WO2019180967A1 - Motor drive device, electric vacuum cleaner, and hand dryer - Google Patents

Motor drive device, electric vacuum cleaner, and hand dryer Download PDF

Info

Publication number
WO2019180967A1
WO2019180967A1 PCT/JP2018/011932 JP2018011932W WO2019180967A1 WO 2019180967 A1 WO2019180967 A1 WO 2019180967A1 JP 2018011932 W JP2018011932 W JP 2018011932W WO 2019180967 A1 WO2019180967 A1 WO 2019180967A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
inverter
output
phase
Prior art date
Application number
PCT/JP2018/011932
Other languages
French (fr)
Japanese (ja)
Inventor
和徳 畠山
裕次 ▲高▼山
遥 松尾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/011932 priority Critical patent/WO2019180967A1/en
Priority to JP2020507287A priority patent/JP6910538B2/en
Publication of WO2019180967A1 publication Critical patent/WO2019180967A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a motor driving device for driving a single-phase motor, and a vacuum cleaner and a hand dryer provided with the motor driving device.
  • Patent Document 1 discloses a technique for applying a rectangular wave voltage of a plurality of pulses synchronized with a detection signal of a Hall sensor and flowing a rectangular wave current synchronized with a motor induced voltage during an acceleration mode period in which the motor is accelerated. Has been.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a motor drive device capable of suppressing vibration and noise during motor acceleration.
  • a motor drive device includes an inverter that outputs an AC voltage to a single-phase motor, and a control unit that controls the AC voltage output by the inverter. .
  • the control unit causes the inverter to output a rectangular wave voltage at the start of the single-phase motor and in the low-speed rotation range, and causes the inverter to output a sine wave voltage in the medium-speed rotation range of the single-phase motor. In the high-speed rotation range, the inverter outputs a trapezoidal wave voltage.
  • Circuit diagram of the inverter shown in FIG. 1 is a block diagram showing a functional part that generates a pulse width modulation (PWM) signal among the functional parts of the control unit shown in FIG.
  • the block diagram which shows an example of the carrier comparison part shown by FIG. FIG. 4 is a time chart showing an example of the waveform of the main part in the carrier comparison unit shown in FIG.
  • the block diagram which shows the other example of the carrier comparison part shown by FIG. FIG. 6 is a time chart showing a waveform example of a main part in the carrier comparison unit shown in FIG.
  • the block diagram which shows the function structure for calculating the advance angle phase input into the carrier comparison part shown by FIG.4 and FIG.6 The figure which shows an example of the calculation method of the advance angle phase in embodiment Time chart used for explaining the relationship between the voltage command and the advance phase shown in FIGS.
  • FIG. 1 a voltage command, and an inverter output voltage
  • FIG. 1 a voltage command, and an inverter output voltage
  • FIG. 1 The figure which shows an example of the waveform of the carrier in the high speed rotation area at the time of rotating the single phase motor shown by FIG. 1, a voltage command, and an inverter output voltage
  • FIG. 1 The figure which shows the equivalent circuit of the single phase motor shown by FIG.
  • Time chart used for explanation of operation at the time of switching from rectangular wave PWM to sine wave PWM in the embodiment
  • FIG. 1 The figure which shows the time change of the brake current which flows into the single phase motor shown by FIG.
  • FIG. 1 The figure which shows the relationship between the amplitude of the voltage command before voltage limitation and the fundamental wave component of the inverter output voltage
  • FIG. 1 The block diagram of the vacuum cleaner provided with the motor drive device which concerns on embodiment Configuration diagram of a hand dryer provided with a motor drive device according to an embodiment
  • connection a motor drive device, a vacuum cleaner, and a hand dryer according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • the present invention is not limited to the following embodiments.
  • electric connection and physical connection are not distinguished from each other and simply referred to as “connection”.
  • FIG. 1 is a configuration diagram of a motor drive system 1 including a motor drive device 2 according to an embodiment.
  • a motor drive system 1 shown in FIG. 1 includes a single-phase motor 12, a motor drive device 2, a battery 10, a voltage sensor 20, and a position sensor 21.
  • the motor drive device 2 drives the single-phase motor 12 by supplying AC power to the single-phase motor 12.
  • the battery 10 is a DC power source that supplies DC power to the motor driving device 2.
  • the voltage sensor 20 detects a DC voltage V dc output from the battery 10 to the motor driving device 2.
  • the position sensor 21 detects a rotor rotational position that is a rotational position of the rotor 12 a built in the single-phase motor 12.
  • the single phase motor 12 is used as a rotating electric machine that rotates an electric blower (not shown).
  • the single-phase motor 12 and the electric blower are mounted on devices such as a vacuum cleaner and a hand dryer.
  • voltage sensor 20 detects DC voltage V dc , but the detection target of voltage sensor 20 is not limited to DC voltage V dc output from battery 10.
  • the detection target of the voltage sensor 20 may be an inverter output voltage that is an output voltage of the motor drive device 2. “Inverter output voltage” has the same meaning as “motor applied voltage” described later.
  • the motor drive device 2 includes an inverter 11, a control unit 25, and a drive signal generation unit 32.
  • the inverter 11 is connected to the single phase motor 12 and outputs an AC voltage to the single phase motor 12.
  • the control unit 25 controls the AC voltage output from the inverter 11.
  • the inverter 11 is assumed to be a single-phase inverter, but any inverter that can drive a single-phase motor may be used.
  • the control unit 25 receives a DC voltage V dc detected by the voltage sensor 20, a position sensor signal 21 a that is a rotational position detection signal output from the position sensor 21, and a voltage amplitude command V *. *
  • the voltage amplitude command V is the amplitude of the voltage command V m to be described later.
  • the control unit 25 generates PWM signals Q1, Q2, Q3, and Q4 based on the DC voltage Vdc , the position sensor signal 21a, and the voltage amplitude command V *.
  • the drive signal generation unit 32 generates a drive signal for driving the switching element of the inverter 11 based on the PWM signals Q1, Q2, Q3, Q4 output from the control unit 25.
  • the position sensor signal 21a is a binary digital signal that changes according to the direction of the magnetic flux generated in the rotor 12a.
  • the control unit 25 includes a processor 31, a carrier generation unit 33, and a memory 34.
  • the processor 31 generates the PWM signals Q1, Q2, Q3, and Q4 described above.
  • the processor 31 performs arithmetic processing related to advance angle control in addition to arithmetic processing related to PWM control.
  • the functions of a carrier comparison unit 38, a rotation speed calculation unit 42, and an advance angle phase calculation unit 44 described later are realized by the processor 31.
  • the processor 31 may be called a CPU (Central Processing Unit), a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the memory 34 stores a program read by the processor 31.
  • the memory 34 is used as a work area when the processor 31 performs arithmetic processing.
  • the memory 34 is generally a nonvolatile or volatile semiconductor memory such as a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, an EPROM (Erasable Programmable ROM), or an EEPROM (registered trademark) (Electrically EPROM). is there. Details of the configuration of the carrier generation unit 33 will be described later.
  • the drive signal generation unit 32 converts the PWM signals Q1, Q2, Q3, and Q4 output from the processor 31 into drive signals S1, S2, S3, and S4 for driving the inverter 11, and outputs the drive signals to the inverter 11. .
  • An example of the single-phase motor 12 is a brushless motor.
  • the single-phase motor 12 is a brushless motor
  • a plurality of permanent magnets (not shown) are arranged in the circumferential direction on the rotor 12 a of the single-phase motor 12.
  • the plurality of permanent magnets are arranged so that the magnetization direction is alternately reversed in the circumferential direction, and form a plurality of magnetic poles of the rotor 12a.
  • a winding (not shown) is wound around the stator 12 b of the single-phase motor 12.
  • An alternating current flows through the winding.
  • the current flowing through the winding of the single-phase motor 12 is appropriately referred to as “motor current”.
  • the number of magnetic poles of the rotor 12a is assumed to be four, but the number of magnetic poles of the rotor 12a may be other than four.
  • FIG. 2 is a circuit configuration diagram of the inverter 11 shown in FIG.
  • the inverter 11 includes a plurality of switching elements 51, 52, 53, and 54 that are bridge-connected.
  • the switching elements 51 and 52 constitute the first leg 5A. In the first leg 5A, the switching element 51 and the switching element 52 are connected in series.
  • the switching elements 53 and 54 constitute the second leg 5B. In the second leg 5B, the switching element 53 and the switching element 54 are connected in series.
  • the switching elements 51 and 53 are located on the high potential side, and the switching elements 52 and 54 are located on the low potential side.
  • the high potential side is generally called “upper arm” and the low potential side is called “lower arm”.
  • the switching element 51 of the first leg 5A may be referred to as “upper arm first element”
  • the switching element 53 of the second leg 5B may be referred to as “upper arm second element”.
  • the switching element 52 of the first leg 5A may be referred to as a “lower arm first element”
  • the switching element 54 of the second leg 5B may be referred to as a “lower arm second element”.
  • connection point 6A between the switching element 51 and the switching element 52 and the connection point 6B between the switching element 53 and the switching element 54 constitute an AC terminal in the bridge circuit.
  • a single-phase motor 12 is connected between the connection point 6A and the connection point 6B.
  • a MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • FET Field-Effect Transistor
  • a body diode 51a connected in parallel between the drain and source of the switching element 51 is formed.
  • a body diode 52a connected in parallel between the drain and source of the switching element 52 is formed.
  • a body diode 53a connected in parallel between the drain and source of the switching element 53 is formed.
  • the switching element 54 is formed with a body diode 54 a connected in parallel between the drain and source of the switching element 54.
  • Each of the plurality of body diodes 51a, 52a, 53a, 54a is a parasitic diode formed inside the MOSFET, and is used as a freewheeling diode.
  • the plurality of switching elements 51, 52, 53, and 54 are not limited to MOSFETs formed of silicon-based materials, but may be MOSFETs formed of wide band gap semiconductors such as silicon carbide, gallium nitride-based materials, or diamond.
  • wide band gap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide band gap semiconductor for the plurality of switching elements 51, 52, 53, and 54, the voltage resistance and allowable current density of the switching elements are increased, and the semiconductor module incorporating the switching elements can be downsized.
  • wide bandgap semiconductors have high heat resistance, so it is possible to reduce the size of the heat dissipation part to dissipate the heat generated in the semiconductor module, and simplify the heat dissipation structure that dissipates the heat generated in the semiconductor module. Is possible.
  • FIG. 3 is a block diagram showing a functional part that generates a PWM signal among the functional parts of the control unit 25 shown in FIG.
  • the advance phase ⁇ v and the reference phase ⁇ e which are advance angle controlled and used when generating a voltage command V m described later, are input to the carrier comparison unit 38.
  • the reference phase ⁇ e is a phase obtained by converting the rotor mechanical angle ⁇ m that is an angle from the reference position of the rotor 12a into an electrical angle.
  • “advance angle phase” represents “advance angle”, which is the “advance angle” of the voltage command, in terms of phase.
  • the “advance angle” here is a phase difference between a motor applied voltage applied to the winding of the stator 12b and a motor induced voltage induced in the winding of the stator 12b.
  • the “advance angle” takes a positive value when the motor applied voltage is ahead of the motor induced voltage.
  • the carrier comparison unit 38 includes a carrier generated by the carrier generation unit 33, a DC voltage V dc, and a voltage that is an amplitude value of the voltage command V m.
  • An amplitude command V * is input.
  • the carrier comparison unit 38 generates PWM signals Q1, Q2, Q3, and Q4 based on the carrier, the advance angle phase ⁇ v , the reference phase ⁇ e , the DC voltage V dc, and the voltage amplitude command V *.
  • FIG. 4 is a block diagram showing an example of the carrier comparison unit 38 shown in FIG. FIG. 4 shows detailed configurations of the carrier comparison unit 38A and the carrier generation unit 33.
  • a carrier waveform a triangular wave carrier that goes up and down between “0” and “1” is shown at the tip of the arrow of the carrier frequency f C.
  • the PWM control of the inverter 11 includes synchronous PWM control and asynchronous PWM control. For synchronous PWM control, it is necessary to synchronize the carrier to advance the phase theta v. On the other hand, when the asynchronous PWM control, it is not necessary to synchronize the carrier to advance the phase theta v.
  • the carrier comparison unit 38A includes an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38d, a multiplication unit 38f, an addition unit 38e, a comparison unit 38g, a comparison unit 38h, and output inversion. Part 38i and output inverting part 38j.
  • the absolute value calculator 38a calculates the absolute value
  • is divided by the DC voltage V dc detected by the voltage sensor 20.
  • the output of the division unit 38b is the modulation rate.
  • the battery voltage that is the output voltage of the battery 10 varies as the current continues to flow.
  • the value of the modulation factor can be adjusted so that the motor applied voltage does not decrease due to a decrease in battery voltage.
  • a sine value of “ ⁇ e + ⁇ v ” obtained by adding the advance phase ⁇ v to the reference phase ⁇ e is calculated.
  • the calculated sine value of “ ⁇ e + ⁇ v ” is multiplied by the modulation factor that is the output of the division unit 38b.
  • the voltage command V m that is the output of the multiplication unit 38c is multiplied by “1 ⁇ 2”.
  • the adder 38e “1 ⁇ 2” is added to the output of the multiplier 38d.
  • the multiplication unit 38f multiplies the output of the addition unit 38e by “ ⁇ 1”.
  • the output of the adder 38e is input to the comparator 38g as a positive voltage command V m1 for driving the two switching elements 51, 53 of the upper arm among the plurality of switching elements 51, 52, 53, 54.
  • the output of the multiplication unit 38f is input to the comparison unit 38h as a negative voltage command V m2 for driving the two switching elements 52 and 54 of the lower arm.
  • the comparison unit 38g compares the positive voltage command V m1 with the carrier amplitude.
  • the output of the output inverting unit 38i obtained by inverting the output of the comparing unit 38g becomes the PWM signal Q1 to the switching element 51, and the output of the comparing unit 38g becomes the PWM signal Q2 to the switching element 52.
  • the comparison unit 38h compares the negative side voltage command V m2 with the carrier amplitude.
  • the output of the output inverting unit 38j obtained by inverting the output of the comparing unit 38h becomes the PWM signal Q3 to the switching element 53, and the output of the comparing unit 38h becomes the PWM signal Q4 to the switching element 54.
  • the switching element 51 and the switching element 52 are not simultaneously turned on by the output inverting part 38i, and the switching element 53 and the switching element 54 are not simultaneously turned on by the output inverting part 38j.
  • FIG. 5 is a time chart showing a waveform example of a main part in the carrier comparison unit 38A shown in FIG.
  • FIG. 5 shows the waveform of the positive voltage command V m1 output from the adder 38e, the waveform of the negative voltage command V m2 output from the multiplier 38f, and the waveform of the PWM signals Q1, Q2, Q3, and Q4. And the waveform of the inverter output voltage.
  • PWM signal Q1 is “high (High)” when “low (Low)” next when the positive voltage command V m1 is greater than the carrier, the positive voltage command V m1 is smaller than the carrier.
  • the PWM signal Q2 is an inverted signal of the PWM signal Q1.
  • PWM signal Q3 is “high (High)” when “low (Low)” becomes when negative voltage instruction V m2 is larger than the carrier, the negative-side voltage instruction V m2 smaller than the carrier.
  • the PWM signal Q4 is an inverted signal of the PWM signal Q3.
  • the circuit shown in FIG. 4 is configured by “low active”, but may be configured by “high active” in which each signal has an opposite value. Good.
  • the waveform of the inverter output voltage shows a voltage pulse due to the difference voltage between the PWM signal Q1 and the PWM signal Q4 and a voltage pulse due to the difference voltage between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as a motor applied voltage.
  • Bipolar modulation and unipolar modulation are known as modulation schemes used when generating the PWM signals Q1, Q2, Q3, and Q4.
  • Bipolar modulation is positive or for each cycle of the voltage command V m is the modulation scheme for outputting a voltage pulse which varies in a negative potential.
  • Unipolar modulation is a modulation system that outputs voltage pulses that change at three potentials for each period of the voltage command V m , that is, voltage pulses that change between a positive potential, a negative potential, and a zero potential.
  • the waveform shown in FIG. 5 is due to unipolar modulation.
  • any modulation method may be used. In applications where it is necessary to control the motor current waveform to a sine wave, it is preferable to employ unipolar modulation with a lower harmonic content than bipolar modulation.
  • This four switching elements can be obtained by a switching operation.
  • This method is called “both sides PWM” because the switching operation is performed by both the positive side voltage command V m1 and the negative side voltage command V m2 .
  • the other half cycle of one cycle T of the voltage command V m is There is also a method of stopping the switching operation of the switching elements 53 and 54. This method is called “one-side PWM”.
  • one-side PWM will be described.
  • FIG. 6 is a block diagram showing another example of the carrier comparison unit 38 shown in FIG.
  • FIG. 6 shows an example of a PWM signal generation circuit based on the above-described “one-side PWM”, and specifically shows detailed configurations of the carrier comparison unit 38B and the carrier generation unit 33.
  • the configuration of the carrier generating unit 33 shown in FIG. 6 is the same as or equivalent to that shown in FIG. Further, in the configuration of the carrier comparison unit 38B shown in FIG. 6, the same or equivalent components as those of the carrier comparison unit 38A shown in FIG.
  • the carrier comparison unit 38B includes an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38k, an addition unit 38m, an addition unit 38n, a comparison unit 38g, a comparison unit 38h, and output inversion. Part 38i and output inverting part 38j.
  • the absolute value calculator 38a calculates the absolute value
  • is divided by the DC voltage V dc detected by the voltage sensor 20. Also in the configuration of FIG. 6, the output of the division unit 38 b becomes the modulation rate.
  • a sine value of “ ⁇ e + ⁇ v ” obtained by adding the advance phase ⁇ v to the reference phase ⁇ e is calculated.
  • the calculated sine value of “ ⁇ e + ⁇ v ” is multiplied by the modulation factor that is the output of the division unit 38b.
  • the voltage command V m that is the output of the multiplication unit 38c is multiplied by “ ⁇ 1”.
  • “1” is added to the voltage command V m that is the output of the multiplication unit 38c.
  • the adder unit 38n the output of the multiplying unit 38k, that is, "1" to the inverted output of the voltage command V m is added.
  • the output of the adder 38m is input to the comparator 38g as a first voltage command V m3 for driving the two switching elements 51, 53 of the upper arm among the plurality of switching elements 51, 52, 53, 54. .
  • the output of the adder 38n is input to the comparator 38h as a second voltage command V m4 for driving the two switching elements 52 and 54 of the lower arm.
  • the comparison unit 38g compares the first voltage command V m3 with the carrier amplitude.
  • the output of the output inverting unit 38i obtained by inverting the output of the comparing unit 38g becomes the PWM signal Q1 to the switching element 51, and the output of the comparing unit 38g becomes the PWM signal Q2 to the switching element 52.
  • the comparison unit 38h compares the second voltage command V m4 with the carrier amplitude.
  • the output of the output inverting unit 38j obtained by inverting the output of the comparing unit 38h becomes the PWM signal Q3 to the switching element 53, and the output of the comparing unit 38h becomes the PWM signal Q4 to the switching element 54.
  • the switching element 51 and the switching element 52 are not simultaneously turned on by the output inverting part 38i, and the switching element 53 and the switching element 54 are not simultaneously turned on by the output inverting part 38j.
  • FIG. 7 is a time chart showing a waveform example of a main part in the carrier comparison unit 38B shown in FIG.
  • FIG. 7 shows the waveform of the first voltage command V m3 output from the adder 38m, the waveform of the second voltage command V m4 output from the adder 38n, and the waveforms of the PWM signals Q1, Q2, Q3, and Q4. And a waveform of the motor applied voltage.
  • the waveform portion of the first voltage command V m3 whose amplitude value is larger than the peak value of the carrier and the second voltage command V m4 whose amplitude value is larger than the peak value of the carrier.
  • the waveform portion is represented by a flat straight line.
  • PWM signal Q1 is "low (Low)” next when the first voltage command V m3 is greater than the carrier, the first voltage command V m3 is “high (High)” when less than the carrier.
  • the PWM signal Q2 is an inverted signal of the PWM signal Q1.
  • PWM signal Q3 is “low (Low)” next when a second voltage command V m4 is greater than the carrier, the second voltage command V m4 is “high (High)” when less than the carrier.
  • the PWM signal Q4 is an inverted signal of the PWM signal Q3. In this manner, the circuit shown in FIG. 6 is configured with “Low Active”, but may be configured with “High Active” in which each signal has an opposite value. Good.
  • the waveform of the inverter output voltage shows a voltage pulse due to the difference voltage between the PWM signal Q1 and the PWM signal Q4 and a voltage pulse due to the difference voltage between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as a motor applied voltage.
  • the waveform of the inverter output voltage is a unipolar modulation which changes at three potentials per cycle of the voltage command V m.
  • bipolar modulation may be used instead of unipolar modulation, but it is preferable to use unipolar modulation in applications where the motor current waveform needs to be controlled to a more sine wave.
  • FIG. 8 is a block diagram showing the carrier comparison section 38A shown in FIG. 4, and the functional configuration for calculating the advance phase theta v inputted to the carrier comparison section 38B shown in FIG.
  • Figure 9 is a diagram showing an example of a method of calculating the advanced angle phase theta v in the embodiment.
  • FIG. 10 is a time chart used for explaining the relationship between the voltage command V m and the advance angle phase ⁇ v shown in FIGS. 4 and 6.
  • the calculation function of the advance angle phase ⁇ v can be realized by a rotation speed calculation unit 42 and an advance angle phase calculation unit 44.
  • the rotation speed calculation unit 42 calculates the rotation speed ⁇ of the single-phase motor 12 based on the position sensor signal 21 a detected by the position sensor 21.
  • the rotation speed calculation unit 42 calculates a reference phase ⁇ e obtained by converting a rotor mechanical angle ⁇ m that is an angle from the reference position of the rotor 12a into an electrical angle.
  • the edge portion where the position sensor signal 21a falls is the reference position of the rotor 12a.
  • the advance phase calculation unit 44 calculates the advance phase ⁇ v based on the rotation speed ⁇ and the reference phase ⁇ e calculated by the rotation speed calculation unit 42.
  • the horizontal axis of FIG. 9 rotational speed N is shown, have been shown advanced angle phase theta v is the vertical axis in FIG.
  • the advance angle phase ⁇ v can be determined using a function in which the advance angle phase ⁇ v increases as the rotational speed N increases.
  • the advance phase ⁇ v is determined by a linear function, but is not limited to a linear function. If either advanced angle phase theta v according to an increase of the rotational speed N is equal or greater relationship may be used functions other than first-order linear function.
  • a reference phase ⁇ e that is a phase obtained by converting m into an electrical angle is shown.
  • the rotor mechanical angle theta m when the rotor 12a is rotated in the clockwise direction is 0 °, 45 °, 90 °
  • shows a state is 135 ° and 180 °.
  • Four magnets are provided on the rotor 12a of the single phase motor 12, and four teeth 12b1 are provided on the outer periphery of the rotor 12a. If the rotor 12a is rotated clockwise, the position sensor signal 21a corresponding to the rotor machine angle theta m is detected.
  • the rotation speed calculation unit 42 calculates a reference phase ⁇ e converted into an electrical angle based on the detected position sensor signal 21a.
  • the voltage command V m having the same phase as the reference phase ⁇ e is output.
  • the amplitude of the voltage command V m at this time is determined based on the voltage amplitude command V * as described above.
  • a voltage command V m advanced by ⁇ / 4 which is a component of the advance angle phase ⁇ v , is output from the reference phase ⁇ e .
  • control is performed to change the voltage waveform applied to the single-phase motor 12 according to the rotational speed.
  • the single-phase motor 12 is applied to an electric blower of a vacuum cleaner.
  • one Hall sensor is used as the position sensor 21 that detects the rotor rotation position of the single-phase motor 12.
  • the rotation area of an electric blower is divided as follows.
  • A At startup: 0 [rpm] to 10,000 [rpm]
  • B Low speed range (low speed range): 10,000 [rpm] to 20,000 [rpm]
  • C Medium speed rotation range (medium rotation speed range): 50,000 [rpm] to 70,000 [rpm]
  • D High speed rotation range (high rotation speed range): 100,000 [rpm] or more
  • the rotational speed from 20,000 [rpm] to 50,000 [rpm] may be included in the low-speed rotation region or in the medium-speed rotation region.
  • the rotational speed from 70,000 [rpm] to 100,000 [rpm] may be included in the medium-speed rotation region or in the high-speed rotation region.
  • FIG. 11 is a diagram illustrating an example of waveforms of the carrier, the voltage command Vm, and the inverter output voltage in the rotation range from the startup to the low-speed rotation range.
  • Voltage pulse sequence shown in the lower portion of FIG. 11 is generated by the voltage command V m shown in the upper portion of FIG. 11.
  • the voltage command V m shown in the left half cycle is obtained by setting the value of “ ⁇ e + ⁇ v ” obtained by adding the advance angle phase ⁇ v to the reference phase ⁇ e to “ ⁇ / 2” in FIG. It is done.
  • the voltage command V m shown in the right half cycle is obtained by setting the value of “ ⁇ e + ⁇ v ” to “3 ⁇ / 2”. As shown in the upper portion of FIG.
  • the switching frequency component of the PWM component is removed from the frequency component included in the waveform of the voltage pulse train in the lower part of FIG. 11, the waveform substantially matches the waveform of the rectangular wave indicated by the broken line in the lower part of FIG. Therefore, applying the voltage pulse train shown in the lower part of FIG. 11 to the single-phase motor 12 is equivalent to applying a rectangular wave to the single-phase motor 12.
  • generating a PWM signal using a voltage command V m having a constant amplitude every half cycle as shown in the upper part of FIG. 11 is referred to as “rectangular wave PWM”, and the generated PWM signal is “ This is called “rectangular wave PWM signal”.
  • the control unit 25 in the present embodiment generates and drives a rectangular wave PWM signal so that the inverter 11 outputs a rectangular wave voltage at the time of startup and after the startup in the low speed rotation range. Output to the signal generator 32.
  • the inverter 11 outputting a rectangular wave voltage means that the voltage waveform obtained by removing the switching frequency component of the PWM control from the frequency component of the inverter output voltage is substantially a rectangular wave.
  • FIG. 12 is a diagram illustrating an example of waveforms of the carrier, the voltage command Vm, and the inverter output voltage in the medium speed rotation region.
  • Voltage pulse sequence shown in the lower part of FIG. 12 is generated by the voltage command V m is a sine wave as shown in the upper portion of FIG. 12.
  • a pulse width becomes gradually wider, as the distance from the peak of the voltage command V m, the pulse width is gradually narrower voltage pulse train It is shown.
  • the switching frequency component of the PWM control is removed from the frequency component included in the waveform of the voltage pulse train in the lower part of FIG. 12, the waveform substantially coincides with the waveform of the sine wave indicated by the broken line in the lower part of FIG. Therefore, applying the voltage pulse train shown in the lower part of FIG. 12 to the single-phase motor 12 is equivalent to applying a sine wave to the single-phase motor 12.
  • generating a PWM signal using a sine wave voltage command V m as shown in the upper part of FIG. 12 is referred to as “sine wave PWM”, and the generated PWM signal is referred to as “sine wave PWM signal”. Call it.
  • a sine wave PWM signal is generated and output to the drive signal generation unit 32 so that the inverter 11 outputs a sine wave voltage in the medium speed rotation region.
  • the fact that the inverter 11 outputs a sine wave voltage means that the voltage waveform obtained by removing the switching frequency component of the PWM control from the frequency component of the inverter output voltage is substantially a sine wave.
  • FIG. 13 is a diagram illustrating an example of waveforms of the carrier, the voltage command Vm, and the inverter output voltage in the high-speed rotation range.
  • Voltage pulse train shown in the lower portion of FIG. 13 is generated by the voltage command V m shown in the upper portion of FIG. 13.
  • the switching frequency component of PWM control is removed from the frequency components included in the waveform of the voltage pulse train in the lower part of FIG. 13, the waveform substantially matches the waveform of the trapezoidal wave indicated by the broken line in the lower part of FIG. Therefore, applying the voltage pulse train shown in the lower part of FIG. 13 to the single-phase motor 12 is equivalent to applying a trapezoidal wave to the single-phase motor 12.
  • generating a PWM signal using a sine wave voltage command V m having a modulation rate exceeding 1.0 is referred to as “trapezoidal wave PWM” and is generated.
  • the PWM signal is referred to as a “trapezoidal wave PWM signal”.
  • a trapezoidal wave PWM signal is generated and output to the drive signal generation unit 32 so that the inverter 11 outputs a trapezoidal wave voltage in the high-speed rotation range.
  • the inverter 11 outputs a trapezoidal voltage means that the voltage waveform obtained by removing the switching frequency component of the PWM control from the frequency component of the inverter output voltage is substantially a trapezoidal wave.
  • FIG. 14 is a diagram showing an equivalent circuit of the single-phase motor 12 shown in FIG.
  • FIG. 15 is a diagram used for explaining the phase difference between the counter electromotive voltage and the inverter output voltage in the rectangular wave PWM, the sine wave PWM, and the trapezoidal wave PWM in the embodiment.
  • FIG. 16 is a time chart used for explaining the operation at the time of switching from the rectangular wave PWM to the sine wave PWM in the embodiment.
  • FIG. 17 is a diagram showing the relationship between the brake torque generated in the single-phase motor 12 shown in FIG. 1 and the rotational speed.
  • FIG. 18 is a diagram showing a change over time of the brake current flowing through the single-phase motor 12 shown in FIG.
  • FIG. 19 is a diagram illustrating the relationship between the amplitude of the voltage command before voltage limitation and the fundamental wave component of the inverter output voltage.
  • the hall sensor signal is switched only once for one cycle of the counter electromotive voltage as shown in FIG. .
  • the resolution of the magnetic pole position is 180 degrees.
  • the resolution is 180 degrees, it is only known that the magnetic pole position exists in either the range of 0 to 180 degrees or the range of 180 to 360 degrees, for example.
  • the accurate rotation speed can be easily obtained by measuring the switching interval of the edge of the Hall sensor signal. Further, if the phase addition amount of the magnetic pole position from the current edge to the next edge is obtained based on the rotation speed, the magnetic pole position can be estimated.
  • FIG. 15 shows a waveform when there is a phase difference between the counter electromotive voltage and the motor applied voltage.
  • a case where there is no phase difference is indicated by a broken line
  • a case where there is a phase difference is indicated by a one-dot chain line.
  • the counter electromotive voltage is indicated by a broken line
  • the motor applied voltage is indicated by a solid line in the middle part and the lower part of FIG.
  • the inverter output voltage is generated by the rectangular wave PWM in the low-speed rotation range at the start and after the start. As a result, even when the magnetic pole position cannot be estimated accurately, a stable voltage can be supplied.
  • V is the inverter output voltage
  • E is the counter electromotive voltage generated in the stator winding of the single phase motor 12
  • R is the resistance of the stator winding
  • L is the inductance of the stator winding
  • I is the single phase motor. This is a motor current flowing through 12 stator windings. At this time, the motor current I is expressed by the following equation.
  • s is a Laplace operator.
  • the control is performed by the rectangular wave PWM up to the medium speed rotation range and the high speed rotation range.
  • the waveform of the motor applied voltage is indicated by a solid line
  • the waveform of the motor induced voltage is indicated by a broken line and an alternate long and short dash line.
  • a current corresponding to the difference voltage between the rectangular wave voltage and the sinusoidal motor induced voltage flows through the single-phase motor 12. For this reason, not only the fundamental wave current component synchronized with the rotation speed but also the high frequency current component is superimposed on the single phase motor 12.
  • the fundamental torque current component which is a current component synchronized with the rotation speed, is closely related to the driving torque that gives the single-phase motor 12 driving force.
  • current components other than the fundamental wave current component serve as brake torque that inhibits rotation. Since the brake torque gives a braking force to the rotation of the single-phase motor 12, it causes an instantaneous decrease in the number of rotations, vibration and noise.
  • a high frequency current having a frequency higher than the fundamental current causes high frequency iron loss in the single-phase motor 12. An increase in high-frequency iron loss reduces the efficiency of the single-phase motor 12. For this reason, it is preferable to switch to a sine wave PWM that can efficiently output a fundamental wave current component synchronized with the rotation speed as the rotation speed increases.
  • the rotational speed is calculated by measuring the edge switching interval of the Hall sensor signal. Further, based on the calculated rotational speed, a continuous magnetic pole position of 0 to 360 degrees is calculated as shown in FIG.
  • the rectangular wave PWM is switched to the sine wave PWM based on the magnetic pole position.
  • a phenomenon called motor current pulsation occurs due to a change in output voltage at the time of switching, and there is a possibility that vibration and noise increase due to a sudden change in motor torque. Therefore, it is preferable to reflect the fundamental wave component of the rectangular wave voltage in the rectangular wave PWM in the sine wave voltage in the sine wave PWM. Specifically, the following control is performed.
  • the amplitude of the voltage command V m immediately before switching may output (4 / ⁇ ) times to.
  • the voltage command V m in the sine wave PWM may be a sine wave having an amplitude of “(4 / ⁇ ) ⁇ K”.
  • the modulation rate immediately after switching may be obtained by multiplying the modulation rate immediately before switching by (4 / ⁇ ). By doing so, it is possible to keep the torque generated at the time of switching constant. As a result, it is possible to perform switching while suppressing generation of vibration and noise.
  • the switching frequency which is the on / off switching frequency of the switching elements 51, 52, 53, and 54.
  • the switching frequency is set to, for example, 20 kHz or more outside the audible frequency, it is possible to reduce annoying noise and to realize a motor driving device with low noise. Further, increasing the switching frequency has the effect of improving the resolution of the output voltage during high-speed operation and improving the accuracy of the rotational speed. However, when the switching frequency is increased, heat generation and switching loss of the switching element increase. For this reason, it is preferable to determine the switching frequency in consideration of the heat generation amount and the efficiency.
  • the free wheel period is a period during which current flows back between the stator winding of the single-phase motor 12 and the switching elements 52 and 54.
  • the switching element 52 that is the lower arm first element and the switching element 54 that is the lower arm second element are controlled to be on, and the switching element 51 that is the upper arm first element and the upper arm second element
  • the switching element 53 which is an element is controlled to be turned off.
  • FIG. 17 shows the relationship between the brake torque and the rotational speed during the freewheel period.
  • brake torque is generated according to the rotational speed of the single-phase motor 12. For this reason, current is consumed by the resistance R of the stator winding, and brake torque is generated.
  • speed fluctuation occurs. Since the frequency at which the brake torque is generated is within the audible frequency, deterioration of noise is inevitable.
  • FIG. 18 shows a time-varying waveform of the brake current during the freewheel period.
  • the brake current is a current that flows due to the inductance L of the stator winding and the resistance R of the stator winding. For this reason, when the free wheel period becomes longer, the period during which the brake current flows becomes longer as shown in FIG. When the brake current is relatively large and the flow period is long, demagnetization of the permanent magnet becomes a problem. Further, the loss due to the resistance R of the stator winding also increases due to the brake current.
  • the sine wave PWM has a large number of voltage outputs and a short free wheel period in which no voltage pulse is generated. For this reason, the loss in the stator winding is reduced, and the influence of demagnetization of the permanent magnet can be reduced.
  • the switching frequency is set to 20 kHz or higher, the speed pulsation due to the brake torque during the freewheel period can be set to 20 kHz or higher. Therefore, if the switching frequency is set to 20 kHz or more, the generation of noise due to speed pulsation can be suppressed.
  • the frequency twice the switching frequency is dominant, and in the case of single-sided PWM, the same frequency as the switching frequency is dominant. Therefore, as described above, if the switching frequency is set to 20 kHz or higher, noise deterioration can be suppressed even if one-side PWM is used.
  • the phase of the motor induced voltage and the phase of the sine wave current flowing by the sine wave PWM coincide with each other.
  • the sine wave current has a delayed phase corresponding to the rotational speed with respect to the motor-induced voltage.
  • the change rate of the rotation speed can be expressed by the following equation.
  • the load torque is generally said to be proportional to the second to third power of the rotation speed.
  • the load torque is generally said to be proportional to the second to third power of the rotation speed.
  • the trapezoidal wave PWM As described above, a trapezoidal wave PWM signal is generated and applied to the single-phase motor 12 in the high-speed rotation range.
  • the sine wave PWM when the rotation speed increases, the amplitude of the voltage command V m increases.
  • the inverter 11 cannot output a voltage exceeding the DC voltage V dc , so the voltage is limited.
  • the voltage waveform becomes a trapezoidal wave as shown by the solid line.
  • FIG. 19 shows the relationship between the amplitude of the voltage command before voltage limitation and the fundamental wave component of the inverter output voltage.
  • the region on the right side of the broken line drawn in parallel with the vertical axis is a region where the voltage is limited and the inverter output voltage becomes a trapezoidal wave. Even if it becomes a trapezoidal wave and the inverter output voltage is limited, the fundamental wave component of the inverter output voltage continues to rise as shown in FIG. Theoretically, a time when the amplitude of the voltage command V m becomes infinite is a rectangular wave.
  • the trapezoidal wave PWM can output a voltage that is 1.27 times the voltage limit value.
  • the phase of the trapezoidal wave PWM signal may be controlled to a lead phase. .
  • the magnetic force of the single-phase motor 12 is weakened and the back electromotive voltage is suppressed, so that operation up to higher speed rotation is possible.
  • the control unit causes the inverter to output a rectangular wave voltage at the time of starting the single phase motor and in the low speed rotation range, and the sine wave voltage to the inverter in the medium speed rotation range of the single phase motor. And output a trapezoidal wave voltage to the inverter in the high-speed rotation range of the single-phase motor. As a result, vibration and noise can be suppressed when the motor is accelerated.
  • FIG. 20 is a configuration diagram of the electric vacuum cleaner 61 including the motor driving device 2 according to the embodiment.
  • the vacuum cleaner 61 includes a battery 10 shown in FIG. 1, a motor drive device 2 shown in FIG. 1, an electric blower 64 driven by the single-phase motor 12 shown in FIG. 1, a dust collection chamber 65, The sensor 68, the suction inlet 63, the extension pipe 62, and the operation part 66 are provided.
  • the user who uses the vacuum cleaner 61 has the operation unit 66 and operates the vacuum cleaner 61.
  • the motor drive device 2 of the electric vacuum cleaner 61 drives the electric blower 64 using the battery 10 as a power source.
  • dust is sucked from the suction port body 63.
  • the sucked dust is collected in the dust collection chamber 65 through the extension pipe 62.
  • the vacuum cleaner 61 is a product in which the rotation speed of the single-phase motor 12 varies from 0 [rpm] to over 100,000 [rpm].
  • the control method according to the above-described embodiment is suitable.
  • the inverter 11 outputs a rectangular wave voltage to the single-phase motor 12 at the time of startup and in a low-speed rotation range. In the middle speed range, a sine wave voltage is output. In the high-speed rotation range, the inverter 11 outputs a trapezoidal wave voltage. By controlling in this way, vibration and noise can be suppressed when the single-phase motor 12 is accelerated.
  • the control unit 25 switches the fundamental wave component of the rectangular wave voltage and the fundamental wave component of the sine wave voltage in a matched state.
  • the control unit 25 reduces the acceleration rate as the rotational speed approaches the target rotational speed. Thereby, it can suppress that the electric current at the time of reaching
  • the control unit 25 when outputting a voltage based on the voltage command to the single-phase motor 12, the control unit 25 performs a switching operation between the upper arm first element and the lower arm first element in one half cycle of the voltage command cycle. And the switching operation of the upper arm second element and the lower arm second element is suspended in the other half cycle of the voltage command cycle. Thereby, the increase in switching loss is suppressed and the efficient vacuum cleaner 61 is realizable.
  • the vacuum cleaner 61 according to the embodiment can be reduced in size and weight by simplifying the heat dissipation component described above. Furthermore, since the vacuum cleaner 61 does not require a current sensor for detecting a current and does not require a high-speed analog-digital converter, the vacuum cleaner 61 in which an increase in design cost and manufacturing cost is suppressed can be realized. .
  • FIG. 21 is a configuration diagram of a hand dryer provided with the motor drive device according to the embodiment.
  • the hand dryer 90 includes a motor driving device 2, a casing 91, a hand detection sensor 92, a water receiver 93, a drain container 94, a cover 96, a sensor 97, an air inlet 98, and an electric blower 95.
  • the sensor 97 is either a gyro sensor or a human sensor.
  • the hand dryer 90 when a hand is inserted into the hand insertion part 99 at the upper part of the water receiver 93, water is blown off by the air blow by the electric blower 95, and the blown water is collected by the water receiver 93. After that, it is stored in the drain container 94.
  • the hand dryer 90 is a product in which the motor rotation speed fluctuates from 0 [rpm] to over 100,000 [rpm], similarly to the electric vacuum cleaner 61 shown in FIG. For this reason, also in the hand dryer 90, the control method which concerns on embodiment mentioned above is suitable, and the effect similar to the vacuum cleaner 61 can be acquired.
  • the configuration example in which the motor driving device 2 is applied to the electric vacuum cleaner 61 and the hand dryer 90 has been described.
  • the motor driving device 2 is applied to an electric device in which the motor is mounted. can do.
  • Electric equipment equipped with motors is incinerator, crusher, dryer, dust collector, printing machine, cleaning machine, confectionery machine, tea making machine, woodworking machine, plastic extruder, cardboard machine, packaging machine, hot air generator, OA Equipment, electric blower, etc.
  • the electric blower is a blowing means for transporting objects, for sucking dust, or for general air supply / discharge.
  • 1 motor drive system 2 motor drive device, 5A 1st leg, 5B 2nd leg, 6A, 6B connection point, 10 battery, 11 inverter, 12 single phase motor, 12a rotor, 12b stator, 12b1 teeth, 20 voltage sensor, 21 position sensor, 21a position sensor signal, 25 control unit, 31 processor, 32 drive signal generation unit, 33 carrier generation unit, 34 memory, 38, 38A, 38B carrier comparison unit, 38a absolute value calculation unit, 38b division unit, 38c , 38d, 38f, 38k multiplication unit, 38e, 38m, 38n addition unit, 38g, 38h comparison unit, 38i, 38j output inversion unit, 42 rotation speed calculation unit, 44 advance phase calculation unit, 51, 52, 53, 54 Switching element 51a, 52a, 53a, 5 a body diode, 61 vacuum cleaner, 62 extension pipe, 63 suction port, 64 electric blower, 65 dust collection chamber, 66 operation unit, 68 sensor, 90 hand dryer, 91 casing, 92 hand detection sensor, 93 water

