出力の数をカウントし、カウント値の最大領域を特定する。したがって、初期位相データ取得期間の前半期間においては、2つのカウンタ(Counter1・Counter2)が用いられる。
 そして、初期位相データ取得期間の後半期間においては、特定されたカウント値の最大領域内(図13の(a)における第1領域)を、さらに2等分した各領域(図13の(b)における、第1領域及び第2領域)におけるカウント値を求める。したがって、初期位相データ取得期間の後半期間においても、2つのカウンタ(Counter1・Counter2)が用いられる。
 以上から、本実施形態においては、基準パルス(TX)を4等分した領域におけるカウント最大領域を、2つのカウンタを用いて見つけることが可能となり(実施形態1及び2の半分のカウンタの個数)、回路チップサイズの縮小により光センサを小型化することができる。
 (電子機器)
 電子機器は、上述した実施形態1~3に記載の各光センサを備えていてもよい。このような電子機器として、具体的には、カメラ、ロボット掃除機、スマートフォンなどがある。
 〔まとめ〕
 本発明の態様1に係る光センサは、発光素子と、検知対象物からの反射光によるフォトン入射に対して同期するパルスを出力するフォトンカウント型の第1受光部と、センサパッケージ内部の反射光によるフォトン入射に対して同期するパルスを出力する、上記第1受光部より上記発光素子に近く配置されたフォトンカウント型の第2受光部と、上記第1受光部からのパルス出力と基準クロックとを入力する第1DLL回路及び上記第2受光部からのパルス出力と上記基準クロックとを入力する第2DLL回路を含む、空間光路上の距離に相当する時間差を抽出する時間差抽出回路と、上記第1DLL回路に初期位相値を与える初期設定回路と、を備え、上記初期設定回路は、上記基準クロックの各周期をそれぞれn(nは2以上の整数)等分した第1領域から第n領域の領域内に、上記第1DLL回路の初期位相値を与える手段と、上記第1領域から上記第n領域における上記第1受光部からのパルス出力の数をカウントするカウンタと、上記カウントの比較器とを備え、上記第1領域から上記第n領域の中でカウンタ値が最大となる領域を上記比較器で特定し、上記特定した領域を、上記初期位相値として、上記第1DLL回路に与えることで、上記第1DLL回路を収束動作させることを特徴としている。
 上記構成によれば、上記基準クロックの各周期をそれぞれn(nは2以上の整数)等分した第1領域から第n領域における、上記第1受光部からのパルス出力の数をカウントするカウンタを備え、上記第1領域から上記第n領域の中でカウンタ値が最大となる領域を上記比較器で特定し、上記特定した領域に上記第1DLL回路を収束動作させる、初期設定回路を備えているので、測定において第1DLL回路の収束時間を早め、精度を維持した状態で測定時間の短縮が実現できる。
 本発明の態様2に係る光センサにおいては、上記態様1において、測定周期は、初期位相データ取得期間と、初期位相収束期間と、実測定期間とを含み、上記初期位相データ取得期間においては、上記初期設定回路が、上記第1領域から上記第n領域の中でカウンタ値が最大となる領域を上記比較器で特定し、上記初期位相収束期間においては、上記初期設定回路が、上記特定した領域に上記第1DLL回路を収束動作させる。
 上記構成によれば、測定において第1DLL回路の収束時間を早め、精度を維持した状態で測定時間の短縮が実現できる。
 本発明の態様3に係る光センサにおいては、上記態様1または2において、上記初期設定回路は、上記カウンタ値が最大となる領域において、周期的にHigh電圧となる信号を、位相設定用パルス信号として、上記第1DLL回路に出力することにより、上記特定した領域に上記第1DLL回路を収束動作させてもよい。
 上記構成によれば、測定において第1DLL回路の収束時間を早め、精度を維持した状態で測定時間の短縮が実現できる。
 本発明の態様4に係る光センサにおいては、上記態様1または2において、上記初期設定回路は、上記カウンタ値が最大となる領域において、周期的にHigh電圧となる信号を、位相設定用パルス信号として、パルス幅増加回路に出力し、上記パルス幅増加回路は、上記位相設定用パルス信号の幅に所定の幅を加えた信号を上記第1DLL回路に出力することにより、上記特定した領域に上記第1DLL回路を収束動作させてもよい。
 上記構成によれば、上記第1DLL回路の初期位相値をより最適化し、測定において、さらに第1DLL回路の収束時間を早め、精度を維持した状態で測定時間の短縮が実現できる。
