WO2018047274A1 - Motor drive device, electric fan, and electric vacuum cleaner - Google Patents

Motor drive device, electric fan, and electric vacuum cleaner Download PDF

Info

Publication number
WO2018047274A1
WO2018047274A1 PCT/JP2016/076452 JP2016076452W WO2018047274A1 WO 2018047274 A1 WO2018047274 A1 WO 2018047274A1 JP 2016076452 W JP2016076452 W JP 2016076452W WO 2018047274 A1 WO2018047274 A1 WO 2018047274A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
semiconductor element
inverter
voltage
drive device
Prior art date
Application number
PCT/JP2016/076452
Other languages
French (fr)
Japanese (ja)
Inventor
裕次 ▲高▼山
有澤 浩一
酒井 顕
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018537933A priority Critical patent/JP6889166B2/en
Priority to PCT/JP2016/076452 priority patent/WO2018047274A1/en
Publication of WO2018047274A1 publication Critical patent/WO2018047274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a motor drive device, an electric blower including the motor drive device, and a vacuum cleaner.
  • Single-phase inverters may be used in products that require high-speed rotation and downsizing, such as vacuum cleaners and hand dryers.
  • a single-phase inverter can generally drive a motor by controlling the current polarity according to the switching of the rotor magnetic poles. In this case, the motor iron loss is caused by superimposing harmonic components on the current. Increases and efficiency decreases.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-efficiency motor driving device suitable for products that require high-speed rotation and downsizing.
  • the present invention is a motor driving device for driving a single-phase motor driven by single-phase alternating current with electric power applied from a storage battery, and includes an inverter for driving the single-phase motor.
  • the inverter includes a first semiconductor element and a second semiconductor element connected in series, and a third semiconductor element and a fourth semiconductor element connected in series. The first semiconductor element and the second semiconductor element, and the third semiconductor element and the fourth semiconductor element are connected in parallel.
  • the single phase motor is connected between the first semiconductor element and the second semiconductor element and between the third semiconductor element and the fourth semiconductor element. The pulse width of the voltage applied to the single phase motor becomes wider as the voltage of the storage battery becomes lower.
  • the efficiency is improved by controlling the current in a sine wave shape in the low speed region, and the switching loss is reduced by reducing the number of pulses in the high speed region, thereby improving the efficiency. Is possible.
  • the energy saving of the product is improved, and the operation time can be extended if the product uses a battery as a power source.
  • FIG. 2 is a circuit diagram illustrating a configuration for generating a drive signal in the drive signal generation unit of FIG. 1.
  • FIG. 5 is a waveform diagram showing an output example of a voltage command value Vm *, inverter drive signals Q1 to Q4, and an output voltage Vm. It is a wave form diagram which shows an inverter output voltage in case a modulation factor is 1.
  • FIG. It is a wave form diagram which shows an inverter output voltage in case a modulation factor is 1.2.
  • FIG. 1 is a diagram showing a configuration of a motor drive device according to an embodiment of the present invention.
  • the motor drive device 1 is connected to a power source 10 that is a storage battery and a motor 12, and is an inverter 11 that drives the motor 12 by power applied from the power source 10 that is a storage battery, and a motor that is an alternating current that flows through the motor 12.
  • a current detector 20 for detecting a current; a rotation detector 21 for detecting the rotational position of the rotor of the motor 12; a power supply voltage detecting means 22 for detecting a voltage applied from the power supply 10; a motor current and a rotor rotational position;
  • the control part 15 which controls the inverter 11 based on is provided.
  • the control unit 15 includes an analog / digital converter 30, a processor 31, and a drive signal generation unit 32.
  • the control unit 15 of the inverter 11 generates an analog signal that drives the motor 12 based on the detection results of the current detection unit 20 that detects the motor current and the rotation detection unit 21 that detects the rotor rotation position.
  • the analog signal detected by the current detector 20 is converted into a digital signal by the analog / digital converter 30 and read by the processor 31.
  • the processor 31 drives the motor 12 based on the digital signal read from the analog / digital converter 30, the rotor rotational position detected by the rotation detection unit 21, and the power supply voltage detected by the power supply voltage detection means 22.
  • a drive signal is generated and output to the inverter 11.
  • the inverter 11 drives the motor 12 based on the drive signal output from the drive signal generator 32.
  • FIG. 2 is a diagram illustrating a circuit configuration example of the inverter according to the embodiment. As an example, a circuit configuration of a single-phase inverter using four semiconductor elements is shown.
  • the inverter 11 includes a plurality of semiconductor elements 51 to 54 that constitute upper and lower arms, and the first semiconductor element 51 and the second semiconductor element 52 include a positive power supply wiring 50P and a negative power supply.
  • the wiring 50N is connected in series.
  • the positive power supply wiring is a wiring connected to the positive electrode of the power supply 10
  • the negative power supply wiring is a wiring connected to the negative electrode of the power supply 10.
  • the third semiconductor element 53 and the fourth semiconductor element 54 are connected in series between the positive power supply wiring 50P and the negative power supply wiring 50N.
  • the third semiconductor element 53 and the fourth semiconductor element 54 connected in series are connected in parallel.
  • the first semiconductor element 51 corresponds to the first upper arm
  • the second semiconductor element 52 corresponds to the first lower arm.
  • the third semiconductor element 53 corresponds to the second upper arm
  • the fourth semiconductor element 54 corresponds to the second lower arm.
  • the semiconductor elements 51 to 54 are on / off controlled based on the drive signal output from the drive signal generator 32 of the controller 15.
  • the semiconductor elements 51 to 54 are MOSFETs, and include semiconductor switching elements 51a to 54a and body diodes 51b to 54b connected in reverse parallel to the semiconductor switching elements 51a to 54a.
  • the first semiconductor element 51 includes a first semiconductor switching element 51a and a first body diode 51b
  • the second semiconductor element 52 includes a second semiconductor switching element 52a and a second body diode 52b
  • the third semiconductor element 53 includes a third semiconductor switching element 53a and a third body diode 53b
  • the fourth semiconductor element 54 includes a fourth semiconductor switching element 54a and a fourth body diode 54b.
  • the inverter 11 is composed of at least four elements necessary for driving a single-phase motor. Thus, miniaturization and weight reduction can be achieved by reducing the number of elements as much as possible. When performing unipolar modulation, positive, zero, and negative voltages can be output to the motor side.
  • the switching element in the semiconductor element is illustrated as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBTs Insulated Gate Bipolar Transistors
  • the semiconductor switching element such as can also be implemented.
  • PWM control Pulse Width Modulation
  • PWM control is a modulation method that modulates by changing the width of the output voltage pulse, and is generally used when driving a three-phase motor. In this embodiment, PWM control is performed on a single-phase motor. How to do will be described.
  • FIG. 3 is a circuit diagram showing a configuration for generating a drive signal in the drive signal generator 32 of FIG.
  • the inverter 11 is generally a semiconductor element provided in the inverter 11 by comparing the triangular wave carrier voltage value Vc with the voltage command value Vm * for controlling the output voltage of the inverter 11 in the drive signal generator 32 inside the controller. Signals for driving 51 to 54 are generated.
  • the drive signal generation unit 32 includes a multiplication circuit 34, comparators 35 and 36, and inversion circuits 37 and 38.
  • the multiplication circuit 34 inverts the sign of the voltage command value Vm * by multiplying the voltage command value Vm * that controls the output voltage of the inverter 11 by -1.
  • the comparator 35 compares the voltage command value Vm * with the voltage value Vc of the carrier signal, and outputs inverter drive signals Q1 and Q2.
  • the comparator 36 compares the inverted value of the voltage command value Vm * output from the multiplication circuit 34 with the voltage value Vc of the carrier signal, and outputs inverter drive signals Q3 and Q4.
  • Inversion circuits 37 and 38 invert the signs of inverter drive signals Q1 and Q3 output from comparators 35 and 36, respectively.
  • the inverter drive signals Q1 to Q4 are signals for controlling on / off of the semiconductor elements 51 to 54.
  • FIG. 4 is a waveform diagram showing an output example of the voltage command value Vm *, the inverter drive signals Q1 to Q4, and the output voltage Vm.
  • a voltage command value Vm *, an inversion value ⁇ Vm *, inverter drive signals Q1 to Q4, and a motor output voltage Vm are shown in order from the top.
  • the inverter drive signals Q1 to Q4 being controlled as shown in FIG. 4, the voltage Vm applied to the motor 12 is controlled to three values: a positive output voltage + Vo, an output voltage 0, and a negative output voltage ⁇ Vo. (Unipolar control).
  • FIG. 5 is a waveform diagram showing the inverter output voltage when the modulation factor is 1.
  • FIG. 6 is a waveform diagram showing the inverter output voltage when the modulation factor is 1.2.
  • FIG. 7 is a waveform diagram showing the inverter output voltage when the modulation factor is 2.
  • the ratio of the amplitude of the inverter voltage command Vm * and the triangular wave carrier voltage value Vc is taken as the modulation rate.
  • this modulation factor is 1 or less, inverter drive signals Q1 to Q4 are generated according to the frequency of the triangular wave carrier Vc, so that the inverter output voltage Vm, which is the voltage applied to the motor 12, as shown in FIG. Also, a voltage pulse corresponding to the carrier frequency is output.
  • the modulation rate exceeds 1 (hereinafter referred to as an overmodulation region)
  • a section where the inverter voltage command value Vm * exceeds the amplitude of the triangular wave carrier voltage value Vc occurs as shown in FIGS. To do.
  • the inverter drive signal corresponding to the frequency of the triangular wave carrier is not generated, and the inverter output voltage is fixed to the positive output voltage + Vo or the negative output voltage ⁇ Vo. A voltage can be obtained.
  • FIG. 8 is a diagram showing a current path flowing through the motor by the voltage pulse output from the inverter.
  • a positive voltage pulse is output from the drive signal generator 32 to the inverter 11
  • a current flows through the motor 12 through a current path that passes through the semiconductor switching elements 51a and 54a shown in FIG.
  • the current path passes through the semiconductor switching elements 52a and 54a or the current path passes through the semiconductor switching elements 51a and 53a shown in FIG. 8B or 8D.
  • a current flows through the motor 12. This is a mode in which current does not flow from the power source side, and current flows back between the motor and the inverter.
  • MOSFET the semiconductor element provided in the inverter
  • the semiconductor switching element that is a MOSFET without passing through the body diode when refluxing between the inverter and the motor.
  • control is performed to turn on the element to be recirculated in accordance with recirculation (FIG. 8B).
  • FIG. 8 (d) MOSFETs can reduce conduction loss by flowing a current to the FET side rather than conducting to a body diode. Therefore, by reducing the semiconductor element to a MOSFET, the loss at reflux is reduced. It becomes possible.
  • a wide band gap semiconductor may be used as the semiconductor switching element.
  • the semiconductor switching element is a wide band gap semiconductor (for example, SiC)
  • the on-resistance is smaller than that of silicon semiconductor (Si), and heat generation can be further suppressed.
  • the loss of the semiconductor element is determined from the total value of the conduction loss that occurs when current flows through the semiconductor element and the switching loss that occurs when the semiconductor switches.
  • a semiconductor element generates heat due to an increase in the loss due to an increase in current.
  • a heat sink is attached, the heat radiation performance can be improved, but the installation space for attaching the heat sink increases, so that it is difficult to apply to a small product. Further, since the weight of the heat sink is increased, it is difficult to apply to a product that is required to be reduced in weight.
  • a further heat dissipating effect can be obtained by installing the substrate in the air path.
  • a device that generates an air flow such as an electric blower
  • the semiconductor element on the substrate is radiated by the wind generated by the electric blower, so that the temperature rise of the semiconductor element can be significantly suppressed.
  • an electric blower is mounted on a vacuum cleaner or a hand dryer, which will be described later with reference to FIGS.
  • the heat of the semiconductor element can be released only by the heat radiation to the substrate and the heat radiation to the air, and the device can be configured without a heat sink to realize a small and light product.
  • FIG. 9 is a diagram showing the relationship of the modulation rate to the rotation speed.
  • the load torque of the rotating body increases, so it is necessary to increase the motor output torque.
  • the motor output torque increases in proportion to the motor current, and the increase in the motor current requires an increase in the output voltage of the inverter. Therefore, it is possible to increase the rotation speed without difficulty by increasing the modulation rate and increasing the inverter output voltage.
  • the motor is controlled so that the modulation rate is greater than 1 at a rotation speed of 100,000 rpm or more.
  • the number of switching operations performed by the semiconductor elements in the inverter is reduced while increasing the output voltage of the inverter by increasing the modulation rate above 1.
  • an increase in switching loss can be suppressed.
  • the modulation factor exceeds 1, the motor output voltage increases, but the number of switching times decreases, so there is a concern about distortion of the motor current.
  • the amount of change (di / dt) per hour of the current flowing through the motor decreases.
  • a low speed region for example, 0 to 70,000 rpm
  • the modulation rate to 1 or less
  • the current is controlled to be a sine wave, and the motor efficiency is improved.
  • the carrier frequency matched to the high speed region is adopted, and therefore the number of PWM pulses tends to be more than necessary in the low speed region. Therefore, in the low speed region, a technique of reducing the switching loss by using a carrier frequency lower than the carrier frequency used in the high speed region may be adopted. Further, by changing the carrier frequency in accordance with the change in the rotation speed, the number of pulses per electrical angle cycle may not change even if the rotation speed changes.
  • the voltage pulse of the inverter output voltage is determined by comparing the triangular wave carrier voltage value Vc with the voltage command value Vm *.
  • the frequency of the voltage command value Vm * also increases, and the number of voltage pulses output during one electrical angle period decreases, so that the influence of the output voltage pulse on the distortion of the current waveform also increases.
  • the number of output voltage pulses is controlled to be an odd number during the electrical angle half cycle.
  • a sine wave can be controlled by putting voltage pulses five times or more in an electrical angle half cycle. Therefore, it is preferable to perform control so that the number of pulses when performing sine wave PWM control is 5, and in overmodulation control, the voltage pulse output from the inverter is 5 or less.
  • the output voltage of the power supply 10 that is a storage battery
  • the modulation rate is increased and the pulse width of the output voltage pulse is increased.
  • the inverter output voltage is increased, that is, the pulse width of the output voltage pulse is widened as the voltage of the power supply 10 becomes lower, thereby suppressing the decrease in the output voltage, suppressing the decrease in the rotational speed, and increasing or maintaining the rotational speed. The number of rotations can be maintained without difficulty.
  • the modulation method used when generating the inverter drive signal includes bipolar modulation that outputs voltage pulses to both positive and negative potentials, and voltage pulses with positive / zero and negative / zero at every half electrical angle cycle. Output unipolar modulation is known.
  • the motor voltage is output at two levels of -V and + V, whereas in unipolar modulation, it is output at three levels of -V, 0, and + V.
  • pulses are generated at 2 levels for bipolar modulation and 3 levels for unipolar modulation, so unipolar modulation is smaller when compared with current di / dt. Become. Therefore, the harmonic content at the time of switching is smaller in unipolar modulation. Therefore, in the present embodiment, control is performed using unipolar modulation, which can be controlled to a sine wave with a lower harmonic content.
  • the motor drive device 1 drives a single-phase motor 12 that is driven by a single-phase alternating current.
  • the motor drive device 1 includes an inverter 11 that drives a single-phase motor 12 and a control unit 15 that controls the inverter 11.
  • the inverter 11 includes a first upper arm 51 and a first lower arm 52 connected in series between the positive power supply wiring 50P and the negative power supply wiring 50N, and in series between the positive power supply wiring 50P and the negative power supply wiring 50N.
  • a second upper arm 53 and a second lower arm 54 connected to each other are included.
  • the single-phase motor 12 is connected between a first connection point between the first upper arm 51 and the first lower arm 52 and a second connection point between the second upper arm 53 and the second lower arm 54. .
  • the control unit 15 controls the inverter so as to output a voltage pulse to the single-phase motor so that the pulse width becomes wider as it is closer to the center in the electrical angle half cycle.
  • the first upper arm 51, the first lower arm 52, the second upper arm 53, and the second lower arm 54 are respectively composed of the semiconductor switching elements 51a to 54a and the body diode 51b connected to the semiconductor switching elements 51a to 54a in antiparallel. To 54b.
  • the control unit 15 makes the semiconductor elements of the first upper arm 51 and the second upper arm 53 conductive at the same time, or makes the semiconductor elements of the first lower arm 52 and the second lower arm 54 simultaneously. Energize to reduce body diode flow time.
  • control unit 15 controls the inverter 11 such that an odd number of voltage pulses is generated in the inverter 11 during an electrical angle half cycle.
  • odd-order harmonics can be prevented from being superimposed, and the symmetry of the positive and negative waveforms is not easily lost, and a sine wave current is likely to be generated.
  • FIG. 10 is a diagram illustrating an example of a configuration of a vacuum cleaner to which the motor drive device of the embodiment is applied.
  • the vacuum cleaner 61 includes an extension pipe 62, a suction port 63, an electric blower 64, a dust collection chamber 65, an operation unit 66, a power supply 10 that is a storage battery, and a sensor 68.
  • the electric blower 64 includes the motor drive device 1 described in the embodiment.
  • the vacuum cleaner 61 drives the electric blower 64 by the power supply 10 that is a storage battery, performs suction from the suction port body 63, and sucks dust into the dust collection chamber 65 through the extension pipe 62. In use, the operation unit 66 is held and the electric vacuum cleaner 61 is operated.
  • the motor-driven rotation speed range is wide. Therefore, as shown in the present embodiment, the motor is driven exceeding a modulation factor of 1 in the high rotation speed region. By doing so, it is possible to reduce the switching loss in the high rotation speed region. In addition, since the drive can be performed with high efficiency, it is possible to expect a longer operation time, and it is possible to contribute to a reduction in size and weight by reducing heat radiation components.
  • FIG. 11 is a diagram illustrating an example of a configuration of a hand dryer to which the motor drive device of the embodiment is applied.
  • the hand dryer shown in FIG. 11 includes a casing 71, a hand detection sensor 72, a water receiver 73, a drain container 74, a cover 76, a sensor 77, and an intake port 78.
  • the sensor 77 is either a gyro sensor or a human sensor.
  • the hand dryer has an electric blower (not shown) in the casing 71.
  • the hand dryer has a structure in which water is blown off by blowing with an electric blower by inserting a hand into the hand insertion portion 79 at the top of the water receiving portion 73 and water is accumulated from the water receiving portion 73 to the drain container 74. Yes.
  • the motor-driven rotation speed range is wide, as shown in the present embodiment, the motor is driven at a modulation rate exceeding 1 in the high rotation speed region.
  • the switching loss in the high rotation speed region since high-efficiency driving is possible, reduction of power consumption can be expected, and reduction of heat dissipation parts can contribute to reduction in size and weight. If it is small, restrictions on the installation location are eliminated, and the application range can be expanded.
  • the electric blower described in the present embodiment is described as being mounted on a vacuum cleaner and a hand dryer, it is not limited to a vacuum cleaner, but a hand dryer, an incinerator, a pulverizer, a dryer, a dust collector, a printing machine , Products equipped with electric blowers such as cleaning machines, confectionery machines, tea making machines, woodworking machines, plastic extruders, cardboard machines, packaging machines, hot air generators, object transportation, dust collection, general air supply / exhaust air, OA equipment, etc. If there is, it is not limited to this.
  • 1 motor drive device 10 power supply, 11 inverter, 12 motor, 15 control unit, 20 current detection unit, 21 rotation detection unit, 30 digital converter, 31 processor, 32 drive signal generation unit, 34 multiplication circuit, 35, 36 comparator 37, 38 Inversion circuit, 50N negative power supply wiring, 50P positive power supply wiring, 51, 52, 53, 54 semiconductor element, 61 vacuum cleaner, 62 extension pipe, 63 suction port, 64 electric blower, 65 dust collection chamber, 66 operation part, 68, 77 sensor, 71 casing, 72 hand detection sensor, 73 water receiving part, 74 drain container, 76 cover, 78 inlet, 79 hand insertion part.

