WO2017077574A1 - Control device for single-phase ac motor - Google Patents

Control device for single-phase ac motor Download PDF

Info

Publication number
WO2017077574A1
WO2017077574A1 PCT/JP2015/080933 JP2015080933W WO2017077574A1 WO 2017077574 A1 WO2017077574 A1 WO 2017077574A1 JP 2015080933 W JP2015080933 W JP 2015080933W WO 2017077574 A1 WO2017077574 A1 WO 2017077574A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor
phase
rotation direction
magnetic
Prior art date
Application number
PCT/JP2015/080933
Other languages
French (fr)
Japanese (ja)
Inventor
裕次 ▲高▼山
和徳 畠山
崇 山川
篠本 洋介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/080933 priority Critical patent/WO2017077574A1/en
Priority to JP2017548539A priority patent/JP6410957B2/en
Publication of WO2017077574A1 publication Critical patent/WO2017077574A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/04Single phase motors, e.g. capacitor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • This invention relates to a control device for a single-phase AC motor.
  • Some products such as vacuum cleaners and hand dryers, that use a single-phase AC motor as the drive source rotate the single-phase AC motor in only one direction due to product specifications. Some of these products are required to start a single-phase AC motor from a stopped state in a short time.
  • Some control devices for controlling the rotation of such a single-phase AC motor include a magnetic sensor that detects the magnetic pole position of the rotor in order to detect the rotation direction of the rotor of the single-phase AC motor.
  • a magnetic sensor a Hall IC (Integrated Circuit) is generally used.
  • the Hall IC is an IC in which a magnetic sensor element using the Hall effect and a circuit that converts an output signal of the element into a digital signal are contained in one package.
  • Patent Document 1 discloses a method of starting a motor in the forward rotation direction.
  • Patent Document 1 one Hall IC for detecting the magnetic pole position of the rotor of the motor is used.
  • the controller when starting the motor, the controller first excites the windings to generate a positive excitation torque based on the detection signal output by the Hall IC when the motor is stationary. Let If the edge of the detection signal is detected within the first period during excitation, it is determined that the rotor is rotating in the forward rotation direction. If the edge of the detection signal is not detected within the first period, it is determined that the rotor is rotating in the reverse direction.
  • the first period is set to a time sufficient for the rotor to rotate over a mechanical angle (N is the number of magnetic poles) of at least 360 ° / N from a stationary state.
  • Patent Document 1 is configured to detect the rotation direction of the rotor by detecting the edge of the detection signal of one magnetic sensor. Therefore, it is necessary to set the first period, which is the time necessary for detecting the rotation direction of the rotor, to a time sufficient for an edge to appear in the detection signal. Therefore, there is a problem that it is difficult to start the motor in a short time.
  • the detection signal edge may not be detected within a predetermined first period.
  • the motor cannot be started or that the rotor rotates in the reverse direction.
  • it is necessary to change the setting of the first period in consideration of the mounting position of the magnetic sensor and the motor constant.
  • the first period becomes longer, it takes more time to detect the rotation direction of the motor, and as a result, it becomes more difficult to start up in a short time.
  • the present invention has been made in view of the above, and an object thereof is to provide a control device for a single-phase AC motor that can be started in a short time of the single-phase AC motor.
  • a control device for a single-phase AC motor is a control device for a single-phase AC motor including a rotor provided with a plurality of magnetic poles and a stator for generating a rotating magnetic field.
  • the control device includes an inverter configured to apply a drive voltage of the single-phase AC motor to the stator, first and second magnetic sensors that detect the magnetic pole position of the rotor, and a controller.
  • the controller is configured to control the inverter based on detection signals of the first and second magnetic sensors.
  • the first and second magnetic sensors are arranged at positions separated from each other along the rotation direction of the rotor.
  • the controller is configured to execute an activation process for activating the stationary rotor in the first direction.
  • the controller drives the rotor by applying a first polarity voltage from the inverter to the stator.
  • the controller detects the rotation direction of the rotor based on the detection signals of the first and second magnetic sensors when the rotor is stationary and when the rotor is rotating.
  • the controller reverses the first polarity of the voltage to the second polarity when it is detected that the rotation direction of the rotor is the second direction opposite to the first direction.
  • FIG. 4 It is a figure which shows schematic structure of the control apparatus of the single phase alternating current motor according to embodiment of this invention. It is a schematic block diagram of the single phase alternating current motor in FIG. It is a block diagram which shows the control structure of the control apparatus of the single phase alternating current motor according to this Embodiment. It is a figure which shows typically a mode that the positional relationship of a rotor and a magnetic sensor changes temporally. It is a figure which shows the waveform of the position detection signal which the magnetic sensor shown in FIG. 4 outputs. It is a figure which shows the logic table
  • FIG.7 It is a figure for demonstrating the flow of the starting process for starting a rotor in a 1st direction. It is a timing chart corresponding to the flow of the starting process shown to Fig.7 (a). It is a timing chart corresponding to the flow of the starting process shown in FIG.7 (b). It is a flowchart for demonstrating the starting process according to this Embodiment. It is a schematic block diagram of the vacuum cleaner to which the control apparatus shown in FIG. 1 is applied. It is a block diagram which shows the control structure of the electric blower shown in FIG. It is a schematic block diagram of the hand dryer to which the control apparatus shown in FIG. 1 is applied.
  • FIG. 1 is a diagram showing a schematic configuration of a control device for a single-phase AC motor according to an embodiment of the present invention.
  • a control device 100 that controls a single-phase AC motor 10 includes a power source 12, an inverter 14, a controller 16, an analog-digital converter (ADC) 18, a gate driver 20, and a current sensor 22. And magnetic sensors 24A and 24B.
  • ADC analog-digital converter
  • the single-phase AC motor 10 is a single-phase AC synchronous motor, for example, a surface magnet type synchronous motor.
  • FIG. 2 is a schematic configuration diagram of the single-phase AC motor 10 in FIG.
  • single-phase AC motor 10 includes a rotor 2 and a stator 3.
  • the rotor 2 has a plurality of magnetic poles.
  • the rotor 2 is provided with a permanent magnet.
  • the stator 3 includes a stator core 4 and a stator coil 6 wound around the teeth 5 of the stator core 4.
  • the stator 3 covers the periphery of the rotor 2.
  • the rotor 2 is rotationally driven by the rotating magnetic field generated by the stator 3.
  • a control device 100 that controls the single-phase AC motor 10 in which the number of magnetic poles of the rotor 2 is 4 and the number of teeth 5 of the stator 3 is 4 will be described.
  • the number of magnetic poles and the number of teeth of the single-phase AC motor 10 to which the present invention is applied are not limited thereto.
  • power supply 12 is a DC power supply, for example, a power storage device configured to be chargeable / dischargeable.
  • the power source 12 is not limited to a DC power source, and may be a converter that converts a single-phase AC voltage supplied from a single-phase AC power source into a DC voltage.
  • the converter can include, for example, a diode bridge rectifier circuit constituted by four diodes and a smoothing capacitor.
  • the inverter 14 is a single phase inverter.
  • the inverter 14 converts a DC voltage supplied from the power supply 12 through the power lines PL and NL into a driving voltage for the single-phase AC motor 10 and applies it to the stator 3 (stator coil 6) of the single-phase AC motor 10. Further, the inverter 14 can apply a drive voltage having a positive or negative polarity to the stator 3 of the single-phase AC motor 10 in a startup process for starting the rotor 2 in a stationary state.
  • the configuration of the inverter 14 will be described in detail with reference to FIG.
  • the current sensor 22 detects a current (hereinafter also referred to as “motor current”) flowing through the stator coil 6 of the single-phase AC motor 10.
  • the ADC 18 converts the detection signal of the current sensor 22 that is an analog signal into a digital signal.
  • the digitally converted detection signal is input to the controller 16.
  • Magnetic sensors 24A and 24B detect the magnetic pole position of the rotor 2 of the single-phase AC motor 10. Detection signals from the magnetic sensors 24A and 24B are input to the controller 16.
  • the detection signal of the magnetic sensor 24A (first magnetic sensor) is also referred to as “position detection signal SA”.
  • the detection signal of the magnetic sensor 24B (second magnetic sensor) is also referred to as “position detection signal SB”.
  • Hall ICs can be typically used as the magnetic sensors 24A and 24B.
  • the magnetic sensor 24 ⁇ / b> A and the magnetic sensor 24 ⁇ / b> B are arranged at positions separated from each other along the rotation direction of the rotor 2. Therefore, a phase difference corresponding to the angular interval between the magnetic sensor 24A and the magnetic sensor 24B is generated between the position detection signal SA and the position detection signal SB.
  • the controller 16 is configured based on a processor including a CPU and a memory (not shown), and controls the operation of the entire control device 100 of the single-phase AC motor 10. For example, the controller 16 generates a control signal for controlling the inverter 14 based on the detection signal of the current sensor 22 and the position detection signals SA and SB of the magnetic sensors 24A and 24B.
  • the gate driver 20 controls switching of a plurality of semiconductor switching elements (see FIG. 3) constituting the inverter 14 according to the control signal generated by the controller 16.
  • FIG. 3 is a block diagram showing a control configuration of control device 100 of single-phase AC motor 10 according to the present embodiment.
  • power supply 12 (FIG. 1) supplies DC voltage Vdc to power lines PL and NL.
  • the inverter 14 converts the DC voltage Vdc into a single-phase AC voltage and drives the single-phase AC motor 10 according to a drive signal from the gate driver 20.
  • the inverter 14 includes four semiconductor switching elements Q1 to Q4, and four diodes D1 to D4 connected in parallel to these semiconductor switching elements in the reverse bias direction, respectively.
  • each of the semiconductor switching elements Q1 to Q4 is configured by a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), but may be an IGBT (Insulated Gate Bipolar Transistor) or a bipolar transistor.
  • each semiconductor switching element As a material constituting each semiconductor switching element, a wide band gap semiconductor having a larger band gap than silicon can be employed.
  • the wide band gap semiconductor is preferably any of silicon carbide, gallium nitride-based material, and diamond.
  • the semiconductor switching elements Q1, Q2 are connected in series between the power line PL and the power line NL.
  • Connection node N1 of semiconductor switching elements Q1, Q2 is connected to stator coil 6 of single-phase AC motor 10.
  • Semiconductor switching elements Q3 and Q4 are connected in series between power line PL and power line NL and in parallel with the whole of semiconductor switching elements Q1 and Q2 connected in series.
  • Connection node N2 of semiconductor switching elements Q3, Q4 is connected to stator coil 6 of single-phase AC motor 10.
  • Gate driver 20 is electrically connected to the gate terminals of semiconductor switching elements Q1-Q4.
  • the gate driver 20 controls switching of the semiconductor switching elements Q1 to Q4.
  • the gate driver 20 controls the control voltage applied to the gate terminal of each semiconductor switching element in response to a control signal from the controller 16. Depending on the magnitude of the control voltage, each semiconductor switching element is in a conductive state (on state) or a non-conductive state (off state).
  • the controller 16 includes an activation processing unit 30, a speed control unit 32, a current control unit 34, and a PWM (Pulse Width Modulation) control unit 36.
  • PWM Pulse Width Modulation
  • variable speed control When the single-phase AC motor 10 is driven, the speed control unit 32, the current control unit 34, and the PWM control unit 36 cooperate with each other to control the rotational speed of the single-phase AC motor 10 (hereinafter, “variable speed control”). Also called).
  • variable speed control also called
  • the speed control unit 32, the current control unit 34, and the PWM control unit 36 are configured to feedback control the rotational speed of the single-phase AC motor 10 based on the target value of the rotational speed.
  • the speed control unit 32 receives the position detection signals SA and SB of the magnetic sensors 24A and 24B, and receives a speed command ⁇ * indicating a target value of the rotational speed.
  • the speed control unit 32 detects the magnetic pole position and the rotational speed of the rotor 2 based on the position detection signals SA and SB of the magnetic sensors 24A and 24B.
  • the speed control unit 32 calculates the target value of the motor current by performing PI (proportional and integral) control on the deviation between the speed command ⁇ * and the rotation speed detection value.
  • the current control unit 34 receives a current command i * indicating a target value of the motor current, receives a detection signal of the current sensor 22, and receives position detection signals SA and SB of the magnetic sensors 24A and 24B.
  • the current control unit 34 determines the phase of the motor current using the magnetic pole position of the rotor 2 obtained from the position detection signals SA and SB.
  • the current control unit 34 calculates the target value of the voltage to be applied to the single-phase AC motor 10 by performing PI control on the deviation between the current command i * and the detected motor current value.
  • the current control unit 34 outputs a voltage command v * indicating the target value of the voltage applied to the single-phase AC motor 10 to the PWM control unit 36.
  • the PWM control unit 36 generates a control signal for PWM control of the semiconductor switching elements Q1 to Q4 constituting the inverter 14 based on the voltage command v *.
  • the PWM control unit 36 outputs the generated control signal to the gate driver 20.
  • the configuration of the feedback control configured by the speed control unit 32, the current control unit 34, and the PWM control unit 36 is a general one.
  • the magnetic pole position of the rotor 2 is detected using the two position detection signals SA and SB, the magnetic pole position is detected at a finer timing than when a single position detection signal is used. can do. Therefore, the magnetic pole position detection accuracy can be increased.
  • the rotational speed of the single-phase AC motor 10 can be made to follow the speed command ⁇ *.
  • the rotational speed can be made to follow the speed command ⁇ * in the process of increasing the speed command ⁇ *.
  • the activation processing unit 30 performs an activation process for activating the stationary rotor 2 in the first rotation direction.
  • the “first rotation direction” is the forward rotation direction (clockwise)
  • the “second rotation direction” opposite to the first rotation direction is the reverse rotation direction (counterclockwise).
  • the “first rotation direction” may be the reverse rotation direction
  • the “second rotation direction” may be the normal rotation direction.
  • the startup processing unit 30 first acquires the position detection signals SA and SB of the magnetic sensors 24A and 24B when the rotor 2 is stationary.
  • the motor voltage Vm having the first polarity is applied to the stator coil 6 of the single-phase AC motor 10.
  • the first polarity may be a positive polarity or a negative polarity.
  • the rotor 2 When the stator 3 is excited, the rotor 2 is activated by the magnetic force (attraction force and repulsive force) generated between the teeth 5 of the stator 3 and the magnetic poles of the rotor 2.
  • the activation processing unit 30 detects the rotation direction of the rotor 2 based on the position detection signals SA and SB when the rotor 2 is stationary and when the rotor 2 is rotating.
  • the activation processing unit 30 When it is detected that the rotation direction of the rotor 2 is the normal rotation direction (first rotation direction), the activation processing unit 30 applies a motor voltage Vm composed of a single-phase AC voltage to the stator coil 6 in that state. . Thereby, the rotor 2 rotates in the normal rotation direction by the rotating magnetic field generated by the stator 3.
  • the activation processing unit 30 temporarily stops the application of the motor voltage Vm, and then the first polarity is A motor voltage Vm having a different second polarity is applied to the stator coil 6. Since the direction of the magnetic force is switched by reversing the polarity of the motor voltage Vm, the rotor 2 starts to rotate in the direction opposite to the previous rotation direction, that is, the forward rotation direction.
  • the activation processing unit 30 applies a motor voltage Vm composed of a single-phase AC voltage to the stator coil 6. Thereby, the rotor 2 rotates in the normal rotation direction by the rotating magnetic field generated by the stator 3.
  • control device 100 for a single-phase AC motor realizes a reduction in startup time.
  • FIG. 4 is a diagram schematically illustrating a state in which the positional relationship between the rotor 2 and the magnetic sensors 24A and 24B transitions in time when the rotor 2 of the single-phase AC motor 10 rotates in the forward rotation direction.
  • the magnetic sensor 24A is arranged at a position where the rotation angle (mechanical angle) of the rotor 2 is 0 °.
  • the magnetic sensor 24B is disposed at a position where the rotation angle (mechanical angle) of the rotor 2 is 45 °. That is, the magnetic sensor 24 ⁇ / b> A and the magnetic sensor 24 ⁇ / b> B are arranged on the same circle around the rotation axis 1 of the rotor 2 with an angular interval of 45 °.
  • FIG. 4 the rotor 2 rotates in the forward direction.
  • 4A to 4E show the rotor 2 and the magnetic sensors 24A and 24B when the rotation angle (mechanical angle) of the rotor 2 is 0 °, 45 °, 90 °, 135 °, and 180 °, respectively. Represents the positional relationship. Since the number of magnetic poles of the rotor 2 is 4, a mechanical angle of 180 ° corresponds to an electrical angle of 360 °.
  • the magnetic sensor 24A When the magnetic sensor 24A detects a magnetic flux line extending from the magnetic pole of the rotor 2 toward the outer circumferential direction, that is, when the N pole of the rotor 2 is detected, the magnetic sensor 24A outputs a position detection signal SA of logic level “1”. On the other hand, when the magnetic sensor 24A detects a magnetic flux line extending in the inner circumferential direction from the magnetic pole of the rotor 2, that is, when the S pole of the rotor 2 is detected, the magnetic sensor 24A outputs a position detection signal SA of logic level “0”. To do.
  • the magnetic sensor 24B outputs a position detection signal SB having a logic level “1” when detecting the N pole of the rotor 2, and outputs a logic level “0” when detecting the S pole of the rotor 2.
  • the position detection signal SB of “” is output.
  • FIG. 5 is a diagram showing waveforms of the position detection signals SA and SB output from the magnetic sensors 24A and 24B shown in FIG.
  • the timing shown in FIGS. 4A to 4E that is, the timing at which the rotation angle (mechanical angle) of the rotor 2 becomes 0 °, 45 °, 90 °, 135 °, and 180 °, respectively, Shown with an arrow.
  • each of position detection signals SA and SB is alternately switched between “1” and “0” at an interval of 90 ° mechanical angle (corresponding to an interval of 180 ° electrical angle).
  • the position detection signal SA is “0” when the rotation angle of the rotor 2 is 0 ° to 90 ° (states of FIGS. 4A to 4C), and when the rotation angle is 90 ° to 180 ° (FIG. 4). 4 (c) to (e)), “1”.
  • the position detection signal SB is obtained when the rotation angle of the rotor 2 is 0 ° to 45 ° (the state shown in FIGS. 4 (a) to (b)) and when the rotation angle is 135 ° to 180 ° (FIG. 4 (d) to ( The state of e) is “1”, and is “0” when the rotation angle is 45 ° to 135 ° (the states of FIGS. 4B to 4D).
  • FIG. 6 is a diagram showing a logical table of the position detection signals SA and SB output from the magnetic sensors 24A and 24B shown in FIG.
  • the states of FIGS. 4A to 4B are represented as [1]
  • the states of FIGS. 4B to 4C are represented as [2]
  • FIG. The states of (d) to (d) are represented as [3]
  • the states of FIGS. 4 (d) to (e) are represented as [4].
  • FIG. 6 shows combinations of position detection signals SA and SB in each of these four states [1] to [4].
  • the stationary rotor 2 is in the state [2].
  • the state of the rotor 2 changes from [2] to [3].
  • the state of the rotor 2 changes from [2] to [1].
  • the state of transition after the stationary state varies depending on the rotation direction of the rotor 2. Therefore, if the state of the rotor 2 when stationary (hereinafter also referred to as an “initial state”) and the next transition state can be grasped, the rotation direction of the rotor 2 is the normal rotation direction or the reverse rotation direction. Can be detected.
  • the initial state of the rotor 2 can be detected from (SA, SB) when the rotor 2 is stationary.
  • SA and SB When the stationary rotor 2 is started, first, one of the position detection signals SA and SB is switched according to the rotation direction. If it is possible to grasp which position detection signal is switched first, the rotation direction of the rotor 2 can be detected. According to this, the rotation direction of the rotor 2 can be detected at the timing when the first position detection signal is switched after the rotor 2 starts to rotate.
  • the rotation direction of the rotor 2 is detected by capturing the timing at which one of the plurality of position detection signals is switched. be able to. According to this, as in the prior art using the position detection signal of one magnetic sensor, the start-up process of the rotor 2 can be performed stably without being affected by the mounting accuracy of individual magnetic sensors and variations in motor constants. Can do.
  • the rotational direction of the rotor 2 can be detected in a shorter time compared to the prior art described in Patent Document 1. The reason will be described below.
  • the switching of the detection signal of the magnetic sensor is detected during the first period after exciting the stator coil, it is determined that the rotor is rotating in the forward rotation direction.
  • the detection signal switching is not detected during the first period, it is determined that the rotor is rotating in the reverse direction.
  • This first period is set to a time sufficient to rotate over a mechanical angle of at least 360 ° / number of magnetic poles from when the rotor is stationary. That is, when the number of magnetic poles of the rotor is 4, the maximum rotation angle (mechanical angle) of the rotor from when the stationary rotor starts to rotate until the rotation direction is detected is 90 °.
  • the mechanical rotation period of the rotor 2 is a mechanical angle of 360 °
  • the number of magnetic poles of the rotor 2 is 4, so that one cycle of each position detection signal is a mechanical angle of 180 °.
  • the phase difference between the position detection signal SA and the position detection signal SB is 45 ° (mechanical angle)
  • any one of the position detection signals is switched at every mechanical angle of 45 ° within the one cycle. Therefore, the rotation angle of the rotor 2 from when the stationary rotor 2 starts to rotate until the rotation direction is detected is 45 ° at the maximum. It can be seen that the rotation angle of the rotor 2 until the rotation direction is detected is less than half compared to the above-described conventional technology. Thereby, the time from when the rotor 2 starts to rotate until the rotation direction is detected can be reduced to less than half. As a result, the single-phase AC motor can be started up in a short time.
  • the rotation direction of the rotor 2 can be detected based on the transition of the combination of the position detection signals SA and SB caused by the rotation of the rotor 2.
  • At least the magnetic sensor 24B needs to be arranged at a position other than the position satisfying “180 ⁇ n / (P / 2)”.
  • N is an integer of 1 or more and P or less).
  • the position satisfying “180 ⁇ n / (P / 2)” corresponds to the timing at which the position detection signal SA is switched. Therefore, the rotational direction of the rotor 2 can be detected by disposing the magnetic sensor 24B at a position other than the position.
  • the magnetic sensor 24B is spaced apart from the magnetic sensor 24A by an angular interval of “180 ⁇ ⁇ 1+ (2n ⁇ 1) ⁇ / P” on the same circle centered on the rotation axis 1 of the rotor 2. It is. If it does in this way, in addition to the detection of the rotation direction of the rotor 2, the detection accuracy of the magnetic pole position of the rotor 2 can be improved.
  • the magnetic sensor 24B is preferably disposed at any position of 45 °, 135 °, 225 °, and 315 °.
  • the example of FIG. 4 shows a case where the magnetic sensor 24B is disposed at a 45 ° position.
  • phase difference of 45 ° or 135 ° can be provided between the position detection signal SA and the position detection signal SB.
  • a phase difference of 45 ° mechanical angle corresponds to a quarter cycle of the position detection signals SA and SB.
  • the phase difference with a mechanical angle of 135 ° corresponds to 3/4 period of the position detection signals SA and SB. Therefore, the switching timing between the position detection signal SA and the position detection signal SB is different by a quarter period.
  • the controller 16 detects the switching of the position detection signal four times in total every 1 ⁇ 4 period while the rotor 2 makes one rotation (mechanical angle 360 °). Therefore, it is possible to detect the magnetic pole position of the rotor 2 at a finer timing than when a single position detection signal is used. As a result, the magnetic pole position detection accuracy can be increased.
  • FIG. 7 is a diagram for explaining a flow of activation processing for activating the rotor 2 in the first direction (forward rotation direction).
  • FIG. 7A shows the flow of the starting process when the rotor 2 starts to rotate in the normal rotation direction from the initial state due to the excitation of the stator 3.
  • FIG. 7B shows a processing flow when the rotor 2 starts to rotate in the reverse rotation direction from the initial state due to the excitation of the stator 3.
  • FIG. 8 is a timing chart corresponding to the flow of the startup process shown in FIG.
  • FIG. 9 is a timing chart corresponding to the flow of the activation process shown in FIG.
  • the rotating magnetic field generated in the stator 3 is represented by a region divided into four parts with the rotor 2 as the center.
  • the arrangement of the magnetic sensors 24A and 24B is the same as that shown in FIG. Further, for ease of explanation, the first state applied to the stator 3 (stator coil) while the initial state of the rotor 2 is made common between FIG. 7 (a) and FIG. 7 (b).
  • the polarity of the motor voltage Vm having a different polarity is made different.
  • the initial state of the rotor 2 is the state [1] of FIG. Therefore, in the magnetic sensors 24A and 24B, (SA, SB) is (0, 1) (see FIG. 8).
  • activation processing unit 30 applies motor voltage Vm having the first polarity from inverter 14 to the stator coil.
  • the “first polarity” is a positive polarity.
  • Activation processing unit 30 controls inverter 14 such that semiconductor switching elements Q1, Q4 are turned on and semiconductor switching elements Q2, Q3 are turned off. Accordingly, a positive DC voltage (+ Vdc) is applied to the stator coil as the motor voltage Vm.
  • the position detection signal SB of the magnetic sensor 24B is switched from “1” to “0” as shown in FIG.
  • the activation processing unit 30 detects that the rotation direction of the rotor 2 is the forward rotation direction based on the first switching of the position detection signal SB after the rotor 2 starts to rotate.
  • activation processing unit 30 determines that the rotor 2 is rotating in a desired rotation direction. Therefore, at time tC, activation processing unit 30 supplies motor voltage Vm, which is a single-phase AC voltage, from inverter 14 to the stator coil.
  • the polarity of the motor voltage Vm at the time tC is the same as the first polarity in order to continuously rotate the rotor 2 in the forward rotation direction.
  • the rotor 2 rotates in the normal rotation direction by receiving the motor voltage Vm and generating a rotating magnetic field in the stator 3.
  • the first polarity is a negative polarity.
  • Activation processing unit 30 controls inverter 14 such that semiconductor switching elements Q2 and Q3 are turned on and semiconductor switching elements Q1 and Q4 are turned off. As a result, a negative DC voltage ( ⁇ Vdc) is applied to the stator coil as the motor voltage Vm.
  • Vm negative polarity motor voltage
  • FIG. 7B since the polarity of the motor voltage Vm is different from that in FIG. 7A, the magnetic field generated in the teeth of the stator 3 is reversed with respect to FIG. 7A. As a result, the rotor 2 starts to rotate in the reverse direction (counterclockwise).
  • the position detection signal SA of the magnetic sensor 24A is switched from “0” to “1” as shown in FIG.
  • the activation processing unit 30 detects that the rotation direction of the rotor 2 is the reverse rotation direction based on the first switching of the position detection signal SA after the rotor 2 starts to rotate.
  • the activation processing unit 30 determines that the rotor 2 is rotating in a direction opposite to the desired rotation direction. Therefore, the activation processing unit 30 temporarily stops the application of the motor voltage Vm to the stator coil by controlling the inverter 14 so that the semiconductor switching elements Q1 to Q4 are all turned off.
  • the activation processing unit 30 applies the second polarity motor voltage Vm (that is, the positive polarity motor voltage Vm) from the inverter 14 to the stator coil. ) Is applied. As a result, a magnetic field similar to that shown in FIG.
  • the rotor 2 At time tD, when the rotor 2 returns to the initial state, the rotor 2 continues to rotate in the normal rotation direction due to the magnetic force generated between the magnetic field generated in the teeth of the stator 3 and the magnetic poles of the rotor 2.
  • the position detection signal SB of the magnetic sensor 24B is switched from “1” to “0” as shown in FIG.
  • the start processing unit 30 detects that the rotation direction of the rotor 2 is the forward rotation direction based on the first switching of the position detection signal SB after the polarity of the motor voltage Vm is reversed to the second polarity. .
  • the activation processing unit 30 determines that the rotor 2 is rotating in a desired rotation direction. Therefore, at time tE, activation processing unit 30 applies motor voltage Vm, which is a single-phase AC voltage, from inverter 14 to the stator coil. At this time, the activation processing unit 30 continues to rotate the rotor 2 in the forward rotation direction, so that the polarity of the motor voltage Vm at the time tE is the same as the second polarity. Thereby, after time tC, the rotor 2 rotates in the forward direction by receiving the motor voltage Vm and generating a rotating magnetic field in the stator 3.
  • Vm which is a single-phase AC voltage
  • the rotation angle of the rotor 2 from time tA is 45 °.
  • the rotation direction of the rotor 2 can be detected at time tB less than.
  • the activation time is the time from time tA to time tB.
  • the rotor 2 can be driven in the normal rotation direction immediately after time tB.
  • the rotation direction of the rotor 2 can be detected in a short time after the rotation of the rotor 2 starts. As a result, the activation time can be shortened.
  • a temperature detection element (such as a thermistor) is installed around each semiconductor switching element of the inverter 14 to detect overheating and stop the operation of the inverter 14. Can do.
  • a method of stopping the operation of the inverter 14 can be adopted.
  • FIG. 10 is a flowchart for illustrating a startup process according to the present embodiment.
  • controller 16 when starting single-phase AC motor 10, controller 16 first receives position detection signals SA and SB of magnetic sensors 24A and 24B when rotor 2 is stationary in step S01. get. Thereby, the initial state of the rotor 2 can be grasped.
  • step S02 the controller 16 applies the motor voltage Vm having the first polarity to the stator coil 6 of the single-phase AC motor 10. As a result, the rotor 2 of the single-phase AC motor 10 is started.
  • the controller 16 detects the position detection signal when the rotor 2 is stationary in step S04. Based on SA and SB and position detection signals SA and SB when the rotor 2 is rotating, the rotation direction of the rotor 2 is detected.
  • the controller 16 can detect the rotation direction of the rotor 2 by grasping the initial state of the rotor 2 and the next transition state from the position detection signals SA and SB.
  • step S05 the controller 16 determines whether or not the rotation direction of the rotor 2 is the first rotation direction.
  • the controller 16 proceeds to step S05 and applies the motor voltage Vm, which is a single-phase AC voltage, to the stator coil 6. Thereby, the rotor 2 is driven in the first rotation direction.
  • step S07 when the rotation direction of the rotor 2 is not the first rotation direction (NO in S05), the controller 16 proceeds to step S07 and turns off all the semiconductor switching elements Q1 to Q4 of the inverter 14. Thus, application of the motor voltage Vm to the stator coil 6 is stopped. Thereby, the rotor 2 starts to rotate in the first rotation direction so as to return to the initial state.
  • the controller 16 applies the motor voltage Vm having the second polarity to the stator coil 6 in step S08. Further, returning to step S05, the controller 16 detects the rotation direction of the rotor 2 based on the position detection signals SA and SB. If it is determined in step S05 that the rotation direction of the rotor 2 is the first rotation direction, the controller 16 applies a motor voltage Vm, which is a single-phase AC voltage, to the stator coil 6 in step S06. Thus, the rotor 2 is driven in the first rotation direction.
  • Vm which is a single-phase AC voltage
  • FIG. 11 is a schematic configuration diagram of a vacuum cleaner to which the control device 100 shown in FIG. 1 is applied.
  • a vacuum cleaner 61 includes an extension pipe 62, a suction port body 63, an electric blower 64, a dust collection chamber 65, an operation unit 66, a power supply 12, and a sensor. 68.
  • Electric blower 64 includes single-phase AC motor 10 and control device 100 shown in FIG.
  • the electric blower 64 drives the single-phase AC motor 10 as a blower motor.
  • suction air is generated. Due to the suction air, dust on the surface to be cleaned (not shown) is sucked into the suction port body 63 together with air.
  • the air containing dust is conveyed to the dust collection chamber 65 through the extension pipe 62. Dust in the air is collected in the dust collection chamber 65.
  • the air in which the dust is collected passes through a filter (not shown) and then reaches the electric blower 64. Thereafter, the air passes through the internal passage and is discharged to the outside from an exhaust port (both not shown).
  • the power supply of the control device 100 is the same as the power supply 12 of the vacuum cleaner 61. Further, the controller 16 of the control device 100 is configured to be able to control the operation of the entire vacuum cleaner 61.
  • the operation unit 66 includes a power switch 66a and an acceleration switch 66b (see FIG. 12).
  • the power switch 66 a is a switch for switching between power supply and shut-off from the power supply 12 to each part of the vacuum cleaner 61.
  • the acceleration switch 66b is a switch for accelerating the single-phase AC motor 10 in the electric blower 64 from a low speed rotation speed to a steady rotation speed.
  • the low-speed rotation speed refers to a rotation speed that is 1/10 or less of the steady-state rotation speed. For example, when the steady rotation speed is 100,000 rpm, the low speed rotation speed is 10,000 rpm or less.
  • the control device 100 When the acceleration switch 66b is turned on by the user while the single-phase AC motor 10 is driven at a low rotational speed, the control device 100 causes the rotational speed of the single-phase AC motor 10 to reach a steady rotational speed.
  • the variable speed control of the rotational speed described in FIG. 3 is executed.
  • the acceleration hereinafter also referred to as “acceleration rate” until the rotational speed reaches the steady rotational speed from the low rotational speed can be adjusted.
  • Sensor 68 detects the movement of the vacuum cleaner 61 or the movement of a person.
  • the sensor 68 for example, a gyro sensor or a human sensor can be used.
  • a detection signal from the sensor 68 is input to the controller 16.
  • FIG. 12 is a block diagram showing a control configuration of the electric blower 64.
  • the main circuit of the vacuum cleaner 61, the control device 100, the sensor 68, and the like are activated by receiving power from the power source 12.
  • Sensor 68 is, for example, a gyro sensor.
  • the sensor 68 detects the movement of the electric vacuum cleaner 61 and outputs a detection signal to the controller 16 of the control device 100.
  • the gyro sensor can detect the movement of the vacuum cleaner 61 that occurs when the vacuum cleaner 61 is used by being attached to the vacuum cleaner 61.
  • the main body always moves immediately before using the vacuum cleaner 61.
  • the electric blower 64 single-phase AC motor 10
  • the acceleration switch 66b is turned on, as described below.
  • the controller 16 starts the single-phase AC motor 10 using the detection signal of the sensor 68 as a trigger, and drives the single-phase AC motor 10 at a low speed.
  • the controller 16 performs the starting process mentioned above.
  • the rotor 2 of the single-phase AC motor 10 can be started in a desired rotation direction (first rotation direction) in a short time.
  • the controller 16 accelerates the single-phase AC motor 10 to a low speed.
  • the controller 16 accelerates the single-phase AC motor 10 to a steady rotational speed.
  • the acceleration switch 66b is turned on before the power switch 66a, when the power switch 66a is turned on, the controller 16 immediately turns on the single-phase AC motor 10 after the start-up process. Accelerate to rotational speed.
  • the controller 16 drives the single-phase AC motor 10 by decelerating it to a low speed without stopping the driving of the single-phase AC motor 10. to continue. By continuing to drive at a low rotational speed, it is possible to prevent the dust collected in the dust collection chamber 65 from being discharged from the suction port 63 through the extension pipe 62.
  • the time from when the power supply is started until the single-phase AC motor 10 reaches a low speed is 1 second, and from the low speed to the steady speed (for example, 100,000 rpm). Assume that the time to reach is 0.4 seconds. In this case, it takes 1.4 seconds from the start of power supply until the single-phase AC motor 10 reaches the steady rotational speed.
  • the acceleration switch 66b is turned on, the single-phase AC motor 10 is already driven at the low speed. Therefore, when the user actually uses the vacuum cleaner 61, the single-phase AC motor 10 can reach the steady rotational speed in only 0.4 seconds after the acceleration switch 66b is turned on.
  • the single-phase AC motor 10 in order to start the single-phase AC motor 10, it is necessary to generate a larger torque than when the single-phase AC motor 10 is rotating in a steady state. Therefore, it is necessary to flow a large motor current through the single-phase AC motor 10.
  • the power consumption increases and the amount of heat generated in the components including the single-phase AC motor 10 and the power source 12 also increases.
  • the power source 12 is a power storage device such as a secondary battery
  • the continuous operation time of the vacuum cleaner 61 is shortened by increasing the power consumption.
  • an increase in the amount of heat generated by the component may impair the reliability of the component.
  • the startup time can be shortened by performing the above startup process. Therefore, it is possible to prevent the time required for starting the single-phase AC motor 10 from being extended due to the reduction of the acceleration rate at the time of starting.
  • variable speed control of the single-phase AC motor 10 is executed using the two position detection signals SA and SB, the detection accuracy of the magnetic pole position of the rotor 2 can be improved. As a result, the responsiveness of variable speed control can be improved. Therefore, when the variable rate is lowered, it is possible to suppress the occurrence of vibration in the single-phase AC motor 10 due to the fluctuation of the output torque of the single-phase AC motor 10.
  • FIG. 13 is a schematic configuration diagram of a hand dryer to which the control device 100 shown in FIG. 1 is applied.
  • Hand dryer 70 according to the present embodiment is a device for drying hands by applying dry air to hands wet with water after the user has washed their hands.
  • hand dryer 70 includes casing 71, hand insertion portion 72, water receiving portion 73, drain container 74, cover 76, sensor 77, and intake port 78. Is provided.
  • the casing 71 forms a concave space for inserting a user's hand, that is, a hand insertion portion 72.
  • the water receiving part 73 receives water droplets splashed from the wet hand of the user.
  • the drain container 74 is detachably attached to the casing 71 and accumulates water droplets received by the water receiving portion 73.
  • the cover 76 is coupled to the casing 71 and constitutes the front surface of the hand dryer 70.
  • an electric blower (not shown) and a sensor 77 are mounted.
  • the electric blower includes a single-phase AC motor 10 and a control device 100 shown in FIG.
  • the controller 16 of the control device 100 is configured to be able to control the operation of the entire hand dryer 70.
  • the electric blower drives the single-phase AC motor 10 as a blower motor.
  • the single-phase AC motor 10 is driven to rotate, dry air is generated.
  • the dry air is blown out toward a manual insertion portion 72 from a blower opening (not shown) provided in the casing 71.
  • Sensor 77 detects that the user has approached hand dryer 70.
  • the sensor 77 further detects that the user's hand has been inserted into the hand insertion portion 72.
  • a human sensor can be used as the sensor 77.
  • a detection signal of the sensor 77 is input to the controller 16 of the control device 100.
  • the electric blower is in a standby state in which the driving of the single-phase AC motor 10 is stopped when the user is not approaching the hand dryer 70.
  • the sensor 77 detects whether or not a person has approached the hand dryer 70.
  • the sensor 77 outputs a detection signal to the controller 16 of the control device 100.
  • the controller 16 starts the single-phase AC motor 10 using the detection signal of the sensor 77 as a trigger, and drives the single-phase AC motor 10 at a low speed.
  • the controller 16 performs the starting process mentioned above.
  • the rotor 2 of the single-phase AC motor 10 can be started in a desired rotation direction (first rotation direction) in a short time.
  • the controller 16 accelerates the single-phase AC motor 10 to a low speed.
  • the controller 16 accelerates the single-phase AC motor 10 to a steady rotational speed.
  • the controller 16 rotates the single-phase AC motor 10 at a low speed for a predetermined time without stopping the driving of the single-phase AC motor 10. Continue to drive at a reduced speed.
  • the controller 16 accelerates the single-phase AC motor 10 to a constant rotational speed again.
  • the controller 16 stops the single-phase AC motor 10 and puts the electric blower in a standby state.
  • the single-phase AC motor 10 is driven at a low rotational speed with a detection signal indicating that the user has approached the hand dryer 70 as a trigger. Thereby, when a user's hand is inserted in the hand insertion part 72, the time until the single-phase AC motor 10 reaches a steady rotational speed can be shortened.
  • the hand dryer 70 similarly to the electric vacuum cleaner 61 shown in FIG. 11, the hand dryer 70 also requires a large motor current in order to start the single-phase AC motor 10.
  • a large motor current may cause an increase in power consumption and an increase in the amount of heat generated by components.
  • the startup time can be shortened by performing the startup process. Thereby, since it can suppress that a big motor current flows for a long time, as a result, the increase in the power consumption and the emitted-heat amount at the time of starting can be suppressed.
  • control device 100 of the single-phase AC motor 10 according to the present embodiment is applied to a vacuum cleaner and a hand dryer. It can be widely applied to products using a phase AC motor as a drive source.
  • a phase AC motor as a drive source.
  • the present invention can be applied to products including an electric blower.
  • the present invention includes any combination of a plurality of embodiments, modification of any component included in any embodiment, or any combination included in any embodiment within the scope described in the claims.
  • the components of can be omitted.

