WO2023181181A1 - Motor drive device, electric blower, electric vacuum cleaner, and hand dryer - Google Patents

Motor drive device, electric blower, electric vacuum cleaner, and hand dryer Download PDF

Info

Publication number
WO2023181181A1
WO2023181181A1 PCT/JP2022/013539 JP2022013539W WO2023181181A1 WO 2023181181 A1 WO2023181181 A1 WO 2023181181A1 JP 2022013539 W JP2022013539 W JP 2022013539W WO 2023181181 A1 WO2023181181 A1 WO 2023181181A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
phase
power supply
drive device
Prior art date
Application number
PCT/JP2022/013539
Other languages
French (fr)
Japanese (ja)
Inventor
裕次 ▲高▼山
和徳 畠山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/013539 priority Critical patent/WO2023181181A1/en
Publication of WO2023181181A1 publication Critical patent/WO2023181181A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a motor drive device that drives a single-phase motor, and an electric blower, a vacuum cleaner, and a hand dryer equipped with a single-phase motor driven by the motor drive device.
  • Patent Document 1 describes a method for starting a three-phase brushless motor without a position sensor, in which the initial position of the rotor is set with one energization, and the rotational speed of the motor is increased based on information about the set initial position. , discloses a method of detecting the position of the rotor after the rotational speed has increased.
  • the input power source is a battery.
  • the input power source is a battery
  • the battery voltage which is the power supply voltage
  • the inverter input voltage also decreases, making it difficult to drive the single-phase motor at a desired rotation speed.
  • this type of applied product has a problem in that the lower limit of the power supply voltage at which operation is permitted is large and the operating time per power supply capacity is short.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a motor drive device that can lengthen the operating time per power supply capacity.
  • a motor drive device that drives a single-phase motor without a position sensor.
  • the motor drive device includes an inverter to which a power supply voltage output from a DC power supply is applied, and a detector that detects a physical quantity correlated with a motor induced voltage induced in a single-phase motor.
  • the inverter converts the power supply voltage into AC voltage and applies the converted AC voltage to the single-phase motor. Further, the inverter is gated on in a first period to apply a first voltage to the single-phase motor, and gated off in a second period after application of the first voltage.
  • the motor drive device increases the energization width, which represents the application period of the first voltage in electrical angle phase, in response to a decrease in the power supply voltage, and when the power supply voltage further decreases and reaches the lower limit value of the power supply voltage. stops increasing the energization width.
  • Circuit diagram of the inverter shown in Figure 1 A circuit diagram showing a modification of the inverter shown in Figure 2
  • a block diagram showing an example of the carrier comparison section shown in FIG. 4 A diagram showing an example of waveforms of main parts when operated using the carrier comparison section shown in FIG.
  • a block diagram showing another example of the carrier comparison section shown in FIG. 4 A diagram showing an example of waveforms of main parts when operated using the carrier comparison section shown in FIG.
  • FIG. 4 A diagram showing an example of an operation waveform used to explain the first control, which is the drive control at low speed in the first embodiment.
  • FIG. 1 is a block diagram showing the configuration of a motor drive system 1 including a motor drive device 2 according to the first embodiment.
  • the motor drive system 1 shown in FIG. 1 includes a single-phase motor 12, a motor drive device 2, a battery 10, voltage detectors 20 and 21, and current detectors 22 and 24.
  • the battery 10 is a DC power source that supplies DC power to the motor drive device 2.
  • the motor drive device 2 includes an inverter 11 , an analog-to-digital converter 30 , a control section 25 , and a drive signal generation section 32 . Inverter 11 and single-phase motor 12 are connected by two connection wires 18a and 18b.
  • the motor drive system 1 configured as described above is a so-called position sensorless control drive system that does not use a position sensor signal to detect the rotational position of the rotor 12a.
  • the motor drive device 2 is a drive device that supplies AC power to the single-phase motor 12 and drives the single-phase motor 12 without a position sensor.
  • the voltage detector 20 is a detector that detects a power supply voltage V dc , which is a DC voltage output from the battery 10 to the motor drive device 2 .
  • Power supply voltage V dc is the output voltage of battery 10 and is applied to inverter 11 .
  • the voltage detector 21 is a detector that detects the alternating current voltage Vac generated between the connecting lines 18a and 18b.
  • the AC voltage V ac is a voltage in which the motor applied voltage applied by the inverter 11 to the single-phase motor 12 and the motor induced voltage induced in the single-phase motor 12 are superimposed.
  • the detected value of the voltage detector 21 is a physical quantity correlated with the motor induced voltage.
  • the detected value of the voltage detector 21 is sometimes described as "a first physical quantity correlated with the motor induced voltage.” Furthermore, in this paper, a state in which the inverter 11 stops operating and does not output voltage is referred to as “gate off.” Further, the voltage output by the inverter 11 is appropriately referred to as “inverter output voltage.”
  • Current detector 22 is a detector that detects motor current I m .
  • Motor current I m is an alternating current that flows in and out between inverter 11 and single-phase motor 12 .
  • the motor current I m is equal to an alternating current flowing through a winding (not shown in FIG. 1 ) wound around the stator 12 b of the single-phase motor 12 .
  • Examples of the current detector 22 include a current transformer (CT) or a current detector that detects current using a shunt resistor.
  • the current detector 24 is a detector that detects the power supply current I dc .
  • Power supply current I dc is a direct current flowing between battery 10 and inverter 11 .
  • the current detector 24 generally has a configuration using a shunt resistor as shown in the figure.
  • the detected value of the power supply current I dc flowing through the current detector 24 is converted into a voltage value and input to the analog-to-digital converter 30 .
  • the detected value of the current detector 24 is appropriately referred to as a "shunt voltage.”
  • the shunt voltage which is the detected value of the power supply current I dc , has a correlation with the motor current I m .
  • the shunt voltage is sometimes described as "a second physical quantity correlated with the motor current I m .”
  • the single-phase motor 12 is used as a rotating electrical machine that rotates an electric blower (not shown). Electric blowers are installed in devices such as vacuum cleaners and hand dryers.
  • the inverter 11 is a power converter that converts the power supply voltage V dc output from the battery 10 into an alternating current voltage.
  • the inverter 11 supplies AC power to the single-phase motor 12 by applying the converted AC voltage to the single-phase motor 12 .
  • the analog-to-digital converter 30 is a signal converter that converts analog data into digital data.
  • the analog-to-digital converter 30 converts the detected value of the power supply voltage V dc detected by the voltage detector 20 and the detected value of the AC voltage V ac detected by the voltage detector 21 into digital data, and sends the digital data to the control unit 25 . Output. Further, the analog-to-digital converter 30 converts the detected value of the motor current I m detected by the current detector 22 and the detected value of the power supply current I dc detected by the current detector 24 into digital data, and converts the detected value of the motor current I m detected by the current detector 24 into digital data. Output to.
  • the control unit 25 generates PWM signals Q1, Q2, Q3, Q4 (hereinafter appropriately referred to as "Q1 to Q4") based on the digital output value 30a converted by the analog-to-digital converter 30 and the voltage amplitude command V*. ) is generated.
  • the voltage amplitude command V* will be described later.
  • the drive signal generation unit 32 generates drive signals S1, S2, S3, and S4 (hereinafter referred to as “S1 to S4") is generated.
  • the control section 25 includes a processor 31, a carrier generation section 33, and a memory 34.
  • Processor 31 generates PWM signals Q1 to Q4 for performing PWM control.
  • the processor 31 is a processing unit that performs various calculations related to PWM control and advance angle control. Examples of the processor 31 include a CPU (Central Processing Unit), a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or a system LSI (Large Scale Integration).
  • a program read by the processor 31 is stored in the memory 34.
  • the memory 34 is also used as a work area when the processor 31 performs arithmetic processing.
  • the memory 34 is generally a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), flash memory, EPROM (Erasable Programmable ROM), or EEPROM (registered trademark) (Electrically EPROM). It is true. The details of the configuration of the carrier generation section 33 will be described later.
  • FIG. 2 is a circuit diagram of the inverter 11 shown in FIG. 1.
  • the inverter 11 includes a plurality of switching elements 51, 52, 53, and 54 (hereinafter appropriately referred to as "51 to 54") connected in a bridge.
  • the switching elements 51 and 52 constitute a leg 5A which is a first leg.
  • the leg 5A is a series circuit in which a switching element 51, which is a first switching element, and a switching element 52, which is a second switching element, are connected in series.
  • the switching elements 53 and 54 constitute leg 5B, which is the second leg.
  • the leg 5B is a series circuit in which a switching element 53, which is a third switching element, and a switching element 54, which is a fourth switching element, are connected in series.
  • legs 5A and 5B are connected in parallel to each other between the DC bus 16a on the high potential side and the DC bus 16b on the low potential side. Thereby, legs 5A and 5B are connected to both ends of battery 10 in parallel.
  • the switching elements 51 and 53 are located on the high potential side, and the switching elements 52 and 54 are located on the low potential side.
  • the high potential side is called the "upper arm” and the low potential side is called the “lower arm.” Therefore, the switching element 51 of the leg 5A may be referred to as the "first switching element of the upper arm”, and the switching element 52 of the leg 5A may be referred to as the "second switching element of the lower arm”.
  • the switching element 53 of the leg 5B may be referred to as the "third switching element of the upper arm”
  • the switching element 54 of the leg 5B may be referred to as the "fourth switching element of the lower arm”.
  • connection end 6A between the switching element 51 and the switching element 52 and a connection end 6B between the switching element 53 and the switching element 54 constitute an AC end in the bridge circuit.
  • a single-phase motor 12 is connected between the connection end 6A and the connection end 6B.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • FET Field-Effect Transistor
  • a body diode 51a connected in parallel between the drain and source of the switching element 51 is formed in the switching element 51.
  • a body diode 52a connected in parallel between the drain and source of the switching element 52 is formed in the switching element 52.
  • a body diode 53a connected in parallel between the drain and source of the switching element 53 is formed in the switching element 53.
  • a body diode 54a connected in parallel between the drain and source of the switching element 54 is formed in the switching element 54.
  • Each of the plurality of body diodes 51a, 52a, 53a, and 54a is a parasitic diode formed inside the MOSFET, and is used as a freewheeling diode. Note that a separate free wheel diode may be connected.
  • an insulated gate bipolar transistor (IGBT) may be used instead of the MOSFET.
  • the switching elements 51 to 54 are not limited to MOSFETs formed of silicon-based materials, but may be MOSFETs formed of wide band gap (WBG) semiconductors such as silicon carbide, gallium nitride, gallium oxide, or diamond.
  • WBG wide band gap
  • WBG semiconductors have higher voltage resistance and heat resistance than silicon semiconductors. Therefore, by using a WBG semiconductor for at least one of the plurality of switching elements 51 to 54, the voltage resistance and allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element can be miniaturized. Furthermore, WBG semiconductors also have high heat resistance. Therefore, it is possible to downsize the heat dissipation section for dissipating the heat generated in the semiconductor module. Furthermore, it is possible to simplify the heat dissipation structure for dissipating heat generated in the semiconductor module.
  • FIG. 3 is a circuit diagram showing a modification of the inverter 11 shown in FIG. 2.
  • the inverter 11A shown in FIG. 3 has the configuration of the inverter 11 shown in FIG. 2, but further includes shunt resistors 55a and 55b.
  • Shunt resistor 55a is a detector for detecting the current flowing through leg 5A
  • shunt resistor 55b is a detector for detecting the current flowing through leg 5B.
  • the shunt resistor 55a is connected between the low potential side terminal of the switching element 52 and the DC bus 16b
  • the shunt resistor 55b is connected between the low potential side terminal of the switching element 54 and the DC bus 16b.
  • the current detector 22 shown in FIG. 1 can be omitted.
  • the detected values of the shunt resistors 55a and 55b are sent to the processor 31 via the analog-to-digital converter 30.
  • the processor 31 implements activation control, which will be described later, based on the detected values of the shunt resistors 55a and 55b.
  • the shunt resistor 55a is not limited to the one shown in FIG. 3 as long as it can detect the current flowing through the leg 5A.
  • the shunt resistor 55a is connected between the DC bus 16a and the high potential terminal of the switching element 51, between the low potential terminal of the switching element 51 and the connection end 6A, or between the connection end 6A and the high potential of the switching element 52. It may also be placed between the side terminals.
  • the shunt resistor 55b is connected between the DC bus 16a and the high potential side terminal of the switching element 53, between the low potential side terminal of the switching element 53 and the connection end 6B, or between the connection end 6B and the switching element 54. It may also be placed between the terminal on the high potential side of the terminal.
  • the on-resistance of a MOFFET may be used, and the current may be detected by the voltage generated across the on-resistance.
  • FIG. 4 is a block diagram showing a functional part of the control unit 25 shown in FIG. 1 that generates a PWM signal.
  • the carrier comparison section 38 is illustrated together with the carrier generation section 33 shown in FIG. 1.
  • the carrier comparator 38 receives an advanced phase ⁇ v that is subjected to advance angle control and a reference phase ⁇ e that are used when generating a voltage command V m to be described later.
  • the reference phase ⁇ e is a phase obtained by converting a rotor mechanical angle, which is an angle from the reference position of the rotor 12a, into an electrical angle.
  • the motor drive device 2 according to the first embodiment has a so-called position sensorless configuration that does not use a position sensor signal from a position sensor. Therefore, the rotor mechanical angle and the reference phase ⁇ e are estimated by calculation.
  • the "advanced angle phase” referred to here is the “advanced angle” which is the angle of advance of the voltage command V m expressed in phase.
  • the “advance angle” referred to here is the phase difference between the motor applied voltage applied to the windings of the stator 12b and the motor induced voltage induced in the windings of the stator 12b. Note that when the motor applied voltage leads the motor induced voltage, the “advance angle” takes a positive value.
  • the carrier comparator 38 In addition to the advance phase ⁇ v and the reference phase ⁇ e , the carrier comparator 38 also contains the carrier generated by the carrier generator 33, the power supply voltage V dc , and a voltage that is the amplitude value of the voltage command V m . An amplitude command V* is input.
  • the carrier comparator 38 generates PWM signals Q1 to Q4 based on the carrier, advance phase ⁇ v , reference phase ⁇ e , power supply voltage V dc , and voltage amplitude command V*.
  • FIG. 5 is a block diagram showing an example of the carrier comparison unit 38 shown in FIG. 4.
  • FIG. 5 shows detailed configurations of the carrier comparison section 38A and the carrier generation section 33.
  • the carrier generation unit 33 is set with a carrier frequency f C [Hz] that is the frequency of the carrier.
  • a triangular wave carrier that fluctuates between "0" and "1" is shown as an example of a carrier waveform.
  • PWM control of the inverter 11 includes synchronous PWM control and asynchronous PWM control. In the case of synchronous PWM control, it is necessary to synchronize the carrier with the advance phase ⁇ v . On the other hand, in the case of asynchronous PWM control, there is no need to synchronize the carrier with the advance phase ⁇ v .
  • the carrier comparison section 38A includes an absolute value calculation section 38a, a division section 38b, a multiplication section 38c, a multiplication section 38d, a multiplication section 38f, an addition section 38e, a comparison section 38g, a comparison section 38h, and an output inversion section. 38i and an output inverting section 38j.
  • the absolute value calculation unit 38a calculates the absolute value
  • the dividing unit 38b divides the absolute value
  • the value of the modulation factor can be adjusted to prevent the voltage applied to the motor from decreasing due to a decrease in battery voltage.
  • the multiplier 38c calculates the sine value of " ⁇ e + ⁇ v ", which is the addition of the advance phase ⁇ v to the reference phase ⁇ e .
  • the calculated sine value of “ ⁇ e + ⁇ v ” is multiplied by the modulation factor that is the output of the divider 38b.
  • the voltage command Vm which is the output of the multiplier 38c, is multiplied by "1/2".
  • the adder 38e adds "1/2" to the output of the multiplier 38d.
  • the multiplier 38f multiplies the output of the adder 38e by "-1".
  • the output of the adder 38e is input to the comparator 38g as a positive voltage command V m1 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54, and is input to the comparator 38g as a positive voltage command V m1 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54.
  • the output is input to the comparator 38h as a negative side voltage command V m2 for driving the two switching elements 52 and 54 of the lower arm.
  • the comparison unit 38g compares the positive side voltage command V m1 and the amplitude of the carrier.
  • the output of the output inverter 38i which inverts the output of the comparator 38g, becomes the PWM signal Q1 to the switching element 51, and the output of the comparator 38g becomes the PWM signal Q2 to the switching element 52.
  • the comparison unit 38h compares the negative side voltage command V m2 and the amplitude of the carrier.
  • the output of the output inverting section 38j which inverts the output of the comparing section 38h, becomes the PWM signal Q3 to the switching element 53, and the output of the comparing section 38h becomes the PWM signal Q4 to the switching element 54.
  • the output inversion section 38i prevents the switching element 51 and the switching element 52 from being turned on at the same time, and the output inversion section 38j prevents the switching element 53 and the switching element 54 from being turned on at the same time.
  • FIG. 6 is a diagram showing an example of waveforms of main parts when operating using the carrier comparator 38A shown in FIG. 5.
  • FIG. 6 shows the waveform of the positive voltage command V m1 output from the adder 38e, the waveform of the negative voltage command V m2 output from the multiplier 38f, the waveforms of the PWM signals Q1 to Q4, and the inverter output. A voltage waveform is shown.
  • the PWM signal Q1 becomes “Low” when the positive side voltage command V m1 is larger than the carrier, and becomes “High” when the positive side voltage command V m1 is smaller than the carrier.
  • PWM signal Q2 is an inverted signal of PWM signal Q1.
  • the PWM signal Q3 becomes “Low” when the negative side voltage command V m2 is larger than the carrier, and becomes “High” when the negative side voltage command V m2 is smaller than the carrier.
  • PWM signal Q4 is an inverted signal of PWM signal Q3. In this way, the circuit shown in FIG. 5 is configured with “Low Active", but even if it is configured with "High Active” where each signal has the opposite value. good.
  • the waveform of the inverter output voltage shows a voltage pulse due to the voltage difference between the PWM signal Q1 and the PWM signal Q4, and a voltage pulse due to the voltage difference between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as motor applied voltage.
  • Bipolar modulation and unipolar modulation are known as modulation methods used to generate the PWM signals Q1 to Q4.
  • Bipolar modulation is a modulation method that outputs a voltage pulse that changes in positive or negative potential every cycle T of the voltage command Vm .
  • Unipolar modulation is a modulation method that outputs a voltage pulse that changes in three potentials every cycle T of the voltage command Vm , that is, a voltage pulse that changes in positive potential, negative potential, and zero potential.
  • the waveform shown in FIG. 6 is due to unipolar modulation.
  • any modulation method may be used. Note that in applications where it is necessary to control the motor current waveform to a more sinusoidal waveform, it is preferable to employ unipolar modulation, which has a lower harmonic content, than bipolar modulation.
  • the waveform shown in FIG. 6 shows the switching of four switching elements 51 and 52 forming leg 5A and switching elements 53 and 54 forming leg 5B during a period of half cycle T/2 of voltage command Vm .
  • This is achieved by a method of switching elements. This method is called "both-side PWM" because the switching operation is performed using both the positive side voltage command V m1 and the negative side voltage command V m2 .
  • the switching operations of the switching elements 51 and 52 are stopped, and in the other half period T/2 of one period T of the voltage command V m .
  • FIG. 7 is a block diagram showing another example of the carrier comparison section 38 shown in FIG. 4.
  • FIG. 7 shows an example of a one-sided PWM signal generation circuit, and specifically shows detailed configurations of the carrier comparison section 38B and the carrier generation section 33.
  • the configuration of the carrier generation section 33 shown in FIG. 7 is the same or equivalent to that shown in FIG. 5.
  • the configuration of the carrier comparison section 38B shown in FIG. 7 the same or equivalent components as the carrier comparison section 38A shown in FIG. 5 are denoted by the same reference numerals.
  • the carrier comparison section 38B includes an absolute value calculation section 38a, a division section 38b, a multiplication section 38c, a multiplication section 38k, an addition section 38m, an addition section 38n, a comparison section 38g, a comparison section 38h, and an output inversion section. It has a section 38i and an output inverting section 38j.
  • the absolute value calculation unit 38a calculates the absolute value
  • the dividing unit 38b divides the absolute value
  • the multiplier 38c calculates the sine value of " ⁇ e + ⁇ v ", which is the addition of the advance phase ⁇ v to the reference phase ⁇ e .
  • the calculated sine value of “ ⁇ e + ⁇ v ” is multiplied by the modulation factor that is the output of the divider 38b.
  • the multiplier 38k multiplies the voltage command V m , which is the output of the multiplier 38c, by "-1".
  • the adder 38m adds "1" to the voltage command Vm , which is the output of the multiplier 38c.
  • "1" is added to the output of the multiplication section 38k, that is, the inverted output of the voltage command Vm .
  • the output of the adder 38m is input to the comparator 38g as a first voltage command V m3 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54.
  • the output of the adder 38n is input to the comparator 38h as a second voltage command V m4 for driving the two switching elements 52 and 54 of the lower arm.
  • the comparison unit 38g compares the first voltage command V m3 and the amplitude of the carrier.
  • the output of the output inverter 38i which inverts the output of the comparator 38g, becomes the PWM signal Q1 to the switching element 51, and the output of the comparator 38g becomes the PWM signal Q2 to the switching element 52.
  • the comparison unit 38h compares the second voltage command V m4 and the amplitude of the carrier.
  • the output of the output inverting section 38j which inverts the output of the comparing section 38h, becomes the PWM signal Q3 to the switching element 53, and the output of the comparing section 38h becomes the PWM signal Q4 to the switching element 54.
  • the output inversion section 38i prevents the switching element 51 and the switching element 52 from being turned on at the same time, and the output inversion section 38j prevents the switching element 53 and the switching element 54 from being turned on at the same time.
  • FIG. 8 is a diagram showing an example of waveforms of main parts when operating using the carrier comparator 38B shown in FIG. 7.
  • FIG. 8 shows the waveform of the first voltage command V m3 output from the adder 38m, the waveform of the second voltage command V m4 output from the adder 38n, the waveforms of the PWM signals Q1 to Q4, and the inverter output.
  • a voltage waveform is shown.
  • the waveform part of the first voltage command V m3 whose amplitude value is larger than the peak value of the carrier, and the waveform part of the second voltage command V m4 whose amplitude value is larger than the peak value of the carrier are shown.
  • the waveform portion is represented by a flat straight line.
  • the PWM signal Q1 becomes “Low” when the first voltage command V m3 is larger than the carrier, and becomes “High” when the first voltage command V m3 is smaller than the carrier.