 本発明の態様5に係る光センサにおいては、上記態様4において、上記第1受光部及び上記第2受光部には、パルス幅整形回路が備えられており、上記パルス幅整形回路は、上記第1受光部からのパルス出力及び上記第2受光部からのパルス出力を上記所定の幅に整形する構成であってもよい。
 上記構成によれば、上記第1DLL回路の初期位相値をより最適化し、測定において、さらに第1DLL回路の収束時間を早め、精度を維持した状態で測定時間の短縮が実現できる。
 本発明の態様6に係る光センサにおいては、上記態様1から5の何れかにおいて、上記初期設定回路は、上記基準クロックの各周期をそれぞれ(k/m)等分(k/m≧2かつm≧2、k/m及びmは整数である)した第1領域から第k/m領域における、上記第1受光部からのパルス出力の数をカウントするカウンタのカウンタ値結果より、カウンタ値が最大となる領域を上記比較器で特定し、続けて上記カウンタ値が最大となる領域内をさらにm等分した第1領域から第m領域における、上記第1受光部からのパルス出力の数をカウントするカウンタのカウンタ値結果より、カウンタ値が最大となる領域を上記比較器で特定する構成であってもよい。
 上記構成によれば、測定において第1DLL回路の収束時間を早め、精度を維持した状態で測定時間の短縮が実現できる。
 本発明の態様7に係る光センサにおいては、上記態様2において、上記初期設定回路は、上記初期位相データ取得期間の前半期間において、上記基準クロックの各周期をそれぞれ(k/m)等分(k/m≧2かつm≧2、k/m及びmは整数である)した第1領域から第k/m領域における、上記第1受光部からのパルス出力の数をカウントするカウンタのカウンタ値結果より、カウンタ値が最大となる領域を上記比較器で特定し、上記初期位相データ取得期間の後半期間において、続けてその最大領域内をさらにm等分した第1領域から第m領域における、上記第1受光部からのパルス出力の数をカウントするカウンタのカウンタ値結果より、カウンタ値が最大となる領域を上記比較器で特定する構成であってもよい。
 上記構成によれば、測定において第1DLL回路の収束時間を早め、精度を維持した状態で測定時間の短縮が実現できる。
 本発明の態様8に係る光センサにおいては、上記態様6または7において、上記初期設定回路は、上記カウンタを、上記k/mの値と上記mの値とが異なる場合には大きい方の値の個数、上記k/mの値と上記mの値とが同じである場合には何れかの値の個数備えている構成であってもよい。
 上記構成によれば、初期設定回路に備えられるカウンタの数を低減し、光センサの小型化が実現できる。
 本発明の態様9に係る光センサにおいては、上記態様1から8の何れかにおいて、上記時間差抽出回路は、上記初期設定回路を含む構成であってもよい。
 上記構成によれば、上記初期設定回路を備えた時間差抽出回路を実現できる。
 本発明の態様10に係る光センサにおいては、上記態様2において、上記測定周期が複数回繰り返されることが好ましい。
 上記構成によれば、毎周期初期位相データを取得することで、測定毎に距離が変化する、動きのある検知対象物に対しても測定時間の短縮が可能となる。
 本発明の態様11に係る光センサは、上記態様1から10の何れかにおいて、上記発光素子を駆動するドライバ回路と、上記ドライバ回路に基準パルスを供給するとともに、上記基準パルスと同一である上記基準クロックを供給する基準パルス生成回路を備えていてもよい。
 上記構成によれば、上記ドライバ回路に基準パルスを供給するとともに、上記基準パルスと同一である上記基準クロックを供給する基準パルス生成回路を備えた光センサを実現できる。
 本発明の態様12に係る電子機器は、上記態様1から11の何れかに記載の光センサを備えている。
 上記構成によれば、その精度を維持したまま、測定時間を短縮することができる光センサを備えた電子機器を実現できる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 11     第1受光部
 12     第2受光部
 13     基準パルス生成回路
 14     ドライバ回路
 15     発光素子
 16     時間差抽出回路
 17     第1DLL回路
 18     第2DLL回路
 19     初期設定回路
 21     パルス幅整形回路
 22     パルス幅整形回路
 23     パルス幅整形回路
 24     パルス幅整形回路
 25     位相検出器
 26     電圧制御遅延回路
 30     パルス幅増加回路
 101    光センサ
 202    光センサ
 PD1    フォトダイオード
 R1     アクティブクエンチング抵抗
 BUF1   バッファー
 S      検知対象物(物体)