Abstract

In the present invention, first and second magnetic sensors (24A, 24B) are disposed at positions separated from each other along the rotation direction of a rotor of a single-phase AC motor (10). In a starting process for causing the rotor in a stationary state to start in a first direction, a controller (16) drives the rotor by applying a driving voltage having a first polarity from an inverter (14) to a stator. The controller (16) detects the rotation direction of the rotor on the basis of signals detected by the first and second magnetic sensors (24A, 24B) when the rotor is in the stationary state and when the rotor is rotating. When the rotation direction of the rotor is detected as a second direction opposite to the first direction, the controller (16) inverts the first polarity of the driving voltage to a second polarity.

Description

単相交流モータの制御装置Single-phase AC motor controller
 この発明は、単相交流モータの制御装置に関する。 This invention relates to a control device for a single-phase AC motor.
 電気掃除機やハンドドライヤーのように、単相交流モータを駆動源とした製品においては、製品の仕様上、単相交流モータを一方向のみに回転駆動させるものがある。また、このような製品には、単相交流モータを停止状態から短時間で起動することが求められるものがある。 Some products, such as vacuum cleaners and hand dryers, that use a single-phase AC motor as the drive source rotate the single-phase AC motor in only one direction due to product specifications. Some of these products are required to start a single-phase AC motor from a stopped state in a short time.
 このような単相交流モータの回転を制御するための制御装置においては、単相交流モータのロータの回転方向を検出するために、ロータの磁極位置を検出する磁気センサを備えたものがある。磁気センサとしては、一般的に、ホールIC(Integrated Circuit)が用いられている。ホールICとは、ホール効果を利用した磁気センサ素子と、当該素子の出力信号をデジタル信号に変換する回路とが1つのパッケージに収められたICである。 Some control devices for controlling the rotation of such a single-phase AC motor include a magnetic sensor that detects the magnetic pole position of the rotor in order to detect the rotation direction of the rotor of the single-phase AC motor. As a magnetic sensor, a Hall IC (Integrated Circuit) is generally used. The Hall IC is an IC in which a magnetic sensor element using the Hall effect and a circuit that converts an output signal of the element into a digital signal are contained in one package.
 上記制御装置においては、単相交流モータを一方向にのみ回転駆動させるために、静止状態の単相交流モータを、当該一方向に起動させるための工夫がなされている。 In the above control device, in order to rotationally drive the single-phase AC motor only in one direction, a device for starting the stationary single-phase AC motor in the one direction is devised.
 たとえば、特許第5469730号公報(特許文献1)には、モータを正転方向に起動させる方法が開示される。特許文献1では、モータのロータの磁極位置を検出するための1個のホールICを用いている。 For example, Japanese Patent No. 5469730 (Patent Document 1) discloses a method of starting a motor in the forward rotation direction. In Patent Document 1, one Hall IC for detecting the magnetic pole position of the rotor of the motor is used.
 特許文献1では、モータを始動する際、コントローラは、最初に、モータが静止しているときにホールICが出力する検出信号に基づいて、正の励起トルクを発生させるように、巻線を励起させる。そして、励起中の第1期間内に検出信号のエッジが検出されれば、ロータが正転方向に回転していると判断する。当該第1期間内に検出信号のエッジが検出されなければ、ロータが逆転方向に回転していると判断する。 In Patent Document 1, when starting the motor, the controller first excites the windings to generate a positive excitation torque based on the detection signal output by the Hall IC when the motor is stationary. Let If the edge of the detection signal is detected within the first period during excitation, it is determined that the rotor is rotating in the forward rotation direction. If the edge of the detection signal is not detected within the first period, it is determined that the rotor is rotating in the reverse direction.
 なお、特許文献1において、第1期間は、ロータが静止状態から少なくとも360°/Nの機械角度(Nは磁極数)に亘って回転するのに十分な時間に設定されている。 In Patent Document 1, the first period is set to a time sufficient for the rotor to rotate over a mechanical angle (N is the number of magnetic poles) of at least 360 ° / N from a stationary state.
特許第5469730号公報Japanese Patent No. 5469730
 上記特許文献1では、1個の磁気センサの検出信号のエッジを検出することで、ロータの回転方向を検出するように構成されている。そのため、ロータの回転方向を検出するのに必要な時間である第1期間を、検出信号にエッジが現われるのに十分な時間に設定する必要がある。そのため、モータを短時間で起動させることが難しいという問題がある。 The above-mentioned Patent Document 1 is configured to detect the rotation direction of the rotor by detecting the edge of the detection signal of one magnetic sensor. Therefore, it is necessary to set the first period, which is the time necessary for detecting the rotation direction of the rotor, to a time sufficient for an edge to appear in the detection signal. Therefore, there is a problem that it is difficult to start the motor in a short time.
 また、磁気センサの取付け精度または、モータ定数(巻線インダクタンスや巻線抵抗など)の個体ばらつきによっては、予め定めた第1期間内に検出信号のエッジを検出できない場合が起こり得る。その結果、モータを起動できない、もしくは、ロータが逆転方向に回転するといった不具合が生じる可能性がある。この場合、磁気センサの取付け位置やモータ定数を考慮して、第1期間の設定を変更する必要がある。しかしながら、第1期間が長くなると、モータの回転方向の検出にさらに時間がかかってしまい、結果的に、短時間での起動が一層困難となる。 Also, depending on individual variations of the magnetic sensor mounting accuracy or motor constants (winding inductance, winding resistance, etc.), the detection signal edge may not be detected within a predetermined first period. As a result, there is a possibility that the motor cannot be started or that the rotor rotates in the reverse direction. In this case, it is necessary to change the setting of the first period in consideration of the mounting position of the magnetic sensor and the motor constant. However, if the first period becomes longer, it takes more time to detect the rotation direction of the motor, and as a result, it becomes more difficult to start up in a short time.
 本発明は、上記に鑑みてなされたものであって、その目的は、単相交流モータの短時間で起動することができる単相交流モータの制御装置を提供することである。 The present invention has been made in view of the above, and an object thereof is to provide a control device for a single-phase AC motor that can be started in a short time of the single-phase AC motor.
 本発明のある局面に従う単相交流モータの制御装置は、複数の磁極が設けられたロータと、回転磁界を生成するためのステータとを含む単相交流モータの制御装置である。制御装置は、単相交流モータの駆動電圧をステータに印加するように構成されたインバータと、ロータの磁極位置を検出する第1および第2の磁気センサと、コントローラとを備える。コントローラは、第1および第2の磁気センサの検出信号に基づいて、インバータを制御するように構成される。第1および第2の磁気センサは、ロータの回転方向に沿って互いに離間する位置に配置される。コントローラは、静止状態のロータを第1の方向に起動するための起動処理を実行するように構成される。起動処理において、コントローラは、インバータからステータに第1の極性の電圧を印加してロータを駆動する。コントローラは、ロータが静止状態のとき、および、ロータが回転しているときの各第1および第2の磁気センサの検出信号に基づいて、ロータの回転方向を検出する。コントローラは、ロータの回転方向が第1の方向とは反対の第2の方向であると検出されたときには、電圧の第1の極性を、第2の極性に反転する。 A control device for a single-phase AC motor according to an aspect of the present invention is a control device for a single-phase AC motor including a rotor provided with a plurality of magnetic poles and a stator for generating a rotating magnetic field. The control device includes an inverter configured to apply a drive voltage of the single-phase AC motor to the stator, first and second magnetic sensors that detect the magnetic pole position of the rotor, and a controller. The controller is configured to control the inverter based on detection signals of the first and second magnetic sensors. The first and second magnetic sensors are arranged at positions separated from each other along the rotation direction of the rotor. The controller is configured to execute an activation process for activating the stationary rotor in the first direction. In the startup process, the controller drives the rotor by applying a first polarity voltage from the inverter to the stator. The controller detects the rotation direction of the rotor based on the detection signals of the first and second magnetic sensors when the rotor is stationary and when the rotor is rotating. The controller reverses the first polarity of the voltage to the second polarity when it is detected that the rotation direction of the rotor is the second direction opposite to the first direction.
 本発明のある実施形態に従えば、単相交流モータを短時間で起動することが可能な単相交流モータの制御装置を提供することができる。 According to an embodiment of the present invention, it is possible to provide a control device for a single-phase AC motor that can start the single-phase AC motor in a short time.
本発明の実施の形態に従う単相交流モータの制御装置の概略構成を示す図である。It is a figure which shows schematic structure of the control apparatus of the single phase alternating current motor according to embodiment of this invention. 図1における単相交流モータの概略構成図である。It is a schematic block diagram of the single phase alternating current motor in FIG. 本実施の形態に従う単相交流モータの制御装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the control apparatus of the single phase alternating current motor according to this Embodiment. ロータと磁気センサとの位置関係が時間的に遷移する様子を模式的に示す図である。It is a figure which shows typically a mode that the positional relationship of a rotor and a magnetic sensor changes temporally. 図4に示す磁気センサが出力する位置検出信号の波形を示す図である。It is a figure which shows the waveform of the position detection signal which the magnetic sensor shown in FIG. 4 outputs. 図4に示す磁気センサが出力する位置検出信号の論理表を示す図である。It is a figure which shows the logic table | surface of the position detection signal which the magnetic sensor shown in FIG. 4 outputs. ロータを第1の方向に起動させるための起動処理の流れを説明するための図である。It is a figure for demonstrating the flow of the starting process for starting a rotor in a 1st direction. 図7(a)に示す起動処理の流れに対応するタイミングチャートである。It is a timing chart corresponding to the flow of the starting process shown to Fig.7 (a). 図7(b)に示す起動処理の流れに対応するタイミングチャートである。It is a timing chart corresponding to the flow of the starting process shown in FIG.7 (b). 本実施の形態に従う起動処理を説明するためのフローチャートである。It is a flowchart for demonstrating the starting process according to this Embodiment. 図1に示す制御装置が適用される電気掃除機の概略構成図である。It is a schematic block diagram of the vacuum cleaner to which the control apparatus shown in FIG. 1 is applied. 図11に示す電動送風機の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the electric blower shown in FIG. 図1に示す制御装置が適用されるハンドドライヤーの概略構成図である。It is a schematic block diagram of the hand dryer to which the control apparatus shown in FIG. 1 is applied.
 本発明の実施形態について、図面を参照しながら詳細に説明する。図中の同一または相当部分については、同一符号を付してその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.
 [単相交流モータの制御装置の構成]
 図1は、本発明の実施の形態に従う単相交流モータの制御装置の概略構成を示す図である。
[Configuration of control device for single-phase AC motor]
FIG. 1 is a diagram showing a schematic configuration of a control device for a single-phase AC motor according to an embodiment of the present invention.
 図1を参照して、単相交流モータ10を制御する制御装置100は、電源12と、インバータ14と、コントローラ16と、アナログデジタル変換器(ADC)18と、ゲートドライバ20と、電流センサ22と、磁気センサ24A,24Bとを備える。 Referring to FIG. 1, a control device 100 that controls a single-phase AC motor 10 includes a power source 12, an inverter 14, a controller 16, an analog-digital converter (ADC) 18, a gate driver 20, and a current sensor 22. And magnetic sensors 24A and 24B.
 単相交流モータ10は、単相の交流同期モータであり、たとえば、表面磁石型同期モータである。図2は、図1における単相交流モータ10の概略構成図である。 The single-phase AC motor 10 is a single-phase AC synchronous motor, for example, a surface magnet type synchronous motor. FIG. 2 is a schematic configuration diagram of the single-phase AC motor 10 in FIG.
 図2を参照して、単相交流モータ10は、ロータ2と、ステータ3とを含む。ロータ2は、複数の磁極を有する。ロータ2には永久磁石が設けられる。 Referring to FIG. 2, single-phase AC motor 10 includes a rotor 2 and a stator 3. The rotor 2 has a plurality of magnetic poles. The rotor 2 is provided with a permanent magnet.
 ステータ3は、ステータコア4と、ステータコア4のティース5に巻回されたステータコイル6とを含む。ステータ3は、ロータ2の周囲を覆っている。ステータ3が生成する回転磁界によってロータ2が回転駆動される。 The stator 3 includes a stator core 4 and a stator coil 6 wound around the teeth 5 of the stator core 4. The stator 3 covers the periphery of the rotor 2. The rotor 2 is rotationally driven by the rotating magnetic field generated by the stator 3.
 本実施の形態では、ロータ2の磁極数が4であり、ステータ3のティース5の数が4である、単相交流モータ10を制御する制御装置100について説明する。ただし、本発明が適用される単相交流モータ10の磁極数およびティースの数はこれに限定されるものではない。 In the present embodiment, a control device 100 that controls the single-phase AC motor 10 in which the number of magnetic poles of the rotor 2 is 4 and the number of teeth 5 of the stator 3 is 4 will be described. However, the number of magnetic poles and the number of teeth of the single-phase AC motor 10 to which the present invention is applied are not limited thereto.
 再び図1を参照して、電源12は、直流電源であり、たとえば、充放電可能に構成された蓄電装置である。電源12は、直流電源に限られず、単相交流電源から供給される単相交流電圧を直流電圧に変換するコンバータであってもよい。この場合、コンバータは、たとえば、4個のダイオードによって構成されるダイオードブリッジ整流回路と、平滑コンデンサとを含むことができる。 Referring to FIG. 1 again, power supply 12 is a DC power supply, for example, a power storage device configured to be chargeable / dischargeable. The power source 12 is not limited to a DC power source, and may be a converter that converts a single-phase AC voltage supplied from a single-phase AC power source into a DC voltage. In this case, the converter can include, for example, a diode bridge rectifier circuit constituted by four diodes and a smoothing capacitor.
 インバータ14は、単相インバータである。インバータ14は、電源12から電力線PL,NLを介して供給される直流電圧を、単相交流モータ10の駆動電圧に変換して単相交流モータ10のステータ3(ステータコイル6)に印加する。インバータ14はさらに、静止状態のロータ2を起動するための起動処理において、正または負の極性の駆動電圧を、単相交流モータ10のステータ3に印加することができる。インバータ14の構成については、図3にて詳細に説明する。 The inverter 14 is a single phase inverter. The inverter 14 converts a DC voltage supplied from the power supply 12 through the power lines PL and NL into a driving voltage for the single-phase AC motor 10 and applies it to the stator 3 (stator coil 6) of the single-phase AC motor 10. Further, the inverter 14 can apply a drive voltage having a positive or negative polarity to the stator 3 of the single-phase AC motor 10 in a startup process for starting the rotor 2 in a stationary state. The configuration of the inverter 14 will be described in detail with reference to FIG.
 電流センサ22は、単相交流モータ10のステータコイル6に流れる電流(以下、「モータ電流」とも称する)を検出する。ADC18は、アナログ信号である電流センサ22の検出信号を、デジタル信号に変換する。デジタル変換された検出信号は、コントローラ16に入力される。 The current sensor 22 detects a current (hereinafter also referred to as “motor current”) flowing through the stator coil 6 of the single-phase AC motor 10. The ADC 18 converts the detection signal of the current sensor 22 that is an analog signal into a digital signal. The digitally converted detection signal is input to the controller 16.
 磁気センサ24A,24Bは、単相交流モータ10のロータ2の磁極位置を検出する。磁気センサ24A,24Bの検出信号は、コントローラ16に入力される。以下の説明では、磁気センサ24A(第1の磁気センサ)の検出信号を、「位置検出信号SA」とも称する。また、磁気センサ24B(第2の磁気センサ)の検出信号を、「位置検出信号SB」とも称する。磁気センサ24A,24Bとしては、代表的にホールICを用いることができる。 Magnetic sensors 24A and 24B detect the magnetic pole position of the rotor 2 of the single-phase AC motor 10. Detection signals from the magnetic sensors 24A and 24B are input to the controller 16. In the following description, the detection signal of the magnetic sensor 24A (first magnetic sensor) is also referred to as “position detection signal SA”. The detection signal of the magnetic sensor 24B (second magnetic sensor) is also referred to as “position detection signal SB”. As the magnetic sensors 24A and 24B, hall ICs can be typically used.
 図1に示されるように、磁気センサ24Aと磁気センサ24Bとは、ロータ2の回転方向に沿って互いに離間した位置に配置される。したがって、位置検出信号SAと位置検出信号SBとの間には、磁気センサ24Aと磁気センサ24Bとの間の角度間隔に応じた位相差が発生する。 As shown in FIG. 1, the magnetic sensor 24 </ b> A and the magnetic sensor 24 </ b> B are arranged at positions separated from each other along the rotation direction of the rotor 2. Therefore, a phase difference corresponding to the angular interval between the magnetic sensor 24A and the magnetic sensor 24B is generated between the position detection signal SA and the position detection signal SB.
 コントローラ16は、図示しないCPUおよびメモリなどを含むプロセッサを基に構成され、単相交流モータ10の制御装置100全体の動作を制御する。たとえば、コントローラ16は、電流センサ22の検出信号、および磁気センサ24A,24Bの位置検出信号SA,SBに基づいて、インバータ14を制御するための制御信号を生成する。 The controller 16 is configured based on a processor including a CPU and a memory (not shown), and controls the operation of the entire control device 100 of the single-phase AC motor 10. For example, the controller 16 generates a control signal for controlling the inverter 14 based on the detection signal of the current sensor 22 and the position detection signals SA and SB of the magnetic sensors 24A and 24B.
 ゲートドライバ20は、コントローラ16によって生成された制御信号に従って、インバータ14を構成する複数の半導体スイッチング素子(図3参照)のスイッチングを制御する。 The gate driver 20 controls switching of a plurality of semiconductor switching elements (see FIG. 3) constituting the inverter 14 according to the control signal generated by the controller 16.
 図3は、本実施の形態に従う単相交流モータ10の制御装置100の制御構成を示すブロック図である。 FIG. 3 is a block diagram showing a control configuration of control device 100 of single-phase AC motor 10 according to the present embodiment.
 図3を参照して、電源12(図1)は、電力線PL,NLに直流電圧Vdcを供給する。インバータ14は、電源12から直流電圧Vdcが供給されると、ゲートドライバ20からの駆動信号に応じて、直流電圧Vdcを単相交流電圧に変換して単相交流モータ10を駆動する。 Referring to FIG. 3, power supply 12 (FIG. 1) supplies DC voltage Vdc to power lines PL and NL. When the DC voltage Vdc is supplied from the power source 12, the inverter 14 converts the DC voltage Vdc into a single-phase AC voltage and drives the single-phase AC motor 10 according to a drive signal from the gate driver 20.
 インバータ14は、4個の半導体スイッチング素子Q1~Q4と、これらの半導体スイッチング素子に対して並列かつ逆バイアス方向にそれぞれ接続された、4個のダイオードD1~D4とを含む。図3の例では、半導体スイッチング素子Q1~Q4の各々はMOSFET(Metal Oxide Semiconductor Field Effect Transistor)によって構成されるが、IGBT(Insulated Gate Bipolar Transistor)またはバイポーラトランジスタなどであってもよい。 The inverter 14 includes four semiconductor switching elements Q1 to Q4, and four diodes D1 to D4 connected in parallel to these semiconductor switching elements in the reverse bias direction, respectively. In the example of FIG. 3, each of the semiconductor switching elements Q1 to Q4 is configured by a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), but may be an IGBT (Insulated Gate Bipolar Transistor) or a bipolar transistor.