Abstract

This motor drive device (2) is provided with an inverter (11) for outputting AC voltage to a single-phase motor (12) and a control unit (25) for controlling the AC voltage output by the inverter (11). The control unit (25) causes a square wave voltage to be output to the inverter (11) both when the single-phase motor (12) is starting up and when in a low-speed rotation range. The control unit (25) causes a sine wave voltage to be output to the inverter when the single-phase motor (12) is in a medium-speed rotation range. The control unit (25) causes a trapezoidal wave voltage to be output to the inverter (11) when the single-phase motor (12) is in a high-speed range.

Description

モータ駆動装置、電気掃除機及び手乾燥機Motor drive device, vacuum cleaner and hand dryer
 本発明は、単相モータを駆動するモータ駆動装置、並びにそれを備えた電気掃除機及び手乾燥機に関する。 The present invention relates to a motor driving device for driving a single-phase motor, and a vacuum cleaner and a hand dryer provided with the motor driving device.
 単相モータを駆動するモータ駆動装置に関する従来技術として、下記特許文献1がある。特許文献1には、モータを加速する加速モードの期間において、ホールセンサの検出信号に同期した複数パルスの矩形波電圧を印加して、モータ誘起電圧に同期した矩形波状の電流を流す技術が開示されている。 There is the following Patent Document 1 as a related art relating to a motor driving device for driving a single-phase motor. Patent Document 1 discloses a technique for applying a rectangular wave voltage of a plurality of pulses synchronized with a detection signal of a Hall sensor and flowing a rectangular wave current synchronized with a motor induced voltage during an acceleration mode period in which the motor is accelerated. Has been.
特開2015-2673号公報Japanese Patent Laying-Open No. 2015-2673
 矩形波状の電流には、回転駆動に必要な基本波成分の電流だけでなく高周波成分の電流が重畳する。特許文献1の技術では、モータの加速時において、矩形波状の電流を流すので、基本波成分の電流に重畳した高周波成分の電流によって、振動及び騒音の悪化を招くという課題がある。 In addition to the fundamental wave component current required for rotational driving, the high frequency component current is superimposed on the rectangular wave current. In the technique of Patent Document 1, since a rectangular wave current flows when the motor is accelerated, there is a problem that vibration and noise are deteriorated by a high-frequency component current superimposed on a fundamental wave component current.
 本発明は、上記に鑑みてなされたものであって、モータの加速時において、振動及び騒音を抑制することができるモータ駆動装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a motor drive device capable of suppressing vibration and noise during motor acceleration.
 上述した課題を解決し、目的を達成するために、本発明に係るモータ駆動装置は、単相モータに交流電圧を出力するインバータと、インバータが出力する交流電圧を制御する制御部と、を備える。制御部は、単相モータの起動時及び低速回転域では、インバータに矩形波の電圧を出力させ、単相モータの中速回転域では、インバータに正弦波の電圧を出力させ、単相モータの高速回転域では、インバータに台形波の電圧を出力させる。 In order to solve the above-described problems and achieve the object, a motor drive device according to the present invention includes an inverter that outputs an AC voltage to a single-phase motor, and a control unit that controls the AC voltage output by the inverter. . The control unit causes the inverter to output a rectangular wave voltage at the start of the single-phase motor and in the low-speed rotation range, and causes the inverter to output a sine wave voltage in the medium-speed rotation range of the single-phase motor. In the high-speed rotation range, the inverter outputs a trapezoidal wave voltage.
 本発明に係るモータ駆動装置によれば、モータの加速時において、振動及び騒音を抑制することができるという効果を奏する。 According to the motor drive device of the present invention, there is an effect that vibration and noise can be suppressed during acceleration of the motor.
実施の形態に係るモータ駆動装置を含むモータ駆動システムの構成図Configuration diagram of a motor drive system including a motor drive device according to an embodiment 図1に示されるインバータの回路構成図Circuit diagram of the inverter shown in FIG. 図1に示される制御部の機能部位のうちのパルス幅変調(Pulse Width Modulation:PWM)信号を生成する機能部位を示すブロック図1 is a block diagram showing a functional part that generates a pulse width modulation (PWM) signal among the functional parts of the control unit shown in FIG. 図3に示されるキャリア比較部の一例を示すブロック図The block diagram which shows an example of the carrier comparison part shown by FIG. 図4に示されるキャリア比較部における要部の波形例を示すタイムチャートFIG. 4 is a time chart showing an example of the waveform of the main part in the carrier comparison unit shown in FIG. 図3に示されるキャリア比較部の他の例を示すブロック図The block diagram which shows the other example of the carrier comparison part shown by FIG. 図6に示されるキャリア比較部における要部の波形例を示すタイムチャートFIG. 6 is a time chart showing a waveform example of a main part in the carrier comparison unit shown in FIG. 図4及び図6に示されるキャリア比較部へ入力される進角位相を算出するための機能構成を示すブロック図The block diagram which shows the function structure for calculating the advance angle phase input into the carrier comparison part shown by FIG.4 and FIG.6 実施の形態における進角位相の算出方法の一例を示す図The figure which shows an example of the calculation method of the advance angle phase in embodiment 図4及び図6に示される電圧指令と進角位相との関係の説明に使用するタイムチャートTime chart used for explaining the relationship between the voltage command and the advance phase shown in FIGS. 図1に示される単相モータを回転させる際の起動から低速回転域までの回転域におけるキャリア、電圧指令及びインバータ出力電圧の波形の一例を示す図The figure which shows an example of the waveform of the carrier in the rotation area | region from the starting at the time of rotating the single phase motor shown by FIG. 1 to a low speed rotation area, and an inverter output voltage. 図1に示される単相モータを回転させる際の中速回転域におけるキャリア、電圧指令及びインバータ出力電圧の波形の一例を示す図The figure which shows an example of the waveform of the carrier in the middle speed rotation area at the time of rotating the single phase motor shown by FIG. 1, a voltage command, and an inverter output voltage 図1に示される単相モータを回転させる際の高速回転域におけるキャリア、電圧指令及びインバータ出力電圧の波形の一例を示す図The figure which shows an example of the waveform of the carrier in the high speed rotation area at the time of rotating the single phase motor shown by FIG. 1, a voltage command, and an inverter output voltage 図1に示される単相モータの等価回路を示す図The figure which shows the equivalent circuit of the single phase motor shown by FIG. 実施の形態における矩形波PWM、正弦波PWM及び台形波PWMにおける逆起電圧とインバータ出力電圧との間の位相差の説明に使用する図The figure used for description of the phase difference between the counter electromotive voltage and the inverter output voltage in the rectangular wave PWM, the sine wave PWM, and the trapezoidal wave PWM in the embodiment. 実施の形態における矩形波PWMから正弦波PWMへの切り替時の動作説明に使用するタイムチャートTime chart used for explanation of operation at the time of switching from rectangular wave PWM to sine wave PWM in the embodiment 図1に示される単相モータに発生するブレーキトルクと回転速度との関係を示す図The figure which shows the relationship between the brake torque which generate | occur | produces in the single phase motor shown by FIG. 1, and rotational speed. 図1に示される単相モータに流れるブレーキ電流の時間変化を示す図The figure which shows the time change of the brake current which flows into the single phase motor shown by FIG. 電圧制限前の電圧指令の振幅とインバータ出力電圧の基本波成分との関係を示す図The figure which shows the relationship between the amplitude of the voltage command before voltage limitation and the fundamental wave component of the inverter output voltage 実施の形態に係るモータ駆動装置を備えた電気掃除機の構成図The block diagram of the vacuum cleaner provided with the motor drive device which concerns on embodiment 実施の形態に係るモータ駆動装置を備えた手乾燥機の構成図Configuration diagram of a hand dryer provided with a motor drive device according to an embodiment
 以下に添付図面を参照し、本発明の実施の形態に係るモータ駆動装置、電気掃除機及び手乾燥機について詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。また、以下では、電気的な接続と物理的な接続とを区別せずに、単に「接続」と称して説明する。 Hereinafter, a motor drive device, a vacuum cleaner, and a hand dryer according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the following embodiments. In the following description, electric connection and physical connection are not distinguished from each other and simply referred to as “connection”.
実施の形態.
 図1は、実施の形態に係るモータ駆動装置2を含むモータ駆動システム1の構成図である。図1に示すモータ駆動システム1は、単相モータ12と、モータ駆動装置2と、バッテリ10と、電圧センサ20と、位置センサ21とを備える。
Embodiment.
FIG. 1 is a configuration diagram of a motor drive system 1 including a motor drive device 2 according to an embodiment. A motor drive system 1 shown in FIG. 1 includes a single-phase motor 12, a motor drive device 2, a battery 10, a voltage sensor 20, and a position sensor 21.
 モータ駆動装置2は、単相モータ12に交流電力を供給して単相モータ12を駆動する。バッテリ10は、モータ駆動装置2に直流電力を供給する直流電源である。電圧センサ20は、バッテリ10からモータ駆動装置2に出力される直流電圧Vdcを検出する。位置センサ21は、単相モータ12に内蔵されるロータ12aの回転位置であるロータ回転位置を検出する。 The motor drive device 2 drives the single-phase motor 12 by supplying AC power to the single-phase motor 12. The battery 10 is a DC power source that supplies DC power to the motor driving device 2. The voltage sensor 20 detects a DC voltage V dc output from the battery 10 to the motor driving device 2. The position sensor 21 detects a rotor rotational position that is a rotational position of the rotor 12 a built in the single-phase motor 12.
 単相モータ12は、不図示の電動送風機を回転させる回転電機として利用される。単相モータ12及び当該電動送風機は、電気掃除機及び手乾燥機といった装置に搭載される。 The single phase motor 12 is used as a rotating electric machine that rotates an electric blower (not shown). The single-phase motor 12 and the electric blower are mounted on devices such as a vacuum cleaner and a hand dryer.
 なお、本実施の形態では電圧センサ20が直流電圧Vdcを検出しているが、電圧センサ20の検出対象は、バッテリ10から出力される直流電圧Vdcに限定されない。電圧センサ20の検出対象は、モータ駆動装置2の出力電圧であるインバータ出力電圧でもよい。「インバータ出力電圧」は後述する「モータ印加電圧」と同義である。 In the present embodiment, voltage sensor 20 detects DC voltage V dc , but the detection target of voltage sensor 20 is not limited to DC voltage V dc output from battery 10. The detection target of the voltage sensor 20 may be an inverter output voltage that is an output voltage of the motor drive device 2. “Inverter output voltage” has the same meaning as “motor applied voltage” described later.
 モータ駆動装置2は、インバータ11と、制御部25と、駆動信号生成部32とを備える。インバータ11は、単相モータ12に接続され、単相モータ12に交流電圧を出力する。制御部25は、インバータ11が出力する交流電圧を制御する。インバータ11は、単相インバータを想定しているが、単相モータを駆動できるものであればよい。 The motor drive device 2 includes an inverter 11, a control unit 25, and a drive signal generation unit 32. The inverter 11 is connected to the single phase motor 12 and outputs an AC voltage to the single phase motor 12. The control unit 25 controls the AC voltage output from the inverter 11. The inverter 11 is assumed to be a single-phase inverter, but any inverter that can drive a single-phase motor may be used.
 制御部25には、電圧センサ20により検出された直流電圧Vdcと、位置センサ21から出力された回転位置検出信号である位置センサ信号21aと、電圧振幅指令V*とが入力される。電圧振幅指令V*は、後述する電圧指令Vの振幅値である。制御部25は、直流電圧Vdcと、位置センサ信号21aと、電圧振幅指令V*とに基づいて、PWM信号Q1,Q2,Q3,Q4を生成する。 The control unit 25 receives a DC voltage V dc detected by the voltage sensor 20, a position sensor signal 21 a that is a rotational position detection signal output from the position sensor 21, and a voltage amplitude command V *. * The voltage amplitude command V is the amplitude of the voltage command V m to be described later. The control unit 25 generates PWM signals Q1, Q2, Q3, and Q4 based on the DC voltage Vdc , the position sensor signal 21a, and the voltage amplitude command V *.
 駆動信号生成部32は、制御部25から出力されたPWM信号Q1,Q2,Q3,Q4に基づいてインバータ11のスイッチング素子を駆動するための駆動信号を生成する。位置センサ信号21aは、ロータ12aで発生する磁束の方向に応じて変化する二値のディジタル信号である。 The drive signal generation unit 32 generates a drive signal for driving the switching element of the inverter 11 based on the PWM signals Q1, Q2, Q3, Q4 output from the control unit 25. The position sensor signal 21a is a binary digital signal that changes according to the direction of the magnetic flux generated in the rotor 12a.
 制御部25は、プロセッサ31、キャリア生成部33及びメモリ34を有する。プロセッサ31は、上述したPWM信号Q1,Q2,Q3,Q4を生成する。プロセッサ31は、PWM制御に関する演算処理に加え、進角制御に関する演算処理も行う。後述するキャリア比較部38、回転速度算出部42及び進角位相算出部44の各機能は、プロセッサ31によって実現される。プロセッサ31は、CPU(Central Processing Unit)、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)と称されるものでもよい。 The control unit 25 includes a processor 31, a carrier generation unit 33, and a memory 34. The processor 31 generates the PWM signals Q1, Q2, Q3, and Q4 described above. The processor 31 performs arithmetic processing related to advance angle control in addition to arithmetic processing related to PWM control. The functions of a carrier comparison unit 38, a rotation speed calculation unit 42, and an advance angle phase calculation unit 44 described later are realized by the processor 31. The processor 31 may be called a CPU (Central Processing Unit), a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
 メモリ34には、プロセッサ31によって読みとられるプログラムが保存される。メモリ34は、プロセッサ31が演算処理を行う際の作業領域として使用される。メモリ34は、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリが一般的である。キャリア生成部33の構成の詳細は後述する。 The memory 34 stores a program read by the processor 31. The memory 34 is used as a work area when the processor 31 performs arithmetic processing. The memory 34 is generally a nonvolatile or volatile semiconductor memory such as a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, an EPROM (Erasable Programmable ROM), or an EEPROM (registered trademark) (Electrically EPROM). is there. Details of the configuration of the carrier generation unit 33 will be described later.
 駆動信号生成部32は、プロセッサ31から出力されたPWM信号Q1,Q2,Q3,Q4を、インバータ11を駆動するための駆動信号S1,S2,S3,S4に変換して、インバータ11に出力する。 The drive signal generation unit 32 converts the PWM signals Q1, Q2, Q3, and Q4 output from the processor 31 into drive signals S1, S2, S3, and S4 for driving the inverter 11, and outputs the drive signals to the inverter 11. .
 単相モータ12の一例は、ブラシレスモータである。単相モータ12がブラシレスモータである場合、単相モータ12のロータ12aには、図示しない複数個の永久磁石が周方向に配列される。これらの複数個の永久磁石は、着磁方向が周方向に交互に反転するように配置され、ロータ12aの複数個の磁極を形成する。単相モータ12のステータ12bには図示しない巻線が巻かれている。当該巻線には交流電流が流れる。単相モータ12の巻線に流れる電流を適宜「モータ電流」と呼ぶ。本実施の形態では、ロータ12aの磁極数は4極を想定するが、ロータ12aの磁極数は4極以外でもよい。 An example of the single-phase motor 12 is a brushless motor. When the single-phase motor 12 is a brushless motor, a plurality of permanent magnets (not shown) are arranged in the circumferential direction on the rotor 12 a of the single-phase motor 12. The plurality of permanent magnets are arranged so that the magnetization direction is alternately reversed in the circumferential direction, and form a plurality of magnetic poles of the rotor 12a. A winding (not shown) is wound around the stator 12 b of the single-phase motor 12. An alternating current flows through the winding. The current flowing through the winding of the single-phase motor 12 is appropriately referred to as “motor current”. In the present embodiment, the number of magnetic poles of the rotor 12a is assumed to be four, but the number of magnetic poles of the rotor 12a may be other than four.
 図2は、図1に示されるインバータ11の回路構成図である。インバータ11は、ブリッジ接続された複数のスイッチング素子51,52,53,54を有する。スイッチング素子51,52は第1レグ5Aを構成する。第1レグ5Aにおいて、スイッチング素子51とスイッチング素子52とは直列に接続される。スイッチング素子53,54は第2レグ5Bを構成する。第2レグ5Bにおいて、スイッチング素子53とスイッチング素子54とは直列に接続される。 FIG. 2 is a circuit configuration diagram of the inverter 11 shown in FIG. The inverter 11 includes a plurality of switching elements 51, 52, 53, and 54 that are bridge-connected. The switching elements 51 and 52 constitute the first leg 5A. In the first leg 5A, the switching element 51 and the switching element 52 are connected in series. The switching elements 53 and 54 constitute the second leg 5B. In the second leg 5B, the switching element 53 and the switching element 54 are connected in series.
 スイッチング素子51,53は、高電位側に位置し、スイッチング素子52,54は、低電位側に位置する。インバータ回路では、一般的に、高電位側は「上アーム」と称され、低電位側は「下アーム」と称される。以下の説明において、第1レグ5Aのスイッチング素子51を「上アーム第1素子」と呼び、第2レグ5Bのスイッチング素子53を「上アーム第2素子」と呼ぶ場合がある。また、第1レグ5Aのスイッチング素子52を「下アーム第1素子」と呼び、第2レグ5Bのスイッチング素子54を「下アーム第2素子」と呼ぶ場合がある。 The switching elements 51 and 53 are located on the high potential side, and the switching elements 52 and 54 are located on the low potential side. In the inverter circuit, the high potential side is generally called “upper arm” and the low potential side is called “lower arm”. In the following description, the switching element 51 of the first leg 5A may be referred to as “upper arm first element”, and the switching element 53 of the second leg 5B may be referred to as “upper arm second element”. The switching element 52 of the first leg 5A may be referred to as a “lower arm first element”, and the switching element 54 of the second leg 5B may be referred to as a “lower arm second element”.
 スイッチング素子51とスイッチング素子52との接続点6Aと、スイッチング素子53とスイッチング素子54との接続点6Bとは、ブリッジ回路における交流端を構成する。接続点6Aと接続点6Bとの間には、単相モータ12が接続される。 The connection point 6A between the switching element 51 and the switching element 52 and the connection point 6B between the switching element 53 and the switching element 54 constitute an AC terminal in the bridge circuit. A single-phase motor 12 is connected between the connection point 6A and the connection point 6B.
 複数のスイッチング素子51,52,53,54のそれぞれには、金属酸化膜半導体電界効果型トランジスタであるMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)が使用される。MOSFETは、FET(Field-Effect Transistor)の一例である。 A MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), which is a metal oxide semiconductor field effect transistor, is used for each of the plurality of switching elements 51, 52, 53, 54. The MOSFET is an example of an FET (Field-Effect Transistor).
 スイッチング素子51には、スイッチング素子51のドレインとソースとの間に並列接続されるボディダイオード51aが形成される。スイッチング素子52には、スイッチング素子52のドレインとソースとの間に並列接続されるボディダイオード52aが形成される。スイッチング素子53には、スイッチング素子53のドレインとソースとの間に並列接続されるボディダイオード53aが形成される。スイッチング素子54には、スイッチング素子54のドレインとソースとの間に並列接続されるボディダイオード54aが形成される。複数のボディダイオード51a,52a,53a,54aのそれぞれは、MOSFETの内部に形成される寄生ダイオードであり、還流ダイオードとして使用される。 In the switching element 51, a body diode 51a connected in parallel between the drain and source of the switching element 51 is formed. In the switching element 52, a body diode 52a connected in parallel between the drain and source of the switching element 52 is formed. In the switching element 53, a body diode 53a connected in parallel between the drain and source of the switching element 53 is formed. The switching element 54 is formed with a body diode 54 a connected in parallel between the drain and source of the switching element 54. Each of the plurality of body diodes 51a, 52a, 53a, 54a is a parasitic diode formed inside the MOSFET, and is used as a freewheeling diode.
