WO2022085048A1 - Motor drive device, electric blower, electric vacuum cleaner, and hand dryer - Google Patents

Motor drive device, electric blower, electric vacuum cleaner, and hand dryer Download PDF

Info

Publication number
WO2022085048A1
WO2022085048A1 PCT/JP2020/039273 JP2020039273W WO2022085048A1 WO 2022085048 A1 WO2022085048 A1 WO 2022085048A1 JP 2020039273 W JP2020039273 W JP 2020039273W WO 2022085048 A1 WO2022085048 A1 WO 2022085048A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
drive device
motor drive
threshold value
Prior art date
Application number
PCT/JP2020/039273
Other languages
French (fr)
Japanese (ja)
Inventor
裕次 ▲高▼山
和徳 畠山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/039273 priority Critical patent/WO2022085048A1/en
Priority to JP2022556835A priority patent/JP7462788B2/en
Publication of WO2022085048A1 publication Critical patent/WO2022085048A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/26Arrangements for controlling single phase motors

Definitions

  • the present disclosure relates to a motor drive device that drives a single-phase motor without a position sensor, an electric blower equipped with a single-phase motor driven by the motor drive device, an electric vacuum cleaner, and a hand dryer.
  • the present disclosure has been made in view of the above, and an object of the present invention is to obtain a motor drive device capable of safely and reliably starting a single-phase motor when the single-phase motor is started without a position sensor. ..
  • the motor drive device is a motor drive device that drives a single-phase motor without a position sensor.
  • the motor drive includes an inverter located between the DC power supply and the single-phase motor.
  • the inverter applies the first voltage to the single-phase motor in the first period immediately after the start, and reverses the polarity of the first voltage in the second period after the application of the first voltage.
  • the single-phase motor is started by applying the second voltage. Between the first period and the second period, there is a stop period during which the application of the first voltage is stopped.
  • the effect is that the single-phase motor can be started safely and surely.
  • Sectional drawing which provides the explanation of the structure of the single-phase motor in Embodiment 1.
  • the figure which shows the torque characteristic of the single-phase motor shown in FIG. Circuit diagram of the inverter shown in FIG.
  • a circuit diagram showing a modified example of the inverter shown in FIG. A block diagram showing a functional part that generates a pulse width modulation (PWM) signal among the functional parts of the control unit shown in FIG. 1.
  • PWM pulse width modulation
  • FIG. 7 A block diagram showing another example of the carrier comparison unit shown in FIG.
  • FIG. 2 is a diagram used to explain the relationship between the rotor position when the single-phase motor shown in FIG. 2 is stopped and the start control in the first embodiment.
  • the figure used for the operation explanation of the main part in the motor drive device which concerns on Embodiment 2.
  • Configuration diagram of the vacuum cleaner according to the third embodiment Configuration diagram of the hand dryer according to the third embodiment
  • FIG. 1 is a block diagram showing a configuration of a motor drive system 1 including a motor drive device 2 according to the first embodiment.
  • the motor drive system 1 shown in FIG. 1 includes a single-phase motor 12, a motor drive device 2, and a battery 10.
  • the motor drive device 2 is a drive device that supplies AC power to the single-phase motor 12 to drive the single-phase motor 12.
  • the battery 10 is a DC power source that supplies DC power to the motor drive device 2.
  • the motor drive device 2 includes an inverter 11, an analog-digital converter 30, a control unit 25, and a drive signal generation unit 32.
  • the inverter 11 and the single-phase motor 12 are connected by two connecting lines 18a and 18b.
  • the motor drive system 1 includes voltage detectors 20 and 21 and current detectors 22 and 24.
  • the motor drive system 1 is a so-called position sensorless control drive system that does not use a position sensor signal for detecting the rotation position of the rotor 12a.
  • the voltage detector 20 is a detector that detects the DC voltage Vdc output from the battery 10 to the motor drive device 2.
  • the DC voltage V dc is the output voltage of the battery 10 and is the voltage applied to the inverter 11.
  • the voltage detector 21 is a detector that detects the AC voltage Vac generated between the connection lines 18a and 18b.
  • the AC voltage V ac is a voltage obtained by superimposing the motor applied voltage applied by the inverter 11 to the single-phase motor 12 and the motor-induced voltage induced by the single-phase motor 12.
  • the inverter 11 is stopped and the single-phase motor 12 is rotating, the motor induced voltage is observed.
  • the state in which the inverter 11 has stopped operating and the inverter 11 is not outputting a voltage is referred to as "gate off”.
  • the voltage output by the inverter 11 is appropriately referred to as an "inverter output voltage”.
  • the current detector 22 is a detector that detects the motor current Im .
  • the motor current Im is an alternating current flowing in and out between the inverter 11 and the single-phase motor 12.
  • the motor current Im is equal to the alternating current flowing through the windings (not shown in FIG. 1) wound around the stator 12b of the single-phase motor 12.
  • Examples of the current detector 22 include a current transformer (CT) or a current detector that detects a current using a shunt resistor.
  • the current detector 24 is a detector that detects the power supply current I dc .
  • the power supply current I dc is a direct current flowing between the battery 10 and the inverter 11.
  • the current detector 24 is generally configured to use a shunt resistor as shown in the figure.
  • the detected value of the power supply current I dc flowing through the current detector 24 is converted into a voltage value and input to the analog-digital converter 30.
  • the detection value of the current detector 24 is appropriately referred to as "shunt voltage”.
  • the shunt voltage which is the detected value of the power supply current I dc , has a correlation with the motor current Im .
  • the shunt voltage may be described as "a physical quantity correlated with the motor current Im ".
  • the current detector 24 may be referred to as a "first detector”
  • the current detector 22 may be referred to as a "second detector”.
  • the single-phase motor 12 is used as a rotary electric machine for rotating an electric blower (not shown). Electric blowers are mounted on devices such as vacuum cleaners and hand dryers.
  • the inverter 11 is a power converter that converts the DC voltage Vdc applied from the battery 10 into an AC voltage.
  • the inverter 11 supplies AC power to the single-phase motor 12 by applying the converted AC voltage to the single-phase motor 12.
  • the analog-to-digital converter 30 is a signal converter that converts analog data into digital data.
  • the analog-digital converter 30 converts the detected value of the DC voltage V dc detected by the voltage detector 20 and the detected value of the AC voltage V ac detected by the voltage detector 21 into digital data, and causes the control unit 25. Output. Further, the analog-digital converter 30 converts the detected value of the motor current Im detected by the current detector 22 and the detected value of the power supply current I dc detected by the current detector 24 into digital data, and the control unit 25. Output to.
  • the control unit 25 is referred to as PWM signals Q1, Q2, Q3, Q4 (hereinafter, appropriately referred to as "Q1 to Q4") based on the digital output value 30a converted by the analog digital converter 30 and the voltage amplitude command V *. ) Is generated.
  • the voltage amplitude command V * will be described later.
  • the drive signal generation unit 32 has drive signals S1, S2, S3, S4 for driving the switching element in the inverter 11 based on the PWM signals Q1 to Q4 output from the control unit 25 (hereinafter, appropriately “S1 to”. S4 ") is generated.
  • the control unit 25 has a processor 31, a carrier generation unit 33, and a memory 34.
  • the processor 31 generates PWM signals Q1 to Q4 for performing PWM control.
  • the processor 31 is a processing unit that performs various operations related to PWM control and advance angle control.
  • a CPU Central Processing Unit
  • a microprocessor a microcomputer
  • a microcomputer a microcomputer
  • a DSP Digital Signal Processor
  • LSI Large Scale Integration
  • the program read by the processor 31 is stored in the memory 34.
  • the memory 34 is also used as a work area when the processor 31 performs arithmetic processing.
  • the memory 34 is generally a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a flash memory, an EPROM (Erasable Project ROM), or an EEPROM (registered trademark) (Electrically EPROM). Details of the configuration of the carrier generation unit 33 will be described later.
  • FIG. 2 is a cross-sectional view for explaining the structure of the single-phase motor 12 in the first embodiment.
  • FIG. 2 shows the cross-sectional shapes of the rotor 12a and the stator 12b of the single-phase permanent magnet brushless motor as an example of the single-phase motor 12 used in the embodiment.
  • the rotor 12a is fitted to the shaft 12c and is configured to be rotatable in the direction of the arrow shown in the figure, that is, counterclockwise.
  • Four permanent magnets are arranged in the circumferential direction on the rotor 12a. These four permanent magnets are arranged so that the magnetizing directions are alternately reversed in the circumferential direction to form a magnetic pole in the rotor 12a.
  • the case where the number of magnetic poles of the rotor 12a is 4 poles is illustrated, but the number of magnetic poles of the rotor 12a may be other than 4 poles.
  • a stator 12b is arranged around the rotor 12a.
  • the stator 12b is configured by connecting four divided cores 12d in an annular shape.
  • the split core 12d has an asymmetrically shaped tooth 12e.
  • a winding 12f is wound around the teeth 12e.
  • the teeth 12e has a first tip portion 12e1 and a second tip portion 12e2 protruding toward the rotor 12a.
  • the side ahead of the rotation direction is the first tip portion 12e1, and the side behind the rotation direction is the second tip portion 12e2.
  • the distance between the first tip portion 12e1 and the rotor 12a is referred to as a "first gap” and is represented by G1.
  • the distance between the second tip portion 12e2 and the rotor 12a is called a "second gap” and is represented by G2.
  • G1 ⁇ G2 between the first gap G1 and the second gap G2.
  • the single-phase motor 12 may be a motor having a structure in which a permanent magnet is arranged on the surface of the rotor 12a (Surface Permanent Magnet: SPM), or a magnet-embedded type (Interior) in which the permanent magnet is embedded inside the rotor 12a. It may be a motor having a Permanent Magnet (IPM) structure.
  • SPM Surface Permanent Magnet
  • IPM Permanent Magnet
  • the single-phase motor 12 is a motor having an SPM structure, there is an effect that the torque pulsation due to the reluctance torque can be reduced. Further, when the single-phase motor 12 is a motor having an IPM structure, there is an effect that the structure for holding the permanent magnet becomes easy.
  • FIG. 3 is a diagram showing changes in the rotor position when the single-phase motor 12 shown in FIG. 2 is excited.
  • FIG. 4 is a diagram showing torque characteristics of the single-phase motor 12 shown in FIG.
  • the stop position of the rotor 12a is shown in the upper part of FIG.
  • the magnetic pole center line representing the center of the magnetic pole and the tooth center line representing the structural center of the stator 12b are deviated so that the magnetic pole center line precedes the rotation direction. This occurs because the single-phase motor 12 has a structure having an asymmetrically shaped teeth 12e. With this structure, the torque characteristics as shown in FIG. 4 appear.
  • the curve K1 shown by the solid line represents the motor torque
  • the curve K2 shown by the broken line represents the cogging torque.
  • the motor torque is the torque generated in the rotor 12a by the current flowing through the winding of the stator 12b.
  • the cogging torque is the torque generated in the rotor 12a by the magnetic force of the permanent magnet when no current is flowing in the winding of the stator 12b. Take the counterclockwise direction to the positive torque.
  • the horizontal axis of FIG. 4 represents the machine angle
  • the stop position of the rotor 12a whose magnetic pole center line coincides with the teeth center line is the machine angle 0 °.
  • the cogging torque is positive when the mechanical angle is 0 °. Therefore, the rotor 12a rotates counterclockwise and stops at the position of the mechanical angle ⁇ 1 where the cogging torque becomes zero.
  • the position of the mechanical angle ⁇ 1 is the stop position shown in the upper part of FIG.
  • FIG. 5 is a circuit diagram of the inverter 11 shown in FIG.
  • the inverter 11 has a plurality of switching elements 51, 52, 53, 54 (hereinafter, appropriately referred to as “51 to 54”) to be bridge-connected.
  • the switching elements 51 and 52 constitute the first leg, the leg 5A.
  • the leg 5A is a series circuit in which a switching element 51, which is a first switching element, and a switching element 52, which is a second switching element, are connected in series.
  • the switching elements 53 and 54 constitute the second leg, the leg 5B.
  • the leg 5B is a series circuit in which a switching element 53, which is a third switching element, and a switching element 54, which is a fourth switching element, are connected in series.
  • the legs 5A and 5B are connected between the DC bus 16a on the high potential side and the DC bus 16b on the low potential side so as to be in parallel with each other. As a result, the legs 5A and 5B are connected in parallel to both ends of the battery 10.
  • the switching elements 51 and 53 are located on the high potential side, and the switching elements 52 and 54 are located on the low potential side.
  • the high potential side is referred to as an "upper arm” and the low potential side is referred to as a "lower arm”. Therefore, the switching element 51 of the leg 5A may be referred to as a "first switching element of the upper arm”, and the switching element 52 of the leg 5A may be referred to as a "second switching element of the lower arm”.
  • the switching element 53 of the leg 5B may be referred to as a "third switching element of the upper arm”, and the switching element 54 of the leg 5B may be referred to as a "fourth switching element of the lower arm”.
  • connection end 6A between the switching element 51 and the switching element 52 and the connection end 6B between the switching element 53 and the switching element 54 form an AC end in the bridge circuit.
  • a single-phase motor 12 is connected between the connection end 6A and the connection end 6B.
  • MOSFET Metal-Oxide-Semiconductor Field-Effective Transistor
  • FET Field-Effective Transistor
  • the switching element 51 is formed with a body diode 51a connected in parallel between the drain and the source of the switching element 51.
  • the switching element 52 is formed with a body diode 52a connected in parallel between the drain and the source of the switching element 52.
  • the switching element 53 is formed with a body diode 53a connected in parallel between the drain and the source of the switching element 53.
  • the switching element 54 is formed with a body diode 54a connected in parallel between the drain and the source of the switching element 54.
  • Each of the plurality of body diodes 51a, 52a, 53a, 54a is a parasitic diode formed inside the MOSFET and is used as a freewheeling diode. A separate freewheeling diode may be connected. Further, instead of the MOSFET, an insulated gate bipolar transistor (IGBT) may be used.
  • IGBT insulated gate bipolar transistor
  • the switching elements 51 to 54 are not limited to MOSFETs formed of silicon-based materials, and may be MOSFETs formed of wide bandgap (Wide Band Gap: WBG) semiconductors such as silicon carbide, gallium nitride, gallium oxide, or diamond.
  • WBG Wide Band Gap
  • WBG semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a WBG semiconductor for at least one of the plurality of switching elements 51 to 54, the withstand voltage resistance and the allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element can be miniaturized.
  • WBG semiconductors have high heat resistance. Therefore, it is possible to reduce the size of the heat radiating portion for radiating the heat generated in the semiconductor module. In addition, it is possible to simplify the heat dissipation structure that dissipates heat generated by the semiconductor module.
  • FIG. 6 is a circuit diagram showing a modified example of the inverter 11 shown in FIG.
  • the inverter 11A shown in FIG. 6 has shunt resistors 55a and 55b added to the configuration of the inverter 11 shown in FIG.
  • the shunt resistor 55a is a detector for detecting the current flowing through the leg 5A
  • the shunt resistor 55b is a detector for detecting the current flowing through the leg 5B.
  • the shunt resistor 55a is connected between the terminal on the low potential side of the switching element 52 and the DC bus 16b
  • the shunt resistor 55b is connected to the terminal on the low potential side of the switching element 54 and the DC bus. It is connected to 16b.
  • the current detector 22 shown in FIG. 1 can be omitted.
  • the detected values of the shunt resistors 55a and 55b are sent to the processor 31 via the analog-digital converter 30.
  • the processor 31 implements activation control, which will be described later, based on the detected values of the shunt resistors 55a and 55b.
  • the shunt resistor 55a is not limited to that of FIG. 6 as long as it can detect the current flowing through the leg 5A.
  • the shunt resistor 55a is located between the DC bus 16a and the terminal on the high potential side of the switching element 51, between the terminal on the low potential side of the switching element 51 and the connection end 6A, or between the connection end 6A and the high potential of the switching element 52. It may be arranged between the terminal on the side.
  • the shunt resistor 55b is between the DC bus 16a and the terminal on the high potential side of the switching element 53, between the terminal on the low potential side of the switching element 53 and the connection end 6B, or between the connection end 6B and the switching element 54. It may be arranged between the terminal on the high potential side of the.
  • the on-resistance of the MOFFET may be used to detect the current with the voltage generated across the on-resistance.
  • FIG. 7 is a block diagram showing a functional part that generates a PWM signal among the functional parts of the control unit 25 shown in FIG.
  • the carrier comparison unit 38 is input with the advance angle controlled advance phase ⁇ v and the reference phase ⁇ e used when generating the voltage command V m described later.
  • the reference phase ⁇ e is a phase obtained by converting the rotor mechanical angle ⁇ m , which is the angle of the rotor 12a from the reference position, into an electric angle.
  • the motor drive device 2 according to the first embodiment has a so-called position sensorless control configuration that does not use the position sensor signal from the position sensor. Therefore, the rotor mechanical angle ⁇ m and the reference phase ⁇ e are estimated by calculation.
  • the "advance angle phase” referred to here is a phase representing the “advance angle” which is the “advance angle” of the voltage command Vm .
  • the “advance angle” referred to here is a phase difference between the motor applied voltage applied to the winding 12f of the stator 12b and the motor induced voltage induced in the winding 12f of the stator 12b. The “advance angle” takes a positive value when the voltage applied to the motor is ahead of the voltage induced by the motor.
  • the carrier comparison unit 38 in addition to the advance phase ⁇ v and the reference phase ⁇ e , the carrier generated by the carrier generation unit 33, the DC voltage V dc , and the voltage which is the amplitude value of the voltage command V m . Amplitude command V * is input.
  • the carrier comparison unit 38 generates PWM signals Q1 to Q4 based on the carrier, the advance phase ⁇ v , the reference phase ⁇ e , the DC voltage V dc , and the voltage amplitude command V *.
  • FIG. 8 is a block diagram showing an example of the carrier comparison unit 38 shown in FIG. 7.
  • FIG. 8 shows the detailed configuration of the carrier comparison unit 38A and the carrier generation unit 33.
  • a triangular wave carrier moving up and down between “0” and “1” is shown.
  • the PWM control of the inverter 11 includes synchronous PWM control and asynchronous PWM control. In the case of synchronous PWM control, it is necessary to synchronize the carrier with the advance phase ⁇ v . On the other hand, in the case of asynchronous PWM control, it is not necessary to synchronize the carrier with the advance phase ⁇ v .
  • the carrier comparison unit 38A has an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38d, a multiplication unit 38f, an addition unit 38e, a comparison unit 38g, a comparison unit 38h, and an output inversion unit. It has 38i and an output inversion unit 38j.
  • the absolute value calculation unit 38a calculates the absolute value
  • is divided by the DC voltage V dc detected by the voltage detector 20.
  • the output of the division unit 38b is the modulation factor.
  • the battery voltage which is the output voltage of the battery 10, fluctuates as the current continues to flow.
  • the value of the modulation factor can be adjusted so that the motor applied voltage does not decrease due to the decrease in the battery voltage.
  • the multiplication unit 38c calculates a sine value of “ ⁇ e + ⁇ v ”, which is the reference phase ⁇ e plus the advance phase ⁇ v .
  • the calculated sine value of " ⁇ e + ⁇ v " is multiplied by the modulation factor which is the output of the division unit 38b.
  • "1/2" is multiplied by the voltage command Vm , which is the output of the multiplication unit 38c.
  • Vm which is the output of the multiplication unit 38c.
  • the addition unit 38e "1/2" is added to the output of the multiplication unit 38d.
  • "-1" is multiplied by the output of the addition unit 38e.
  • the output of the addition unit 38e is input to the comparison unit 38g as a positive voltage command Vm1 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54, and is input to the comparison unit 38g of the multiplication unit 38f.
  • the output is input to the comparison unit 38h as a negative voltage command Vm2 for driving the two switching elements 52 and 54 of the lower arm.
  • the comparison unit 38 g the positive voltage command V m1 and the amplitude of the carrier are compared.
  • the output of the output inversion unit 38i in which the output of the comparison unit 38g is inverted becomes the PWM signal Q1 to the switching element 51, and the output of the comparison unit 38g becomes the PWM signal Q2 to the switching element 52.
  • the negative voltage command Vm2 and the amplitude of the carrier are compared.
  • the output of the output inversion unit 38j which is the inverted output of the comparison unit 38h, is the PWM signal Q3 to the switching element 53, and the output of the comparison unit 38h is the PWM signal Q4 to the switching element 54.
  • the output inverting unit 38i does not turn on the switching element 51 and the switching element 52 at the same time
  • the output inverting unit 38j does not turn on the switching element 53 and the switching element 54 at the same time.
  • FIG. 9 is a diagram showing an example of waveforms of a main part when operated using the carrier comparison unit 38A shown in FIG.
  • the waveform of the positive voltage command V m1 output from the addition unit 38e, the waveform of the negative voltage command V m2 output from the multiplication unit 38f, the waveforms of the PWM signals Q1 to Q4, and the inverter output are shown.
  • the voltage waveform is shown.
  • the PWM signal Q1 becomes “Low” when the positive voltage command V m1 is larger than the carrier, and becomes “High” when the positive voltage command V m1 is smaller than the carrier.
  • the PWM signal Q2 is an inverted signal of the PWM signal Q1.
  • the PWM signal Q3 becomes “Low” when the negative voltage command V m2 is larger than the carrier, and becomes “High” when the negative voltage command V m2 is smaller than the carrier.
  • the PWM signal Q4 is an inverted signal of the PWM signal Q3.
  • the circuit shown in FIG. 8 is configured with “Low Active", but even if each signal is configured with "High Active” having opposite values. good.
  • the waveform of the inverter output voltage shows a voltage pulse due to the difference voltage between the PWM signal Q1 and the PWM signal Q4 and a voltage pulse due to the difference voltage between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as the motor applied voltage.
  • Bipolar modulation and unipolar modulation are known as modulation methods used when generating PWM signals Q1 to Q4.
  • Bipolar modulation is a modulation method that outputs a voltage pulse that changes with a positive or negative potential every cycle of the voltage command Vm .
  • Unipolar modulation is a modulation method that outputs a voltage pulse that changes at three potentials in each cycle of the voltage command Vm , that is, a voltage pulse that changes between a positive potential, a negative potential, and a zero potential.
  • the waveform shown in FIG. 9 is due to unipolar modulation.
  • any modulation method may be used. In applications where it is necessary to control the motor current waveform to a more sinusoidal wave, it is preferable to adopt unipolar modulation having a lower harmonic content than bipolar modulation.
  • the waveform shown in FIG. 9 shows four switchings of the switching elements 51 and 52 constituting the leg 5A and the switching elements 53 and 54 constituting the leg 5B during the half-cycle T / 2 period of the voltage command V m . It is obtained by a method of switching the element. This method is called “both-sided PWM" because the switching operation is performed by both the positive side voltage command V m1 and the negative side voltage command V m2 . On the other hand, in one half cycle of one cycle T of the voltage command V m , the switching operation of the switching elements 51 and 52 is suspended, and in the other half cycle of the one cycle T of the voltage command V m , the switching operation is suspended. There is also a method of suspending the switching operation of the switching elements 53 and 54.
  • one-sided PWM This method is called “one-sided PWM”.
  • double-sided PWM mode the operation mode operated by double-sided PWM
  • one-sided PWM mode the operation mode operated by one-sided PWM
  • the PWM signal by "two-sided PWM” may be called “two-sided PWM signal”
  • the PWM signal by "one-sided PWM” may be called “one-sided PWM signal”.
  • FIG. 10 is a block diagram showing another example of the carrier comparison unit 38 shown in FIG. 7.
  • FIG. 10 shows an example of a one-sided PWM signal generation circuit, and specifically, a detailed configuration of a carrier comparison unit 38B and a carrier generation unit 33 is shown.
  • the configuration of the carrier generation unit 33 shown in FIG. 10 is the same as or equivalent to that shown in FIG.
  • the configuration of the carrier comparison unit 38B shown in FIG. 10 the same or equivalent components as the carrier comparison unit 38A shown in FIG. 8 are designated by the same reference numerals.
  • the carrier comparison unit 38B has an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38k, an addition unit 38m, an addition unit 38n, a comparison unit 38g, a comparison unit 38h, and an output inversion. It has a unit 38i and an output inversion unit 38j.
  • the absolute value calculation unit 38a calculates the absolute value
  • is divided by the DC voltage V dc detected by the voltage detector 20. Even in the configuration of FIG. 10, the output of the division unit 38b is the modulation factor.
  • the multiplication unit 38c calculates a sine value of “ ⁇ e + ⁇ v ”, which is the reference phase ⁇ e plus the advance phase ⁇ v .
  • the calculated sine value of " ⁇ e + ⁇ v " is multiplied by the modulation factor which is the output of the division unit 38b.
  • "-1" is multiplied by the voltage command Vm , which is the output of the multiplication unit 38c.
  • Vm which is the output of the multiplication unit 38c.
  • “1” is added to the voltage command Vm which is the output of the multiplication unit 38c.
  • "1" is added to the output of the multiplication unit 38k, that is, the inverted output of the voltage command Vm .
  • the output of the addition unit 38m is input to the comparison unit 38g as a first voltage command Vm3 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54.
  • the output of the addition unit 38n is input to the comparison unit 38h as a second voltage command Vm4 for driving the two switching elements 52 and 54 of the lower arm.
  • the comparison unit 38 g the first voltage command V m3 and the amplitude of the carrier are compared.
  • the output of the output inversion unit 38i in which the output of the comparison unit 38g is inverted becomes the PWM signal Q1 to the switching element 51, and the output of the comparison unit 38g becomes the PWM signal Q2 to the switching element 52.
  • the second voltage command Vm4 and the amplitude of the carrier are compared.
  • the output of the output inversion unit 38j which is the inverted output of the comparison unit 38h, is the PWM signal Q3 to the switching element 53, and the output of the comparison unit 38h is the PWM signal Q4 to the switching element 54.
  • the output inverting unit 38i does not turn on the switching element 51 and the switching element 52 at the same time
  • the output inverting unit 38j does not turn on the switching element 53 and the switching element 54 at the same time.
  • FIG. 11 is a diagram showing an example of waveforms of a main part when operated using the carrier comparison unit 38B shown in FIG.
  • the waveform of the first voltage command V m3 output from the adder 38 m the waveform of the second voltage command V m4 output from the adder 38n, the waveforms of the PWM signals Q1 to Q4, and the inverter output are shown.
  • the voltage waveform is shown.
  • the waveform portion of the first voltage command V m3 whose amplitude value is larger than the peak value of the carrier and the second voltage command V m4 whose amplitude value is larger than the peak value of the carrier.
  • the corrugated portion is represented by a flat straight line.
  • the PWM signal Q1 becomes “Low” when the first voltage command V m3 is larger than the carrier, and becomes “High” when the first voltage command V m3 is smaller than the carrier.
  • the PWM signal Q2 is an inverted signal of the PWM signal Q1.
  • the PWM signal Q3 becomes “Low” when the second voltage command V m4 is larger than the carrier, and becomes “High” when the second voltage command V m4 is smaller than the carrier.
  • the PWM signal Q4 is an inverted signal of the PWM signal Q3.
  • the circuit shown in FIG. 10 is configured with “Low Active", but even if each signal is configured with "High Active” having opposite values. good.
  • the waveform of the inverter output voltage shows a voltage pulse due to the difference voltage between the PWM signal Q1 and the PWM signal Q4 and a voltage pulse due to the difference voltage between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as the motor applied voltage.
  • the switching element 52 is controlled to be always on in one half cycle of one cycle T of the voltage command V m , and the one cycle T of the voltage command V m is controlled.
  • the switching element 54 is controlled to be always on.
  • FIG. 11 is an example, in which the switching element 51 is controlled to be always on in one half cycle, and the switching element 53 is controlled to be always on in the other half cycle. Is also possible. That is, the waveform shown in FIG. 11 is characterized in that at least one of the switching elements 51 to 54 is controlled to be in the ON state in the half cycle of the voltage command Vm .
  • the waveform of the inverter output voltage is unipolar modulation that changes at three potentials in each cycle of the voltage command Vm .
  • bipolar modulation may be used instead of unipolar modulation, but in applications where it is necessary to control the motor current waveform to a more sinusoidal wave, it is preferable to adopt unipolar modulation.
  • FIG. 12 is a block diagram showing a functional configuration for calculating the advance angle phase ⁇ v input to the carrier comparison unit 38 shown in FIG. 7.
  • FIG. 13 is a diagram showing an example of a method for calculating the advance angle phase ⁇ v in the first embodiment.
  • FIG. 14 is a diagram used to explain the relationship between the voltage command V m shown in FIG. 7 and the advance phase ⁇ v .
  • the function of calculating the advance angle phase ⁇ v can be realized by the rotation speed calculation unit 42 and the advance angle phase calculation unit 44.
  • the rotation speed calculation unit 42 calculates the rotation speed ⁇ of the single-phase motor 12 based on the detection value of the motor current Im detected by the current detector 22. Further, the rotation speed calculation unit 42 calculates the rotor mechanical angle ⁇ m based on the detected value of the motor current Im , and also calculates the reference phase ⁇ e obtained by converting the rotor mechanical angle ⁇ m into an electric angle.
  • the position of the rotor 12a is represented by a signal level.
  • the edge portion where the signal falls from “H” to “L” is set as the reference position of the rotor 12a, and this reference position is set to “0 °” of the rotor mechanical angle ⁇ m .
  • a reference phase ⁇ e which is a phase obtained by converting the rotor mechanical angle ⁇ m into an electric angle, is shown at the lower part of the numerical sequence representing the rotor mechanical angle ⁇ m .
  • the advance phase phase calculation unit 44 calculates the advance angle phase ⁇ v based on the rotation speed ⁇ and the reference phase ⁇ e calculated by the rotation speed calculation unit 42.
  • the horizontal axis of FIG. 13 shows the rotation speed N
  • the vertical axis of FIG. 13 shows the advance phase ⁇ v .
  • the advance phase ⁇ v can be determined by using a function in which the advance phase ⁇ v increases with respect to the increase in the rotation speed N.
  • the advance phase ⁇ v is determined by a linear function of the first order, but the phase is not limited to the linear function of the first order.
  • a function other than the linear linear function of the first order may be used as long as the advance phase ⁇ v is the same or becomes larger according to the increase of the rotation speed N.
  • FIG. 14 shows a state in which the rotor mechanical angles ⁇ m when the rotor 12a is rotated clockwise are 0 °, 45 °, 90 °, 135 °, and 180 °.
  • Four magnets are shown on the rotor 12a of the single-phase motor 12, and four teeth 12e are shown on the outer circumference of the rotor 12a.
  • the rotor mechanical angle ⁇ m is estimated based on the detected value of the motor current Im , and the reference phase ⁇ e converted into an electric angle based on the estimated rotor mechanical angle ⁇ m . Is calculated.
  • the voltage command V m having the same phase as the reference phase ⁇ e is output.
  • the amplitude of the voltage command V m at this time is determined based on the voltage amplitude command V * described above.
  • the voltage command V m advanced by ⁇ / 4 which is a component of the advance phase ⁇ v , is output from the reference phase ⁇ e .
  • FIG. 15 is a diagram used for explaining the operation of the main part in the first embodiment.
  • FIG. 16 is a diagram used to explain the relationship between the rotor position when the single-phase motor shown in FIG. 2 is stopped and the start control in the first embodiment.
  • the above-mentioned FIGS. 2, 3 and 16 below are examples in which the single-phase motor 12 having the asymmetrically shaped teeth 12e is the drive target, but the single-phase motor to be driven is FIG. 2, FIG. It is not limited to the structure of 3 and FIG. That is, the method of the first embodiment is not limited to the case where the teeth 12e has an asymmetrical shape, and can be applied even when the teeth 12e has a symmetrical shape.
  • the waveform of the motor applied voltage or the motor induced voltage is shown in the upper part, and the waveform of the motor current is shown in the middle part. Further, the waveform of the shunt voltage is shown in the lower part.
  • first voltage a voltage having a negative polarity
  • first voltage the voltage of this polarity
  • the first period starts immediately after startup.
  • FIG. 15 illustrates a case where the first voltage is a voltage of one pulse, but the present invention is not limited to this.
  • the first voltage may be the voltage of a plurality of PWM-controlled pulse trains.
  • the polarity of the first voltage is the polarity of the intended positive energization. Therefore, the rate of increase of the motor current and the shunt voltage is smaller than that shown in FIG. Further, in this case, the polarity of the motor applied voltage is reversed before the shunt voltage reaches the first threshold value. Therefore, the single-phase motor 12 rotates without any problem.
  • the timing for switching the polarity of the motor applied voltage can be determined based on the command value of the rotation speed given to the single-phase motor 12. Further, during the rotation of the single-phase motor 12, the rotation speed can be calculated based on the motor-induced voltage detected by the voltage detector 21, and the switching timing can be determined based on the calculated rotation speed.
  • the stop position of the rotor 12a is pattern 2
  • the polarity of the first voltage is the polarity of unintended reverse energization. Therefore, the waveforms of the motor current and the shunt voltage linearly decrease or increase as shown in FIG. Therefore, when the shunt voltage reaches the first threshold value, the inverter 11 gates off. As a result, the application of the first voltage to the single-phase motor 12 is stopped.
  • each waveform during the regeneration period is surrounded by a vertically long ellipse.
  • an "inverter output stop period" longer than the regeneration period is provided.
  • the inverter output stop period is a period during which the application of the first voltage is stopped, and is started immediately after the shunt voltage reaches the first threshold value.
  • the motor induced voltage can be detected by the voltage detector 21.
  • the motor-induced voltage may be calculated based on the detection value of the voltage detector 20 or the detection value of the current detector 24.
  • a control means for reducing the output voltage of the battery 10 to zero or a mechanism for disconnecting the electrical connection between the battery 10 and the inverter 11 is required.
  • the process shifts to the second period shown in FIG.
  • the inverter 11 applies a voltage having a polarity opposite to the first voltage applied in the first period to the single-phase motor 12.
  • this voltage of opposite polarity is called "second voltage".
  • FIG. 15 illustrates a case where the second voltage is a voltage of one pulse, but the present invention is not limited to this.
  • the second voltage may be the voltage of a plurality of PWM-controlled pulse trains.
  • the polarity of the second voltage is the voltage of the polarity that rotates the single-phase motor 12 in the first direction, which is the intended rotation direction.
  • the second voltage gives the single-phase motor 12 a rotational torque that rotates in the first direction.
  • the inverter 11 inverts the polarity of the voltage applied to the single-phase motor 12 each time the shunt voltage reaches the first threshold value.
  • the first voltage is applied to the single-phase motor 12 during the first period at the time of starting the single-phase motor 12. Then, when the shunt voltage reaches the first threshold value, the application of the first voltage is stopped. By stopping the application of the first voltage, the stop position of the rotor magnetic pole can be grasped. By providing the inverter stop period in this way, it is possible to uniquely determine the stop position of the rotor magnetic pole.
  • the control method of the first embodiment can be suitably used for this type of motor.
  • the first threshold value is too large, as shown in pattern 3 of FIG. 16, there is a possibility that the rotor position after energization will stop in a state of being shifted in the direction of reverse energization from pattern 2. If a voltage whose polarity is reversed is applied in this state, the single-phase motor 12 may rotate in the direction of reverse energization, that is, in the second direction opposite to the intended direction. Therefore, the first threshold value needs to be appropriately set so that the single-phase motor 12 does not rotate in an unintended second direction.
  • the first threshold value when the first threshold value is too small, the motor applied voltage is switched in a state where the rotational torque generated by the winding 12f of the stator 12b is small. In this case, if the load torque is large, it may not be possible to give a sufficient rotational torque to the load. Therefore, the first threshold value needs to be appropriately set so that the single-phase motor 12 can give a sufficient rotational torque to the load.
  • the inverter applies the first voltage to the single-phase motor during the first period at the time of starting the single-phase motor, and the first voltage is increased.
  • a second voltage in which the polarity of the first voltage is reversed is applied in the second period after application.
  • a stop period for stopping the application of the first voltage is provided.
  • the stop period is set so as to start after the physical quantity correlated with the motor current reaches the first threshold value.
  • the physical quantity that correlates with the motor current can be detected by the first current detector.
  • Embodiment 2 Next, start control in the motor drive device according to the second embodiment will be described.
  • the configuration of the motor drive device according to the second embodiment is the same as the configuration of the motor drive device 2 according to the first embodiment.
  • the parts different from the first embodiment will be mainly described, and the description of the overlapping contents will be omitted as appropriate.
  • FIG. 17 is a diagram used for explaining the operation of a main part in the motor drive device 2 according to the second embodiment.
  • the waveform of the motor applied voltage or the motor induced voltage is shown in the upper part, and the waveform of the motor current is shown in the middle part. Further, the waveform of the shunt voltage is shown in the lower part.
  • the definitions of the first period, the second period, and the inverter output stop section are the same as those in the first embodiment. Further, the definitions of the first voltage, the second voltage, and the first threshold value are the same as those in the first embodiment.
  • the single-phase motor 12 can be smoothly driven by applying the first voltage, which is the polarity of positive energization, as in the first embodiment.
  • the inverter 11 applies the first voltage to the single-phase motor 12, and stops the application of the first voltage when the shunt voltage reaches the first threshold value. Then, the stop of applying the first voltage continues during the inverter output stop period. When the inverter output stop period ends, the process shifts to the second period. When the second period begins, the inverter 11 applies a second voltage to the single-phase motor 12. The operation up to this point is the same as that of the first embodiment.
  • the level of the first top mentioned above that is, the level of the first top where the value of the shunt voltage changes from increasing to decreasing is detected, and the detection level is set as the second threshold value.
  • the position and level at which the first top is generated are determined by the rotational torque generated in the rotor 12a and the motor-induced voltage generated by the rotation of the rotor 12a.
  • the inverter 11 reverses the polarity of the second voltage when the shunt voltage reaches the second threshold value after the setting of the second threshold value. After that, the inverter 11 inverts the polarity of the voltage applied to the single-phase motor 12 each time the shunt voltage reaches the second threshold value. As a result, the rotary torque can be continuously applied to the rotor 12a, so that the single-phase motor 12 can be smoothly driven.
  • the value of di / dt which is the rate of change in current, is small. Therefore, there is an advantage that the sampling interval for current detection is not reduced and the decrease in the threshold setting accuracy can be suppressed even with a small number of samplings. Since the appearance of the first top depends on the characteristics of the single-phase motor 12, the characteristics of the load connected to the single-phase motor 12, and the like, the second threshold value is set every second period, that is, when the motor is applied. It is preferable that the voltage is reset and reset each time the polarity is reversed.
  • the inverter applies the first voltage to the single-phase motor during the first period at the time of starting the single-phase motor, and the first voltage is increased.
  • a second voltage in which the polarity of the first voltage is reversed is applied.
  • a stop period for stopping the application of the first voltage is provided.
  • a second threshold value smaller than the first threshold value is set. The inverter reverses the polarity of the second voltage when the shunt voltage reaches the second threshold after the setting of the second threshold.
  • the distance between the permanent magnet provided in the rotor and the substrate provided with the magnetic pole position sensor becomes close.
  • the substrate is arranged at a position that obstructs the flow of the wind generated by the blades, which increases the pressure loss of the air passage. The increase in pressure loss becomes a factor that deteriorates the suction power of the vacuum cleaner and lowers the suction power.
  • the application example is an electric blower
  • the gas sucked by the electric blower contains a large amount of water
  • the amount of water that directly collides with the substrate increases.
  • a voltage is applied to the substrate
  • ionized metal moves between the electrodes to cause a short circuit, which may cause ion migration.
  • dust or dust accumulating on the substrate there is a concern about a short circuit caused by dust or dust accumulating on the substrate.
  • a method of applying a moisture-proof agent to the substrate or a method of isolating the substrate from the air passage is adopted, but both of them lead to an increase in manufacturing cost.
  • the degree of freedom in board placement is increased, so that the board can be placed while avoiding the air passage.
  • the amount of water that directly collides with the substrate is reduced, so that the occurrence of ion migration can be suppressed and the amount of the moisture-proofing agent can be reduced.
  • the degree of freedom in arranging the substrate is increased, the quality of the substrate can be improved by arranging the substrate outside the housing.
  • the position sensor is a magnetic pole position sensor
  • the accuracy of the mounting work for correctly detecting the magnetic pole position is required, and it is necessary to carry out the position adjusting work according to the mounting position. For this reason, it becomes difficult to control the manufacturing, and the manufacturing cost including the installation work increases.
  • the inverter and the single-phase motor can be configured separately. This makes it possible to reduce the restrictions when applying the product. For example, when the application example is a product used in a water place or the like, the inverter can be isolated from the position of the water place or the like and arranged.
  • the configuration is equipped with a current detector.
  • the current detector can detect a motor abnormality such as a shaft lock or a phase loss by detecting the motor current. This makes it possible to safely stop without a position sensor.
  • a third threshold value larger than the first threshold value is set. Then, when the shunt voltage reaches the third threshold value, it is determined that the motor is abnormal. Further, when it is determined that the motor is abnormal, the output of the inverter is cut off. By doing so, it is possible to detect a motor abnormality and safely stop the operation of the product.
  • Embodiment 3 an application example of the motor drive device 2 described in the first and second embodiments will be described.
  • the motor drive device 2 described above can be used, for example, in a vacuum cleaner.
  • a product such as an electric vacuum cleaner that is used immediately after the power is turned on, the effect of shortening the start-up time of the motor drive device 2 according to the first and second embodiments is increased.
  • FIG. 18 is a configuration diagram of the vacuum cleaner 61 according to the third embodiment.
  • the vacuum cleaner 61 shown in FIG. 18 is a so-called stick-type vacuum cleaner.
  • the vacuum cleaner 61 includes a battery 10 shown in FIG. 1, a motor driving device 2 shown in FIG. 1, an electric blower 64 driven by a single-phase motor 12 shown in FIG. 1, and dust collector.
  • a chamber 65, a sensor 68, a suction port 63, an extension pipe 62, and an operation unit 66 are provided.
  • the user who uses the vacuum cleaner 61 has an operation unit 66 and operates the vacuum cleaner 61.
  • the motor drive device 2 of the vacuum cleaner 61 drives the electric blower 64 using the battery 10 as a power source. By driving the electric blower 64, dust is sucked from the suction port 63. The sucked dust is collected in the dust collecting chamber 65 via the extension pipe 62.
  • the stick-type vacuum cleaner is illustrated in FIG. 18, it is not limited to the stick-type vacuum cleaner.
  • the technique of the present disclosure can be applied to any product as long as it is an electric device equipped with an electric blower.
  • FIG. 18 shows a configuration in which the battery 10 is used as a power source, but the present invention is not limited to this. Instead of the battery 10, an AC power supply supplied from an outlet may be used.
  • the above-mentioned motor drive device can be used for, for example, a hand dryer.
  • a hand dryer the shorter the time from inserting the hand to driving the electric blower, the better the user's usability. Therefore, the effect of shortening the start-up time of the motor drive device 2 according to the first and second embodiments is greatly exhibited.
  • FIG. 19 is a block diagram of the hand dryer 90 according to the third embodiment.
  • the hand dryer 90 includes a motor drive device 2 shown in FIG. 1, a casing 91, a hand detection sensor 92, a water receiving unit 93, a drain container 94, a cover 96, a sensor 97, and an intake air. It includes a port 98 and an electric blower 95 driven by the single-phase motor 12 shown in FIG.
  • the sensor 97 is either a gyro sensor or a motion sensor.
  • the hand dryer 90 when a hand is inserted into the hand insertion portion 99 at the upper part of the water receiving portion 93, water is blown off by the blown air by the electric blower 95, and the blown water is collected by the water receiving portion 93. After that, it is stored in the drain container 94.
  • the position sensor is a sensitive sensor, high-precision mounting accuracy is required for the installation position of the position sensor.
  • it is necessary to make adjustments according to the mounting position of the position sensor.
  • the position sensorless configuration the position sensor itself becomes unnecessary, and the adjustment step of the position sensor can be eliminated. As a result, the manufacturing cost can be significantly reduced.
  • the quality of the product can be improved because the position sensor is not affected by the secular variation.
  • the inverter and the single-phase motor can be configured separately. This makes it possible to relax restrictions on the product. For example, in the case of a product used in a water place with a large amount of water, the mounting position of the inverter in the product can be arranged at a place far from the water place. As a result, the possibility of failure of the inverter can be reduced, and the reliability of the device can be improved.
  • the motor abnormality such as the shaft lock and the open phase can be detected by detecting the motor current or the inverter current by the current detector arranged instead of the position sensor. Therefore, the product can be safely stopped without the position sensor.
  • the motor drive device 2 can be widely applied to an electric device on which a motor is mounted.
  • Examples of electrical equipment equipped with motors are incinerators, crushers, dryers, dust collectors, printing machines, cleaning machines, confectionery machines, tea making machines, woodworking machines, plastic extruders, cardboard machines, packaging machines, hot air generators. , OA equipment, and electric blowers.
  • the electric blower is a blowing means for transporting an object, sucking dust, or for general blowing and exhausting.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, or can be combined with each other, and deviates from the gist. It is also possible to omit or change a part of the configuration to the extent that it does not.