  • PWM signal Q2 is an inverted signal of PWM signal Q1.
  • the PWM signal Q3 becomes “Low” when the second voltage command V m4 is larger than the carrier, and becomes “High” when the second voltage command V m4 is smaller than the carrier.
  • PWM signal Q4 is an inverted signal of PWM signal Q3. In this way, the circuit shown in FIG. 7 is configured with “Low Active", but even if it is configured with "High Active” where each signal has the opposite value. good.
  • the waveform of the inverter output voltage shows a voltage pulse due to a voltage difference between PWM signal Q1 and PWM signal Q4, and a voltage pulse due to a voltage difference between PWM signal Q3 and PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as motor applied voltage.
  • the switching operations of the switching elements 51 and 52 are stopped in one half cycle T/2 of one cycle T of the voltage command V m , and During the other half cycle T/2, the switching operations of the switching elements 53 and 54 are at rest.
  • the switching element 52 is controlled to be always on in one half cycle T/2 of one cycle T of the voltage command V m , and During the other half period T/2 of the period T, the switching element 54 is controlled to be always on.
  • FIG. 8 is an example, and in one half cycle T/2, the switching element 51 is controlled to be always on, and in the other half cycle T/2, the switching element 53 is always on. There may also be cases where it is controlled as follows. That is, the waveform shown in FIG. 8 has a feature that at least one of the switching elements 51 to 54 is controlled to be in the on state during half period T/2 of the voltage command V m .
  • the waveform of the inverter output voltage is unipolar modulated, changing by three potentials every cycle T of the voltage command Vm .
  • bipolar modulation may be used instead of unipolar modulation, but in applications where the motor current waveform needs to be controlled more sinusoidally, it is preferable to employ unipolar modulation.
  • FIG. 9 is a block diagram showing a functional configuration for calculating the advance phase ⁇ v input to the carrier comparator 38 shown in FIG. 4.
  • the function of calculating the advance phase ⁇ v can be realized by the rotational speed calculation section 42 and the advance phase calculation section 44, as shown in FIG.
  • the rotation speed calculation unit 42 calculates the rotation speed ⁇ of the single-phase motor 12 based on the detected value of the motor current I m detected by the current detector 22. Further, the rotational speed calculation unit 42 calculates the reference phase ⁇ e based on the detected value of the motor current I m .
  • the reference phase ⁇ e is the phase obtained by converting the rotor mechanical angle, which is the angle from the reference position of the rotor 12a, into an electrical angle.
  • the rotor mechanical angle is a calculated value calculated inside the rotational speed calculating section 42.
  • the advance phase calculation unit 44 calculates the advance phase ⁇ v based on the rotational speed ⁇ , the reference phase ⁇ e , and the motor induced voltage.
  • the motor induced voltage can be obtained from the detected value of the alternating current voltage V ac .
  • the detected value of the AC voltage V ac includes the motor applied voltage that the inverter 11 applies to the single-phase motor 12 and the motor induced voltage induced by the single-phase motor 12 .
  • the motor induced voltage can be detected during the gate-off period when the inverter 11 is not outputting any voltage.
  • FIG. 10 is a diagram showing an example of an operation waveform used to explain the first control, which is the drive control at low speed in the first embodiment.
  • FIG. 11 is a diagram showing an example of an operation waveform used to explain the second control, which is the drive control at high speed in the first embodiment. Note that “low speed” or “high speed” here refers to the relative relationship between the two, and the first control shown in FIG. 10 and the second control shown in FIG. Switch at the rotation speed.
  • the single-phase motor 12 when the preset rotational speed is set as the "first rotational speed" and the rotational speed of the single-phase motor 12 is less than the first rotational speed, the single-phase motor is 12. When the rotational speed of the single-phase motor 12 is equal to or higher than the first rotational speed, the single-phase motor 12 is driven under the second control shown in FIG.
  • the waveform of the motor induced voltage is shown in the upper part of FIG.
  • the waveform of the motor applied voltage and the waveform of the motor induced voltage are shown.
  • the lower part of FIG. 10 shows changes in the electrical angle phase in which the phase of the motor induced voltage is expressed in electrical angle.
  • the gate-on period during which the inverter 11 is gate-on is shown by a coarse hatching pattern
  • the gate-off period during which the inverter 11 is gate-off is shown by a fine hatching pattern.
  • the gate-on period T1 is a period in which the polarity of the voltage applied to the motor is positive
  • the gate-on period T2 is a period in which the polarity of the voltage applied to the motor is negative.
  • a gate-off period T3 exists between the gate-on period T1 and the gate-on period T2.
  • T4 represents a period of 1/2 of the rotation period of the single-phase motor 12, that is, a rotation half period.
  • the electrical angle phase of 0 to 180 [deg] corresponds to the rotation half period T4.
  • the voltage applied to the motor during the gate-on periods T1 and T2 may be referred to as a "first voltage.”
  • the gate-on periods T1 and T2 may be referred to as a "first period”
  • the gate-off period T3 may be referred to as a "second period”.
  • the first and second time periods occur alternately, and the first and second time periods are repeated in this order.
  • the polarity of the first voltage is reversed between the gate-on period T1 and the gate-on period T2.
  • the inverter 11 switches the polarity of the first voltage every time the first period arrives. By switching the polarity of the first voltage, the single-phase motor 12 can continue rotating in the intended rotation direction.
  • FIG. 10 illustrates a case where the first voltage is a one-pulse voltage, the present invention is not limited to this.
  • the first voltage may be a voltage of a plurality of PWM-controlled pulse trains.
  • a positive polarity voltage is applied during the gate-on period T1.
  • the gate-on period T1 starts from a zero cross point where the polarity of the motor induced voltage switches from negative to positive.
  • a negative polarity voltage is applied during the gate-on period T2.
  • the gate-on period T2 starts from a zero cross point where the polarity of the motor induced voltage switches from positive to negative.
  • the polarity switching phase is a point where the electrical angle phase changes from 180 [deg] to 0 [deg], and is indicated by symbol A in FIG. 10. In the first control at low speed, point A, which indicates the polarity switching phase, coincides with the zero cross point.
  • the voltage detector 21 can detect the motor induced voltage. Therefore, it is also possible to detect the zero cross point of the motor induced voltage. Note that the zero cross point is a phase obtained by converting the mechanical angle of the rotor into an electrical angle, and it is also possible to use the reference phase ⁇ e determined by calculation.
  • the zero-crossing point of the motor induced voltage is set as the polarity switching point of the first voltage. That is, when the rotation speed is less than the first rotation speed, the threshold value for switching the polarity of the first voltage is set to a zero value. Therefore, the gate-on period T1 or the gate-on period T2 starts at the zero-crossing point of the motor induced voltage. Then, by repeating the gate-on periods T1 and T2, rotational torque is applied to the single-phase motor 12, and the single-phase motor 12 rotates with acceleration.
  • the length of the gate-on periods T1 and T2 and the amplitude of the voltage applied to the motor can be determined based on the duty ratio, modulation rate, and rotation speed.
  • the duty ratio is the ratio of the gate-on periods T1 and T2 to the rotation half period T4.
  • the motor induced voltage may be calculated based on the detected value of the voltage detector 20 or the detected value of the current detector 24. Note that when the detected value of the voltage detector 20 is used, a control means for zeroing the output voltage of the battery 10 or a mechanism for disconnecting the electrical connection between the battery 10 and the inverter 11 is required.
  • FIG. 11 Similar to FIG. 10, the upper part of FIG. 11 shows the waveform of the motor induced voltage, the middle part shows the waveform of the motor applied voltage and the waveform of the motor induced voltage, and the lower part shows the waveform of the motor induced voltage.
  • the change in electrical angle phase where the phase is expressed in electrical angle, is shown.
  • the hatching patterns attached to the gate-on period and the gate-off period are the same as in FIG. 10.
  • a first voltage of positive polarity is applied.
  • the gate-on period ⁇ 1 starts when the absolute value of the amplitude of the motor induced voltage reaches ⁇ V.
  • a first voltage of negative polarity is applied.
  • the gate-on period ⁇ 2 starts when the absolute value of the amplitude of the motor induced voltage reaches ⁇ V. That is, in the second control, the value of ⁇ V to be compared with the absolute value of the amplitude of the motor induced voltage is set as the threshold value. As shown in FIG. 11, the threshold value ⁇ V is a positive value.
  • the inverter 11 inverts the polarity of the voltage applied to the single-phase motor 12 every time the absolute value of the amplitude of the motor induced voltage reaches the threshold value ⁇ V. Therefore, in the second control at high speed, the polarity of the motor applied voltage is switched between positive and negative at point B where the absolute value of the amplitude of the motor induced voltage becomes the threshold value ⁇ V.
  • the gate-on periods ⁇ 1 and ⁇ 2 may be referred to as “first periods”, and the gate-off period ⁇ 3 may be referred to as a "second period”.
  • the lengths of the gate-on periods ⁇ 1 and ⁇ 2 and the amplitude of the voltage applied to the motor can be determined based on the duty ratio, modulation rate, and rotation speed.
  • the polarity of the first voltage is reversed between the gate-on period ⁇ 1 and the gate-on period ⁇ 2.
  • the inverter 11 switches the polarity of the first voltage every time the first period arrives. By switching the polarity of the first voltage, the single-phase motor 12 can continue rotating in the intended rotation direction.
  • FIG. 11 illustrates a case where the first voltage is a one-pulse voltage, the present invention is not limited to this.
  • the first voltage may be a voltage of a plurality of PWM-controlled pulse trains.
  • the duty ratios T1/T4, ⁇ 1/ ⁇ 4, T2/T4, ⁇ 2/ ⁇ 4 contribute to the motor applied voltage
  • the threshold value ⁇ V contributes to the advance phase ⁇ v , which is the phase difference of the motor applied voltage with respect to the motor induced voltage.
  • the reactance component ( ⁇ L) is smaller at low rotational speeds than at high speeds. For this reason, the motor current flowing through the single-phase motor 12 has a smaller phase lag in the motor applied voltage with respect to the motor current at low speeds than at high speeds.
  • a small phase lag means a large power factor. If the power factor is large, it becomes possible to apply effective motor torque to the single-phase motor 12.
  • the reactance component ( ⁇ L) becomes large.
  • the phase delay of the motor applied voltage with respect to the motor current becomes large, but by increasing the advance phase ⁇ v , it is possible to suppress the power factor from becoming small.
  • the acceleration torque applied to the single-phase motor 12 can be efficiently obtained, and the electric power supplied to the single-phase motor 12 can be effectively utilized.
  • the motor induced voltage generated in the single-phase motor 12 increases as the rotational speed increases. When the motor induced voltage is large, overcurrent can be suppressed even if the inverter output voltage is increased. Therefore, by increasing the inverter output voltage in accordance with the increase in rotational speed, it is possible to reduce the acceleration time while suppressing overcurrent.
  • FIG. 12 is a diagram used to explain the third control common to both low-speed and high-speed drive control in the first embodiment.
  • the horizontal axis in FIG. 12 represents the power supply voltage.
  • the upper part shows a waveform representing the change in rotational speed with respect to the power supply voltage
  • the middle part shows a waveform representing the change in polarity switching phase with respect to the power supply voltage
  • the lower part shows a waveform representing the change in the rotation speed with respect to the power supply voltage.
  • a waveform representing a change in energization width is shown.
  • the polarity switching phase is a phase in which the polarity of the voltage applied to the motor is switched between positive and negative.
  • the energization width represents the application period of the first voltage in terms of electrical angle phase.
  • the lower limit of the battery voltage that is permissible for operation is set large in consideration of the battery voltage, which is the power supply voltage.
  • the problem was that the average driving time was short. In response to this problem, in the first embodiment, the following control is performed.
  • control is performed to increase the energization width in response to a decrease in the power supply voltage V dc .
  • This control is performed until the power supply voltage V dc reaches a preset lower limit value V1. That is, when the power supply voltage V dc decreases and reaches the lower limit value V1, the increase in the energization width is stopped.
  • the lower limit value V1 is set based on the energization width limit value W1.
  • the limit value W1 of the energization width is set based on the upper limit value W2 of the energization width. Specifically, the limit value W1 is set so as not to exceed the upper limit value W2, that is, to be less than or equal to the upper limit value W2.
  • the right side of the vertical axis shows a range in which the induced voltage detection period cannot be secured.
  • the energization width is limited in order to detect the induced voltage.
  • the upper limit W2 of the energization width is the lower limit of the energization width range in which the induced voltage detection period cannot be secured.
  • the inverter is a three-phase inverter that drives a three-phase motor
  • only one of the three phases needs to be gated off when detecting the motor induced voltage. Therefore, with the three-phase inverter, it is possible to detect the motor induced voltage while continuing to supply voltage to the three-phase motor.
  • it is necessary to gate off all elements when detecting the motor induced voltage which is a restriction on control in the single-phase inverter. This point is a major difference between three-phase inverter control and single-phase inverter control, and is a major reason why three-phase inverter control techniques cannot be directly applied to single-phase inverter control.
  • the polarity switching phase is controlled based on the lower limit value V1. Specifically, as shown in the middle part of FIG. 12, after the power supply voltage V dc reaches the lower limit value V1, that is, in the region where the power supply voltage V dc is below the lower limit value V1, the power supply voltage V dc reaches the lower limit value. Control is performed to make the polarity switching phase smaller than before reaching V1. Reducing the polarity switching phase means controlling the polarity switching phase in the advancing direction. Furthermore, controlling the polarity switching phase in the advancing direction means that point A shown in FIG. 10 and point B shown in FIG. 11 move to the left.
  • controlling the polarity switching phase in the advancing direction means strongly exerting magnetic flux weakening control on the single-phase motor 12.
  • By strongly exerting the flux weakening control it becomes possible to supply the single-phase motor 12 with electric power commensurate with the decrease in drive power caused by the decrease in the power supply voltage V dc .
  • the broken line is the operation waveform when the energization width and polarity switching phase are not controlled
  • the solid line is the operation when at least one of the energization width and polarity switching phase is controlled. It is a waveform.
  • FIG. 12 when at least one of the energization width and the polarity switching phase is controlled, it is possible to suppress a decrease in rotational speed that may occur due to a decrease in the power supply voltage V dc . becomes.
  • the motor drive device detects a physical quantity correlated with the motor induced voltage induced in the single-phase motor and the inverter to which the power supply voltage output from the DC power supply is applied.
  • a detector converts the power supply voltage into AC voltage and applies the converted AC voltage to the single-phase motor. Further, the inverter is gated on in a first period to apply a first voltage to the single-phase motor, and gated off in a second period after application of the first voltage.
  • the motor drive device increases the energization width, which represents the application period of the first voltage in electrical angle phase, in response to a decrease in the power supply voltage, and when the power supply voltage further decreases and reaches the lower limit value of the power supply voltage.
  • the motor drive device can obtain the effect that the operating time per power supply capacity can be made longer than before.
  • the motor drive device increases the energization width, which represents the application period of the first voltage in terms of electrical angle phase, in response to a decrease in the power supply voltage, and further increases the energization width.
  • the limit value is reached, the increase in the energization width is stopped.
  • Such control can suppress a decrease in rotational speed that may occur due to a decrease in power supply voltage.
  • the motor drive device can obtain the effect that the operating time per power supply capacity can be made longer than before.
  • the motor drive device when the power supply voltage decreases and reaches the lower limit value of the power supply voltage, the motor drive device changes the polarity switching phase for switching between positive and negative polarity of the first voltage until the power supply voltage reaches the lower limit value of the power supply voltage. Control may be performed in the forward direction compared to before the value is reached. Alternatively, when the energization width increases and reaches the energization width limit value, the polarity switching phase for switching between positive and negative polarity of the first voltage may be changed in the advancing direction compared to before the energization width reaches the energization width limit value. May be controlled.
  • the lower limit value of the power supply voltage and the limit value of the energization width can be set based on the upper limit value of the energization width.
  • the applied example is a vacuum cleaner and a magnetic pole position sensor is used as the position sensor
  • the distance between the permanent magnet provided in the rotor and the substrate provided with the magnetic pole position sensor becomes short.
  • the substrate will be placed in a position that obstructs the flow of air generated by the blades, increasing pressure loss in the air path.
  • the increase in pressure loss is a factor that deteriorates the suction power of the vacuum cleaner and reduces the suction power.
  • the position sensorless system since no position sensor is provided, the degree of freedom in arranging the substrate increases, so that the board can be arranged parallel to the air path. Thereby, since the substrate does not block the air path, pressure loss in the air path can be suppressed and suction power can be improved. As a result, it becomes possible to improve the suction power of the vacuum cleaner.
  • the applied example is an electric blower and the gas sucked by the electric blower contains a large amount of moisture, the amount of moisture that directly collides with the substrate increases.
  • a voltage is applied to the substrate, there is a concern that ion migration may occur, in which ionized metal moves between the electrodes, causing a short circuit.
  • short circuits caused by dirt or dust accumulating on the substrate.
  • methods are adopted such as applying a moisture proofing agent to the substrate or isolating the substrate from the air path, but both of these methods result in an increase in manufacturing costs.
  • the position sensor is a sensitive sensor, high accuracy is required regarding the installation position of the position sensor. Further, after installation, adjustment is required depending on the installation position of the position sensor. On the other hand, in the case of a configuration without a position sensor, the position sensor itself becomes unnecessary, and the process of adjusting the position sensor can also be eliminated. This makes it possible to significantly reduce manufacturing costs. Furthermore, since the position sensor is not affected by aging, the quality of the product can be improved.
  • the inverter and single-phase motor can be configured separately. This makes it possible to reduce restrictions when applying the product. For example, if the application is a product used in a water fountain or the like, the inverter can be placed isolated from the water fountain or the like. This makes it possible to reduce the possibility that the inverter will fail, thereby increasing the reliability of the device.
  • the configuration includes a current detector.
  • the current detector can detect motor abnormalities such as shaft lock or phase loss by detecting motor current. This allows the vehicle to be stopped safely even without a position sensor.
  • a threshold value for determining overcurrent is set. Then, when the shunt voltage reaches the threshold value, it is determined that the motor is abnormal. Further, if it is determined that the motor is abnormal, the output of the inverter is cut off. In this way, motor abnormality can be detected and the operation of the product can be safely stopped.
  • Embodiment 2 an application example of the motor drive device 2 described in Embodiment 1 will be described.
  • the motor drive device 2 described above can be used, for example, in a vacuum cleaner.
  • a vacuum cleaner In the case of a product such as a vacuum cleaner that is used immediately after the power is turned on, the effect of high-speed rotation control of the motor drive device 2 according to the first embodiment is large.
  • FIG. 13 is a configuration diagram of a vacuum cleaner 61 according to the second embodiment.
  • a vacuum cleaner 61 shown in FIG. 13 is a so-called stick-type vacuum cleaner.
  • a vacuum cleaner 61 includes a battery 10 shown in FIG. 1, a motor drive device 2 shown in FIG. 1, an electric blower 64 driven by the single-phase motor 12 shown in FIG. It includes a chamber 65, a sensor 68, a suction port body 63, an extension tube 62, and an operating section 66.
  • a user using the vacuum cleaner 61 holds the operation unit 66 and operates the vacuum cleaner 61.
  • the motor drive device 2 of the vacuum cleaner 61 drives the electric blower 64 using the battery 10 as a power source. By driving the electric blower 64, dust is sucked in through the suction port body 63. The sucked-in dust is collected into the dust collection chamber 65 via the extension pipe 62.
  • the present invention is not limited to stick-type vacuum cleaners.
  • the technology of the present disclosure can be applied to any product as long as it is an electrical device equipped with an electric blower.
  • FIG. 13 shows a configuration in which the battery 10 is used as a power source
  • the present invention is not limited to this.
  • an AC power source supplied from an outlet may be used.
  • the above-mentioned motor drive device can be used, for example, in a hand dryer.
  • a hand dryer the shorter the time between inserting the hand and driving the electric blower, the better the user experience will be. Therefore, the effects of the high-speed rotation control of the motor drive device 2 according to the first embodiment are greatly exhibited.
  • FIG. 14 is a configuration diagram of a hand dryer 90 according to the second embodiment.
  • the hand dryer 90 includes the motor drive device 2 shown in FIG. It includes a port 98 and an electric blower 95 driven by the single-phase motor 12 shown in FIG.
  • the sensor 97 is either a gyro sensor or a human sensor.
  • the hand dryer 90 when a hand is inserted into the hand insertion part 99 at the top of the water receiver 93 , water is blown away by the air blown by the electric blower 95 , and the blown water is collected in the water receiver 93 . After that, it is collected in the drain container 94.
  • Embodiment 2 a configuration example in which the motor drive device 2 according to Embodiment 1 is applied to a vacuum cleaner and a hand dryer has been described, but the present invention is not limited to these examples.
  • the motor drive device 2 can be widely applied to electrical equipment equipped with a motor. Examples of electrical equipment equipped with motors are incinerators, crushers, dryers, dust collectors, printing machines, cleaning machines, confectionery machines, tea machines, woodworking machines, plastic extruders, cardboard machines, packaging machines, and hot air generators. , OA equipment, and electric blowers.
  • An electric blower is a blowing means for transporting objects, collecting dust, or general ventilation.
  • 1 Motor drive system 2 Motor drive device, 5A, 5B leg, 6A, 6B connection end, 10 Battery, 11, 11A inverter, 12 Single phase motor, 12a Rotor, 12b Stator, 16a, 16b DC bus, 18a, 18b connection line, 20, 21 voltage detector, 22, 24 current detector, 25 control unit, 30 analog-digital converter, 30a digital output value, 31 processor, 32 drive signal generation unit, 33 carrier generation unit, 34 memory, 38, 38A, 38B carrier comparison section, 38a absolute value calculation section, 38b division section, 38c, 38d, 38f, 38k multiplication section, 38e, 38m, 38n addition section, 38g, 38h comparison section, 38i, 38j output inversion section, 42 rotation Speed calculation unit, 44 Advance angle phase calculation unit, 51, 52, 53, 54 Switching element, 51a, 52a, 53a, 54a Body diode, 55a, 55b Shunt resistor, 61 Vacuum cleaner, 62 Extension pipe, 63 Suction port body , 64, 95 electric blower, 65