 各半導体スイッチング素子を構成する材料としては、珪素よりもバンドギャップが大きいワイドバンドギャップ半導体を採用することができる。ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料またはダイヤモンドのいずれかであることが好ましい。 As a material constituting each semiconductor switching element, a wide band gap semiconductor having a larger band gap than silicon can be employed. The wide band gap semiconductor is preferably any of silicon carbide, gallium nitride-based material, and diamond.
 半導体スイッチング素子Q1,Q2は、電力線PLと電力線NLとの間に直列に接続される。半導体スイッチング素子Q1,Q2の接続ノードN1は、単相交流モータ10のステータコイル6に接続される。半導体スイッチング素子Q3,Q4は、電力線PLと電力線NLとの間に直列に、かつ、直列接続された半導体スイッチング素子Q1,Q2の全体と並列に接続される。半導体スイッチング素子Q3,Q4の接続ノードN2は、単相交流モータ10のステータコイル6に接続される。 The semiconductor switching elements Q1, Q2 are connected in series between the power line PL and the power line NL. Connection node N1 of semiconductor switching elements Q1, Q2 is connected to stator coil 6 of single-phase AC motor 10. Semiconductor switching elements Q3 and Q4 are connected in series between power line PL and power line NL and in parallel with the whole of semiconductor switching elements Q1 and Q2 connected in series. Connection node N2 of semiconductor switching elements Q3, Q4 is connected to stator coil 6 of single-phase AC motor 10.
 次に、インバータ14の動作について簡単に説明する。
 ゲートドライバ20は、半導体スイッチング素子Q1~Q4のゲート端子と電気的に接続される。ゲートドライバ20は、半導体スイッチング素子Q1~Q4のスイッチングを制御する。
Next, the operation of the inverter 14 will be briefly described.
Gate driver 20 is electrically connected to the gate terminals of semiconductor switching elements Q1-Q4. The gate driver 20 controls switching of the semiconductor switching elements Q1 to Q4.
 具体的には、ゲートドライバ20は、コントローラ16からの制御信号に応答して、各半導体スイッチング素子のゲート端子に印加する制御電圧を制御する。この制御電圧の大きさに応じて、各半導体スイッチング素子は、導通状態(オン状態)または非導通状態(オフ状態)となる。 Specifically, the gate driver 20 controls the control voltage applied to the gate terminal of each semiconductor switching element in response to a control signal from the controller 16. Depending on the magnitude of the control voltage, each semiconductor switching element is in a conductive state (on state) or a non-conductive state (off state).
 半導体スイッチング素子Q1,Q4がオン状態となり、半導体スイッチング素子Q2,Q3がオフ状態となるとき、ステータコイル6には、正の直流電圧(+Vdc)が印加される。一方、半導体スイッチング素子Q2,Q3がオン状態となり、半導体スイッチング素子Q1,Q4がオフ状態となるとき、ステータコイル6には、負の直流電圧(-Vdc)が印加される。なお、半導体スイッチング素子Q1~Q4がすべてオフ状態となるときには、ステータコイル6に印加される電圧は0となる。以下の説明では、単相交流モータ10のステータコイル6に印加される電圧(単相交流モータ10の駆動電圧)を、「モータ電圧Vm」とも称する。 When the semiconductor switching elements Q1 and Q4 are turned on and the semiconductor switching elements Q2 and Q3 are turned off, a positive DC voltage (+ Vdc) is applied to the stator coil 6. On the other hand, when the semiconductor switching elements Q2, Q3 are turned on and the semiconductor switching elements Q1, Q4 are turned off, a negative DC voltage (−Vdc) is applied to the stator coil 6. Note that when all of the semiconductor switching elements Q1 to Q4 are turned off, the voltage applied to the stator coil 6 is zero. In the following description, the voltage applied to the stator coil 6 of the single-phase AC motor 10 (drive voltage of the single-phase AC motor 10) is also referred to as “motor voltage Vm”.
 単相交流モータ10の運転時は、半導体スイッチング素子Q1,Q4のオン状態と、半導体スイッチング素子Q2,Q3のオン状態とが交互に繰返されることによって、モータ電圧Vmは、+Vdcと-Vdcとが交互に切替わる。これにより、ステータ3に回転磁界が生成される。 When the single-phase AC motor 10 is in operation, the ON state of the semiconductor switching elements Q1 and Q4 and the ON state of the semiconductor switching elements Q2 and Q3 are alternately repeated, so that the motor voltage Vm becomes + Vdc and −Vdc. Switch alternately. Thereby, a rotating magnetic field is generated in the stator 3.
 (単相交流モータの可変速制御)
 コントローラ16は、起動処理部30と、速度制御部32と、電流制御部34と、PWM(Pulse Width Modulation)制御部36とを含む。
(Variable speed control of single-phase AC motor)
The controller 16 includes an activation processing unit 30, a speed control unit 32, a current control unit 34, and a PWM (Pulse Width Modulation) control unit 36.
 単相交流モータ10の駆動時、速度制御部32、電流制御部34およびPWM制御部36は、互いに協働して、単相交流モータ10の回転速度の可変制御(以下、「可変速制御」とも称する)を実行することができる。以下、単相交流モータ10の可変速制御について簡単に説明する。 When the single-phase AC motor 10 is driven, the speed control unit 32, the current control unit 34, and the PWM control unit 36 cooperate with each other to control the rotational speed of the single-phase AC motor 10 (hereinafter, “variable speed control”). Also called). Hereinafter, the variable speed control of the single-phase AC motor 10 will be briefly described.
 速度制御部32、電流制御部34およびPWM制御部36は、回転速度の目標値に基づいて、単相交流モータ10の回転速度をフィードバック制御するように構成される。 The speed control unit 32, the current control unit 34, and the PWM control unit 36 are configured to feedback control the rotational speed of the single-phase AC motor 10 based on the target value of the rotational speed.
 具体的には、速度制御部32は、磁気センサ24A,24Bの位置検出信号SA,SBを受け、回転速度の目標値を示す速度指令ω*を受ける。速度制御部32は、磁気センサ24A,24Bの位置検出信号SA,SBに基づいて、ロータ2の磁極位置および回転速度を検出する。速度制御部32は、速度指令ω*と回転速度検出値との偏差にPI(比例および積分)制御を施すことにより、モータ電流の目標値を算出する。 Specifically, the speed control unit 32 receives the position detection signals SA and SB of the magnetic sensors 24A and 24B, and receives a speed command ω * indicating a target value of the rotational speed. The speed control unit 32 detects the magnetic pole position and the rotational speed of the rotor 2 based on the position detection signals SA and SB of the magnetic sensors 24A and 24B. The speed control unit 32 calculates the target value of the motor current by performing PI (proportional and integral) control on the deviation between the speed command ω * and the rotation speed detection value.
 電流制御部34は、モータ電流の目標値を示す電流指令i*を受け、電流センサ22の検出信号を受け、磁気センサ24A,24Bの位置検出信号SA,SBを受ける。電流制御部34は、位置検出信号SA,SBから得られるロータ2の磁極位置を用いて、モータ電流の位相を決定する。電流制御部34は、電流指令i*とモータ電流検出値との偏差にPI制御を施すことにより、単相交流モータ10に印加する電圧の目標値を算出する。電流制御部34は、単相交流モータ10に印加する電圧の目標値を示す電圧指令v*をPWM制御部36へ出力する。 The current control unit 34 receives a current command i * indicating a target value of the motor current, receives a detection signal of the current sensor 22, and receives position detection signals SA and SB of the magnetic sensors 24A and 24B. The current control unit 34 determines the phase of the motor current using the magnetic pole position of the rotor 2 obtained from the position detection signals SA and SB. The current control unit 34 calculates the target value of the voltage to be applied to the single-phase AC motor 10 by performing PI control on the deviation between the current command i * and the detected motor current value. The current control unit 34 outputs a voltage command v * indicating the target value of the voltage applied to the single-phase AC motor 10 to the PWM control unit 36.
 PWM制御部36は、電圧指令v*に基づいて、インバータ14を構成する半導体スイッチング素子Q1~Q4をPWM制御するための制御信号を生成する。PWM制御部36は、生成した制御信号をゲートドライバ20に出力する。 The PWM control unit 36 generates a control signal for PWM control of the semiconductor switching elements Q1 to Q4 constituting the inverter 14 based on the voltage command v *. The PWM control unit 36 outputs the generated control signal to the gate driver 20.
 上記の速度制御部32、電流制御部34およびPWM制御部36によって構成されるフィードバック制御の構成は一般的なものである。ただし、本実施の形態では、2つの位置検出信号SA,SBを用いてロータ2の磁極位置を検出するため、単一の位置検出信号を用いる場合に比べて、より細かいタイミングで磁極位置を検出することができる。したがって、磁極位置の検出精度を高めることができる。 The configuration of the feedback control configured by the speed control unit 32, the current control unit 34, and the PWM control unit 36 is a general one. However, in this embodiment, since the magnetic pole position of the rotor 2 is detected using the two position detection signals SA and SB, the magnetic pole position is detected at a finer timing than when a single position detection signal is used. can do. Therefore, the magnetic pole position detection accuracy can be increased.
 磁極位置の検出精度が高められることで、上記のフィードバック制御の応答性が向上するため、単相交流モータ10の回転速度を速度指令ω*に追従させることができる。特に、単相交流モータ10の加速時には、速度指令ω*を上昇させていく過程において、回転速度を速度指令ω*に追従させることができる。この結果、単相交流モータ10の出力トルクの変動によって単相交流モータ10に振動が発生することを抑制できる。 Since the responsiveness of the feedback control is improved by increasing the magnetic pole position detection accuracy, the rotational speed of the single-phase AC motor 10 can be made to follow the speed command ω *. In particular, when the single-phase AC motor 10 is accelerated, the rotational speed can be made to follow the speed command ω * in the process of increasing the speed command ω *. As a result, it is possible to suppress the occurrence of vibration in the single-phase AC motor 10 due to fluctuations in the output torque of the single-phase AC motor 10.
 (起動処理)
 単相交流モータ10の運転停止状態において、起動処理部30は、静止状態のロータ2を第1の回転方向に起動するための起動処理を実行する。本実施の形態では、「第1の回転方向」を正転方向(時計回り)とし、第1の回転方向と反対方向である「第2の回転方向」を逆転方向(反時計回り)とする。なお、「第1の回転方向」を逆転方向とし、「第2の回転方向」を正転方向とすることもできる。
(Start process)
In the operation stop state of the single-phase AC motor 10, the activation processing unit 30 performs an activation process for activating the stationary rotor 2 in the first rotation direction. In the present embodiment, the “first rotation direction” is the forward rotation direction (clockwise), and the “second rotation direction” opposite to the first rotation direction is the reverse rotation direction (counterclockwise). . The “first rotation direction” may be the reverse rotation direction, and the “second rotation direction” may be the normal rotation direction.
 以下、起動処理について説明する。
 起動処理では、起動処理部30は、最初に、ロータ2が静止しているときの磁気センサ24A,24Bの位置検出信号SA,SBを取得する。次に、第1の極性のモータ電圧Vmを、単相交流モータ10のステータコイル6に印加する。ステータコイル6が通電されることにより、ステータ3が励磁される。第1の極性は、正の極性であってもよいし、負の極性であってもよい。
Hereinafter, the activation process will be described.
In the startup process, the startup processing unit 30 first acquires the position detection signals SA and SB of the magnetic sensors 24A and 24B when the rotor 2 is stationary. Next, the motor voltage Vm having the first polarity is applied to the stator coil 6 of the single-phase AC motor 10. When the stator coil 6 is energized, the stator 3 is excited. The first polarity may be a positive polarity or a negative polarity.
 ステータ3が励磁されると、ステータ3のティース5とロータ2の各磁極との間に生じる磁力(吸引力および反発力)によって、ロータ2が起動する。起動処理部30は、ロータ2が静止していたとき、および、ロータ2が回転しているときの位置検出信号SA,SBに基づいて、ロータ2の回転方向を検出する。 When the stator 3 is excited, the rotor 2 is activated by the magnetic force (attraction force and repulsive force) generated between the teeth 5 of the stator 3 and the magnetic poles of the rotor 2. The activation processing unit 30 detects the rotation direction of the rotor 2 based on the position detection signals SA and SB when the rotor 2 is stationary and when the rotor 2 is rotating.
 ロータ2の回転方向が正転方向(第1の回転方向)であると検出されると、起動処理部30は、その状態で、単相交流電圧からなるモータ電圧Vmをステータコイル6に印加する。これにより、ステータ3が生成する回転磁界によって、ロータ2が正転方向に回転する。 When it is detected that the rotation direction of the rotor 2 is the normal rotation direction (first rotation direction), the activation processing unit 30 applies a motor voltage Vm composed of a single-phase AC voltage to the stator coil 6 in that state. . Thereby, the rotor 2 rotates in the normal rotation direction by the rotating magnetic field generated by the stator 3.
 一方、ロータ2の回転方向が逆転方向(第2の回転方向)であると検出されると、起動処理部30は、モータ電圧Vmの印加を一時的に停止した後、第1の極性とは異なる第2の極性のモータ電圧Vmをステータコイル6に印加する。モータ電圧Vmの極性が反転したことで磁力の向きが切替わるため、ロータ2は、以前の回転方向とは逆向き、すなわち、正転方向に回転し始める。ロータ2の回転方向が正転方向に切替わったことが検出されると、起動処理部30は、単相交流電圧からなるモータ電圧Vmをステータコイル6に印加する。これにより、ステータ3が生成する回転磁界によって、ロータ2が正転方向に回転する。 On the other hand, when it is detected that the rotation direction of the rotor 2 is the reverse rotation direction (second rotation direction), the activation processing unit 30 temporarily stops the application of the motor voltage Vm, and then the first polarity is A motor voltage Vm having a different second polarity is applied to the stator coil 6. Since the direction of the magnetic force is switched by reversing the polarity of the motor voltage Vm, the rotor 2 starts to rotate in the direction opposite to the previous rotation direction, that is, the forward rotation direction. When it is detected that the rotation direction of the rotor 2 is switched to the normal rotation direction, the activation processing unit 30 applies a motor voltage Vm composed of a single-phase AC voltage to the stator coil 6. Thereby, the rotor 2 rotates in the normal rotation direction by the rotating magnetic field generated by the stator 3.
 なお、本実施の形態では、上記起動処理において、運転停止状態の単相交流モータ10に第1の極性の電圧を印加してからロータ2の回転方向が正転方向であることを検出するまでの時間を、「起動時間」と定義する。後述するように、本実施の形態に従う単相交流モータの制御装置100は、起動時間の短縮を実現するものである。 In the present embodiment, in the start-up process, from when the first polarity voltage is applied to the single-phase AC motor 10 in the operation stop state until the rotation direction of the rotor 2 is detected to be the normal rotation direction. Is defined as “start-up time”. As will be described later, control device 100 for a single-phase AC motor according to the present embodiment realizes a reduction in startup time.
 (ロータの回転方向の検出)
 以下、図4~図6を用いて、本実施の形態に従うロータ2の回転方向の検出方法の原理について説明する。
(Detection of rotor rotation direction)
Hereinafter, the principle of the method for detecting the rotational direction of the rotor 2 according to the present embodiment will be described with reference to FIGS.
 図4は、単相交流モータ10のロータ2が正転方向に回転した場合における、ロータ2と磁気センサ24A,24Bとの位置関係が時間的に遷移する様子を模式的に示す図である。 FIG. 4 is a diagram schematically illustrating a state in which the positional relationship between the rotor 2 and the magnetic sensors 24A and 24B transitions in time when the rotor 2 of the single-phase AC motor 10 rotates in the forward rotation direction.
 図4の例では、磁気センサ24Aは、ロータ2の回転角(機械角)が0°となる位置に配置されている。磁気センサ24Bは、ロータ2の回転角(機械角)が45°となる位置に配置されている。すなわち、磁気センサ24Aと磁気センサ24Bとは、ロータ2の回転軸1を中心とする同一円上に、45°の角度間隔をおいて配置されている。 In the example of FIG. 4, the magnetic sensor 24A is arranged at a position where the rotation angle (mechanical angle) of the rotor 2 is 0 °. The magnetic sensor 24B is disposed at a position where the rotation angle (mechanical angle) of the rotor 2 is 45 °. That is, the magnetic sensor 24 </ b> A and the magnetic sensor 24 </ b> B are arranged on the same circle around the rotation axis 1 of the rotor 2 with an angular interval of 45 °.
 図4では、ロータ2は正転方向に回転する。図4(a)~(e)は、それぞれ、ロータ2の回転角(機械角)が0°,45°,90°,135°,180°となるときのロータ2と磁気センサ24A,24Bとの位置関係を表わしている。なお、ロータ2の磁極数が4であるため、機械角180°は電気角360°に相当する。 In FIG. 4, the rotor 2 rotates in the forward direction. 4A to 4E show the rotor 2 and the magnetic sensors 24A and 24B when the rotation angle (mechanical angle) of the rotor 2 is 0 °, 45 °, 90 °, 135 °, and 180 °, respectively. Represents the positional relationship. Since the number of magnetic poles of the rotor 2 is 4, a mechanical angle of 180 ° corresponds to an electrical angle of 360 °.
 磁気センサ24Aは、ロータ2の磁極から外周方向に向かって延びる磁束線を検出したとき、すなわち、ロータ2のN極を検出したとき、論理レベル“1”の位置検出信号SAを出力する。一方、磁気センサ24Aは、ロータ2の磁極から内周方向に向かって延びる磁束線を検出したとき、すなわち、ロータ2のS極を検出したとき、論理レベル“0”の位置検出信号SAを出力する。 When the magnetic sensor 24A detects a magnetic flux line extending from the magnetic pole of the rotor 2 toward the outer circumferential direction, that is, when the N pole of the rotor 2 is detected, the magnetic sensor 24A outputs a position detection signal SA of logic level “1”. On the other hand, when the magnetic sensor 24A detects a magnetic flux line extending in the inner circumferential direction from the magnetic pole of the rotor 2, that is, when the S pole of the rotor 2 is detected, the magnetic sensor 24A outputs a position detection signal SA of logic level “0”. To do.
 磁気センサ24Bは、磁気センサ24Aと同様に、ロータ2のN極を検出したとき、論理レベル“1”の位置検出信号SBを出力し、ロータ2のS極を検出したとき、論理レベル“0”の位置検出信号SBを出力する。 Similarly to the magnetic sensor 24A, the magnetic sensor 24B outputs a position detection signal SB having a logic level “1” when detecting the N pole of the rotor 2, and outputs a logic level “0” when detecting the S pole of the rotor 2. The position detection signal SB of “” is output.
 図5は、図4に示す磁気センサ24A,24Bが出力する位置検出信号SA,SBの波形を示す図である。図5では、図4(a)~(e)に示すタイミング、すなわち、ロータ2の回転角(機械角)が0°,45°,90°,135°,180°となるタイミングが、それぞれ、矢印で示されている。 FIG. 5 is a diagram showing waveforms of the position detection signals SA and SB output from the magnetic sensors 24A and 24B shown in FIG. In FIG. 5, the timing shown in FIGS. 4A to 4E, that is, the timing at which the rotation angle (mechanical angle) of the rotor 2 becomes 0 °, 45 °, 90 °, 135 °, and 180 °, respectively, Shown with an arrow.
 図5を参照して、位置検出信号SA,SBの各々は、機械角90°の間隔(電気角180°の間隔に相当)で、“1”と“0”との間を交互に切替わる。位置検出信号SAは、ロータ2の回転角が0°~90°のとき(図4(a)~(c)の状態)、“0”となり、回転角が90°~180°のとき(図4(c)~(e)の状態)、“1”となる。位置検出信号SBは、ロータ2の回転角が0°~45°(図4(a)~(b)の状態)、および回転角が135°~180°のとき(図4(d)~(e)の状態)、“1”となり、回転角が45°~135°のとき(図4(b)~(d)の状態)、“0”となる。 Referring to FIG. 5, each of position detection signals SA and SB is alternately switched between “1” and “0” at an interval of 90 ° mechanical angle (corresponding to an interval of 180 ° electrical angle). . The position detection signal SA is “0” when the rotation angle of the rotor 2 is 0 ° to 90 ° (states of FIGS. 4A to 4C), and when the rotation angle is 90 ° to 180 ° (FIG. 4). 4 (c) to (e)), “1”. The position detection signal SB is obtained when the rotation angle of the rotor 2 is 0 ° to 45 ° (the state shown in FIGS. 4 (a) to (b)) and when the rotation angle is 135 ° to 180 ° (FIG. 4 (d) to ( The state of e) is “1”, and is “0” when the rotation angle is 45 ° to 135 ° (the states of FIGS. 4B to 4D).