 複数のスイッチング素子51,52,53,54は、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素、窒化ガリウム系材料又はダイヤモンドといったワイドバンドギャップ半導体により形成されたMOSFETでもよい。 The plurality of switching elements 51, 52, 53, and 54 are not limited to MOSFETs formed of silicon-based materials, but may be MOSFETs formed of wide band gap semiconductors such as silicon carbide, gallium nitride-based materials, or diamond.
 一般的にワイドバンドギャップ半導体はシリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、複数のスイッチング素子51,52,53,54にワイドバンドギャップ半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。またワイドバンドギャップ半導体は、耐熱性も高いため、半導体モジュールで発生した熱を放熱するための放熱部の小型化が可能であり、また半導体モジュールで発生した熱を放熱する放熱構造の簡素化が可能である。 Generally, wide band gap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide band gap semiconductor for the plurality of switching elements 51, 52, 53, and 54, the voltage resistance and allowable current density of the switching elements are increased, and the semiconductor module incorporating the switching elements can be downsized. In addition, wide bandgap semiconductors have high heat resistance, so it is possible to reduce the size of the heat dissipation part to dissipate the heat generated in the semiconductor module, and simplify the heat dissipation structure that dissipates the heat generated in the semiconductor module. Is possible.
 図3は、図1に示される制御部25の機能部位のうちのPWM信号を生成する機能部位を示すブロック図である。 FIG. 3 is a block diagram showing a functional part that generates a PWM signal among the functional parts of the control unit 25 shown in FIG.
 図3において、キャリア比較部38には、後述する電圧指令Vを生成するときに用いる進角制御された進角位相θと基準位相θとが入力される。基準位相θは、ロータ12aの基準位置からの角度であるロータ機械角θを電気角に換算した位相である。ここで、「進角位相」とは、電圧指令の「進み角」である「進角」を位相で表したものである。また、ここでいう「進み角」とは、ステータ12bの巻線に印加されるモータ印加電圧と、ステータ12bの巻線に誘起されるモータ誘起電圧との間の位相差である。なお、モータ印加電圧がモータ誘起電圧よりも進んでいるときに「進み角」は正の値をとる。 In FIG. 3, the advance phase θ v and the reference phase θ e, which are advance angle controlled and used when generating a voltage command V m described later, are input to the carrier comparison unit 38. The reference phase θ e is a phase obtained by converting the rotor mechanical angle θ m that is an angle from the reference position of the rotor 12a into an electrical angle. Here, “advance angle phase” represents “advance angle”, which is the “advance angle” of the voltage command, in terms of phase. The “advance angle” here is a phase difference between a motor applied voltage applied to the winding of the stator 12b and a motor induced voltage induced in the winding of the stator 12b. The “advance angle” takes a positive value when the motor applied voltage is ahead of the motor induced voltage.
 また、キャリア比較部38には、進角位相θと基準位相θとに加え、キャリア生成部33で生成されたキャリアと、直流電圧Vdcと、電圧指令Vの振幅値である電圧振幅指令V*とが入力される。キャリア比較部38は、キャリア、進角位相θ、基準位相θ、直流電圧Vdc及び電圧振幅指令V*に基づいて、PWM信号Q1,Q2,Q3,Q4を生成する。 In addition to the advance phase θ v and the reference phase θ e , the carrier comparison unit 38 includes a carrier generated by the carrier generation unit 33, a DC voltage V dc, and a voltage that is an amplitude value of the voltage command V m. An amplitude command V * is input. The carrier comparison unit 38 generates PWM signals Q1, Q2, Q3, and Q4 based on the carrier, the advance angle phase θ v , the reference phase θ e , the DC voltage V dc, and the voltage amplitude command V *.
 図4は、図3に示されるキャリア比較部38の一例を示すブロック図である。図4には、キャリア比較部38A及びキャリア生成部33の詳細構成が示されている。 FIG. 4 is a block diagram showing an example of the carrier comparison unit 38 shown in FIG. FIG. 4 shows detailed configurations of the carrier comparison unit 38A and the carrier generation unit 33.
 図4において、キャリア生成部33には、キャリアの周波数であるキャリア周波数f[Hz]が設定される。キャリア周波数fの矢印の先には、キャリア波形の一例として、“0”と“1”との間を上下する三角波キャリアが示される。インバータ11のPWM制御には、同期PWM制御と非同期PWM制御とがある。同期PWM制御の場合、進角位相θにキャリアを同期させる必要がある。一方、非同期PWM制御の場合、進角位相θにキャリアを同期させる必要はない。 In FIG. 4, a carrier frequency f C [Hz], which is a carrier frequency, is set in the carrier generation unit 33. As an example of the carrier waveform, a triangular wave carrier that goes up and down between “0” and “1” is shown at the tip of the arrow of the carrier frequency f C. The PWM control of the inverter 11 includes synchronous PWM control and asynchronous PWM control. For synchronous PWM control, it is necessary to synchronize the carrier to advance the phase theta v. On the other hand, when the asynchronous PWM control, it is not necessary to synchronize the carrier to advance the phase theta v.
 キャリア比較部38Aは、図4に示されるように、絶対値演算部38a、除算部38b、乗算部38c、乗算部38d、乗算部38f、加算部38e、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。 As shown in FIG. 4, the carrier comparison unit 38A includes an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38d, a multiplication unit 38f, an addition unit 38e, a comparison unit 38g, a comparison unit 38h, and output inversion. Part 38i and output inverting part 38j.
 絶対値演算部38aでは、電圧振幅指令V*の絶対値|V*|が演算される。除算部38bでは、絶対値|V*|が、電圧センサ20で検出された直流電圧Vdcによって除算される。図4の構成では、除算部38bの出力が変調率となる。バッテリ10の出力電圧であるバッテリ電圧は、電流を流し続けることにより変動する。一方、絶対値|V*|を直流電圧Vdcで除算することにより、変調率の値を調整し、バッテリ電圧の低下によってモータ印加電圧が低下しないようにできる。 The absolute value calculator 38a calculates the absolute value | V * | of the voltage amplitude command V *. In the dividing unit 38b, the absolute value | V * | is divided by the DC voltage V dc detected by the voltage sensor 20. In the configuration of FIG. 4, the output of the division unit 38b is the modulation rate. The battery voltage that is the output voltage of the battery 10 varies as the current continues to flow. On the other hand, by dividing the absolute value | V * | by the DC voltage V dc , the value of the modulation factor can be adjusted so that the motor applied voltage does not decrease due to a decrease in battery voltage.
 乗算部38cでは、基準位相θに進角位相θを加えた“θ+θ”の正弦値が演算される。演算された“θ+θ”の正弦値は、除算部38bの出力である変調率に乗算される。乗算部38dでは、乗算部38cの出力である電圧指令Vに“1/2”が乗算される。加算部38eでは、乗算部38dの出力に“1/2”が加算される。乗算部38fでは、加算部38eの出力に“-1”が乗算される。加算部38eの出力は、複数のスイッチング素子51,52,53,54のうち、上アームの2つのスイッチング素子51,53を駆動するための正側電圧指令Vm1として比較部38gに入力され、乗算部38fの出力は、下アームの2つのスイッチング素子52,54を駆動するための負側電圧指令Vm2として比較部38hに入力される。 In the multiplication unit 38c, a sine value of “θ e + θ v ” obtained by adding the advance phase θ v to the reference phase θ e is calculated. The calculated sine value of “θ e + θ v ” is multiplied by the modulation factor that is the output of the division unit 38b. In the multiplication unit 38d, the voltage command V m that is the output of the multiplication unit 38c is multiplied by “½”. In the adder 38e, “½” is added to the output of the multiplier 38d. The multiplication unit 38f multiplies the output of the addition unit 38e by “−1”. The output of the adder 38e is input to the comparator 38g as a positive voltage command V m1 for driving the two switching elements 51, 53 of the upper arm among the plurality of switching elements 51, 52, 53, 54. The output of the multiplication unit 38f is input to the comparison unit 38h as a negative voltage command V m2 for driving the two switching elements 52 and 54 of the lower arm.
 比較部38gでは、正側電圧指令Vm1と、キャリアの振幅とが比較される。比較部38gの出力を反転した出力反転部38iの出力は、スイッチング素子51へのPWM信号Q1となり、比較部38gの出力は、スイッチング素子52へのPWM信号Q2となる。同様に、比較部38hでは、負側電圧指令Vm2と、キャリアの振幅とが比較される。比較部38hの出力を反転した出力反転部38jの出力は、スイッチング素子53へのPWM信号Q3となり、比較部38hの出力は、スイッチング素子54へのPWM信号Q4となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンされることはなく、出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンされることはない。 The comparison unit 38g compares the positive voltage command V m1 with the carrier amplitude. The output of the output inverting unit 38i obtained by inverting the output of the comparing unit 38g becomes the PWM signal Q1 to the switching element 51, and the output of the comparing unit 38g becomes the PWM signal Q2 to the switching element 52. Similarly, the comparison unit 38h compares the negative side voltage command V m2 with the carrier amplitude. The output of the output inverting unit 38j obtained by inverting the output of the comparing unit 38h becomes the PWM signal Q3 to the switching element 53, and the output of the comparing unit 38h becomes the PWM signal Q4 to the switching element 54. The switching element 51 and the switching element 52 are not simultaneously turned on by the output inverting part 38i, and the switching element 53 and the switching element 54 are not simultaneously turned on by the output inverting part 38j.
 図5は、図4に示されるキャリア比較部38Aにおける要部の波形例を示すタイムチャートである。図5には、加算部38eから出力される正側電圧指令Vm1の波形と、乗算部38fから出力される負側電圧指令Vm2の波形と、PWM信号Q1,Q2,Q3,Q4の波形と、インバータ出力電圧の波形とが示されている。 FIG. 5 is a time chart showing a waveform example of a main part in the carrier comparison unit 38A shown in FIG. FIG. 5 shows the waveform of the positive voltage command V m1 output from the adder 38e, the waveform of the negative voltage command V m2 output from the multiplier 38f, and the waveform of the PWM signals Q1, Q2, Q3, and Q4. And the waveform of the inverter output voltage.
 PWM信号Q1は、正側電圧指令Vm1がキャリアよりも大きいときに“ロー(Low)”となり、正側電圧指令Vm1がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q2は、PWM信号Q1の反転信号である。PWM信号Q3は、負側電圧指令Vm2がキャリアよりも大きいときに“ロー(Low)”となり、負側電圧指令Vm2がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q4は、PWM信号Q3の反転信号である。このように、図4に示される回路は、“ローアクティブ(Low Active)”で構成されているが、それぞれの信号が逆の値となる“ハイアクティブ(High Active)”で構成されていてもよい。 PWM signal Q1 is "high (High)" when "low (Low)" next when the positive voltage command V m1 is greater than the carrier, the positive voltage command V m1 is smaller than the carrier. The PWM signal Q2 is an inverted signal of the PWM signal Q1. PWM signal Q3 is "high (High)" when "low (Low)" becomes when negative voltage instruction V m2 is larger than the carrier, the negative-side voltage instruction V m2 smaller than the carrier. The PWM signal Q4 is an inverted signal of the PWM signal Q3. As described above, the circuit shown in FIG. 4 is configured by “low active”, but may be configured by “high active” in which each signal has an opposite value. Good.
 インバータ出力電圧の波形は、図5に示されるように、PWM信号Q1とPWM信号Q4との差電圧による電圧パルスと、PWM信号Q3とPWM信号Q2との差電圧による電圧パルスとが表れる。これらの電圧パルスが、モータ印加電圧として、単相モータ12に印加される。 As shown in FIG. 5, the waveform of the inverter output voltage shows a voltage pulse due to the difference voltage between the PWM signal Q1 and the PWM signal Q4 and a voltage pulse due to the difference voltage between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as a motor applied voltage.
 PWM信号Q1,Q2,Q3,Q4を生成する際に使用する変調方式としては、バイポーラ変調と、ユニポーラ変調とが知られている。バイポーラ変調は、電圧指令Vの1周期ごとに正又は負の電位で変化する電圧パルスを出力する変調方式である。ユニポーラ変調は、電圧指令Vの1周期ごとに3つの電位で変化する電圧パルス、すなわち正の電位と負の電位と零の電位とに変化する電圧パルスを出力する変調方式である。図5に示される波形は、ユニポーラ変調によるものである。本実施の形態のモータ駆動装置2においては、何れの変調方式を用いてもよい。なお、モータ電流波形をより正弦波に制御する必要がある用途では、バイポーラ変調よりも、高調波含有率が少ないユニポーラ変調を採用することが好ましい。 Bipolar modulation and unipolar modulation are known as modulation schemes used when generating the PWM signals Q1, Q2, Q3, and Q4. Bipolar modulation is positive or for each cycle of the voltage command V m is the modulation scheme for outputting a voltage pulse which varies in a negative potential. Unipolar modulation is a modulation system that outputs voltage pulses that change at three potentials for each period of the voltage command V m , that is, voltage pulses that change between a positive potential, a negative potential, and a zero potential. The waveform shown in FIG. 5 is due to unipolar modulation. In the motor drive device 2 of the present embodiment, any modulation method may be used. In applications where it is necessary to control the motor current waveform to a sine wave, it is preferable to employ unipolar modulation with a lower harmonic content than bipolar modulation.
 また、図5に示される波形は、電圧指令Vの半周期T/2の区間において、第1レグ5Aを構成するスイッチング素子51,52と、第2レグ5Bを構成するスイッチング素子53,54の4つのスイッチング素子をスイッチング動作させる方式によって得られる。この方式は、正側電圧指令Vm1と負側電圧指令Vm2の双方でスイッチング動作させることから、「両側PWM」と呼ばれる。これに対し、電圧指令Vの1周期Tのうちの一方の半周期では、スイッチング素子51,52のスイッチング動作を休止させ、電圧指令Vの1周期Tのうちの他方の半周期では、スイッチング素子53,54のスイッチング動作を休止させる方式もある。この方式は、「片側PWM」と呼ばれる。以下、「片側PWM」について説明する。 Moreover, the waveform shown in FIG. 5, the half period T / 2 of the interval of the voltage command V m, a switching element 51, 52 constituting the first leg 5A, the switching elements 53 and 54 constituting the second leg 5B These four switching elements can be obtained by a switching operation. This method is called “both sides PWM” because the switching operation is performed by both the positive side voltage command V m1 and the negative side voltage command V m2 . In contrast, in the one half cycle of one cycle T of the voltage command V m, to suspend the switching operation of the switching elements 51 and 52, the other half cycle of one cycle T of the voltage command V m is There is also a method of stopping the switching operation of the switching elements 53 and 54. This method is called “one-side PWM”. Hereinafter, “one-side PWM” will be described.
 図6は、図3に示されるキャリア比較部38の他の例を示すブロック図である。図6には、上述した「片側PWM」によるPWM信号の生成回路の一例が示され、具体的には、キャリア比較部38B及びキャリア生成部33の詳細構成が示されている。なお、図6に示されるキャリア生成部33の構成は、図4に示されるものと同一又は同等である。また、図6に示されるキャリア比較部38Bの構成において、図4に示されるキャリア比較部38Aと同一又は同等の構成部には同一の符号を付して示している。 FIG. 6 is a block diagram showing another example of the carrier comparison unit 38 shown in FIG. FIG. 6 shows an example of a PWM signal generation circuit based on the above-described “one-side PWM”, and specifically shows detailed configurations of the carrier comparison unit 38B and the carrier generation unit 33. The configuration of the carrier generating unit 33 shown in FIG. 6 is the same as or equivalent to that shown in FIG. Further, in the configuration of the carrier comparison unit 38B shown in FIG. 6, the same or equivalent components as those of the carrier comparison unit 38A shown in FIG.
 キャリア比較部38Bは、図6に示されるように、絶対値演算部38a、除算部38b、乗算部38c、乗算部38k、加算部38m、加算部38n、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。 As shown in FIG. 6, the carrier comparison unit 38B includes an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38k, an addition unit 38m, an addition unit 38n, a comparison unit 38g, a comparison unit 38h, and output inversion. Part 38i and output inverting part 38j.
 絶対値演算部38aでは、電圧振幅指令V*の絶対値|V*|が演算される。除算部38bでは、絶対値|V*|が、電圧センサ20で検出された直流電圧Vdcによって除算される。図6の構成でも、除算部38bの出力が変調率となる。 The absolute value calculator 38a calculates the absolute value | V * | of the voltage amplitude command V *. In the dividing unit 38b, the absolute value | V * | is divided by the DC voltage V dc detected by the voltage sensor 20. Also in the configuration of FIG. 6, the output of the division unit 38 b becomes the modulation rate.
 乗算部38cでは、基準位相θに進角位相θを加えた“θ+θ”の正弦値が演算される。演算された“θ+θ”の正弦値は、除算部38bの出力である変調率に乗算される。乗算部38kでは、乗算部38cの出力である電圧指令Vに“-1”が乗算される。加算部38mでは、乗算部38cの出力である電圧指令Vに“1”が加算される。加算部38nでは、乗算部38kの出力、即ち電圧指令Vの反転出力に“1”が加算される。加算部38mの出力は、複数のスイッチング素子51,52,53,54のうち、上アームの2つのスイッチング素子51,53を駆動するための第1電圧指令Vm3として比較部38gに入力される。加算部38nの出力は、下アームの2つのスイッチング素子52,54を駆動するための第2電圧指令Vm4として比較部38hに入力される。 In the multiplication unit 38c, a sine value of “θ e + θ v ” obtained by adding the advance phase θ v to the reference phase θ e is calculated. The calculated sine value of “θ e + θ v ” is multiplied by the modulation factor that is the output of the division unit 38b. In the multiplication unit 38k, the voltage command V m that is the output of the multiplication unit 38c is multiplied by “−1”. In the addition unit 38m, “1” is added to the voltage command V m that is the output of the multiplication unit 38c. The adder unit 38n, the output of the multiplying unit 38k, that is, "1" to the inverted output of the voltage command V m is added. The output of the adder 38m is input to the comparator 38g as a first voltage command V m3 for driving the two switching elements 51, 53 of the upper arm among the plurality of switching elements 51, 52, 53, 54. . The output of the adder 38n is input to the comparator 38h as a second voltage command V m4 for driving the two switching elements 52 and 54 of the lower arm.
 比較部38gでは、第1電圧指令Vm3と、キャリアの振幅とが比較される。比較部38gの出力を反転した出力反転部38iの出力は、スイッチング素子51へのPWM信号Q1となり、比較部38gの出力は、スイッチング素子52へのPWM信号Q2となる。同様に、比較部38hでは、第2電圧指令Vm4と、キャリアの振幅とが比較される。比較部38hの出力を反転した出力反転部38jの出力は、スイッチング素子53へのPWM信号Q3となり、比較部38hの出力は、スイッチング素子54へのPWM信号Q4となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンされることはなく、出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンされることはない。 The comparison unit 38g compares the first voltage command V m3 with the carrier amplitude. The output of the output inverting unit 38i obtained by inverting the output of the comparing unit 38g becomes the PWM signal Q1 to the switching element 51, and the output of the comparing unit 38g becomes the PWM signal Q2 to the switching element 52. Similarly, the comparison unit 38h compares the second voltage command V m4 with the carrier amplitude. The output of the output inverting unit 38j obtained by inverting the output of the comparing unit 38h becomes the PWM signal Q3 to the switching element 53, and the output of the comparing unit 38h becomes the PWM signal Q4 to the switching element 54. The switching element 51 and the switching element 52 are not simultaneously turned on by the output inverting part 38i, and the switching element 53 and the switching element 54 are not simultaneously turned on by the output inverting part 38j.
 図7は、図6に示されるキャリア比較部38Bにおける要部の波形例を示すタイムチャートである。図7には、加算部38mから出力される第1電圧指令Vm3の波形と、加算部38nから出力される第2電圧指令Vm4の波形と、PWM信号Q1,Q2,Q3,Q4の波形と、モータ印加電圧の波形とが示されている。なお、図7では、便宜的に、キャリアのピーク値よりも振幅値が大きくなる第1電圧指令Vm3の波形部分と、キャリアのピーク値よりも振幅値が大きくなる第2電圧指令Vm4の波形部分は、フラットな直線で表されている。 FIG. 7 is a time chart showing a waveform example of a main part in the carrier comparison unit 38B shown in FIG. FIG. 7 shows the waveform of the first voltage command V m3 output from the adder 38m, the waveform of the second voltage command V m4 output from the adder 38n, and the waveforms of the PWM signals Q1, Q2, Q3, and Q4. And a waveform of the motor applied voltage. In FIG. 7, for convenience, the waveform portion of the first voltage command V m3 whose amplitude value is larger than the peak value of the carrier and the second voltage command V m4 whose amplitude value is larger than the peak value of the carrier. The waveform portion is represented by a flat straight line.