Abstract

A motor drive device (2) comprises: an inverter (11) to which a battery voltage output from a battery (10) is applied; and a voltage detector (21) which detects a motor induced voltage induced in a single-phase motor (12). The inverter (11) converts the battery voltage into an AC voltage and applies the converted AC voltage to the single-phase motor (12). The inverter (11) is gated on during a first period to apply a first voltage to the single-phase motor (12) and is gated off during a second period after the application of the first voltage. The motor drive device (2) increases a conduction width, which represents the application period of the first voltage by the phase of an electrical angle, according to a decrease in the battery voltage, and when the lower limit value of the battery voltage is reached after the battery voltage further decreases, stops increasing the conduction width.

Description

モータ駆動装置、電動送風機、電気掃除機及びハンドドライヤMotor drive devices, electric blowers, vacuum cleaners and hand dryers
 本開示は、単相モータを駆動するモータ駆動装置、モータ駆動装置によって駆動される単相モータを搭載した電動送風機、電気掃除機及びハンドドライヤに関する。 The present disclosure relates to a motor drive device that drives a single-phase motor, and an electric blower, a vacuum cleaner, and a hand dryer equipped with a single-phase motor driven by the motor drive device.
 従来、多相ブラシレスモータを位置センサレス起動する場合、インバータが生成する回転磁界に追従してモータが回転するように高周波の電圧を印加する方法がある。下記特許文献1には、三相のブラシレスモータを位置センサレスで起動する方法において、1回の通電でロータの初期位置を設定し、設定した初期位置の情報に基づいてモータの回転速度を上昇させ、回転速度が上昇した後に、ロータの位置検出を行う方法が開示されている。 Conventionally, when starting a multiphase brushless motor without a position sensor, there is a method of applying a high-frequency voltage so that the motor rotates following the rotating magnetic field generated by an inverter. Patent Document 1 below describes a method for starting a three-phase brushless motor without a position sensor, in which the initial position of the rotor is set with one energization, and the rotational speed of the motor is increased based on information about the set initial position. , discloses a method of detecting the position of the rotor after the rotational speed has increased.
特開平1-308192号公報Japanese Unexamined Patent Publication No. 1-308192
 上記の通り、多相モータでは、種々の起動方法が提案されている。一方、単相モータの場合、インバータによる回転磁界が生成できない。このため、多相モータの起動方法をそのまま単相モータに適用することは困難である。また、多相モータの起動方法の一部を単相モータに適用しても、正しい方向に起動させることは困難である。 As mentioned above, various starting methods have been proposed for polyphase motors. On the other hand, in the case of a single-phase motor, a rotating magnetic field cannot be generated by an inverter. For this reason, it is difficult to apply the starting method of a polyphase motor as is to a single-phase motor. Further, even if part of the method for starting a polyphase motor is applied to a single-phase motor, it is difficult to start the motor in the correct direction.
 また、単相モータを駆動するモータ駆動装置の応用製品には、入力電源がバッテリである場合がある。入力電源がバッテリである場合、電源電圧であるバッテリ電圧が低下するとインバータ入力電圧も低下するので、単相モータを所望の回転速度で駆動することが困難になる。このため、この種の応用製品では、運転が許容される電源電圧の下限値が大きく、電源容量当たりの運転時間が短いという課題がある。 Furthermore, in some applied products of motor drive devices that drive single-phase motors, the input power source is a battery. When the input power source is a battery, when the battery voltage, which is the power supply voltage, decreases, the inverter input voltage also decreases, making it difficult to drive the single-phase motor at a desired rotation speed. For this reason, this type of applied product has a problem in that the lower limit of the power supply voltage at which operation is permitted is large and the operating time per power supply capacity is short.
 本開示は、上記に鑑みてなされたものであって、電源容量当たりの運転時間をより長くできるモータ駆動装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a motor drive device that can lengthen the operating time per power supply capacity.
 上述した課題を解決し、目的を達成するため、本開示に係るモータ駆動装置は、単相モータを位置センサレスで駆動するモータ駆動装置である。モータ駆動装置は、直流電源から出力される電源電圧が印加されるインバータと、単相モータに誘起されるモータ誘起電圧と相関のある物理量を検出する検出器とを備える。インバータは、電源電圧を交流電圧に変換し、変換した交流電圧を単相モータに印加する。また、インバータは、第1の期間にゲートオンして単相モータに第1電圧を印加し、第1電圧の印加後の第2の期間にゲートオフする。モータ駆動装置は、電源電圧の低下に応じて、第1電圧の印加期間を電気角の位相で表した通電幅を増加させ、電源電圧が更に低下して電源電圧の下限値に達した場合には、通電幅の増加を停止する。 In order to solve the above-mentioned problems and achieve the objectives, a motor drive device according to the present disclosure is a motor drive device that drives a single-phase motor without a position sensor. The motor drive device includes an inverter to which a power supply voltage output from a DC power supply is applied, and a detector that detects a physical quantity correlated with a motor induced voltage induced in a single-phase motor. The inverter converts the power supply voltage into AC voltage and applies the converted AC voltage to the single-phase motor. Further, the inverter is gated on in a first period to apply a first voltage to the single-phase motor, and gated off in a second period after application of the first voltage. The motor drive device increases the energization width, which represents the application period of the first voltage in electrical angle phase, in response to a decrease in the power supply voltage, and when the power supply voltage further decreases and reaches the lower limit value of the power supply voltage. stops increasing the energization width.
 本開示に係るモータ駆動装置によれば、電源容量当たりの運転時間をより長くできるという効果を奏する。 According to the motor drive device according to the present disclosure, there is an effect that the operating time per power supply capacity can be made longer.
実施の形態1に係るモータ駆動装置を含むモータ駆動システムの構成を示すブロック図A block diagram showing the configuration of a motor drive system including a motor drive device according to Embodiment 1. 図1に示すインバータの回路図Circuit diagram of the inverter shown in Figure 1 図2に示すインバータの変形例を示す回路図A circuit diagram showing a modification of the inverter shown in Figure 2 図1に示す制御部の機能部位のうちのパルス幅変調(Pulse Width Modulation:PWM)信号を生成する機能部位を示すブロック図A block diagram showing a functional part that generates a pulse width modulation (PWM) signal among the functional parts of the control unit shown in FIG. 1. 図4に示すキャリア比較部の一例を示すブロック図A block diagram showing an example of the carrier comparison section shown in FIG. 4 図5に示すキャリア比較部を用いて動作させたときの要部の波形例を示す図A diagram showing an example of waveforms of main parts when operated using the carrier comparison section shown in FIG. 図4に示すキャリア比較部の他の例を示すブロック図A block diagram showing another example of the carrier comparison section shown in FIG. 4 図7に示すキャリア比較部を用いて動作させたときの要部の波形例を示す図A diagram showing an example of waveforms of main parts when operated using the carrier comparison section shown in FIG. 図4に示すキャリア比較部へ入力される進角位相を算出するための機能構成を示すブロック図A block diagram showing the functional configuration for calculating the advance phase input to the carrier comparison section shown in FIG. 4 実施の形態1における低速時の駆動制御である第1の制御の説明に使用する動作波形の例を示す図A diagram showing an example of an operation waveform used to explain the first control, which is the drive control at low speed in the first embodiment. 実施の形態1における高速時の駆動制御である第2の制御の説明に使用する動作波形の例を示す図A diagram showing an example of an operation waveform used to explain the second control, which is the drive control at high speed in the first embodiment. 実施の形態1における低速時及び高速時の駆動制御の双方に共通する第3の制御の説明に使用する図Diagram used to explain third control common to both low-speed and high-speed drive control in Embodiment 1 実施の形態2に係る電気掃除機の構成図Configuration diagram of a vacuum cleaner according to Embodiment 2 実施の形態2に係るハンドドライヤの構成図Configuration diagram of a hand dryer according to Embodiment 2
 以下に添付図面を参照し、本開示の実施の形態に係るモータ駆動装置、電動送風機、電気掃除機及びハンドドライヤを図面に基づいて詳細に説明する。 Below, with reference to the accompanying drawings, a motor drive device, an electric blower, a vacuum cleaner, and a hand dryer according to embodiments of the present disclosure will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1に係るモータ駆動装置2を含むモータ駆動システム1の構成を示すブロック図である。図1に示すモータ駆動システム1は、単相モータ12と、モータ駆動装置2と、バッテリ10と、電圧検出器20,21と、電流検出器22,24とを備える。バッテリ10は、モータ駆動装置2に直流電力を供給する直流電源である。モータ駆動装置2は、インバータ11と、アナログディジタル変換器30と、制御部25と、駆動信号生成部32とを備える。インバータ11と単相モータ12とは、2本の接続線18a,18bによって接続されている。
Embodiment 1.
FIG. 1 is a block diagram showing the configuration of a motor drive system 1 including a motor drive device 2 according to the first embodiment. The motor drive system 1 shown in FIG. 1 includes a single-phase motor 12, a motor drive device 2, a battery 10, voltage detectors 20 and 21, and current detectors 22 and 24. The battery 10 is a DC power source that supplies DC power to the motor drive device 2. The motor drive device 2 includes an inverter 11 , an analog-to-digital converter 30 , a control section 25 , and a drive signal generation section 32 . Inverter 11 and single-phase motor 12 are connected by two connection wires 18a and 18b.
 上記のように構成されたモータ駆動システム1は、ロータ12aの回転位置を検出するための位置センサ信号を用いない、いわゆる位置センサレス制御の駆動システムである。また、モータ駆動装置2は、単相モータ12に交流電力を供給して単相モータ12を位置センサレスで駆動する駆動装置である。 The motor drive system 1 configured as described above is a so-called position sensorless control drive system that does not use a position sensor signal to detect the rotational position of the rotor 12a. Further, the motor drive device 2 is a drive device that supplies AC power to the single-phase motor 12 and drives the single-phase motor 12 without a position sensor.
 電圧検出器20は、バッテリ10からモータ駆動装置2に出力される直流電圧である電源電圧Vdcを検出する検出器である。電源電圧Vdcは、バッテリ10の出力電圧であり、インバータ11へ印加される。 The voltage detector 20 is a detector that detects a power supply voltage V dc , which is a DC voltage output from the battery 10 to the motor drive device 2 . Power supply voltage V dc is the output voltage of battery 10 and is applied to inverter 11 .
 電圧検出器21は、接続線18a,18b間に生じる交流電圧Vacを検出する検出器である。交流電圧Vacは、インバータ11が単相モータ12に印加するモータ印加電圧と、単相モータ12に誘起されるモータ誘起電圧とが重畳された電圧である。インバータ11が動作を停止し、単相モータ12が回転している場合、モータ誘起電圧が観測される。従って、電圧検出器21の検出値は、モータ誘起電圧と相関のある物理量である。このため、本稿では、電圧検出器21の検出値を「モータ誘起電圧と相関のある第1の物理量」と記載することがある。また、本稿では、インバータ11が動作を停止し、インバータ11が電圧を出力していない状態を「ゲートオフ」と呼ぶ。また、インバータ11が出力する電圧を、適宜「インバータ出力電圧」と呼ぶ。 The voltage detector 21 is a detector that detects the alternating current voltage Vac generated between the connecting lines 18a and 18b. The AC voltage V ac is a voltage in which the motor applied voltage applied by the inverter 11 to the single-phase motor 12 and the motor induced voltage induced in the single-phase motor 12 are superimposed. When the inverter 11 stops operating and the single-phase motor 12 is rotating, a motor induced voltage is observed. Therefore, the detected value of the voltage detector 21 is a physical quantity correlated with the motor induced voltage. Therefore, in this paper, the detected value of the voltage detector 21 is sometimes described as "a first physical quantity correlated with the motor induced voltage." Furthermore, in this paper, a state in which the inverter 11 stops operating and does not output voltage is referred to as "gate off." Further, the voltage output by the inverter 11 is appropriately referred to as "inverter output voltage."
 電流検出器22は、モータ電流Iを検出する検出器である。モータ電流Iは、インバータ11と単相モータ12との間で流出入する交流電流である。モータ電流Iは、単相モータ12のステータ12bに巻かれている、図1では不図示の巻線に流れる交流電流に等しい。電流検出器22には、変流器(Current Transformer:CT)、又はシャント抵抗を用いて電流を検出する電流検出器を例示できる。 Current detector 22 is a detector that detects motor current I m . Motor current I m is an alternating current that flows in and out between inverter 11 and single-phase motor 12 . The motor current I m is equal to an alternating current flowing through a winding (not shown in FIG. 1 ) wound around the stator 12 b of the single-phase motor 12 . Examples of the current detector 22 include a current transformer (CT) or a current detector that detects current using a shunt resistor.
 電流検出器24は、電源電流Idcを検出する検出器である。電源電流Idcは、バッテリ10とインバータ11との間に流れる直流電流である。電流検出器24としては、図示のようにシャント抵抗を用いる構成が一般的である。電流検出器24に流れる電源電流Idcの検出値は、電圧値に変換されてアナログディジタル変換器30に入力される。なお、本稿では、電流検出器24の検出値を、適宜「シャント電圧」と呼ぶ。また、電源電流Idcの検出値であるシャント電圧は、モータ電流Iと相関関係がある。即ち、モータ電流Iが増加すればシャント電圧も増加し、モータ電流Iが減少すればシャント電圧も減少する。このため、本稿では、シャント電圧を「モータ電流Iと相関のある第2の物理量」と記載することがある。 The current detector 24 is a detector that detects the power supply current I dc . Power supply current I dc is a direct current flowing between battery 10 and inverter 11 . The current detector 24 generally has a configuration using a shunt resistor as shown in the figure. The detected value of the power supply current I dc flowing through the current detector 24 is converted into a voltage value and input to the analog-to-digital converter 30 . Note that in this paper, the detected value of the current detector 24 is appropriately referred to as a "shunt voltage." Further, the shunt voltage, which is the detected value of the power supply current I dc , has a correlation with the motor current I m . That is, as the motor current I m increases, the shunt voltage also increases, and as the motor current I m decreases, the shunt voltage also decreases. Therefore, in this paper, the shunt voltage is sometimes described as "a second physical quantity correlated with the motor current I m ."
 単相モータ12は、不図示の電動送風機を回転させる回転電機として利用される。電動送風機は、電気掃除機及びハンドドライヤといった装置に搭載される。 The single-phase motor 12 is used as a rotating electrical machine that rotates an electric blower (not shown). Electric blowers are installed in devices such as vacuum cleaners and hand dryers.
 インバータ11は、バッテリ10から出力される電源電圧Vdcを交流電圧に変換する電力変換器である。インバータ11は、変換した交流電圧を単相モータ12に印加することで、単相モータ12に交流電力を供給する。 The inverter 11 is a power converter that converts the power supply voltage V dc output from the battery 10 into an alternating current voltage. The inverter 11 supplies AC power to the single-phase motor 12 by applying the converted AC voltage to the single-phase motor 12 .
 アナログディジタル変換器30は、アナログデータをディジタルデータに変換する信号変換器である。アナログディジタル変換器30は、電圧検出器20によって検出された電源電圧Vdcの検出値、及び電圧検出器21によって検出された交流電圧Vacの検出値をディジタルデータに変換して制御部25に出力する。また、アナログディジタル変換器30は、電流検出器22によって検出されたモータ電流Iの検出値、及び電流検出器24によって検出され電源電流Idcの検出値をディジタルデータに変換して制御部25に出力する。 The analog-to-digital converter 30 is a signal converter that converts analog data into digital data. The analog-to-digital converter 30 converts the detected value of the power supply voltage V dc detected by the voltage detector 20 and the detected value of the AC voltage V ac detected by the voltage detector 21 into digital data, and sends the digital data to the control unit 25 . Output. Further, the analog-to-digital converter 30 converts the detected value of the motor current I m detected by the current detector 22 and the detected value of the power supply current I dc detected by the current detector 24 into digital data, and converts the detected value of the motor current I m detected by the current detector 24 into digital data. Output to.
 制御部25は、アナログディジタル変換器30で変換されたディジタル出力値30aと、電圧振幅指令V*とに基づいて、PWM信号Q1,Q2,Q3,Q4(以下、適宜「Q1~Q4」と表記)を生成する。電圧振幅指令V*については、後述する。 The control unit 25 generates PWM signals Q1, Q2, Q3, Q4 (hereinafter appropriately referred to as "Q1 to Q4") based on the digital output value 30a converted by the analog-to-digital converter 30 and the voltage amplitude command V*. ) is generated. The voltage amplitude command V* will be described later.
 駆動信号生成部32は、制御部25から出力されるPWM信号Q1~Q4に基づいて、インバータ11内のスイッチング素子を駆動するための駆動信号S1,S2,S3,S4(以下、適宜「S1~S4」と表記)を生成する。 The drive signal generation unit 32 generates drive signals S1, S2, S3, and S4 (hereinafter referred to as “S1 to S4") is generated.
 制御部25は、プロセッサ31、キャリア生成部33及びメモリ34を有する。プロセッサ31は、PWM制御を行うためのPWM信号Q1~Q4を生成する。プロセッサ31は、PWM制御及び進角制御に関する各種演算を行う処理部である。プロセッサ31としては、CPU(Central Processing Unit)、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)、又はシステムLSI(Large Scale Integration)を例示できる。 The control section 25 includes a processor 31, a carrier generation section 33, and a memory 34. Processor 31 generates PWM signals Q1 to Q4 for performing PWM control. The processor 31 is a processing unit that performs various calculations related to PWM control and advance angle control. Examples of the processor 31 include a CPU (Central Processing Unit), a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or a system LSI (Large Scale Integration).
 メモリ34には、プロセッサ31によって読みとられるプログラムが保存される。メモリ34は、プロセッサ31が演算処理を行う際の作業領域としても使用される。メモリ34は、RAM(Random Access Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリが一般的である。キャリア生成部33の構成の詳細は後述する。 A program read by the processor 31 is stored in the memory 34. The memory 34 is also used as a work area when the processor 31 performs arithmetic processing. The memory 34 is generally a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), flash memory, EPROM (Erasable Programmable ROM), or EEPROM (registered trademark) (Electrically EPROM). It is true. The details of the configuration of the carrier generation section 33 will be described later.
 図2は、図1に示すインバータ11の回路図である。インバータ11は、ブリッジ接続される複数のスイッチング素子51,52,53,54(以下、適宜「51~54」と表記)を有する。 FIG. 2 is a circuit diagram of the inverter 11 shown in FIG. 1. The inverter 11 includes a plurality of switching elements 51, 52, 53, and 54 (hereinafter appropriately referred to as "51 to 54") connected in a bridge.
 スイッチング素子51,52は、第1のレグであるレグ5Aを構成する。レグ5Aは、第1のスイッチング素子であるスイッチング素子51と、第2のスイッチング素子であるスイッチング素子52とが直列に接続された直列回路である。 The switching elements 51 and 52 constitute a leg 5A which is a first leg. The leg 5A is a series circuit in which a switching element 51, which is a first switching element, and a switching element 52, which is a second switching element, are connected in series.
 スイッチング素子53,54は、第2のレグであるレグ5Bを構成する。レグ5Bは、第3のスイッチング素子であるスイッチング素子53と、第4のスイッチング素子であるスイッチング素子54とが直列に接続された直列回路である。 The switching elements 53 and 54 constitute leg 5B, which is the second leg. The leg 5B is a series circuit in which a switching element 53, which is a third switching element, and a switching element 54, which is a fourth switching element, are connected in series.
 レグ5A,5Bは、高電位側の直流母線16aと低電位側の直流母線16bとの間に、互いに並列になるように接続される。これにより、レグ5A,5Bは、バッテリ10の両端に並列に接続される。 The legs 5A and 5B are connected in parallel to each other between the DC bus 16a on the high potential side and the DC bus 16b on the low potential side. Thereby, legs 5A and 5B are connected to both ends of battery 10 in parallel.
 スイッチング素子51,53は、高電位側に位置し、スイッチング素子52,54は、低電位側に位置する。一般的に、インバータ回路では、高電位側は「上アーム」と称され、低電位側は「下アーム」と称される。よって、レグ5Aのスイッチング素子51を「上アームの第1のスイッチング素子」と呼び、レグ5Aのスイッチング素子52を「下アームの第2のスイッチング素子」と呼ぶことがある。同様に、レグ5Bのスイッチング素子53を「上アームの第3のスイッチング素子」と呼び、レグ5Bのスイッチング素子54を「下アームの第4のスイッチング素子」と呼ぶことがある。 The switching elements 51 and 53 are located on the high potential side, and the switching elements 52 and 54 are located on the low potential side. Generally, in an inverter circuit, the high potential side is called the "upper arm" and the low potential side is called the "lower arm." Therefore, the switching element 51 of the leg 5A may be referred to as the "first switching element of the upper arm", and the switching element 52 of the leg 5A may be referred to as the "second switching element of the lower arm". Similarly, the switching element 53 of the leg 5B may be referred to as the "third switching element of the upper arm", and the switching element 54 of the leg 5B may be referred to as the "fourth switching element of the lower arm".
 スイッチング素子51とスイッチング素子52との接続端6Aと、スイッチング素子53とスイッチング素子54との接続端6Bとは、ブリッジ回路における交流端を構成する。接続端6Aと接続端6Bとの間には、単相モータ12が接続される。 A connection end 6A between the switching element 51 and the switching element 52 and a connection end 6B between the switching element 53 and the switching element 54 constitute an AC end in the bridge circuit. A single-phase motor 12 is connected between the connection end 6A and the connection end 6B.
 スイッチング素子51~54のそれぞれには、金属酸化膜半導体電界効果型トランジスタであるMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)が使用される。MOSFETは、FET(Field-Effect Transistor)の一例である。 A MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), which is a metal-oxide-semiconductor field-effect transistor, is used for each of the switching elements 51 to 54. MOSFET is an example of a FET (Field-Effect Transistor).
 スイッチング素子51には、スイッチング素子51のドレインとソースとの間に並列接続されるボディダイオード51aが形成される。スイッチング素子52には、スイッチング素子52のドレインとソースとの間に並列接続されるボディダイオード52aが形成される。スイッチング素子53には、スイッチング素子53のドレインとソースとの間に並列接続されるボディダイオード53aが形成される。スイッチング素子54には、スイッチング素子54のドレインとソースとの間に並列接続されるボディダイオード54aが形成される。複数のボディダイオード51a,52a,53a,54aのそれぞれは、MOSFETの内部に形成される寄生ダイオードであり、還流ダイオードとして使用される。なお、別途の還流ダイオードを接続してもよい。また、MOSFETに代えて絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)を用いてもよい。 A body diode 51a connected in parallel between the drain and source of the switching element 51 is formed in the switching element 51. A body diode 52a connected in parallel between the drain and source of the switching element 52 is formed in the switching element 52. A body diode 53a connected in parallel between the drain and source of the switching element 53 is formed in the switching element 53. A body diode 54a connected in parallel between the drain and source of the switching element 54 is formed in the switching element 54. Each of the plurality of body diodes 51a, 52a, 53a, and 54a is a parasitic diode formed inside the MOSFET, and is used as a freewheeling diode. Note that a separate free wheel diode may be connected. Furthermore, an insulated gate bipolar transistor (IGBT) may be used instead of the MOSFET.
 スイッチング素子51~54は、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドといったワイドバンドギャップ(Wide Band Gap:WBG)半導体により形成されたMOSFETでもよい。 The switching elements 51 to 54 are not limited to MOSFETs formed of silicon-based materials, but may be MOSFETs formed of wide band gap (WBG) semiconductors such as silicon carbide, gallium nitride, gallium oxide, or diamond.
 一般的にWBG半導体はシリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、複数のスイッチング素子51~54のうちの少なくとも1つにWBG半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。また、WBG半導体は、耐熱性も高い。このため、半導体モジュールで発生した熱を放熱するための放熱部の小型化が可能である。また、半導体モジュールで発生した熱を放熱する放熱構造の簡素化が可能である。 In general, WBG semiconductors have higher voltage resistance and heat resistance than silicon semiconductors. Therefore, by using a WBG semiconductor for at least one of the plurality of switching elements 51 to 54, the voltage resistance and allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element can be miniaturized. Furthermore, WBG semiconductors also have high heat resistance. Therefore, it is possible to downsize the heat dissipation section for dissipating the heat generated in the semiconductor module. Furthermore, it is possible to simplify the heat dissipation structure for dissipating heat generated in the semiconductor module.