 図4の例では、磁気センサ24Aと磁気センサ24Bとは、ロータ2の回転方向に沿って45°の角度間隔をおいて配置されている。そのため、図5の波形図において、位置検出信号SAと位置検出信号SBとは、機械角45°の位相差を有している。なお、ロータ2の磁極数が4であるため、当該位相差は電気角90°(=45°×4/2)の位相差に相当する。これにより、ロータ2が回転しているときに位置検出信号SA,SBがとり得る論理レベルの組合せは、図6に示される4通りにまとめることができる。 In the example of FIG. 4, the magnetic sensor 24 </ b> A and the magnetic sensor 24 </ b> B are arranged at an angular interval of 45 ° along the rotation direction of the rotor 2. Therefore, in the waveform diagram of FIG. 5, the position detection signal SA and the position detection signal SB have a phase difference of 45 ° mechanical angle. Since the number of magnetic poles of the rotor 2 is 4, the phase difference corresponds to a phase difference of an electrical angle of 90 ° (= 45 ° × 4/2). Thereby, combinations of logic levels that can be taken by the position detection signals SA and SB when the rotor 2 is rotating can be summarized in four ways as shown in FIG.
 図6は、図4に示す磁気センサ24A,24Bが出力する位置検出信号SA,SBの論理表を示す図である。図5および図6では、図4(a)~(b)の状態を[1]と表記し、図4(b)~(c)の状態を[2]と表記し、図4(c)~(d)の状態を[3]と表記し、図4(d)~(e)の状態を[4]と表記している。図6には、これら4つの状態[1]~[4]の各々における、位置検出信号SA,SBの組合せが示されている。 FIG. 6 is a diagram showing a logical table of the position detection signals SA and SB output from the magnetic sensors 24A and 24B shown in FIG. In FIGS. 5 and 6, the states of FIGS. 4A to 4B are represented as [1], the states of FIGS. 4B to 4C are represented as [2], and FIG. The states of (d) to (d) are represented as [3], and the states of FIGS. 4 (d) to (e) are represented as [4]. FIG. 6 shows combinations of position detection signals SA and SB in each of these four states [1] to [4].
 図6を参照して、位置検出信号SA,SBの組合せを(SA,SB)と表した場合、(SA,SB)は、状態[1]では(0,1)となり、状態[2]では(0,0)となり、状態[3]では(1,0)となり、状態[4]では(1,1)となる。 Referring to FIG. 6, when the combination of position detection signals SA and SB is represented as (SA, SB), (SA, SB) is (0, 1) in state [1] and in state [2]. (0, 0), (1, 0) in state [3], and (1, 1) in state [4].
 たとえば、静止状態のロータ2が[1]の状態である場合において、ロータ2が正転方向に回転すると、ロータ2の状態は、[1]→[2]→[3]→[4]→[1]→[2]・・・の順で遷移する。一方、ロータ2が逆転方向に回転すると、ロータ2の状態は、[1]→[4]→[3]→[2]→[1]→[2]・・・の順で遷移する。 For example, when the stationary rotor 2 is in the state [1] and the rotor 2 rotates in the forward rotation direction, the state of the rotor 2 changes from [1] → [2] → [3] → [4] → Transition is made in the order of [1] → [2]. On the other hand, when the rotor 2 rotates in the reverse direction, the state of the rotor 2 changes in the order of [1] → [4] → [3] → [2] → [1] → [2].
 ここで、静止状態のロータ2が[2]の状態である場合を想定する。この場合、ロータ2が正転方向に回転すると、ロータ2の状態は[2]から[3]に遷移する。一方、ロータ2が逆転方向に回転すると、ロータ2の状態は[2]から[1]に遷移する。すなわち、ロータ2の回転方向によって、静止状態の次に遷移する状態が異なってくる。したがって、静止しているときのロータ2の状態(以下、「初期状態」とも称する)と、その次に遷移する状態とを把握することができれば、ロータ2の回転方向が正転方向か逆転方向かを検出することができる。 Here, it is assumed that the stationary rotor 2 is in the state [2]. In this case, when the rotor 2 rotates in the forward rotation direction, the state of the rotor 2 changes from [2] to [3]. On the other hand, when the rotor 2 rotates in the reverse direction, the state of the rotor 2 changes from [2] to [1]. In other words, the state of transition after the stationary state varies depending on the rotation direction of the rotor 2. Therefore, if the state of the rotor 2 when stationary (hereinafter also referred to as an “initial state”) and the next transition state can be grasped, the rotation direction of the rotor 2 is the normal rotation direction or the reverse rotation direction. Can be detected.
 詳細には、ロータ2の初期状態は、ロータ2が静止状態での(SA,SB)から検出することができる。静止状態のロータ2が起動すると、回転方向に応じて、最初に、位置検出信号SA,SBのいずれか一方が切替わる。いずれの位置検出信号が最初に切替わるかを把握することができれば、ロータ2の回転方向を検出することができる。これによれば、ロータ2が回転し始めてから最初の位置検出信号が切替わるタイミングで、ロータ2の回転方向を検出することができる。 Specifically, the initial state of the rotor 2 can be detected from (SA, SB) when the rotor 2 is stationary. When the stationary rotor 2 is started, first, one of the position detection signals SA and SB is switched according to the rotation direction. If it is possible to grasp which position detection signal is switched first, the rotation direction of the rotor 2 can be detected. According to this, the rotation direction of the rotor 2 can be detected at the timing when the first position detection signal is switched after the rotor 2 starts to rotate.
 これを、上記の初期状態が[2]の状態である場合に当て嵌めると、初期状態(=[2])での(SA,SB)は(0,0)である。回転方向が正転方向であれば、最初に、位置検出信号SAが“0”から“1”に切替わる。一方、回転方向が逆転方向であれば、最初に、位置検出信号SBが“0”から“1”に切替わる。いずれの回転方向においても、最初の位置検出信号の切替えは、ロータ2が静止状態から45°回転するまでの間に起きている。したがって、ロータ2が静止状態から45°回転するまでの間に、ロータ2の回転方向を検出することができる。 If this is applied when the initial state is the state [2], (SA, SB) in the initial state (= [2]) is (0, 0). If the rotation direction is the normal rotation direction, the position detection signal SA is first switched from “0” to “1”. On the other hand, if the rotation direction is the reverse rotation direction, the position detection signal SB is first switched from “0” to “1”. In any rotation direction, the first position detection signal is switched until the rotor 2 rotates 45 ° from the stationary state. Therefore, the rotation direction of the rotor 2 can be detected until the rotor 2 rotates 45 ° from the stationary state.
 このように、本実施の形態では、複数の磁気センサの位置検出信号を用いることにより、複数の位置検出信号のうちのいずれかが切替るタイミングを捉えることで、ロータ2の回転方向を検出することができる。これによれば、1個の磁気センサの位置検出信号を用いる従来技術のように、個々の磁気センサの取付け精度やモータ定数のばらつきに影響されず、ロータ2の起動処理を安定して行なうことができる。 As described above, in the present embodiment, by using the position detection signals of the plurality of magnetic sensors, the rotation direction of the rotor 2 is detected by capturing the timing at which one of the plurality of position detection signals is switched. be able to. According to this, as in the prior art using the position detection signal of one magnetic sensor, the start-up process of the rotor 2 can be performed stably without being affected by the mounting accuracy of individual magnetic sensors and variations in motor constants. Can do.
 また、上記特許文献1に記載される従来技術に比べて、短時間でロータ2の回転方向を検出することができる。以下、その理由について説明する。 Also, the rotational direction of the rotor 2 can be detected in a shorter time compared to the prior art described in Patent Document 1. The reason will be described below.
 従来技術では、ステータコイルを励起させてから、磁気センサの検出信号の切替わりを第1期間の間に検出したときに、ロータが正転方向に回転していると判断する。一方、第1期間の間に検出信号の切替わりを検出しなければ、ロータが逆転方向に回転していると判断する。この第1期間は、ロータが静止しているときから少なくとも360°/磁極数の機械角に亘って回転するのに十分な時間に設定されている。すなわち、ロータの磁極数が4である場合、静止状態のロータが回転し始めてから回転方向が検出されるまでのロータの回転角(機械角)は最大90°となる。 In the prior art, when the switching of the detection signal of the magnetic sensor is detected during the first period after exciting the stator coil, it is determined that the rotor is rotating in the forward rotation direction. On the other hand, if the detection signal switching is not detected during the first period, it is determined that the rotor is rotating in the reverse direction. This first period is set to a time sufficient to rotate over a mechanical angle of at least 360 ° / number of magnetic poles from when the rotor is stationary. That is, when the number of magnetic poles of the rotor is 4, the maximum rotation angle (mechanical angle) of the rotor from when the stationary rotor starts to rotate until the rotation direction is detected is 90 °.
 これに対して、本実施の形態では、ロータ2の機械的回転周期を機械角360°とすると、ロータ2の磁極数が4であるため、各位置検出信号の1周期は機械角180°となる。位置検出信号SAと位置検出信号SBとの位相差は45°(機械角)であるため、当該1周期内で、機械角45°おきに、いずれかの位置検出信号が切替わる。したがって、静止状態のロータ2が回転し始めてから回転方向が検出されるまでのロータ2の回転角は、最大45°となる。上記の従来技術と比べると、回転方向が検出されるまでのロータ2の回転角が半分以下となっていることが分かる。これにより、ロータ2が回転し始めてから回転方向が検出されるまでの時間を、半分以下に短縮することができる。この結果、単相交流モータの短時間で起動することができる。 On the other hand, in this embodiment, when the mechanical rotation period of the rotor 2 is a mechanical angle of 360 °, the number of magnetic poles of the rotor 2 is 4, so that one cycle of each position detection signal is a mechanical angle of 180 °. Become. Since the phase difference between the position detection signal SA and the position detection signal SB is 45 ° (mechanical angle), any one of the position detection signals is switched at every mechanical angle of 45 ° within the one cycle. Therefore, the rotation angle of the rotor 2 from when the stationary rotor 2 starts to rotate until the rotation direction is detected is 45 ° at the maximum. It can be seen that the rotation angle of the rotor 2 until the rotation direction is detected is less than half compared to the above-described conventional technology. Thereby, the time from when the rotor 2 starts to rotate until the rotation direction is detected can be reduced to less than half. As a result, the single-phase AC motor can be started up in a short time.
 (磁気センサの配置)
 次に、磁気センサ24A,24Bの配置について説明する。以下の説明では、図4と同様に、磁気センサ24Aがロータ2の回転角(機械角)が0°となる位置に配置されているものとする。また、ロータ2の磁極数をPとする。この状態における、磁気センサ24Bの好適な位置について説明する。
(Arrangement of magnetic sensor)
Next, the arrangement of the magnetic sensors 24A and 24B will be described. In the following description, it is assumed that the magnetic sensor 24A is disposed at a position where the rotation angle (mechanical angle) of the rotor 2 is 0 °, as in FIG. The number of magnetic poles of the rotor 2 is P. A suitable position of the magnetic sensor 24B in this state will be described.
 本実施の形態では、図5の波形図に示されるように、位置検出信号SAと位置検出信号SBとの間に位相差を持たせることで、位置検出信号SAが切替わるタイミングと、位置検出信号SBが切替わるタイミングと異ならせている。このようにすると、ロータ2の回転によって生じる、位置検出信号SA,SBの組合せの遷移に基づいて、ロータ2の回転方向を検出することができる。 In the present embodiment, as shown in the waveform diagram of FIG. 5, by providing a phase difference between the position detection signal SA and the position detection signal SB, the timing at which the position detection signal SA is switched, and the position detection The timing at which the signal SB is switched is different. In this way, the rotation direction of the rotor 2 can be detected based on the transition of the combination of the position detection signals SA and SB caused by the rotation of the rotor 2.
 位置検出信号SAと位置検出信号SBとの間で切替わるタイミングを異ならせるためには、少なくとも、磁気センサ24Bを「180×n/(P/2)」を満たす位置以外の位置に配置する必要がある(nは1以上P以下の整数)。「180×n/(P/2)」を満たす位置とは、位置検出信号SAが切替わるタイミングに相当する。したがって、当該位置以外の位置に磁気センサ24Bを配置することで、ロータ2の回転方向を検出することができる。 In order to change the switching timing between the position detection signal SA and the position detection signal SB, at least the magnetic sensor 24B needs to be arranged at a position other than the position satisfying “180 × n / (P / 2)”. (N is an integer of 1 or more and P or less). The position satisfying “180 × n / (P / 2)” corresponds to the timing at which the position detection signal SA is switched. Therefore, the rotational direction of the rotor 2 can be detected by disposing the magnetic sensor 24B at a position other than the position.
 より好ましくは、磁気センサ24Bを、磁気センサ24Aに対して、ロータ2の回転軸1を中心とする同一円上に、「180×{1+(2n-1)}/P」の角度間隔をおいてする。このようにすると、ロータ2の回転方向の検出に加えて、ロータ2の磁極位置の検出精度を高めることができる。 More preferably, the magnetic sensor 24B is spaced apart from the magnetic sensor 24A by an angular interval of “180 × {1+ (2n−1)} / P” on the same circle centered on the rotation axis 1 of the rotor 2. It is. If it does in this way, in addition to the detection of the rotation direction of the rotor 2, the detection accuracy of the magnetic pole position of the rotor 2 can be improved.
 たとえば、磁極数P=4の場合、磁気センサ24Bを、45°,135°,225°,315°のいずれかの位置に配置することが好ましい。なお、図4の例は、磁気センサ24Bを45°の位置に配置した場合を示している。 For example, when the number of magnetic poles P = 4, the magnetic sensor 24B is preferably disposed at any position of 45 °, 135 °, 225 °, and 315 °. The example of FIG. 4 shows a case where the magnetic sensor 24B is disposed at a 45 ° position.
 このようにすると、位置検出信号SAと位置検出信号SBとの間に、機械角45°もしくは135°の位相差を持たせることができる。機械角45°の位相差は、位置検出信号SA,SBの1/4周期に相当する。機械角135°の位相差は、位置検出信号SA,SBの3/4周期に相当する。したがって、位置検出信号SAと位置検出信号SBとの間で切替わるタイミングは1/4周期分異なることになる。 In this manner, a phase difference of 45 ° or 135 ° can be provided between the position detection signal SA and the position detection signal SB. A phase difference of 45 ° mechanical angle corresponds to a quarter cycle of the position detection signals SA and SB. The phase difference with a mechanical angle of 135 ° corresponds to 3/4 period of the position detection signals SA and SB. Therefore, the switching timing between the position detection signal SA and the position detection signal SB is different by a quarter period.
 これによれば、コントローラ16は、ロータ2が1回転(機械角360°)する間に、1/4周期おきに合計4回の位置検出信号の切替わりを検出することになる。したがって、単一の位置検出信号を用いる場合に比べて、より細かいタイミングでロータ2の磁極位置を検出することが可能となる。その結果、磁極位置の検出精度を高めることができる。 According to this, the controller 16 detects the switching of the position detection signal four times in total every ¼ period while the rotor 2 makes one rotation (mechanical angle 360 °). Therefore, it is possible to detect the magnetic pole position of the rotor 2 at a finer timing than when a single position detection signal is used. As a result, the magnetic pole position detection accuracy can be increased.
 (起動処理の詳細)
 次に、図7~図9を用いて、本実施の形態に従う起動処理の詳細について説明する。
(Details of startup processing)
Next, details of the activation process according to the present embodiment will be described with reference to FIGS.
 図7は、ロータ2を第1の方向(正転方向)に起動させるための起動処理の流れを説明するための図である。図7(a)は、ステータ3の励磁により、ロータ2が初期状態から正転方向に回転し始めた場合の起動処理の流れを示している。図7(b)は、ステータ3の励磁により、ロータ2が初期状態から逆転方向に回転し始めた場合の処理の流れを示している。図8は、図7(a)に示す起動処理の流れに対応するタイミングチャートである。図9は、図7(b)に示す起動処理の流れに対応するタイミングチャートである。 FIG. 7 is a diagram for explaining a flow of activation processing for activating the rotor 2 in the first direction (forward rotation direction). FIG. 7A shows the flow of the starting process when the rotor 2 starts to rotate in the normal rotation direction from the initial state due to the excitation of the stator 3. FIG. 7B shows a processing flow when the rotor 2 starts to rotate in the reverse rotation direction from the initial state due to the excitation of the stator 3. FIG. 8 is a timing chart corresponding to the flow of the startup process shown in FIG. FIG. 9 is a timing chart corresponding to the flow of the activation process shown in FIG.
 なお、図7(a),(b)では、ステータ3に生じる回転磁界を、ロータ2を中心として4分割された領域で表している。磁気センサ24A,24Bの配置は、図4に示した配置と同じである。また、説明を容易にするために、図7(a)と図7(b)との間で、ロータ2の初期状態を共通とする一方で、ステータ3(ステータコイル)に印加する、第1の極性のモータ電圧Vmの極性を異ならせている。 7A and 7B, the rotating magnetic field generated in the stator 3 is represented by a region divided into four parts with the rotor 2 as the center. The arrangement of the magnetic sensors 24A and 24B is the same as that shown in FIG. Further, for ease of explanation, the first state applied to the stator 3 (stator coil) while the initial state of the rotor 2 is made common between FIG. 7 (a) and FIG. 7 (b). The polarity of the motor voltage Vm having a different polarity is made different.
 図7(a)を参照して、時刻tAにおいて、ロータ2は初期状態であるとする。なお、初期状態において、ロータ2は、0°から正転方向に所定角度ずれた位置で静止している。これにより、ステータ3の励磁により生じる磁力を、ロータ2の回転力に変換することができる。このような静止状態は、たとえば、ステータ3のティースとロータとの間隙を調整することで実現できる。 7A, assume that the rotor 2 is in an initial state at time tA. In the initial state, the rotor 2 is stationary at a position shifted from 0 ° by a predetermined angle in the forward rotation direction. Thereby, the magnetic force generated by the excitation of the stator 3 can be converted into the rotational force of the rotor 2. Such a stationary state can be realized, for example, by adjusting the gap between the teeth of the stator 3 and the rotor.
 図7の例では、ロータ2の初期状態は、図5の[1]の状態となっている。よって、磁気センサ24A,24Bにおいて、(SA,SB)は(0,1)である(図8参照)。 In the example of FIG. 7, the initial state of the rotor 2 is the state [1] of FIG. Therefore, in the magnetic sensors 24A and 24B, (SA, SB) is (0, 1) (see FIG. 8).
 図7(a)および図8を参照して、初期状態において、起動処理部30は、インバータ14からステータコイルに対して、第1の極性のモータ電圧Vmを印加する。図7(a)では、「第1の極性」を、正の極性とする。起動処理部30は、半導体スイッチング素子Q1,Q4がオン状態となり、半導体スイッチング素子Q2,Q3がオフ状態となるように、インバータ14を制御する。これにより、モータ電圧Vmとして、正の直流電圧(+Vdc)がステータコイルに印加される。 7A and 8, in the initial state, activation processing unit 30 applies motor voltage Vm having the first polarity from inverter 14 to the stator coil. In FIG. 7A, the “first polarity” is a positive polarity. Activation processing unit 30 controls inverter 14 such that semiconductor switching elements Q1, Q4 are turned on and semiconductor switching elements Q2, Q3 are turned off. Accordingly, a positive DC voltage (+ Vdc) is applied to the stator coil as the motor voltage Vm.
 モータ電圧Vm(=+Vdc)を受けてステータ3が励磁されると、ステータ3のティースに生じる磁界とロータ2の磁極との間に生じる磁力によって、ロータ2が正転方向(時計回り)に回転し始める。 When the stator 3 is excited by receiving the motor voltage Vm (= + Vdc), the rotor 2 rotates in the forward rotation direction (clockwise) by the magnetic force generated between the magnetic field generated in the teeth of the stator 3 and the magnetic pole of the rotor 2. Begin to.
 時刻tBにおいて、ロータ2の回転角が45°となると、図5に示したように、磁気センサ24Bの位置検出信号SBが“1”から“0”に切替わる。起動処理部30は、ロータ2が回転し始めてから最初に位置検出信号SBが切替わったことに基づいて、ロータ2の回転方向が正転方向であると検出する。 At time tB, when the rotation angle of the rotor 2 reaches 45 °, the position detection signal SB of the magnetic sensor 24B is switched from “1” to “0” as shown in FIG. The activation processing unit 30 detects that the rotation direction of the rotor 2 is the forward rotation direction based on the first switching of the position detection signal SB after the rotor 2 starts to rotate.
 ロータ2の回転方向が正転方向であると検出されると、起動処理部30は、ロータ2が所望の回転方向に回転していると判断する。したがって、時刻tCにおいて、起動処理部30は、インバータ14からステータコイルに対して、単相交流電圧であるモータ電圧Vmを供給する。 When it is detected that the rotation direction of the rotor 2 is the normal rotation direction, the activation processing unit 30 determines that the rotor 2 is rotating in a desired rotation direction. Therefore, at time tC, activation processing unit 30 supplies motor voltage Vm, which is a single-phase AC voltage, from inverter 14 to the stator coil.