Abstract

A motor drive device (2) is provided with an inverter (11) disposed between a battery (10) and a single-phase motor (12) and drives the single-phase motor (12) in a position sensorless manner. When the single-phase motor (12) is started, the inverter (11) applies a first voltage to the single-phase motor (12) in a first time period immediately after the single-phase motor (12) is started and applies a second voltage having the reverse polarity to the polarity of the first voltage in a second time period after the application of the first voltage. A suspension time period during which application of the first voltage is suspended is provided between the first time period and the second time period.

Description

モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤMotor drive, electric blower, vacuum cleaner and hand dryer
 本開示は、単相モータを位置センサレスで駆動するモータ駆動装置、モータ駆動装置によって駆動される単相モータを搭載した電動送風機、電気掃除機及びハンドドライヤに関する。 The present disclosure relates to a motor drive device that drives a single-phase motor without a position sensor, an electric blower equipped with a single-phase motor driven by the motor drive device, an electric vacuum cleaner, and a hand dryer.
 従来、多相ブラシレスモータを位置センサレスで起動する場合、インバータが生成する回転磁界に追従してモータが回転するように高周波の電圧を印加する方法がある。また、下記特許文献1には、三相のセンサレスブラシレスモータの起動方法において、1回の通電でロータの初期位置を設定し、設定した初期位置の情報に基づいてロータの回転速度を上昇させ、回転速度が上昇した後に、ロータの位置検出を行う方法が開示されている。 Conventionally, when starting a multi-phase brushless motor without a position sensor, there is a method of applying a high frequency voltage so that the motor rotates following the rotating magnetic field generated by the inverter. Further, in Patent Document 1 below, in the method of starting a three-phase sensorless brushless motor, the initial position of the rotor is set by one energization, and the rotation speed of the rotor is increased based on the information of the set initial position. A method of detecting the position of the rotor after the rotation speed has increased is disclosed.
特開平1-308192号公報Japanese Unexamined Patent Publication No. 1-308192
 上記の通り、多相モータでは、種々の起動方法が提案されている。一方、単相モータの場合、インバータによる回転磁界が生成できない。このため、ロータ磁極の停止位置によっては、正しい方向に起動できない場合がある。起動の際に、ロータ磁極の停止位置に応じた適切な電圧が印加されない場合、急峻な電流が発生し、単相モータにダメージを与えてしまうおそれがある。また、起動の際に急峻な電流が流れると、過電流遮断機能が働いて、単相モータを停止させてしまう可能性がある。従って、単相モータを位置センサレスで起動する場合、安全且つ確実な起動が求められている。 As mentioned above, various starting methods have been proposed for multi-phase motors. On the other hand, in the case of a single-phase motor, a rotating magnetic field cannot be generated by the inverter. Therefore, depending on the stop position of the rotor magnetic pole, it may not be possible to start in the correct direction. If an appropriate voltage corresponding to the stop position of the rotor magnetic pole is not applied at the time of starting, a steep current is generated, which may damage the single-phase motor. Further, if a steep current flows at the time of starting, the overcurrent cutoff function may work and the single-phase motor may be stopped. Therefore, when starting a single-phase motor without a position sensor, safe and reliable starting is required.
 本開示は、上記に鑑みてなされたものであって、単相モータを位置センサレスで起動する場合において、単相モータを安全且つ確実に起動することができるモータ駆動装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present invention is to obtain a motor drive device capable of safely and reliably starting a single-phase motor when the single-phase motor is started without a position sensor. ..
 上述した課題を解決し、目的を達成するため、本開示に係るモータ駆動装置は、単相モータを位置センサレスで駆動するモータ駆動装置である。モータ駆動装置は、直流電源と単相モータとの間に配置されるインバータを備える。インバータは、単相モータの起動時において、起動直後の第1の期間に単相モータに第1電圧を印加し、第1電圧の印加後の第2の期間に、第1電圧の極性を反転した第2電圧を印加することで単相モータを起動する。第1の期間と第2の期間との間には、第1電圧の印加を停止する停止期間が存在する。 In order to solve the above-mentioned problems and achieve the object, the motor drive device according to the present disclosure is a motor drive device that drives a single-phase motor without a position sensor. The motor drive includes an inverter located between the DC power supply and the single-phase motor. When the single-phase motor is started, the inverter applies the first voltage to the single-phase motor in the first period immediately after the start, and reverses the polarity of the first voltage in the second period after the application of the first voltage. The single-phase motor is started by applying the second voltage. Between the first period and the second period, there is a stop period during which the application of the first voltage is stopped.
 本開示に係るモータ駆動装置によれば、単相モータを位置センサレスで起動する場合において、単相モータを安全且つ確実に起動することができるという効果を奏する。 According to the motor drive device according to the present disclosure, when the single-phase motor is started without a position sensor, the effect is that the single-phase motor can be started safely and surely.
実施の形態1に係るモータ駆動装置を含むモータ駆動システムの構成を示すブロック図A block diagram showing a configuration of a motor drive system including a motor drive device according to the first embodiment. 実施の形態1における単相モータの構造の説明に供する断面図Sectional drawing which provides the explanation of the structure of the single-phase motor in Embodiment 1. 図2に示す単相モータを励磁した際のロータ位置の変化を示す図The figure which shows the change of the rotor position when the single-phase motor shown in FIG. 2 is excited. 図2に示す単相モータのトルク特性を示す図The figure which shows the torque characteristic of the single-phase motor shown in FIG. 図1に示すインバータの回路図Circuit diagram of the inverter shown in FIG. 図5に示すインバータの変形例を示す回路図A circuit diagram showing a modified example of the inverter shown in FIG. 図1に示す制御部の機能部位のうちのパルス幅変調(Pulse Width Modulation:PWM)信号を生成する機能部位を示すブロック図A block diagram showing a functional part that generates a pulse width modulation (PWM) signal among the functional parts of the control unit shown in FIG. 1. 図7に示すキャリア比較部の一例を示すブロック図A block diagram showing an example of the carrier comparison unit shown in FIG. 図8に示すキャリア比較部を用いて動作させたときの要部の波形例を示す図The figure which shows the waveform example of the main part when it operated using the carrier comparison part shown in FIG. 図7に示すキャリア比較部の他の例を示すブロック図A block diagram showing another example of the carrier comparison unit shown in FIG. 図10に示すキャリア比較部を用いて動作させたときの要部の波形例を示す図The figure which shows the waveform example of the main part when it operated using the carrier comparison part shown in FIG. 図7に示されるキャリア比較部へ入力される進角位相を算出するための機能構成を示すブロック図A block diagram showing a functional configuration for calculating the advance phase input to the carrier comparison unit shown in FIG. 7. 実施の形態1における進角位相の算出方法の一例を示す図The figure which shows an example of the calculation method of the advance angle phase in Embodiment 1. 図7に示される電圧指令と進角位相との関係の説明に使用する図The figure used to explain the relationship between the voltage command shown in FIG. 7 and the advance phase. 実施の形態1における要部の動作説明に使用する図The figure used for the operation explanation of the main part in Embodiment 1. 図2に示す単相モータが停止しているときのロータ位置と実施の形態1における起動制御との関係の説明に使用する図FIG. 2 is a diagram used to explain the relationship between the rotor position when the single-phase motor shown in FIG. 2 is stopped and the start control in the first embodiment. 実施の形態2に係るモータ駆動装置における要部の動作説明に使用する図The figure used for the operation explanation of the main part in the motor drive device which concerns on Embodiment 2. 実施の形態3に係る電気掃除機の構成図Configuration diagram of the vacuum cleaner according to the third embodiment 実施の形態3に係るハンドドライヤの構成図Configuration diagram of the hand dryer according to the third embodiment
 以下に添付図面を参照し、本開示の実施の形態に係るモータ駆動装置、電動送風機、電気掃除機及びハンドドライヤを図面に基づいて詳細に説明する。 The motor drive device, electric blower, vacuum cleaner and hand dryer according to the embodiment of the present disclosure will be described in detail with reference to the accompanying drawings below.
実施の形態1.
 図1は、実施の形態1に係るモータ駆動装置2を含むモータ駆動システム1の構成を示すブロック図である。図1に示すモータ駆動システム1は、単相モータ12と、モータ駆動装置2と、バッテリ10と、を備える。モータ駆動装置2は、単相モータ12に交流電力を供給して単相モータ12を駆動する駆動装置である。バッテリ10は、モータ駆動装置2に直流電力を供給する直流電源である。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration of a motor drive system 1 including a motor drive device 2 according to the first embodiment. The motor drive system 1 shown in FIG. 1 includes a single-phase motor 12, a motor drive device 2, and a battery 10. The motor drive device 2 is a drive device that supplies AC power to the single-phase motor 12 to drive the single-phase motor 12. The battery 10 is a DC power source that supplies DC power to the motor drive device 2.
 モータ駆動装置2は、インバータ11と、アナログディジタル変換器30と、制御部25と、駆動信号生成部32とを備える。インバータ11と単相モータ12は、2本の接続線18a,18bによって接続されている。 The motor drive device 2 includes an inverter 11, an analog-digital converter 30, a control unit 25, and a drive signal generation unit 32. The inverter 11 and the single-phase motor 12 are connected by two connecting lines 18a and 18b.
 モータ駆動システム1は、電圧検出器20,21及び電流検出器22,24を備えている。モータ駆動システム1は、ロータ12aの回転位置を検出するための位置センサ信号を用いない、いわゆる位置センサレス制御の駆動システムである。 The motor drive system 1 includes voltage detectors 20 and 21 and current detectors 22 and 24. The motor drive system 1 is a so-called position sensorless control drive system that does not use a position sensor signal for detecting the rotation position of the rotor 12a.
 電圧検出器20は、バッテリ10からモータ駆動装置2に出力される直流電圧Vdcを検出する検出器である。直流電圧Vdcは、バッテリ10の出力電圧であり、インバータ11への印加電圧である。 The voltage detector 20 is a detector that detects the DC voltage Vdc output from the battery 10 to the motor drive device 2. The DC voltage V dc is the output voltage of the battery 10 and is the voltage applied to the inverter 11.
 電圧検出器21は、接続線18a,18b間に生じる交流電圧Vacを検出する検出器である。交流電圧Vacは、インバータ11が単相モータ12に印加するモータ印加電圧と、単相モータ12によって誘起されるモータ誘起電圧とが重畳された電圧である。インバータ11が動作を停止し、単相モータ12が回転している場合、モータ誘起電圧が観測される。なお、本稿では、インバータ11が動作を停止し、インバータ11が電圧を出力していない状態を「ゲートオフ」と呼ぶ。また、インバータ11が出力する電圧を、適宜「インバータ出力電圧」と呼ぶ。 The voltage detector 21 is a detector that detects the AC voltage Vac generated between the connection lines 18a and 18b. The AC voltage V ac is a voltage obtained by superimposing the motor applied voltage applied by the inverter 11 to the single-phase motor 12 and the motor-induced voltage induced by the single-phase motor 12. When the inverter 11 is stopped and the single-phase motor 12 is rotating, the motor induced voltage is observed. In this paper, the state in which the inverter 11 has stopped operating and the inverter 11 is not outputting a voltage is referred to as "gate off". Further, the voltage output by the inverter 11 is appropriately referred to as an "inverter output voltage".
 電流検出器22は、モータ電流Iを検出する検出器である。モータ電流Iは、インバータ11と単相モータ12との間で流出入する交流電流である。モータ電流Iは、単相モータ12のステータ12bに巻かれている、図1では不図示の巻線に流れる交流電流に等しい。電流検出器22には、変流器(Current Transformer:CT)、又はシャント抵抗を用いて電流を検出する電流検出器を例示できる。 The current detector 22 is a detector that detects the motor current Im . The motor current Im is an alternating current flowing in and out between the inverter 11 and the single-phase motor 12. The motor current Im is equal to the alternating current flowing through the windings (not shown in FIG. 1) wound around the stator 12b of the single-phase motor 12. Examples of the current detector 22 include a current transformer (CT) or a current detector that detects a current using a shunt resistor.
 電流検出器24は、電源電流Idcを検出する検出器である。電源電流Idcは、バッテリ10とインバータ11との間に流れる直流電流である。電流検出器24としては、図示のようにシャント抵抗を用いる構成が一般的である。電流検出器24に流れる電源電流Idcの検出値は、電圧値に変換されてアナログディジタル変換器30に入力される。なお、本稿では、電流検出器24の検出値を適宜「シャント電圧」と呼ぶ。また、電源電流Idcの検出値であるシャント電圧は、モータ電流Iと相関関係がある。即ち、モータ電流Iが増加すればシャント電圧も増加し、モータ電流Iが減少すればシャント電圧も減少する。このため、本稿では、シャント電圧を「モータ電流Iと相関のある物理量」と記載する場合がある。また、本稿では、電流検出器24を「第1の検出器」と呼び、電流検出器22を「第2の検出器」と呼ぶ場合がある。 The current detector 24 is a detector that detects the power supply current I dc . The power supply current I dc is a direct current flowing between the battery 10 and the inverter 11. The current detector 24 is generally configured to use a shunt resistor as shown in the figure. The detected value of the power supply current I dc flowing through the current detector 24 is converted into a voltage value and input to the analog-digital converter 30. In this paper, the detection value of the current detector 24 is appropriately referred to as "shunt voltage". Further, the shunt voltage, which is the detected value of the power supply current I dc , has a correlation with the motor current Im . That is, if the motor current Im increases, the shunt voltage also increases, and if the motor current Im decreases, the shunt voltage also decreases. Therefore, in this paper, the shunt voltage may be described as "a physical quantity correlated with the motor current Im ". Further, in this paper, the current detector 24 may be referred to as a "first detector", and the current detector 22 may be referred to as a "second detector".
 単相モータ12は、不図示の電動送風機を回転させる回転電機として利用される。電動送風機は、電気掃除機及びハンドドライヤといった装置に搭載される。 The single-phase motor 12 is used as a rotary electric machine for rotating an electric blower (not shown). Electric blowers are mounted on devices such as vacuum cleaners and hand dryers.
 インバータ11は、バッテリ10から印加される直流電圧Vdcを交流電圧に変換する電力変換器である。インバータ11は、変換した交流電圧を単相モータ12に印加することで、単相モータ12に交流電力を供給する。 The inverter 11 is a power converter that converts the DC voltage Vdc applied from the battery 10 into an AC voltage. The inverter 11 supplies AC power to the single-phase motor 12 by applying the converted AC voltage to the single-phase motor 12.
 アナログディジタル変換器30は、アナログデータをディジタルデータに変換する信号変換器である。アナログディジタル変換器30は、電圧検出器20によって検出された直流電圧Vdcの検出値、及び電圧検出器21によって検出された交流電圧Vacの検出値をディジタルデータに変換して制御部25に出力する。また、アナログディジタル変換器30は、電流検出器22によって検出されたモータ電流Iの検出値、及び電流検出器24によって検出され電源電流Idcの検出値をディジタルデータに変換して制御部25に出力する。 The analog-to-digital converter 30 is a signal converter that converts analog data into digital data. The analog-digital converter 30 converts the detected value of the DC voltage V dc detected by the voltage detector 20 and the detected value of the AC voltage V ac detected by the voltage detector 21 into digital data, and causes the control unit 25. Output. Further, the analog-digital converter 30 converts the detected value of the motor current Im detected by the current detector 22 and the detected value of the power supply current I dc detected by the current detector 24 into digital data, and the control unit 25. Output to.
 制御部25は、アナログディジタル変換器30で変換されたディジタル出力値30aと、電圧振幅指令V*とに基づいて、PWM信号Q1,Q2,Q3,Q4(以下、適宜「Q1~Q4」と表記)を生成する。電圧振幅指令V*については、後述する。 The control unit 25 is referred to as PWM signals Q1, Q2, Q3, Q4 (hereinafter, appropriately referred to as "Q1 to Q4") based on the digital output value 30a converted by the analog digital converter 30 and the voltage amplitude command V *. ) Is generated. The voltage amplitude command V * will be described later.
 駆動信号生成部32は、制御部25から出力されるPWM信号Q1~Q4に基づいて、インバータ11内のスイッチング素子を駆動するための駆動信号S1,S2,S3,S4(以下、適宜「S1~S4」と表記)を生成する。 The drive signal generation unit 32 has drive signals S1, S2, S3, S4 for driving the switching element in the inverter 11 based on the PWM signals Q1 to Q4 output from the control unit 25 (hereinafter, appropriately "S1 to". S4 ") is generated.
 制御部25は、プロセッサ31、キャリア生成部33及びメモリ34を有する。プロセッサ31は、PWM制御を行うためのPWM信号Q1~Q4を生成する。プロセッサ31は、PWM制御及び進角制御に関する各種演算を行う処理部である。プロセッサ31としては、CPU(Central Processing Unit)、マイクロプロセッサ、マイコン、マイクロコンピュータ、DSP(Digital Signal Processor)、又はシステムLSI(Large Scale Integration)を例示できる。 The control unit 25 has a processor 31, a carrier generation unit 33, and a memory 34. The processor 31 generates PWM signals Q1 to Q4 for performing PWM control. The processor 31 is a processing unit that performs various operations related to PWM control and advance angle control. As the processor 31, a CPU (Central Processing Unit), a microprocessor, a microcomputer, a microcomputer, a DSP (Digital Signal Processor), or a system LSI (Large Scale Integration) can be exemplified.
 メモリ34には、プロセッサ31によって読みとられるプログラムが保存される。メモリ34は、プロセッサ31が演算処理を行う際の作業領域としても使用される。メモリ34は、RAM(Random Access Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリが一般的である。キャリア生成部33の構成の詳細は後述する。 The program read by the processor 31 is stored in the memory 34. The memory 34 is also used as a work area when the processor 31 performs arithmetic processing. The memory 34 is generally a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a flash memory, an EPROM (Erasable Project ROM), or an EEPROM (registered trademark) (Electrically EPROM). Details of the configuration of the carrier generation unit 33 will be described later.
 図2は、実施の形態1における単相モータ12の構造の説明に供する断面図である。図2には、実施の形態で用いる単相モータ12の一例として、単相の永久磁石ブラシレスモータのロータ12a及びステータ12bの断面形状が示されている。 FIG. 2 is a cross-sectional view for explaining the structure of the single-phase motor 12 in the first embodiment. FIG. 2 shows the cross-sectional shapes of the rotor 12a and the stator 12b of the single-phase permanent magnet brushless motor as an example of the single-phase motor 12 used in the embodiment.
 ロータ12aはシャフト12cに嵌合され、図示の矢印方向、即ち反時計回りに回転可能に構成される。ロータ12aには、4個の永久磁石が周方向に配列されている。これらの4個の永久磁石は、着磁方向が周方向に交互に反転するように配置され、ロータ12aにおける磁極を形成する。なお、実施の形態1では、ロータ12aの磁極数が4極の場合を例示するが、ロータ12aの磁極数は4極以外でもよい。 The rotor 12a is fitted to the shaft 12c and is configured to be rotatable in the direction of the arrow shown in the figure, that is, counterclockwise. Four permanent magnets are arranged in the circumferential direction on the rotor 12a. These four permanent magnets are arranged so that the magnetizing directions are alternately reversed in the circumferential direction to form a magnetic pole in the rotor 12a. In the first embodiment, the case where the number of magnetic poles of the rotor 12a is 4 poles is illustrated, but the number of magnetic poles of the rotor 12a may be other than 4 poles.
 ロータ12aの周囲には、ステータ12bが配置される。ステータ12bは、4つの分割コア12dが環状に連結されて構成されている。 A stator 12b is arranged around the rotor 12a. The stator 12b is configured by connecting four divided cores 12d in an annular shape.
 分割コア12dは、非対称形状のティース12eを有する。ティース12eには、巻線12fが巻回されている。ティース12eは、ロータ12a側に突出する第1先端部12e1及び第2先端部12e2を有する。回転方向に対し、回転方向の先にある側が第1先端部12e1であり、回転方向の後にある側が第2先端部12e2である。ここで、第1先端部12e1とロータ12aとの距離を「第1ギャップ」と呼び、G1で表す。また、第2先端部12e2とロータ12aとの距離を「第2ギャップ」と呼び、G2で表す。第1ギャップG1と第2ギャップG2との間には、G1<G2の関係がある。 The split core 12d has an asymmetrically shaped tooth 12e. A winding 12f is wound around the teeth 12e. The teeth 12e has a first tip portion 12e1 and a second tip portion 12e2 protruding toward the rotor 12a. The side ahead of the rotation direction is the first tip portion 12e1, and the side behind the rotation direction is the second tip portion 12e2. Here, the distance between the first tip portion 12e1 and the rotor 12a is referred to as a "first gap" and is represented by G1. Further, the distance between the second tip portion 12e2 and the rotor 12a is called a "second gap" and is represented by G2. There is a relationship of G1 <G2 between the first gap G1 and the second gap G2.