 また、図3は、図2に示すインバータ11の変形例を示す回路図である。図3に示すインバータ11Aは、図2に示すインバータ11の構成において、更にシャント抵抗55a,55bを追加したものである。シャント抵抗55aは、レグ5Aに流れる電流を検出するための検出器であり、シャント抵抗55bは、レグ5Bに流れる電流を検出するための検出器である。図3に示すように、シャント抵抗55aは、スイッチング素子52の低電位側の端子と、直流母線16bとの間に接続され、シャント抵抗55bは、スイッチング素子54の低電位側の端子と直流母線16bとの間に接続されている。シャント抵抗55a,55bを備えるインバータ11Aを用いた場合、図1に示す電流検出器22は、省略することができる。この構成の場合、シャント抵抗55a,55bの検出値は、アナログディジタル変換器30を介してプロセッサ31に送られる。プロセッサ31は、シャント抵抗55a,55bの検出値に基づいて、後述する起動制御を実施する。 Further, FIG. 3 is a circuit diagram showing a modification of the inverter 11 shown in FIG. 2. The inverter 11A shown in FIG. 3 has the configuration of the inverter 11 shown in FIG. 2, but further includes shunt resistors 55a and 55b. Shunt resistor 55a is a detector for detecting the current flowing through leg 5A, and shunt resistor 55b is a detector for detecting the current flowing through leg 5B. As shown in FIG. 3, the shunt resistor 55a is connected between the low potential side terminal of the switching element 52 and the DC bus 16b, and the shunt resistor 55b is connected between the low potential side terminal of the switching element 54 and the DC bus 16b. When the inverter 11A including the shunt resistors 55a and 55b is used, the current detector 22 shown in FIG. 1 can be omitted. In this configuration, the detected values of the shunt resistors 55a and 55b are sent to the processor 31 via the analog-to-digital converter 30. The processor 31 implements activation control, which will be described later, based on the detected values of the shunt resistors 55a and 55b.
 なお、シャント抵抗55aは、レグ5Aに流れる電流を検出できるものであればよく、図3のものに限定されない。シャント抵抗55aは、直流母線16aとスイッチング素子51の高電位側の端子との間、スイッチング素子51の低電位側の端子と接続端6Aとの間、又は接続端6Aとスイッチング素子52の高電位側の端子との間に配置されるものであってもよい。同様に、シャント抵抗55bは、直流母線16aとスイッチング素子53の高電位側の端子との間、スイッチング素子53の低電位側の端子と接続端6Bとの間、又は接続端6Bとスイッチング素子54の高電位側の端子との間に配置されるものであってもよい。また、シャント抵抗55a,55bに代え、MOFFETのオン抵抗を利用し、オン抵抗の両端に生じる電圧で電流検出を行う構成としてもよい。 Note that the shunt resistor 55a is not limited to the one shown in FIG. 3 as long as it can detect the current flowing through the leg 5A. The shunt resistor 55a is connected between the DC bus 16a and the high potential terminal of the switching element 51, between the low potential terminal of the switching element 51 and the connection end 6A, or between the connection end 6A and the high potential of the switching element 52. It may also be placed between the side terminals. Similarly, the shunt resistor 55b is connected between the DC bus 16a and the high potential side terminal of the switching element 53, between the low potential side terminal of the switching element 53 and the connection end 6B, or between the connection end 6B and the switching element 54. It may also be placed between the terminal on the high potential side of the terminal. Further, instead of the shunt resistors 55a and 55b, the on-resistance of a MOFFET may be used, and the current may be detected by the voltage generated across the on-resistance.
 図4は、図1に示す制御部25の機能部位のうちのPWM信号を生成する機能部位を示すブロック図である。図4には、図1に示したキャリア生成部33と共に、キャリア比較部38が図示されている。 FIG. 4 is a block diagram showing a functional part of the control unit 25 shown in FIG. 1 that generates a PWM signal. In FIG. 4, the carrier comparison section 38 is illustrated together with the carrier generation section 33 shown in FIG. 1.
 図4において、キャリア比較部38には、後述する電圧指令Vを生成するときに用いる進角制御された進角位相θと基準位相θとが入力される。基準位相θは、ロータ12aの基準位置からの角度であるロータ機械角を電気角に換算した位相である。なお、前述したように、実施の形態1に係るモータ駆動装置2は、位置センサからの位置センサ信号を用いない、いわゆる位置センサレスの構成である。このため、ロータ機械角及び基準位相θは、演算によって推定される。また、ここで言う「進角位相」とは、電圧指令Vの進みの角度である「進角」を位相で表したものである。更に、ここで言う「進角」とは、ステータ12bの巻線に印加されるモータ印加電圧と、ステータ12bの巻線に誘起されるモータ誘起電圧との間の位相差である。なお、モータ印加電圧がモータ誘起電圧よりも進んでいるときに「進角」は正の値をとる。 In FIG. 4, the carrier comparator 38 receives an advanced phase θ v that is subjected to advance angle control and a reference phase θ e that are used when generating a voltage command V m to be described later. The reference phase θ e is a phase obtained by converting a rotor mechanical angle, which is an angle from the reference position of the rotor 12a, into an electrical angle. Note that, as described above, the motor drive device 2 according to the first embodiment has a so-called position sensorless configuration that does not use a position sensor signal from a position sensor. Therefore, the rotor mechanical angle and the reference phase θ e are estimated by calculation. Moreover, the "advanced angle phase" referred to here is the "advanced angle" which is the angle of advance of the voltage command V m expressed in phase. Furthermore, the "advance angle" referred to here is the phase difference between the motor applied voltage applied to the windings of the stator 12b and the motor induced voltage induced in the windings of the stator 12b. Note that when the motor applied voltage leads the motor induced voltage, the "advance angle" takes a positive value.
 また、キャリア比較部38には、進角位相θと基準位相θとに加え、キャリア生成部33で生成されたキャリアと、電源電圧Vdcと、電圧指令Vの振幅値である電圧振幅指令V*とが入力される。キャリア比較部38は、キャリア、進角位相θ、基準位相θ、電源電圧Vdc及び電圧振幅指令V*に基づいて、PWM信号Q1~Q4を生成する。 In addition to the advance phase θ v and the reference phase θ e , the carrier comparator 38 also contains the carrier generated by the carrier generator 33, the power supply voltage V dc , and a voltage that is the amplitude value of the voltage command V m . An amplitude command V* is input. The carrier comparator 38 generates PWM signals Q1 to Q4 based on the carrier, advance phase θ v , reference phase θ e , power supply voltage V dc , and voltage amplitude command V*.
 図5は、図4に示すキャリア比較部38の一例を示すブロック図である。図5には、キャリア比較部38A及びキャリア生成部33の詳細構成が示されている。 FIG. 5 is a block diagram showing an example of the carrier comparison unit 38 shown in FIG. 4. FIG. 5 shows detailed configurations of the carrier comparison section 38A and the carrier generation section 33.
 図5において、キャリア生成部33には、キャリアの周波数であるキャリア周波数f[Hz]が設定される。キャリア周波数fの矢印の先には、キャリア波形の一例として、“0”と“1”との間を上下する三角波キャリアが示される。インバータ11のPWM制御には、同期PWM制御と非同期PWM制御とがある。同期PWM制御の場合、進角位相θにキャリアを同期させる必要がある。一方、非同期PWM制御の場合、進角位相θにキャリアを同期させる必要はない。 In FIG. 5, the carrier generation unit 33 is set with a carrier frequency f C [Hz] that is the frequency of the carrier. At the tip of the arrow of carrier frequency fC , a triangular wave carrier that fluctuates between "0" and "1" is shown as an example of a carrier waveform. PWM control of the inverter 11 includes synchronous PWM control and asynchronous PWM control. In the case of synchronous PWM control, it is necessary to synchronize the carrier with the advance phase θ v . On the other hand, in the case of asynchronous PWM control, there is no need to synchronize the carrier with the advance phase θ v .
 キャリア比較部38Aは、図5に示すように、絶対値演算部38a、除算部38b、乗算部38c、乗算部38d、乗算部38f、加算部38e、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。 As shown in FIG. 5, the carrier comparison section 38A includes an absolute value calculation section 38a, a division section 38b, a multiplication section 38c, a multiplication section 38d, a multiplication section 38f, an addition section 38e, a comparison section 38g, a comparison section 38h, and an output inversion section. 38i and an output inverting section 38j.
 絶対値演算部38aでは、電圧振幅指令V*の絶対値|V*|が演算される。除算部38bでは、絶対値|V*|が、電圧検出器20で検出された電源電圧Vdcによって除算される。図5の構成では、除算部38bの出力が変調率となる。バッテリ10の出力電圧であるバッテリ電圧は、電流を流し続けることにより変動する。一方、絶対値|V*|を電源電圧Vdcで除算することにより、変調率の値を調整し、バッテリ電圧の低下によってモータ印加電圧が低下しないようにできる。 The absolute value calculation unit 38a calculates the absolute value |V*| of the voltage amplitude command V*. The dividing unit 38b divides the absolute value |V*| by the power supply voltage V dc detected by the voltage detector 20. In the configuration of FIG. 5, the output of the divider 38b becomes the modulation rate. The battery voltage, which is the output voltage of the battery 10, fluctuates as current continues to flow. On the other hand, by dividing the absolute value |V*| by the power supply voltage V dc , the value of the modulation factor can be adjusted to prevent the voltage applied to the motor from decreasing due to a decrease in battery voltage.
 乗算部38cでは、基準位相θに進角位相θを加えた“θ+θ”の正弦値が演算される。演算された“θ+θ”の正弦値は、除算部38bの出力である変調率に乗算される。乗算部38dでは、乗算部38cの出力である電圧指令Vに“1/2”が乗算される。加算部38eでは、乗算部38dの出力に“1/2”が加算される。乗算部38fでは、加算部38eの出力に“-1”が乗算される。加算部38eの出力は、複数のスイッチング素子51~54のうち、上アームの2つのスイッチング素子51,53を駆動するための正側電圧指令Vm1として比較部38gに入力され、乗算部38fの出力は、下アームの2つのスイッチング素子52,54を駆動するための負側電圧指令Vm2として比較部38hに入力される。 The multiplier 38c calculates the sine value of "θ ev ", which is the addition of the advance phase θ v to the reference phase θ e . The calculated sine value of “θ ev ” is multiplied by the modulation factor that is the output of the divider 38b. In the multiplier 38d, the voltage command Vm , which is the output of the multiplier 38c, is multiplied by "1/2". The adder 38e adds "1/2" to the output of the multiplier 38d. The multiplier 38f multiplies the output of the adder 38e by "-1". The output of the adder 38e is input to the comparator 38g as a positive voltage command V m1 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54, and is input to the comparator 38g as a positive voltage command V m1 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54. The output is input to the comparator 38h as a negative side voltage command V m2 for driving the two switching elements 52 and 54 of the lower arm.
 比較部38gでは、正側電圧指令Vm1と、キャリアの振幅とが比較される。比較部38gの出力を反転した出力反転部38iの出力は、スイッチング素子51へのPWM信号Q1となり、比較部38gの出力は、スイッチング素子52へのPWM信号Q2となる。同様に、比較部38hでは、負側電圧指令Vm2と、キャリアの振幅とが比較される。比較部38hの出力を反転した出力反転部38jの出力は、スイッチング素子53へのPWM信号Q3となり、比較部38hの出力は、スイッチング素子54へのPWM信号Q4となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンされることはなく、出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンされることはない。 The comparison unit 38g compares the positive side voltage command V m1 and the amplitude of the carrier. The output of the output inverter 38i, which inverts the output of the comparator 38g, becomes the PWM signal Q1 to the switching element 51, and the output of the comparator 38g becomes the PWM signal Q2 to the switching element 52. Similarly, the comparison unit 38h compares the negative side voltage command V m2 and the amplitude of the carrier. The output of the output inverting section 38j, which inverts the output of the comparing section 38h, becomes the PWM signal Q3 to the switching element 53, and the output of the comparing section 38h becomes the PWM signal Q4 to the switching element 54. The output inversion section 38i prevents the switching element 51 and the switching element 52 from being turned on at the same time, and the output inversion section 38j prevents the switching element 53 and the switching element 54 from being turned on at the same time.
 図6は、図5に示すキャリア比較部38Aを用いて動作させたときの要部の波形例を示す図である。図6には、加算部38eから出力される正側電圧指令Vm1の波形と、乗算部38fから出力される負側電圧指令Vm2の波形と、PWM信号Q1~Q4の波形と、インバータ出力電圧の波形とが示されている。 FIG. 6 is a diagram showing an example of waveforms of main parts when operating using the carrier comparator 38A shown in FIG. 5. FIG. 6 shows the waveform of the positive voltage command V m1 output from the adder 38e, the waveform of the negative voltage command V m2 output from the multiplier 38f, the waveforms of the PWM signals Q1 to Q4, and the inverter output. A voltage waveform is shown.
 PWM信号Q1は、正側電圧指令Vm1がキャリアよりも大きいときに“ロー(Low)”となり、正側電圧指令Vm1がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q2は、PWM信号Q1の反転信号である。PWM信号Q3は、負側電圧指令Vm2がキャリアよりも大きいときに“ロー(Low)”となり、負側電圧指令Vm2がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q4は、PWM信号Q3の反転信号である。このように、図5に示される回路は、“ローアクティブ(Low Active)”で構成されているが、それぞれの信号が逆の値となる“ハイアクティブ(High Active)”で構成されていてもよい。 The PWM signal Q1 becomes "Low" when the positive side voltage command V m1 is larger than the carrier, and becomes "High" when the positive side voltage command V m1 is smaller than the carrier. PWM signal Q2 is an inverted signal of PWM signal Q1. The PWM signal Q3 becomes "Low" when the negative side voltage command V m2 is larger than the carrier, and becomes "High" when the negative side voltage command V m2 is smaller than the carrier. PWM signal Q4 is an inverted signal of PWM signal Q3. In this way, the circuit shown in FIG. 5 is configured with "Low Active", but even if it is configured with "High Active" where each signal has the opposite value. good.
 インバータ出力電圧の波形は、図6に示されるように、PWM信号Q1とPWM信号Q4との差電圧による電圧パルスと、PWM信号Q3とPWM信号Q2との差電圧による電圧パルスとが表れる。これらの電圧パルスが、モータ印加電圧として、単相モータ12に印加される。 As shown in FIG. 6, the waveform of the inverter output voltage shows a voltage pulse due to the voltage difference between the PWM signal Q1 and the PWM signal Q4, and a voltage pulse due to the voltage difference between the PWM signal Q3 and the PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as motor applied voltage.
 PWM信号Q1~Q4を生成する際に使用する変調方式としては、バイポーラ変調と、ユニポーラ変調とが知られている。バイポーラ変調は、電圧指令Vの1周期Tごとに正又は負の電位で変化する電圧パルスを出力する変調方式である。ユニポーラ変調は、電圧指令Vの1周期Tごとに3つの電位で変化する電圧パルス、即ち正の電位と負の電位と零の電位とに変化する電圧パルスを出力する変調方式である。図6に示される波形は、ユニポーラ変調によるものである。実施の形態1に係るモータ駆動装置2においては、何れの変調方式を用いてもよい。なお、モータ電流波形をより正弦波に制御する必要がある用途では、バイポーラ変調よりも、高調波含有率が少ないユニポーラ変調を採用することが好ましい。 Bipolar modulation and unipolar modulation are known as modulation methods used to generate the PWM signals Q1 to Q4. Bipolar modulation is a modulation method that outputs a voltage pulse that changes in positive or negative potential every cycle T of the voltage command Vm . Unipolar modulation is a modulation method that outputs a voltage pulse that changes in three potentials every cycle T of the voltage command Vm , that is, a voltage pulse that changes in positive potential, negative potential, and zero potential. The waveform shown in FIG. 6 is due to unipolar modulation. In the motor drive device 2 according to the first embodiment, any modulation method may be used. Note that in applications where it is necessary to control the motor current waveform to a more sinusoidal waveform, it is preferable to employ unipolar modulation, which has a lower harmonic content, than bipolar modulation.
 また、図6に示される波形は、電圧指令Vの半周期T/2の期間において、レグ5Aを構成するスイッチング素子51,52と、レグ5Bを構成するスイッチング素子53,54の4つのスイッチング素子をスイッチング動作させる方式によって得られる。この方式は、正側電圧指令Vm1と負側電圧指令Vm2の双方でスイッチング動作させることから、「両側PWM」と呼ばれる。これに対し、電圧指令Vの1周期Tのうちの一方の半周期T/2では、スイッチング素子51,52のスイッチング動作を休止させ、電圧指令Vの1周期Tのうちの他方の半周期T/2では、スイッチング素子53,54のスイッチング動作を休止させる方式もある。この方式は、「片側PWM」と呼ばれる。以下、「片側PWM」について説明する。なお、以下の説明において、両側PWMで動作させる動作モードを「両側PWMモード」と呼び、片側PWMで動作させる動作モードを「片側PWMモード」と呼ぶ。また、「両側PWM」によるPWM信号を「両側PWM信号」と呼び、「片側PWM」によるPWM信号を「片側PWM信号」と呼ぶことがある。 Moreover, the waveform shown in FIG. 6 shows the switching of four switching elements 51 and 52 forming leg 5A and switching elements 53 and 54 forming leg 5B during a period of half cycle T/2 of voltage command Vm . This is achieved by a method of switching elements. This method is called "both-side PWM" because the switching operation is performed using both the positive side voltage command V m1 and the negative side voltage command V m2 . On the other hand, in one half period T/2 of one period T of the voltage command V m , the switching operations of the switching elements 51 and 52 are stopped, and in the other half period T/2 of one period T of the voltage command V m . There is also a method in which the switching operations of the switching elements 53 and 54 are stopped during the period T/2. This method is called "one-sided PWM." Hereinafter, "one-sided PWM" will be explained. In the following description, the operation mode in which the device operates with PWM on both sides is referred to as the “both-side PWM mode”, and the operation mode in which the device operates with PWM on one side is referred to as the “one-side PWM mode”. Further, a PWM signal based on "both-side PWM" may be referred to as a "both-side PWM signal", and a PWM signal based on "one-sided PWM" may be called a "one-sided PWM signal".
 図7は、図4に示すキャリア比較部38の他の例を示すブロック図である。図7には、片側PWM信号の生成回路の一例が示され、具体的には、キャリア比較部38B及びキャリア生成部33の詳細構成が示されている。なお、図7に示されるキャリア生成部33の構成は、図5に示されるものと同一又は同等である。また、図7に示されるキャリア比較部38Bの構成において、図5に示されるキャリア比較部38Aと同一又は同等の構成部には同一の符号を付して示している。 FIG. 7 is a block diagram showing another example of the carrier comparison section 38 shown in FIG. 4. FIG. 7 shows an example of a one-sided PWM signal generation circuit, and specifically shows detailed configurations of the carrier comparison section 38B and the carrier generation section 33. Note that the configuration of the carrier generation section 33 shown in FIG. 7 is the same or equivalent to that shown in FIG. 5. Furthermore, in the configuration of the carrier comparison section 38B shown in FIG. 7, the same or equivalent components as the carrier comparison section 38A shown in FIG. 5 are denoted by the same reference numerals.
 キャリア比較部38Bは、図7に示されるように、絶対値演算部38a、除算部38b、乗算部38c、乗算部38k、加算部38m、加算部38n、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。 As shown in FIG. 7, the carrier comparison section 38B includes an absolute value calculation section 38a, a division section 38b, a multiplication section 38c, a multiplication section 38k, an addition section 38m, an addition section 38n, a comparison section 38g, a comparison section 38h, and an output inversion section. It has a section 38i and an output inverting section 38j.
 絶対値演算部38aでは、電圧振幅指令V*の絶対値|V*|が演算される。除算部38bでは、絶対値|V*|が、電圧検出器20で検出された電源電圧Vdcによって除算される。図7の構成でも、除算部38bの出力が変調率となる。 The absolute value calculation unit 38a calculates the absolute value |V*| of the voltage amplitude command V*. The dividing unit 38b divides the absolute value |V*| by the power supply voltage V dc detected by the voltage detector 20. In the configuration of FIG. 7 as well, the output of the divider 38b becomes the modulation rate.
 乗算部38cでは、基準位相θに進角位相θを加えた“θ+θ”の正弦値が演算される。演算された“θ+θ”の正弦値は、除算部38bの出力である変調率に乗算される。乗算部38kでは、乗算部38cの出力である電圧指令Vに“-1”が乗算される。加算部38mでは、乗算部38cの出力である電圧指令Vに“1”が加算される。加算部38nでは、乗算部38kの出力、即ち電圧指令Vの反転出力に“1”が加算される。加算部38mの出力は、複数のスイッチング素子51~54のうち、上アームの2つのスイッチング素子51,53を駆動するための第1電圧指令Vm3として比較部38gに入力される。加算部38nの出力は、下アームの2つのスイッチング素子52,54を駆動するための第2電圧指令Vm4として比較部38hに入力される。 The multiplier 38c calculates the sine value of "θ ev ", which is the addition of the advance phase θ v to the reference phase θ e . The calculated sine value of “θ ev ” is multiplied by the modulation factor that is the output of the divider 38b. The multiplier 38k multiplies the voltage command V m , which is the output of the multiplier 38c, by "-1". The adder 38m adds "1" to the voltage command Vm , which is the output of the multiplier 38c. In the addition section 38n, "1" is added to the output of the multiplication section 38k, that is, the inverted output of the voltage command Vm . The output of the adder 38m is input to the comparator 38g as a first voltage command V m3 for driving the two switching elements 51 and 53 of the upper arm among the plurality of switching elements 51 to 54. The output of the adder 38n is input to the comparator 38h as a second voltage command V m4 for driving the two switching elements 52 and 54 of the lower arm.
 比較部38gでは、第1電圧指令Vm3と、キャリアの振幅とが比較される。比較部38gの出力を反転した出力反転部38iの出力は、スイッチング素子51へのPWM信号Q1となり、比較部38gの出力は、スイッチング素子52へのPWM信号Q2となる。同様に、比較部38hでは、第2電圧指令Vm4と、キャリアの振幅とが比較される。比較部38hの出力を反転した出力反転部38jの出力は、スイッチング素子53へのPWM信号Q3となり、比較部38hの出力は、スイッチング素子54へのPWM信号Q4となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンされることはなく、出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンされることはない。 The comparison unit 38g compares the first voltage command V m3 and the amplitude of the carrier. The output of the output inverter 38i, which inverts the output of the comparator 38g, becomes the PWM signal Q1 to the switching element 51, and the output of the comparator 38g becomes the PWM signal Q2 to the switching element 52. Similarly, the comparison unit 38h compares the second voltage command V m4 and the amplitude of the carrier. The output of the output inverting section 38j, which inverts the output of the comparing section 38h, becomes the PWM signal Q3 to the switching element 53, and the output of the comparing section 38h becomes the PWM signal Q4 to the switching element 54. The output inversion section 38i prevents the switching element 51 and the switching element 52 from being turned on at the same time, and the output inversion section 38j prevents the switching element 53 and the switching element 54 from being turned on at the same time.
 図8は、図7に示すキャリア比較部38Bを用いて動作させたときの要部の波形例を示す図である。図8には、加算部38mから出力される第1電圧指令Vm3の波形と、加算部38nから出力される第2電圧指令Vm4の波形と、PWM信号Q1~Q4の波形と、インバータ出力電圧の波形とが示されている。なお、図8では、便宜的に、キャリアのピーク値よりも振幅値が大きくなる第1電圧指令Vm3の波形部分と、キャリアのピーク値よりも振幅値が大きくなる第2電圧指令Vm4の波形部分は、フラットな直線で表されている。 FIG. 8 is a diagram showing an example of waveforms of main parts when operating using the carrier comparator 38B shown in FIG. 7. FIG. 8 shows the waveform of the first voltage command V m3 output from the adder 38m, the waveform of the second voltage command V m4 output from the adder 38n, the waveforms of the PWM signals Q1 to Q4, and the inverter output. A voltage waveform is shown. In addition, in FIG. 8, for convenience, the waveform part of the first voltage command V m3 whose amplitude value is larger than the peak value of the carrier, and the waveform part of the second voltage command V m4 whose amplitude value is larger than the peak value of the carrier are shown. The waveform portion is represented by a flat straight line.
 PWM信号Q1は、第1電圧指令Vm3がキャリアよりも大きいときに“ロー(Low)”となり、第1電圧指令Vm3がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q2は、PWM信号Q1の反転信号である。PWM信号Q3は、第2電圧指令Vm4がキャリアよりも大きいときに“ロー(Low)”となり、第2電圧指令Vm4がキャリアよりも小さいときに“ハイ(High)”となる。PWM信号Q4は、PWM信号Q3の反転信号である。このように、図7に示される回路は、“ローアクティブ(Low Active)”で構成されているが、それぞれの信号が逆の値となる“ハイアクティブ(High Active)”で構成されていてもよい。 The PWM signal Q1 becomes "Low" when the first voltage command V m3 is larger than the carrier, and becomes "High" when the first voltage command V m3 is smaller than the carrier. PWM signal Q2 is an inverted signal of PWM signal Q1. The PWM signal Q3 becomes "Low" when the second voltage command V m4 is larger than the carrier, and becomes "High" when the second voltage command V m4 is smaller than the carrier. PWM signal Q4 is an inverted signal of PWM signal Q3. In this way, the circuit shown in FIG. 7 is configured with "Low Active", but even if it is configured with "High Active" where each signal has the opposite value. good.
 インバータ出力電圧の波形は、図8に示されるように、PWM信号Q1とPWM信号Q4との差電圧による電圧パルスと、PWM信号Q3とPWM信号Q2との差電圧による電圧パルスとが表れる。これらの電圧パルスが、モータ印加電圧として、単相モータ12に印加される。 As shown in FIG. 8, the waveform of the inverter output voltage shows a voltage pulse due to a voltage difference between PWM signal Q1 and PWM signal Q4, and a voltage pulse due to a voltage difference between PWM signal Q3 and PWM signal Q2. These voltage pulses are applied to the single-phase motor 12 as motor applied voltage.