 PWM信号Q1は、第1電圧指令Vm3がキャリアよりも大きいときに“ロー(Low)”となり、第1電圧指令Vm3がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q2は、PWM信号Q1の反転信号である。PWM信号Q3は、第2電圧指令Vm4がキャリアよりも大きいときに“ロー(Low)”となり、第2電圧指令Vm4がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q4は、PWM信号Q3の反転信号である。このように、図6に示される回路は、“ローアクティブ(Low Active)”で構成されているが、それぞれの信号が逆の値となる“ハイアクティブ(High Active)”で構成されていてもよい。 PWM signal Q1 is "low (Low)" next when the first voltage command V m3 is greater than the carrier, the first voltage command V m3 is "high (High)" when less than the carrier. The PWM signal Q2 is an inverted signal of the PWM signal Q1. PWM signal Q3 is "low (Low)" next when a second voltage command V m4 is greater than the carrier, the second voltage command V m4 is "high (High)" when less than the carrier. The PWM signal Q4 is an inverted signal of the PWM signal Q3. In this manner, the circuit shown in FIG. 6 is configured with “Low Active”, but may be configured with “High Active” in which each signal has an opposite value. Good.
 インバータ出力電圧の波形は、図7に示されるように、PWM信号Q1とPWM信号Q4との差電圧による電圧パルスと、PWM信号Q3とPWM信号Q2との差電圧による電圧パルスとが表れる。これらの電圧パルスが、モータ印加電圧として、単相モータ12に印加される。 As shown in FIG. 7, the waveform of the inverter output voltage shows a voltage pulse due to the difference voltage between the PWM signal Q1 and the PWM signal Q4 and a voltage pulse due to the difference voltage between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as a motor applied voltage.
 図7に示される波形では、電圧指令Vの1周期Tのうちの一方の半周期では、スイッチング素子51,52のスイッチング動作が休止し、電圧指令Vの1周期Tのうちの他方の半周期では、スイッチング素子53,54のスイッチング動作が休止している。 In the waveforms shown in FIG. 7, in one half cycle of one cycle T of the voltage command V m, the switching operation of the switching elements 51 and 52 are at rest, the other of the one period T of the voltage command V m In the half cycle, the switching operations of the switching elements 53 and 54 are suspended.
 また、図7に示されるように、インバータ出力電圧の波形は、電圧指令Vの1周期ごとに3つの電位で変化するユニポーラ変調となる。前述の通り、ユニポーラ変調に代えてバイポーラ変調を用いてもよいが、モータ電流波形をより正弦波に制御する必要がある用途では、ユニポーラ変調を採用することが好ましい。 Further, as shown in FIG. 7, the waveform of the inverter output voltage is a unipolar modulation which changes at three potentials per cycle of the voltage command V m. As described above, bipolar modulation may be used instead of unipolar modulation, but it is preferable to use unipolar modulation in applications where the motor current waveform needs to be controlled to a more sine wave.
 次に、本実施の形態における進角制御について、図8から図10の図面を参照して説明する。図8は、図4に示されるキャリア比較部38A、及び図6に示されるキャリア比較部38Bへ入力される進角位相θを算出するための機能構成を示すブロック図である。図9は、実施の形態における進角位相θの算出方法の一例を示す図である。図10は、図4及び図6に示される電圧指令Vと進角位相θとの関係の説明に使用するタイムチャートである。 Next, the advance angle control in the present embodiment will be described with reference to the drawings of FIGS. Figure 8 is a block diagram showing the carrier comparison section 38A shown in FIG. 4, and the functional configuration for calculating the advance phase theta v inputted to the carrier comparison section 38B shown in FIG. Figure 9 is a diagram showing an example of a method of calculating the advanced angle phase theta v in the embodiment. FIG. 10 is a time chart used for explaining the relationship between the voltage command V m and the advance angle phase θ v shown in FIGS. 4 and 6.
 進角位相θの算出機能は、図8に示されるように、回転速度算出部42と、進角位相算出部44とによって実現できる。回転速度算出部42は、位置センサ21が検出した位置センサ信号21aに基づいて単相モータ12の回転速度ωを算出する。また、回転速度算出部42は、ロータ12aの基準位置からの角度であるロータ機械角θを電気角に換算した基準位相θを算出する。図10の例では、位置センサ信号21aが立ち下がるエッジの部分がロータ12aの基準位置とされている。進角位相算出部44は、回転速度算出部42が算出した回転速度ω及び基準位相θに基づいて、進角位相θを算出する。 As shown in FIG. 8, the calculation function of the advance angle phase θ v can be realized by a rotation speed calculation unit 42 and an advance angle phase calculation unit 44. The rotation speed calculation unit 42 calculates the rotation speed ω of the single-phase motor 12 based on the position sensor signal 21 a detected by the position sensor 21. In addition, the rotation speed calculation unit 42 calculates a reference phase θ e obtained by converting a rotor mechanical angle θ m that is an angle from the reference position of the rotor 12a into an electrical angle. In the example of FIG. 10, the edge portion where the position sensor signal 21a falls is the reference position of the rotor 12a. The advance phase calculation unit 44 calculates the advance phase θ v based on the rotation speed ω and the reference phase θ e calculated by the rotation speed calculation unit 42.
 図9の横軸には回転速度Nが示され、図9の縦軸には進角位相θが示されている。図9に示されるように、進角位相θは、回転速度Nの増加に対して進角位相θが増加する関数を用いて決定することができる。図9の例では、1次の線形関数により進角位相θを決定しているが、1次の線形関数に限定されない。回転速度Nの増加に応じて進角位相θが同じか、もしくは大きくなる関係であれば、1次の線形関数以外の関数を用いてもよい。 The horizontal axis of FIG. 9 rotational speed N is shown, have been shown advanced angle phase theta v is the vertical axis in FIG. As shown in FIG. 9, the advance angle phase θ v can be determined using a function in which the advance angle phase θ v increases as the rotational speed N increases. In the example of FIG. 9, the advance phase θ v is determined by a linear function, but is not limited to a linear function. If either advanced angle phase theta v according to an increase of the rotational speed N is equal or greater relationship may be used functions other than first-order linear function.
 図10の上段部には、図2に示す位置センサ21から出力される位置センサ信号21aと、図2に示すロータ12aの基準位置からの角度であるロータ機械角θと、ロータ機械角θを電気角に換算した位相である基準位相θとが示されている。 In the upper portion of FIG. 10, a position sensor signal 21a output from the position sensor 21 shown in FIG. 2, the rotor mechanical angle theta m is the angle from a reference position of the rotor 12a illustrated in FIG. 2, the rotor mechanical angle theta A reference phase θ e that is a phase obtained by converting m into an electrical angle is shown.
 図10の中段部には、「例1」及び「例2」として、2つの電圧指令Vの波形例が示されている。 In the middle part of FIG. 10, waveform examples of two voltage commands V m are shown as “Example 1” and “Example 2”.
 図10の最下段部には、ロータ12aが時計方向に回転したときのロータ機械角θが0°、45°、90°、135°及び180°である状態が示されている。単相モータ12のロータ12aには4つの磁石が設けられ、ロータ12aの外周には4つのティース12b1が設けられている。ロータ12aが時計方向に回転した場合、ロータ機械角θに応じた位置センサ信号21aが検出される。回転速度算出部42は、検出された位置センサ信号21aに基づいて、電気角に換算した基準位相θを算出する。 The lowermost portion of FIG. 10, the rotor mechanical angle theta m when the rotor 12a is rotated in the clockwise direction is 0 °, 45 °, 90 ° , shows a state is 135 ° and 180 °. Four magnets are provided on the rotor 12a of the single phase motor 12, and four teeth 12b1 are provided on the outer periphery of the rotor 12a. If the rotor 12a is rotated clockwise, the position sensor signal 21a corresponding to the rotor machine angle theta m is detected. The rotation speed calculation unit 42 calculates a reference phase θ e converted into an electrical angle based on the detected position sensor signal 21a.
 図10の中段部において、「例1」として示される電圧指令Vは、進角位相θ=0の場合の電圧指令である。進角位相θ=0の場合、基準位相θと同相の電圧指令Vが出力される。なお、このときの電圧指令Vの振幅は、前述した電圧振幅指令V*に基づいて決定される。 In the middle part of FIG. 10, the voltage command V m shown as “Example 1” is a voltage command in the case of the advance angle phase θ v = 0. When the advance angle phase θ v = 0, the voltage command V m having the same phase as the reference phase θ e is output. The amplitude of the voltage command V m at this time is determined based on the voltage amplitude command V * as described above.
 また、図10の中段部において、「例2」として示される電圧指令Vは、進角位相θ=π/4の場合の電圧指令である。進角位相θ=π/4の場合、基準位相θから進角位相θの成分であるπ/4進めた電圧指令Vが出力される。 In the middle part of FIG. 10, the voltage command V m shown as “Example 2” is a voltage command in the case of the advance angle phase θ v = π / 4. When the advance angle phase θ v = π / 4, a voltage command V m advanced by π / 4, which is a component of the advance angle phase θ v , is output from the reference phase θ e .
 次に、実施の形態に係るモータ駆動装置2における駆動方法について説明する。本実施の形態では、単相モータ12に印加する電圧波形を回転速度に応じて変更する制御を行う。なお、以下の説明では、単相モータ12を電気掃除機の電動送風機に適用する場合を想定する。また、単相モータ12のロータ回転位置を検出する位置センサ21に1つのホールセンサを用いるものとする。 Next, a driving method in the motor driving apparatus 2 according to the embodiment will be described. In the present embodiment, control is performed to change the voltage waveform applied to the single-phase motor 12 according to the rotational speed. In the following description, it is assumed that the single-phase motor 12 is applied to an electric blower of a vacuum cleaner. In addition, one Hall sensor is used as the position sensor 21 that detects the rotor rotation position of the single-phase motor 12.
 本実施の形態では、電動送風機の回転域を以下の通り区分する。
 (A)起動時:0[rpm]~1万[rpm]
 (B)低速回転域(低回転数域):1万[rpm]~2万[rpm]
 (C)中速回転域(中回転数域):5万[rpm]~7万[rpm]
 (D)高速回転域(高回転数域):10万[rpm]以上
In this Embodiment, the rotation area of an electric blower is divided as follows.
(A) At startup: 0 [rpm] to 10,000 [rpm]
(B) Low speed range (low speed range): 10,000 [rpm] to 20,000 [rpm]
(C) Medium speed rotation range (medium rotation speed range): 50,000 [rpm] to 70,000 [rpm]
(D) High speed rotation range (high rotation speed range): 100,000 [rpm] or more
 なお、上記(B)と(C)に挟まれた領域、及び上記(C)と(D)に挟まれた領域はグレーゾーンである。2万[rpm]から5万[rpm]までの回転速度は、低速回転域に含まれる場合もあれば、中速回転域に含まれる場合もある。また、7万[rpm]から10万[rpm]までの回転速度は、中速回転域に含まれる場合もあれば、高速回転域に含まれる場合もある。 Note that the region sandwiched between (B) and (C) and the region sandwiched between (C) and (D) are gray zones. The rotational speed from 20,000 [rpm] to 50,000 [rpm] may be included in the low-speed rotation region or in the medium-speed rotation region. In addition, the rotational speed from 70,000 [rpm] to 100,000 [rpm] may be included in the medium-speed rotation region or in the high-speed rotation region.
 図11は、起動から低速回転域までの回転域におけるキャリア、電圧指令V及びインバータ出力電圧の波形の一例を示す図である。図11の下段部に示される電圧パルス列は、図11の上段部に示される電圧指令Vによって生成される。左側の半周期に示される電圧指令Vは、図6において、基準位相θに進角位相θを加えた“θ+θ”の値を“π/2”に設定することで得られる。また、右側の半周期に示される電圧指令Vは、“θ+θ”の値を“3π/2”に設定することで得られる。図11の上段部に示されるように、電圧指令Vの半周期ごと、キャリアと比較される電圧指令Vの大きさは一定である。このため、電圧指令Vの半周期ごと、振幅一定で推移する正負の電圧パルス列が生成される。 FIG. 11 is a diagram illustrating an example of waveforms of the carrier, the voltage command Vm, and the inverter output voltage in the rotation range from the startup to the low-speed rotation range. Voltage pulse sequence shown in the lower portion of FIG. 11 is generated by the voltage command V m shown in the upper portion of FIG. 11. The voltage command V m shown in the left half cycle is obtained by setting the value of “θ e + θ v ” obtained by adding the advance angle phase θ v to the reference phase θ e to “π / 2” in FIG. It is done. Further, the voltage command V m shown in the right half cycle is obtained by setting the value of “θ e + θ v ” to “3π / 2”. As shown in the upper portion of FIG. 11, every half cycle of the voltage command V m, the magnitude of the voltage command V m is compared with the carrier is constant. Therefore, every half cycle of the voltage command V m, a voltage pulse train of positive and negative to remain at a constant amplitude is generated.
 図11の下段部の電圧パルス列の波形に含まれる周波数成分からPWM成分のスイッチング周波数成分を除去すれば、図11の下段部に破線で示されている矩形波の波形に概ね一致する。従って、図11の下段部に示される電圧パルス列を単相モータ12に印加することは、単相モータ12に矩形波を印加することと等価である。以下、図11の上段部に示されるような、半周期ごとの振幅一定の電圧指令Vを使用してPWM信号を生成することを「矩形波PWM」と呼び、生成されるPWM信号を「矩形波PWM信号」と呼ぶ。 If the switching frequency component of the PWM component is removed from the frequency component included in the waveform of the voltage pulse train in the lower part of FIG. 11, the waveform substantially matches the waveform of the rectangular wave indicated by the broken line in the lower part of FIG. Therefore, applying the voltage pulse train shown in the lower part of FIG. 11 to the single-phase motor 12 is equivalent to applying a rectangular wave to the single-phase motor 12. Hereinafter, generating a PWM signal using a voltage command V m having a constant amplitude every half cycle as shown in the upper part of FIG. 11 is referred to as “rectangular wave PWM”, and the generated PWM signal is “ This is called “rectangular wave PWM signal”.
 以上の説明のように、本実施の形態における制御部25は、起動時及び起動後の低速回転域において、インバータ11が矩形波の電圧を出力するように、矩形波PWM信号を生成して駆動信号生成部32に出力する。なお、インバータ11が矩形波の電圧を出力するとは、インバータ出力電圧の周波数成分からPWM制御のスイッチング周波数成分を除去した電圧波形が、実質的に矩形波になっていることを意味する。 As described above, the control unit 25 in the present embodiment generates and drives a rectangular wave PWM signal so that the inverter 11 outputs a rectangular wave voltage at the time of startup and after the startup in the low speed rotation range. Output to the signal generator 32. Note that the inverter 11 outputting a rectangular wave voltage means that the voltage waveform obtained by removing the switching frequency component of the PWM control from the frequency component of the inverter output voltage is substantially a rectangular wave.
 図12は、中速回転域におけるキャリア、電圧指令V及びインバータ出力電圧の波形の一例を示す図である。図12の下段部に示される電圧パルス列は、図12の上段部に示される正弦波である電圧指令Vによって生成される。図12の下段部には、正弦波である電圧指令Vのピークに近づくにつれ、パルス幅が徐々に広くなり、電圧指令Vのピークから離れるにつれ、パルス幅が徐々に狭くなる電圧パルス列が示されている。 FIG. 12 is a diagram illustrating an example of waveforms of the carrier, the voltage command Vm, and the inverter output voltage in the medium speed rotation region. Voltage pulse sequence shown in the lower part of FIG. 12 is generated by the voltage command V m is a sine wave as shown in the upper portion of FIG. 12. In the lower portion of Figure 12, as it approaches the peak of the voltage command V m is a sine wave, a pulse width becomes gradually wider, as the distance from the peak of the voltage command V m, the pulse width is gradually narrower voltage pulse train It is shown.
 図12の下段部の電圧パルス列の波形に含まれる周波数成分からPWM制御のスイッチング周波数成分を除去すれば、図12の下段部に破線で示されている正弦波の波形に概ね一致する。従って、図12の下段部に示される電圧パルス列を単相モータ12に印加することは、単相モータ12に正弦波を印加することと等価である。以下、図12の上段部に示されるような正弦波の電圧指令Vを使用してPWM信号を生成することを「正弦波PWM」と呼び、生成されるPWM信号を「正弦波PWM信号」と呼ぶ。 If the switching frequency component of the PWM control is removed from the frequency component included in the waveform of the voltage pulse train in the lower part of FIG. 12, the waveform substantially coincides with the waveform of the sine wave indicated by the broken line in the lower part of FIG. Therefore, applying the voltage pulse train shown in the lower part of FIG. 12 to the single-phase motor 12 is equivalent to applying a sine wave to the single-phase motor 12. Hereinafter, generating a PWM signal using a sine wave voltage command V m as shown in the upper part of FIG. 12 is referred to as “sine wave PWM”, and the generated PWM signal is referred to as “sine wave PWM signal”. Call it.
 以上の説明のように、本実施の形態では、中速回転域において、インバータ11が正弦波の電圧を出力するように、正弦波PWM信号を生成して駆動信号生成部32に出力する。なお、インバータ11が正弦波の電圧を出力するとは、インバータ出力電圧の周波数成分からPWM制御のスイッチング周波数成分を除去した電圧波形が、実質的に正弦波になっていることを意味する。 As described above, in the present embodiment, a sine wave PWM signal is generated and output to the drive signal generation unit 32 so that the inverter 11 outputs a sine wave voltage in the medium speed rotation region. The fact that the inverter 11 outputs a sine wave voltage means that the voltage waveform obtained by removing the switching frequency component of the PWM control from the frequency component of the inverter output voltage is substantially a sine wave.
 図13は、高速回転域におけるキャリア、電圧指令V及びインバータ出力電圧の波形の一例を示す図である。図13の下段部に示される電圧パルス列は、図13の上段部に示される電圧指令Vによって生成される。図12との相違点は、電圧指令Vのピーク値がキャリア振幅よりも大きいことにある。より詳細に説明すると、図12は、変調率=1.0の波形であるのに対し、図13は、変調率=1.2の波形である。 FIG. 13 is a diagram illustrating an example of waveforms of the carrier, the voltage command Vm, and the inverter output voltage in the high-speed rotation range. Voltage pulse train shown in the lower portion of FIG. 13 is generated by the voltage command V m shown in the upper portion of FIG. 13. The difference from FIG. 12 is that the peak value of the voltage command V m is greater than the carrier amplitude. More specifically, FIG. 12 shows a waveform with a modulation factor = 1.0, whereas FIG. 13 shows a waveform with a modulation factor = 1.2.
 図13において、電圧指令Vがキャリアのピークよりも大きい領域Aでは、下段部に示されるように、幅広且つ単一の電圧パルスが生成されている。領域Aの両側に位置する領域B1,B2では、領域Aに近づくにつれて、パルス幅が徐々に広くなる電圧パルス列が生成されている。 In FIG. 13, in the region A where the voltage command V m is larger than the carrier peak, a wide and single voltage pulse is generated as shown in the lower part. In the regions B1 and B2 located on both sides of the region A, a voltage pulse train whose pulse width gradually increases as the region A is approached is generated.
 図13の下段部の電圧パルス列の波形に含まれる周波数成分からPWM制御のスイッチング周波数成分を除去すれば、図13の下段部に破線で示されている台形波の波形に概ね一致する。従って、図13の下段部に示される電圧パルス列を単相モータ12に印加することは、単相モータ12に台形波を印加することと等価である。以下、図13の上段部に示されるように、変調率が1.0を超える正弦波の電圧指令Vを使用してPWM信号を生成することを「台形波PWM」と呼び、生成されるPWM信号を「台形波PWM信号」と呼ぶ。 If the switching frequency component of PWM control is removed from the frequency components included in the waveform of the voltage pulse train in the lower part of FIG. 13, the waveform substantially matches the waveform of the trapezoidal wave indicated by the broken line in the lower part of FIG. Therefore, applying the voltage pulse train shown in the lower part of FIG. 13 to the single-phase motor 12 is equivalent to applying a trapezoidal wave to the single-phase motor 12. Hereinafter, as shown in the upper part of FIG. 13, generating a PWM signal using a sine wave voltage command V m having a modulation rate exceeding 1.0 is referred to as “trapezoidal wave PWM” and is generated. The PWM signal is referred to as a “trapezoidal wave PWM signal”.
 以上の説明のように、本実施の形態では、高速回転域において、インバータ11が台形波の電圧を出力するように、台形波PWM信号を生成して駆動信号生成部32に出力する。なお、インバータ11が台形波の電圧を出力するとは、インバータ出力電圧の周波数成分からPWM制御のスイッチング周波数成分を除去した電圧波形が、実質的に台形波になっていることを意味する。 As described above, in the present embodiment, a trapezoidal wave PWM signal is generated and output to the drive signal generation unit 32 so that the inverter 11 outputs a trapezoidal wave voltage in the high-speed rotation range. Note that that the inverter 11 outputs a trapezoidal voltage means that the voltage waveform obtained by removing the switching frequency component of the PWM control from the frequency component of the inverter output voltage is substantially a trapezoidal wave.