 なお、単相モータ12は、永久磁石をロータ12aの表面に配置する(Surface Permanent Magnet:SPM)構造のモータであってもよいし、永久磁石をロータ12aの内部に埋め込む磁石埋込型(Interior Permanent Magnet:IPM)構造のモータであってもよい。単相モータ12がSPM構造のモータである場合、リラクタンストルクによるトルク脈動を小さくできるという効果がある。また、単相モータ12がIPM構造のモータである場合、永久磁石を保持する構造が容易になるという効果がある。 The single-phase motor 12 may be a motor having a structure in which a permanent magnet is arranged on the surface of the rotor 12a (Surface Permanent Magnet: SPM), or a magnet-embedded type (Interior) in which the permanent magnet is embedded inside the rotor 12a. It may be a motor having a Permanent Magnet (IPM) structure. When the single-phase motor 12 is a motor having an SPM structure, there is an effect that the torque pulsation due to the reluctance torque can be reduced. Further, when the single-phase motor 12 is a motor having an IPM structure, there is an effect that the structure for holding the permanent magnet becomes easy.
 図3は、図2に示す単相モータ12を励磁した際のロータ位置の変化を示す図である。図4は、図2に示す単相モータ12のトルク特性を示す図である。図3の上段部には、ロータ12aの停止位置が示されている。ロータ12aの停止位置において、磁極の中心を表す磁極中心線と、ステータ12bの構造的な中心を表すティース中心線とは、回転方向に対して磁極中心線が先行するようにずれている。これは、単相モータ12が非対称形状のティース12eを有する構造であるために生ずる。この構造により、図4に示すようなトルク特性が表れる。 FIG. 3 is a diagram showing changes in the rotor position when the single-phase motor 12 shown in FIG. 2 is excited. FIG. 4 is a diagram showing torque characteristics of the single-phase motor 12 shown in FIG. The stop position of the rotor 12a is shown in the upper part of FIG. At the stop position of the rotor 12a, the magnetic pole center line representing the center of the magnetic pole and the tooth center line representing the structural center of the stator 12b are deviated so that the magnetic pole center line precedes the rotation direction. This occurs because the single-phase motor 12 has a structure having an asymmetrically shaped teeth 12e. With this structure, the torque characteristics as shown in FIG. 4 appear.
 図4において、実線で示す曲線K1はモータトルク、破線で示す曲線K2はコギングトルクを表している。モータトルクは、ステータ12bの巻線に流れる電流によってロータ12aに発生するトルクである。コギングトルクは、ステータ12bの巻線に電流が流れていないときに永久磁石の磁力によってロータ12aに発生するトルクである。反時計方向をトルクの正にとる。また、図4の横軸は機械角を表しており、磁極中心線がティース中心線に一致するロータ12aの停止位置が機械角0°である。図4に示されるように、機械角0°のときのコギングトルクは正である。このため、ロータ12aは反時計方向に回転し、コギングトルクがゼロとなる機械角θ1の位置で停止する。この機械角θ1の位置が、図3の上段部に示す停止位置である。 In FIG. 4, the curve K1 shown by the solid line represents the motor torque, and the curve K2 shown by the broken line represents the cogging torque. The motor torque is the torque generated in the rotor 12a by the current flowing through the winding of the stator 12b. The cogging torque is the torque generated in the rotor 12a by the magnetic force of the permanent magnet when no current is flowing in the winding of the stator 12b. Take the counterclockwise direction to the positive torque. Further, the horizontal axis of FIG. 4 represents the machine angle, and the stop position of the rotor 12a whose magnetic pole center line coincides with the teeth center line is the machine angle 0 °. As shown in FIG. 4, the cogging torque is positive when the mechanical angle is 0 °. Therefore, the rotor 12a rotates counterclockwise and stops at the position of the mechanical angle θ1 where the cogging torque becomes zero. The position of the mechanical angle θ1 is the stop position shown in the upper part of FIG.
 図2に示す単相モータ12の場合、ロータ12aの停止位置は2箇所ある。停止位置の1つは、上述した図3の上段部に示す停止位置であり、もう1つは図3の下段部に示す停止位置である。巻線12fに直流電圧を印加すると、反時計回りに回転し、図3の中段部に示す励磁中の状態を経て図3の下段部に示す状態で停止する。図3の例の場合、直流電圧の印加によってティース12eに発生する磁力が、対向するロータ12aの磁極と同極であるため、回転方向にトルクがかかり、ロータ12aは回転する。そして、ある時間が経過し、ティース12eに発生する磁力と、対向するロータ12aの磁極とが異極となる図3の下段部の位置で安定的に停止する。 In the case of the single-phase motor 12 shown in FIG. 2, there are two stop positions for the rotor 12a. One of the stop positions is the stop position shown in the upper part of FIG. 3 described above, and the other is the stop position shown in the lower part of FIG. When a DC voltage is applied to the winding 12f, it rotates counterclockwise, passes through the state of excitation shown in the middle part of FIG. 3, and stops in the state shown in the lower part of FIG. In the case of the example of FIG. 3, since the magnetic force generated in the teeth 12e by applying the DC voltage is the same pole as the magnetic poles of the opposing rotors 12a, torque is applied in the rotation direction and the rotor 12a rotates. Then, after a certain period of time elapses, the magnetic force generated in the teeth 12e and the magnetic poles of the rotors 12a facing each other are stably stopped at the position of the lower portion of FIG.
 図5は、図1に示すインバータ11の回路図である。インバータ11は、ブリッジ接続される複数のスイッチング素子51,52,53,54(以下、適宜「51~54」と表記)を有する。 FIG. 5 is a circuit diagram of the inverter 11 shown in FIG. The inverter 11 has a plurality of switching elements 51, 52, 53, 54 (hereinafter, appropriately referred to as “51 to 54”) to be bridge-connected.
 スイッチング素子51,52は、第1のレグであるレグ5Aを構成する。レグ5Aは、第1のスイッチング素子であるスイッチング素子51と、第2のスイッチング素子であるスイッチング素子52とが直列に接続された直列回路である。 The switching elements 51 and 52 constitute the first leg, the leg 5A. The leg 5A is a series circuit in which a switching element 51, which is a first switching element, and a switching element 52, which is a second switching element, are connected in series.
 スイッチング素子53,54は、第2のレグであるレグ5Bを構成する。レグ5Bは、第3のスイッチング素子であるスイッチング素子53と、第4のスイッチング素子であるスイッチング素子54とが直列に接続された直列回路である。 The switching elements 53 and 54 constitute the second leg, the leg 5B. The leg 5B is a series circuit in which a switching element 53, which is a third switching element, and a switching element 54, which is a fourth switching element, are connected in series.
 レグ5A,5Bは、高電位側の直流母線16aと低電位側の直流母線16bとの間に、互いに並列になるように接続される。これにより、レグ5A,5Bは、バッテリ10の両端に並列に接続される。 The legs 5A and 5B are connected between the DC bus 16a on the high potential side and the DC bus 16b on the low potential side so as to be in parallel with each other. As a result, the legs 5A and 5B are connected in parallel to both ends of the battery 10.
 スイッチング素子51,53は、高電位側に位置し、スイッチング素子52,54は、低電位側に位置する。一般的に、インバータ回路では、高電位側は「上アーム」と称され、低電位側は「下アーム」と称される。よって、レグ5Aのスイッチング素子51を「上アームの第1のスイッチング素子」と呼び、レグ5Aのスイッチング素子52を「下アームの第2のスイッチング素子」と呼ぶ場合がある。同様に、レグ5Bのスイッチング素子53を「上アームの第3のスイッチング素子」と呼び、レグ5Bのスイッチング素子54を「下アームの第4のスイッチング素子」と呼ぶ場合がある。 The switching elements 51 and 53 are located on the high potential side, and the switching elements 52 and 54 are located on the low potential side. Generally, in an inverter circuit, the high potential side is referred to as an "upper arm" and the low potential side is referred to as a "lower arm". Therefore, the switching element 51 of the leg 5A may be referred to as a "first switching element of the upper arm", and the switching element 52 of the leg 5A may be referred to as a "second switching element of the lower arm". Similarly, the switching element 53 of the leg 5B may be referred to as a "third switching element of the upper arm", and the switching element 54 of the leg 5B may be referred to as a "fourth switching element of the lower arm".
 スイッチング素子51とスイッチング素子52との接続端6Aと、スイッチング素子53とスイッチング素子54との接続端6Bとは、ブリッジ回路における交流端を構成する。接続端6Aと接続端6Bとの間には、単相モータ12が接続される。 The connection end 6A between the switching element 51 and the switching element 52 and the connection end 6B between the switching element 53 and the switching element 54 form an AC end in the bridge circuit. A single-phase motor 12 is connected between the connection end 6A and the connection end 6B.
 スイッチング素子51~54のそれぞれには、金属酸化膜半導体電界効果型トランジスタであるMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)が使用される。MOSFETは、FET(Field-Effect Transistor)の一例である。 For each of the switching elements 51 to 54, a MOSFET (Metal-Oxide-Semiconductor Field-Effective Transistor), which is a metal oxide film semiconductor field effect transistor, is used. MOSFET is an example of FET (Field-Effective Transistor).
 スイッチング素子51には、スイッチング素子51のドレインとソースとの間に並列接続されるボディダイオード51aが形成される。スイッチング素子52には、スイッチング素子52のドレインとソースとの間に並列接続されるボディダイオード52aが形成される。スイッチング素子53には、スイッチング素子53のドレインとソースとの間に並列接続されるボディダイオード53aが形成される。スイッチング素子54には、スイッチング素子54のドレインとソースとの間に並列接続されるボディダイオード54aが形成される。複数のボディダイオード51a,52a,53a,54aのそれぞれは、MOSFETの内部に形成される寄生ダイオードであり、還流ダイオードとして使用される。なお、別途の還流ダイオードを接続してもよい。また、MOSFETに代えて絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)を用いてもよい。 The switching element 51 is formed with a body diode 51a connected in parallel between the drain and the source of the switching element 51. The switching element 52 is formed with a body diode 52a connected in parallel between the drain and the source of the switching element 52. The switching element 53 is formed with a body diode 53a connected in parallel between the drain and the source of the switching element 53. The switching element 54 is formed with a body diode 54a connected in parallel between the drain and the source of the switching element 54. Each of the plurality of body diodes 51a, 52a, 53a, 54a is a parasitic diode formed inside the MOSFET and is used as a freewheeling diode. A separate freewheeling diode may be connected. Further, instead of the MOSFET, an insulated gate bipolar transistor (IGBT) may be used.
 スイッチング素子51~54は、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドといったワイドバンドギャップ(Wide Band Gap:WBG)半導体により形成されたMOSFETでもよい。 The switching elements 51 to 54 are not limited to MOSFETs formed of silicon-based materials, and may be MOSFETs formed of wide bandgap (Wide Band Gap: WBG) semiconductors such as silicon carbide, gallium nitride, gallium oxide, or diamond.
 一般的にWBG半導体はシリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、複数のスイッチング素子51~54のうちの少なくとも1つにWBG半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。また、WBG半導体は、耐熱性も高い。このため、半導体モジュールで発生した熱を放熱するための放熱部の小型化が可能である。また、半導体モジュールで発生した熱を放熱する放熱構造の簡素化が可能である。 Generally, WBG semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a WBG semiconductor for at least one of the plurality of switching elements 51 to 54, the withstand voltage resistance and the allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element can be miniaturized. In addition, WBG semiconductors have high heat resistance. Therefore, it is possible to reduce the size of the heat radiating portion for radiating the heat generated in the semiconductor module. In addition, it is possible to simplify the heat dissipation structure that dissipates heat generated by the semiconductor module.
 また、図6は、図5に示すインバータ11の変形例を示す回路図である。図6に示すインバータ11Aは、図5に示すインバータ11の構成において、更にシャント抵抗55a,55bを追加したものである。シャント抵抗55aは、レグ5Aに流れる電流を検出するための検出器であり、シャント抵抗55bは、レグ5Bに流れる電流を検出するための検出器である。図6に示すように、シャント抵抗55aは、スイッチング素子52の低電位側の端子と、直流母線16bとの間に接続され、シャント抵抗55bは、スイッチング素子54の低電位側の端子と直流母線16bとの間に接続されている。シャント抵抗55a,55bを備えるインバータ11Aを用いた場合、図1に示す電流検出器22は、省略することができる。この構成の場合、シャント抵抗55a,55bの検出値は、アナログディジタル変換器30を介してプロセッサ31に送られる。プロセッサ31は、シャント抵抗55a,55bの検出値に基づいて、後述する起動制御を実施する。 Further, FIG. 6 is a circuit diagram showing a modified example of the inverter 11 shown in FIG. The inverter 11A shown in FIG. 6 has shunt resistors 55a and 55b added to the configuration of the inverter 11 shown in FIG. The shunt resistor 55a is a detector for detecting the current flowing through the leg 5A, and the shunt resistor 55b is a detector for detecting the current flowing through the leg 5B. As shown in FIG. 6, the shunt resistor 55a is connected between the terminal on the low potential side of the switching element 52 and the DC bus 16b, and the shunt resistor 55b is connected to the terminal on the low potential side of the switching element 54 and the DC bus. It is connected to 16b. When the inverter 11A provided with the shunt resistors 55a and 55b is used, the current detector 22 shown in FIG. 1 can be omitted. In this configuration, the detected values of the shunt resistors 55a and 55b are sent to the processor 31 via the analog-digital converter 30. The processor 31 implements activation control, which will be described later, based on the detected values of the shunt resistors 55a and 55b.
 なお、シャント抵抗55aは、レグ5Aに流れる電流を検出できるものであればよく、図6のものに限定されない。シャント抵抗55aは、直流母線16aとスイッチング素子51の高電位側の端子との間、スイッチング素子51の低電位側の端子と接続端6Aとの間、又は接続端6Aとスイッチング素子52の高電位側の端子との間に配置されるものであってもよい。同様に、シャント抵抗55bは、直流母線16aとスイッチング素子53の高電位側の端子との間、スイッチング素子53の低電位側の端子と接続端6Bとの間、又は接続端6Bとスイッチング素子54の高電位側の端子との間に配置されるものであってもよい。また、シャント抵抗55a,55bに代え、MOFFETのオン抵抗を利用し、オン抵抗の両端に生じる電圧で電流検出を行う構成としてもよい。 The shunt resistor 55a is not limited to that of FIG. 6 as long as it can detect the current flowing through the leg 5A. The shunt resistor 55a is located between the DC bus 16a and the terminal on the high potential side of the switching element 51, between the terminal on the low potential side of the switching element 51 and the connection end 6A, or between the connection end 6A and the high potential of the switching element 52. It may be arranged between the terminal on the side. Similarly, the shunt resistor 55b is between the DC bus 16a and the terminal on the high potential side of the switching element 53, between the terminal on the low potential side of the switching element 53 and the connection end 6B, or between the connection end 6B and the switching element 54. It may be arranged between the terminal on the high potential side of the. Further, instead of the shunt resistors 55a and 55b, the on-resistance of the MOFFET may be used to detect the current with the voltage generated across the on-resistance.
 図7は、図1に示す制御部25の機能部位のうちのPWM信号を生成する機能部位を示すブロック図である。 FIG. 7 is a block diagram showing a functional part that generates a PWM signal among the functional parts of the control unit 25 shown in FIG.
 図7において、キャリア比較部38には、後述する電圧指令Vを生成するときに用いる進角制御された進角位相θと基準位相θとが入力される。基準位相θは、ロータ12aの基準位置からの角度であるロータ機械角θを電気角に換算した位相である。なお、前述したように、実施の形態1に係るモータ駆動装置2は、位置センサからの位置センサ信号を用いない、いわゆる位置センサレス制御の構成である。このため、ロータ機械角θ及び基準位相θは、演算によって推定される。また、ここで言う「進角位相」とは、電圧指令Vの「進み角」である「進角」を位相で表したものである。更に、ここで言う「進み角」とは、ステータ12bの巻線12fに印加されるモータ印加電圧と、ステータ12bの巻線12fに誘起されるモータ誘起電圧との間の位相差である。なお、モータ印加電圧がモータ誘起電圧よりも進んでいるときに「進み角」は正の値をとる。 In FIG. 7, the carrier comparison unit 38 is input with the advance angle controlled advance phase θ v and the reference phase θ e used when generating the voltage command V m described later. The reference phase θ e is a phase obtained by converting the rotor mechanical angle θ m , which is the angle of the rotor 12a from the reference position, into an electric angle. As described above, the motor drive device 2 according to the first embodiment has a so-called position sensorless control configuration that does not use the position sensor signal from the position sensor. Therefore, the rotor mechanical angle θ m and the reference phase θ e are estimated by calculation. Further, the "advance angle phase" referred to here is a phase representing the "advance angle" which is the "advance angle" of the voltage command Vm . Further, the "advance angle" referred to here is a phase difference between the motor applied voltage applied to the winding 12f of the stator 12b and the motor induced voltage induced in the winding 12f of the stator 12b. The "advance angle" takes a positive value when the voltage applied to the motor is ahead of the voltage induced by the motor.
 また、キャリア比較部38には、進角位相θと基準位相θとに加え、キャリア生成部33で生成されたキャリアと、直流電圧Vdcと、電圧指令Vの振幅値である電圧振幅指令V*とが入力される。キャリア比較部38は、キャリア、進角位相θ、基準位相θ、直流電圧Vdc及び電圧振幅指令V*に基づいて、PWM信号Q1~Q4を生成する。 Further, in the carrier comparison unit 38, in addition to the advance phase θ v and the reference phase θ e , the carrier generated by the carrier generation unit 33, the DC voltage V dc , and the voltage which is the amplitude value of the voltage command V m . Amplitude command V * is input. The carrier comparison unit 38 generates PWM signals Q1 to Q4 based on the carrier, the advance phase θ v , the reference phase θ e , the DC voltage V dc , and the voltage amplitude command V *.
 図8は、図7に示すキャリア比較部38の一例を示すブロック図である。図8には、キャリア比較部38A及びキャリア生成部33の詳細構成が示されている。 FIG. 8 is a block diagram showing an example of the carrier comparison unit 38 shown in FIG. 7. FIG. 8 shows the detailed configuration of the carrier comparison unit 38A and the carrier generation unit 33.
 図8において、キャリア生成部33には、キャリアの周波数であるキャリア周波数f[Hz]が設定される。キャリア周波数fの矢印の先には、キャリア波形の一例として、“0”と“1”との間を上下する三角波キャリアが示される。インバータ11のPWM制御には、同期PWM制御と非同期PWM制御とがある。同期PWM制御の場合、進角位相θにキャリアを同期させる必要がある。一方、非同期PWM制御の場合、進角位相θにキャリアを同期させる必要はない。 In FIG. 8, the carrier frequency f C [Hz], which is the frequency of the carrier, is set in the carrier generation unit 33. At the tip of the arrow of the carrier frequency f C , as an example of the carrier waveform, a triangular wave carrier moving up and down between “0” and “1” is shown. The PWM control of the inverter 11 includes synchronous PWM control and asynchronous PWM control. In the case of synchronous PWM control, it is necessary to synchronize the carrier with the advance phase θ v . On the other hand, in the case of asynchronous PWM control, it is not necessary to synchronize the carrier with the advance phase θ v .
 キャリア比較部38Aは、図8に示すように、絶対値演算部38a、除算部38b、乗算部38c、乗算部38d、乗算部38f、加算部38e、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。 As shown in FIG. 8, the carrier comparison unit 38A has an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38d, a multiplication unit 38f, an addition unit 38e, a comparison unit 38g, a comparison unit 38h, and an output inversion unit. It has 38i and an output inversion unit 38j.
 絶対値演算部38aでは、電圧振幅指令V*の絶対値|V*|が演算される。除算部38bでは、絶対値|V*|が、電圧検出器20で検出された直流電圧Vdcによって除算される。図8の構成では、除算部38bの出力が変調率となる。バッテリ10の出力電圧であるバッテリ電圧は、電流を流し続けることにより変動する。一方、絶対値|V*|を直流電圧Vdcで除算することにより、変調率の値を調整し、バッテリ電圧の低下によってモータ印加電圧が低下しないようにできる。 The absolute value calculation unit 38a calculates the absolute value | V * | of the voltage amplitude command V *. In the division unit 38b, the absolute value | V * | is divided by the DC voltage V dc detected by the voltage detector 20. In the configuration of FIG. 8, the output of the division unit 38b is the modulation factor. The battery voltage, which is the output voltage of the battery 10, fluctuates as the current continues to flow. On the other hand, by dividing the absolute value | V * | by the DC voltage Vdc , the value of the modulation factor can be adjusted so that the motor applied voltage does not decrease due to the decrease in the battery voltage.
 乗算部38cでは、基準位相θに進角位相θを加えた“θ+θ”の正弦値が演算される。演算された“θ+θ”の正弦値は、除算部38bの出力である変調率に乗算される。乗算部38dでは、乗算部38cの出力である電圧指令Vに“1/2”が乗算される。加算部38eでは、乗算部38dの出力に“1/2”が加算される。乗算部38fでは、加算部38eの出力に“-1”が乗算される。加算部38eの出力は、複数のスイッチング素子51~54のうち、上アームの2つのスイッチング素子51,53を駆動するための正側電圧指令Vm1として比較部38gに入力され、乗算部38fの出力は、下アームの2つのスイッチング素子52,54を駆動するための負側電圧指令Vm2として比較部38hに入力される。 The multiplication unit 38c calculates a sine value of “θ e + θ v ”, which is the reference phase θ e plus the advance phase θ v . The calculated sine value of "θ e + θ v " is multiplied by the modulation factor which is the output of the division unit 38b. In the multiplication unit 38d, "1/2" is multiplied by the voltage command Vm , which is the output of the multiplication unit 38c. In the addition unit 38e, "1/2" is added to the output of the multiplication unit 38d. In the multiplication unit 38f, "-1" is multiplied by the output of the addition unit 38e. The output of the addition unit 38e is input to the comparison unit 38g as a positive voltage command Vm1 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54, and is input to the comparison unit 38g of the multiplication unit 38f. The output is input to the comparison unit 38h as a negative voltage command Vm2 for driving the two switching elements 52 and 54 of the lower arm.