 図8に示される波形では、電圧指令Vの1周期Tのうちの一方の半周期T/2では、スイッチング素子51,52のスイッチング動作が休止し、電圧指令Vの1周期Tのうちの他方の半周期T/2では、スイッチング素子53,54のスイッチング動作が休止している。 In the waveform shown in FIG. 8, the switching operations of the switching elements 51 and 52 are stopped in one half cycle T/2 of one cycle T of the voltage command V m , and During the other half cycle T/2, the switching operations of the switching elements 53 and 54 are at rest.
 また、図8に示される波形では、電圧指令Vの1周期Tのうちの一方の半周期T/2では、スイッチング素子52は常時オン状態となるように制御され、電圧指令Vの1周期Tのうちの他方の半周期T/2では、スイッチング素子54は常時オン状態となるように制御される。なお、図8は一例であり、一方の半周期T/2では、スイッチング素子51が常時オン状態となるように制御され、他方の半周期T/2では、スイッチング素子53が常時オン状態となるように制御される場合も有り得る。即ち、図8に示される波形には、電圧指令Vの半周期T/2において、スイッチング素子51~54のうちの少なくとも1つがオン状態となるように制御されるという特徴がある。 Further, in the waveform shown in FIG. 8, the switching element 52 is controlled to be always on in one half cycle T/2 of one cycle T of the voltage command V m , and During the other half period T/2 of the period T, the switching element 54 is controlled to be always on. Note that FIG. 8 is an example, and in one half cycle T/2, the switching element 51 is controlled to be always on, and in the other half cycle T/2, the switching element 53 is always on. There may also be cases where it is controlled as follows. That is, the waveform shown in FIG. 8 has a feature that at least one of the switching elements 51 to 54 is controlled to be in the on state during half period T/2 of the voltage command V m .
 また、図8において、インバータ出力電圧の波形は、電圧指令Vの1周期Tごとに3つの電位で変化するユニポーラ変調となる。前述の通り、ユニポーラ変調に代えてバイポーラ変調を用いてもよいが、モータ電流波形をより正弦波に制御する必要がある用途では、ユニポーラ変調を採用することが好ましい。 Further, in FIG. 8, the waveform of the inverter output voltage is unipolar modulated, changing by three potentials every cycle T of the voltage command Vm . As mentioned above, bipolar modulation may be used instead of unipolar modulation, but in applications where the motor current waveform needs to be controlled more sinusoidally, it is preferable to employ unipolar modulation.
 図9は、図4に示すキャリア比較部38へ入力される進角位相θを算出するための機能構成を示すブロック図である。進角位相θの算出機能は、図9に示されるように、回転速度算出部42と、進角位相算出部44とによって実現できる。回転速度算出部42は、電流検出器22によって検出されたモータ電流Iの検出値に基づいて単相モータ12の回転速度ωを算出する。また、回転速度算出部42は、モータ電流Iの検出値に基づいて、基準位相θを算出する。前述したように、基準位相θは、ロータ12aの基準位置からの角度であるロータ機械角を電気角に換算した位相である。ロータ機械角は、回転速度算出部42の内部で演算される演算値である。 FIG. 9 is a block diagram showing a functional configuration for calculating the advance phase θ v input to the carrier comparator 38 shown in FIG. 4. The function of calculating the advance phase θ v can be realized by the rotational speed calculation section 42 and the advance phase calculation section 44, as shown in FIG. The rotation speed calculation unit 42 calculates the rotation speed ω of the single-phase motor 12 based on the detected value of the motor current I m detected by the current detector 22. Further, the rotational speed calculation unit 42 calculates the reference phase θ e based on the detected value of the motor current I m . As described above, the reference phase θ e is the phase obtained by converting the rotor mechanical angle, which is the angle from the reference position of the rotor 12a, into an electrical angle. The rotor mechanical angle is a calculated value calculated inside the rotational speed calculating section 42.
 進角位相算出部44は、回転速度ω、基準位相θ及びモータ誘起電圧に基づいて進角位相θを算出する。モータ誘起電圧は、交流電圧Vacの検出値により取得することができる。前述したように、交流電圧Vacの検出値には、インバータ11が単相モータ12に印加するモータ印加電圧と、単相モータ12によって誘起されるモータ誘起電圧とが含まれている。これらの電圧のうち、モータ誘起電圧は、インバータ11が電圧を出力していないゲートオフ期間に検出することができる。 The advance phase calculation unit 44 calculates the advance phase θ v based on the rotational speed ω, the reference phase θ e , and the motor induced voltage. The motor induced voltage can be obtained from the detected value of the alternating current voltage V ac . As described above, the detected value of the AC voltage V ac includes the motor applied voltage that the inverter 11 applies to the single-phase motor 12 and the motor induced voltage induced by the single-phase motor 12 . Among these voltages, the motor induced voltage can be detected during the gate-off period when the inverter 11 is not outputting any voltage.
 次に、実施の形態1に係るモータ駆動装置2の駆動制御の第1の要点について、図10及び図11を参照して説明する。図10は、実施の形態1における低速時の駆動制御である第1の制御の説明に使用する動作波形の例を示す図である。図11は、実施の形態1における高速時の駆動制御である第2の制御の説明に使用する動作波形の例を示す図である。なお、ここで言う「低速」又は「高速」は、両者の相対的な関係を意味するものであり、図10に示す第1の制御と図11に示す第2の制御とは、予め設定された回転速度で切り替える。即ち、予め設定された回転速度を「第1の回転速度」とするとき、単相モータ12の回転速度が第1の回転速度未満のときは、図10に示す第1の制御で単相モータ12を駆動する。そして、単相モータ12の回転速度が第1の回転速度以上のときは、図11に示す第2の制御で単相モータ12を駆動する。 Next, the first point of drive control of the motor drive device 2 according to the first embodiment will be explained with reference to FIGS. 10 and 11. FIG. 10 is a diagram showing an example of an operation waveform used to explain the first control, which is the drive control at low speed in the first embodiment. FIG. 11 is a diagram showing an example of an operation waveform used to explain the second control, which is the drive control at high speed in the first embodiment. Note that "low speed" or "high speed" here refers to the relative relationship between the two, and the first control shown in FIG. 10 and the second control shown in FIG. Switch at the rotation speed. That is, when the preset rotational speed is set as the "first rotational speed" and the rotational speed of the single-phase motor 12 is less than the first rotational speed, the single-phase motor is 12. When the rotational speed of the single-phase motor 12 is equal to or higher than the first rotational speed, the single-phase motor 12 is driven under the second control shown in FIG.
 図10の上段部にはモータ誘起電圧の波形が示されている。図10の中段部には、モータ印加電圧の波形と、モータ誘起電圧の波形とが示されている。図10の下段部には、モータ誘起電圧の位相を電気角で表した電気角位相の変化が示されている。図10の中段部において、インバータ11がゲートオンするゲートオン期間は粗いハッチングパターンで示され、インバータ11がゲートオフするゲートオフ期間は細かなハッチングパターンで示されている。ゲートオン期間T1はモータ印加電圧の極性が正の期間であり、ゲートオン期間T2はモータ印加電圧の極性が負の期間である。ゲートオン期間T1とゲートオン期間T2との間には、ゲートオフ期間T3が存在する。 The waveform of the motor induced voltage is shown in the upper part of FIG. In the middle part of FIG. 10, the waveform of the motor applied voltage and the waveform of the motor induced voltage are shown. The lower part of FIG. 10 shows changes in the electrical angle phase in which the phase of the motor induced voltage is expressed in electrical angle. In the middle part of FIG. 10, the gate-on period during which the inverter 11 is gate-on is shown by a coarse hatching pattern, and the gate-off period during which the inverter 11 is gate-off is shown by a fine hatching pattern. The gate-on period T1 is a period in which the polarity of the voltage applied to the motor is positive, and the gate-on period T2 is a period in which the polarity of the voltage applied to the motor is negative. A gate-off period T3 exists between the gate-on period T1 and the gate-on period T2.
 また、T4は、単相モータ12の回転周期の1/2の期間、即ち回転半周期を表している。電気角位相の0~180[deg]は、回転半周期T4に対応している。回転半周期T4、ゲートオン期間T1,T2及びゲートオフ期間T3との間には、T4=T1+T3及びT4=T2+T3の関係がある。 Further, T4 represents a period of 1/2 of the rotation period of the single-phase motor 12, that is, a rotation half period. The electrical angle phase of 0 to 180 [deg] corresponds to the rotation half period T4. There is a relationship between T4=T1+T3 and T4=T2+T3 between the rotation half period T4, the gate-on periods T1 and T2, and the gate-off period T3.
 なお、本稿では、ゲートオン期間T1,T2におけるモータ印加電圧を「第1電圧」と呼ぶことがある。また、本稿では、ゲートオン期間T1,T2を「第1の期間」と呼び、ゲートオフ期間T3を「第2の期間」と呼ぶことがある。この定義により、第1及び第2の期間は交互に到来し、第1及び第2の期間はこの順序で繰り返される。 Note that in this paper, the voltage applied to the motor during the gate-on periods T1 and T2 may be referred to as a "first voltage." Furthermore, in this paper, the gate-on periods T1 and T2 may be referred to as a "first period", and the gate-off period T3 may be referred to as a "second period". By this definition, the first and second time periods occur alternately, and the first and second time periods are repeated in this order.
 また、前述のとおり、ゲートオン期間T1とゲートオン期間T2とでは、第1電圧の極性が反転される。インバータ11は、第1の期間が到来する都度、第1電圧の極性を切り替える。第1電圧の極性を切り替えることによって、単相モータ12は、意図する回転方向への回転を継続することができる。なお、図10では、第1電圧が1パルスの電圧である場合を例示しているが、これに限定されない。第1電圧は、PWM制御された複数のパルス列の電圧でもよい。 Furthermore, as described above, the polarity of the first voltage is reversed between the gate-on period T1 and the gate-on period T2. The inverter 11 switches the polarity of the first voltage every time the first period arrives. By switching the polarity of the first voltage, the single-phase motor 12 can continue rotating in the intended rotation direction. Note that although FIG. 10 illustrates a case where the first voltage is a one-pulse voltage, the present invention is not limited to this. The first voltage may be a voltage of a plurality of PWM-controlled pulse trains.
 前述したように、ゲートオン期間T1では、正の極性の電圧が印加される。ゲートオン期間T1は、モータ誘起電圧の極性が負から正に切り替わるゼロクロス点から始まる。また、ゲートオン期間T2では、負の極性の電圧が印加される。ゲートオン期間T2は、モータ誘起電圧の極性が正から負に切り替わるゼロクロス点から始まる。 As described above, a positive polarity voltage is applied during the gate-on period T1. The gate-on period T1 starts from a zero cross point where the polarity of the motor induced voltage switches from negative to positive. Further, during the gate-on period T2, a negative polarity voltage is applied. The gate-on period T2 starts from a zero cross point where the polarity of the motor induced voltage switches from positive to negative.
 また、本稿では、モータ印加電圧の極性の正負が切り替わる位相を「極性切替位相」と呼ぶ。極性切替位相は、電気角位相が180[deg]から0[deg]に変化する点であり、図10では記号Aで示されている。低速時の第1の制御において、極性切替位相を示すA点は、ゼロクロス点に一致している。 Additionally, in this paper, the phase in which the polarity of the voltage applied to the motor switches between positive and negative is referred to as the "polarity switching phase." The polarity switching phase is a point where the electrical angle phase changes from 180 [deg] to 0 [deg], and is indicated by symbol A in FIG. 10. In the first control at low speed, point A, which indicates the polarity switching phase, coincides with the zero cross point.
 第1の制御において、第1電圧の極性の切り替えは、単相モータ12の回転速度及びモータ誘起電圧に基づいて行われる。ゲートオフ期間T3では、インバータ11がゲートオフしているので、電圧検出器21によってモータ誘起電圧の検出が可能である。従って、モータ誘起電圧のゼロクロス点の検出も可能である。なお、ゼロクロス点は、ロータ機械角を電気角に換算した位相であり、演算によって求められている基準位相θを用いることも可能である。 In the first control, switching of the polarity of the first voltage is performed based on the rotational speed of the single-phase motor 12 and the motor induced voltage. During the gate-off period T3, since the inverter 11 is gate-off, the voltage detector 21 can detect the motor induced voltage. Therefore, it is also possible to detect the zero cross point of the motor induced voltage. Note that the zero cross point is a phase obtained by converting the mechanical angle of the rotor into an electrical angle, and it is also possible to use the reference phase θ e determined by calculation.
 単相モータ12の回転速度が第1の回転速度未満である場合、モータ誘起電圧のゼロクロス点を第1電圧の極性の切り替え点とする。即ち、回転速度が第1の回転速度未満である場合、第1電圧の極性を切り替える閾値は零値に設定される。従って、モータ誘起電圧のゼロクロス点において、ゲートオン期間T1又はゲートオン期間T2が開始される。そして、ゲートオン期間T1,T2が繰り返されることにより、単相モータ12には回転トルクが付与され、単相モータ12は加速して回転する。 When the rotational speed of the single-phase motor 12 is less than the first rotational speed, the zero-crossing point of the motor induced voltage is set as the polarity switching point of the first voltage. That is, when the rotation speed is less than the first rotation speed, the threshold value for switching the polarity of the first voltage is set to a zero value. Therefore, the gate-on period T1 or the gate-on period T2 starts at the zero-crossing point of the motor induced voltage. Then, by repeating the gate-on periods T1 and T2, rotational torque is applied to the single-phase motor 12, and the single-phase motor 12 rotates with acceleration.
 ゲートオン期間T1,T2の長さ、及びモータ印加電圧の振幅は、デューティ比、変調率及び回転速度に基づいて決定することができる。デューティ比は回転半周期T4に対するゲートオン期間T1,T2の比である。 The length of the gate-on periods T1 and T2 and the amplitude of the voltage applied to the motor can be determined based on the duty ratio, modulation rate, and rotation speed. The duty ratio is the ratio of the gate-on periods T1 and T2 to the rotation half period T4.
 なお、モータ誘起電圧を電圧検出器21にて直接検出する手法に代え、電圧検出器20の検出値、又は電流検出器24の検出値に基づいてモータ誘起電圧を算出してもよい。なお、電圧検出器20の検出値を用いる場合には、バッテリ10の出力電圧をゼロにする制御手段、又はバッテリ10とインバータ11との間の電気的接続を切り離す機構が必要である。 Note that instead of directly detecting the motor induced voltage with the voltage detector 21, the motor induced voltage may be calculated based on the detected value of the voltage detector 20 or the detected value of the current detector 24. Note that when the detected value of the voltage detector 20 is used, a control means for zeroing the output voltage of the battery 10 or a mechanism for disconnecting the electrical connection between the battery 10 and the inverter 11 is required.
 次に、図11を参照して第2の制御について説明する。図10と同様に、図11の上段部にはモータ誘起電圧の波形が示され、中段部にはモータ印加電圧の波形とモータ誘起電圧の波形とが示され、下段部にはモータ誘起電圧の位相を電気角で表した電気角位相の変化が示されている。ゲートオン期間及びゲートオフ期間に付しているハッチングパターンは、図10と同じである。 Next, the second control will be explained with reference to FIG. 11. Similar to FIG. 10, the upper part of FIG. 11 shows the waveform of the motor induced voltage, the middle part shows the waveform of the motor applied voltage and the waveform of the motor induced voltage, and the lower part shows the waveform of the motor induced voltage. The change in electrical angle phase, where the phase is expressed in electrical angle, is shown. The hatching patterns attached to the gate-on period and the gate-off period are the same as in FIG. 10.
 第2の制御において、第1電圧の極性の切り替えは、単相モータ12の回転速度及びモータ誘起電圧に基づいて行われる。ゲートオフ期間τ3では、インバータ11がゲートオフしているので、電圧検出器21によってモータ誘起電圧の検出が可能である。 In the second control, switching of the polarity of the first voltage is performed based on the rotational speed of the single-phase motor 12 and the motor induced voltage. During the gate-off period τ3, since the inverter 11 is gate-off, the motor induced voltage can be detected by the voltage detector 21.
 ゲートオン期間τ1では、正の極性の第1電圧が印加される。ゲートオン期間τ1は、モータ誘起電圧の振幅の絶対値がΔVに到達したときから始まる。また、ゲートオン期間τ2では、負の極性の第1電圧が印加される。ゲートオン期間τ2は、モータ誘起電圧の振幅の絶対値がΔVに到達したときから始まる。即ち、第2の制御では、モータ誘起電圧の振幅の絶対値と比較するΔVの値が閾値に設定される。図11に示すように、閾値ΔVは正値である。インバータ11は、モータ誘起電圧の振幅の絶対値が閾値ΔVに到達する都度、単相モータ12に印加する電圧の極性を反転する。従って、高速時の第2の制御では、モータ誘起電圧の振幅の絶対値が閾値ΔVとなるB点で、モータ印加電圧の極性の正負が切り替わる。 During the gate-on period τ1, a first voltage of positive polarity is applied. The gate-on period τ1 starts when the absolute value of the amplitude of the motor induced voltage reaches ΔV. Further, during the gate-on period τ2, a first voltage of negative polarity is applied. The gate-on period τ2 starts when the absolute value of the amplitude of the motor induced voltage reaches ΔV. That is, in the second control, the value of ΔV to be compared with the absolute value of the amplitude of the motor induced voltage is set as the threshold value. As shown in FIG. 11, the threshold value ΔV is a positive value. The inverter 11 inverts the polarity of the voltage applied to the single-phase motor 12 every time the absolute value of the amplitude of the motor induced voltage reaches the threshold value ΔV. Therefore, in the second control at high speed, the polarity of the motor applied voltage is switched between positive and negative at point B where the absolute value of the amplitude of the motor induced voltage becomes the threshold value ΔV.
 なお、図11においても図10と同様に、ゲートオン期間τ1,τ2を「第1の期間」と呼び、ゲートオフ期間τ3を「第2の期間」と呼ぶことがある。また、回転半周期τ4、ゲートオン期間τ1,τ2及びゲートオフ期間τ3との間には、τ4=τ1+τ3及びτ4=τ2+τ3の関係がある。また、ゲートオン期間τ1,τ2の長さ、及びモータ印加電圧の振幅は、デューティ比、変調率及び回転速度に基づいて決定することができる。 Note that in FIG. 11, as in FIG. 10, the gate-on periods τ1 and τ2 may be referred to as "first periods", and the gate-off period τ3 may be referred to as a "second period". Moreover, the relationship between the rotation half period τ4, the gate-on periods τ1 and τ2, and the gate-off period τ3 is τ4=τ1+τ3 and τ4=τ2+τ3. Furthermore, the lengths of the gate-on periods τ1 and τ2 and the amplitude of the voltage applied to the motor can be determined based on the duty ratio, modulation rate, and rotation speed.
 また、図10と同様に、ゲートオン期間τ1とゲートオン期間τ2とでは、第1電圧の極性が反転される。インバータ11は、第1の期間が到来する都度、第1電圧の極性を切り替える。第1電圧の極性を切り替えることによって、単相モータ12は、意図する回転方向への回転を継続することができる。なお、図11では、第1電圧が1パルスの電圧である場合を例示しているが、これに限定されない。第1電圧は、PWM制御された複数のパルス列の電圧でもよい。 Furthermore, similarly to FIG. 10, the polarity of the first voltage is reversed between the gate-on period τ1 and the gate-on period τ2. The inverter 11 switches the polarity of the first voltage every time the first period arrives. By switching the polarity of the first voltage, the single-phase motor 12 can continue rotating in the intended rotation direction. Note that although FIG. 11 illustrates a case where the first voltage is a one-pulse voltage, the present invention is not limited to this. The first voltage may be a voltage of a plurality of PWM-controlled pulse trains.
 次に、実施の形態1の第1の制御におけるデューティ比T1/T4,T2/T4、第2の制御におけるデューティ比τ1/τ4,τ2/τ4、及び第2の制御における閾値ΔVの意義について説明する。 Next, the significance of the duty ratios T1/T4 and T2/T4 in the first control, the duty ratios τ1/τ4 and τ2/τ4 in the second control, and the threshold value ΔV in the second control of the first embodiment will be explained. do.
 まず、デューティ比T1/T4,τ1/τ4,T2/T4,τ2/τ4はモータ印加電圧に寄与し、閾値ΔVはモータ誘起電圧に対するモータ印加電圧の位相差である進角位相θに寄与する。加速時において、回転速度が低い低速時においては、高速時と比較して、リアクタンス成分(ωL)が小さい。このため、単相モータ12に流れるモータ電流は、高速時と比較すると、低速時の方が、モータ電流に対するモータ印加電圧の位相遅れが小さい。位相遅れが小さいことは、力率が大きいことを意味する。力率が大きければ、単相モータ12に対して、有効なモータトルクを付与することが可能となる。 First, the duty ratios T1/T4, τ1/τ4, T2/T4, τ2/τ4 contribute to the motor applied voltage, and the threshold value ΔV contributes to the advance phase θ v , which is the phase difference of the motor applied voltage with respect to the motor induced voltage. . During acceleration, the reactance component (ωL) is smaller at low rotational speeds than at high speeds. For this reason, the motor current flowing through the single-phase motor 12 has a smaller phase lag in the motor applied voltage with respect to the motor current at low speeds than at high speeds. A small phase lag means a large power factor. If the power factor is large, it becomes possible to apply effective motor torque to the single-phase motor 12.
 また、高速時においては、リアクタンス成分(ωL)が大きくなる。このとき、モータ電流に対するモータ印加電圧の位相遅れが大きくなるが、進角位相θを大きくすることで、力率が小さくなるのを抑制することができる。これにより、単相モータ12に付与する加速トルクを効率良く得ることができ、単相モータ12に供給する電力を有効に活用することが可能となる。更に、単相モータ12に発生するモータ誘起電圧は、回転速度の増加に応じて増大する。モータ誘起電圧が大きい場合、インバータ出力電圧を大きくしても過電流を抑制することができる。このため、回転速度の増加に応じてインバータ出力電圧を大きくすることで、過電流を抑制しつつ、加速時間の短縮化を図ることが可能となる。 Furthermore, at high speeds, the reactance component (ωL) becomes large. At this time, the phase delay of the motor applied voltage with respect to the motor current becomes large, but by increasing the advance phase θ v , it is possible to suppress the power factor from becoming small. Thereby, the acceleration torque applied to the single-phase motor 12 can be efficiently obtained, and the electric power supplied to the single-phase motor 12 can be effectively utilized. Furthermore, the motor induced voltage generated in the single-phase motor 12 increases as the rotational speed increases. When the motor induced voltage is large, overcurrent can be suppressed even if the inverter output voltage is increased. Therefore, by increasing the inverter output voltage in accordance with the increase in rotational speed, it is possible to reduce the acceleration time while suppressing overcurrent.
 次に、実施の形態1に係るモータ駆動装置2の駆動制御の第2の要点について、図12を参照して説明する。図12は、実施の形態1における低速時及び高速時の駆動制御の双方に共通する第3の制御の説明に使用する図である。 Next, the second key point of drive control of the motor drive device 2 according to the first embodiment will be explained with reference to FIG. 12. FIG. 12 is a diagram used to explain the third control common to both low-speed and high-speed drive control in the first embodiment.
 図12の横軸は電源電圧を表している。また、図12において、上段部には電源電圧に対する回転速度の変化を表す波形が示され、中段部には電源電圧に対する極性切替位相の変化を表す波形が示され、下段部には電源電圧に対する通電幅の変化を表す波形が示されている。前述したように、極性切替位相は、モータ印加電圧の極性の正負が切り替わる位相である。また、通電幅は、第1電圧の印加期間を電気角の位相で表したものである。 The horizontal axis in FIG. 12 represents the power supply voltage. In addition, in FIG. 12, the upper part shows a waveform representing the change in rotational speed with respect to the power supply voltage, the middle part shows a waveform representing the change in polarity switching phase with respect to the power supply voltage, and the lower part shows a waveform representing the change in the rotation speed with respect to the power supply voltage. A waveform representing a change in energization width is shown. As described above, the polarity switching phase is a phase in which the polarity of the voltage applied to the motor is switched between positive and negative. Further, the energization width represents the application period of the first voltage in terms of electrical angle phase.
 [発明が解決しようとする課題]の項でも説明したように、従来技術では、電源電圧であるバッテリ電圧の考慮により、運転が許容されるバッテリ電圧の下限値が大きく設定されるので、電源容量当たりの運転時間が短いという課題があった。この課題に対し、実施の形態1では、以下の制御を行う。 As explained in the [Problems to be Solved by the Invention] section, in the prior art, the lower limit of the battery voltage that is permissible for operation is set large in consideration of the battery voltage, which is the power supply voltage. The problem was that the average driving time was short. In response to this problem, in the first embodiment, the following control is performed.
 まず、電源電圧Vdcの低下に応じて通電幅を増加させる制御が実施される。この制御は、電源電圧Vdcが、予め設定された下限値V1に達するまで実施される。即ち、電源電圧Vdcが低下して下限値V1に達した場合には、通電幅の増加は停止される。下限値V1は、通電幅の制限値W1に基づいて設定される。また、通電幅の制限値W1は、通電幅の上限値W2に基づいて設定される。具体的に、制限値W1は上限値W2を超えないように、即ち上限値W2以下の値に設定される。 First, control is performed to increase the energization width in response to a decrease in the power supply voltage V dc . This control is performed until the power supply voltage V dc reaches a preset lower limit value V1. That is, when the power supply voltage V dc decreases and reaches the lower limit value V1, the increase in the energization width is stopped. The lower limit value V1 is set based on the energization width limit value W1. Further, the limit value W1 of the energization width is set based on the upper limit value W2 of the energization width. Specifically, the limit value W1 is set so as not to exceed the upper limit value W2, that is, to be less than or equal to the upper limit value W2.