Abstract

A motor drive device drives a single phase motor (12) by the power applied from a power supply (10) that is a storage battery, said single phase motor (12) being driven by a single phase alternating current. The motor drive device is provided with an inverter (11) for driving the single phase motor (12), wherein said inverter (11) makes the pulse width of an output voltage pulse wider as the voltage of the power supply (10) decreases, thereby suppressing the lowering of the output voltage and suppressing the lowering of the number of rotations to easily perform increasing of the number of rotations or maintaining of a constant number of rotations.

Description

モータ駆動装置、電動送風機、および電気掃除機Motor drive device, electric blower, and vacuum cleaner
 この発明は、モータ駆動装置およびそれを備える電動送風機、電気掃除機に関する。 The present invention relates to a motor drive device, an electric blower including the motor drive device, and a vacuum cleaner.
 掃除機やハンドドライヤー等の高速回転・小型化が求められる製品において、単相インバータが用いられる場合がある。単相インバータは、一般的にロータ磁極の切り替わりに応じて電流極性を切り替える制御を行なうことでモータを駆動することができるが、その場合、電流に高調波成分が重畳されることによってモータ鉄損が増加し、効率が悪化する。 Single-phase inverters may be used in products that require high-speed rotation and downsizing, such as vacuum cleaners and hand dryers. A single-phase inverter can generally drive a motor by controlling the current polarity according to the switching of the rotor magnetic poles. In this case, the motor iron loss is caused by superimposing harmonic components on the current. Increases and efficiency decreases.
特許第5524925号公報Japanese Patent No. 5524925
 特許第5524925号では、モータ電流が閾値を上回ったときに巻線をフリーホイールさせ、モータ電流を矩形波状に制御する方法が提案されている。この場合モータ電流には出力電流の周波数以外の高調波が重畳されるため、モータの鉄損を増加させる要因となる。 In Japanese Patent No. 5524925, a method is proposed in which when the motor current exceeds a threshold value, the winding is freewheeled and the motor current is controlled in a rectangular wave shape. In this case, harmonics other than the frequency of the output current are superimposed on the motor current, which causes an increase in the iron loss of the motor.
 本発明は、上記のような課題を解決するためになされたものであり、その目的は、高速回転・小型化が求められる製品に適する高効率のモータ駆動装置を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-efficiency motor driving device suitable for products that require high-speed rotation and downsizing.
 この発明は、単相交流にて駆動する単相モータを蓄電池から印加される電力によって駆動するモータ駆動装置であって、単相モータを駆動するインバータを備える。インバータは、直列に接続された第1の半導体素子および第2の半導体素子と、直列に接続された第3の半導体素子および第4の半導体素子を含む。第1の半導体素子および第2の半導体素子と、第3の半導体素子および第4の半導体素子は並列に接続される。単相モータは、第1の半導体素子と第2の半導体素子の間と第3の半導体素子と第4の半導体素子との間に接続される。蓄電池の電圧が低くなるほど前記単相モータに加えられる電圧のパルス幅は、広くなる。 The present invention is a motor driving device for driving a single-phase motor driven by single-phase alternating current with electric power applied from a storage battery, and includes an inverter for driving the single-phase motor. The inverter includes a first semiconductor element and a second semiconductor element connected in series, and a third semiconductor element and a fourth semiconductor element connected in series. The first semiconductor element and the second semiconductor element, and the third semiconductor element and the fourth semiconductor element are connected in parallel. The single phase motor is connected between the first semiconductor element and the second semiconductor element and between the third semiconductor element and the fourth semiconductor element. The pulse width of the voltage applied to the single phase motor becomes wider as the voltage of the storage battery becomes lower.
 本発明によれば、PWMの実施により低速領域では電流を正弦波状に制御することで効率を向上させ、高速領域においてはパルス数を低減させることでスイッチング損失を低減し、高効率化を図ることを可能となる。高効率化することで製品の省エネルギ性が向上し、バッテリーを電源とした製品であれば運転時間を伸ばすことができる。 According to the present invention, by implementing PWM, the efficiency is improved by controlling the current in a sine wave shape in the low speed region, and the switching loss is reduced by reducing the number of pulses in the high speed region, thereby improving the efficiency. Is possible. By improving efficiency, the energy saving of the product is improved, and the operation time can be extended if the product uses a battery as a power source.
本発明の実施の形態に係るモータ駆動装置の構成を示す図である。It is a figure which shows the structure of the motor drive device which concerns on embodiment of this invention. 実施の形態におけるインバータの回路構成例を示した図である。It is the figure which showed the circuit structural example of the inverter in embodiment. 図1の駆動信号生成部において駆動信号を発生する構成を示した回路図である。FIG. 2 is a circuit diagram illustrating a configuration for generating a drive signal in the drive signal generation unit of FIG. 1. 電圧指令値Vm*とインバータ駆動信号Q1~Q4と出力電圧Vmの出力例を示した波形図である。FIG. 5 is a waveform diagram showing an output example of a voltage command value Vm *, inverter drive signals Q1 to Q4, and an output voltage Vm. 変調率が1の場合のインバータ出力電圧を示す波形図である。It is a wave form diagram which shows an inverter output voltage in case a modulation factor is 1. FIG. 変調率が1.2の場合のインバータ出力電圧を示す波形図である。It is a wave form diagram which shows an inverter output voltage in case a modulation factor is 1.2. 変調率が2の場合のインバータ出力電圧を示す波形図である。It is a wave form diagram which shows an inverter output voltage in case a modulation factor is 2. FIG. インバータで出力した電圧パルスによりモータに流れる電流経路を示した図である。It is the figure which showed the electric current path which flows into a motor with the voltage pulse output by the inverter. 回転速度に対する変調率の関係を示す図である。It is a figure which shows the relationship of the modulation factor with respect to a rotational speed. 実施の形態のモータ駆動装置が適用された電気掃除機の構成の一例を示す図である。It is a figure which shows an example of a structure of the vacuum cleaner to which the motor drive device of embodiment was applied. 実施の形態のモータ駆動装置が適用されたハンドドライヤーの構成の一例を示す図である。It is a figure which shows an example of a structure of the hand dryer to which the motor drive device of embodiment was applied.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described. However, it is planned from the beginning of the application to appropriately combine the configurations described in the embodiments. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 [モータ駆動装置の構成]
 図1は、本発明の実施の形態に係るモータ駆動装置の構成を示す図である。モータ駆動装置1は、蓄電池である電源10と、モータ12に接続されており、蓄電池である電源10から印加される電力によってモータ12を駆動するインバータ11と、モータ12に流れる交流電流であるモータ電流を検出する電流検出部20と、モータ12のロータの回転位置を検出する回転検出部21と、電源10から印加される電圧を検出する電源電圧検出手段22と、モータ電流とロータ回転位置とに基づいてインバータ11を制御する制御部15を備える。制御部15は、アナログ・ディジタル変換器30と、プロセッサ31と、駆動信号生成部32とを含む。
[Configuration of motor drive unit]
FIG. 1 is a diagram showing a configuration of a motor drive device according to an embodiment of the present invention. The motor drive device 1 is connected to a power source 10 that is a storage battery and a motor 12, and is an inverter 11 that drives the motor 12 by power applied from the power source 10 that is a storage battery, and a motor that is an alternating current that flows through the motor 12. A current detector 20 for detecting a current; a rotation detector 21 for detecting the rotational position of the rotor of the motor 12; a power supply voltage detecting means 22 for detecting a voltage applied from the power supply 10; a motor current and a rotor rotational position; The control part 15 which controls the inverter 11 based on is provided. The control unit 15 includes an analog / digital converter 30, a processor 31, and a drive signal generation unit 32.
 インバータ11の制御部15は、モータ電流を検出する電流検出部20およびロータ回転位置を検出する回転検出部21の検出結果に基づいてモータ12を駆動するアナログ信号を生成する。電流検出部20で検出されたアナログ信号は、アナログ・ディジタル変換器30でディジタル信号に変換され、プロセッサ31に読み取られる。プロセッサ31は、アナログ・ディジタル変換器30から読み取ったディジタル信号と、回転検出部21で検出されたロータ回転位置と、電源電圧検出手段22で検出された電源電圧に基づいて、モータ12を駆動させる駆動信号を生成し、インバータ11へ出力する。インバータ11は駆動信号生成部32から出力された駆動信号に基づいてモータ12を駆動させる。 The control unit 15 of the inverter 11 generates an analog signal that drives the motor 12 based on the detection results of the current detection unit 20 that detects the motor current and the rotation detection unit 21 that detects the rotor rotation position. The analog signal detected by the current detector 20 is converted into a digital signal by the analog / digital converter 30 and read by the processor 31. The processor 31 drives the motor 12 based on the digital signal read from the analog / digital converter 30, the rotor rotational position detected by the rotation detection unit 21, and the power supply voltage detected by the power supply voltage detection means 22. A drive signal is generated and output to the inverter 11. The inverter 11 drives the motor 12 based on the drive signal output from the drive signal generator 32.
 図2は、実施の形態におけるインバータの回路構成例を示した図である。例として半導体素子を4つ用いた単相インバータの回路構成を示す。 FIG. 2 is a diagram illustrating a circuit configuration example of the inverter according to the embodiment. As an example, a circuit configuration of a single-phase inverter using four semiconductor elements is shown.