 なお、ロータ2を引き続き正転方向に回転させるために、時刻tCにおけるモータ電圧Vmの極性は、第1の極性と同じ極性とする。これにより、時刻tC以降、モータ電圧Vmを受けてステータ3に回転磁界が生じることによって、ロータ2は正転方向に回転する。 Note that the polarity of the motor voltage Vm at the time tC is the same as the first polarity in order to continuously rotate the rotor 2 in the forward rotation direction. Thereby, after time tC, the rotor 2 rotates in the normal rotation direction by receiving the motor voltage Vm and generating a rotating magnetic field in the stator 3.
 これに対して、図7(b)では、第1の極性を、負の極性とする。起動処理部30は、半導体スイッチング素子Q2,Q3がオン状態となり、半導体スイッチング素子Q1,Q4がオフ状態となるように、インバータ14を制御する。これにより、モータ電圧Vmとして、負の直流電圧(-Vdc)がステータコイルに印加される。 On the other hand, in FIG. 7B, the first polarity is a negative polarity. Activation processing unit 30 controls inverter 14 such that semiconductor switching elements Q2 and Q3 are turned on and semiconductor switching elements Q1 and Q4 are turned off. As a result, a negative DC voltage (−Vdc) is applied to the stator coil as the motor voltage Vm.
 図7(b)および図9を参照して、時刻tAにおいて、起動処理部30は、インバータ14からステータコイルに対して、負の極性のモータ電圧Vm(=-Vdc)を印加する。図7(b)では、図7(a)とモータ電圧Vmの極性が異なるため、図7(a)に対してステータ3のティースに生じる磁界が反転している。その結果、ロータ2は逆転方向(反時計回り)に回転し始める。 Referring to FIG. 7B and FIG. 9, at time tA, start-up processing unit 30 applies a negative polarity motor voltage Vm (= −Vdc) from inverter 14 to the stator coil. In FIG. 7B, since the polarity of the motor voltage Vm is different from that in FIG. 7A, the magnetic field generated in the teeth of the stator 3 is reversed with respect to FIG. 7A. As a result, the rotor 2 starts to rotate in the reverse direction (counterclockwise).
 時刻tBにおいて、ロータ2の回転角が0°となると、図5に示したように、磁気センサ24Aの位置検出信号SAが“0”から“1”に切替わる。起動処理部30は、ロータ2が回転し始めてから最初に位置検出信号SAが切替わったことに基づいて、ロータ2の回転方向が逆転方向であると検出する。 When the rotation angle of the rotor 2 becomes 0 ° at time tB, the position detection signal SA of the magnetic sensor 24A is switched from “0” to “1” as shown in FIG. The activation processing unit 30 detects that the rotation direction of the rotor 2 is the reverse rotation direction based on the first switching of the position detection signal SA after the rotor 2 starts to rotate.
 ロータ2の回転方向が逆転方向であると検出されると、起動処理部30は、ロータ2が所望の回転方向とは反対方向に回転していると判断する。そこで、起動処理部30は、半導体スイッチング素子Q1~Q4がすべてオフ状態となるように、インバータ14を制御することにより、ステータコイルへのモータ電圧Vmの印加を一旦停止する。 When it is detected that the rotation direction of the rotor 2 is the reverse rotation direction, the activation processing unit 30 determines that the rotor 2 is rotating in a direction opposite to the desired rotation direction. Therefore, the activation processing unit 30 temporarily stops the application of the motor voltage Vm to the stator coil by controlling the inverter 14 so that the semiconductor switching elements Q1 to Q4 are all turned off.
 モータ電圧Vmの印加を停止したことによって、ステータ3に発生していた磁界が消滅するため、ロータ2は初期状態に戻ろうとする。そのため、ロータ2は正転方向に回転し始める。その結果、時刻tCにおいて、再びロータ2の回転角が0°となり、位置検出信号SAが“1”から“0”に切替わる。 Since the application of the motor voltage Vm is stopped, the magnetic field generated in the stator 3 disappears, so the rotor 2 tries to return to the initial state. Therefore, the rotor 2 starts to rotate in the normal rotation direction. As a result, at time tC, the rotation angle of the rotor 2 again becomes 0 °, and the position detection signal SA is switched from “1” to “0”.
 時刻tCにおいて、位置検出信号SAの切替わりが検出されると、起動処理部30は、インバータ14からステータコイルに対して、第2の極性のモータ電圧Vm(すなわち、正の極性のモータ電圧Vm)を印加する。これにより、ステータ3のティースには、図7(a)と同様の磁界が生じる。 When the switching of the position detection signal SA is detected at time tC, the activation processing unit 30 applies the second polarity motor voltage Vm (that is, the positive polarity motor voltage Vm) from the inverter 14 to the stator coil. ) Is applied. As a result, a magnetic field similar to that shown in FIG.
 時刻tDにおいて、ロータ2が初期状態に戻ると、ステータ3のティースに生じる磁界とロータ2の磁極との間に生じる磁力によって、ロータ2は引き続き正転方向に回転する。そして、時刻tEにおいて、ロータ2の回転角が45°となると、図5に示したように、磁気センサ24Bの位置検出信号SBが“1”から“0”に切替わる。起動処理部30は、モータ電圧Vmの極性を第2の極性に反転させてから最初に位置検出信号SBが切替わったことに基づいて、ロータ2の回転方向が正転方向であると検出する。 At time tD, when the rotor 2 returns to the initial state, the rotor 2 continues to rotate in the normal rotation direction due to the magnetic force generated between the magnetic field generated in the teeth of the stator 3 and the magnetic poles of the rotor 2. At time tE, when the rotation angle of the rotor 2 reaches 45 °, the position detection signal SB of the magnetic sensor 24B is switched from “1” to “0” as shown in FIG. The start processing unit 30 detects that the rotation direction of the rotor 2 is the forward rotation direction based on the first switching of the position detection signal SB after the polarity of the motor voltage Vm is reversed to the second polarity. .
 ロータ2の回転方向が正転方向であると検出されると、起動処理部30は、ロータ2が所望の回転方向に回転していると判断する。したがって、時刻tEにおいて、起動処理部30は、インバータ14からステータコイルに対して、単相交流電圧であるモータ電圧Vmを印加する。このとき、起動処理部30は、ロータ2を引き続き正転方向に回転させるため、時刻tEにおけるモータ電圧Vmの極性を、第2の極性と同じ極性とする。これにより、時刻tC以降、モータ電圧Vmを受けてステータ3に回転磁界が生じることによって、ロータ2が正転方向に回転する。 When it is detected that the rotation direction of the rotor 2 is the normal rotation direction, the activation processing unit 30 determines that the rotor 2 is rotating in a desired rotation direction. Therefore, at time tE, activation processing unit 30 applies motor voltage Vm, which is a single-phase AC voltage, from inverter 14 to the stator coil. At this time, the activation processing unit 30 continues to rotate the rotor 2 in the forward rotation direction, so that the polarity of the motor voltage Vm at the time tE is the same as the second polarity. Thereby, after time tC, the rotor 2 rotates in the forward direction by receiving the motor voltage Vm and generating a rotating magnetic field in the stator 3.
 以上説明したように、起動処理部30は、時刻tAにて、単相交流モータ10のステータコイルに第1の極性のモータ電圧Vmを印加すると、時刻tAからのロータ2の回転角が45°に満たない時刻tBにおいて、ロータ2の回転方向を検出することができる。 As described above, when the activation processing unit 30 applies the motor voltage Vm having the first polarity to the stator coil of the single-phase AC motor 10 at time tA, the rotation angle of the rotor 2 from time tA is 45 °. The rotation direction of the rotor 2 can be detected at time tB less than.
 図7(a)の例では、時刻tBにて検出される回転方向が正転方向であるため、起動時間は、時刻tAから時刻tBまでの時間となる。図7(a)の場合、時刻tB以降直ちに、ロータ2を正転方向に駆動することができる。 In the example of FIG. 7A, since the rotation direction detected at time tB is the normal rotation direction, the activation time is the time from time tA to time tB. In the case of FIG. 7A, the rotor 2 can be driven in the normal rotation direction immediately after time tB.
 一方、図7(b)の例では、時刻tBにおいて検出されるロータ2の回転方向が逆転方向であるため、時刻tCにてモータ電圧Vmの極性を第2の極性に反転させる。したがって、時刻tCからのロータ2の回転角が45°となる時刻tEにおいて、ロータ2の回転方向が正転方向であると検出することができる。すなわち、図7(b)の場合、起動時間は、時刻tAから時刻tEまでの時間となる。これにより、時刻tE以降、ロータ2を正転方向に駆動することができる。 On the other hand, in the example of FIG. 7B, since the rotation direction of the rotor 2 detected at time tB is the reverse rotation direction, the polarity of the motor voltage Vm is reversed to the second polarity at time tC. Therefore, at time tE when the rotation angle of the rotor 2 from time tC becomes 45 °, it can be detected that the rotation direction of the rotor 2 is the normal rotation direction. That is, in the case of FIG. 7B, the activation time is the time from time tA to time tE. Thereby, after time tE, the rotor 2 can be driven in the forward rotation direction.
 上述のように、本実施の形態によれば、ロータ2の回転開始後の短時間でロータ2の回転方向を検出することができる。その結果、起動時間を短縮することができる。 As described above, according to the present embodiment, the rotation direction of the rotor 2 can be detected in a short time after the rotation of the rotor 2 starts. As a result, the activation time can be shortened.
 なお、図示は省略するが、単相交流モータ10において、ロータ2が回転しない異常が発生している場合には、モータ電圧Vmを印加しても、位置検出信号SA,SBが切替わらないケースが起こり得る。このようなケースにおいて、モータ電圧Vmを印加し続けると、ステータコイルに直流電流が流れ続けることによってステータコイルが過熱される場合がある。その結果、ステータ3を焼損させてしまう可能性がある。 In addition, although illustration is omitted, in the single-phase AC motor 10, when the abnormality that the rotor 2 does not rotate has occurred, the position detection signals SA and SB are not switched even when the motor voltage Vm is applied. Can happen. In such a case, if the motor voltage Vm is continuously applied, the stator coil may be overheated due to the direct current flowing through the stator coil. As a result, the stator 3 may be burned out.
 ステータ3を過熱から保護するためには、たとえば、インバータ14の各半導体スイッチング素子の周辺に温度検知素子(サーミスタ等)を設置し、過熱を検知してインバータ14の運転を停止する方法を採ることができる。あるいは、位置検出信号SA,SBが切替わらない状態が所定時間を超えて継続した場合に、インバータ14の運転を停止する方法を採ることができる。 In order to protect the stator 3 from overheating, for example, a temperature detection element (such as a thermistor) is installed around each semiconductor switching element of the inverter 14 to detect overheating and stop the operation of the inverter 14. Can do. Alternatively, when the state in which the position detection signals SA and SB are not switched continues for a predetermined time, a method of stopping the operation of the inverter 14 can be adopted.
 図10は、本実施の形態に従う起動処理を説明するためのフローチャートである。
 図10を参照して、単相交流モータ10を起動させるにあたり、コントローラ16は、最初に、ステップS01により、ロータ2が静止しているときの磁気センサ24A,24Bの位置検出信号SA,SBを取得する。これにより、ロータ2の初期状態を把握できる。
FIG. 10 is a flowchart for illustrating a startup process according to the present embodiment.
Referring to FIG. 10, when starting single-phase AC motor 10, controller 16 first receives position detection signals SA and SB of magnetic sensors 24A and 24B when rotor 2 is stationary in step S01. get. Thereby, the initial state of the rotor 2 can be grasped.
 ステップS02では、コントローラ16は、単相交流モータ10のステータコイル6に第1の極性のモータ電圧Vmを印加する。これにより、単相交流モータ10のロータ2が起動する。 In step S02, the controller 16 applies the motor voltage Vm having the first polarity to the stator coil 6 of the single-phase AC motor 10. As a result, the rotor 2 of the single-phase AC motor 10 is started.
 ステップS03にて、ロータ2が回転しているときの磁気センサ24A,24Bの位置検出信号SA,SBを取得すると、コントローラ16は、ステップS04により、ロータ2が静止しているときの位置検出信号SA,SBと、ロータ2が回転しているときの位置検出信号SA,SBとに基づいて、ロータ2の回転方向を検出する。ここでは、コントローラ16は、位置検出信号SA,SBから、ロータ2の初期状態と、その次に遷移する状態とを把握することにより、ロータ2の回転方向を検出することができる。 If the position detection signals SA and SB of the magnetic sensors 24A and 24B when the rotor 2 is rotating are acquired in step S03, the controller 16 detects the position detection signal when the rotor 2 is stationary in step S04. Based on SA and SB and position detection signals SA and SB when the rotor 2 is rotating, the rotation direction of the rotor 2 is detected. Here, the controller 16 can detect the rotation direction of the rotor 2 by grasping the initial state of the rotor 2 and the next transition state from the position detection signals SA and SB.
 ステップS05では、コントローラ16は、ロータ2の回転方向が第1の回転方向か否かを判定する。ロータ2の回転方向が第1の回転方向である場合(S05のYES判定時)、コントローラ16は、ステップS05に進み、単相交流電圧であるモータ電圧Vmをステータコイル6に印加する。これにより、ロータ2を第1の回転方向に駆動する。 In step S05, the controller 16 determines whether or not the rotation direction of the rotor 2 is the first rotation direction. When the rotation direction of the rotor 2 is the first rotation direction (YES in S05), the controller 16 proceeds to step S05 and applies the motor voltage Vm, which is a single-phase AC voltage, to the stator coil 6. Thereby, the rotor 2 is driven in the first rotation direction.
 一方、ロータ2の回転方向が第1の回転方向でない場合(S05のNO判定時)には、コントローラ16は、ステップS07に進み、インバータ14の半導体スイッチング素子Q1~Q4をすべてオフ状態とすることにより、ステータコイル6へのモータ電圧Vmの印加を停止する。これにより、ロータ2は、初期状態に戻ろうとして第1の回転方向に回転し始める。 On the other hand, when the rotation direction of the rotor 2 is not the first rotation direction (NO in S05), the controller 16 proceeds to step S07 and turns off all the semiconductor switching elements Q1 to Q4 of the inverter 14. Thus, application of the motor voltage Vm to the stator coil 6 is stopped. Thereby, the rotor 2 starts to rotate in the first rotation direction so as to return to the initial state.
 続いて、コントローラ16は、ステップS08により、ステータコイル6に第2の極性のモータ電圧Vmを印加する。さらにステップS05に戻って、コントローラ16は、位置検出信号SA,SBに基づいて、ロータ2の回転方向を検出する。ステップS05にて、ロータ2の回転方向が第1の回転方向であると判定されると、コントローラ16は、ステップS06にて、単相交流電圧であるモータ電圧Vmをステータコイル6に印加することにより、ロータ2を第1の回転方向に駆動する。 Subsequently, the controller 16 applies the motor voltage Vm having the second polarity to the stator coil 6 in step S08. Further, returning to step S05, the controller 16 detects the rotation direction of the rotor 2 based on the position detection signals SA and SB. If it is determined in step S05 that the rotation direction of the rotor 2 is the first rotation direction, the controller 16 applies a motor voltage Vm, which is a single-phase AC voltage, to the stator coil 6 in step S06. Thus, the rotor 2 is driven in the first rotation direction.
 (適用例)
 次に、本実施の形態に従う単相交流モータの制御装置の適用例について説明する。以下では、図1に示す制御装置100を電気掃除機に適用した例(図11および図12参照)と、制御装置100をハンドドライヤーに適用した例(図13参照)とを説明する。
(Application example)
Next, an application example of the control device for the single-phase AC motor according to the present embodiment will be described. Below, the example (refer FIG. 11 and FIG. 12) which applied the control apparatus 100 shown in FIG. 1 to a vacuum cleaner, and the example (refer FIG. 13) which applied the control apparatus 100 to the hand dryer are demonstrated.
 (1)電気掃除機
 図11は、図1に示す制御装置100が適用される電気掃除機の概略構成図である。
(1) Vacuum cleaner FIG. 11 is a schematic configuration diagram of a vacuum cleaner to which the control device 100 shown in FIG. 1 is applied.
 図11を参照して、本実施の形態に従う電気掃除機61は、延長管62と、吸込口体63と、電動送風機64と、集塵室65と、操作部66と、電源12と、センサ68とを備える。電動送風機64は、図1に示す単相交流モータ10および制御装置100を含む。 Referring to FIG. 11, a vacuum cleaner 61 according to the present embodiment includes an extension pipe 62, a suction port body 63, an electric blower 64, a dust collection chamber 65, an operation unit 66, a power supply 12, and a sensor. 68. Electric blower 64 includes single-phase AC motor 10 and control device 100 shown in FIG.
 電動送風機64は、単相交流モータ10を送風モータとして駆動する。単相交流モータ10を回転駆動すると、吸引風が発生する。吸引風によって、被掃除面(図示せず)上の塵が空気とともに、吸込口体63内部に吸い込まれる。 The electric blower 64 drives the single-phase AC motor 10 as a blower motor. When the single-phase AC motor 10 is driven to rotate, suction air is generated. Due to the suction air, dust on the surface to be cleaned (not shown) is sucked into the suction port body 63 together with air.
 この塵を含んだ空気は、延長管62を通って集塵室65に搬送される。空気中の塵は集塵室65に捕集される。塵を捕集された空気は図示しないフィルタを通過した後、電動送風機64に到達する。その後、当該空気は、内部通路を通って排気口(ともに図示せず)から外部へ排出される。 The air containing dust is conveyed to the dust collection chamber 65 through the extension pipe 62. Dust in the air is collected in the dust collection chamber 65. The air in which the dust is collected passes through a filter (not shown) and then reaches the electric blower 64. Thereafter, the air passes through the internal passage and is discharged to the outside from an exhaust port (both not shown).
 なお、図11の例では、制御装置100の電源は、電気掃除機61の電源12と共通である。また、制御装置100のコントローラ16は、電気掃除機61全体の動作を制御することが可能に構成されている。 In the example of FIG. 11, the power supply of the control device 100 is the same as the power supply 12 of the vacuum cleaner 61. Further, the controller 16 of the control device 100 is configured to be able to control the operation of the entire vacuum cleaner 61.
 操作部66は、電源スイッチ66aおよび加速スイッチ66bを含む(図12参照)。電源スイッチ66aは、電源12から電気掃除機61の各部に対する電源供給および遮断を切替えるためのスイッチである。加速スイッチ66bは、電動送風機64における単相交流モータ10を低速回転速度から定常回転速度まで加速するためのスイッチである。低速回転速度は、定常回転速度の10分の1以下の回転速度をいう。たとえば、定常回転速度が10万rpmである場合、低速回転速度は1万rpm以下となる。 The operation unit 66 includes a power switch 66a and an acceleration switch 66b (see FIG. 12). The power switch 66 a is a switch for switching between power supply and shut-off from the power supply 12 to each part of the vacuum cleaner 61. The acceleration switch 66b is a switch for accelerating the single-phase AC motor 10 in the electric blower 64 from a low speed rotation speed to a steady rotation speed. The low-speed rotation speed refers to a rotation speed that is 1/10 or less of the steady-state rotation speed. For example, when the steady rotation speed is 100,000 rpm, the low speed rotation speed is 10,000 rpm or less.
 単相交流モータ10が低速回転速度で駆動しているときにユーザによって加速スイッチ66bがオン操作されると、制御装置100は、単相交流モータ10の回転速度が定常回転速度に達するように、図3で説明した回転速度の可変速制御を実行する。この回転速度の可変速制御では、回転速度が低速回転速度から定常回転速度に到達するまでの加速度(以下、「加速レート」とも称する)を調整することができる。 When the acceleration switch 66b is turned on by the user while the single-phase AC motor 10 is driven at a low rotational speed, the control device 100 causes the rotational speed of the single-phase AC motor 10 to reach a steady rotational speed. The variable speed control of the rotational speed described in FIG. 3 is executed. In this variable speed control of the rotational speed, the acceleration (hereinafter also referred to as “acceleration rate”) until the rotational speed reaches the steady rotational speed from the low rotational speed can be adjusted.
 センサ68は、電気掃除機61の動きもしくは人の動きを検知する。センサ68として、たとえば、ジャイロセンサまたは人感センサ等を用いることができる。センサ68の検知信号はコントローラ16に入力される。 Sensor 68 detects the movement of the vacuum cleaner 61 or the movement of a person. As the sensor 68, for example, a gyro sensor or a human sensor can be used. A detection signal from the sensor 68 is input to the controller 16.
 次に、図12を用いて、電気掃除機61における電動送風機64(単相交流モータ10)の動作について説明する。図12は、電動送風機64の制御構成を示すブロック図である。 Next, the operation of the electric blower 64 (single-phase AC motor 10) in the vacuum cleaner 61 will be described with reference to FIG. FIG. 12 is a block diagram showing a control configuration of the electric blower 64.