 比較部38gでは、正側電圧指令Vm1と、キャリアの振幅とが比較される。比較部38gの出力を反転した出力反転部38iの出力は、スイッチング素子51へのPWM信号Q1となり、比較部38gの出力は、スイッチング素子52へのPWM信号Q2となる。同様に、比較部38hでは、負側電圧指令Vm2と、キャリアの振幅とが比較される。比較部38hの出力を反転した出力反転部38jの出力は、スイッチング素子53へのPWM信号Q3となり、比較部38hの出力は、スイッチング素子54へのPWM信号Q4となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンされることはなく、出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンされることはない。 In the comparison unit 38 g, the positive voltage command V m1 and the amplitude of the carrier are compared. The output of the output inversion unit 38i in which the output of the comparison unit 38g is inverted becomes the PWM signal Q1 to the switching element 51, and the output of the comparison unit 38g becomes the PWM signal Q2 to the switching element 52. Similarly, in the comparison unit 38h, the negative voltage command Vm2 and the amplitude of the carrier are compared. The output of the output inversion unit 38j, which is the inverted output of the comparison unit 38h, is the PWM signal Q3 to the switching element 53, and the output of the comparison unit 38h is the PWM signal Q4 to the switching element 54. The output inverting unit 38i does not turn on the switching element 51 and the switching element 52 at the same time, and the output inverting unit 38j does not turn on the switching element 53 and the switching element 54 at the same time.
 図9は、図8に示すキャリア比較部38Aを用いて動作させたときの要部の波形例を示す図である。図9には、加算部38eから出力される正側電圧指令Vm1の波形と、乗算部38fから出力される負側電圧指令Vm2の波形と、PWM信号Q1~Q4の波形と、インバータ出力電圧の波形とが示されている。 FIG. 9 is a diagram showing an example of waveforms of a main part when operated using the carrier comparison unit 38A shown in FIG. In FIG. 9, the waveform of the positive voltage command V m1 output from the addition unit 38e, the waveform of the negative voltage command V m2 output from the multiplication unit 38f, the waveforms of the PWM signals Q1 to Q4, and the inverter output are shown. The voltage waveform is shown.
 PWM信号Q1は、正側電圧指令Vm1がキャリアよりも大きいときに“ロー(Low)”となり、正側電圧指令Vm1がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q2は、PWM信号Q1の反転信号である。PWM信号Q3は、負側電圧指令Vm2がキャリアよりも大きいときに“ロー(Low)”となり、負側電圧指令Vm2がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q4は、PWM信号Q3の反転信号である。このように、図8に示される回路は、“ローアクティブ(Low Active)”で構成されているが、それぞれの信号が逆の値となる“ハイアクティブ(High Active)”で構成されていてもよい。 The PWM signal Q1 becomes “Low” when the positive voltage command V m1 is larger than the carrier, and becomes “High” when the positive voltage command V m1 is smaller than the carrier. The PWM signal Q2 is an inverted signal of the PWM signal Q1. The PWM signal Q3 becomes “Low” when the negative voltage command V m2 is larger than the carrier, and becomes “High” when the negative voltage command V m2 is smaller than the carrier. The PWM signal Q4 is an inverted signal of the PWM signal Q3. As described above, the circuit shown in FIG. 8 is configured with "Low Active", but even if each signal is configured with "High Active" having opposite values. good.
 インバータ出力電圧の波形は、図9に示されるように、PWM信号Q1とPWM信号Q4との差電圧による電圧パルスと、PWM信号Q3とPWM信号Q2との差電圧による電圧パルスとが表れる。これらの電圧パルスが、モータ印加電圧として、単相モータ12に印加される。 As shown in FIG. 9, the waveform of the inverter output voltage shows a voltage pulse due to the difference voltage between the PWM signal Q1 and the PWM signal Q4 and a voltage pulse due to the difference voltage between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as the motor applied voltage.
 PWM信号Q1~Q4を生成する際に使用する変調方式としては、バイポーラ変調と、ユニポーラ変調とが知られている。バイポーラ変調は、電圧指令Vの1周期ごとに正又は負の電位で変化する電圧パルスを出力する変調方式である。ユニポーラ変調は、電圧指令Vの1周期ごとに3つの電位で変化する電圧パルス、即ち正の電位と負の電位と零の電位とに変化する電圧パルスを出力する変調方式である。図9に示される波形は、ユニポーラ変調によるものである。実施の形態1に係るモータ駆動装置2においては、何れの変調方式を用いてもよい。なお、モータ電流波形をより正弦波に制御する必要がある用途では、バイポーラ変調よりも、高調波含有率が少ないユニポーラ変調を採用することが好ましい。 Bipolar modulation and unipolar modulation are known as modulation methods used when generating PWM signals Q1 to Q4. Bipolar modulation is a modulation method that outputs a voltage pulse that changes with a positive or negative potential every cycle of the voltage command Vm . Unipolar modulation is a modulation method that outputs a voltage pulse that changes at three potentials in each cycle of the voltage command Vm , that is, a voltage pulse that changes between a positive potential, a negative potential, and a zero potential. The waveform shown in FIG. 9 is due to unipolar modulation. In the motor drive device 2 according to the first embodiment, any modulation method may be used. In applications where it is necessary to control the motor current waveform to a more sinusoidal wave, it is preferable to adopt unipolar modulation having a lower harmonic content than bipolar modulation.
 また、図9に示される波形は、電圧指令Vの半周期T/2の期間において、レグ5Aを構成するスイッチング素子51,52と、レグ5Bを構成するスイッチング素子53,54の4つのスイッチング素子をスイッチング動作させる方式によって得られる。この方式は、正側電圧指令Vm1と負側電圧指令Vm2の双方でスイッチング動作させることから、「両側PWM」と呼ばれる。これに対し、電圧指令Vの1周期Tのうちの一方の半周期では、スイッチング素子51,52のスイッチング動作を休止させ、電圧指令Vの1周期Tのうちの他方の半周期では、スイッチング素子53,54のスイッチング動作を休止させる方式もある。この方式は、「片側PWM」と呼ばれる。以下、「片側PWM」について説明する。なお、以下の説明において、両側PWMで動作させる動作モードを「両側PWMモード」と呼び、片側PWMで動作させる動作モードを「片側PWMモード」と呼ぶ。また、「両側PWM」によるPWM信号を「両側PWM信号」と呼び、「片側PWM」によるPWM信号を「片側PWM信号」と呼ぶ場合がある。 Further, the waveform shown in FIG. 9 shows four switchings of the switching elements 51 and 52 constituting the leg 5A and the switching elements 53 and 54 constituting the leg 5B during the half-cycle T / 2 period of the voltage command V m . It is obtained by a method of switching the element. This method is called "both-sided PWM" because the switching operation is performed by both the positive side voltage command V m1 and the negative side voltage command V m2 . On the other hand, in one half cycle of one cycle T of the voltage command V m , the switching operation of the switching elements 51 and 52 is suspended, and in the other half cycle of the one cycle T of the voltage command V m , the switching operation is suspended. There is also a method of suspending the switching operation of the switching elements 53 and 54. This method is called "one-sided PWM". Hereinafter, "one-sided PWM" will be described. In the following description, the operation mode operated by double-sided PWM is referred to as "double-sided PWM mode", and the operation mode operated by one-sided PWM is referred to as "one-sided PWM mode". Further, the PWM signal by "two-sided PWM" may be called "two-sided PWM signal", and the PWM signal by "one-sided PWM" may be called "one-sided PWM signal".
 図10は、図7に示すキャリア比較部38の他の例を示すブロック図である。図10には、片側PWM信号の生成回路の一例が示され、具体的には、キャリア比較部38B及びキャリア生成部33の詳細構成が示されている。なお、図10に示されるキャリア生成部33の構成は、図8に示されるものと同一又は同等である。また、図10に示されるキャリア比較部38Bの構成において、図8に示されるキャリア比較部38Aと同一又は同等の構成部には同一の符号を付して示している。 FIG. 10 is a block diagram showing another example of the carrier comparison unit 38 shown in FIG. 7. FIG. 10 shows an example of a one-sided PWM signal generation circuit, and specifically, a detailed configuration of a carrier comparison unit 38B and a carrier generation unit 33 is shown. The configuration of the carrier generation unit 33 shown in FIG. 10 is the same as or equivalent to that shown in FIG. Further, in the configuration of the carrier comparison unit 38B shown in FIG. 10, the same or equivalent components as the carrier comparison unit 38A shown in FIG. 8 are designated by the same reference numerals.
 キャリア比較部38Bは、図10に示されるように、絶対値演算部38a、除算部38b、乗算部38c、乗算部38k、加算部38m、加算部38n、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。 As shown in FIG. 10, the carrier comparison unit 38B has an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38k, an addition unit 38m, an addition unit 38n, a comparison unit 38g, a comparison unit 38h, and an output inversion. It has a unit 38i and an output inversion unit 38j.
 絶対値演算部38aでは、電圧振幅指令V*の絶対値|V*|が演算される。除算部38bでは、絶対値|V*|が、電圧検出器20で検出された直流電圧Vdcによって除算される。図10の構成でも、除算部38bの出力が変調率となる。 The absolute value calculation unit 38a calculates the absolute value | V * | of the voltage amplitude command V *. In the division unit 38b, the absolute value | V * | is divided by the DC voltage V dc detected by the voltage detector 20. Even in the configuration of FIG. 10, the output of the division unit 38b is the modulation factor.
 乗算部38cでは、基準位相θに進角位相θを加えた“θ+θ”の正弦値が演算される。演算された“θ+θ”の正弦値は、除算部38bの出力である変調率に乗算される。乗算部38kでは、乗算部38cの出力である電圧指令Vに“-1”が乗算される。加算部38mでは、乗算部38cの出力である電圧指令Vに“1”が加算される。加算部38nでは、乗算部38kの出力、即ち電圧指令Vの反転出力に“1”が加算される。加算部38mの出力は、複数のスイッチング素子51~54のうち、上アームの2つのスイッチング素子51,53を駆動するための第1電圧指令Vm3として比較部38gに入力される。加算部38nの出力は、下アームの2つのスイッチング素子52,54を駆動するための第2電圧指令Vm4として比較部38hに入力される。 The multiplication unit 38c calculates a sine value of “θ e + θ v ”, which is the reference phase θ e plus the advance phase θ v . The calculated sine value of "θ e + θ v " is multiplied by the modulation factor which is the output of the division unit 38b. In the multiplication unit 38k, "-1" is multiplied by the voltage command Vm , which is the output of the multiplication unit 38c. In the addition unit 38m, “1” is added to the voltage command Vm which is the output of the multiplication unit 38c. In the addition unit 38n, "1" is added to the output of the multiplication unit 38k, that is, the inverted output of the voltage command Vm . The output of the addition unit 38m is input to the comparison unit 38g as a first voltage command Vm3 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54. The output of the addition unit 38n is input to the comparison unit 38h as a second voltage command Vm4 for driving the two switching elements 52 and 54 of the lower arm.
 比較部38gでは、第1電圧指令Vm3と、キャリアの振幅とが比較される。比較部38gの出力を反転した出力反転部38iの出力は、スイッチング素子51へのPWM信号Q1となり、比較部38gの出力は、スイッチング素子52へのPWM信号Q2となる。同様に、比較部38hでは、第2電圧指令Vm4と、キャリアの振幅とが比較される。比較部38hの出力を反転した出力反転部38jの出力は、スイッチング素子53へのPWM信号Q3となり、比較部38hの出力は、スイッチング素子54へのPWM信号Q4となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンされることはなく、出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンされることはない。 In the comparison unit 38 g, the first voltage command V m3 and the amplitude of the carrier are compared. The output of the output inversion unit 38i in which the output of the comparison unit 38g is inverted becomes the PWM signal Q1 to the switching element 51, and the output of the comparison unit 38g becomes the PWM signal Q2 to the switching element 52. Similarly, in the comparison unit 38h, the second voltage command Vm4 and the amplitude of the carrier are compared. The output of the output inversion unit 38j, which is the inverted output of the comparison unit 38h, is the PWM signal Q3 to the switching element 53, and the output of the comparison unit 38h is the PWM signal Q4 to the switching element 54. The output inverting unit 38i does not turn on the switching element 51 and the switching element 52 at the same time, and the output inverting unit 38j does not turn on the switching element 53 and the switching element 54 at the same time.
 図11は、図10に示すキャリア比較部38Bを用いて動作させたときの要部の波形例を示す図である。図11には、加算部38mから出力される第1電圧指令Vm3の波形と、加算部38nから出力される第2電圧指令Vm4の波形と、PWM信号Q1~Q4の波形と、インバータ出力電圧の波形とが示されている。なお、図11では、便宜的に、キャリアのピーク値よりも振幅値が大きくなる第1電圧指令Vm3の波形部分と、キャリアのピーク値よりも振幅値が大きくなる第2電圧指令Vm4の波形部分は、フラットな直線で表されている。 FIG. 11 is a diagram showing an example of waveforms of a main part when operated using the carrier comparison unit 38B shown in FIG. In FIG. 11, the waveform of the first voltage command V m3 output from the adder 38 m, the waveform of the second voltage command V m4 output from the adder 38n, the waveforms of the PWM signals Q1 to Q4, and the inverter output are shown. The voltage waveform is shown. In FIG. 11, for convenience, the waveform portion of the first voltage command V m3 whose amplitude value is larger than the peak value of the carrier and the second voltage command V m4 whose amplitude value is larger than the peak value of the carrier. The corrugated portion is represented by a flat straight line.
 PWM信号Q1は、第1電圧指令Vm3がキャリアよりも大きいときに“ロー(Low)”となり、第1電圧指令Vm3がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q2は、PWM信号Q1の反転信号である。PWM信号Q3は、第2電圧指令Vm4がキャリアよりも大きいときに“ロー(Low)”となり、第2電圧指令Vm4がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q4は、PWM信号Q3の反転信号である。このように、図10に示される回路は、“ローアクティブ(Low Active)”で構成されているが、それぞれの信号が逆の値となる“ハイアクティブ(High Active)”で構成されていてもよい。 The PWM signal Q1 becomes “Low” when the first voltage command V m3 is larger than the carrier, and becomes “High” when the first voltage command V m3 is smaller than the carrier. The PWM signal Q2 is an inverted signal of the PWM signal Q1. The PWM signal Q3 becomes “Low” when the second voltage command V m4 is larger than the carrier, and becomes “High” when the second voltage command V m4 is smaller than the carrier. The PWM signal Q4 is an inverted signal of the PWM signal Q3. As described above, the circuit shown in FIG. 10 is configured with "Low Active", but even if each signal is configured with "High Active" having opposite values. good.
 インバータ出力電圧の波形は、図11に示されるように、PWM信号Q1とPWM信号Q4との差電圧による電圧パルスと、PWM信号Q3とPWM信号Q2との差電圧による電圧パルスとが表れる。これらの電圧パルスが、モータ印加電圧として、単相モータ12に印加される。 As shown in FIG. 11, the waveform of the inverter output voltage shows a voltage pulse due to the difference voltage between the PWM signal Q1 and the PWM signal Q4 and a voltage pulse due to the difference voltage between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as the motor applied voltage.
 図11に示される波形では、電圧指令Vの1周期Tのうちの一方の半周期では、スイッチング素子51,52のスイッチング動作が休止し、電圧指令Vの1周期Tのうちの他方の半周期では、スイッチング素子53,54のスイッチング動作が休止している。 In the waveform shown in FIG. 11, in one half cycle of one cycle T of the voltage command V m , the switching operation of the switching elements 51 and 52 is suspended, and the other of the one cycle T of the voltage command V m is stopped. In the half cycle, the switching operation of the switching elements 53 and 54 is suspended.
 また、図11に示される波形では、電圧指令Vの1周期Tのうちの一方の半周期では、スイッチング素子52は常時オン状態となるように制御され、電圧指令Vの1周期Tのうちの他方の半周期では、スイッチング素子54は常時オン状態となるように制御される。なお、図11は一例であり、一方の半周期では、スイッチング素子51が常時オン状態となるように制御され、他方の半周期では、スイッチング素子53が常時オン状態となるように制御される場合も有り得る。即ち、図11に示される波形には、電圧指令Vの半周期において、スイッチング素子51~54のうちの少なくとも1つがオン状態となるように制御されるという特徴がある。 Further, in the waveform shown in FIG. 11, the switching element 52 is controlled to be always on in one half cycle of one cycle T of the voltage command V m , and the one cycle T of the voltage command V m is controlled. In the other half cycle, the switching element 54 is controlled to be always on. Note that FIG. 11 is an example, in which the switching element 51 is controlled to be always on in one half cycle, and the switching element 53 is controlled to be always on in the other half cycle. Is also possible. That is, the waveform shown in FIG. 11 is characterized in that at least one of the switching elements 51 to 54 is controlled to be in the ON state in the half cycle of the voltage command Vm .
 また、図11において、インバータ出力電圧の波形は、電圧指令Vの1周期ごとに3つの電位で変化するユニポーラ変調となる。前述の通り、ユニポーラ変調に代えてバイポーラ変調を用いてもよいが、モータ電流波形をより正弦波に制御する必要がある用途では、ユニポーラ変調を採用することが好ましい。 Further, in FIG. 11, the waveform of the inverter output voltage is unipolar modulation that changes at three potentials in each cycle of the voltage command Vm . As described above, bipolar modulation may be used instead of unipolar modulation, but in applications where it is necessary to control the motor current waveform to a more sinusoidal wave, it is preferable to adopt unipolar modulation.
 次に、実施の形態1における進角制御について、図12から図14の図面を参照して説明する。図12は、図7に示されるキャリア比較部38へ入力される進角位相θを算出するための機能構成を示すブロック図である。図13は、実施の形態1における進角位相θの算出方法の一例を示す図である。図14は、図7に示される電圧指令Vと進角位相θとの関係の説明に使用する図である。 Next, the advance angle control in the first embodiment will be described with reference to the drawings of FIGS. 12 to 14. FIG. 12 is a block diagram showing a functional configuration for calculating the advance angle phase θ v input to the carrier comparison unit 38 shown in FIG. 7. FIG. 13 is a diagram showing an example of a method for calculating the advance angle phase θ v in the first embodiment. FIG. 14 is a diagram used to explain the relationship between the voltage command V m shown in FIG. 7 and the advance phase θ v .
 進角位相θの算出機能は、図12に示されるように、回転速度算出部42と、進角位相算出部44とによって実現できる。回転速度算出部42は、電流検出器22によって検出されたモータ電流Iの検出値に基づいて単相モータ12の回転速度ωを算出する。また、回転速度算出部42は、モータ電流Iの検出値に基づいて、ロータ機械角θを算出すると共に、ロータ機械角θを電気角に換算した基準位相θを算出する。 As shown in FIG. 12, the function of calculating the advance angle phase θ v can be realized by the rotation speed calculation unit 42 and the advance angle phase calculation unit 44. The rotation speed calculation unit 42 calculates the rotation speed ω of the single-phase motor 12 based on the detection value of the motor current Im detected by the current detector 22. Further, the rotation speed calculation unit 42 calculates the rotor mechanical angle θ m based on the detected value of the motor current Im , and also calculates the reference phase θ e obtained by converting the rotor mechanical angle θ m into an electric angle.
 ここで、図14の最上段部には、ロータ12aの位置が信号レベルで表されている。最上段部の波形において、信号が「H」から「L」に立ち下がるエッジの部分がロータ12aの基準位置とされており、この基準位置がロータ機械角θの「0°」に設定されている。また、ロータ機械角θを表す数値列の下部には、ロータ機械角θを電気角に換算した位相である基準位相θが示されている。進角位相算出部44は、回転速度算出部42が算出した回転速度ω及び基準位相θに基づいて、進角位相θを算出する。 Here, in the uppermost part of FIG. 14, the position of the rotor 12a is represented by a signal level. In the waveform of the uppermost stage, the edge portion where the signal falls from “H” to “L” is set as the reference position of the rotor 12a, and this reference position is set to “0 °” of the rotor mechanical angle θ m . ing. Further, a reference phase θ e , which is a phase obtained by converting the rotor mechanical angle θ m into an electric angle, is shown at the lower part of the numerical sequence representing the rotor mechanical angle θ m . The advance phase phase calculation unit 44 calculates the advance angle phase θ v based on the rotation speed ω and the reference phase θ e calculated by the rotation speed calculation unit 42.
 図13の横軸には回転速度Nが示され、図13の縦軸には進角位相θが示されている。図13に示されるように、進角位相θは、回転速度Nの増加に対して進角位相θが増加する関数を用いて決定することができる。図13の例では、1次の線形関数により進角位相θを決定しているが、1次の線形関数に限定されない。回転速度Nの増加に応じて進角位相θが同じか、もしくは大きくなる関係であれば、1次の線形関数以外の関数を用いてもよい。 The horizontal axis of FIG. 13 shows the rotation speed N, and the vertical axis of FIG. 13 shows the advance phase θ v . As shown in FIG. 13, the advance phase θ v can be determined by using a function in which the advance phase θ v increases with respect to the increase in the rotation speed N. In the example of FIG. 13, the advance phase θ v is determined by a linear function of the first order, but the phase is not limited to the linear function of the first order. A function other than the linear linear function of the first order may be used as long as the advance phase θ v is the same or becomes larger according to the increase of the rotation speed N.