 図2に示すように、インバータ11は、上下アームを構成する複数個の半導体素子51~54で構成され、第1の半導体素子51および第2の半導体素子52は、正極電源配線50Pと負極電源配線50Nとの間に直列に接続される。正極電源配線は、電源10の正極に接続された配線であり、負極電源配線は電源10の負極に接続された配線である。第3の半導体素子53および第4の半導体素子54は、正極電源配線50Pと負極電源配線50Nとの間に直列に接続される。直列接続された第3の半導体素子53および第4の半導体素子54とは並列に接続されている。また、第1の半導体素子51は、第1の上アームに該当し、第2の半導体素子52は、第1の下アームに該当する。第3の半導体素子53は、第2の上アームに該当し、第4の半導体素子54は、第2の下アームに該当する。半導体素子51~54は、制御部15の駆動信号生成部32から出力された駆動信号に基づいてオン・オフ制御される。 As shown in FIG. 2, the inverter 11 includes a plurality of semiconductor elements 51 to 54 that constitute upper and lower arms, and the first semiconductor element 51 and the second semiconductor element 52 include a positive power supply wiring 50P and a negative power supply. The wiring 50N is connected in series. The positive power supply wiring is a wiring connected to the positive electrode of the power supply 10, and the negative power supply wiring is a wiring connected to the negative electrode of the power supply 10. The third semiconductor element 53 and the fourth semiconductor element 54 are connected in series between the positive power supply wiring 50P and the negative power supply wiring 50N. The third semiconductor element 53 and the fourth semiconductor element 54 connected in series are connected in parallel. The first semiconductor element 51 corresponds to the first upper arm, and the second semiconductor element 52 corresponds to the first lower arm. The third semiconductor element 53 corresponds to the second upper arm, and the fourth semiconductor element 54 corresponds to the second lower arm. The semiconductor elements 51 to 54 are on / off controlled based on the drive signal output from the drive signal generator 32 of the controller 15.
 また、半導体素子51~54はMOSFETであって、半導体スイッチング素子51a~54aと半導体スイッチング素子51a~54aに逆並列に接続されたボディダイオード51b~54bとを含む。第1の半導体素子51は第1の半導体スイッチング素子51aと第1のボディダイオード51bとを含み、第2の半導体素子52は第2の半導体スイッチング素子52aと第2のボディダイオード52bとを含み、第3の半導体素子53は第3の半導体スイッチング素子53aと第3のボディダイオード53bとを含み、第4の半導体素子54は第4の半導体スイッチング素子54aと第4のボディダイオード54bとを含む。 The semiconductor elements 51 to 54 are MOSFETs, and include semiconductor switching elements 51a to 54a and body diodes 51b to 54b connected in reverse parallel to the semiconductor switching elements 51a to 54a. The first semiconductor element 51 includes a first semiconductor switching element 51a and a first body diode 51b, the second semiconductor element 52 includes a second semiconductor switching element 52a and a second body diode 52b, The third semiconductor element 53 includes a third semiconductor switching element 53a and a third body diode 53b, and the fourth semiconductor element 54 includes a fourth semiconductor switching element 54a and a fourth body diode 54b.
 インバータ11を単相モータを駆動するために最低限必要な4つの素子で構成されることが本実施の形態の特徴の一つである。このように素子数をできる限り少なくすることによって小型化・軽量化を達成することができる。また、ユニポーラ変調を行なう際にはモータ側に正・零・負の各電圧を出力することができる。 One of the features of the present embodiment is that the inverter 11 is composed of at least four elements necessary for driving a single-phase motor. Thus, miniaturization and weight reduction can be achieved by reducing the number of elements as much as possible. When performing unipolar modulation, positive, zero, and negative voltages can be output to the motor side.
 なお、本実施の例では半導体素子中のスイッチング素子をMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)として図示しているが、本実施の形態はこれに限らず、その他IGBT(Insulated Gate Bipolar Transistor)等の半導体スイッチング素子でも実施可能である。 In this embodiment, the switching element in the semiconductor element is illustrated as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). However, the present embodiment is not limited to this, and other IGBTs (Insulated Gate Bipolar Transistors). The semiconductor switching element such as) can also be implemented.
 [PWM制御の説明]
 本実施の形態ではインバータ11によってモータ12を駆動する際に、PWM制御(Pulse Width Modulation)を用いる。PWM制御とは出力電圧パルスの幅を変化させて変調する変調方法であり、三相モータを駆動する際には一般的によく使用されるが、本実施の形態では、単相モータをPWM制御する方法について説明する。
[Description of PWM control]
In the present embodiment, when the motor 12 is driven by the inverter 11, PWM control (Pulse Width Modulation) is used. PWM control is a modulation method that modulates by changing the width of the output voltage pulse, and is generally used when driving a three-phase motor. In this embodiment, PWM control is performed on a single-phase motor. How to do will be described.
 図3は、図1の駆動信号生成部32において駆動信号を発生する構成を示した回路図である。インバータ11は一般的に制御部の内部の駆動信号生成部32において三角波キャリア電圧値Vcとインバータ11の出力電圧を制御する電圧指令値Vm*を比較することにより、インバータ11に備えられた半導体素子51~54を駆動する信号を生成している。 FIG. 3 is a circuit diagram showing a configuration for generating a drive signal in the drive signal generator 32 of FIG. The inverter 11 is generally a semiconductor element provided in the inverter 11 by comparing the triangular wave carrier voltage value Vc with the voltage command value Vm * for controlling the output voltage of the inverter 11 in the drive signal generator 32 inside the controller. Signals for driving 51 to 54 are generated.
 図3を参照して、駆動信号生成部32は、乗算回路34と、コンパレータ35,36と、反転回路37,38とを含む。 Referring to FIG. 3, the drive signal generation unit 32 includes a multiplication circuit 34, comparators 35 and 36, and inversion circuits 37 and 38.
 乗算回路34は、インバータ11の出力電圧を制御する電圧指令値Vm*に-1を掛けて電圧指令値Vm*の符号を反転させる。コンパレータ35は、電圧指令値Vm*とキャリア信号の電圧値Vcとを比較し、インバータ駆動信号Q1、Q2を出力する。コンパレータ36は、乗算回路34から出力された電圧指令値Vm*の反転値とキャリア信号の電圧値Vcとを比較し、インバータ駆動信号Q3、Q4を出力する。反転回路37,38は、それぞれコンパレータ35,36から出力されたインバータ駆動信号Q1、Q3の符号を反転させる。インバータ駆動信号Q1~Q4は、半導体素子51~54のオン・オフを制御する信号である。 The multiplication circuit 34 inverts the sign of the voltage command value Vm * by multiplying the voltage command value Vm * that controls the output voltage of the inverter 11 by -1. The comparator 35 compares the voltage command value Vm * with the voltage value Vc of the carrier signal, and outputs inverter drive signals Q1 and Q2. The comparator 36 compares the inverted value of the voltage command value Vm * output from the multiplication circuit 34 with the voltage value Vc of the carrier signal, and outputs inverter drive signals Q3 and Q4. Inversion circuits 37 and 38 invert the signs of inverter drive signals Q1 and Q3 output from comparators 35 and 36, respectively. The inverter drive signals Q1 to Q4 are signals for controlling on / off of the semiconductor elements 51 to 54.
 コンパレータ35から出力されたインバータ駆動信号Q1、Q2は、Vm*>VcであればQ1=H(High)、Q2=L(Low)となり、Vm*<VcであればQ1=L、Q2=Hとなる。また、コンパレータ36から出力されたインバータ駆動信号Q3、Q4は、-Vm*>VcであればQ3=H、Q4=Lとなり、-Vm*<VcであればQ3=L、Q4=Hとなる。 The inverter drive signals Q1 and Q2 output from the comparator 35 are Q1 = H (High) and Q2 = L (Low) if Vm *> Vc, and Q1 = L and Q2 = H if Vm * <Vc. It becomes. The inverter drive signals Q3 and Q4 output from the comparator 36 are Q3 = H and Q4 = L if −Vm *> Vc, and Q3 = L and Q4 = H if −Vm * <Vc. .
 図4は、電圧指令値Vm*とインバータ駆動信号Q1~Q4と出力電圧Vmの出力例を示した波形図である。図4において、上から順に電圧指令値Vm*、反転値-Vm*、インバータ駆動信号Q1~Q4、モータ出力電圧Vmが示されている。インバータ駆動信号Q1~Q4が図4に示すように制御される結果、モータ12に加えられる電圧Vmは、正の出力電圧+Vo、出力電圧0、負の出力電圧-Voの3値に制御される(ユニポーラ制御)。 FIG. 4 is a waveform diagram showing an output example of the voltage command value Vm *, the inverter drive signals Q1 to Q4, and the output voltage Vm. In FIG. 4, a voltage command value Vm *, an inversion value −Vm *, inverter drive signals Q1 to Q4, and a motor output voltage Vm are shown in order from the top. As a result of the inverter drive signals Q1 to Q4 being controlled as shown in FIG. 4, the voltage Vm applied to the motor 12 is controlled to three values: a positive output voltage + Vo, an output voltage 0, and a negative output voltage −Vo. (Unipolar control).
 次に、変調率が変化した場合にインバータ出力電圧がどのように変わるかについて説明する。図5は、変調率が1の場合のインバータ出力電圧を示す波形図である。図6は、変調率が1.2の場合のインバータ出力電圧を示す波形図である。図7は、変調率が2の場合のインバータ出力電圧を示す波形図である。 Next, how the inverter output voltage changes when the modulation rate changes will be described. FIG. 5 is a waveform diagram showing the inverter output voltage when the modulation factor is 1. FIG. FIG. 6 is a waveform diagram showing the inverter output voltage when the modulation factor is 1.2. FIG. 7 is a waveform diagram showing the inverter output voltage when the modulation factor is 2. FIG.
 インバータ電圧指令Vm*と三角波キャリア電圧値Vcの振幅の比率(インバータ電圧指令/三角波キャリア振幅)を変調率とする。この変調率が1以下の場合には、三角波キャリアVcの周波数に応じてインバータ駆動信号Q1~Q4が生成されるため、図5に示すように、モータ12に加えられる電圧であるインバータ出力電圧Vmもキャリア周波数に応じた電圧パルスが出力される。 The ratio of the amplitude of the inverter voltage command Vm * and the triangular wave carrier voltage value Vc (inverter voltage command / triangular wave carrier amplitude) is taken as the modulation rate. When this modulation factor is 1 or less, inverter drive signals Q1 to Q4 are generated according to the frequency of the triangular wave carrier Vc, so that the inverter output voltage Vm, which is the voltage applied to the motor 12, as shown in FIG. Also, a voltage pulse corresponding to the carrier frequency is output.