 まず、ユーザによって電源スイッチ66aがオン操作されると、電源12から電力供給を受けて電気掃除機61の主回路、制御装置100およびセンサ68等が起動する。 First, when the power switch 66a is turned on by the user, the main circuit of the vacuum cleaner 61, the control device 100, the sensor 68, and the like are activated by receiving power from the power source 12.
 センサ68は、たとえば、ジャイロセンサである。センサ68は、電気掃除機61の動きを検知し、検知信号を制御装置100のコントローラ16に出力する。 Sensor 68 is, for example, a gyro sensor. The sensor 68 detects the movement of the electric vacuum cleaner 61 and outputs a detection signal to the controller 16 of the control device 100.
 具体的には、ジャイロセンサは、電気掃除機61に取付けられることで、電気掃除機61の使用の際に生じる電気掃除機61の動きを検知することができる。電気掃除機61の使用直前には必ず本体が動く。この使用直前の動きをセンサ68が検知することで、以下に述べるように、加速スイッチ66bがオン操作されるよりも前に、電動送風機64(単相交流モータ10)を起動することができる。 Specifically, the gyro sensor can detect the movement of the vacuum cleaner 61 that occurs when the vacuum cleaner 61 is used by being attached to the vacuum cleaner 61. The main body always moves immediately before using the vacuum cleaner 61. By detecting the movement immediately before use by the sensor 68, the electric blower 64 (single-phase AC motor 10) can be started before the acceleration switch 66b is turned on, as described below.
 コントローラ16は、センサ68の検知信号をトリガとして単相交流モータ10を起動し、単相交流モータ10を低速回転速度で駆動する。なお、単相交流モータ10を起動する際、コントローラ16は、上述した起動処理を実行する。これにより、短時間で単相交流モータ10のロータ2を所望の回転方向(第1の回転方向)に起動することができる。ロータ2が起動すると、コントローラ16は、単相交流モータ10を低速回転速度まで加速する。 The controller 16 starts the single-phase AC motor 10 using the detection signal of the sensor 68 as a trigger, and drives the single-phase AC motor 10 at a low speed. In addition, when starting the single phase alternating current motor 10, the controller 16 performs the starting process mentioned above. Thereby, the rotor 2 of the single-phase AC motor 10 can be started in a desired rotation direction (first rotation direction) in a short time. When the rotor 2 is activated, the controller 16 accelerates the single-phase AC motor 10 to a low speed.
 低速回転速度での駆動時に加速スイッチ66bがオン操作されると、コントローラ16は、単相交流モータ10を定常回転速度まで加速する。なお、電源スイッチ66aよりも先に加速スイッチ66bがオン操作されていた場合には、電源スイッチ66aがオン操作されると、コントローラ16は、起動処理の実行後、単相交流モータ10を直ちに定常回転速度まで加速する。 When the acceleration switch 66b is turned on during driving at a low rotational speed, the controller 16 accelerates the single-phase AC motor 10 to a steady rotational speed. When the acceleration switch 66b is turned on before the power switch 66a, when the power switch 66a is turned on, the controller 16 immediately turns on the single-phase AC motor 10 after the start-up process. Accelerate to rotational speed.
 定常回速度での駆動時において加速スイッチ66bがオフ操作されると、コントローラ16は、単相交流モータ10の駆動を停止せずに、単相交流モータ10を低速回転速度まで減速して駆動し続ける。低速回転速度で駆動し続けることによって、集塵室65に捕集された塵が、延長管62を通って吸込口体63から排出されることを防止できる。 When the acceleration switch 66b is turned off during driving at the normal rotation speed, the controller 16 drives the single-phase AC motor 10 by decelerating it to a low speed without stopping the driving of the single-phase AC motor 10. to continue. By continuing to drive at a low rotational speed, it is possible to prevent the dust collected in the dust collection chamber 65 from being discharged from the suction port 63 through the extension pipe 62.
 上述したように、本実施の形態に従う電気掃除機61では、電源スイッチ66aがオン操作されると、センサ68の検知信号をトリガとして、単相交流モータ10を低速回転速度で駆動する。これにより、ユーザが実際に電気掃除機61を使用する際に、加速スイッチ66bをオン操作してから単相交流モータ10が定常回転速度に到達するまでの時間を短縮することができる。 As described above, in electric vacuum cleaner 61 according to the present embodiment, when power switch 66a is turned on, single-phase AC motor 10 is driven at a low rotational speed using the detection signal of sensor 68 as a trigger. Thereby, when the user actually uses the vacuum cleaner 61, the time from when the acceleration switch 66b is turned on until the single-phase AC motor 10 reaches the steady rotational speed can be shortened.
 たとえば、電源供給を開始してから単相交流モータ10が低速回転速度(たとえば、2000rpm)に達するまでの時間が1秒であり、かつ、低速回転速度から定常回転速度(たとえば、10万rpm)に達するまでの時間が0.4秒であると仮定する。この場合、電源供給を開始してから単相交流モータ10が定常回転速度に到達するまでには、1.4秒の時間が必要となる。本実施の形態では、加速スイッチ66bがオン操作されるときには、既に単相交流モータ10が低速回転速度で駆動している。したがって、ユーザが実際に電気掃除機61を使用する際には、加速スイッチ66bをオン操作してから僅か0.4秒で、単相交流モータ10を定常回転速度に到達させることができる。 For example, the time from when the power supply is started until the single-phase AC motor 10 reaches a low speed (for example, 2000 rpm) is 1 second, and from the low speed to the steady speed (for example, 100,000 rpm). Assume that the time to reach is 0.4 seconds. In this case, it takes 1.4 seconds from the start of power supply until the single-phase AC motor 10 reaches the steady rotational speed. In the present embodiment, when the acceleration switch 66b is turned on, the single-phase AC motor 10 is already driven at the low speed. Therefore, when the user actually uses the vacuum cleaner 61, the single-phase AC motor 10 can reach the steady rotational speed in only 0.4 seconds after the acceleration switch 66b is turned on.
 その一方で、単相交流モータ10を起動するためには、単相交流モータ10が定常回転しているときに比べて、より大きなトルクを発生させる必要がある。そのため、単相交流モータ10に大きなモータ電流を流す必要がある。しかしながら、モータ電流を大きくすると、消費電力が増えるとともに、単相交流モータ10および電源12を含む部品における発熱量も増加する。たとえば、電源12が二次電池等の蓄電装置である場合には、消費電力が増えることで、電気掃除機61の連続運転時間が短くなる。また、部品の発熱量が増えることで、部品の信頼性を損なう可能性がある。 On the other hand, in order to start the single-phase AC motor 10, it is necessary to generate a larger torque than when the single-phase AC motor 10 is rotating in a steady state. Therefore, it is necessary to flow a large motor current through the single-phase AC motor 10. However, when the motor current is increased, the power consumption increases and the amount of heat generated in the components including the single-phase AC motor 10 and the power source 12 also increases. For example, when the power source 12 is a power storage device such as a secondary battery, the continuous operation time of the vacuum cleaner 61 is shortened by increasing the power consumption. In addition, an increase in the amount of heat generated by the component may impair the reliability of the component.
 このような問題を解決するためには、単相交流モータ10を起動するときの加速レートを低下させることが有効である。加速レートを低下させることでモータ電流の急峻な立上りが抑えられるため、消費電力および部品の発熱量の増加を防ぐことができる。 In order to solve such a problem, it is effective to reduce the acceleration rate when starting the single-phase AC motor 10. By reducing the acceleration rate, a steep rise in the motor current can be suppressed, so that it is possible to prevent an increase in power consumption and the amount of heat generated by components.
 なお、本実施の形態では、上記の起動処理を行なうことにより、起動時間を短縮することが可能となる。そのため、起動時の加速レートを低下させたことに起因して、単相交流モータ10の起動に要する時間が延長することを防ぐことができる。 In the present embodiment, the startup time can be shortened by performing the above startup process. Therefore, it is possible to prevent the time required for starting the single-phase AC motor 10 from being extended due to the reduction of the acceleration rate at the time of starting.
 また、本実施の形態によれば、単相交流モータ10の可変速制御を2つの位置検出信号SA,SBを用いて実行するため、ロータ2の磁極位置の検出精度を向上させることができる。その結果、可変速制御の応答性を高めることができる。したがって、可変レートを低下させる場合に、単相交流モータ10の出力トルクの変動によって単相交流モータ10に振動が発生することを抑制することができる。 Further, according to the present embodiment, since the variable speed control of the single-phase AC motor 10 is executed using the two position detection signals SA and SB, the detection accuracy of the magnetic pole position of the rotor 2 can be improved. As a result, the responsiveness of variable speed control can be improved. Therefore, when the variable rate is lowered, it is possible to suppress the occurrence of vibration in the single-phase AC motor 10 due to the fluctuation of the output torque of the single-phase AC motor 10.
 なお、電気掃除機61においては、単相交流モータ10を低速回転速度から定常回転速度まで加速するときにおいても、加速レートを低下させることで、加速による電力消費を抑えることができる。このときも、可変速制御の応答性が良好であるため、単相交流モータ10に振動が発生することを抑制することができる。 In the vacuum cleaner 61, even when the single-phase AC motor 10 is accelerated from a low speed to a steady speed, power consumption due to acceleration can be suppressed by reducing the acceleration rate. Also at this time, since the responsiveness of the variable speed control is good, the occurrence of vibration in the single-phase AC motor 10 can be suppressed.
 (2)ハンドドライヤー
 図13は、図1に示す制御装置100が適用されるハンドドライヤーの概略構成図である。本実施の形態に従うハンドドライヤー70は、ユーザが手を洗った後に、水で濡れた手に乾燥風を当てて、手を乾燥させるための装置である。
(2) Hand dryer FIG. 13 is a schematic configuration diagram of a hand dryer to which the control device 100 shown in FIG. 1 is applied. Hand dryer 70 according to the present embodiment is a device for drying hands by applying dry air to hands wet with water after the user has washed their hands.
 図13を参照して、本実施の形態に従うハンドドライヤー70は、ケーシング71と、手挿入部72と、水受け部73と、ドレン容器74と、カバー76と、センサ77と、吸気口78とを備える。 Referring to FIG. 13, hand dryer 70 according to the present embodiment includes casing 71, hand insertion portion 72, water receiving portion 73, drain container 74, cover 76, sensor 77, and intake port 78. Is provided.
 ケーシング71は、ユーザの手を挿入するための凹部の空間、すなわち手挿入部72を形成する。水受け部73は、ユーザの濡れた手から飛沫した水滴を受ける。ドレン容器74は、ケーシング71に着脱可能に取付けられており、水受け部73が受けた水滴を蓄積する。カバー76は、ケーシング71と結合され、ハンドドライヤー70の前面を構成する。 The casing 71 forms a concave space for inserting a user's hand, that is, a hand insertion portion 72. The water receiving part 73 receives water droplets splashed from the wet hand of the user. The drain container 74 is detachably attached to the casing 71 and accumulates water droplets received by the water receiving portion 73. The cover 76 is coupled to the casing 71 and constitutes the front surface of the hand dryer 70.
 ケーシング71内には、電動送風機(図示せず)およびセンサ77が搭載されている。電動送風機は、図1に示す単相交流モータ10および制御装置100を含む。制御装置100のコントローラ16は、ハンドドライヤー70全体の動作を制御することが可能に構成されている。 In the casing 71, an electric blower (not shown) and a sensor 77 are mounted. The electric blower includes a single-phase AC motor 10 and a control device 100 shown in FIG. The controller 16 of the control device 100 is configured to be able to control the operation of the entire hand dryer 70.
 電動送風機は、単相交流モータ10を送風モータとして駆動する。単相交流モータ10を回転駆動すると、乾燥風が発生する。乾燥風は、ケーシング71に設けられた送風口(図示せず)から手挿入部72に向けて吹出される。 The electric blower drives the single-phase AC motor 10 as a blower motor. When the single-phase AC motor 10 is driven to rotate, dry air is generated. The dry air is blown out toward a manual insertion portion 72 from a blower opening (not shown) provided in the casing 71.
 センサ77は、ハンドドライヤー70にユーザが接近したことを検知する。センサ77はさらに、手挿入部72にユーザの手が挿入されたことを検知する。センサ77として、たとえば、人感センサ等を用いることができる。センサ77の検知信号は、制御装置100のコントローラ16に入力される。 Sensor 77 detects that the user has approached hand dryer 70. The sensor 77 further detects that the user's hand has been inserted into the hand insertion portion 72. As the sensor 77, for example, a human sensor can be used. A detection signal of the sensor 77 is input to the controller 16 of the control device 100.
 次に、ハンドドライヤー70における電動送風機(単相交流モータ10)の動作について説明する。 Next, the operation of the electric blower (single-phase AC motor 10) in the hand dryer 70 will be described.
 電動送風機は、ハンドドライヤー70にユーザが接近していないときには、単相交流モータ10の駆動を休止する待機状態となっている。電動送風機の待機状態において、センサ77は、ハンドドライヤー70に人が接近したか否かを検知している。そして、ハンドドライヤー70に人が接近したことを検知すると、センサ77は、検知信号を制御装置100のコントローラ16に出力する。 The electric blower is in a standby state in which the driving of the single-phase AC motor 10 is stopped when the user is not approaching the hand dryer 70. In the standby state of the electric blower, the sensor 77 detects whether or not a person has approached the hand dryer 70. When detecting that a person has approached the hand dryer 70, the sensor 77 outputs a detection signal to the controller 16 of the control device 100.
 コントローラ16は、センサ77の検知信号をトリガとして単相交流モータ10を起動し、単相交流モータ10を低速回転速度で駆動する。なお、単相交流モータ10を起動する際、コントローラ16は、上述した起動処理を実行する。これにより、短時間で単相交流モータ10のロータ2を所望の回転方向(第1の回転方向)に起動することができる。ロータ2が起動すると、コントローラ16は、単相交流モータ10を低速回転速度まで加速する。 The controller 16 starts the single-phase AC motor 10 using the detection signal of the sensor 77 as a trigger, and drives the single-phase AC motor 10 at a low speed. In addition, when starting the single phase alternating current motor 10, the controller 16 performs the starting process mentioned above. Thereby, the rotor 2 of the single-phase AC motor 10 can be started in a desired rotation direction (first rotation direction) in a short time. When the rotor 2 is activated, the controller 16 accelerates the single-phase AC motor 10 to a low speed.
 低速回転速度での駆動時において、ユーザの手が手挿入部72に挿入されたことがセンサ77により検知されると、コントローラ16は、単相交流モータ10を定常回転速度まで加速する。 When the sensor 77 detects that the user's hand has been inserted into the hand insertion portion 72 during driving at a low rotational speed, the controller 16 accelerates the single-phase AC motor 10 to a steady rotational speed.
 定常回速度での駆動時において、手挿入部72からユーザの手が抜かれると、コントローラ16は、単相交流モータ10の駆動を停止せずに、所定時間、単相交流モータ10を低速回転速度まで減速して駆動し続ける。当該所定時間の間に、次のユーザの手が手挿入部72に挿入された場合、コントローラ16は、単相交流モータ10を再度、定速回転速度まで加速する。一方、当該所定時間の間に、ハンドドライヤー70に人が接近したことが検知されない場合には、コントローラ16は、単相交流モータ10を停止し、電動送風機を待機状態とする。 When the user's hand is removed from the manual insertion portion 72 during driving at the steady rotation speed, the controller 16 rotates the single-phase AC motor 10 at a low speed for a predetermined time without stopping the driving of the single-phase AC motor 10. Continue to drive at a reduced speed. When the next user's hand is inserted into the hand insertion unit 72 during the predetermined time, the controller 16 accelerates the single-phase AC motor 10 to a constant rotational speed again. On the other hand, when it is not detected that a person has approached the hand dryer 70 during the predetermined time, the controller 16 stops the single-phase AC motor 10 and puts the electric blower in a standby state.
 本実施の形態に従うハンドドライヤー70では、ハンドドライヤー70にユーザが接近したことを示す検知信号をトリガとして、単相交流モータ10を低速回転速度で駆動する。これにより、ユーザの手が手挿入部72に挿入された際に、単相交流モータ10が定常回転速度に到達するまでの時間を短縮することができる。 In the hand dryer 70 according to the present embodiment, the single-phase AC motor 10 is driven at a low rotational speed with a detection signal indicating that the user has approached the hand dryer 70 as a trigger. Thereby, when a user's hand is inserted in the hand insertion part 72, the time until the single-phase AC motor 10 reaches a steady rotational speed can be shortened.
 また、図11に示した電気掃除機61と同様に、ハンドドライヤー70においても、単相交流モータ10を起動するためには、大きなモータ電流が必要となる。大きなモータ電流は、消費電力の増加や部品の発熱量の増加を招く可能性がある。本実施の形態によれば、上記の起動処理を行なうことにより、起動時間を短縮することができる。これにより、大きなモータ電流が長時間にわたって流れることを抑制できるため、結果的に、起動時における消費電力および発熱量の増加を抑えることができる。 Further, similarly to the electric vacuum cleaner 61 shown in FIG. 11, the hand dryer 70 also requires a large motor current in order to start the single-phase AC motor 10. A large motor current may cause an increase in power consumption and an increase in the amount of heat generated by components. According to the present embodiment, the startup time can be shortened by performing the startup process. Thereby, since it can suppress that a big motor current flows for a long time, as a result, the increase in the power consumption and the emitted-heat amount at the time of starting can be suppressed.
 なお、上記の実施の形態では、本実施の形態に従う単相交流モータ10の制御装置100を、電気掃除機およびハンドドライヤーに適用した構成について説明したが、本発明は、これらに限らず、単相交流モータを駆動源とする製品に広く適用することが可能である。たとえば、焼却炉、粉砕機、乾燥機、集塵機、印刷機械、クリーニング機械、製菓機械、製茶機械、木工機械、プラスチック押出機、段ボール機械、包装機械、熱風発生機、OA機器、一般送排風用途など、電動送風機を備えた製品に対して、本発明を適用することが可能である。 In the above embodiment, the configuration in which the control device 100 of the single-phase AC motor 10 according to the present embodiment is applied to a vacuum cleaner and a hand dryer has been described. It can be widely applied to products using a phase AC motor as a drive source. For example, incinerator, pulverizer, dryer, dust collector, printing machine, cleaning machine, confectionery machine, tea making machine, woodworking machine, plastic extruder, corrugated board machine, packaging machine, hot air generator, OA equipment, general air supply / exhaust air The present invention can be applied to products including an electric blower.
 本発明は、請求の範囲に記載された範囲内において、複数の実施形態の任意の組み合わせ、いずれかの実施形態に含まれる任意の構成要素の変形、あるいは、いずれかの実施形態に含まれる任意の構成要素の省略が可能である。 The present invention includes any combination of a plurality of embodiments, modification of any component included in any embodiment, or any combination included in any embodiment within the scope described in the claims. The components of can be omitted.
 今回開示された実施の形態がすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 回転軸、2 ロータ、3 ステータ、4 ステータコア、5 ティース、6 ステータコイル、10 単相交流モータ、12 電源、14 インバータ、16 コントローラ、18 ADC、20 ゲートドライバ、22 電流センサ、24A,24B 磁気センサ、30 起動処理部、32 速度制御部、34 電流制御部、36 PWM制御部、61 電気掃除機、62 延長管、63 吸込口体、64 電動送風機、65 集塵室、66 操作部、66a 電源スイッチ、66b 加速スイッチ、68,77 センサ、70 ハンドドライヤー、71 ケーシング、72 手挿入部、73 水受け部、74 ドレン容器、76 カバー、78 吸気口、100 制御装置、Q1~Q4 半導体スイッチング素子、D1~D4 ダイオード。 1 rotating shaft, 2 rotor, 3 stator, 4 stator core, 5 teeth, 6 stator coil, 10 single phase AC motor, 12 power supply, 14 inverter, 16 controller, 18 ADC, 20 gate driver, 22 current sensor, 24A, 24B magnetism Sensor, 30 Start processing unit, 32 Speed control unit, 34 Current control unit, 36 PWM control unit, 61 Vacuum cleaner, 62 Extension pipe, 63 Suction port, 64 Electric blower, 65 Dust collection chamber, 66 Operation unit, 66a Power switch, 66b acceleration switch, 68, 77 sensor, 70 hand dryer, 71 casing, 72 manual insertion part, 73 water receiving part, 74 drain container, 76 cover, 78 intake, 100 control device, Q1-Q4 semiconductor switching element , D1-D4 da Ord.