 図14の中段部には、「例1」及び「例2」として、2つの電圧指令Vの波形例が示されている。また、図14の最下段部には、ロータ12aが時計方向に回転したときのロータ機械角θが0°、45°、90°、135°及び180°である状態が示されている。単相モータ12のロータ12aには4つの磁石が図示され、ロータ12aの外周には4つのティース12eが図示されている。ロータ12aが時計方向に回転した場合、モータ電流Iの検出値に基づいてロータ機械角θが推定され、推定されたロータ機械角θに基づいて、電気角に換算した基準位相θが算出される。 In the middle part of FIG. 14, two voltage command Vm waveform examples are shown as “Example 1” and “Example 2”. Further, the lowermost portion of FIG. 14 shows a state in which the rotor mechanical angles θ m when the rotor 12a is rotated clockwise are 0 °, 45 °, 90 °, 135 °, and 180 °. Four magnets are shown on the rotor 12a of the single-phase motor 12, and four teeth 12e are shown on the outer circumference of the rotor 12a. When the rotor 12a rotates clockwise, the rotor mechanical angle θ m is estimated based on the detected value of the motor current Im , and the reference phase θ e converted into an electric angle based on the estimated rotor mechanical angle θ m . Is calculated.
 図14の中段部において、「例1」として示される電圧指令Vは、進角位相θ=0の場合の電圧指令である。進角位相θ=0の場合、基準位相θと同相の電圧指令Vが出力される。なお、このときの電圧指令Vの振幅は、前述した電圧振幅指令V*に基づいて決定される。 In the middle part of FIG. 14, the voltage command V m shown as “Example 1” is a voltage command when the advance phase θ v = 0. When the advance phase θ v = 0, the voltage command V m having the same phase as the reference phase θ e is output. The amplitude of the voltage command V m at this time is determined based on the voltage amplitude command V * described above.
 また、図14の中段部において、「例2」として示される電圧指令Vは、進角位相θ=π/4の場合の電圧指令である。進角位相θ=π/4の場合、基準位相θから進角位相θの成分であるπ/4進めた電圧指令Vが出力される。 Further, in the middle part of FIG. 14, the voltage command Vm shown as “Example 2” is a voltage command when the advance phase θ v = π / 4. When the advance phase θ v = π / 4, the voltage command V m advanced by π / 4, which is a component of the advance phase θ v , is output from the reference phase θ e .
 次に、実施の形態1に係るモータ駆動装置2の駆動制御の要点である単相モータ12の起動制御について、図15及び図16を参照して説明する。図15は、実施の形態1における要部の動作説明に使用する図である。図16は、図2に示す単相モータが停止しているときのロータ位置と実施の形態1における起動制御との関係の説明に使用する図である。なお、上述の図2、図3及び下述の図16は、非対称形状のティース12eを有する単相モータ12を駆動対象とする例であるが、駆動対象の単相モータは、図2、図3及び図16の構造のものに限定されない。即ち、実施の形態1の手法は、ティース12eが非対称形状である場合に限定されず、ティース12eが対称形状である場合においても適用可能である。 Next, the start control of the single-phase motor 12, which is the main point of the drive control of the motor drive device 2 according to the first embodiment, will be described with reference to FIGS. 15 and 16. FIG. 15 is a diagram used for explaining the operation of the main part in the first embodiment. FIG. 16 is a diagram used to explain the relationship between the rotor position when the single-phase motor shown in FIG. 2 is stopped and the start control in the first embodiment. The above-mentioned FIGS. 2, 3 and 16 below are examples in which the single-phase motor 12 having the asymmetrically shaped teeth 12e is the drive target, but the single-phase motor to be driven is FIG. 2, FIG. It is not limited to the structure of 3 and FIG. That is, the method of the first embodiment is not limited to the case where the teeth 12e has an asymmetrical shape, and can be applied even when the teeth 12e has a symmetrical shape.
 図15において、上段部にはモータ印加電圧又はモータ誘起電圧の波形が示され、中段部にはモータ電流の波形が示されている。また、下段部には、シャント電圧の波形が示されている。 In FIG. 15, the waveform of the motor applied voltage or the motor induced voltage is shown in the upper part, and the waveform of the motor current is shown in the middle part. Further, the waveform of the shunt voltage is shown in the lower part.
 第1の期間では、図15の上段部に示されるように、負の極性の電圧が印加される。本稿では、この極性の電圧を「第1電圧」と呼ぶ。第1の期間は、起動直後から始まる。なお、図15では、第1電圧が1パルスの電圧である場合を例示しているが、これに限定されない。第1電圧は、PWM制御された複数のパルス列の電圧でもよい。 In the first period, as shown in the upper part of FIG. 15, a voltage having a negative polarity is applied. In this paper, the voltage of this polarity is called "first voltage". The first period starts immediately after startup. Note that FIG. 15 illustrates a case where the first voltage is a voltage of one pulse, but the present invention is not limited to this. The first voltage may be the voltage of a plurality of PWM-controlled pulse trains.
 ティースが非対称形状であるか否かに関わらず、位置センサレスで駆動される単相モータの場合、ロータ12aの停止位置は一意に定まらない。従って、ある極性の第1電圧を印加した場合、その極性が正通電の場合(図16のパターン1)と、その極性が逆通電の場合(図16のパターン2,3)との2通りがある。正通電は、第1電圧の極性が意図する回転方向にロータ12aを回転させる極性であることを意味し、逆通電は、第1電圧の極性が意図しない回転方向にロータ12aを回転させる極性であることを意味する。図15の例は、パターン2の場合を示している。 In the case of a single-phase motor driven without a position sensor, the stop position of the rotor 12a is not uniquely determined regardless of whether the teeth have an asymmetrical shape. Therefore, when a first voltage of a certain polarity is applied, there are two cases: when the polarity is positive energization (pattern 1 in FIG. 16) and when the polarity is reverse energization (patterns 2 and 3 in FIG. 16). be. Positive energization means that the polarity of the first voltage rotates the rotor 12a in the intended rotation direction, and reverse energization means that the polarity of the first voltage rotates the rotor 12a in an unintended rotation direction. It means that there is. The example of FIG. 15 shows the case of pattern 2.
 まず、ロータ12aの停止位置がパターン1の場合、第1電圧の極性は、意図する正通電の極性である。このため、モータ電流及びシャント電圧の増加率は、図15に示されるものよりも小さくなる。また、この場合、モータ印加電圧は、シャント電圧が第1の閾値に到達する前に極性が反転される。従って、単相モータ12は、問題なく回転する。 First, when the stop position of the rotor 12a is pattern 1, the polarity of the first voltage is the polarity of the intended positive energization. Therefore, the rate of increase of the motor current and the shunt voltage is smaller than that shown in FIG. Further, in this case, the polarity of the motor applied voltage is reversed before the shunt voltage reaches the first threshold value. Therefore, the single-phase motor 12 rotates without any problem.
 なお、モータ印加電圧の極性を切り替えるタイミングは、単相モータ12に付与する回転速度の指令値に基づいて決定することができる。また、単相モータ12の回転中は、電圧検出器21によって検出されるモータ誘起電圧に基づいて回転速度を演算し、演算した回転速度に基づいて切り替えタイミングを決定することができる。 The timing for switching the polarity of the motor applied voltage can be determined based on the command value of the rotation speed given to the single-phase motor 12. Further, during the rotation of the single-phase motor 12, the rotation speed can be calculated based on the motor-induced voltage detected by the voltage detector 21, and the switching timing can be determined based on the calculated rotation speed.
 一方、ロータ12aの停止位置がパターン2の場合、第1電圧の極性は、意図しない逆通電の極性である。このため、モータ電流及びシャント電圧の波形は、図15に示されるように直線的に減少又は増加する。そこで、シャント電圧が第1の閾値に到達すると、インバータ11はゲートオフする。これにより、単相モータ12に対する第1電圧の印加は停止される。 On the other hand, when the stop position of the rotor 12a is pattern 2, the polarity of the first voltage is the polarity of unintended reverse energization. Therefore, the waveforms of the motor current and the shunt voltage linearly decrease or increase as shown in FIG. Therefore, when the shunt voltage reaches the first threshold value, the inverter 11 gates off. As a result, the application of the first voltage to the single-phase motor 12 is stopped.
 インバータ11がゲートオフした直後は、単相モータ12に流れていた電流がモータインダクタンス成分の影響により流れ続けようとする。このとき、単相モータ12からバッテリ10に向かって回生電流が流れる。本稿では、この回生電流が流れる期間を「回生期間」と呼ぶ。図15では、回生期間における各波形を縦長の楕円で囲んでいる。 Immediately after the inverter 11 gates off, the current flowing through the single-phase motor 12 tends to continue flowing due to the influence of the motor inductance component. At this time, a regenerative current flows from the single-phase motor 12 toward the battery 10. In this paper, the period during which this regenerative current flows is referred to as the "regenerative period". In FIG. 15, each waveform during the regeneration period is surrounded by a vertically long ellipse.
 図15に示すように、回生期間においては、回生電流によって、モータ印加電圧とは逆極性の電圧が発生するので、単相モータ12に誘起されるモータ誘起電圧が検出できない。このため、回生期間よりも長い「インバータ出力停止期間」が設けられている。インバータ出力停止期間は、第1電圧の印加を停止する期間であり、シャント電圧が第1の閾値に到達した直後から開始される。モータ誘起電圧は、電圧検出器21によって検出することができる。 As shown in FIG. 15, during the regeneration period, a voltage having a polarity opposite to the voltage applied to the motor is generated by the regeneration current, so that the motor-induced voltage induced in the single-phase motor 12 cannot be detected. Therefore, an "inverter output stop period" longer than the regeneration period is provided. The inverter output stop period is a period during which the application of the first voltage is stopped, and is started immediately after the shunt voltage reaches the first threshold value. The motor induced voltage can be detected by the voltage detector 21.
 なお、モータ誘起電圧を電圧検出器21にて直接検出する手法に代え、電圧検出器20の検出値、又は電流検出器24の検出値に基づいてモータ誘起電圧を算出してもよい。なお、電圧検出器20の検出値を用いる場合には、バッテリ10の出力電圧をゼロにする制御手段、又はバッテリ10とインバータ11との間の電気的接続を切り離す機構が必要である。 Instead of the method of directly detecting the motor-induced voltage by the voltage detector 21, the motor-induced voltage may be calculated based on the detection value of the voltage detector 20 or the detection value of the current detector 24. When the detection value of the voltage detector 20 is used, a control means for reducing the output voltage of the battery 10 to zero or a mechanism for disconnecting the electrical connection between the battery 10 and the inverter 11 is required.
 インバータ出力停止期間が終了すると、図15に示す第2の期間に移行する。第2の期間において、インバータ11は、第1の期間に印加された第1電圧とは逆極性の電圧を単相モータ12に印加する。本稿では、この逆極性の電圧を「第2電圧」と呼ぶ。なお、図15では、第2電圧が1パルスの電圧である場合を例示しているが、これに限定されない。第2電圧は、PWM制御された複数のパルス列の電圧でもよい。 When the inverter output stop period ends, the process shifts to the second period shown in FIG. In the second period, the inverter 11 applies a voltage having a polarity opposite to the first voltage applied in the first period to the single-phase motor 12. In this paper, this voltage of opposite polarity is called "second voltage". Note that FIG. 15 illustrates a case where the second voltage is a voltage of one pulse, but the present invention is not limited to this. The second voltage may be the voltage of a plurality of PWM-controlled pulse trains.
 第2電圧の極性は、単相モータ12を意図する回転方向である第1の方向に回転させる極性の電圧である。第2電圧によって、単相モータ12には、第1の方向に回転する回転トルクが付与される。これ以降、インバータ11は、シャント電圧が第1の閾値に到達する都度、単相モータ12に印加する電圧の極性を反転する。 The polarity of the second voltage is the voltage of the polarity that rotates the single-phase motor 12 in the first direction, which is the intended rotation direction. The second voltage gives the single-phase motor 12 a rotational torque that rotates in the first direction. After that, the inverter 11 inverts the polarity of the voltage applied to the single-phase motor 12 each time the shunt voltage reaches the first threshold value.
 なお、図15には、第2の期間において、シャント電圧の値が増加から減少に転じ、且つ、第1の閾値よりも小さな第1の頂部を有する波形が観測される。この特徴は、図2に示すような非対称形状のティース12eを有する単相モータ12に現れる特徴である。実施の形態1では、この特徴を利用した起動制御は、特には行わない。この特徴を利用した起動制御は、実施の形態2で説明する。 Note that, in FIG. 15, in the second period, a waveform in which the value of the shunt voltage changes from an increase to a decrease and has a first peak smaller than the first threshold value is observed. This feature is a feature that appears in the single-phase motor 12 having the asymmetrically shaped teeth 12e as shown in FIG. In the first embodiment, the activation control using this feature is not particularly performed. The activation control using this feature will be described in the second embodiment.
 次に、実施の形態1における起動制御において、図15に示すようなインバータ出力停止期間を設ける意義について説明する。 Next, in the start control in the first embodiment, the significance of providing the inverter output stop period as shown in FIG. 15 will be described.
 前述したように、実施の形態1の起動制御では、単相モータ12の起動時における第1の期間に単相モータ12に第1電圧を印加する。そして、シャント電圧が第1の閾値に到達したときに、第1電圧の印加を停止する。第1電圧の印加を停止することで、ロータ磁極の停止位置を把握することができる。このように、インバータ停止期間を設けることで、ロータ磁極の停止位置を一意に決定することが可能となる。 As described above, in the start control of the first embodiment, the first voltage is applied to the single-phase motor 12 during the first period at the time of starting the single-phase motor 12. Then, when the shunt voltage reaches the first threshold value, the application of the first voltage is stopped. By stopping the application of the first voltage, the stop position of the rotor magnetic pole can be grasped. By providing the inverter stop period in this way, it is possible to uniquely determine the stop position of the rotor magnetic pole.
 特に、単相モータ12が非対称形状のティース12eを有する構造である場合、コギングトルクにより、ロータ12aは、特定の方向にずれた位置で安定的に停止する。このため、実施の形態1の制御手法は、この種のモータに好適に用いることができる。 In particular, when the single-phase motor 12 has a structure having an asymmetrically shaped teeth 12e, the rotor 12a is stably stopped at a position shifted in a specific direction due to the cogging torque. Therefore, the control method of the first embodiment can be suitably used for this type of motor.
 なお、第1の閾値が大き過ぎる場合、図16のパターン3に示されるように、通電後のロータ位置がパターン2よりも逆通電の方向にずれた状態で停止してしまうおそれがある。この状態で、極性を反転した電圧を印加した場合、単相モータ12が逆通電の方向、即ち意図する方向とは反対の第2の方向に回転してしまうおそれがある。このため、第1の閾値は、単相モータ12が意図しない第2の方向に回転しないように、適切に設定する必要がある。 If the first threshold value is too large, as shown in pattern 3 of FIG. 16, there is a possibility that the rotor position after energization will stop in a state of being shifted in the direction of reverse energization from pattern 2. If a voltage whose polarity is reversed is applied in this state, the single-phase motor 12 may rotate in the direction of reverse energization, that is, in the second direction opposite to the intended direction. Therefore, the first threshold value needs to be appropriately set so that the single-phase motor 12 does not rotate in an unintended second direction.
 また、第1の閾値が小さ過ぎる場合、ステータ12bの巻線12fによって発生する回転トルクが小さい状態でモータ印加電圧を切り替えることになる。この場合、負荷トルクが大きいと、負荷に充分な回転トルクを与えることができない可能性がある。このため、第1の閾値は、単相モータ12が負荷に充分な回転トルクを与えることができるように、適切に設定する必要がある。 Further, when the first threshold value is too small, the motor applied voltage is switched in a state where the rotational torque generated by the winding 12f of the stator 12b is small. In this case, if the load torque is large, it may not be possible to give a sufficient rotational torque to the load. Therefore, the first threshold value needs to be appropriately set so that the single-phase motor 12 can give a sufficient rotational torque to the load.
 以上説明したように、実施の形態1に係るモータ駆動装置によれば、インバータは、単相モータの起動時において、第1の期間に単相モータに第1電圧を印加し、第1電圧の印加後の第2の期間に、第1電圧の極性を反転した第2電圧を印加する。第1の期間と第2の期間との間には、第1電圧の印加を停止する停止期間を設ける。このような制御により、単相モータを位置センサレスで起動する場合において、単相モータを安全且つ確実に起動することが可能となる。また、停止区間を設けることで、ロータ磁極が安定停止点付近に位置するように制御することができる。これにより、コギングトルクが大きい単相モータにおいても、安定した駆動が可能となる。 As described above, according to the motor drive device according to the first embodiment, the inverter applies the first voltage to the single-phase motor during the first period at the time of starting the single-phase motor, and the first voltage is increased. In the second period after application, a second voltage in which the polarity of the first voltage is reversed is applied. Between the first period and the second period, a stop period for stopping the application of the first voltage is provided. With such control, when the single-phase motor is started without a position sensor, the single-phase motor can be started safely and surely. Further, by providing a stop section, it is possible to control the rotor magnetic pole to be located near the stable stop point. This enables stable driving even in a single-phase motor having a large cogging torque.
 また、実施の形態1に係るモータ駆動装置によれば、停止期間は、モータ電流と相関のある物理量が第1の閾値に到達した後に開始されるように設定する。なお、モータ電流と相関のある物理量は、第1の電流検出器によって検出することができる。本制御をハードウェアにて実現する際には、少ない回路規模で実装することができる。これにより、制御基板を小型化、軽量化することが可能となる。また、本制御をソフトウェアにて実現する場合、少ないソースコードの追加で済むため、安価なマイコンでも実装可能である。このため、コスト増を抑制できるという効果が得られる。 Further, according to the motor drive device according to the first embodiment, the stop period is set so as to start after the physical quantity correlated with the motor current reaches the first threshold value. The physical quantity that correlates with the motor current can be detected by the first current detector. When this control is realized by hardware, it can be implemented on a small circuit scale. This makes it possible to reduce the size and weight of the control board. Moreover, when this control is realized by software, it can be implemented even with an inexpensive microcomputer because a small amount of source code needs to be added. Therefore, the effect of suppressing the cost increase can be obtained.
実施の形態2.
 次に、実施の形態2に係るモータ駆動装置における起動制御について説明する。なお、実施の形態2に係るモータ駆動装置の構成は、実施の形態1に係るモータ駆動装置2の構成と同じである。実施の形態2では、実施の形態1と異なる部分を中心に説明し、重複する内容の説明は、適宜省略する。
Embodiment 2.
Next, start control in the motor drive device according to the second embodiment will be described. The configuration of the motor drive device according to the second embodiment is the same as the configuration of the motor drive device 2 according to the first embodiment. In the second embodiment, the parts different from the first embodiment will be mainly described, and the description of the overlapping contents will be omitted as appropriate.
 図17は、実施の形態2に係るモータ駆動装置2における要部の動作説明に使用する図である。図17において、上段部にはモータ印加電圧又はモータ誘起電圧の波形が示され、中段部にはモータ電流の波形が示されている。また、下段部には、シャント電圧の波形が示されている。 FIG. 17 is a diagram used for explaining the operation of a main part in the motor drive device 2 according to the second embodiment. In FIG. 17, the waveform of the motor applied voltage or the motor induced voltage is shown in the upper part, and the waveform of the motor current is shown in the middle part. Further, the waveform of the shunt voltage is shown in the lower part.
 図17において、第1の期間、第2の期間及びインバータ出力停止区間の定義は、実施の形態1と同じである。また、第1電圧、第2電圧及び第1の閾値の定義も実施の形態1と同じである。 In FIG. 17, the definitions of the first period, the second period, and the inverter output stop section are the same as those in the first embodiment. Further, the definitions of the first voltage, the second voltage, and the first threshold value are the same as those in the first embodiment.
 ロータ12aの停止位置がパターン1の場合、実施の形態1と同様に、正通電の極性である第1電圧を印加することで、単相モータ12を円滑に駆動することができる。 When the stop position of the rotor 12a is pattern 1, the single-phase motor 12 can be smoothly driven by applying the first voltage, which is the polarity of positive energization, as in the first embodiment.
 また、ロータ12aの停止位置がパターン2の場合、インバータ11は、単相モータ12に第1電圧を印加し、シャント電圧が第1の閾値に到達した際に第1電圧の印加を停止する。そして、第1電圧の印加停止は、インバータ出力停止期間において継続する。インバータ出力停止期間が終了すると、第2の期間に移行する。第2の期間が始まると、インバータ11は、単相モータ12に第2電圧を印加する。ここまでの動作は、実施の形態1と同じである。 Further, when the stop position of the rotor 12a is the pattern 2, the inverter 11 applies the first voltage to the single-phase motor 12, and stops the application of the first voltage when the shunt voltage reaches the first threshold value. Then, the stop of applying the first voltage continues during the inverter output stop period. When the inverter output stop period ends, the process shifts to the second period. When the second period begins, the inverter 11 applies a second voltage to the single-phase motor 12. The operation up to this point is the same as that of the first embodiment.
 実施の形態2では、前述した第1の頂部、即ちシャント電圧の値が増加から減少に転じる最初の頂部のレベルを検出し、その検出レベルを第2の閾値として設定する。なお、第1の頂部の発生位置及びレベルは、ロータ12aに発生する回転トルクと、ロータ12aの回転によって発生するモータ誘起電圧とによって決まる。 In the second embodiment, the level of the first top mentioned above, that is, the level of the first top where the value of the shunt voltage changes from increasing to decreasing is detected, and the detection level is set as the second threshold value. The position and level at which the first top is generated are determined by the rotational torque generated in the rotor 12a and the motor-induced voltage generated by the rotation of the rotor 12a.