 一方で、変調率が1を超えた場合(以下、過変調領域と呼ぶ)、図6、図7に示すように、インバータ電圧指令値Vm*が三角波キャリア電圧値Vcの振幅を超える区間が発生する。この区間では、三角波キャリアの周波数に応じたインバータ駆動信号は生成されず、インバータ出力電圧は正の出力電圧+Voもしくは負の出力電圧-Voに固定されるため、変調率1の時に比べ、大きな出力電圧を得ることが可能となる。 On the other hand, when the modulation rate exceeds 1 (hereinafter referred to as an overmodulation region), a section where the inverter voltage command value Vm * exceeds the amplitude of the triangular wave carrier voltage value Vc occurs as shown in FIGS. To do. In this section, the inverter drive signal corresponding to the frequency of the triangular wave carrier is not generated, and the inverter output voltage is fixed to the positive output voltage + Vo or the negative output voltage −Vo. A voltage can be obtained.
 [インバータの電流経路]
 図8は、インバータで出力した電圧パルスによりモータに流れる電流経路を示した図である。駆動信号生成部32からインバータ11に正の電圧パルスが出力された際には図8(a)に示す半導体スイッチング素子51a,54aを経由する電流経路でモータ12に電流が流れる。次に、零電圧パルスが出力された際には図8(b)または図8(d)に示す半導体スイッチング素子52a,54aを経由する電流経路または半導体スイッチング素子51a,53aを経由する電流経路でモータ12に電流が流れる。これは電源側からは電流が流れず、モータとインバータの間で電流が還流するモードとなる。
[Inverter current path]
FIG. 8 is a diagram showing a current path flowing through the motor by the voltage pulse output from the inverter. When a positive voltage pulse is output from the drive signal generator 32 to the inverter 11, a current flows through the motor 12 through a current path that passes through the semiconductor switching elements 51a and 54a shown in FIG. Next, when a zero voltage pulse is output, the current path passes through the semiconductor switching elements 52a and 54a or the current path passes through the semiconductor switching elements 51a and 53a shown in FIG. 8B or 8D. A current flows through the motor 12. This is a mode in which current does not flow from the power source side, and current flows back between the motor and the inverter.
 上記と同様に、駆動信号生成部32からインバータ11に負の電圧パルスが出力された際には図8(c)に示す半導体スイッチング素子53a,52aを経由する電流経路となり、電圧パルスが正の時とは逆の流れでモータ12に電流が流れる。 Similarly to the above, when a negative voltage pulse is output from the drive signal generator 32 to the inverter 11, the current path passes through the semiconductor switching elements 53a and 52a shown in FIG. 8C, and the voltage pulse is positive. A current flows through the motor 12 in the reverse flow.
 [ボディダイオードの通流時間を小さくする説明]
 図8(b)および図8(d)において、モータとインバータの間で電流が還流するモードでは各相のどちらか一方の半導体スイッチング素子をオンすることで、ボディダイオード51b、53bもしくはボディダイオード52b、54bの通流時間を短くすることができる。一般的に半導体スイッチング素子に逆並列に接続されたボディダイオードに電流を流すことに比べ、半導体スイッチング素子に電流を流した方が導通損失を低減させることが知られている。よって、ボディダイオード51b~54bに流れる時間を短くすることで損失を低減させることが可能となる。
[Explanation of reducing body diode flow time]
8B and 8D, in the mode in which current flows between the motor and the inverter, by turning on one of the semiconductor switching elements of each phase, the body diodes 51b, 53b or the body diode 52b are turned on. , 54b can be shortened. In general, it is known that the conduction loss is reduced when a current is passed through the semiconductor switching element, compared to when a current is passed through a body diode connected in antiparallel to the semiconductor switching element. Therefore, it is possible to reduce the loss by shortening the time flowing through the body diodes 51b to 54b.
 特に、インバータに備えられた半導体素子をMOSFETとすることによって、インバータとモータ間を還流する際にボディダイオードを通さずにMOSFETである半導体スイッチング素子に流すように制御することが可能である。この際、MOSFETのソース側からドレイン側に向かって電流を流すには対象のMOSFETをオンしなければいけないため、還流する際に合わせて還流する素子をオンする制御を実施する(図8(b)および図8(d))。一般的にMOSFETは、ボディダイオードに導通させるよりもFET側に電流を流した方が導通損失を低減させることが可能であるため、半導体素子をMOSFETにすることで還流する際の損失を低減させることが可能となる。 In particular, by using a MOSFET as the semiconductor element provided in the inverter, it is possible to control the current to flow through the semiconductor switching element that is a MOSFET without passing through the body diode when refluxing between the inverter and the motor. At this time, since the target MOSFET must be turned on in order to pass a current from the source side to the drain side of the MOSFET, control is performed to turn on the element to be recirculated in accordance with recirculation (FIG. 8B). ) And FIG. 8 (d)). In general, MOSFETs can reduce conduction loss by flowing a current to the FET side rather than conducting to a body diode. Therefore, by reducing the semiconductor element to a MOSFET, the loss at reflux is reduced. It becomes possible.
 なお、半導体スイッチング素子としてワイドバンドギャップ半導体を用いても良い。半導体スイッチング素子をワイドバンドギャップ半導体(例としてSiC)とすることで、シリコンの半導体(Si)に比べオン抵抗が小さくなり、より発熱を抑制することが可能となる。 A wide band gap semiconductor may be used as the semiconductor switching element. When the semiconductor switching element is a wide band gap semiconductor (for example, SiC), the on-resistance is smaller than that of silicon semiconductor (Si), and heat generation can be further suppressed.
 [発熱量の抑制と放熱構造の簡素化]
 半導体素子の損失は、電流が半導体素子を流れた際に発生する導通損と半導体がスイッチングする際に発生するスイッチング損との合計値から決定される。半導体素子は電流増加により、上記損失が増加することで発熱を伴う。その対策として一般的に素子の表面に熱伝導率の高い金属(ヒートシンク)を取り付け、放熱性を高めることがよく行なわれている。ただし、ヒートシンクを取り付けると、放熱性を高めることができる代わりに、ヒートシンクを取り付けるための設置スペースが増加するため、小型の製品に向けては適用しにくい。また、ヒートシンク分の重量が増加してしまうため、軽量化が求められる製品への適用も難しい。
[Reduction of heat generation and simplification of heat dissipation structure]
The loss of the semiconductor element is determined from the total value of the conduction loss that occurs when current flows through the semiconductor element and the switching loss that occurs when the semiconductor switches. A semiconductor element generates heat due to an increase in the loss due to an increase in current. As a countermeasure, it is common to increase heat dissipation by attaching a metal (heat sink) having high thermal conductivity to the surface of the element. However, if a heat sink is attached, the heat radiation performance can be improved, but the installation space for attaching the heat sink increases, so that it is difficult to apply to a small product. Further, since the weight of the heat sink is increased, it is difficult to apply to a product that is required to be reduced in weight.
 前述のように、ボディダイオードに流れる時間を短くすることによって、還流の際の導通損失を低減させ、素子の発熱を抑えることが可能となる。このため、MOSFETの形状を基板への放熱が良好な表面実装タイプにし、基板のみでMOSFETの温度上昇を抑制することが可能となる。このようにすればヒートシンクが不必要となるため、基板の小型化に貢献する。 As described above, by shortening the time flowing through the body diode, it is possible to reduce the conduction loss during reflux and to suppress the heat generation of the element. For this reason, it becomes possible to make the shape of the MOSFET a surface-mount type with good heat dissipation to the substrate, and to suppress the temperature rise of the MOSFET only by the substrate. This eliminates the need for a heat sink and contributes to downsizing of the substrate.
 基板に素子を表面実装する放熱方法に加え、基板を風路に設置することでさらなる放熱効果を得ることができる。たとえば、電動送風機のように空気の流れを発生させるものに使用され、電動送風機が発生する風によって基板上の半導体素子を放熱させることによって、半導体素子の温度上昇を大幅に抑制することができる。このような電動送風機は、後に図10、図11において説明する掃除機やハンドドライヤーに搭載される。 In addition to the heat dissipating method in which the element is surface-mounted on the substrate, a further heat dissipating effect can be obtained by installing the substrate in the air path. For example, it is used for a device that generates an air flow, such as an electric blower, and the semiconductor element on the substrate is radiated by the wind generated by the electric blower, so that the temperature rise of the semiconductor element can be significantly suppressed. Such an electric blower is mounted on a vacuum cleaner or a hand dryer, which will be described later with reference to FIGS.
 このようにすれば、基板への放熱と空気への放熱のみで半導体素子の熱を逃がすことが可能となり、ヒートシンクレスで装置を構成し、小型・軽量の製品を実現させることが可能となる。 In this way, the heat of the semiconductor element can be released only by the heat radiation to the substrate and the heat radiation to the air, and the device can be configured without a heat sink to realize a small and light product.
 [回転速度と変調率の関係]
 図9は、回転速度に対する変調率の関係を示す図である。回転速度の増加に伴い回転体の負荷トルクは大きくなるため、モータ出力トルクを増加させる必要がある。一般的にモータ出力トルクはモータ電流に比例して増加し、モータ電流の増加にはインバータの出力電圧の増加が必要である。よって、変調率を上げインバータ出力電圧を増加させることによって無理なく回転速度を増加させることが可能となる。
[Relationship between rotational speed and modulation rate]
FIG. 9 is a diagram showing the relationship of the modulation rate to the rotation speed. As the rotational speed increases, the load torque of the rotating body increases, so it is necessary to increase the motor output torque. In general, the motor output torque increases in proportion to the motor current, and the increase in the motor current requires an increase in the output voltage of the inverter. Therefore, it is possible to increase the rotation speed without difficulty by increasing the modulation rate and increasing the inverter output voltage.
 変調率はモータ回転速度と比例関係にあるため、本実施の形態では10万rpm以上の回転数において変調率が1より大きくするようにモータを制御する。 Since the modulation rate is proportional to the motor rotation speed, in this embodiment, the motor is controlled so that the modulation rate is greater than 1 at a rotation speed of 100,000 rpm or more.
 なぜならば、モータを10万rpm以上の動作点で動作させる場合においてはモータ鉄損が増加するため電気角一周期当りのスイッチング回数を低減させ、スイッチング損失を低減させることでモータ効率の低減を抑制させる必要がある。そこで、図9において、変調率が1を超えるポイントを10万rpm以上に設定する。これにより、高速回転時にスイッチング損失の増加を抑制した制御を実施することが可能となる。 This is because when the motor is operated at an operating point of 100,000 rpm or more, the motor iron loss increases, so the number of switching per one electrical angle cycle is reduced, and the switching loss is reduced to suppress the reduction in motor efficiency. It is necessary to let Therefore, in FIG. 9, the point where the modulation rate exceeds 1 is set to 100,000 rpm or more. As a result, it is possible to perform control while suppressing an increase in switching loss during high-speed rotation.