Claims (5)

  1.  発光素子と、
     検知対象物からの反射光によるフォトン入射に対して同期するパルスを出力するフォトンカウント型の第1受光部と、
     センサパッケージ内部の反射光によるフォトン入射に対して同期するパルスを出力する、上記第1受光部より上記発光素子に近く配置されたフォトンカウント型の第2受光部と、
     上記第1受光部からのパルス出力と基準クロックとを入力する第1DLL回路及び上記第2受光部からのパルス出力と上記基準クロックとを入力する第2DLL回路を含む、空間光路上の距離に相当する時間差を抽出する時間差抽出回路と、
     上記第1DLL回路に初期位相値を与える初期設定回路と、を備え、
     上記初期設定回路は、上記基準クロックの各周期をそれぞれn(nは2以上の整数)等分した第1領域から第n領域の領域内に、上記第1DLL回路の初期位相値を与える手段と、上記第1領域から上記第n領域における上記第1受光部からのパルス出力の数をカウントするカウンタと、上記カウントの比較器とを備え、上記第1領域から上記第n領域の中でカウンタ値が最大となる領域を上記比較器で特定し、上記特定した領域を、上記初期位相値として、上記第1DLL回路に与えることで、上記第1DLL回路を収束動作させることを特徴とする光センサ。
  2.  測定周期は、初期位相データ取得期間と、初期位相収束期間と、実測定期間とを含み、
     上記初期位相データ取得期間においては、上記初期設定回路が、上記第1領域から上記第n領域の中でカウンタ値が最大となる領域を上記比較器で特定し、
     上記初期位相収束期間においては、上記初期設定回路が、上記特定した領域に上記第1DLL回路を収束動作させることを特徴とする請求項1記載の光センサ。
  3.  上記初期設定回路は、上記カウンタ値が最大となる領域において、周期的にHigh電圧となる信号を、位相設定用パルス信号として、パルス幅増加回路に出力し、
     上記パルス幅増加回路は、上記位相設定用パルス信号の幅に所定の幅を加えた信号を上記第1DLL回路に出力することにより、上記特定した領域に上記第1DLL回路を収束動作させることを特徴とする請求項1または2に記載の光センサ。
  4.  上記初期設定回路は、上記基準クロックの各周期をそれぞれ(k/m)等分(k/m≧2かつm≧2、k/m及びmは整数である)した第1領域から第k/m領域における、上記第1受光部からのパルス出力の数をカウントするカウンタのカウンタ値結果より、カウンタ値が最大となる領域を上記比較器で特定し、
     続けて上記カウンタ値が最大となる領域内をさらにm等分した第1領域から第m領域における、上記第1受光部からのパルス出力の数をカウントするカウンタのカウンタ値結果より、カウンタ値が最大となる領域を上記比較器で特定することを特徴とする請求項1から3の何れか1項に記載の光センサ。
  5.  上記請求項1から4のいずれか1項に記載の光センサを備えていることを特徴とする電子機器。
PCT/JP2017/021465 2016-09-08 2017-06-09 光センサ及び電子機器 WO2018047429A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/328,531 US11175387B2 (en) 2016-09-08 2017-06-09 Optical sensor and electronic device
CN201780054790.3A CN109690342B (zh) 2016-09-08 2017-06-09 光传感器及电子设备
JP2018538031A JP6657412B2 (ja) 2016-09-08 2017-06-09 光センサ及び電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-175762 2016-09-08
JP2016175762 2016-09-08