 次に、上記のように回転速度に応じて単相モータ12に印加する電圧波形を制御することの意義について、図14から図19の図面を参照して説明する。 Next, the significance of controlling the voltage waveform applied to the single-phase motor 12 according to the rotation speed as described above will be described with reference to the drawings of FIGS.
 図14は、図1に示される単相モータ12の等価回路を示す図である。図15は、実施の形態における矩形波PWM、正弦波PWM及び台形波PWMにおける逆起電圧とインバータ出力電圧との間の位相差の説明に使用する図である。図16は、実施の形態における矩形波PWMから正弦波PWMへの切り替時の動作説明に使用するタイムチャートである。図17は、図1に示される単相モータ12に発生するブレーキトルクと回転速度との関係を示す図である。図18は、図1に示される単相モータ12に流れるブレーキ電流の時間変化を示す図である。図19は、電圧制限前の電圧指令の振幅とインバータ出力電圧の基本波成分との関係を示す図である。 FIG. 14 is a diagram showing an equivalent circuit of the single-phase motor 12 shown in FIG. FIG. 15 is a diagram used for explaining the phase difference between the counter electromotive voltage and the inverter output voltage in the rectangular wave PWM, the sine wave PWM, and the trapezoidal wave PWM in the embodiment. FIG. 16 is a time chart used for explaining the operation at the time of switching from the rectangular wave PWM to the sine wave PWM in the embodiment. FIG. 17 is a diagram showing the relationship between the brake torque generated in the single-phase motor 12 shown in FIG. 1 and the rotational speed. FIG. 18 is a diagram showing a change over time of the brake current flowing through the single-phase motor 12 shown in FIG. FIG. 19 is a diagram illustrating the relationship between the amplitude of the voltage command before voltage limitation and the fundamental wave component of the inverter output voltage.
 永久磁石を用いた単相モータ12に1つのホールセンサを用いて磁極位置検出を行う場合、図16に示されるように、逆起電圧の1周期に対して1回しかホールセンサ信号が切り替わらない。このため、磁極位置の分解能は、180度となる。分解能が180度である場合、例えば0から180度の範囲、又は180から360度の範囲の何れかに磁極位置が存在することしか分からない。 When magnetic pole position detection is performed using a single hall sensor for the single-phase motor 12 using a permanent magnet, the hall sensor signal is switched only once for one cycle of the counter electromotive voltage as shown in FIG. . For this reason, the resolution of the magnetic pole position is 180 degrees. When the resolution is 180 degrees, it is only known that the magnetic pole position exists in either the range of 0 to 180 degrees or the range of 180 to 360 degrees, for example.
 一方、モータが回転を開始すれば、ホールセンサ信号のエッジの切替わり間隔を計時することにより、正確な回転速度を容易に求めることができる。また、回転速度に基づき、現在のエッジから次のエッジまでの磁極位置の位相加算量を求めれば、磁極位置を推定することが可能となる。 On the other hand, when the motor starts to rotate, the accurate rotation speed can be easily obtained by measuring the switching interval of the edge of the Hall sensor signal. Further, if the phase addition amount of the magnetic pole position from the current edge to the next edge is obtained based on the rotation speed, the magnetic pole position can be estimated.
 図15には、逆起電圧とモータ印加電圧との間に位相差がある場合の波形が示されている。図15の上段部には、矩形波PWMで制御する場合において、位相差がない場合が破線で示され、位相差がある場合が一点鎖線で示されている。図15の中段部及び下段部には、逆起電圧が破線で示され、モータ印加電圧が実線で示されている。 FIG. 15 shows a waveform when there is a phase difference between the counter electromotive voltage and the motor applied voltage. In the upper part of FIG. 15, in the case of control by the rectangular wave PWM, a case where there is no phase difference is indicated by a broken line, and a case where there is a phase difference is indicated by a one-dot chain line. The counter electromotive voltage is indicated by a broken line and the motor applied voltage is indicated by a solid line in the middle part and the lower part of FIG.
 矩形波PWMの場合、多少の位相差があっても、図15の上段部に示されるように、矩形波の印加タイミングが位相差分ずれるだけであり、位相差の影響は小さいことが分かる。これに対し、正弦波PWM及び台形波PWMで制御する場合、位相差があると、図15の中段部及び下段部に示されるように、逆起電圧とモータ印加電圧との差が1周期全体に亘って生じるので、位相差の影響は大きくなる。 In the case of the rectangular wave PWM, even if there is a slight phase difference, as shown in the upper part of FIG. 15, the application timing of the rectangular wave is merely shifted, and it can be seen that the influence of the phase difference is small. On the other hand, when controlling with sine wave PWM and trapezoidal wave PWM, if there is a phase difference, the difference between the back electromotive voltage and the motor applied voltage is one cycle as shown in the middle and lower parts of FIG. Therefore, the influence of the phase difference becomes large.
 そこで、本実施の形態では、前述したように、起動時及び起動後の低速回転域においては、インバータ出力電圧を矩形波PWMで生成する。これにより、正確な磁極位置の推定ができていない場合でも、安定した電圧の供給が可能となる。 Therefore, in the present embodiment, as described above, the inverter output voltage is generated by the rectangular wave PWM in the low-speed rotation range at the start and after the start. As a result, even when the magnetic pole position cannot be estimated accurately, a stable voltage can be supplied.
 インバータ出力電圧を一定にすることの効果については、図14を用いて説明する。図14の等価回路において、Vはインバータ出力電圧、Eは単相モータ12のステータ巻線に生じる逆起電圧、Rはステータ巻線の抵抗、Lはステータ巻線のインダクタンス、Iは単相モータ12のステータ巻線に流れるモータ電流である。このとき、モータ電流Iは、次式で表される。 The effect of making the inverter output voltage constant will be described with reference to FIG. In the equivalent circuit of FIG. 14, V is the inverter output voltage, E is the counter electromotive voltage generated in the stator winding of the single phase motor 12, R is the resistance of the stator winding, L is the inductance of the stator winding, and I is the single phase motor. This is a motor current flowing through 12 stator windings. At this time, the motor current I is expressed by the following equation.
 I=(V-E)/(R+sL)   …(1) I = (VE) / (R + sL) ... (1)
 上記(1)式において、sはラプラス演算子である。 In the above equation (1), s is a Laplace operator.
 起動時及び起動後の低速回転域では、回転速度が低いため、単相モータ12のインピーダンスも低く、逆起電圧も零か、極めて低い値となる。従って、上記(1)式におけるEの値は小さく、sLの値も小さくなるので、モータ電流が過大になりやすい。また、起動時及び起動後の低速回転域では、回転速度も安定しないので、電流を一定に制御することは困難である。一方、インバータ出力電圧が一定である場合、理論的に最大電流を求めることができる。このため、起動時及び起動後の低速回転域では、印加電圧の振幅が一定な矩形波PWMで制御することが好ましい。矩形波PWMの採用により、過電流に起因する起動不良、低速回転域における回転むらなどが起こる可能性を低くすることができる。 In the low-speed rotation range at the start and after the start-up, since the rotation speed is low, the impedance of the single-phase motor 12 is low and the back electromotive voltage is zero or extremely low. Therefore, the value of E in the above equation (1) is small and the value of sL is also small, so the motor current tends to be excessive. Further, since the rotational speed is not stable at the time of starting and in the low speed rotating region after starting, it is difficult to control the current to be constant. On the other hand, when the inverter output voltage is constant, the maximum current can be obtained theoretically. For this reason, it is preferable to control with the rectangular wave PWM in which the amplitude of the applied voltage is constant at the time of starting and in the low speed rotation region after starting. By adopting the rectangular wave PWM, it is possible to reduce the possibility of start-up failure due to overcurrent, uneven rotation in the low-speed rotation region, and the like.
 次に、中速回転域及び高速回転域まで、矩形波PWMで制御した場合について考える。矩形波PWM制御に関し、図15の上段部には、モータ印加電圧の波形が実線で示され、モータ誘起電圧の波形が破線及び一点鎖線で示されている。図14の等価回路でも理解できるように、単相モータ12には、矩形波電圧と正弦波状のモータ誘起電圧との差電圧に応じた電流が流れる。このため、単相モータ12には、回転速度に同期した基本波電流成分だけでなく、高周波電流成分が重畳する。 Next, let us consider the case where the control is performed by the rectangular wave PWM up to the medium speed rotation range and the high speed rotation range. Regarding the rectangular wave PWM control, in the upper part of FIG. 15, the waveform of the motor applied voltage is indicated by a solid line, and the waveform of the motor induced voltage is indicated by a broken line and an alternate long and short dash line. As can be understood from the equivalent circuit of FIG. 14, a current corresponding to the difference voltage between the rectangular wave voltage and the sinusoidal motor induced voltage flows through the single-phase motor 12. For this reason, not only the fundamental wave current component synchronized with the rotation speed but also the high frequency current component is superimposed on the single phase motor 12.
 単相モータ12において、単相モータ12に駆動力を与える駆動トルクは、回転速度に同期した電流成分である基本波電流成分が密接に関係する。一方、基本波電流成分以外の電流成分は、回転を阻害するブレーキトルクとなる。ブレーキトルクは、単相モータ12の回転にブレーキ力を与えるため、瞬間的な回転数の低下、振動及び騒音の原因となる。また、基本波電流よりも周波数が高い高周波電流は、単相モータ12における高周波鉄損の原因となる。高周波鉄損の増加は、単相モータ12の効率を低下させる。そのため、回転速度の増加に応じて、回転速度に同期した基本波電流成分を効率良く出力可能な正弦波PWMに切り替えることが好ましい。 In the single-phase motor 12, the fundamental torque current component, which is a current component synchronized with the rotation speed, is closely related to the driving torque that gives the single-phase motor 12 driving force. On the other hand, current components other than the fundamental wave current component serve as brake torque that inhibits rotation. Since the brake torque gives a braking force to the rotation of the single-phase motor 12, it causes an instantaneous decrease in the number of rotations, vibration and noise. A high frequency current having a frequency higher than the fundamental current causes high frequency iron loss in the single-phase motor 12. An increase in high-frequency iron loss reduces the efficiency of the single-phase motor 12. For this reason, it is preferable to switch to a sine wave PWM that can efficiently output a fundamental wave current component synchronized with the rotation speed as the rotation speed increases.
 矩形波PWMから正弦波PMWへの切り替えに際しては、先に説明した通り、ホールセンサ信号に基づいて推定した磁極位置の情報を用いる。磁極位置の推定では、ホールセンサ信号のエッジの切替わり間隔を計時することにより、回転速度を演算する。また、演算した回転速度に基づいて、図16に示されるように、0~360度の連続的な磁極位置を演算する。 When switching from the rectangular wave PWM to the sine wave PMW, as described above, information on the magnetic pole position estimated based on the Hall sensor signal is used. In the estimation of the magnetic pole position, the rotational speed is calculated by measuring the edge switching interval of the Hall sensor signal. Further, based on the calculated rotational speed, a continuous magnetic pole position of 0 to 360 degrees is calculated as shown in FIG.
 回転速度が中速回転域になると、矩形波PWMから、磁極位置に基づいた正弦波PWMに切り替えられる。なお、矩形波PWMから正弦波PWMに切り替える際には、切替わり時の出力電圧の変化により、モータ電流脈動と呼ばれる現象が起こり、モータトルクの急変によって、振動及び騒音が増加するおそれがある。そのため、矩形波PWMにおける矩形波電圧の基本波成分を正弦波PWMにおける正弦波電圧に反映させることが好ましい。具体的には、以下の制御を行う。 When the rotation speed reaches the middle speed rotation range, the rectangular wave PWM is switched to the sine wave PWM based on the magnetic pole position. When switching from rectangular wave PWM to sine wave PWM, a phenomenon called motor current pulsation occurs due to a change in output voltage at the time of switching, and there is a possibility that vibration and noise increase due to a sudden change in motor torque. Therefore, it is preferable to reflect the fundamental wave component of the rectangular wave voltage in the rectangular wave PWM in the sine wave voltage in the sine wave PWM. Specifically, the following control is performed.
 周知のように、振幅が“1”の矩形波をフーリエ変換したとすると、矩形波の基本波成分に付される係数は“4/π”となる。従って、矩形波PWMから正弦波PWMに切り替える場合、切り替える直前の電圧指令Vの振幅を、(4/π)倍して出力すればよい。矩形波PWMにおける電圧指令Vの振幅を“K”とするとき、正弦波PWMにおける電圧指令Vは、振幅が“(4/π)×K”の正弦波とすればよい。電圧指令Vを変調率に基づいて制御する場合、切り替え直後の変調率を、切り替え直前の変調率を(4/π)倍したものを使用すればよい。このようにすることで、切替わり時に発生するトルクを一定に保つことが可能となる。これにより、振動及び騒音の発生を抑制した切り替えが可能となる。 As is well known, if a rectangular wave having an amplitude of “1” is Fourier-transformed, the coefficient added to the fundamental wave component of the rectangular wave is “4 / π”. Therefore, when switching from the rectangular wave PWM sinusoidal PWM, the amplitude of the voltage command V m immediately before switching may output (4 / π) times to. When the amplitude of the voltage command V m in the rectangular wave PWM is “K”, the voltage command V m in the sine wave PWM may be a sine wave having an amplitude of “(4 / π) × K”. When the voltage command V m is controlled based on the modulation rate, the modulation rate immediately after switching may be obtained by multiplying the modulation rate immediately before switching by (4 / π). By doing so, it is possible to keep the torque generated at the time of switching constant. As a result, it is possible to perform switching while suppressing generation of vibration and noise.
 次に、スイッチング素子51,52,53,54のオンオフの切り替え周波数であるスイッチング周波数に関する考慮事項について説明する。 Next, considerations regarding the switching frequency, which is the on / off switching frequency of the switching elements 51, 52, 53, and 54, will be described.
 スイッチング周波数を、例えば可聴周波数外の20kHzもしくはそれ以上に設定すれば、耳障りな騒音を低減させることができ、騒音の小さいモータ駆動装置を実現できるという効果がある。また、スイッチング周波数を増加させると、高速運転時における出力電圧の分解能が向上し、回転速度の精度が向上するという効果もある。但し、スイッチング周波数を増加させると、スイッチング素子の発熱及びスイッチング損失が増加する。このため、発熱量及び効率面を考慮して、スイッチング周波数を決めることが好ましい。 If the switching frequency is set to, for example, 20 kHz or more outside the audible frequency, it is possible to reduce annoying noise and to realize a motor driving device with low noise. Further, increasing the switching frequency has the effect of improving the resolution of the output voltage during high-speed operation and improving the accuracy of the rotational speed. However, when the switching frequency is increased, heat generation and switching loss of the switching element increase. For this reason, it is preferable to determine the switching frequency in consideration of the heat generation amount and the efficiency.
 スイッチング回数を減らすため、電圧指令Vの半周期に1回又は2回の電圧出力を行い、残りの区間をフリーホイール期間とすることで、モータ電流を略正弦波とする方法もある。フリーホイール期間は、単相モータ12のステータ巻線と、スイッチング素子52,54との間で電流が還流する期間である。フリーホイール期間では、下アーム第1素子であるスイッチング素子52と、下アーム第2素子であるスイッチング素子54とがオンに制御され、上アーム第1素子であるスイッチング素子51と、上アーム第2素子であるスイッチング素子53とがオフに制御される。 To reduce the number of switching times, performed once or twice a voltage output of the half cycle of the voltage command V m, that of the rest section and freewheel period, there is a method of the motor current substantially sinusoidal. The free wheel period is a period during which current flows back between the stator winding of the single-phase motor 12 and the switching elements 52 and 54. In the freewheel period, the switching element 52 that is the lower arm first element and the switching element 54 that is the lower arm second element are controlled to be on, and the switching element 51 that is the upper arm first element and the upper arm second element The switching element 53 which is an element is controlled to be turned off.
 図17には、フリーホイール期間におけるブレーキトルクと回転速度との関係が示されている。フリーホイール期間が長く続いた場合、図17に示されるように、単相モータ12の回転速度に応じてブレーキトルクが発生する。このため、ステータ巻線の抵抗Rによって、電流が消費され、ブレーキトルクが発生する。ブレーキトルクが発生すると速度変動が起こる。ブレーキトルクが発生する周波数は可聴周波数内であるため、騒音の悪化が避けられない。 FIG. 17 shows the relationship between the brake torque and the rotational speed during the freewheel period. When the free wheel period continues for a long time, as shown in FIG. 17, brake torque is generated according to the rotational speed of the single-phase motor 12. For this reason, current is consumed by the resistance R of the stator winding, and brake torque is generated. When brake torque is generated, speed fluctuation occurs. Since the frequency at which the brake torque is generated is within the audible frequency, deterioration of noise is inevitable.
 また、図18には、フリーホイール期間におけるブレーキ電流の時間変化波形が示されている。ブレーキ電流は、ステータ巻線のインダクタンスLとステータ巻線の抵抗Rとによって流れる電流である。このため、フリーホイール期間が長くなると、図18に示されるように、ブレーキ電流が流れる期間も長くなる。ブレーキ電流が比較的大きく、流れる期間も長くなると、永久磁石の減磁が問題となる。また、ブレーキ電流により、ステータ巻線の抵抗Rによる損失も増大する。 FIG. 18 shows a time-varying waveform of the brake current during the freewheel period. The brake current is a current that flows due to the inductance L of the stator winding and the resistance R of the stator winding. For this reason, when the free wheel period becomes longer, the period during which the brake current flows becomes longer as shown in FIG. When the brake current is relatively large and the flow period is long, demagnetization of the permanent magnet becomes a problem. Further, the loss due to the resistance R of the stator winding also increases due to the brake current.
 これに対して、正弦波PWMは、図12の下段部に示されるように、電圧出力の回数も多く、電圧パルスが生成されない期間であるフリーホイール期間も短い。このため、ステータ巻線での損失が低減され、永久磁石の減磁の影響も小さくできる。 On the other hand, as shown in the lower part of FIG. 12, the sine wave PWM has a large number of voltage outputs and a short free wheel period in which no voltage pulse is generated. For this reason, the loss in the stator winding is reduced, and the influence of demagnetization of the permanent magnet can be reduced.
 また、スイッチング周波数を20kHz以上に設定すれば、フリーホイール期間におけるブレーキトルクによる速度脈動も20kHz以上とすることができる。従って、スイッチング周波数を20kHz以上に設定すれば、速度脈動に起因する騒音の発生も抑制することができる。 Also, if the switching frequency is set to 20 kHz or higher, the speed pulsation due to the brake torque during the freewheel period can be set to 20 kHz or higher. Therefore, if the switching frequency is set to 20 kHz or more, the generation of noise due to speed pulsation can be suppressed.
 但し、正弦波PWMの場合、図12の下段部の波形から理解できるように、スイッチング素子のスイッチング回数が増加する。このため、スイッチング回数の増加によって、スイッチング損失が増加する。スイッチング損失の増加と、高周波鉄損の増加とはトレドオフの関係にあるが、本実施の形態の手法は、高周波鉄損の低減効果が大きい。このため、本実施の形態の手法を採用すれば、スイッチング損失の増加を加味しても効率改善を図ることができる。 However, in the case of sine wave PWM, the number of switching of the switching element increases as can be understood from the waveform in the lower part of FIG. For this reason, the switching loss increases as the number of times of switching increases. The increase in switching loss and the increase in high-frequency iron loss are in a toled-off relationship, but the method of the present embodiment has a great effect of reducing high-frequency iron loss. For this reason, if the method of this Embodiment is employ | adopted, efficiency improvement can be aimed at even if the increase in switching loss is considered.
 また、スイッチング損失の更なる改善を図るためには、図5に示される両側PWMよりも、図7に示される片側PWMを用いる方がよい。片側PWMを用いれば、両側PWMを用いるよりも、スイッチング回数を半分にできるため、スイッチング損失の改善が図れる。 In order to further improve the switching loss, it is better to use the one-sided PWM shown in FIG. 7 than the two-sided PWM shown in FIG. If one-sided PWM is used, the number of times of switching can be halved compared to using both-sided PWM, so that switching loss can be improved.