 より詳細には、高速領域(例えば10万rpm以上)では変調率を1より大きくすることによってインバータの出力電圧を増加させつつ、インバータ内の半導体素子が行なうスイッチング回数を低減させる。これによって、スイッチング損失の増加を抑えることが可能となる。変調率が1を超えることでモータ出力電圧は増加する一方で、スイッチング回数が低下するため、モータ電流の歪が懸念される。しかし、高速回転中においてはモータのリアクタンス成分が大きくなるため、モータに流れる電流の時間あたり変化量(di/dt)が小さくなる。 More specifically, in the high-speed region (for example, 100,000 rpm or more), the number of switching operations performed by the semiconductor elements in the inverter is reduced while increasing the output voltage of the inverter by increasing the modulation rate above 1. As a result, an increase in switching loss can be suppressed. When the modulation factor exceeds 1, the motor output voltage increases, but the number of switching times decreases, so there is a concern about distortion of the motor current. However, since the reactance component of the motor increases during high-speed rotation, the amount of change (di / dt) per hour of the current flowing through the motor decreases.
 一方、低速領域(例えば0~7万rpm)では変調率を1以下として制御することによって、電流を正弦波に制御しモータの高効率化を図る。なお、低速領域および高速領域で共通のキャリア周波数を使用する場合は、高速領域に合わせたキャリア周波数を採用するため、低速領域ではPWMパルス数が必要以上に多くなる傾向にある。よって低速領域では、高速領域で使用するキャリア周波数よりも低いキャリア周波数を使用することによって、スイッチング損失を低下させる手法を採用しても良い。また、回転速度の変化に合わせてキャリア周波数を変化させることによって、回転速度が変化しても電気角一周期あたりのパルス数が変化しないような構成としても良い。 On the other hand, in a low speed region (for example, 0 to 70,000 rpm), by controlling the modulation rate to 1 or less, the current is controlled to be a sine wave, and the motor efficiency is improved. When a common carrier frequency is used in the low speed region and the high speed region, the carrier frequency matched to the high speed region is adopted, and therefore the number of PWM pulses tends to be more than necessary in the low speed region. Therefore, in the low speed region, a technique of reducing the switching loss by using a carrier frequency lower than the carrier frequency used in the high speed region may be adopted. Further, by changing the carrier frequency in accordance with the change in the rotation speed, the number of pulses per electrical angle cycle may not change even if the rotation speed changes.
 また、高速回転で回転している場合においてはモータのリアクタンスが増加するため、電圧パルスに応じた電流の立ち上がりも緩やかになる。したがって、高速回転時に電圧パルスが少なくなった場合においても、正弦波に近づく制御を実施することが可能となる。すなわち、高速回転時は低速回転時に比べ電流歪は小さくなるので波形の歪に対する影響は小さい。よって、高速回転時においてはスイッチングパルス数を低減させることによってスイッチング損失の増加を抑制し、高効率化を図ることが可能となる。 Also, when the motor rotates at a high speed, the reactance of the motor increases, so that the current rise corresponding to the voltage pulse becomes gentle. Therefore, even when the voltage pulse decreases at the time of high speed rotation, it is possible to carry out control approaching a sine wave. That is, the current distortion is smaller during high-speed rotation than during low-speed rotation, and thus the influence on waveform distortion is small. Therefore, by increasing the number of switching pulses during high-speed rotation, an increase in switching loss can be suppressed and higher efficiency can be achieved.
 [PWMパルスについての説明]
 インバータ出力電圧の電圧パルスは三角波キャリア電圧値Vcと電圧指令値Vm*を比較することにより決定される。高速回転中においては電圧指令値Vm*の周波数も増加し、電気角一周期中に出力される電圧パルスの数が減少するため、出力電圧パルスが電流波形の歪へもたらす影響も大きくなる。一般的に、偶数回の電圧パルスを印加した場合には偶数次高調波が重畳され、正側と負側の波形の対称性が無くなる。よって、モータ電流波形が高調波の含有率を抑えた正弦波に近づくようにするため、本実施の形態では、出力電圧パルスの数が電気角半周期中に奇数となるように制御する。
[Description of PWM pulse]
The voltage pulse of the inverter output voltage is determined by comparing the triangular wave carrier voltage value Vc with the voltage command value Vm *. During high-speed rotation, the frequency of the voltage command value Vm * also increases, and the number of voltage pulses output during one electrical angle period decreases, so that the influence of the output voltage pulse on the distortion of the current waveform also increases. In general, when an even number of voltage pulses are applied, even-order harmonics are superimposed, and the symmetry of the positive and negative waveforms is lost. Therefore, in order to make the motor current waveform approach a sine wave in which the harmonic content is suppressed, in the present embodiment, the number of output voltage pulses is controlled to be an odd number during the electrical angle half cycle.
 高速回転中において、出力電圧パルスの数が奇数となるように制御するためには、三角波キャリアをモータ回転速度と同期させる方法がある。また、製品仕様で回転速度を指令値とする制御を実施する場合には、予め回転数指令に対してキャリア周波数を決定する方法がある。ただし、本実施の形態では出力電圧パルスの数が奇数になる制御であればこれに限らない。 In order to control the number of output voltage pulses to be an odd number during high-speed rotation, there is a method of synchronizing the triangular wave carrier with the motor rotation speed. In addition, when performing control using the rotational speed as a command value in the product specification, there is a method of determining the carrier frequency in advance with respect to the rotational speed command. However, the present embodiment is not limited to this as long as the number of output voltage pulses is an odd number.
 また、高速回転時においてはスイッチング損失を低減させるため、電圧パルスを少なくすることが望まれる。一般的に電気角半周期中に5回以上の電圧パルスを入れることで、正弦波に制御できることが知られている。よって、正弦波PWM制御を行なう場合のパルス数を5とし、過変調制御ではインバータが出力する電圧パルスは5個以下となるように制御を行なうことが好ましい。 Also, in order to reduce switching loss during high speed rotation, it is desirable to reduce the voltage pulse. In general, it is known that a sine wave can be controlled by putting voltage pulses five times or more in an electrical angle half cycle. Therefore, it is preferable to perform control so that the number of pulses when performing sine wave PWM control is 5, and in overmodulation control, the voltage pulse output from the inverter is 5 or less.
 また、出力電圧パルスを生成する際に、すべてのパルスが固定の幅で実施する制御もあるが、より高調波含有率の小さい正弦波を生成するため、本実施の形態では電気半周期の中心に近いほどパルス幅が広くなるようにインバータを制御する。 In addition, when generating an output voltage pulse, there is a control in which all pulses are performed with a fixed width, but in order to generate a sine wave with a smaller harmonic content, in this embodiment, the center of the electrical half cycle is generated. The inverter is controlled so that the pulse width becomes wider as it is closer to.
 また、蓄電池である電源10の電源電圧が低下した場合、合わせて出力電圧も低下してしまう事が懸念される。そこで、高速回転時等、モータ12の回転を低下させたくない場合において、電源電圧検出手段22で検出された電源電圧の値が低下した場合、変調率を上げ出力電圧パルスのパルス幅を広くさせることによってインバータ出力電圧を増加させる、すなわち、電源10の電圧が低くなるほど出力電圧パルスのパルス幅を広くさせることによって出力電圧の低下を抑え、回転数の低下を抑制し、回転数の増加もしくは一定の回転数の維持を無理なく実行させることができる。 Also, when the power supply voltage of the power supply 10 that is a storage battery is lowered, there is a concern that the output voltage may also be lowered. Therefore, when the value of the power supply voltage detected by the power supply voltage detecting means 22 is reduced when it is not desired to reduce the rotation of the motor 12, such as during high-speed rotation, the modulation rate is increased and the pulse width of the output voltage pulse is increased. In this way, the inverter output voltage is increased, that is, the pulse width of the output voltage pulse is widened as the voltage of the power supply 10 becomes lower, thereby suppressing the decrease in the output voltage, suppressing the decrease in the rotational speed, and increasing or maintaining the rotational speed. The number of rotations can be maintained without difficulty.
 また、インバータ駆動信号を生成する際に使用する変調方式としては、正・負の両電位に電圧パルスを出力するバイポーラ変調や電気角半周期毎に正/零と負/零にて電圧パルスを出力するユニポーラ変調が知られている。 The modulation method used when generating the inverter drive signal includes bipolar modulation that outputs voltage pulses to both positive and negative potentials, and voltage pulses with positive / zero and negative / zero at every half electrical angle cycle. Output unipolar modulation is known.
 バイポーラ変調ではモータ電圧が-V,+Vの2レベルで出力されるのに対し、ユニポーラ変調では-V,0,+Vの3レベルで出力される。モータ電流の半周期中(0~180°)には、バイポーラ変調は2レベル、ユニポーラ変調は3レベルでパルスが生成されるので、電流のdi/dtで比較した場合、ユニポーラ変調の方が小さくなる。よって、スイッチングの際の高調波含有率は、ユニポーラ変調の方が少なくなる。したがって、本実施の形態では、より高調波含有率が少ない正弦波に制御できると考えられるユニポーラ変調を用いて制御を実施する。 In bipolar modulation, the motor voltage is output at two levels of -V and + V, whereas in unipolar modulation, it is output at three levels of -V, 0, and + V. During the half cycle of motor current (0 to 180 °), pulses are generated at 2 levels for bipolar modulation and 3 levels for unipolar modulation, so unipolar modulation is smaller when compared with current di / dt. Become. Therefore, the harmonic content at the time of switching is smaller in unipolar modulation. Therefore, in the present embodiment, control is performed using unipolar modulation, which can be controlled to a sine wave with a lower harmonic content.
 [モータ駆動装置の総括]
 以上説明した本実施の形態のモータ駆動装置について、再び図1、図2を参照して総括する。モータ駆動装置1は、単相交流にて駆動する単相モータ12を駆動する。モータ駆動装置1は、単相モータ12を駆動するインバータ11と、インバータ11を制御する制御部15とを備える。
[Overview of motor drive unit]