 また、図12の下段部において、縦軸の右側には、誘起電圧検出期間が確保できない範囲が示されている。前述したように、モータ誘起電圧を検出するには、インバータ11をゲートオフする必要がある。このため、通電幅には誘起電圧検出を検出するための制限がかかる。図12に示すように、通電幅の上限値W2は、誘起電圧検出期間が確保できない通電幅の範囲の下限値である。 Furthermore, in the lower part of FIG. 12, the right side of the vertical axis shows a range in which the induced voltage detection period cannot be secured. As described above, in order to detect the motor induced voltage, it is necessary to gate off the inverter 11. Therefore, the energization width is limited in order to detect the induced voltage. As shown in FIG. 12, the upper limit W2 of the energization width is the lower limit of the energization width range in which the induced voltage detection period cannot be secured.
 なお、インバータが3相モータを駆動する3相インバータである場合、モータ誘起電圧を検出する際には、3相のうちの1つの相のみをゲートオフすればよい。このため、3相インバータでは、3相モータへの電圧供給を継続しながらモータ誘起電圧を検出することが可能である。これに対し、単相インバータの場合には、モータ誘起電圧を検出する際には、全ての素子をゲートオフする必要があり、単相インバータにおける制御の制約となる。この点は、3相インバータの制御と単相インバータの制御との間の大きな相違点であり、3相インバータの制御の技術が、単相インバータの制御にそのまま適用できない大きな理由である。 Note that if the inverter is a three-phase inverter that drives a three-phase motor, only one of the three phases needs to be gated off when detecting the motor induced voltage. Therefore, with the three-phase inverter, it is possible to detect the motor induced voltage while continuing to supply voltage to the three-phase motor. On the other hand, in the case of a single-phase inverter, it is necessary to gate off all elements when detecting the motor induced voltage, which is a restriction on control in the single-phase inverter. This point is a major difference between three-phase inverter control and single-phase inverter control, and is a major reason why three-phase inverter control techniques cannot be directly applied to single-phase inverter control.
 図12の説明に戻り、電源電圧Vdcが下限値V1に達した以降、即ち電源電圧Vdcが下限値V1以下の領域では、通電幅が維持される。 Returning to the explanation of FIG. 12, after the power supply voltage V dc reaches the lower limit value V1, that is, in the region where the power supply voltage V dc is below the lower limit value V1, the energization width is maintained.
 また、実施の形態1では、下限値V1に基づいて極性切替位相を制御する。具体的には、図12の中段部に示されるように、電源電圧Vdcが下限値V1に達した以降、即ち電源電圧Vdcが下限値V1以下の領域では、電源電圧Vdcが下限値V1に達する前と比べて、極性切替位相を小さくする制御を実施する。極性切替位相を小さくするとは、極性切替位相を進み方向に制御することを意味する。また、極性切替位相を進み方向に制御することは、図10に示すA点、及び図11に示すB点が、左方向に移動することを意味する。 Further, in the first embodiment, the polarity switching phase is controlled based on the lower limit value V1. Specifically, as shown in the middle part of FIG. 12, after the power supply voltage V dc reaches the lower limit value V1, that is, in the region where the power supply voltage V dc is below the lower limit value V1, the power supply voltage V dc reaches the lower limit value. Control is performed to make the polarity switching phase smaller than before reaching V1. Reducing the polarity switching phase means controlling the polarity switching phase in the advancing direction. Furthermore, controlling the polarity switching phase in the advancing direction means that point A shown in FIG. 10 and point B shown in FIG. 11 move to the left.
 極性切替位相を進み方向に制御すると、単相モータ12を駆動する際に発生する磁束を弱める作用が発生する。即ち、極性切替位相を進み方向に制御することは、単相モータ12に対して、弱め磁束制御を強く働かせることを意味する。弱め磁束制御を強く働かせることで、電源電圧Vdcの低下に起因する駆動電力の低下に見合った分の電力を単相モータ12に供給することが可能となる。 When the polarity switching phase is controlled in the forward direction, an effect that weakens the magnetic flux generated when driving the single-phase motor 12 occurs. That is, controlling the polarity switching phase in the advancing direction means strongly exerting magnetic flux weakening control on the single-phase motor 12. By strongly exerting the flux weakening control, it becomes possible to supply the single-phase motor 12 with electric power commensurate with the decrease in drive power caused by the decrease in the power supply voltage V dc .
 なお、3相モータを位置センサレスで駆動する場合、回転ベクトル制御を行うのが一般的であり、この種のベクトル制御では、PWM信号のデューティが大きくなると、弱め磁束制御が行われる。しかしながら、単相モータの場合には、回転ベクトルを生成できず、また、磁束を弱める作用は常に発生しているので、3相モータの駆動技術をそのまま適用することは困難である。この点に関し、本願発明者らは、単相モータの場合、モータ印加電圧の位相を進相させることが、単相モータ12に発生する磁束の平均的な弱め量を下げることに繋がることに着目し、上記の着想に至っている。 Note that when driving a three-phase motor without a position sensor, it is common to perform rotation vector control, and in this type of vector control, when the duty of the PWM signal increases, flux weakening control is performed. However, in the case of a single-phase motor, a rotation vector cannot be generated and an effect of weakening the magnetic flux always occurs, so it is difficult to apply the drive technology of a three-phase motor as is. Regarding this point, the inventors of the present invention have focused on the fact that in the case of a single-phase motor, advancing the phase of the voltage applied to the motor leads to lowering the average amount of weakening of the magnetic flux generated in the single-phase motor 12. This led to the above idea.
 図12の上段部において、破線は通電幅及び極性切替位相の制御を行わない場合の動作波形であり、実線は通電幅及び極性切替位相の制御のうちの少なくとも1つの制御を行った場合の動作波形である。図12に示されるように、通電幅及び極性切替位相のうちの少なくとも1つの制御を行った場合には、電源電圧Vdcの低下に起因して生じ得る回転速度の低下を抑制することが可能となる。 In the upper part of FIG. 12, the broken line is the operation waveform when the energization width and polarity switching phase are not controlled, and the solid line is the operation when at least one of the energization width and polarity switching phase is controlled. It is a waveform. As shown in FIG. 12, when at least one of the energization width and the polarity switching phase is controlled, it is possible to suppress a decrease in rotational speed that may occur due to a decrease in the power supply voltage V dc . becomes.
 以上説明したように、実施の形態1に係るモータ駆動装置は、直流電源から出力される電源電圧が印加されるインバータと、単相モータに誘起されるモータ誘起電圧と相関のある物理量を検出する検出器とを備える。インバータは、電源電圧を交流電圧に変換し、変換した交流電圧を単相モータに印加する。また、インバータは、第1の期間にゲートオンして単相モータに第1電圧を印加し、第1電圧の印加後の第2の期間にゲートオフする。モータ駆動装置は、電源電圧の低下に応じて、第1電圧の印加期間を電気角の位相で表した通電幅を増加させ、電源電圧が更に低下して電源電圧の下限値に達した場合には、通電幅の増加を停止する。このような制御により、電源電圧の低下に起因して生じ得る回転速度の低下を抑制することができる。これにより、実施の形態1に係るモータ駆動装置は、電源容量当たりの運転時間を従来よりも長くできるという効果を得ることができる。 As explained above, the motor drive device according to Embodiment 1 detects a physical quantity correlated with the motor induced voltage induced in the single-phase motor and the inverter to which the power supply voltage output from the DC power supply is applied. A detector. The inverter converts the power supply voltage into AC voltage and applies the converted AC voltage to the single-phase motor. Further, the inverter is gated on in a first period to apply a first voltage to the single-phase motor, and gated off in a second period after application of the first voltage. The motor drive device increases the energization width, which represents the application period of the first voltage in electrical angle phase, in response to a decrease in the power supply voltage, and when the power supply voltage further decreases and reaches the lower limit value of the power supply voltage. stops increasing the energization width. Such control can suppress a decrease in rotational speed that may occur due to a decrease in power supply voltage. Thereby, the motor drive device according to Embodiment 1 can obtain the effect that the operating time per power supply capacity can be made longer than before.
 また、実施の形態1に係るモータ駆動装置は、電源電圧の低下に応じて、第1電圧の印加期間を電気角の位相で表した通電幅を増加させ、通電幅が更に増加して通電幅の制限値に達した場合には、通電幅の増加を停止する。このような制御により、電源電圧の低下に起因して生じ得る回転速度の低下を抑制することができる。これにより、実施の形態1に係るモータ駆動装置は、電源容量当たりの運転時間を従来よりも長くできるという効果を得ることができる。 Further, the motor drive device according to the first embodiment increases the energization width, which represents the application period of the first voltage in terms of electrical angle phase, in response to a decrease in the power supply voltage, and further increases the energization width. When the limit value is reached, the increase in the energization width is stopped. Such control can suppress a decrease in rotational speed that may occur due to a decrease in power supply voltage. Thereby, the motor drive device according to Embodiment 1 can obtain the effect that the operating time per power supply capacity can be made longer than before.
 なお、上記の制御において、モータ駆動装置は、電源電圧が低下して電源電圧の下限値に達した場合、第1電圧の極性の正負を切り替える極性切替位相を、電源電圧が当該電源電圧の下限値に達する前と比べて進み方向に制御してもよい。或いは、通電幅が増加して通電幅の制限値に達した場合、第1電圧の極性の正負を切り替える極性切替位相を、通電幅が当該通電幅の制限値に達する前と比べて進み方向に制御してもよい。このように制御すれば、電源電圧の低下に起因して生じ得る回転速度の低下を抑制する効果をより高めることが可能となる。なお、電源電圧の下限値及び通電幅の制限値は、通電幅の上限値に基づいて設定することができる。 In the above control, when the power supply voltage decreases and reaches the lower limit value of the power supply voltage, the motor drive device changes the polarity switching phase for switching between positive and negative polarity of the first voltage until the power supply voltage reaches the lower limit value of the power supply voltage. Control may be performed in the forward direction compared to before the value is reached. Alternatively, when the energization width increases and reaches the energization width limit value, the polarity switching phase for switching between positive and negative polarity of the first voltage may be changed in the advancing direction compared to before the energization width reaches the energization width limit value. May be controlled. By controlling in this way, it becomes possible to further enhance the effect of suppressing a decrease in rotational speed that may occur due to a decrease in power supply voltage. Note that the lower limit value of the power supply voltage and the limit value of the energization width can be set based on the upper limit value of the energization width.
 次に、実施の形態1に係るモータ駆動装置2において、単相モータ12を位置センサレスで駆動することによる効果について説明する。 Next, the effect of driving the single-phase motor 12 without a position sensor in the motor drive device 2 according to the first embodiment will be described.
 まず、位置センサレスの構成の場合、位置センサが無くても起動することができるため、位置センサの材料費、加工費等のコストを削減することができる。また、位置センサが無いため、位置センサの取り付けずれによる性能影響を無くすことができる。これにより、安定した性能を確保することができる。 First, in the case of a configuration without a position sensor, it is possible to start up without a position sensor, so costs such as material costs and processing costs for the position sensor can be reduced. Furthermore, since there is no position sensor, it is possible to eliminate the effect on performance due to misalignment of the position sensor. Thereby, stable performance can be ensured.
 また、適用例が電気掃除機であり、位置センサとして磁極位置センサが用いられる場合、ロータに具備される永久磁石と、磁極位置センサを備えた基板との距離が近くなる。この場合、羽根で発生させた風の流れを妨げる位置に基板を配置することとなり、風路の圧力損失を増大させてしまう。圧力損失の増大は、電気掃除機の吸い込み仕事率を悪化させ、吸引力を低下させてしまう要因となる。これに対し、位置センサレスでは、位置センサを備えないことから基板配置の自由度が増えるので、基板を風路に対し平行に配置することができる。これにより、基板が風路を遮断しないので、風路の圧力損失を抑制し、吸引力を向上させることができる。その結果、電気掃除機の吸い込み仕事率を向上させることが可能となる。 Furthermore, if the applied example is a vacuum cleaner and a magnetic pole position sensor is used as the position sensor, the distance between the permanent magnet provided in the rotor and the substrate provided with the magnetic pole position sensor becomes short. In this case, the substrate will be placed in a position that obstructs the flow of air generated by the blades, increasing pressure loss in the air path. The increase in pressure loss is a factor that deteriorates the suction power of the vacuum cleaner and reduces the suction power. On the other hand, in the position sensorless system, since no position sensor is provided, the degree of freedom in arranging the substrate increases, so that the board can be arranged parallel to the air path. Thereby, since the substrate does not block the air path, pressure loss in the air path can be suppressed and suction power can be improved. As a result, it becomes possible to improve the suction power of the vacuum cleaner.
 また、適用例が電動送風機である場合において、電動送風機が吸引した気体に水分が多く含まれている場合、基板に直接衝突する水分量が多くなる。この場合、基板に電圧を印加した際に、電極間をイオン化した金属が移動して短絡が生じるという、イオンマイグレーションの発生が懸念される。更に、塵又は埃が基板に堆積することに起因して発生する短絡が懸念される。この対策として、防湿剤を基板に塗布すること、又は基板を風路から隔離する方法が採られるが、何れも製造コストの増大を招く。これに対し、位置センサレスでは、位置センサを備えないことから基板配置の自由度が増えるので、風路を避けて基板を配置することができる。これにより、基板に直接衝突する水分量が減少するので、イオンマイグレーションの発生を抑制し、防湿剤の量を低減することができる。また、基板配置の自由度が増加しているので、基板を筺体の外部に配置することで、基板の品質を向上させることができる。 Furthermore, when the applied example is an electric blower and the gas sucked by the electric blower contains a large amount of moisture, the amount of moisture that directly collides with the substrate increases. In this case, when a voltage is applied to the substrate, there is a concern that ion migration may occur, in which ionized metal moves between the electrodes, causing a short circuit. Furthermore, there is a concern about short circuits caused by dirt or dust accumulating on the substrate. As a countermeasure against this problem, methods are adopted such as applying a moisture proofing agent to the substrate or isolating the substrate from the air path, but both of these methods result in an increase in manufacturing costs. On the other hand, in a position sensorless system, since no position sensor is provided, the degree of freedom in arranging the substrate increases, so that the board can be placed avoiding the air path. This reduces the amount of moisture that directly collides with the substrate, thereby suppressing the occurrence of ion migration and reducing the amount of moisture proofing agent. Furthermore, since the degree of freedom in board placement is increased, the quality of the board can be improved by arranging the board outside the casing.
 また、位置センサはセンシティブなセンサであるため、位置センサの設置位置に関して、高精度な取り付け精度が要求される。また、取り付け後に位置センサの取り付け位置に応じた調整が必要になる。これに対し、位置センサレスの構成の場合、位置センサそのものが不要となり、位置センサの調整工程も排除することができる。これにより、製造コストを大幅に削減することができる。また、位置センサの経年変化による影響が発生しないので、製品の品質を向上させることができる。 Additionally, since the position sensor is a sensitive sensor, high accuracy is required regarding the installation position of the position sensor. Further, after installation, adjustment is required depending on the installation position of the position sensor. On the other hand, in the case of a configuration without a position sensor, the position sensor itself becomes unnecessary, and the process of adjusting the position sensor can also be eliminated. This makes it possible to significantly reduce manufacturing costs. Furthermore, since the position sensor is not affected by aging, the quality of the product can be improved.
 更に、位置センサレスでは、位置センサを必要としないため、インバータと単相モータとを分離して構成することができる。これにより、製品適用時の制約を小さくできる。例えば、適用例が水場等で使用する製品である場合、水場等の位置からインバータを隔離して配置することができる。これにより、インバータが故障する可能性を小さくできるので、装置の信頼性を高めることができる。 Furthermore, in the position sensorless system, since a position sensor is not required, the inverter and single-phase motor can be configured separately. This makes it possible to reduce restrictions when applying the product. For example, if the application is a product used in a water fountain or the like, the inverter can be placed isolated from the water fountain or the like. This makes it possible to reduce the possibility that the inverter will fail, thereby increasing the reliability of the device.
 また、位置センサレスの場合、電流検出器を備えた構成となる。電流検出器は、モータ電流を検出することで、軸ロック又は欠相といったモータ異常を検知可能である。これにより、位置センサが無くても、安全に停止させることができる。 Additionally, in the case of a position sensorless system, the configuration includes a current detector. The current detector can detect motor abnormalities such as shaft lock or phase loss by detecting motor current. This allows the vehicle to be stopped safely even without a position sensor.
 なお、モータ異常を検出するには、例えば過電流を判定するための閾値を設定する。そして、シャント電圧が閾値に到達した場合には、モータ異常と判定する。更に、モータ異常と判定した場合には、インバータの出力を遮断する。このようにすれば、モータ異常を検出して、製品の動作を安全に停止することができる。 Note that in order to detect motor abnormality, for example, a threshold value for determining overcurrent is set. Then, when the shunt voltage reaches the threshold value, it is determined that the motor is abnormal. Further, if it is determined that the motor is abnormal, the output of the inverter is cut off. In this way, motor abnormality can be detected and the operation of the product can be safely stopped.
実施の形態2.
 実施の形態2では、実施の形態1で説明したモータ駆動装置2の応用例について説明する。上述したモータ駆動装置2は、例えば電気掃除機に用いることができる。電気掃除機のように、電源の投入直後から直ぐに使用する製品の場合、実施の形態1に係るモータ駆動装置2の高速回転制御による効果が大きくなる。
Embodiment 2.
In Embodiment 2, an application example of the motor drive device 2 described in Embodiment 1 will be described. The motor drive device 2 described above can be used, for example, in a vacuum cleaner. In the case of a product such as a vacuum cleaner that is used immediately after the power is turned on, the effect of high-speed rotation control of the motor drive device 2 according to the first embodiment is large.
 図13は、実施の形態2に係る電気掃除機61の構成図である。図13に示す電気掃除機61は、いわゆるスティック型の電気掃除機である。図13において、電気掃除機61は、図1に示されるバッテリ10と、図1に示されるモータ駆動装置2と、図1に示される単相モータ12により駆動される電動送風機64と、集塵室65と、センサ68と、吸込口体63と、延長管62と、操作部66とを備える。 FIG. 13 is a configuration diagram of a vacuum cleaner 61 according to the second embodiment. A vacuum cleaner 61 shown in FIG. 13 is a so-called stick-type vacuum cleaner. In FIG. 13, a vacuum cleaner 61 includes a battery 10 shown in FIG. 1, a motor drive device 2 shown in FIG. 1, an electric blower 64 driven by the single-phase motor 12 shown in FIG. It includes a chamber 65, a sensor 68, a suction port body 63, an extension tube 62, and an operating section 66.
 電気掃除機61を使用するユーザは、操作部66を持ち、電気掃除機61を操作する。電気掃除機61のモータ駆動装置2は、バッテリ10を電源として電動送風機64を駆動する。電動送風機64が駆動されることにより、吸込口体63からごみの吸込みが行われる。吸込まれたごみは、延長管62を介して集塵室65へ集められる。 A user using the vacuum cleaner 61 holds the operation unit 66 and operates the vacuum cleaner 61. The motor drive device 2 of the vacuum cleaner 61 drives the electric blower 64 using the battery 10 as a power source. By driving the electric blower 64, dust is sucked in through the suction port body 63. The sucked-in dust is collected into the dust collection chamber 65 via the extension pipe 62.
 なお、図13では、スティック型の電気掃除機を例示したが、スティック型の電気掃除機に限定されるものではない。電動送風機を搭載した電気機器であれば、任意の製品に本開示の技術を適用できる。 Although a stick-type vacuum cleaner is illustrated in FIG. 13, the present invention is not limited to stick-type vacuum cleaners. The technology of the present disclosure can be applied to any product as long as it is an electrical device equipped with an electric blower.
 また、図13は、バッテリ10を電源として用いる構成であるが、これに限定されない。バッテリ10に代えて、コンセントから供給する交流電源を用いる構成でもよい。 Furthermore, although FIG. 13 shows a configuration in which the battery 10 is used as a power source, the present invention is not limited to this. Instead of the battery 10, an AC power source supplied from an outlet may be used.
 また、上述したモータ駆動装置は、例えばハンドドライヤに用いることができる。ハンドドライヤの場合、手を挿入してから電動送風機を駆動するまでの時間が短い程、ユーザの使用感は向上する。このため、実施の形態1に係るモータ駆動装置2の高速回転制御による効果が大いに発揮される。 Furthermore, the above-mentioned motor drive device can be used, for example, in a hand dryer. In the case of a hand dryer, the shorter the time between inserting the hand and driving the electric blower, the better the user experience will be. Therefore, the effects of the high-speed rotation control of the motor drive device 2 according to the first embodiment are greatly exhibited.
 図14は、実施の形態2に係るハンドドライヤ90の構成図である。図14において、ハンドドライヤ90は、図1に示されるモータ駆動装置2と、ケーシング91と、手検知センサ92と、水受け部93と、ドレン容器94と、カバー96と、センサ97と、吸気口98と、図1に示される単相モータ12により駆動される電動送風機95とを備える。ここで、センサ97は、ジャイロセンサ及び人感センサの何れかである。ハンドドライヤ90では、水受け部93の上部にある手挿入部99に手が挿入されることにより、電動送風機95による送風で水が吹き飛ばされ、吹き飛ばされた水は、水受け部93で集められた後、ドレン容器94に溜められる。 FIG. 14 is a configuration diagram of a hand dryer 90 according to the second embodiment. In FIG. 14, the hand dryer 90 includes the motor drive device 2 shown in FIG. It includes a port 98 and an electric blower 95 driven by the single-phase motor 12 shown in FIG. Here, the sensor 97 is either a gyro sensor or a human sensor. In the hand dryer 90 , when a hand is inserted into the hand insertion part 99 at the top of the water receiver 93 , water is blown away by the air blown by the electric blower 95 , and the blown water is collected in the water receiver 93 . After that, it is collected in the drain container 94.
 以上の通り、実施の形態2では、実施の形態1に係るモータ駆動装置2を電気掃除機及びハンドドライヤに適用した構成例を説明したが、これらの例に限定されない。モータ駆動装置2は、モータが搭載された電気機器に広く適用することができる。モータが搭載された電気機器の例は、焼却炉、粉砕機、乾燥機、集塵機、印刷機械、クリーニング機械、製菓機械、製茶機械、木工機械、プラスチック押出機、ダンボール機械、包装機械、熱風発生機、OA機器、及び電動送風機である。電動送風機は、物体輸送用、吸塵用、又は一般送排風用の送風手段である。 As described above, in Embodiment 2, a configuration example in which the motor drive device 2 according to Embodiment 1 is applied to a vacuum cleaner and a hand dryer has been described, but the present invention is not limited to these examples. The motor drive device 2 can be widely applied to electrical equipment equipped with a motor. Examples of electrical equipment equipped with motors are incinerators, crushers, dryers, dust collectors, printing machines, cleaning machines, confectionery machines, tea machines, woodworking machines, plastic extruders, cardboard machines, packaging machines, and hot air generators. , OA equipment, and electric blowers. An electric blower is a blowing means for transporting objects, collecting dust, or general ventilation.
 なお、以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 Note that the configuration shown in the embodiment above is an example, and it is possible to combine it with another known technology, or omit or change a part of the configuration without departing from the gist. It is also possible.
 1 モータ駆動システム、2 モータ駆動装置、5A,5B レグ、6A,6B 接続端、10 バッテリ、11,11A インバータ、12 単相モータ、12a ロータ、12b ステータ、16a,16b 直流母線、18a,18b 接続線、20,21 電圧検出器、22,24 電流検出器、25 制御部、30 アナログディジタル変換器、30a ディジタル出力値、31 プロセッサ、32 駆動信号生成部、33 キャリア生成部、34 メモリ、38,38A,38B キャリア比較部、38a 絶対値演算部、38b 除算部、38c,38d,38f,38k 乗算部、38e,38m,38n 加算部、38g,38h 比較部、38i,38j 出力反転部、42 回転速度算出部、44 進角位相算出部、51,52,53,54 スイッチング素子、51a,52a,53a,54a ボディダイオード、55a,55b シャント抵抗、61 電気掃除機、62 延長管、63 吸込口体、64,95 電動送風機、65 集塵室、66 操作部、68,97 センサ、90 ハンドドライヤ、91 ケーシング、92 手検知センサ、93 水受け部、94 ドレン容器、96 カバー、98 吸気口、99 手挿入部。 1 Motor drive system, 2 Motor drive device, 5A, 5B leg, 6A, 6B connection end, 10 Battery, 11, 11A inverter, 12 Single phase motor, 12a Rotor, 12b Stator, 16a, 16b DC bus, 18a, 18b connection line, 20, 21 voltage detector, 22, 24 current detector, 25 control unit, 30 analog-digital converter, 30a digital output value, 31 processor, 32 drive signal generation unit, 33 carrier generation unit, 34 memory, 38, 38A, 38B carrier comparison section, 38a absolute value calculation section, 38b division section, 38c, 38d, 38f, 38k multiplication section, 38e, 38m, 38n addition section, 38g, 38h comparison section, 38i, 38j output inversion section, 42 rotation Speed calculation unit, 44 Advance angle phase calculation unit, 51, 52, 53, 54 Switching element, 51a, 52a, 53a, 54a Body diode, 55a, 55b Shunt resistor, 61 Vacuum cleaner, 62 Extension pipe, 63 Suction port body , 64, 95 electric blower, 65 dust collection chamber, 66 operation unit, 68, 97 sensor, 90 hand dryer, 91 casing, 92 hand detection sensor, 93 water receiver, 94 drain container, 96 cover, 98 air intake port, 99 Hand insertion part.