 なお、両側PWMの場合は、スイッチング周波数の2倍の周波数が支配的となり、片側PWMの場合は、スイッチング周波数と同一の周波数が支配的となる。そのため、前述の通り、スイッチング周波数を20kHz以上に設定しておけば、片側PWMを用いても、騒音の悪化を抑制することができる。 In the case of double-sided PWM, the frequency twice the switching frequency is dominant, and in the case of single-sided PWM, the same frequency as the switching frequency is dominant. Therefore, as described above, if the switching frequency is set to 20 kHz or higher, noise deterioration can be suppressed even if one-side PWM is used.
 なお、モータ誘起電圧の位相と、正弦波PWMにより流れる正弦波電流の位相とは一致することが好ましい。しかしながら、単相モータ12のような誘導性負荷において、当該正弦波電流は、モータ誘起電圧に対し、回転速度に応じた遅れ位相となる。このため、回転速度に応じて、モータ印加電圧に含まれる基本波成分の位相を制御することが好ましい。これにより、効率の良い運転が可能となる。 In addition, it is preferable that the phase of the motor induced voltage and the phase of the sine wave current flowing by the sine wave PWM coincide with each other. However, in an inductive load such as the single-phase motor 12, the sine wave current has a delayed phase corresponding to the rotational speed with respect to the motor-induced voltage. For this reason, it is preferable to control the phase of the fundamental wave component included in the motor applied voltage in accordance with the rotational speed. Thereby, efficient driving | operation becomes possible.
 また、単相モータ12の加速時においては、回転速度の増加に応じて、単相モータ12の負荷トルクも増加する。ここで、モータトルクをT、負荷トルクをT、ロータ12aの慣性モーメントをJ、回転速度をωで表すと、回転速度の変化率は次式で表すことができる。 Further, when the single-phase motor 12 is accelerated, the load torque of the single-phase motor 12 increases as the rotational speed increases. Here, if the motor torque is T M , the load torque is T L , the inertia moment of the rotor 12 a is J M , and the rotation speed is ω, the change rate of the rotation speed can be expressed by the following equation.
 dω/dt=(T-T)/J  …(2) dω / dt = (T M −T L ) / J M (2)
 例えば負荷がプロペラファンである場合、負荷トルクは、一般的に、回転速度の2~3乗に比例すると言われている。負荷を加速する場合、上記(2)式に示されるように、負荷トルク以上のモータトルクを出力する必要がある。負荷トルクの特性を考慮せずに加速した場合、目標回転速度到達時の電流が過大になり、モータの減磁を招くおそれがある。このため、目標回転速度に近づくにつれ、加速率を下げて運転させることが好ましい。これにより、加速時の電流増加を抑えたモータ駆動装置を実現することができる。電気掃除機又は手乾燥機などの応用例においては、目標回転速度の80%程度の回転速度に速やかに到達できれば、その後の加速率が減少しても、性能的には充分である。 For example, when the load is a propeller fan, the load torque is generally said to be proportional to the second to third power of the rotation speed. When accelerating the load, it is necessary to output a motor torque that is equal to or greater than the load torque, as shown in the above equation (2). If acceleration is performed without considering the characteristics of the load torque, the current when the target rotational speed is reached becomes excessive, which may cause demagnetization of the motor. For this reason, as the target rotational speed is approached, it is preferable to operate with a reduced acceleration rate. Thereby, the motor drive device which suppressed the electric current increase at the time of acceleration is realizable. In an application example such as a vacuum cleaner or a hand dryer, if the rotational speed of about 80% of the target rotational speed can be reached quickly, even if the subsequent acceleration rate decreases, the performance is sufficient.
 次に、台形波PWMについて説明する。前述したように、高速回転域では、台形波PWM信号が生成されて、単相モータ12に印加される。正弦波PWMでは、回転速度が増加すると、電圧指令Vの振幅が増加する。ところが、電圧指令Vの振幅が直流電圧Vdcを超えた場合、インバータ11は、当該直流電圧Vdcを超える電圧は出力できないので、電圧が制限される。その結果、図15の下段部において、実線で示されるように、電圧波形は台形波となる。 Next, the trapezoidal wave PWM will be described. As described above, a trapezoidal wave PWM signal is generated and applied to the single-phase motor 12 in the high-speed rotation range. In the sine wave PWM, when the rotation speed increases, the amplitude of the voltage command V m increases. However, when the amplitude of the voltage command V m exceeds the DC voltage V dc , the inverter 11 cannot output a voltage exceeding the DC voltage V dc , so the voltage is limited. As a result, in the lower part of FIG. 15, the voltage waveform becomes a trapezoidal wave as shown by the solid line.
 台形波PWMの場合、台形波のピーク付近では、スイッチング動作が行われない。このため、正弦波PWMに比して、スイッチング損失が改善される。また、台形波PWMの場合、ゼロクロスの前後でのみ、フリーホイール期間が生じる。このため、ブレーキトルクに起因する速度変動が緩和され、安定した運転が可能となる。 In the case of trapezoidal wave PWM, switching operation is not performed near the peak of the trapezoidal wave. For this reason, the switching loss is improved as compared with the sine wave PWM. In the case of trapezoidal wave PWM, the freewheel period occurs only before and after the zero crossing. For this reason, the speed fluctuation resulting from the brake torque is alleviated, and stable operation is possible.
 図19には、電圧制限前の電圧指令の振幅とインバータ出力電圧の基本波成分との関係が示されている。図19において、縦軸に平行に引かれた破線よりも右側の領域は、電圧が制限されて、インバータ出力電圧が台形波になる領域である。台形波となり、インバータ出力電圧が制限されたとしても、図19に示されるように、インバータ出力電圧の基本波成分は上昇を続ける。理論的には、電圧指令Vの振幅が無限大になるときが矩形波である。電圧の制限値を“1”とすると、インバータ出力電圧の基本波成分の値は、矩形波をフーリエ級数展開したときの基本波成分の係数である“4/π(=1.27)”に漸近する。即ち、台形波PWMを使用すれば、電圧制限値の1.27倍までの電圧を出力することが可能となる。 FIG. 19 shows the relationship between the amplitude of the voltage command before voltage limitation and the fundamental wave component of the inverter output voltage. In FIG. 19, the region on the right side of the broken line drawn in parallel with the vertical axis is a region where the voltage is limited and the inverter output voltage becomes a trapezoidal wave. Even if it becomes a trapezoidal wave and the inverter output voltage is limited, the fundamental wave component of the inverter output voltage continues to rise as shown in FIG. Theoretically, a time when the amplitude of the voltage command V m becomes infinite is a rectangular wave. Assuming that the voltage limit value is “1”, the value of the fundamental component of the inverter output voltage is “4 / π (= 1.27)”, which is a coefficient of the fundamental component when the square wave is expanded by Fourier series. Asymptotically. That is, if the trapezoidal wave PWM is used, a voltage up to 1.27 times the voltage limit value can be output.
 一方、矩形波PWMを使用する場合、矩形波電圧が正から負、又は負から正に切り替わるタイミングに関する考慮が必要である。矩形波電圧が正から負、又は負から正に切り替わるタイミングに誤差が生じた場合、正電圧の印加期間と負電圧の印加期間との間にアンバランスが発生する。このアンバランスは、低速運転では、電圧の周期が長いため問題にはならないが、高速運転では、電圧の周期が短くなるため、タイミング誤差の影響が大きくなる。アンバランスが発生すると、モータ印加電圧に直流成分が重畳するので、制動力が発生したり、損失の悪化を招いたりするおそれがある。 On the other hand, when the rectangular wave PWM is used, it is necessary to consider the timing at which the rectangular wave voltage is switched from positive to negative or from negative to positive. When an error occurs in the timing at which the rectangular wave voltage is switched from positive to negative or from negative to positive, an imbalance occurs between the positive voltage application period and the negative voltage application period. This imbalance is not a problem in low-speed operation because the voltage cycle is long, but in high-speed operation, the voltage cycle is short, and therefore the influence of timing errors becomes large. When an imbalance occurs, a direct current component is superimposed on the motor applied voltage, so that a braking force may be generated or a loss may be deteriorated.
 そこで、台形波PWMの場合、電圧指令Vの振幅を電圧制限値の1倍以上、且つ、2倍以下とすることが好ましい。これにより、インバータ出力電圧のゼロクロス前後での切り替わりが緩やかとなり、タイミング誤差の影響が緩和される。 Therefore, when the trapezoidal wave PWM, 1 times or more voltage limit the amplitude of the voltage command V m, and is preferably 2 times or less. Thereby, the switching of the inverter output voltage before and after the zero crossing becomes gradual, and the influence of the timing error is mitigated.
 また、前述の通り、台形波PWMでは、電圧制限値の1.27倍の電圧出力が可能であるが、電圧が不足する場合には、台形波PWM信号の位相を進み位相に制御すればよい。この制御により、単相モータ12の磁力が弱められ、逆起電圧を抑制されるので、より高速回転までの運転が可能となる。 In addition, as described above, the trapezoidal wave PWM can output a voltage that is 1.27 times the voltage limit value. However, if the voltage is insufficient, the phase of the trapezoidal wave PWM signal may be controlled to a lead phase. . By this control, the magnetic force of the single-phase motor 12 is weakened and the back electromotive voltage is suppressed, so that operation up to higher speed rotation is possible.
 以上説明したように、実施の形態における制御部は、単相モータの起動時及び低速回転域ではインバータに矩形波の電圧を出力させ、単相モータの中速回転域ではインバータに正弦波の電圧を出力させ、単相モータの高速回転域ではインバータに台形波の電圧を出力させる。これにより、モータの加速時において、振動及び騒音を抑制することが可能となる。 As described above, the control unit according to the embodiment causes the inverter to output a rectangular wave voltage at the time of starting the single phase motor and in the low speed rotation range, and the sine wave voltage to the inverter in the medium speed rotation range of the single phase motor. And output a trapezoidal wave voltage to the inverter in the high-speed rotation range of the single-phase motor. As a result, vibration and noise can be suppressed when the motor is accelerated.
 次に、実施の形態に係るモータ駆動装置の適用例について説明する。図20は、実施の形態に係るモータ駆動装置2を備えた電気掃除機61の構成図である。電気掃除機61は、図1に示されるバッテリ10と、図1に示されるモータ駆動装置2と、図1に示される単相モータ12により駆動される電動送風機64と、集塵室65と、センサ68と、吸込口体63と、延長管62と、操作部66とを備える。 Next, application examples of the motor drive device according to the embodiment will be described. FIG. 20 is a configuration diagram of the electric vacuum cleaner 61 including the motor driving device 2 according to the embodiment. The vacuum cleaner 61 includes a battery 10 shown in FIG. 1, a motor drive device 2 shown in FIG. 1, an electric blower 64 driven by the single-phase motor 12 shown in FIG. 1, a dust collection chamber 65, The sensor 68, the suction inlet 63, the extension pipe 62, and the operation part 66 are provided.
 電気掃除機61を使用するユーザは、操作部66を持ち、電気掃除機61を操作する。電気掃除機61のモータ駆動装置2は、バッテリ10を電源として電動送風機64を駆動する。電動送風機64が駆動されることにより、吸込口体63からごみの吸込みが行われる。吸込まれたごみは、延長管62を介して集塵室65へ集められる。 The user who uses the vacuum cleaner 61 has the operation unit 66 and operates the vacuum cleaner 61. The motor drive device 2 of the electric vacuum cleaner 61 drives the electric blower 64 using the battery 10 as a power source. When the electric blower 64 is driven, dust is sucked from the suction port body 63. The sucked dust is collected in the dust collection chamber 65 through the extension pipe 62.
 電気掃除機61は、単相モータ12の回転速度が0[rpm]から10万[rpm]を超えて変動する製品である。このような単相モータ12が高速回転する製品を駆動する際には、前述した実施の形態に係る制御手法が好適である。 The vacuum cleaner 61 is a product in which the rotation speed of the single-phase motor 12 varies from 0 [rpm] to over 100,000 [rpm]. When such a single-phase motor 12 drives a product that rotates at a high speed, the control method according to the above-described embodiment is suitable.
 例えば、起動時及び低速回転域において、インバータ11は、単相モータ12に矩形波の電圧を出力する。中速回転域では、正弦波の電圧を出力する。そして、高速回転域において、インバータ11は、台形波の電圧を出力する。このように制御することで、単相モータ12を加速するときに、振動及び騒音を抑制することが可能となる。 For example, the inverter 11 outputs a rectangular wave voltage to the single-phase motor 12 at the time of startup and in a low-speed rotation range. In the middle speed range, a sine wave voltage is output. In the high-speed rotation range, the inverter 11 outputs a trapezoidal wave voltage. By controlling in this way, vibration and noise can be suppressed when the single-phase motor 12 is accelerated.
 また、例えば矩形波の電圧から正弦波の電圧に出力を切り替える場合、制御部25は、矩形波の電圧の基本波成分と、正弦波の電圧の基本波成分とを一致させた状態で切り替える。このようにすることで、切替わり時に発生するトルクを一定に保つことができ、振動及び騒音の発生を抑制した切り替えが可能となる。 For example, when the output is switched from a rectangular wave voltage to a sine wave voltage, the control unit 25 switches the fundamental wave component of the rectangular wave voltage and the fundamental wave component of the sine wave voltage in a matched state. By doing in this way, the torque generated at the time of switching can be kept constant, and switching can be performed while suppressing the generation of vibration and noise.
 また、例えば単相モータ12の回転速度を目標回転速度に制御する際、制御部25は、回転速度が目標回転速度に近づくにつれて、加速率を低減させるようにする。これにより、目標回転速度到達時の電流が過大になることを抑止でき、単相モータ12の減磁を抑制することが可能となる。 For example, when the rotational speed of the single-phase motor 12 is controlled to the target rotational speed, the control unit 25 reduces the acceleration rate as the rotational speed approaches the target rotational speed. Thereby, it can suppress that the electric current at the time of reaching | attaining target rotational speed becomes excessive, and it becomes possible to suppress the demagnetization of the single phase motor 12. FIG.
 また、単相モータ12に電圧指令に基づく電圧を出力する際、制御部25は、電圧指令の周期のうちの一方の半周期では、上アーム第1素子と下アーム第1素子とのスイッチング動作を休止させ、電圧指令の周期のうちの他方の半周期では、上アーム第2素子と下アーム第2素子とのスイッチング動作を休止させる。これにより、スイッチング損失の増加が抑制され、効率のよい電気掃除機61を実現することができる。 In addition, when outputting a voltage based on the voltage command to the single-phase motor 12, the control unit 25 performs a switching operation between the upper arm first element and the lower arm first element in one half cycle of the voltage command cycle. And the switching operation of the upper arm second element and the lower arm second element is suspended in the other half cycle of the voltage command cycle. Thereby, the increase in switching loss is suppressed and the efficient vacuum cleaner 61 is realizable.
 また、実施の形態に係る電気掃除機61は、前述した放熱部品の簡素化により小型化及び軽量化することができる。更に、電気掃除機61は、電流を検出する電流センサが必要なく、高速なアナログディジタル変換器も必要ないので、設計コスト及び製造コストの増加が抑制された電気掃除機61を実現することができる。 Moreover, the vacuum cleaner 61 according to the embodiment can be reduced in size and weight by simplifying the heat dissipation component described above. Furthermore, since the vacuum cleaner 61 does not require a current sensor for detecting a current and does not require a high-speed analog-digital converter, the vacuum cleaner 61 in which an increase in design cost and manufacturing cost is suppressed can be realized. .
 図21は、実施の形態に係るモータ駆動装置を備えた手乾燥機の構成図である。手乾燥機90は、モータ駆動装置2と、ケーシング91と、手検知センサ92と、水受け部93と、ドレン容器94と、カバー96と、センサ97と、吸気口98と、電動送風機95とを備える。ここで、センサ97は、ジャイロセンサ及び人感センサの何れかである。手乾燥機90では、水受け部93の上部にある手挿入部99に手が挿入されることにより、電動送風機95による送風で水が吹き飛ばされ、吹き飛ばされた水は、水受け部93で集められた後、ドレン容器94に溜められる。 FIG. 21 is a configuration diagram of a hand dryer provided with the motor drive device according to the embodiment. The hand dryer 90 includes a motor driving device 2, a casing 91, a hand detection sensor 92, a water receiver 93, a drain container 94, a cover 96, a sensor 97, an air inlet 98, and an electric blower 95. Is provided. Here, the sensor 97 is either a gyro sensor or a human sensor. In the hand dryer 90, when a hand is inserted into the hand insertion part 99 at the upper part of the water receiver 93, water is blown off by the air blow by the electric blower 95, and the blown water is collected by the water receiver 93. After that, it is stored in the drain container 94.
 手乾燥機90は、図20に示す電気掃除機61と同様に、モータ回転数が0[rpm]から10万[rpm]を超えて変動する製品である。このため、手乾燥機90においても、前述した実施の形態に係る制御手法が好適であり、電気掃除機61と同様な効果を得ることができる。 The hand dryer 90 is a product in which the motor rotation speed fluctuates from 0 [rpm] to over 100,000 [rpm], similarly to the electric vacuum cleaner 61 shown in FIG. For this reason, also in the hand dryer 90, the control method which concerns on embodiment mentioned above is suitable, and the effect similar to the vacuum cleaner 61 can be acquired.
 以上の説明の通り、本実施の形態では、電気掃除機61及びハンドドライヤ90にモータ駆動装置2を適用した構成例を説明したが、モータ駆動装置2は、モータが搭載された電気機器に適用することができる。モータが搭載された電気機器は、焼却炉、粉砕機、乾燥機、集塵機、印刷機械、クリーニング機械、製菓機械、製茶機械、木工機械、プラスチック押出機、ダンボール機械、包装機械、熱風発生機、OA機器、電動送風機などである。電動送風機は、物体輸送用、吸塵用、又は一般送排風用の送風手段である。 As described above, in the present embodiment, the configuration example in which the motor driving device 2 is applied to the electric vacuum cleaner 61 and the hand dryer 90 has been described. However, the motor driving device 2 is applied to an electric device in which the motor is mounted. can do. Electric equipment equipped with motors is incinerator, crusher, dryer, dust collector, printing machine, cleaning machine, confectionery machine, tea making machine, woodworking machine, plastic extruder, cardboard machine, packaging machine, hot air generator, OA Equipment, electric blower, etc. The electric blower is a blowing means for transporting objects, for sucking dust, or for general air supply / discharge.
 なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 Note that the configurations shown in the above embodiments are examples of the contents of the present invention, and can be combined with other known techniques, and can be combined without departing from the gist of the present invention. It is also possible to omit or change a part of.
 1 モータ駆動システム、2 モータ駆動装置、5A 第1レグ、5B 第2レグ、6A,6B 接続点、10 バッテリ、11 インバータ、12 単相モータ、12a ロータ、12b ステータ、12b1 ティース、20 電圧センサ、21 位置センサ、21a 位置センサ信号、25 制御部、31 プロセッサ、32 駆動信号生成部、33 キャリア生成部、34 メモリ、38,38A,38B キャリア比較部、38a 絶対値演算部、38b 除算部、38c,38d,38f,38k 乗算部、38e,38m,38n 加算部、38g,38h 比較部、38i,38j 出力反転部、42 回転速度算出部、44 進角位相算出部、51,52,53,54 スイッチング素子、51a,52a,53a,54a ボディダイオード、61 電気掃除機、62 延長管、63 吸込口体、64 電動送風機、65 集塵室、66 操作部、68 センサ、90 手乾燥機、91 ケーシング、92 手検知センサ、93 水受け部、94 ドレン容器、95 電動送風機、96 カバー、97 センサ、98 吸気口、99 手挿入部。 1 motor drive system, 2 motor drive device, 5A 1st leg, 5B 2nd leg, 6A, 6B connection point, 10 battery, 11 inverter, 12 single phase motor, 12a rotor, 12b stator, 12b1 teeth, 20 voltage sensor, 21 position sensor, 21a position sensor signal, 25 control unit, 31 processor, 32 drive signal generation unit, 33 carrier generation unit, 34 memory, 38, 38A, 38B carrier comparison unit, 38a absolute value calculation unit, 38b division unit, 38c , 38d, 38f, 38k multiplication unit, 38e, 38m, 38n addition unit, 38g, 38h comparison unit, 38i, 38j output inversion unit, 42 rotation speed calculation unit, 44 advance phase calculation unit, 51, 52, 53, 54 Switching element 51a, 52a, 53a, 5 a body diode, 61 vacuum cleaner, 62 extension pipe, 63 suction port, 64 electric blower, 65 dust collection chamber, 66 operation unit, 68 sensor, 90 hand dryer, 91 casing, 92 hand detection sensor, 93 water receiver Part, 94 drain container, 95 electric blower, 96 cover, 97 sensor, 98 air inlet, 99 manual insertion part.