Publications (1)

Publication Number Publication Date
WO2018047429A1 true WO2018047429A1 (ja) 2018-03-15

Family

ID=61562506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021465 WO2018047429A1 (ja) 2016-09-08 2017-06-09 光センサ及び電子機器

Country Status (4)

Country Link
US (1) US11175387B2 (ja)
JP (1) JP6657412B2 (ja)
CN (1) CN109690342B (ja)
WO (1) WO2018047429A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191026A (ja) * 2018-04-26 2019-10-31 シャープ株式会社 光センサおよび電子機器
JP2020034304A (ja) * 2018-08-27 2020-03-05 株式会社東芝 電子装置および測定方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237473A (ja) * 1998-02-20 1999-08-31 Mitsubishi Electric Corp マルチスタティックレーダ装置
JP2002214369A (ja) * 2001-01-18 2002-07-31 Denso Corp 時間測定装置及び距離測定装置
JP2005051466A (ja) * 2003-07-28 2005-02-24 Matsushita Electric Ind Co Ltd Uwb装置
JP2006329902A (ja) * 2005-05-30 2006-12-07 Nikon Corp 測距装置及び測距方法
JP2012060012A (ja) * 2010-09-10 2012-03-22 Toyota Central R&D Labs Inc 光検出器
JP2012530917A (ja) * 2009-06-22 2012-12-06 トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム パルス光による光学式距離計
US20130077082A1 (en) * 2011-09-22 2013-03-28 Stmicroelectronics (Grenoble 2) Sas Device and Method for Determining the Distance to an Object
JP2014006257A (ja) * 2012-06-26 2014-01-16 Sick Ag 光電子センサおよび対象物の測距方法
JP2014081254A (ja) * 2012-10-16 2014-05-08 Toyota Central R&D Labs Inc 光学的測距装置
US20160047904A1 (en) * 2014-08-18 2016-02-18 Stmicroelectronics (Grenoble 2) Sas Method for measuring a time of flight

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215289A (ja) 1996-06-04 1998-08-11 Matsushita Electric Ind Co Ltd 同期装置
JP2001108747A (ja) 1999-10-08 2001-04-20 Minolta Co Ltd 測距装置
JP2004051900A (ja) * 2002-07-23 2004-02-19 Mitsubishi Rayon Co Ltd 熱板溶着用熱可塑性樹脂組成物、及びその成形体
JP4780921B2 (ja) * 2004-03-17 2011-09-28 キヤノン株式会社 並列パルス信号処理装置、及びその制御方法
JP2009218744A (ja) * 2008-03-07 2009-09-24 Nec Corp 微弱光通信のフレーム同期方法およびシステム
EP2116864A1 (en) * 2008-05-09 2009-11-11 Vrije Universiteit Brussel TOF range finding with background radiation suppression
FR2984522B1 (fr) * 2011-12-20 2014-02-14 St Microelectronics Grenoble 2 Dispositif de detection de la proximite d'un objet, comprenant des photodiodes spad
GB2510891A (en) 2013-02-18 2014-08-20 St Microelectronics Res & Dev Apparatus
GB2520232A (en) * 2013-08-06 2015-05-20 Univ Edinburgh Multiple Event Time to Digital Converter
JP6171975B2 (ja) * 2014-02-21 2017-08-02 株式会社豊田中央研究所 ヒストグラム作成装置及びレーザレーダ装置
FR3034528A1 (ja) * 2015-04-03 2016-10-07 Stmicroelectronics (Grenoble 2) Sas