 インバータ11は、第2の閾値の設定後に、シャント電圧が第2の閾値に到達した際に第2電圧の極性を反転する。これ以降、インバータ11は、シャント電圧が第2の閾値に到達する都度、単相モータ12に印加する電圧の極性を反転する。これにより、ロータ12aに回転トルクを継続して付与できるので、単相モータ12を円滑に駆動することができる。 The inverter 11 reverses the polarity of the second voltage when the shunt voltage reaches the second threshold value after the setting of the second threshold value. After that, the inverter 11 inverts the polarity of the voltage applied to the single-phase motor 12 each time the shunt voltage reaches the second threshold value. As a result, the rotary torque can be continuously applied to the rotor 12a, so that the single-phase motor 12 can be smoothly driven.
 第1の頂部は、電流変化率であるdi/dtの値が小さい。このため、電流検出のサンプリング間隔を小さくせず、少ないサンプリング数であっても、閾値の設定精度の低下を抑制できるという利点がある。なお、第1の頂部の現れ方は、単相モータ12の特性、単相モータ12に接続される負荷の特性等に依存するので、第2の閾値は、第2の期間ごと、即ちモータ印加電圧の極性が反転する都度、リセットされ且つ再設定されることが好ましい。 At the first top, the value of di / dt, which is the rate of change in current, is small. Therefore, there is an advantage that the sampling interval for current detection is not reduced and the decrease in the threshold setting accuracy can be suppressed even with a small number of samplings. Since the appearance of the first top depends on the characteristics of the single-phase motor 12, the characteristics of the load connected to the single-phase motor 12, and the like, the second threshold value is set every second period, that is, when the motor is applied. It is preferable that the voltage is reset and reset each time the polarity is reversed.
 以上説明したように、実施の形態2に係るモータ駆動装置によれば、インバータは、単相モータの起動時において、第1の期間に単相モータに第1電圧を印加し、第1電圧の印加後の第2の期間に、第1電圧の極性を反転した第2電圧を印加する。第1の期間と第2の期間との間には、第1電圧の印加を停止する停止期間を設ける。そして、第2電圧の印加後に第1の閾値よりも小さな値の第2の閾値を設定する。インバータは、第2の閾値の設定後にシャント電圧が第2の閾値に到達した際に第2電圧の極性を反転する。以降、シャント電圧が第2の閾値に到達する都度、単相モータに印加する電圧の極性を反転する。このような制御により、実施の形態1の効果に加え、電源電圧の変動が大きい場合、又は単相モータのモータ定数にばらつきが発生した場合においても、安定した起動を実現できるという効果が得られる。 As described above, according to the motor drive device according to the second embodiment, the inverter applies the first voltage to the single-phase motor during the first period at the time of starting the single-phase motor, and the first voltage is increased. In the second period after application, a second voltage in which the polarity of the first voltage is reversed is applied. Between the first period and the second period, a stop period for stopping the application of the first voltage is provided. Then, after the application of the second voltage, a second threshold value smaller than the first threshold value is set. The inverter reverses the polarity of the second voltage when the shunt voltage reaches the second threshold after the setting of the second threshold. After that, each time the shunt voltage reaches the second threshold value, the polarity of the voltage applied to the single-phase motor is reversed. By such control, in addition to the effect of the first embodiment, the effect that stable start can be realized even when the fluctuation of the power supply voltage is large or the motor constant of the single-phase motor is varied can be obtained. ..
 次に、実施の形態1,2に共通する事項として、単相モータ12を位置センサレスで駆動することによる効果について説明する。 Next, as a matter common to the first and second embodiments, the effect of driving the single-phase motor 12 without a position sensor will be described.
 まず、適用例が電気掃除機であり、位置センサとして磁極位置センサが用いられる場合、ロータに具備される永久磁石と、磁極位置センサを備えた基板との距離が近くなる。この場合、羽根で発生させた風の流れを妨げる位置に基板を配置することとなり、風路の圧力損失を増大させてしまう。圧力損失の増大は、電気掃除機の吸い込み仕事率を悪化させ、吸引力を低下させてしまう要因となる。 First, when an application example is a vacuum cleaner and a magnetic pole position sensor is used as a position sensor, the distance between the permanent magnet provided in the rotor and the substrate provided with the magnetic pole position sensor becomes close. In this case, the substrate is arranged at a position that obstructs the flow of the wind generated by the blades, which increases the pressure loss of the air passage. The increase in pressure loss becomes a factor that deteriorates the suction power of the vacuum cleaner and lowers the suction power.
 これに対し、位置センサレスでは、位置センサを備えないことから基板配置の自由度が増えるので、基板を風路に対し平行に配置することができる。これにより、基板が風路を遮断しないので、風路の圧力損失を抑制し、吸引力を向上させることができる。その結果、電気掃除機の吸い込み仕事率を向上させることが可能となる。 On the other hand, in the case of no position sensor, since the position sensor is not provided, the degree of freedom in board placement is increased, so that the board can be placed parallel to the air passage. As a result, since the substrate does not block the air passage, the pressure loss of the air passage can be suppressed and the suction force can be improved. As a result, it becomes possible to improve the suction work rate of the vacuum cleaner.
 また、適用例が電動送風機である場合において、電動送風機が吸引した気体に水分が多く含まれている場合、基板に直接衝突する水分量が多くなる。この場合、基板に電圧を印加した際に、電極間をイオン化した金属が移動して短絡が生じるという、イオンマイグレーションの発生が懸念される。更に、塵又は埃が基板に堆積することに起因して発生する短絡が懸念される。この対策として、防湿剤を基板に塗布すること、又は基板を風路から隔離する方法が採られるが、何れも製造コストの増大を招く。 Further, in the case where the application example is an electric blower, if the gas sucked by the electric blower contains a large amount of water, the amount of water that directly collides with the substrate increases. In this case, when a voltage is applied to the substrate, ionized metal moves between the electrodes to cause a short circuit, which may cause ion migration. Further, there is a concern about a short circuit caused by dust or dust accumulating on the substrate. As a countermeasure, a method of applying a moisture-proof agent to the substrate or a method of isolating the substrate from the air passage is adopted, but both of them lead to an increase in manufacturing cost.
 これに対し、位置センサレスでは、位置センサを備えないことから基板配置の自由度が増えるので、風路を避けて基板を配置することができる。これにより、基板に直接衝突する水分量が減少するので、イオンマイグレーションの発生を抑制し、防湿剤の量を低減することができる。また、基板配置の自由度が増加しているので、基板を筺体の外部に配置することで、基板の品質を向上させることができる。 On the other hand, in the case of no position sensor, since the position sensor is not provided, the degree of freedom in board placement is increased, so that the board can be placed while avoiding the air passage. As a result, the amount of water that directly collides with the substrate is reduced, so that the occurrence of ion migration can be suppressed and the amount of the moisture-proofing agent can be reduced. Further, since the degree of freedom in arranging the substrate is increased, the quality of the substrate can be improved by arranging the substrate outside the housing.
 また、位置センサが磁極位置センサである場合、磁極位置を正しく検出するための取り付け作業の精度が要求されると共に、取り付け位置に応じた位置調整作業を実施する必要がある。このため、製造上の管理が難しくなり、設置作業を含めた製造コストの増大を招く。 Further, when the position sensor is a magnetic pole position sensor, the accuracy of the mounting work for correctly detecting the magnetic pole position is required, and it is necessary to carry out the position adjusting work according to the mounting position. For this reason, it becomes difficult to control the manufacturing, and the manufacturing cost including the installation work increases.
 これに対し、位置センサレスでは、位置センサを取り付ける設置工程、及び取り付け後の調整工程が不要であるので、製造コストの大幅な削減が可能となる。また、位置センサの経年変化による影響が発生しないので、製品の品質を向上させることができる。 On the other hand, in the case of no position sensor, the installation process for installing the position sensor and the adjustment process after installation are not required, so that the manufacturing cost can be significantly reduced. Moreover, since the influence of the secular variation of the position sensor does not occur, the quality of the product can be improved.
 更に、位置センサレスでは、位置センサを必要としないため、インバータと単相モータとを分離して構成することができる。これにより、製品適用時の制約を小さくできる。例えば、適用例が水場等で使用する製品である場合、水場等の位置からインバータを隔離して配置することができる。 Furthermore, since the position sensorless type does not require a position sensor, the inverter and the single-phase motor can be configured separately. This makes it possible to reduce the restrictions when applying the product. For example, when the application example is a product used in a water place or the like, the inverter can be isolated from the position of the water place or the like and arranged.
 また、位置センサレスの場合、電流検出器を備えた構成となる。電流検出器は、モータ電流を検出することで、軸ロック又は欠相といったモータ異常を検知可能である。これにより、位置センサが無くても、安全に停止させることができる。 Also, in the case of no position sensor, the configuration is equipped with a current detector. The current detector can detect a motor abnormality such as a shaft lock or a phase loss by detecting the motor current. This makes it possible to safely stop without a position sensor.
 なお、モータ異常を検出するには、例えば第1の閾値よりも大きな値の第3の閾値を設定する。そして、シャント電圧が第3の閾値に到達した場合には、モータ異常と判定する。更に、モータ異常と判定した場合には、インバータの出力を遮断する。このようにすれば、モータ異常を検出して、製品の動作を安全に停止することができる。 In order to detect a motor abnormality, for example, a third threshold value larger than the first threshold value is set. Then, when the shunt voltage reaches the third threshold value, it is determined that the motor is abnormal. Further, when it is determined that the motor is abnormal, the output of the inverter is cut off. By doing so, it is possible to detect a motor abnormality and safely stop the operation of the product.
実施の形態3.
 実施の形態3では、実施の形態1,2で説明したモータ駆動装置2の応用例について説明する。上述したモータ駆動装置2は、例えば電気掃除機に用いることができる。電気掃除機のように、電源の投入直後から直ぐに使用する製品の場合、実施の形態1,2に係るモータ駆動装置2が有する起動時間短縮による効果が大きくなる。
Embodiment 3.
In the third embodiment, an application example of the motor drive device 2 described in the first and second embodiments will be described. The motor drive device 2 described above can be used, for example, in a vacuum cleaner. In the case of a product such as an electric vacuum cleaner that is used immediately after the power is turned on, the effect of shortening the start-up time of the motor drive device 2 according to the first and second embodiments is increased.
 図18は、実施の形態3に係る電気掃除機61の構成図である。図18に示す電気掃除機61は、いわゆるスティック型の電気掃除機である。図18において、電気掃除機61は、図1に示されるバッテリ10と、図1に示されるモータ駆動装置2と、図1に示される単相モータ12により駆動される電動送風機64と、集塵室65と、センサ68と、吸込口体63と、延長管62と、操作部66とを備える。 FIG. 18 is a configuration diagram of the vacuum cleaner 61 according to the third embodiment. The vacuum cleaner 61 shown in FIG. 18 is a so-called stick-type vacuum cleaner. In FIG. 18, the vacuum cleaner 61 includes a battery 10 shown in FIG. 1, a motor driving device 2 shown in FIG. 1, an electric blower 64 driven by a single-phase motor 12 shown in FIG. 1, and dust collector. A chamber 65, a sensor 68, a suction port 63, an extension pipe 62, and an operation unit 66 are provided.
 電気掃除機61を使用するユーザは、操作部66を持ち、電気掃除機61を操作する。電気掃除機61のモータ駆動装置2は、バッテリ10を電源として電動送風機64を駆動する。電動送風機64が駆動されることにより、吸込口体63からごみの吸込みが行われる。吸込まれたごみは、延長管62を介して集塵室65へ集められる。 The user who uses the vacuum cleaner 61 has an operation unit 66 and operates the vacuum cleaner 61. The motor drive device 2 of the vacuum cleaner 61 drives the electric blower 64 using the battery 10 as a power source. By driving the electric blower 64, dust is sucked from the suction port 63. The sucked dust is collected in the dust collecting chamber 65 via the extension pipe 62.
 なお、図18では、スティック型の電気掃除機を例示したが、スティック型の電気掃除機に限定されるものではない。電動送風機を搭載した電気機器であれば、任意の製品に本開示の技術を適用できる。 Although the stick-type vacuum cleaner is illustrated in FIG. 18, it is not limited to the stick-type vacuum cleaner. The technique of the present disclosure can be applied to any product as long as it is an electric device equipped with an electric blower.
 また、図18は、バッテリ10を電源として用いる構成であるが、これに限定されない。バッテリ10に代えて、コンセントから供給する交流電源を用いる構成でもよい。 Further, FIG. 18 shows a configuration in which the battery 10 is used as a power source, but the present invention is not limited to this. Instead of the battery 10, an AC power supply supplied from an outlet may be used.
 また、上述したモータ駆動装置は、例えばハンドドライヤに用いることができる。ハンドドライヤの場合、手を挿入してから電動送風機を駆動するまでの時間が短い程、ユーザの使用感は向上する。このため、実施の形態1,2に係るモータ駆動装置2が有する起動時間短縮の効果が大いに発揮される。 Further, the above-mentioned motor drive device can be used for, for example, a hand dryer. In the case of a hand dryer, the shorter the time from inserting the hand to driving the electric blower, the better the user's usability. Therefore, the effect of shortening the start-up time of the motor drive device 2 according to the first and second embodiments is greatly exhibited.
 図19は、実施の形態3に係るハンドドライヤ90の構成図である。図19において、ハンドドライヤ90は、図1に示されるモータ駆動装置2と、ケーシング91と、手検知センサ92と、水受け部93と、ドレン容器94と、カバー96と、センサ97と、吸気口98と、図1に示される単相モータ12により駆動される電動送風機95とを備える。ここで、センサ97は、ジャイロセンサ及び人感センサの何れかである。ハンドドライヤ90では、水受け部93の上部にある手挿入部99に手が挿入されることにより、電動送風機95による送風で水が吹き飛ばされ、吹き飛ばされた水は、水受け部93で集められた後、ドレン容器94に溜められる。 FIG. 19 is a block diagram of the hand dryer 90 according to the third embodiment. In FIG. 19, the hand dryer 90 includes a motor drive device 2 shown in FIG. 1, a casing 91, a hand detection sensor 92, a water receiving unit 93, a drain container 94, a cover 96, a sensor 97, and an intake air. It includes a port 98 and an electric blower 95 driven by the single-phase motor 12 shown in FIG. Here, the sensor 97 is either a gyro sensor or a motion sensor. In the hand dryer 90, when a hand is inserted into the hand insertion portion 99 at the upper part of the water receiving portion 93, water is blown off by the blown air by the electric blower 95, and the blown water is collected by the water receiving portion 93. After that, it is stored in the drain container 94.
 上述した電気掃除機61及びハンドドライヤ90は、何れも実施の形態1,2に係るモータ駆動装置2を備えた位置センサレスの製品であるため、以下に示す効果が得られる。 Since the above-mentioned electric vacuum cleaner 61 and the hand dryer 90 are both position sensorless products equipped with the motor drive device 2 according to the first and second embodiments, the following effects can be obtained.
 まず、位置センサレスの構成の場合、位置センサが無くても起動することができるため、位置センサの材料費、加工費等のコストを削減することができる。また、位置センサが無いため、位置センサの取り付けずれによる性能影響を無くすことができる。これにより、安定した性能を確保することができる。 First, in the case of a position sensorless configuration, since it can be started without a position sensor, it is possible to reduce costs such as material cost and processing cost of the position sensor. Further, since there is no position sensor, it is possible to eliminate the performance effect due to the misalignment of the position sensor. As a result, stable performance can be ensured.
 また、位置センサはセンシティブなセンサであるため、位置センサの設置位置に関して、高精度な取り付け精度が要求される。また、取り付け後に位置センサの取り付け位置に応じた調整が必要になる。これに対し、位置センサレスの構成の場合、位置センサそのものが不要となり、位置センサの調整工程も排除することができる。これにより、製造コストを大幅に削減することができる。また、位置センサの経年変化による影響が発生しないため、製品の品質を向上させることができる。 Also, since the position sensor is a sensitive sensor, high-precision mounting accuracy is required for the installation position of the position sensor. In addition, after mounting, it is necessary to make adjustments according to the mounting position of the position sensor. On the other hand, in the case of the position sensorless configuration, the position sensor itself becomes unnecessary, and the adjustment step of the position sensor can be eliminated. As a result, the manufacturing cost can be significantly reduced. In addition, the quality of the product can be improved because the position sensor is not affected by the secular variation.
 また、位置センサレスの構成の場合、位置センサが不要であるため、インバータと単相モータとを分離して構成することができる。これにより、製品に対する制約を緩和することが可能となる。例えば、水分の多い水場で使用する製品の場合、製品におけるインバータの搭載位置を水場から遠い箇所に配置することができる。これにより、インバータが故障する可能性を小さくできるので、装置の信頼性を高めることができる。 Also, in the case of a position sensorless configuration, since a position sensor is not required, the inverter and the single-phase motor can be configured separately. This makes it possible to relax restrictions on the product. For example, in the case of a product used in a water place with a large amount of water, the mounting position of the inverter in the product can be arranged at a place far from the water place. As a result, the possibility of failure of the inverter can be reduced, and the reliability of the device can be improved.
 また、位置センサレスの構成の場合、位置センサに代えて配置した電流検出器により、モータ電流又はインバータ電流を検出することで、軸ロック及び欠相と言ったモータの異常を検知することができる。このため、位置センサが無くても、製品を安全に停止させることができる。 Further, in the case of the position sensorless configuration, the motor abnormality such as the shaft lock and the open phase can be detected by detecting the motor current or the inverter current by the current detector arranged instead of the position sensor. Therefore, the product can be safely stopped without the position sensor.
 以上の通り、実施の形態1,2に係るモータ駆動装置2を電気掃除機及びハンドドライヤに適用した構成例を説明したが、これらの例に限定されない。モータ駆動装置2は、モータが搭載された電気機器に広く適用することができる。モータが搭載された電気機器の例は、焼却炉、粉砕機、乾燥機、集塵機、印刷機械、クリーニング機械、製菓機械、製茶機械、木工機械、プラスチック押出機、ダンボール機械、包装機械、熱風発生機、OA機器、及び電動送風機である。電動送風機は、物体輸送用、吸塵用、又は一般送排風用の送風手段である。 As described above, a configuration example in which the motor drive device 2 according to the first and second embodiments is applied to a vacuum cleaner and a hand dryer has been described, but the present invention is not limited to these examples. The motor drive device 2 can be widely applied to an electric device on which a motor is mounted. Examples of electrical equipment equipped with motors are incinerators, crushers, dryers, dust collectors, printing machines, cleaning machines, confectionery machines, tea making machines, woodworking machines, plastic extruders, cardboard machines, packaging machines, hot air generators. , OA equipment, and electric blowers. The electric blower is a blowing means for transporting an object, sucking dust, or for general blowing and exhausting.
 なお、以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, or can be combined with each other, and deviates from the gist. It is also possible to omit or change a part of the configuration to the extent that it does not.
 1 モータ駆動システム、2 モータ駆動装置、5A,5B レグ、6A,6B 接続端、10 バッテリ、11,11A インバータ、12 単相モータ、12a ロータ、12b ステータ、12c シャフト、12d 分割コア、12e ティース、12e1 第1先端部、12e2 第2先端部、12f 巻線、16a,16b 直流母線、18a,18b 接続線、20,21 電圧検出器、22,24 電流検出器、25 制御部、30 アナログディジタル変換器、30a ディジタル出力値、31 プロセッサ、32 駆動信号生成部、33 キャリア生成部、34 メモリ、38,38A,38B キャリア比較部、38a 絶対値演算部、38b 除算部、38c,38d,38f,38k 乗算部、38e,38m,38n 加算部、38g,38h 比較部、38i,38j 出力反転部、42 回転速度算出部、44 進角位置算出部、51,52,53,54 スイッチング素子、51a,52a,53a,54a ボディダイオード、55a,55b シャント抵抗、61 電気掃除機、62 延長管、63 吸込口体、64,95 電動送風機、65 集塵室、66 操作部、68,97 センサ、90 ハンドドライヤ、91 ケーシング、92 手検知センサ、93 水受け部、94 ドレン容器、96 カバー、98 吸気口、99 手挿入部。 1 motor drive system, 2 motor drive device, 5A, 5B leg, 6A, 6B connection end, 10 battery, 11, 11A inverter, 12 single-phase motor, 12a rotor, 12b stator, 12c shaft, 12d split core, 12e teeth, 12e1 1st tip, 12e2 2nd tip, 12f winding, 16a, 16b DC bus, 18a, 18b connection line, 20,21 voltage detector, 22,24 current detector, 25 control unit, 30 analog digital conversion Instrument, 30a digital output value, 31 processor, 32 drive signal generation unit, 33 carrier generation unit, 34 memory, 38, 38A, 38B carrier comparison unit, 38a absolute value calculation unit, 38b division unit, 38c, 38d, 38f, 38k Multiplying unit, 38e, 38m, 38n addition unit, 38g, 38h comparison unit, 38i, 38j output inversion unit, 42 rotation speed calculation unit, 44 advance position calculation unit, 51, 52, 53, 54 switching element, 51a, 52a , 53a, 54a body diode, 55a, 55b shunt resistance, 61 electric vacuum cleaner, 62 extension tube, 63 suction port, 64,95 electric blower, 65 dust collection chamber, 66 operation unit, 68,97 sensor, 90 hand dryer , 91 casing, 92 hand detection sensor, 93 water receiving part, 94 drain container, 96 cover, 98 intake port, 99 hand insertion part.