Claims (8)

  1.  単相モータに交流電圧を出力するインバータと、
     前記インバータが出力する前記交流電圧を制御する制御部と、
     を備え、
     前記制御部は、
     前記単相モータの起動時及び低速回転域では、前記インバータに矩形波の電圧を出力させ、
     前記単相モータの中速回転域では、前記インバータに正弦波の電圧を出力させ、
     前記単相モータの高速回転域では、前記インバータに台形波の電圧を出力させる
     モータ駆動装置。
    An inverter that outputs an AC voltage to a single-phase motor;
    A control unit for controlling the AC voltage output by the inverter;
    With
    The controller is
    In the start-up and low-speed rotation range of the single-phase motor, let the inverter output a rectangular wave voltage,
    In the medium speed rotation region of the single-phase motor, the inverter outputs a sine wave voltage,
    A motor driving device that causes the inverter to output a trapezoidal wave voltage in a high-speed rotation range of the single-phase motor.
  2.  前記制御部は、前記矩形波の電圧から前記正弦波の電圧に出力を切り替える場合には、
     前記矩形波の電圧の基本波成分と、前記正弦波の電圧の基本波成分とを一致させた状態で切り替える請求項1に記載のモータ駆動装置。
    When the control unit switches the output from the rectangular wave voltage to the sine wave voltage,
    The motor drive device according to claim 1, wherein switching is performed in a state in which a fundamental wave component of the rectangular wave voltage and a fundamental wave component of the sine wave voltage are matched.
  3.  前記制御部は、前記単相モータの回転速度を目標回転速度に制御する際に、前記回転速度が前記目標回転速度に近づくにつれて、加速率を低減させる
     請求項1又は2に記載のモータ駆動装置。
    3. The motor driving device according to claim 1, wherein the control unit reduces the acceleration rate as the rotational speed approaches the target rotational speed when controlling the rotational speed of the single-phase motor to the target rotational speed. 4. .
  4.  前記インバータは、上アーム第1素子と下アーム第1素子とが直列に接続される第1レグと、前記第1レグに並列に接続され、上アーム第2素子と下アーム第2素子とが直列に接続される第2レグと、を有し、
     前記単相モータは、上アーム第1素子と下アーム第1素子との接続点と、上アーム第2素子と下アーム第2素子との接続点との間に接続され、
     前記単相モータに電圧指令に基づく電圧を出力する際に、
     前記電圧指令の周期のうちの一方の半周期では、前記上アーム第1素子と前記下アーム第1素子とがスイッチング動作を休止し、
     前記電圧指令の周期のうちの他方の半周期では、前記上アーム第2素子と前記下アーム第2素子とがスイッチング動作を休止する
     請求項1から3の何れか1項に記載のモータ駆動装置。
    The inverter includes a first leg in which an upper arm first element and a lower arm first element are connected in series, a parallel connection to the first leg, and an upper arm second element and a lower arm second element. A second leg connected in series,
    The single-phase motor is connected between a connection point between the upper arm first element and the lower arm first element and a connection point between the upper arm second element and the lower arm second element,
    When outputting a voltage based on a voltage command to the single-phase motor,
    In one half cycle of the voltage command cycle, the upper arm first element and the lower arm first element pause the switching operation,
    The motor drive device according to any one of claims 1 to 3, wherein the upper arm second element and the lower arm second element pause switching operation in the other half period of the voltage command period. .
  5.  前記上アーム第1素子、前記下アーム第1素子、前記上アーム第2素子、及び前記下アーム第2素子は、ワイドバンドギャップ半導体で形成されている請求項4に記載のモータ駆動装置。 The motor driving device according to claim 4, wherein the upper arm first element, the lower arm first element, the upper arm second element, and the lower arm second element are formed of a wide band gap semiconductor.
  6.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム又はダイヤモンドである請求項5に記載のモータ駆動装置。 The motor driving device according to claim 5, wherein the wide band gap semiconductor is silicon carbide, gallium nitride, or diamond.
  7.  請求項1から6の何れか1項に記載のモータ駆動装置を備えた電気掃除機。 A vacuum cleaner comprising the motor drive device according to any one of claims 1 to 6.
  8.  請求項1から6の何れか1項に記載のモータ駆動装置を備えた手乾燥機。 A hand dryer provided with the motor drive device according to any one of claims 1 to 6.
PCT/JP2018/011932 2018-03-23 2018-03-23 Motor drive device, electric vacuum cleaner, and hand dryer WO2019180967A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/011932 WO2019180967A1 (en) 2018-03-23 2018-03-23 Motor drive device, electric vacuum cleaner, and hand dryer
JP2020507287A JP6910538B2 (en) 2018-03-23 2018-03-23 Motor drive, vacuum cleaner and hand dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011932 WO2019180967A1 (en) 2018-03-23 2018-03-23 Motor drive device, electric vacuum cleaner, and hand dryer