Claims (5)

  1.  単相交流モータの制御装置であって、
     前記単相交流モータは、
     複数の磁極が設けられたロータと、
     回転磁界を生成するためのステータとを含み、
     前記制御装置は、
     前記単相交流モータの駆動電圧を前記ステータに印加するように構成されたインバータと、
     前記ロータの磁極位置を検出する第1および第2の磁気センサと、
     前記第1および第2の磁気センサの検出信号に基づいて、前記インバータを制御するように構成されたコントローラとを備え、
     前記第1および第2の磁気センサは、前記ロータの回転方向に沿って互いに離間する位置に配置され、
     前記コントローラは、静止状態の前記ロータを第1の方向に起動するための起動処理を実行するように構成され、
     前記起動処理において、前記コントローラは、
     前記インバータから前記ステータに第1の極性の電圧を印加して前記ロータを駆動し、
     前記ロータが前記静止状態のとき、および、前記ロータが回転しているときの各前記第1および第2の磁気センサの前記検出信号に基づいて、前記ロータの回転方向を検出し、かつ、
     前記ロータの回転方向が前記第1の方向とは反対の第2の方向であると検出されたときには、前記電圧の前記第1の極性を、第2の極性に反転する、単相交流モータの制御装置。
    A control device for a single-phase AC motor,
    The single-phase AC motor is
    A rotor provided with a plurality of magnetic poles;
    A stator for generating a rotating magnetic field,
    The control device includes:
    An inverter configured to apply a driving voltage of the single-phase AC motor to the stator;
    First and second magnetic sensors for detecting a magnetic pole position of the rotor;
    A controller configured to control the inverter based on detection signals of the first and second magnetic sensors;
    The first and second magnetic sensors are arranged at positions spaced apart from each other along the rotation direction of the rotor,
    The controller is configured to execute a starting process for starting the rotor in a stationary state in a first direction;
    In the startup process, the controller
    A first polarity voltage is applied to the stator from the inverter to drive the rotor;
    Detecting the rotation direction of the rotor based on the detection signals of the first and second magnetic sensors when the rotor is in the stationary state and when the rotor is rotating; and
    A single-phase AC motor that reverses the first polarity of the voltage to a second polarity when the rotation direction of the rotor is detected to be a second direction opposite to the first direction. Control device.
  2.  前記検出信号は、前記磁極位置に応じて、2値の間で論理レベルが切替わるように構成され、
     前記コントローラは、前記ステータに前記第1の極性の前記駆動電圧を印加してから、最初に、前記第1および第2の磁気センサのいずれか一方の前記検出信号の論理レベルが切替わるタイミングにおいて、前記ロータの回転方向を検出する、請求項1に記載の単相交流モータの制御装置。
    The detection signal is configured to switch a logic level between two values according to the magnetic pole position,
    The controller first applies the drive voltage having the first polarity to the stator, and then at a timing at which the logic level of the detection signal of one of the first and second magnetic sensors is switched first. The control device for a single-phase AC motor according to claim 1, wherein the rotation direction of the rotor is detected.
  3.  前記第1の磁気センサの前記検出信号と、前記第2の磁気センサの前記検出信号とは、論理レベルが切替わるタイミングが1/4周期ずれている、請求項2に記載の単相交流モータの制御装置。 3. The single-phase AC motor according to claim 2, wherein the detection signal of the first magnetic sensor and the detection signal of the second magnetic sensor are shifted from each other by a quarter cycle in the timing at which the logic level is switched. Control device.
  4.  前記ロータの磁極数をPとし、nを1以上P以下の整数とした場合、前記第1の磁気センサと前記第2の磁気センサとは、前記ロータの回転軸を中心とする同一円上に、180×{1+(2n-1)}/Pの角度間隔をおいて配置される、請求項1または2に記載の単相交流モータの制御装置。 When the number of magnetic poles of the rotor is P and n is an integer between 1 and P, the first magnetic sensor and the second magnetic sensor are on the same circle with the rotation axis of the rotor as the center. , 180 × {1+ (2n−1)} / P. The control device for a single-phase AC motor according to claim 1, which is arranged at an angular interval of 180 × {1+ (2n−1)} / P.
  5.  前記ステータに流れる電流を検出する電流センサをさらに備え、
     前記コントローラは、前記第1および第2の磁気センサの前記検出信号および前記電流センサの検出信号に少なくとも基づいて、前記ロータの回転速度の可変制御を実行する、請求項1~4のいずれか1項に記載の単相交流モータの制御装置。
    A current sensor for detecting a current flowing through the stator;
    The controller according to any one of claims 1 to 4, wherein the controller executes variable control of the rotational speed of the rotor based at least on the detection signals of the first and second magnetic sensors and the detection signal of the current sensor. The control apparatus of the single phase alternating current motor described in the term.
PCT/JP2015/080933 2015-11-02 2015-11-02 Control device for single-phase ac motor WO2017077574A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/080933 WO2017077574A1 (en) 2015-11-02 2015-11-02 Control device for single-phase ac motor
JP2017548539A JP6410957B2 (en) 2015-11-02 2015-11-02 Single-phase AC motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080933 WO2017077574A1 (en) 2015-11-02 2015-11-02 Control device for single-phase ac motor