Claims (14)

  1.  単相モータを位置センサレスで駆動するモータ駆動装置であって、
     直流電源と前記単相モータとの間に配置されるインバータを備え、
     前記インバータは、前記単相モータの起動時において、起動直後の第1の期間に前記単相モータに第1電圧を印加し、前記第1電圧の印加後の第2の期間に、前記第1電圧の極性を反転した第2電圧を印加し、
     前記第1の期間と前記第2の期間との間には、前記第1電圧の印加を停止する停止期間が存在する
     モータ駆動装置。
    A motor drive device that drives a single-phase motor without a position sensor.
    Equipped with an inverter placed between the DC power supply and the single-phase motor,
    When the single-phase motor is started, the inverter applies a first voltage to the single-phase motor in the first period immediately after the start, and in the second period after the application of the first voltage, the first voltage is applied. Apply a second voltage with the polarity of the voltage reversed,
    A motor drive device in which a stop period for stopping the application of the first voltage exists between the first period and the second period.
  2.  前記単相モータに流れる電流と相関のある物理量を検出する第1の検出器を備え、
     前記停止期間は、前記物理量が第1の閾値に到達した後に開始される
     請求項1に記載のモータ駆動装置。
    A first detector for detecting a physical quantity correlated with the current flowing through the single-phase motor is provided.
    The motor drive device according to claim 1, wherein the stop period is started after the physical quantity reaches the first threshold value.
  3.  前記インバータは、前記停止期間の終了後に前記第2電圧を前記単相モータに印加する
     請求項2に記載のモータ駆動装置。
    The motor drive device according to claim 2, wherein the inverter applies the second voltage to the single-phase motor after the end of the stop period.
  4.  前記第2電圧の印加後において、
     前記インバータは、前記物理量が前記第1の閾値に到達する都度、前記単相モータに印加する電圧の極性を反転する
     請求項3に記載のモータ駆動装置。
    After applying the second voltage,
    The motor drive device according to claim 3, wherein the inverter reverses the polarity of the voltage applied to the single-phase motor each time the physical quantity reaches the first threshold value.
  5.  前記第2電圧の印加後に前記第1の閾値よりも小さな値の第2の閾値が設定され、
     前記インバータは、前記第2の閾値の設定後に前記物理量が前記第2の閾値に到達した際に前記第2電圧の極性を反転する
     請求項3に記載のモータ駆動装置。
    After the application of the second voltage, a second threshold value smaller than the first threshold value is set, and the second threshold value is set.
    The motor drive device according to claim 3, wherein the inverter reverses the polarity of the second voltage when the physical quantity reaches the second threshold value after the setting of the second threshold value.
  6.  前記第2の閾値は、前記第1の検出器の検出波形が増加から減少に転じる部分の頂部で検出された値に設定される
     請求項5に記載のモータ駆動装置。
    The motor drive device according to claim 5, wherein the second threshold value is set to a value detected at the top of a portion where the detection waveform of the first detector turns from an increase to a decrease.
  7.  前記第2電圧の印加後においては、前記第2の閾値の設定後に前記物理量が前記第2の閾値に到達する都度、前記単相モータに印加する電圧の極性が反転される
     請求項5又は6に記載のモータ駆動装置。
    Claim 5 or 6 that after the application of the second voltage, the polarity of the voltage applied to the single-phase motor is reversed each time the physical quantity reaches the second threshold value after the setting of the second threshold value. The motor drive device according to.
  8.  前記第2の閾値は、前記単相モータに印加する電圧の極性が反転される都度、リセットされ且つ再設定される
     請求項7に記載のモータ駆動装置。
    The motor drive device according to claim 7, wherein the second threshold value is reset and reset each time the polarity of the voltage applied to the single-phase motor is inverted.
  9.  前記物理量が前記第1の閾値よりも大きな第3の閾値に到達した際には、前記インバータは動作を停止する
     請求項2から8の何れか1項に記載のモータ駆動装置。
    The motor drive device according to any one of claims 2 to 8, wherein the inverter stops operating when the physical quantity reaches a third threshold value larger than the first threshold value.
  10.  前記インバータは、ブリッジ接続される複数のスイッチング素子を有し、
     複数の前記スイッチング素子のうちの少なくとも1つはワイドバンドギャップ半導体で形成されている
     請求項1から9の何れか1項に記載のモータ駆動装置。
    The inverter has a plurality of switching elements that are bridge-connected and has a plurality of switching elements.
    The motor drive device according to any one of claims 1 to 9, wherein at least one of the plurality of switching elements is formed of a wide bandgap semiconductor.
  11.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドである
     請求項10に記載のモータ駆動装置。
    The motor drive device according to claim 10, wherein the wide bandgap semiconductor is silicon carbide, gallium nitride, gallium oxide, or diamond.
  12.  請求項1から11の何れか1項に記載のモータ駆動装置を備えた電動送風機。 An electric blower provided with the motor drive device according to any one of claims 1 to 11.
  13.  請求項12に記載の電動送風機を備えた電気掃除機。 A vacuum cleaner equipped with the electric blower according to claim 12.
  14.  請求項12に記載の電動送風機を備えたハンドドライヤ。 A hand dryer equipped with the electric blower according to claim 12.
PCT/JP2020/039273 2020-10-19 2020-10-19 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer WO2022085048A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/039273 WO2022085048A1 (en) 2020-10-19 2020-10-19 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP2022556835A JP7462788B2 (en) 2020-10-19 2020-10-19 Motor drive device, electric blower, vacuum cleaner and hand dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039273 WO2022085048A1 (en) 2020-10-19 2020-10-19 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer

Publications (1)

Publication Number Publication Date
WO2022085048A1 true WO2022085048A1 (en) 2022-04-28

Family

ID=81290290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039273 WO2022085048A1 (en) 2020-10-19 2020-10-19 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer

Country Status (2)

Country Link
JP (1) JP7462788B2 (en)
WO (1) WO2022085048A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311085A (en) * 1986-06-30 1988-01-18 Aichi Electric Co Ltd Method and apparatus for driving monophase brushless motor
JP2010226779A (en) * 2009-03-19 2010-10-07 Oki Semiconductor Co Ltd Motor driving apparatus
JP2013005533A (en) * 2011-06-14 2013-01-07 Semiconductor Components Industries Llc Drive circuit of single-phase brushless motor
JP2013081375A (en) * 2013-02-06 2013-05-02 Mitsuba Corp Drive unit and control method for brushless motor and drive unit and control method for brushless fan motor
WO2017077574A1 (en) * 2015-11-02 2017-05-11 三菱電機株式会社 Control device for single-phase ac motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311085A (en) * 1986-06-30 1988-01-18 Aichi Electric Co Ltd Method and apparatus for driving monophase brushless motor
JP2010226779A (en) * 2009-03-19 2010-10-07 Oki Semiconductor Co Ltd Motor driving apparatus
JP2013005533A (en) * 2011-06-14 2013-01-07 Semiconductor Components Industries Llc Drive circuit of single-phase brushless motor
JP2013081375A (en) * 2013-02-06 2013-05-02 Mitsuba Corp Drive unit and control method for brushless motor and drive unit and control method for brushless fan motor
WO2017077574A1 (en) * 2015-11-02 2017-05-11 三菱電機株式会社 Control device for single-phase ac motor

Also Published As

Publication number Publication date
JP7462788B2 (en) 2024-04-05
JPWO2022085048A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
JP6644159B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP6671516B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP6800329B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP7237198B2 (en) motor drives, vacuum cleaners and hand dryers
JP6847195B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP7076637B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
WO2022085048A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP7237197B2 (en) motor drives, vacuum cleaners and hand dryers
JP7150151B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
WO2022085049A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
WO2022085050A1 (en) Motor driving device, electric blower, electric vacuum cleaner, and hand dryer
WO2023181182A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP6616055B1 (en) Motor drive device, vacuum cleaner and hand dryer
WO2023181181A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP7150152B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
JP6910538B2 (en) Motor drive, vacuum cleaner and hand dryer
JP6636224B1 (en) Motor drive, vacuum cleaner and hand dryer
WO2019180968A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958604

Country of ref document: EP

Kind code of ref document: A1