The motor drive device of the present embodiment described above will be summarized with reference to FIGS. 1 and 2 again. The motor drive device 1 drives a single-phase motor 12 that is driven by a single-phase alternating current. The motor drive device 1 includes an inverter 11 that drives a single-phase motor 12 and a control unit 15 that controls the inverter 11.
 インバータ11は、正極電源配線50Pと負極電源配線50Nとの間に直列に接続された第1上アーム51および第1下アーム52と、正極電源配線50Pと負極電源配線50Nとの間に直列に接続された第2上アーム53および第2下アーム54とを含む。 The inverter 11 includes a first upper arm 51 and a first lower arm 52 connected in series between the positive power supply wiring 50P and the negative power supply wiring 50N, and in series between the positive power supply wiring 50P and the negative power supply wiring 50N. A second upper arm 53 and a second lower arm 54 connected to each other are included.
 単相モータ12は、第1上アーム51と第1下アーム52との第1の接続点と第2上アーム53と第2下アーム54との第2の接続点との間に接続される。 The single-phase motor 12 is connected between a first connection point between the first upper arm 51 and the first lower arm 52 and a second connection point between the second upper arm 53 and the second lower arm 54. .
 制御部15は、電気角半周期中の中心に近いほどパルス幅が広くなるように単相モータに電圧のパルスを出力するようにインバータを制御する。第1上アーム51、第1下アーム52、第2上アーム53、第2下アーム54は、それぞれ半導体スイッチング素子51a~54aと半導体スイッチング素子51a~54aにそれぞれ逆並列に接続されたボディダイオード51b~54bとを含む。制御部15は、零電圧を出力する際に、第1上アーム51および第2上アーム53の半導体素子を同時に導通させるか、または第1下アーム52および第2下アーム54の半導体素子を同時に導通させ、ボディダイオードの通流時間を小さくする。 The control unit 15 controls the inverter so as to output a voltage pulse to the single-phase motor so that the pulse width becomes wider as it is closer to the center in the electrical angle half cycle. The first upper arm 51, the first lower arm 52, the second upper arm 53, and the second lower arm 54 are respectively composed of the semiconductor switching elements 51a to 54a and the body diode 51b connected to the semiconductor switching elements 51a to 54a in antiparallel. To 54b. When outputting the zero voltage, the control unit 15 makes the semiconductor elements of the first upper arm 51 and the second upper arm 53 conductive at the same time, or makes the semiconductor elements of the first lower arm 52 and the second lower arm 54 simultaneously. Energize to reduce body diode flow time.
 一般的にボディダイオードに導通させるよりもFET側に電流を流した方が導通損失を低減させることが可能であるため、上記のように制御することによって還流する際の損失を低減させることが可能となる。 In general, it is possible to reduce conduction loss by flowing current to the FET side rather than conducting to the body diode. Therefore, it is possible to reduce loss when returning by controlling as described above. It becomes.
 好ましくは、制御部15は、電気角半周期中にインバータ11に奇数の電圧パルスを発生させるようにインバータ11を制御する。これにより、偶数次高調波の重畳を避けることができ、正側と負側の波形の対称性が崩れにくくなり正弦波の電流を発生しやすくなる。 Preferably, the control unit 15 controls the inverter 11 such that an odd number of voltage pulses is generated in the inverter 11 during an electrical angle half cycle. As a result, even-order harmonics can be prevented from being superimposed, and the symmetry of the positive and negative waveforms is not easily lost, and a sine wave current is likely to be generated.
 [製品適用例]
 本発明における実際の製品適用例における効果について以下説明を行なう。電気機器としては、特に電気掃除機とハンドドライヤーについて説明する。
[Product application example]
The effect in the actual product application example in the present invention will be described below. As the electric equipment, a vacuum cleaner and a hand dryer will be described in particular.
 [電気掃除機への適用例]
 図10は、実施の形態のモータ駆動装置が適用された電気掃除機の構成の一例を示す図である。電気掃除機61は、延長管62、吸込口体63、電動送風機64、集塵室65、操作部66、蓄電池である電源10およびセンサ68を備える。電動送風機64は、実施の形態に記載されたモータ駆動装置1を備える。電気掃除機61は、蓄電池である電源10によって電動送風機64を駆動し、吸込口体63から吸込みを行ない、延長管62を介して集塵室65へごみを吸引する。使用の際は操作部66を持ち、電気掃除機61を操作する。
[Example of application to a vacuum cleaner]
FIG. 10 is a diagram illustrating an example of a configuration of a vacuum cleaner to which the motor drive device of the embodiment is applied. The vacuum cleaner 61 includes an extension pipe 62, a suction port 63, an electric blower 64, a dust collection chamber 65, an operation unit 66, a power supply 10 that is a storage battery, and a sensor 68. The electric blower 64 includes the motor drive device 1 described in the embodiment. The vacuum cleaner 61 drives the electric blower 64 by the power supply 10 that is a storage battery, performs suction from the suction port body 63, and sucks dust into the dust collection chamber 65 through the extension pipe 62. In use, the operation unit 66 is held and the electric vacuum cleaner 61 is operated.
 電気掃除機の様に高速回転を実施するモータを駆動する際にはモータ駆動回転数範囲が広範囲であるため、本実施の形態に示す様に高回転数領域においては変調率1を超えて駆動することで高回転数領域におけるスイッチング損失を低減させることが可能である。また、高効率な駆動ができるため、運転時間の長時間化が望め、放熱部品の削減により小型・軽量化に寄与することができる。 When driving a motor that performs high-speed rotation, such as a vacuum cleaner, the motor-driven rotation speed range is wide. Therefore, as shown in the present embodiment, the motor is driven exceeding a modulation factor of 1 in the high rotation speed region. By doing so, it is possible to reduce the switching loss in the high rotation speed region. In addition, since the drive can be performed with high efficiency, it is possible to expect a longer operation time, and it is possible to contribute to a reduction in size and weight by reducing heat radiation components.
 [ハンドドライヤーへの適用例]
 図11は、実施の形態のモータ駆動装置が適用されたハンドドライヤーの構成の一例を示す図である。図11に示すハンドドライヤーは、ケーシング71、手検知センサ72、水受け部73、ドレン容器74、カバー76、センサ77、および吸気口78を備える。ここで、センサ77は、ジャイロセンサおよび人感センサのいずれかである。ハンドドライヤーは、ケーシング71内に図示しない電動送風機を有する。ハンドドライヤーでは、水受け部73の上部にある手挿入部79に手を挿入することで電動送風機による送風で水を吹き飛ばし、水受け部73からドレン容器74へと水を溜めこむ構造となっている。
[Example of application to hand dryer]
FIG. 11 is a diagram illustrating an example of a configuration of a hand dryer to which the motor drive device of the embodiment is applied. The hand dryer shown in FIG. 11 includes a casing 71, a hand detection sensor 72, a water receiver 73, a drain container 74, a cover 76, a sensor 77, and an intake port 78. Here, the sensor 77 is either a gyro sensor or a human sensor. The hand dryer has an electric blower (not shown) in the casing 71. The hand dryer has a structure in which water is blown off by blowing with an electric blower by inserting a hand into the hand insertion portion 79 at the top of the water receiving portion 73 and water is accumulated from the water receiving portion 73 to the drain container 74. Yes.
 ハンドドライヤーのように高速回転を実施するモータを駆動する際にはモータ駆動回転数範囲が広範囲であるため、本実施の形態に示す様に高回転数領域においては変調率1を超えて駆動することで高回転数領域におけるスイッチング損失を低減させることが可能である。また、高効率な駆動ができるため、消費電力の削減が望め、放熱部品の削減により小型・軽量化に寄与することができる。小型であれば、設置場所の制約が解消され、適用範囲を広げることが可能となる。 When driving a motor that performs high-speed rotation, such as a hand dryer, since the motor-driven rotation speed range is wide, as shown in the present embodiment, the motor is driven at a modulation rate exceeding 1 in the high rotation speed region. Thus, it is possible to reduce the switching loss in the high rotation speed region. In addition, since high-efficiency driving is possible, reduction of power consumption can be expected, and reduction of heat dissipation parts can contribute to reduction in size and weight. If it is small, restrictions on the installation location are eliminated, and the application range can be expanded.
 なお、本実施の形態に記載の電動送風機は電気掃除機及びハンドドライヤーに搭載した場合について記載したが、電気掃除機に限らず、ハンドドライヤー、焼却炉、粉砕機、乾燥機、集塵機、印刷機械、クリーニング機械、製菓機械、製茶機械、木工機械、プラスチック押出機、ダンボール機械、包装機械、熱風発生機、物体輸送、吸塵用、一般送排風、OA機器、等の電動送風機を備えた製品であればこれに限らない。 In addition, although the electric blower described in the present embodiment is described as being mounted on a vacuum cleaner and a hand dryer, it is not limited to a vacuum cleaner, but a hand dryer, an incinerator, a pulverizer, a dryer, a dust collector, a printing machine , Products equipped with electric blowers such as cleaning machines, confectionery machines, tea making machines, woodworking machines, plastic extruders, cardboard machines, packaging machines, hot air generators, object transportation, dust collection, general air supply / exhaust air, OA equipment, etc. If there is, it is not limited to this.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1 モータ駆動装置、10 電源、11 インバータ、12 モータ、15 制御部、20 電流検出部、21 回転検出部、30 ディジタル変換器、31 プロセッサ、32 駆動信号生成部、34 乗算回路、35,36 コンパレータ、37,38 反転回路、50N 負極電源配線、50P 正極電源配線、51,52,53,54 半導体素子、61 電気掃除機、62 延長管、63 吸込口体、64 電動送風機、65 集塵室、66 操作部、68,77 センサ、71 ケーシング、72 手検知センサ、73 水受け部、74 ドレン容器、76 カバー、78 吸気口、79 手挿入部。 1 motor drive device, 10 power supply, 11 inverter, 12 motor, 15 control unit, 20 current detection unit, 21 rotation detection unit, 30 digital converter, 31 processor, 32 drive signal generation unit, 34 multiplication circuit, 35, 36 comparator 37, 38 Inversion circuit, 50N negative power supply wiring, 50P positive power supply wiring, 51, 52, 53, 54 semiconductor element, 61 vacuum cleaner, 62 extension pipe, 63 suction port, 64 electric blower, 65 dust collection chamber, 66 operation part, 68, 77 sensor, 71 casing, 72 hand detection sensor, 73 water receiving part, 74 drain container, 76 cover, 78 inlet, 79 hand insertion part.