Publications (1)

Publication Number Publication Date
WO2017077574A1 true WO2017077574A1 (en) 2017-05-11

Family

ID=58661780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080933 WO2017077574A1 (en) 2015-11-02 2015-11-02 Control device for single-phase ac motor

Country Status (2)

Country Link
JP (1) JP6410957B2 (en)
WO (1) WO2017077574A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022100A (en) * 2018-01-09 2019-07-16 博世电动工具(中国)有限公司 Single-phase DC brushless motor and its control equipment and control method
WO2019180967A1 (en) * 2018-03-23 2019-09-26 三菱電機株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
WO2020208788A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
WO2022085048A1 (en) * 2020-10-19 2022-04-28 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622581A (en) * 1992-07-03 1994-01-28 Daikin Ind Ltd Controller for ac motor
JP2012034435A (en) * 2010-07-28 2012-02-16 Honda Motor Co Ltd Power converter and motor drive controller
JP5469730B2 (en) * 2011-10-14 2014-04-16 ダイソン テクノロジー リミテッド How to start a brushless motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622581A (en) * 1992-07-03 1994-01-28 Daikin Ind Ltd Controller for ac motor
JP2012034435A (en) * 2010-07-28 2012-02-16 Honda Motor Co Ltd Power converter and motor drive controller
JP5469730B2 (en) * 2011-10-14 2014-04-16 ダイソン テクノロジー リミテッド How to start a brushless motor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022100A (en) * 2018-01-09 2019-07-16 博世电动工具(中国)有限公司 Single-phase DC brushless motor and its control equipment and control method
WO2019137156A1 (en) * 2018-01-09 2019-07-18 博世电动工具(中国)有限公司 Single-phase direct-current brushless motor and control apparatus and control method therefor
EP3739745A4 (en) * 2018-01-09 2021-02-24 Bosch Power Tools (China) Co., Ltd. Single-phase direct-current brushless motor and control apparatus and control method therefor
WO2019180967A1 (en) * 2018-03-23 2019-09-26 三菱電機株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
JPWO2019180967A1 (en) * 2018-03-23 2020-12-03 三菱電機株式会社 Motor drive, vacuum cleaner and hand dryer
WO2020208788A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JPWO2020208788A1 (en) * 2019-04-11 2021-10-14 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer
CN113647010A (en) * 2019-04-11 2021-11-12 三菱电机株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP7076637B2 (en) 2019-04-11 2022-05-27 三菱電機株式会社 Motor drive, electric blower, vacuum cleaner and hand dryer
US11611306B2 (en) 2019-04-11 2023-03-21 Mitsubishi Electric Corporation Motor driving apparatus, electric blower, vacuum cleaner, and hand dryer
WO2022085048A1 (en) * 2020-10-19 2022-04-28 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP7462788B2 (en) 2020-10-19 2024-04-05 三菱電機株式会社 Motor drive device, electric blower, vacuum cleaner and hand dryer

Also Published As

Publication number Publication date
JP6410957B2 (en) 2018-10-24
JPWO2017077574A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP5524925B2 (en) Electric machine control method
US11682988B2 (en) Method for controlling an electric motor
JP6410957B2 (en) Single-phase AC motor controller
JP2002345288A (en) Method of starting three-phase brushless motor, drive control circuit therefor, motor-driven blower, and vacuum cleaner
JP6516863B2 (en) Motor control device, vacuum cleaner and hand dryer
JP2002159195A (en) Pwm control circuit, motor fan and electric cleaner
JP6388730B2 (en) Motor control device, vacuum cleaner and hand dryer
JP7237198B2 (en) motor drives, vacuum cleaners and hand dryers
JP2020074670A (en) Motor driving device, electric blower, vacuum cleaner, and hand drier
JP7076637B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP7237197B2 (en) motor drives, vacuum cleaners and hand dryers
JP7150151B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
JP6026764B2 (en) Hand dryer
JP6910538B2 (en) Motor drive, vacuum cleaner and hand dryer
WO2019021685A1 (en) Motor control device, sensorless-brushless motor, and air blowing apparatus
WO2016194836A1 (en) Dc-brushless-motor control device
JP6739691B1 (en) Motor drive device, electric blower, vacuum cleaner and hand dryer
JP2013013223A (en) Vacuum cleaner
JP6312769B2 (en) DC brushless motor control device
JP6430030B2 (en) Motor control device, vacuum cleaner and hand dryer
JP2019097315A (en) Control apparatus
KR20190143271A (en) Motor driving apparatus and home appliance including the same
GB2561094A (en) A Method For Controlling An Electric Motor
GB2561093A (en) A Method For Controlling An Electric Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548539

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907760

Country of ref document: EP

Kind code of ref document: A1