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237473A (ja) * 1998-02-20 1999-08-31 Mitsubishi Electric Corp マルチスタティックレーダ装置
JP2002214369A (ja) * 2001-01-18 2002-07-31 Denso Corp 時間測定装置及び距離測定装置
JP2005051466A (ja) * 2003-07-28 2005-02-24 Matsushita Electric Ind Co Ltd Uwb装置
JP2006329902A (ja) * 2005-05-30 2006-12-07 Nikon Corp 測距装置及び測距方法
JP2012530917A (ja) * 2009-06-22 2012-12-06 トヨタ モーター ヨーロッパ ナームロゼ フェンノートシャップ/ソシエテ アノニム パルス光による光学式距離計
JP2012060012A (ja) * 2010-09-10 2012-03-22 Toyota Central R&D Labs Inc 光検出器
US20130077082A1 (en) * 2011-09-22 2013-03-28 Stmicroelectronics (Grenoble 2) Sas Device and Method for Determining the Distance to an Object
JP2014006257A (ja) * 2012-06-26 2014-01-16 Sick Ag 光電子センサおよび対象物の測距方法
JP2014081254A (ja) * 2012-10-16 2014-05-08 Toyota Central R&D Labs Inc 光学的測距装置
US20160047904A1 (en) * 2014-08-18 2016-02-18 Stmicroelectronics (Grenoble 2) Sas Method for measuring a time of flight

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191026A (ja) * 2018-04-26 2019-10-31 シャープ株式会社 光センサおよび電子機器
JP7101529B2 (ja) 2018-04-26 2022-07-15 シャープ株式会社 光センサおよび電子機器
JP2020034304A (ja) * 2018-08-27 2020-03-05 株式会社東芝 電子装置および測定方法
JP7089989B2 (ja) 2018-08-27 2022-06-23 株式会社東芝 電子装置および測定方法

Also Published As

Publication number Publication date
JPWO2018047429A1 (ja) 2019-07-04
JP6657412B2 (ja) 2020-03-04
US20190195993A1 (en) 2019-06-27
CN109690342B (zh) 2023-03-24
CN109690342A (zh) 2019-04-26
US11175387B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
US11287518B2 (en) Optical sensor and electronic device
US11644573B2 (en) Higher pixel density histogram time of flight sensor with higher pixel density
US9541646B2 (en) Apparatus for pulse shaping
US8963069B2 (en) Device having SPAD photodiodes for detecting an object with a selection of a number of photodiodes to be reversed biased
US20140231630A1 (en) Method and apparatus for image sensor calibration
CN110622038B (zh) 光传感器、电子设备、运算装置及对光传感器与检测对象物之间的距离进行测量的方法
CN109709531B (zh) 光传感器、距离测量装置及电子设备
US8879048B2 (en) Device and method for determining the distance to an object
JP7109906B2 (ja) 光センサ及び電子機器
CN109115334B (zh) 光检测装置
US10241197B2 (en) Method of preparing histograms of a sensor signal from an array of sensors, in particular proximity sensors, and corresponding device
CN107272010B (zh) 距离传感器及其距离测量方法、3d图像传感器
CN109196377B (zh) 光传感器及电子设备
US20190204148A1 (en) Method for Managing Dynamic Range of an Optical Detection Device, and Corresponding Device
WO2018047429A1 (ja) 光センサ及び電子機器
JP6728369B2 (ja) 光センサおよび電子機器
KR102567575B1 (ko) 시간 디지털 변환기 및 이를 포함하는 라이다
US20240201255A1 (en) Time-to-digtial converter circuit with self-testing function
Yu et al. All-in-One SPAD Ranging Sensor With Real-Time Xtalk Calibration and Integrated Biasing
CN118302692A (zh) 飞行时间电路系统和飞行时间方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848374

Country of ref document: EP

Kind code of ref document: A1