Claims (6)

  1.  単相交流にて駆動する単相モータを蓄電池から印加される電力によって駆動するモータ駆動装置であって、
     前記単相モータを駆動するインバータを備え、
     前記インバータは、
     直列に接続された第1の半導体素子および第2の半導体素子と、
     直列に接続された第3の半導体素子および第4の半導体素子を含み、
     前記第1の半導体素子および前記第2の半導体素子と、前記第3の半導体素子および前記第4の半導体素子は並列に接続され、
     前記単相モータは、前記第1の半導体素子と前記第2の半導体素子の間と前記第3の半導体素子と前記第4の半導体素子との間に接続され、
     前記蓄電池の電圧が低くなるほど前記単相モータに加えられる電圧のパルス幅が広くなるモータ駆動装置。
    A motor driving device for driving a single-phase motor driven by a single-phase alternating current with electric power applied from a storage battery,
    An inverter for driving the single-phase motor;
    The inverter is
    A first semiconductor element and a second semiconductor element connected in series;
    Including a third semiconductor element and a fourth semiconductor element connected in series;
    The first semiconductor element and the second semiconductor element, the third semiconductor element and the fourth semiconductor element are connected in parallel,
    The single phase motor is connected between the first semiconductor element and the second semiconductor element and between the third semiconductor element and the fourth semiconductor element,
    The motor drive device in which the pulse width of the voltage applied to the single-phase motor becomes wider as the voltage of the storage battery becomes lower.
  2.  電気角半周期中に前記インバータに奇数の電圧パルスを発生させる請求項1に記載のモータ駆動装置。 The motor drive device according to claim 1, wherein an odd number of voltage pulses are generated in the inverter during an electrical angle half cycle.
  3.  前記第1~第4の半導体素子は、基板上に表面実装され、前記基板以外の放熱材を使用しない、請求項1または2に記載のモータ駆動装置。 3. The motor driving apparatus according to claim 1, wherein the first to fourth semiconductor elements are surface-mounted on a substrate and do not use a heat dissipation material other than the substrate.
  4.  前記第1~第4の半導体素子は、ワイドバンドギャップ半導体である、請求項1~3のいずれか1項に記載のモータ駆動装置。 The motor driving apparatus according to any one of claims 1 to 3, wherein the first to fourth semiconductor elements are wide band gap semiconductors.
  5.  請求項1~4のいずれか1項に記載のモータ駆動装置を備える、電動送風機。 An electric blower comprising the motor drive device according to any one of claims 1 to 4.
  6.  請求項5に記載の電動送風機を備える、電気掃除機。 A vacuum cleaner comprising the electric blower according to claim 5.
PCT/JP2016/076452 2016-09-08 2016-09-08 Motor drive device, electric fan, and electric vacuum cleaner WO2018047274A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018537933A JP6889166B2 (en) 2016-09-08 2016-09-08 Motor drive, electric blower, and vacuum cleaner
PCT/JP2016/076452 WO2018047274A1 (en) 2016-09-08 2016-09-08 Motor drive device, electric fan, and electric vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076452 WO2018047274A1 (en) 2016-09-08 2016-09-08 Motor drive device, electric fan, and electric vacuum cleaner