Claims (11)

  1.  単相モータを位置センサレスで駆動するモータ駆動装置であって、
     直流電源から出力される電源電圧が印加され、前記電源電圧を交流電圧に変換し、変換した前記交流電圧を前記単相モータに印加するインバータと、
     前記単相モータに誘起されるモータ誘起電圧と相関のある物理量を検出する検出器と、
     を備え、
     前記インバータは、第1の期間にゲートオンして前記単相モータに第1電圧を印加し、前記第1電圧の印加後の第2の期間にゲートオフし、
     前記電源電圧の低下に応じて、前記第1電圧の印加期間を電気角の位相で表した通電幅を増加させ、前記電源電圧が更に低下して前記電源電圧の下限値に達した場合には、前記通電幅の増加を停止する
     モータ駆動装置。
    A motor drive device that drives a single-phase motor without a position sensor,
    an inverter to which a power supply voltage output from a DC power supply is applied, converts the power supply voltage into an AC voltage, and applies the converted AC voltage to the single-phase motor;
    a detector that detects a physical quantity correlated with a motor induced voltage induced in the single-phase motor;
    Equipped with
    The inverter gates on in a first period to apply a first voltage to the single-phase motor, and gates off in a second period after application of the first voltage,
    In response to the decrease in the power supply voltage, the energization width in which the application period of the first voltage is expressed in electrical angle phase is increased, and when the power supply voltage further decreases and reaches the lower limit value of the power supply voltage, , a motor drive device that stops increasing the energization width.
  2.  前記第1及び第2の期間は交互に到来し、
     前記インバータは、前記第1の期間が到来する都度、前記第1電圧の極性の正負を切り替え、
     前記電源電圧が低下して前記下限値に達した場合、前記第1電圧の極性の正負を切り替える極性切替位相は、前記電源電圧が前記下限値に達する前と比べて進み方向に制御される
     請求項1に記載のモータ駆動装置。
    the first and second periods arrive alternately;
    The inverter switches the polarity of the first voltage between positive and negative each time the first period arrives,
    When the power supply voltage decreases and reaches the lower limit value, a polarity switching phase for switching between positive and negative polarity of the first voltage is controlled in a forward direction compared to before the power supply voltage reaches the lower limit value. The motor drive device according to item 1.
  3.  前記下限値は、前記通電幅の上限値に基づいて設定される
     請求項1又は2に記載のモータ駆動装置。
    The motor drive device according to claim 1 or 2, wherein the lower limit value is set based on the upper limit value of the energization width.
  4.  単相モータを位置センサレスで駆動するモータ駆動装置であって、
     直流電源から出力される電源電圧が印加され、前記電源電圧を交流電圧に変換し、変換した前記交流電圧を前記単相モータに印加するインバータと、
     前記単相モータに誘起されるモータ誘起電圧と相関のある物理量を検出する検出器と、
     を備え、
     前記インバータは、第1の期間にゲートオンして前記単相モータに第1電圧を印加し、前記第1電圧の印加後の第2の期間にゲートオフし、
     前記電源電圧の低下に応じて前記第1電圧の印加期間を電気角の位相で表した通電幅を増加させ、前記通電幅が更に増加して前記通電幅の制限値に達した場合には、前記通電幅の増加を停止する
     モータ駆動装置。
    A motor drive device that drives a single-phase motor without a position sensor,
    an inverter to which a power supply voltage output from a DC power supply is applied, converts the power supply voltage into an AC voltage, and applies the converted AC voltage to the single-phase motor;
    a detector that detects a physical quantity correlated with a motor induced voltage induced in the single-phase motor;
    Equipped with
    The inverter gates on in a first period to apply a first voltage to the single-phase motor, and gates off in a second period after application of the first voltage,
    In response to a decrease in the power supply voltage, the energization width, which represents the application period of the first voltage in electrical angle phase, is increased, and when the energization width further increases and reaches the limit value of the energization width, A motor drive device that stops increasing the energization width.
  5.  前記第1及び第2の期間は交互に到来し、
     前記インバータは、前記第1の期間が到来する都度、前記第1電圧の極性の正負を切り替え、
     前記通電幅が増加して前記制限値に達した場合、前記第1電圧の極性の正負を切り替える極性切替位相は、前記通電幅が前記制限値に達する前と比べて進み方向に制御される
     請求項4に記載のモータ駆動装置。
    the first and second periods arrive alternately;
    The inverter switches the polarity of the first voltage between positive and negative each time the first period arrives,
    When the energization width increases and reaches the limit value, the polarity switching phase for switching the polarity of the first voltage between positive and negative is controlled in a forward direction compared to before the energization width reaches the limit value. The motor drive device according to item 4.
  6.  前記制限値は、前記通電幅の上限値に基づいて設定される
     請求項4又は5に記載のモータ駆動装置。
    The motor drive device according to claim 4 , wherein the limit value is set based on an upper limit value of the energization width.
  7.  前記インバータは、ブリッジ接続される複数のスイッチング素子を有し、
     複数の前記スイッチング素子のうちの少なくとも1つはワイドバンドギャップ半導体で形成されている
     請求項1から6の何れか1項に記載のモータ駆動装置。
    The inverter has a plurality of switching elements connected in a bridge,
    The motor drive device according to any one of claims 1 to 6, wherein at least one of the plurality of switching elements is formed of a wide bandgap semiconductor.
  8.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドである
     請求項7に記載のモータ駆動装置。
    The motor drive device according to claim 7, wherein the wide bandgap semiconductor is silicon carbide, gallium nitride, gallium oxide, or diamond.
  9.  請求項1から8の何れか1項に記載のモータ駆動装置を備えた電動送風機。 An electric blower comprising the motor drive device according to any one of claims 1 to 8.
  10.  請求項9に記載の電動送風機を備えた電気掃除機。 A vacuum cleaner comprising the electric blower according to claim 9.
  11.  請求項9に記載の電動送風機を備えたハンドドライヤ。 A hand dryer comprising the electric blower according to claim 9.
PCT/JP2022/013539 2022-03-23 2022-03-23 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer WO2023181181A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013539 WO2023181181A1 (en) 2022-03-23 2022-03-23 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013539 WO2023181181A1 (en) 2022-03-23 2022-03-23 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer

Publications (1)

Publication Number Publication Date
WO2023181181A1 true WO2023181181A1 (en) 2023-09-28

Family

ID=88100444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013539 WO2023181181A1 (en) 2022-03-23 2022-03-23 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer

Country Status (1)

Country Link
WO (1) WO2023181181A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108158A1 (en) * 2011-02-08 2012-08-16 パナソニック株式会社 Motor drive device
JP2013219954A (en) * 2012-04-10 2013-10-24 Nippon Soken Inc Motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108158A1 (en) * 2011-02-08 2012-08-16 パナソニック株式会社 Motor drive device
JP2012165594A (en) * 2011-02-08 2012-08-30 Panasonic Corp Motor drive device
JP2013219954A (en) * 2012-04-10 2013-10-24 Nippon Soken Inc Motor

Similar Documents

Publication Publication Date Title
JP6644159B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP6671516B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP6800329B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP7237198B2 (en) motor drives, vacuum cleaners and hand dryers
JP6847195B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
WO2023181181A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP7237197B2 (en) motor drives, vacuum cleaners and hand dryers
WO2023181182A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
JP7150151B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
JP7403681B2 (en) Motor drive devices, electric blowers, vacuum cleaners and hand dryers
JP7076637B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
JP7366288B2 (en) Motor drive devices, electric blowers, vacuum cleaners and hand dryers
JP7462788B2 (en) Motor drive device, electric blower, vacuum cleaner and hand dryer
WO2019180972A1 (en) Motor drive device, electric fan, vacuum cleaner, and hand dryer
JP6616055B1 (en) Motor drive device, vacuum cleaner and hand dryer
JP7150152B2 (en) Motor drives, electric blowers, vacuum cleaners and hand dryers
EP3952103A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer
WO2019180967A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933325

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024508903

Country of ref document: JP