Publications (1)

Publication Number Publication Date
WO2019180967A1 true WO2019180967A1 (en) 2019-09-26

Family

ID=67986899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011932 WO2019180967A1 (en) 2018-03-23 2018-03-23 Motor drive device, electric vacuum cleaner, and hand dryer

Country Status (2)

Country Link
JP (1) JP6910538B2 (en)
WO (1) WO2019180967A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215876A (en) * 1998-01-21 1999-08-06 Mitsubishi Electric Corp Motor current control equipment
WO2017077574A1 (en) * 2015-11-02 2017-05-11 三菱電機株式会社 Control device for single-phase ac motor
WO2018047274A1 (en) * 2016-09-08 2018-03-15 三菱電機株式会社 Motor drive device, electric fan, and electric vacuum cleaner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215876A (en) * 1998-01-21 1999-08-06 Mitsubishi Electric Corp Motor current control equipment
WO2017077574A1 (en) * 2015-11-02 2017-05-11 三菱電機株式会社 Control device for single-phase ac motor
WO2018047274A1 (en) * 2016-09-08 2018-03-15 三菱電機株式会社 Motor drive device, electric fan, and electric vacuum cleaner

Also Published As

Publication number Publication date
JP6910538B2 (en) 2021-07-28
JPWO2019180967A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6644159B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP6671516B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
WO2018229874A1 (en) Motor drive device, electric air blower, electric vacuum cleaner, and hand drier
JP7237198B2 (en) motor drives, vacuum cleaners and hand dryers
JP6847195B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
WO2019180971A1 (en) Motor drive device, electric fan, vacuum cleaner, and hand dryer
JP7150151B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
JP7237197B2 (en) motor drives, vacuum cleaners and hand dryers
JP7076637B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
WO2019180967A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer
JP7462788B2 (en) Motor drive device, electric blower, vacuum cleaner and hand dryer
WO2019180972A1 (en) Motor drive device, electric fan, vacuum cleaner, and hand dryer
JP7150152B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
WO2022085050A1 (en) Motor driving device, electric blower, electric vacuum cleaner, and hand dryer
WO2022085049A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP7150150B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
WO2019180968A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer
JP6616055B1 (en) Motor drive device, vacuum cleaner and hand dryer
WO2020194753A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer
WO2019180969A1 (en) Motor drive device, electric fan, vacuum cleaner, and hand dryer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911120

Country of ref document: EP

Kind code of ref document: A1