Publications (1)

Publication Number Publication Date
WO2018047274A1 true WO2018047274A1 (en) 2018-03-15

Family

ID=61562602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076452 WO2018047274A1 (en) 2016-09-08 2016-09-08 Motor drive device, electric fan, and electric vacuum cleaner

Country Status (2)

Country Link
JP (1) JP6889166B2 (en)
WO (1) WO2018047274A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180967A1 (en) * 2018-03-23 2019-09-26 三菱電機株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
WO2019180972A1 (en) * 2018-03-23 2019-09-26 三菱電機株式会社 Motor drive device, electric fan, vacuum cleaner, and hand dryer
JP6616055B1 (en) * 2019-03-28 2019-12-04 三菱電機株式会社 Motor drive device, vacuum cleaner and hand dryer
JP6739691B1 (en) * 2019-08-23 2020-08-12 三菱電機株式会社 Motor drive device, electric blower, vacuum cleaner and hand dryer
CN111869095A (en) * 2018-03-23 2020-10-30 三菱电机株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
CN111869098B (en) * 2018-03-23 2024-05-03 三菱电机株式会社 Motor driving device, electric blower, dust collector and hand dryer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746886A (en) * 1993-07-27 1995-02-14 Nec Corp Motor drive circuit
JP2008132919A (en) * 2006-11-29 2008-06-12 Nsk Ltd Electric power steering control device
WO2015182659A1 (en) * 2014-05-30 2015-12-03 三菱電機株式会社 Multigroup polyphase driver system and method for driving dynamo-electric machine
JP2016092920A (en) * 2014-10-31 2016-05-23 三菱電機株式会社 Electric blower and vacuum cleaner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421393A (en) * 1990-05-14 1992-01-24 Toyota Autom Loom Works Ltd Pwm control circuit
JP5762164B2 (en) * 2011-06-17 2015-08-12 三菱電機株式会社 Power converter control device
KR20140018407A (en) * 2011-09-21 2014-02-12 히타치 어플라이언스 가부시키가이샤 Electric power conversion device, motor drive device and air conditioner
JP5968010B2 (en) * 2012-04-02 2016-08-10 三菱電機株式会社 Power converter control device
JP2015173549A (en) * 2014-03-12 2015-10-01 日立オートモティブシステムズ株式会社 Inverter controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746886A (en) * 1993-07-27 1995-02-14 Nec Corp Motor drive circuit
JP2008132919A (en) * 2006-11-29 2008-06-12 Nsk Ltd Electric power steering control device
WO2015182659A1 (en) * 2014-05-30 2015-12-03 三菱電機株式会社 Multigroup polyphase driver system and method for driving dynamo-electric machine
JP2016092920A (en) * 2014-10-31 2016-05-23 三菱電機株式会社 Electric blower and vacuum cleaner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019180972A1 (en) * 2018-03-23 2020-12-03 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer
JP7019025B2 (en) 2018-03-23 2022-02-14 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer
CN111869098B (en) * 2018-03-23 2024-05-03 三菱电机株式会社 Motor driving device, electric blower, dust collector and hand dryer
US11863104B2 (en) 2018-03-23 2024-01-02 Mitsubishi Electric Corporation Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JPWO2019180970A1 (en) * 2018-03-23 2020-12-03 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer
CN111869098A (en) * 2018-03-23 2020-10-30 三菱电机株式会社 Motor drive device, electric blower, vacuum cleaner, and hand dryer
WO2019180972A1 (en) * 2018-03-23 2019-09-26 三菱電機株式会社 Motor drive device, electric fan, vacuum cleaner, and hand dryer
JPWO2019180967A1 (en) * 2018-03-23 2020-12-03 三菱電機株式会社 Motor drive, vacuum cleaner and hand dryer
CN111869095A (en) * 2018-03-23 2020-10-30 三菱电机株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
WO2019180967A1 (en) * 2018-03-23 2019-09-26 三菱電機株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
WO2020194754A1 (en) * 2019-03-28 2020-10-01 三菱電機株式会社 Motor drive device, vacuum cleaner, and hand dryer
CN113574794A (en) * 2019-03-28 2021-10-29 三菱电机株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
EP3952104A4 (en) * 2019-03-28 2022-03-30 Mitsubishi Electric Corporation Motor drive device, vacuum cleaner, and hand dryer
JP6616055B1 (en) * 2019-03-28 2019-12-04 三菱電機株式会社 Motor drive device, vacuum cleaner and hand dryer
JP6739691B1 (en) * 2019-08-23 2020-08-12 三菱電機株式会社 Motor drive device, electric blower, vacuum cleaner and hand dryer

Also Published As

Publication number Publication date
JP6889166B2 (en) 2021-06-18
JPWO2018047274A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2018047274A1 (en) Motor drive device, electric fan, and electric vacuum cleaner
JP6644159B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP5797781B2 (en) Motor drive circuit and permanent magnet synchronous motor
WO2018138807A1 (en) Motor drive device, electric fan, electric cleaner, and hand dryer
JP6800329B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
US11316465B2 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP6847195B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP7237198B2 (en) motor drives, vacuum cleaners and hand dryers
JP7237197B2 (en) motor drives, vacuum cleaners and hand dryers
WO2020208786A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
WO2020208788A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP6739691B1 (en) Motor drive device, electric blower, vacuum cleaner and hand dryer
JP6910538B2 (en) Motor drive, vacuum cleaner and hand dryer
JP6616055B1 (en) Motor drive device, vacuum cleaner and hand dryer
JP6636224B1 (en) Motor drive, vacuum cleaner and hand dryer
JP7150152B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
WO2020208785A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
WO2019180968A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537933

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915692

Country of ref document: EP

Kind code of ref document: A1